
Elvis Sikora

An agent-based analysis of commit & reveal
schemes to mitigate blockchain extractable value

Brasília, Brasil

2023





Elvis Sikora

An agent-based analysis of commit & reveal schemes to
mitigate blockchain extractable value

Dissertação apresentada ao Curso de
Mestrado Acadêmico em Economia, Universi-
dade de Brasília, como requisito parcial para
a obtenção do título de Mestre em Economia

Universidade de Brasília - UnB

Faculdade de Administração Contabilidade e Economia - FACE

Departamento de Economia - ECO

Programa de Pós-Graduação

Supervisor: Prof. Daniel Oliveira Cajueiro, Dr.

Brasília, Brasil
2023



Elvis Sikora
An agent-based analysis of commit & reveal schemes to mitigate blockchain

extractable value/ Elvis Sikora. – Brasília, Brasil, 2023-
45p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Daniel Oliveira Cajueiro, Dr.

Dissertação (Mestrado) – Universidade de Brasília - UnB
Faculdade de Administração Contabilidade e Economia - FACE
Departamento de Economia - ECO
Programa de Pós-Graduação, 2023.
1. Inflação de bens industriais. 2. Previsão. 3. Machine learning. II. Universidade

de Brasília. III. Faculdade de Administração, Contabilidade e Economia - FACE. IV.
Departamento de Economia IV. An agent-based analysis of commit & reveal schemes
to mitigate blockchain extractable value



Elvis Sikora

Uma análise baseada em agentes de esquemas commit &
reveal para mitigar blockchain extractable value

Dissertação apresentada ao Curso de
Mestrado Acadêmico em Economia, Universi-
dade de Brasília, como requisito parcial para
a obtenção do título de Mestre em Economia

Trabalho aprovado. Brasília, Brasil, 19 de dezembro de 2023:

Prof. Daniel Oliveira Cajueiro, Dr.
Orientador

Prof. Dr. José Guilherme de Lara
Resende

Convidado 1

Dr. Saulo Benchimol Bastos
Convidado 2

Brasília, Brasil
2023





Resumo
A ordem das transações dentro dos blocos em Ethereum afeta os resultados de contratos
inteligentes, como decentralized exchanges, oferecendo assim oportunidades para atores mal-
intencionados lucrarem às custas dos usuários. Esses ataques contribuem para aumentar
os custos, reduzir o rendimento das transações legítimas, e potencialmente ameaçam
a segurança da camada de consenso. Por essas razões, inúmeras estratégias têm sido
propostas para combatê-los, incluindo mecanismos de confirmação e revelação on-chain.
Essas abordagens separam o envio da transação e finalização em blocos distintos enquanto
oculta detalhes cruciais da transação durante o envio inicial, tornando os ataques mais
difíceis. Expandindo estudos anteriores que investigam antecipação de ordem em finanças
descentralizadas com modelos baseados em agentes, esta dissertação visa quantificar o
impacto dos atrasos inerentes aos mecanismos de confirmação e revelação na precisão do
preço e na potencial perda de lucro para os usuários devido a ataques de reordenação que
permanecem viável apesar dessas contramedidas.

Palavras-chave: antecipação de ordens, finanças decentralizadas, modelo baseado em
agentes, mecanismo de comprometimento e revelação





Abstract
The order of transactions within blocks in Ethereum affect the results of smart contracts
such as decentralized exchanges, thereby providing opportunities for malicious actors
to profit at the users’ expense. These attacks contribute to increased costs, reduced
legitimate transaction throughput, and potentially threaten consensus-layer security. For
those reasons, numerous strategies have been proposed to counteract them, including
on-chain commit & reveal mechanisms. These approaches separate transaction submission
and finalization into distinct blocks while concealing crucial transaction details during the
initial submission, making attacks more difficult. Expanding upon previous agent-based
studies of frontrunning in decentralized finance, this dissertation aims to quantify the
impact of delays inherent in commit & reveal mechanisms on price accuracy and the
potential profit loss for traders due to reordering attacks that remain feasible despite these
countermeasures.

Keywords: frontrunning, decentralized finance, agent-based model, commit and reveal
mechanism
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1 Introduction

Transaction reordering attacks1 pose significant challenges in decentralized finance
(DeFi) applications, constituting a critical consensus-layer security risk and prompting
researchers to label it as “a realistic threat to Ethereum today” (Daian et al., 2019).
Blockchain extractable value2 (BEV) represents the potential income block producers
(e.g., miners or validators) can acquire by selecting transactions from the mempool3 and
strategically arranging them within a block, sometimes including transactions of their
own. Monthly BEV accumulation from decentralized lending platforms and exchanges
consistently exceeds $100 million, negatively impacting traders’ surplus (Heimbach; Wat-
tenhofer, 2022). This financial burden is further exacerbated by increased gas fees arising
from BEV opportunities. Despite considerable research attention, all current mitigation
strategies have proven insufficient (Baum et al., 2021; Heimbach; Wattenhofer, 2022; Yang
et al., 2022). While frontrunning attacks also affect traditional finance, DeFi faces greater
difficulty addressing these issues, as ideally the solutions would be in the protocols, and
not depend on regulations.

We investigate limitations that have been pointed out of a specific family of
proposed solutions to transaction reordering manipulations, known as on-chain commit &
reveal mechanisms (Heimbach; Wattenhofer, 2022). These mechanisms generally operate
by separating the submission and finalization of transactions. During the first phase, users
commit to their transactions, which are later revealed and finalized by either the user
themselves or a smart contract execution. On-chain commit & reveal mechanisms, as they
name indicate, are fully decentralized, which is essential in DeFi. Additionally, transaction
details, such as amounts, remain concealed at the time of submission, seemingly making it
challenging to extract any BEV.

