

Universidade de Brasília Instituto de Ciências Biológicas Programa de Pós-graduação em Botânica

Efeitos das alterações climáticas previstas para 2100 no desenvolvimento inicial de espécies arbóreas de Cerrado

Adalgisa Maria Chaib Ferreira

Orientador: Dr. Fabian Borghetti

Brasília, DF 2023

Adalgisa Maria Chaib Ferreira

Efeitos das alterações climáticas previstas para 2100 no desenvolvimento inicial de espécies arbóreas de Cerrado

Tese apresentada ao Programa de Pós-Graduação em Botânica, Universidade de Brasília, como parte dos requisitos para obtenção do título de Doutora em Botânica.

Orientador: Dr. Fabian Borghetti

Brasília, DF 2023

ADALGISA MARIA CHAIB FERREIRA

EFEITOS DAS ALTERAÇÕES CLIMÁTICAS PREVISTAS PARA 2100 NO DESENVOLVIMENTO INICIAL DE ESPÉCIES ARBÓREAS DE CERRADO

Tese de Doutorado apresentada em 11 de abril de 2023

BANCA EXAMINADORA

Dr. Fabian Borghetti (Orientador)

Universidade de Brasília (UnB) - Presidente da banca

Dr. Augusto Cesar Franco

Universidade de Brasília (UnB) - Membro titular

Dra. Alessandra Tomaselli Fidelis

Universidade Estadual Paulista (UNESP) - Membro titular

Dr. Rafael Silva Oliveira

Universidade Estadual de Campinas (UNICAMP) - Membro titular

Dr. André Luiz Giles de Oliveira

Instituto Nacional de Pesquisa da Amazônia (INPA) - Membro suplente

Aos meus filhos, Morena Chaib Ferreira e Jorge Chaib Ferreira, por quem eu quero ser