However, the delay introduced by commit & reveal mechanisms can significantly
impact the accuracy of asset prices in decentralized exchanges (DEXs) (Heimbach; Wat-
tenhofer, 2022). Furthermore, it has been demonstrated that, in chains with public user
balances, crafty attackers can still target transactions even when these mechanisms are

1 The terms “frontrunning” and “transaction reordering attacks” are often used as synonyms in the
context of blockchains, which is the convention we adopt. Elsewhere, “frontrunning” is sometimes used
to refer specifically to placing an order or transaction ahead of some target transaction. Again, we
are interested in the broader family of reordering attacks, which also include, for example, sandwich
attacks, which place a swap ahead and another following the target transaction.

2 Blockchain extractable value is also referred to by other names, most notably “miner extractable value”
(MEV) (Baum et al., 2021).

3 A mempool, or memory pool, is a list of pending transactions that are yet to be added to a block.
Each block producer (e.g., a miner, in a Proof-of-Work network) has a mempool. As transactions
reach a block producer node, it is expected (but not guaranteed to, due to the decentralized nature of
blockchains) to propagate it to the other participant nodes of the network.
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in place. With agent-based models (ABMs), we aim to quantify the discrepancy between
prices in a constant-product market maker (CPMM) market and an external market for
a given pair of assets. We also seek to measure the reduction in traders’ surplus when
adversaries employ the speculative sandwich attack outlined by Baum et al. (2021). By
analyzing these aspects, we aim to contribute to a deeper understanding of the effectiveness
of on-chain commit & reveal mechanisms in mitigating transaction reordering attacks and
their impact on the DeFi ecosystem.

Our own methodology is built on top of the model from Angeris et al. (2021),
who first performed agent-based simulation of DEXs based on CPMMs, which was later
adapted to study frontrunning specifically (Struchkov et al., 2021). Struchkov et al. (2021)
tried to compare trader’s loss to frontrunning attacks from two different DEXs, Uniswap
(which uses CPMMs), and Liquifi. Our own work differs from theirs in that we compare
CPMMs with and without an on-chain commit & reveal mechanism, and we are interested
in price accuracy in addition to trader’s loss.
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2 Background

In this chapter, we first provide a high-level explanation of BEV to help readers
who are not familiar with the topic form a mental model of why it exists at all and how it
works. Following that, we move to a review of previous literature on our topic.

2.1 Blockchain extractable value
Blockchain extractable value (BEV) does not exist in a network such as Bitcoin,

where everything the miners do is ensure transference of funds between users occurs
correctly. Consider a list of transactions of the sort

1. user A is transferring 0.01 BTC to user B,

2. user A is transferring 0.01 BTC to user D,

3. user C is transferring 1.2 BTC to user A.

Now suppose we are to apply these transactions one by one, in the order presented. Each
transaction in the list has an effect on users’ balances. For example, the first transaction
will decrease 0.01 BTC from user A’s balance, and add the same amount to user B’s. If we
shuffle the list, the end result will be the same. Even if we insert some transactions of our
own in the middle of the list, the result does not change, other than some of our own funds
being transferred that were not before. This, of course, assumes that each user has enough
BTC to fund their transfers, but this is guaranteed to be the case if the transactions are
to be included in a single block, because were a miner to propose a block where an user
overspends her BTC, the other miners in the network would reject that block. Assuming,
that is, that enough of the miners are honest and correctly follow the consensus protocol.

Ethereum is not like that. For starters, in Ethereum, users can hold many different
types of token, which can represent many different things, as opposed to just ETH.
Moreover, there are other types of transaction beyond the simple transfer of funds from
one user to another, such as transactions that place computer programs inside the network,
which receive the name “smart contracts”. In the same manner that miners in the Bitcoin
network ensure that transactions are correctly executed, validators in the Ethereum
network are responsible for the correct execution of smart contracts. Smart contracts, such
as decentralized exchanges (DEXs), can hold their own balances of tokens. Once they live
inside the Ethereum network, further user transactions can prompt them, and the software
inside them will be executed, possibly moving tokens around. The vision behind DeFi is
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to create fully decentralized financial services, relying on modular smart contracts which
can interact with one another.

Now, notoriously, Ethereum smart contracts are Turing-complete, meaning that
they are powerful enough to execute arbitrary computations. An intuitive way to think of
why the order of transactions inside a block matters is to think of what would happen if
we shuffled around the lines of a computer program, and inserted new lines in between
the existing ones. Unlike the list of Bitcoin transactions presented above, when we shuffle
the lines of a computer program, the effect is way harder to predict, and it usually results
in a different end state. This example may be too extreme, as reordering lines written
in an imperative language will more often than not result in gibberish that errors out
(think accessing a variable before it is declared), whereas Ethereum smart contracts are
designed to be modular and fault tolerant. So when subsequent invocations to different
smart contracts are reordered, the results might differ, but they’ll at least be sensible.

Users can trade their tokens using DEXs, which is called “swapping”, and when
users swap tokens of one type for tokens of another type, the reserves held by the DEX are
changed, which affects, in turn, the relative prices of the different tokens. By reordering the
transactions that go into blocks, validators may affect the prices different users pay when
they interact with the DEX. This open a channel for attacks, such as sandwich attacks, in
which a transaction F will be placed just before a target transaction T by an honest user.
The goal of F is to affect the prices faced by T such that the honest user pays a worse price
than they would otherwise, and the attacker profits from the difference by placing another
transaction B following T . This attack arises fundamentally from misaligned incentives,
which lead to blocks being built in a way that maximizes profit rather than following the
protocols blindly.

2.2 Literature review

DEXs are crucial DeFi platforms that typically utilize automated market makers
(AMMs) for their operations. One notable example is the CPMM, which is used by the
popular Uniswap exchange (Adams et al., 2021). CPMMs enable users to trade one type
of token for another while maintaining a constant product of the two token types’ reserves
within the AMM, as explained in subsection 3.1.1. Asset prices are not stored explicitly,
but, rather, implicitly determined by this rule. Although AMMs are not employed by
market makers in traditional financial markets due to their suboptimal nature, they have
emerged as the preferred solution for DEXs because of both technical and philosophical
constraints imposed by blockchains (Levine, 2022).

DEXs are a cornerstone of decentralized finance (Werner et al., 2021; Qin et al.,
2021; Schär, 2021), as they allow users to trade their crypto tokens about as conveniently



2.2. Literature review 21

as with a centralized exchange, but without needing to entrust their tokens to a centralized
entity. Moreover, they work as a credible oracle for prices from the world outside the
blockchain. If the prices in external markets do not match those of the AMM, users
profiting from the arbitrage opportunity can close the gap. For this reason, smart contracts
needing to know those prices can refer to the AMMs. For example, a contract responsible
for managing assets on-chain could be programmed to liquidate a position if prices in
external markets fall below a certain point. This hypothetical contract could query a DEX
to find out about those prices.

DEXs, being central to the DeFi ecosystem, have attracted considerable attention
from researchers. Angeris et al. (2021) investigated why CPMMs work as well as they do
despite their simplicity. The authors proved several important properties for this class of
AMMs, including the fact that manipulating them is costly if liquidity pools are sufficiently
large, and that rational arbitrageurs will act to ensure the exchange rate between assets
in the AMM accurately reflects market prices. Additionally, they conducted agent-based
simulations of market dynamics, demonstrating that many of CPMM’s desirable properties
are maintained in a more realistic setting than what the theorems assume. Expanding on
this work, Struchkov et al. (2021) utilized ABMs to specifically compare the performance
of Uniswap and Liquifi, another DEX, under frontrunning attacks. In our own work, we
build upon these ABM methodologies to study another proposed family of solutions to
decrease value extracted by reordering attacks, commit & reveal mechanisms.

Yang et al. (2022), Baum et al. (2021) and Heimbach and Wattenhofer (2022)
wrote recent Systematization of Knowledge (SoK) papers specifically about mitigation
strategies for BEV. Various schemes can be categorized under the commit & reveal
umbrella, including those with off-chain components. However, we focus exclusively on
the on-chain mechanisms, as their off-chain counterparts contradict the principle of
decentralization, which seems essential for decentralized finance. Among the on-chain
mechanisms alone, numerous proposals have been put forth, and it is unclear which one is
superior. Consequently, we concentrate on their shared features. As detailed in chapter 1,
we assume that these mechanisms function by separating the submission of transactions
from their finalization, ensuring that key transaction details are concealed when first added
to the chain. However, in public balance protocols, the user executing a transaction remains
visible, allowing adversaries to infer the amount of each token they possess. Additionally,
we assume adversaries are still able to control the order of transactions effectively, even
without seeing their details.

In chapter 3, we describe the various simulations conducted to test different
hypotheses and detail the specific assumptions made about the protocols in each simulation.
Heimbach and Wattenhofer (2022) commends the broad applicability and decentralized
nature of on-chain commit & reveal mechanisms. However, they criticize these mechanisms
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for increasing transaction costs and introducing a delay between submission and settlement,
which they argue can cause AMM prices to deviate and result in market inefficiencies.
Given the importance of AMMs as price oracles, we focus on measuring the impact of the
introduced delay on price accuracy, making an attempt to quantify that impact.

Baum et al. (2021) present an attack that enables adversaries to profit without
having access to transaction details, naming it the “speculative sandwich with public user
balances”. This type of attack involves both frontrunning and backrunning transactions,
so it is a “sandwich” attack. The frontrun swap is included in the same block as the user’s
transaction, while the backrun swap is placed in the subsequent block. The “speculative”
aspect of the attack refers to the need for the attacker to guess the direction of the
user’s swap operation, with public user balances offering clues to inform their guess. The
authors demonstrate that this attack is rational for the adversary, but in scenarios with
private balances, it would only be profitable if the attacker could accurately guess the
direction, which may not always be feasible. In our own study, we implement a different,
and suboptimal, speculative sandwich attack, explained in subsection 3.3.4, with the
attacker being able to, unlike in Baum et al. (2021)’s, control exactly the order of attacks.
We show in chapter 4 that this attack is, in fact, only able to extract a small fraction of
the BEV that would be extracted without a commit & reveal mechanism but we caution
the reader to interpret this result taking into consideration some of the drawbacks we do
not account for in our models, such as the increased transaction costs.

Bartoletti et al. (2021) introduce a conceptually clear and easily implementable
formal theory of AMMs in DeFi based on labelled transition systems, a model in theoretical
computer science. They prove numerous properties of AMMs, such as the existence of
a rational swap that aligns the AMM’s internal exchange rate with an external market
rate, given certain assumptions. Their model also demonstrates its capability to express
BEV attacks. In section 3.1, we review some aspects of this model, while making small
modifications to make it more suitable for own purposes since the original version has
fixed external market prices, and one of our core aims is to study how well the AMM
tracks those prices as they change in different conditions. In a subsequent work building
on this foundation, the authors formalize the problem faced by an attacker seeking to
maximize their BEV (Bartoletti et al., 2022). Given the AMM state and a pool of pending
transactions, the attacker must devise a sequence of transactions, possibly including their
own and some from the mempool, to maximize their gains. The authors successfully derive
an optimal strategy within the context of CPMMs.
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3 Methodology

Our simulation methodology derives from the one first developed by Angeris et al.
(2021), which also served as the foundation for Struchkov et al. (2021)’s ABM.

The agents involved are

• liquidity providers, who deposit their tokens into the AMM,

• traders, who use the AMM and perform swaps according to a specific model,

• arbitrageurs, who try to profit from discrepancies between AMM prices and external
market prices and

• frontrunners, who monitor pending transactions in the mempool and make transac-
tions of their own to exploit them for personal gain.

There is an Uniswap market, and an external market. The ABM simulation time proceeds
as t = 0, 1, . . .. At each time1 t, an exogenous random price update occurs in the external
market, prompting agents to interact with the markets. Transactions with the AMM are
not settled immediately, instead, they are added to the mempool.

We seek to answer two questions regarding commit & reveal schemes.

1. How much does the delay introduced by commit & reveal schemes affect the accuracy
of AMM prices?

2. How much profit do traders lose to frontrunners executing the speculative sandwich
attack with public user balances?

To answer the first question, we conduct two types of simulations. In both, there
are no frontrunners and traders have an amount of each token that is large enough so they
never run out of tokens. Traders perform their swaps completely randomly. The AMM
requires no trading fee.

1. In the first type of simulation, we use the same blockchain model as the one employed
by Struchkov et al. (2021). The goal is to measure the accuracy of AMM prices,
assuming no delay.

2. In the second type of simulation, we introduce a delay between the submission of
transactions and their settlement.

1 We shall use the terms “time” and “epoch” more or less interchangeably when referring to a period in
the simulation when exactly one block is formed and executed.
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To answer the second question, we also perform two types of simulations. In both,
we utilize the simple blockchain model introduced by Struchkov et al. (2021). The token
balances held by traders serve as parameters in the probability distribution from which
their trades are drawn.

1. In the first type, we attempt to model a situation without the commit & reveal
scheme. Frontrunners can see the details of trades and extract maximum value from
them.

2. In the second type, frontrunners cannot view the details of the trades, but only the
trader’s balances. This allows them to execute speculative sandwich attacks.

3.1 Market model
We adopt Bartoletti et al. (2021)’s model, which we present below. Formally, market

semantics are defined using a labelled transition system2 (LTS). In this LTS, states contain
the balances of each token types held by each user, and by the AMM, as well as prices
in the external market. Transitions happen due either to transactions involving a user3

and the AMM, or to nondeterministic price updates. For simplicity, we will refer to price
updates as transactions as well. A transition from state Γ to state Γ′ after transaction T
is denoted Γ T−→ Γ′. If Γ T−→ Γ′, we say T is enabled in Γ.

This model of the market as an LTS describes the semantics of all possible ways
the markets can evolve, what transactions are enabled in each market state, and what
their effects are. The specific trajectories the markets follow will be determined by agent’s
choices and by random changes in market prices. In the remainder of this section, we first
review the basics of Bartoletti et al. (2021)’s theory of AMMs, focusing on the aspects we
need. Then, we define the specific probabilistic models we adopt for the price updates.

3.1.1 Market semantics: what transitions are possible

Agents are interested in trading tokens of two types, τ0 and τ1, which they can do
in two markets, a Uniswap market, and an external market. Besides tokens of these two
types, they can also hold tokens of the minted type {τ0, τ1}, representing claims on the
Uniswap market liquidity pool. For any of the three token types τ, we let v : τ denote v

units of a token of type τ. There is a fixed set of users, an AMM, and the external market.
We denote the AMM as {r0 : τ0, r1 : τ1} if its reserves are r0 units of τ0, and r1 units of τ1.
2 A labelled transition system is a tuple (S, Γ, T ), where S is a set of states, Γ is a set of labels, and

T ⊆ S × Γ × S is the labelled transation relation. We write p
α→ q to denote that there is transition

from state p to state q with label α, that is, if (p, α, q) ∈ T . (Wikipedia, 2023).
3 In the context of our market model, we adopt the terms “agent” and “user” interchangeably.
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At any specific point during the simulation, the market will be in some state Γ, consisting
of

• the balances of τ0, τ1 and {τ0, τ1} of each user,

• the reserves r0 : τ0 and r1 : τ1 of the AMM,

• a price oracle PΓ , with the external market prices.

Users can swap x > 0 units of τ0 for units of τ1 (or vice-versa) on the AMM. The
amount received back is given by x SX (x, r0, r1), where SX is the swap rate function, a
parameter of Bartoletti et al. (2021)’s model. In our case, since we are modeling a CPMM,
we fix

SXϕ(x, r0, r1) = ϕ r1

r0 + ϕ x
where ϕ ∈ [0, 1]. (3.1)

This way, letting y = x SXϕ(x, r0, r1) denote the amount of units of τ1 the user will
receive back from the AMM in exchange for x units of his τ0 when the AMM reserves are
r0 : τ0 and r1 : τ1,

(r0 + ϕ x) (r1 − y) = r0r1, (3.2)

that is, when ϕ = 1 and there is no fee, the product between AMM reserves remains
constant, and with ϕ < 1, the user has to give more units of τ0 than he would without a
fee. Uniswap v3 supports multiple fee tiers, including a fee of 0.3%, which was fixed in
Uniswap v1, and which was chosen by Angeris et al. (2021) (Adams, 2018; Adams et al.,
2021). For simplicity, we fix ϕ = 1.

The external market prices of τ0 and τ1 are, respectively, PΓτ0 and PΓτ1. Using PΓ ,
we can define the external exchange rate XΓ , which measures how many units of τ1 one
can buy with one unit of τ0 in the external market:

XΓ(τ0, τ1) = PΓτ0

PΓτ1
(external). (3.3)

The internal exchange rate, which we also denote XΓ
4, is given by

XΓ(τ0, τ1) = lim
x→0

SX (x, r0, r1) (internal) (3.4)

if {r0 : τ0, r1 : τ1} ∈ Γ. In the case of the CPMM we are adopting,

XΓ(τ0, τ1) = lim
x→0

SXϕ(x, r0, r1) = lim
x→0

ϕ r1

r0 + ϕ x
= ϕ

r1

r0
. (3.5)

4 In Bartoletti et al. (2021), the exchange rate is denoted X, without a reference to the state Γ, and the
notation XΓ is used exclusively for the internal exchange rate. That is because, though they briefly
discuss a variant of their model with the price oracle PΓ depending on Γ, the bulk of their exposition
focuses on a version with P being fixed. In the present work, we always use the adjectives “external”
and “internal” to distinguish these two concepts.
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The supply of token type τ in state Γ is denoted SΓτ, and defined as the sum of
the amounts of τ present in each user’s balance and in the AMM. The supply SΓ{τ0, τ1}
of the minted token type {τ0, τ1} is used in the definition of the redeem rate RX i

Γ(τ0, τ1),
which governs how many units of τi each unit of {τ0, τ1} is worth in redeem transactions,
for i = 0, 1, and in the definition of the price PΓ{τ0, τ1} of {τ0, τ1}. Intuitively, each unit
of {τ0, τ1}

• gets the user back an amount of the AMM’s reserves r0 : τ0 and r1 : τ1 that is
proportional to the supply SΓ{τ0, τ1}, in a redeem, and

• is worth an amount that is proportional to the total value of the AMM’s reserves.

The redeem rate is defined by

RX i
Γ(τ0, τ1) = ri

SΓ{τ0, τ1}
. (3.6)

The redeem rate also governs deposit transactions, as will become clear when we formally
define how transactions of each type work. Both redeem and deposit transactions are
defined in such a way that the one can be seen as a sort of inverse operation of the other,
in a very intuitive way. If a user has just deposited v0 : τ0 and v1 : τ1, receiving v : {τ0, τ1},
they could immediately redeem v : {τ0, τ1}, receiving in return v0 : τ0 and v1 : τ1.

The price of the minted token type {τ0, τ1} in state Γ is given by

PΓ{τ0, τ1} = r0 PΓτ0 + r1 PΓτ1

SΓ{τ0, τ1}
= RX 0

Γ(τ0, τ1) · PΓτ0 + RX 1
Γ(τ0, τ1) · PΓτ1. (3.7)

If an user A holds v0 : τ0, v1 : τ1 and v0,1 : {τ0, τ1}, with v0, v1, v0,1 ≥ 0, we define
A’s net worth as

WA(Γ) = v0 PΓτ0 + v1 PΓτ1 + v0,1 PΓ{τ0, τ1}. (3.8)

If Γ′ is a state that is reachable from state Γ, user A’s gain between states Γ and Γ′ is
given by

GA(Γ, Γ′) = WA(Γ′) − WA(Γ). (3.9)

We next define all four transaction types in the context of the LTS.

3.1.1.1 Swap transactions

In a swap transaction, denoted A : swap(x, τ0, τ1), user A tranfers x : τ0, with x > 0,
to the AMM {r0 : τ0, r1 : τ1}, receiving in return y : τ1, which are removed from the AMM,
where y is x SXϕ(x, r0, r1).
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3.1.1.2 Deposit transactions

Deposit transactions are denoted A : dep(v0 : τ0, v1 :τ1). User A deposits positive
amounts v0 : τ0 and v1 : τ1 to the AMM {r0 : τ0, r1 : τ1}, thus becoming a liquidity provider.
Unlike swaps, neither deposit or redeem transactions affect the proportion of τ0 to τ1 in
the AMM. For that reason, in order for a deposit transaction to be permissible, we require

v1

v0
= r1

r0
(3.10)

User A receives back an amount v of freshly-minted token {τ0, τ1} given by

v = v0

RX 0
Γ(τ0, τ1)

= v1

RX 1
Γ(τ0, τ1)

(3.11)

With this definition, the value v PΓ{τ0, τ1} received by A equals the value v0 PΓτ0 + v1 PΓτ1

they provided.

3.1.1.3 Redeem transactions

A redeem is denoted A : rdm(v : {τ0, τ1}). In a redeem, user A exchanges v > 0 of
his units of the minted token {τ0, τ1}, receiving back v RX i

Γ(τ0, τ1) units of token τi, for
i ∈ {0, 1}. The minted tokens being redeemed are burned. A redeem that would make the
supply of minted tokens go down to 0 (or, equivalently, which would deplete the AMM’s
reserves) is illegal. Similarly to deposit transactions, in a redeem, the value received back
by A is exactly equal to the value they are providing.

3.1.1.4 Price update transactions

A price update is denoted price(p0, p1). If Γ is a state and Γ price(p0,p1)−−−−−−→ Γ′, then Γ′

is equal to Γ except that PΓ′τ0 = p0 and PΓ′τ1 = p1. We require p0, p1 > 0.

3.1.2 Market evolution: how prices change

We adopt the same model for the evolution of market prices as the one from Angeris
et al. (2021). In our simulation, we fix τ0 as the numeraire, whose price is fixed at p0 = 1.
Hence, if the price of τ1 is p1, the exchange rate becomes

XΓ(τ0, τ1) = 1
p1

(3.12)

Each time an agent exchanges his tokens in the external market and obtains v1 : τ1, with
v1 possibly being negative, the external market price evolves as

p1 7→ p1 + κ v1+ξ
1 , (3.13)

with κ, ξ ≥ 0 being parameters of the simulation. Following Struchkov et al. (2021),
we assumed external markets were large compared to the agents’ transactions, letting
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κ = 0, |ξ| < ∞, so that the price update described in equation 3.13 does not happen.
Additionally, after each time step, once the agents have performed their actions, prices
evolve as

p1 7→ p1 exp(σX + µ), (3.14)

with X ∼ N (0, 1) being drawn from a standard normal distribution, and µ and σ being
the mean returns and volatility of the market when no trades are performed. The agents
do not know these rules governing price changes. As in Struchkov et al. (2021), we model
both normal market conditions, by setting σ = 0.001, and critical market conditions,
letting σ = 0.03. We set µ = 0.

3.2 Blockchain model

Because of its simplicity, we base our blockchain model on the one by Struchkov et
al. (2021). In their model, new transactions are included in a mempool, which is priority
queue sorted by transaction price. New blocks are created and incorporated into the chain
when there are enough transactions in the mempool. The required number we used was
100, which is less than what is typical in Ethereum5, but which is more tractable. For the
simulation with delayed transactions, we add a delay between the time when the block is
created, and the time when it is considered finalized. During that delay, market prices can
evolve, and agents can fire more transactions.

There is a delay parameter. With a delay value of n, when the mempool gets full, the
current block is formed and then added at the end of a queue which holds exactly n blocks.
The oldest block is then dequeued, and its transactions are executed. The most crucial
comparisons are between the no delay condition, which would correspond to n = 0, and a
1-block delay, since the latter is what is usually proposed in commit & reveal mechanisms.
Despite that, we investigate the effects of higher values for the delay parameter as a way
of measuring how much more of a disconnect arises between the markets when more time
passes between the moment agents commit to their transactions and the time when it is
actually executed. Those results can be seen as a finer grained measure of the sensitivity
of results as market volatility varies than just the stark division into normal and critical
markets. This is because with a higher value of delay, more market updates happen before
a transaction issued by an agent is finalized. Higher values of delay can also be seen as
a way of simulating higher block size limits, since more transactions are issued before a
given one gets to become finalized.

For the simulations with attackers, they can always inspect the mempool to see
who are the agents who issued a transaction, and see the user’s balances of each token type.
5 The exact number of transactions in an Ethereum block is not fixed, but it is usually on the order of

thousands.
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They also know the probabilistic distribution the agents use to choose what transactions
to make. Furthermore, in the simulation with frontrunners but no commit & reveal, the
attackers are assumed to also be able to see the details of the transactions.

3.3 Agent types
In this section, we explain the roles performed by the agents populating our

simulations.

3.3.1 Liquidity providers

Angeris et al. (2021) describe two liquidity provider models, initial liquidity
providers, and rational liquidity providers. Initial liquidity providers deposit τ0 and
τ1 into the AMM just before the simulation starts, and then do nothing except hold their
minted tokens {τ0, τ1}. Rational liquidity optimize a portfolio over the three token types
by solving the problem

max
x∈R3

µ̂T x − λ

2 xT Σ̂ x

subject to x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0,

(3.15)

where

• µ̂ ∈ R3 is the vector of exponentially-weighted returns for each of the three token
types, with respect to the reference market,

• Σ̂ ∈ R3×3 is the exponentially-weighted covariance of returns and

• λ > 0 is the penalty incurred by the risk.

Struchkov et al. (2021) only have initial liquidity providers in theirs, arguing that
their aims are to study short-term effects, and that liquidity providers typically will want
to keep their assets locked-in for a while to accumulate enough fees. That same rationale
seems to justify our choice to follow that decision and also include only initial liquidity
providers.

3.3.2 Traders

As in Angeris et al. (2021), the trader represents demand for liquidity. We deem it
appropriate to, as did both the aforementioned authors and Struchkov et al. (2021), employ
zero-intelligence traders. That is because we do not care very much about comparing
trading strategies. Instead, we want to measure how the proposed protocol affects price
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slippage and the distribution of profits. So our trader agents will draw an amount from a
probability distribution, and perform a swap in the Uniswap market. Their random trades
can go in both directions (i.e., swap τ0 for τ1, or vice-versa). In some of our simulations,
as previously explained, we include traders whose random transactions depend on their
balances. Those can also be considered zero-intelligence, since their trades do not depend
on the current market situation, but, to distinguish them from the type we just discussed,
we call them directional traders.

Our zero-intelligence traders use a Bernoulli distribution with p = 0.5 to decide
which token type to send into the AMM, and then draw from an uniform distribution
to determine the amount being sent, with the minimum and the maximum being some
fixed fractions of their total balance. When they issue their swap, they determine the
amount of tokens they will receive from the AMM, and set some fixed fraction of that
amount as the minimum they require for the swap to succeed. If when the time the swap
is executed the state has changed so that they would receive less than that, that is, the
slippage exceeds their slippage tolerance, the transaction fails. Directional traders differ
only in that the parameter they use for the Bernoulli distribution used to determine swap
direction is p = v1/(v0 + v1), where vi is their balance of token type τi. This way, if they
have relatively more τ1 than τ0, they’ll be more likely to send units of τ1 to the AMM,
receiving back some amount of τ0.

3.3.3 Arbitrageurs

Both Bartoletti et al. (2021) and Angeris et al. (2021) prove optimal arbitrage results.
We adopt the one from Bartoletti et al. (2021) because it is slightly more straightforward
given that we are already thinking of our markets using their theory. In the case of
exchanging τ0 for τ1, arbitrageur A will perform a swap A : swap(v, τ0, τ1) if and only if

v =
√

PΓτ1

PΓτ0
r0 r1 − r0 (3.16)

In their simulation, Angeris et al. (2021) add a penalty for large trades to the
objective of the arbitrageurs, intending to model risk aversion. For now, we intend to stick
to risk-neutral arbitrageurs, as did Struchkov et al. (2021).

3.3.4 Frontrunners

We include in our simulation without commit & reveal Struchkov et al. (2021)’s
insertion front runners. They estimate the slippage of trading transactions, and then,
knowing their slippage tolerance, devise an optimal attack. They front run the trade by
placing a transaction that allows it to still succeed, but at the worst possible price. And
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then they sell back the assets at a better price. The formulas used to create the attack are
given in appendix A.

We call the attacker in the simulation with commit & reveal the speculative attacker.
They know the trader’s balances and the distribution the trader uses to choose transactions,
and use that to compute the expected amounts for the swaps the trader would make in
each of the two possible directions. If he is confident enough in the direction of the swap,
which will happen if the trader holds disproportionally tokens of one of the two atomic
types, he will compute the optimal attack targetting the expected swap in that direction,
and place his front- and backswap in the mempool, carefully setting their priorities so
they happen precisely before and after the user’s swap.

3.4 Simulation strategy

To generate the results presented in chapter 4, 20 simulations were performed per
experiment per condition. In the case of the study of the effects of delay, each simulation
had 100 epochs, that is, 100 blocks were fully formed and then executed. The 22 conditions
were made by varying the market condition, which could either be normal (σ = 0.001) or
critical (σ = 0.03), and the delay parameter, which ranged from no delay up to a delay of
10 blocks. The exchange rate snapshots are taken immediately following a random price
update, but before the start of the next epoch. This means that there is some inherent
noise between the internal and external exchange rates. The expected value of this noise is
less than 0.05% even in the critical condition6.

When it comes to the question of quantifying the effect on BEV of hiding transaction
details from the user, there are 4 conditions, corresponding to the two possible market
conditions and two attacker types. BEV was calculated by summing the gain attackers
had in each attack happening in the simulation. That is, letting Γ be the state before
the attacker frontswap and Γ′ be the state following the backswap, the gain is given by
equation 3.9. Some of the transactions issued by users were not enabled by the time
they were executed, which could happen since the state could change in the interim. In
those cases, during the execution of a block, we simply ignored those transactions. If a
speculative attacker transaction failed, we still let the user transaction be attempted. If
the user transaction would fail, we aborted an attempted insertion attack.

For each of the two types of experiment, and for each fixed market condition, the
time series of prices from external markets was randomly generated only once and used

6 Notice that, with µ = 0, XΓ(τ0, τ1) changes by a factor of exp (−σZ) following each epoch in the
simulation, with Z ∼ n(0, 1). Since −Z also has a standard normal distribution, it follows from the
formula for the mgf of a normal distribution that the expected change is a factor of exp (σ2/2). In the
more volatile critical condition, with σ = 0.03, the expected change is, therefore, a factor of less than
1.0005, such that 0.05% is an upper bound on the expected change.
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in all simulations. That means that the external exchange rate in a given epoch was the
same for all values of delay sharing a single value of σ. This was done so results are more
easily comparable across conditions.

One of the metrics we track is the relative difference, in percent, between the
internal and external exchange rates, which we define by

|internal − external|
external × 100%. (3.17)

When, for example, the median relative difference for the normal market condition with 0
delay is reported, it is computed by

1. average across each of the 20 simulations done for that condition to obtain a single
time series of internal exchange rates, with 100 measurements,

2. compute the relative difference using equation 3.17 for each of the 100 epochs, ending
up with a vector of 100 error measurements,

3. and then taking the median value of those 100 measurements.

The reader might object that step 1 would smooth out random errors in the internal
exchange rate, making the AMM mechanism, together with the workings of the arbitrageur,
look better than it is. We checked a few individual curves at random, and the results were
usually qualitatively similar, so we decided to report the aggregated results only, which
also have the advantage of not underselling the mechanism in any given condition because
of an uncharacteristically bad run.
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4 Results

We present first results from the simulations that try to quantify how much more
the internal exchange rate diverges from the external one with the adoption of commit &
reveal mechanisms. Following that, we show results related to the other question being
answered, that is, how much BEV ceases to be extracted when the attacker cannot see
transaction details.

4.1 Effects of delay on price accuracy

4.1.1 Normal condition

Figure 1 shows the mean relative difference between the internal and external
exchange rates in percent, as a function of delay. Table 1 shows those means, as well as
medians, minimums and maximums, for different values of delay, rounded to 2 digits. The
error seems to grow more or less linearly, starting at 0.65% and getting up to 3.3%. The
most crucial comparison is between no delay and a delay of 1 block, where the mean
difference increases by 0.16 and the median by 0.09 percent points. On its face, that
difference does not seem that big, though how much loss of accuracy is too much is hard
to assess on the abstract given the diversity of applications of blockchains. For example, if
an AMM is used as a price oracle by other smart contracts, a small inaccuracy might lead
some threshold to be exceeded which leads to big consequences.

As argued in section 3.4, even in the critical condition, if the arbitrage mechanism
was working perfectly, we would expect the discrepancy to be on the order of less than
0.05%, so we can safely say that arbitrageurs are leaving money on the table. They are
doing something, however, as otherwise we could expect prices to diverge even with no delay.
That is because, though only failed trades would actually do nothing, the average zero-
intelligence trade does not change the AMM’s reserves. Therefore, without arbitrageurs,
it would be reasonable to expect the internal exchange rate to be, on average, constant
and, while the external exchange rate will also, on average, remain constant, there would
be no mechanism ensuring that their random fluctuations covary. The fact that not only
the mean difference is reasonably low for all values of delay, but that the median is not
that different from the mean and, even more so, is lower than the mean up to a delay of 4
blocks, indicates that there is a corrective mechanism at work.

Figure 2 presents the average internal exchange rate for all epochs for each market
condition, together with the external market exchange rate. On the left, we see the plot
for simulations with no delay, and on the right with delay of 1 block. One sees that the
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Figure 1 – Relative difference between external and mean internal exchange rates as a
function of delay in the normal condition.

delay median mean min max
0 0.52 0.65 0 2.20
1 0.63 0.81 0 2.80
2 0.97 1.13 0 4.05
3 1.62 1.66 0 4.62
4 2.25 2.26 0 4.84
5 2.95 2.56 0 5.14
6 3.25 2.64 0 5.06
7 3.20 2.75 0 5.05
8 3.42 3.26 0 4.85
9 3.52 3.12 0 4.99
10 3.55 3.30 0 5.35

Table 1 – Statistics describing the relative difference between external and mean internal
exchange rates computed using the sample of 20 simulations for each value of
delay in the normal condition.

internal exchange rates oscillates around the external exchange rate in both cases, instead
of being consistently higher or lower.

In both, the internal exchange rate seems to track its external counterpart, while
there is much more dispersion in the simulations with delay up until about epoch 120.
That then changes, with the version without delay still displaying oscillatory behavior
around the correct values while always remaining at a distance of about 1% or more, while
the version with delay seems to often get arbitrarily close to where it should. From epoch
175 on, both seem about equally well-clustered around the external exchange rate. On
aggregate, we deem these curves to corroborate the story told by figure 1 and table 1: the
internal exchange rate is usually more accurate without delay.
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Figure 2 – External and internal exchange rates with no delay (left) and 1 block delay
(right) in the normal condition.

4.1.2 Critical condition

Figure 3 is the counterpart in critical market condition to figure 1. The curves for
the two market conditions look qualitatively similar, with the one from the the critical
condition showing, as one would expect, higher errors for each value of delay. Table 2
shows the same statistics that table 1 did, again, showing an overall similar picture, except
with higher errors across the board. The relative difference between the two exchange rates
starts already at a mean of 2.75% and a median of 2.34%, which jump starkly to 3.95%
and 3.38%, respectively, with a delay of 1 block. This is an unequivocal increase of more
than 1%, likely unacceptable for many applications. Even more surprisingly, the maximum
relative difference approaches 10% without delay, and exceeds that threshold with it.

Figure 4 shows the internal exchange rate, averaged over the 20 simulations, for
each epoch, with and without delay, on top of the curve of external exchange rate, which
this time sharply falls to less than half. Again, one sees that the internal exchange rate
does track closely the external market prices.
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Figure 3 – Relative difference between external and mean internal exchange rates as a
function of delay in the critical condition.

Figure 4 – External and internal exchange rates with no delay (left) and 1 block delay
(right) in the critical condition.
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delay median mean min max
0 2.34 2.75 0.03 9.28
1 3.38 3.95 0 13.92
2 4.47 4.77 0 16.26
3 4.28 5.23 0 20.12
4 4.95 6.18 0 25.84
5 4.41 6.11 0 25.77
6 5.38 6.83 0 26.07
7 5.19 6.86 0 28.41
8 5.88 6.93 0 30.25
9 6.13 7.32 0 31.52
10 6.62 7.42 0 29.81

Table 2 – Statistics describing the relative difference between external and mean internal
exchange rates computed using the sample of 20 simulations for each value of
delay in the critical condition.
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4.2 BEV difference between speculative and insertion attackers
Table 3 shows the average BEV the different attacker types extracted, averaged

across all 20 simulations, in each market condition. The insertion attacker was able to
extract 7.1 and 6.6 times as much as the speculative attacker did in the normal and critical
market conditions, respectively. This is definitely a big change, which should be weighted
against the increase in transaction costs commit & reveal mechanisms cause. While for large
trades the higher transaction cost might not make that much of a difference, for smaller
ones, it may be a significant composition of the total cost paid by the user making a swap,
including BEV. This, together with the loss of price accuracy incurred by those mechanisms,
makes cost-benefit analysis of commit & reveal mechanisms non-straightforward.

Interestingly, both types were able to extract more in the critical condition, though
neither they or their targets make any reference to external market prices when deciding
how to act. The only agent types touching external markets are arbitrageurs, who will
change the AMM reserves so they have relatively more of the less valuable token type.
Traders will then end up being rewarded with higher amounts of that token type, which
attackers can steal, but still, each unit of that token type is less valuable, and it is not
obvious that this should lead attackers to profit more. Perhaps the random changes in
external prices just happened to create more wealth, which the attackers could gain, in
the critical condition than they did in the normal one.

market attacker mean std
normal speculative 6278.5 1570.6

insertion 44641.1 782.7
critical speculative 6911.3 1323.2

insertion 45408.6 3379.1

Table 3 – Comparing BEV across all conditions.
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5 Conclusion

This dissertation has presented an extensive analysis of the impact of commit &
reveal mechanisms on internal and external exchange rate divergence and on the reduction
of blockchain extractable value (BEV) by attackers. Our simulation results offer valuable
insights into the effects of these mechanisms under normal and critical market conditions.

We observed that under normal conditions, the delay introduced by commit &
reveal mechanisms causes an increase in the mean relative difference between internal
and external exchange rates of 0.16 percent points, starting from a baseline of 0.65%. In
critical market conditions, we see a more pronounced jump of 1.20 percent points, starting
from an already high baseline of 2.75%, Such inaccuracies, sometimes surpassing the 10%
mark, underline the potential risks and challenges commit & reveal mechanisms may pose
to market stability and trust, particularly during times of volatility.

These findings are particularly informative for decentralized finance (DeFi) applica-
tions, especially those utilizing automated market makers (AMMs) as price oracles, where
precision is paramount for maintaining system integrity and preventing cascading effects
triggered by threshold breaches. One should notice, however, that good smart contract
design should likely be robust to attempted market manipulation.

Our study also highlighted that a lot more BEV gets extracted without commit
& reveal mechanisms. The insertion attacker consistently outperformed the speculative
attacker, extracting several folds more BEV in both market conditions. This disparity
raises important considerations for the design of secure transaction protocols and the
balancing of trade-offs between increased transaction costs and reduced vulnerability to
attacks.

We conclude that while commit & reveal mechanisms can mitigate certain types
of BEV extraction, they introduce trade-offs in terms of transaction latency and price
accuracy. The suitability of these mechanisms depends on the specific use case and the
relative weighting of transaction cost, latency, and security by the stakeholders. While
on their face our results make those mechanisms not look great, at the very least, there
might be niches where they could be applied.

For future work, we suggest incorporating a more optimal speculative attack, which
would likely increase BEV, while relaxing the assumption that the speculative attacker
can guarantee that their transactions will occur in the correct order relative to the user’s,
which would decrease it. Additionally, an investigation of the effect of varying the number
and proportions of agents of each type could be performed. We are unsure about how
sensitive our results are to those, as well as to the size of the liquidity pool. It would be
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interesting to try and make the internal prices more accurate in the baseline simulation,
including no delay and no attackers, only traders and arbitrageurs. Ideally, one could
look for inspiration in real-world markets for simulation scenarios. Additionally, while the
addition of frictions such as AMM fees and costs for submitting transactions to the AMM
might make the proof of the optimal arbitrage swap or optimal attacks more complex, it
would make the simulation more realistic, and ABMs are a particularly well-suited vehicle
to study their effects.
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APPENDIX A – Optimal frontswap

Let T = A : swap(x, τ0, τ1) and Γ be a state such that T is enabled on Γ and
{r0 : τ0, r1 : τ1} is in Γ. Fix ϕ = 1 and let y > 0 be a number satisfying

xSXϕ(x, r0, r1) = x
r1

r0 + x
≥ y (A.1)

That is, A receives at least y : τ1 after performing T.

Let A′ be another user and T′ = A′ : swap(v, τ0, τ1). We wish to find the value
v > 0 such that if Γ T−→ Γ′ T′

−→ Γ′′, then A received exactly y : τ1 from his swap. Let
{ri

0 : τ0, ri
1 : τ1} be the AMM in the intermediate state Γ′. Then, given v, we have

ri
0 = r0 + v, (A.2)

ri
1 = r1 − r1

r0 + v
v (A.3)

and we want
x

ri
1

ri
0 + x

= y. (A.4)

Substituting equations A.2 and A.3 into equation A.4, we obtain

x
r1 − r1

r0+v
v

r0 + v + x
= y (A.5)

Solving for v results in

v = 1
2

−2r0 − x ±
√

x(4r0r1 + xy

y

 . (A.6)

We discard the negative root, as a swap in the direction opposite of the user’s could only
make them profit more from their swap.
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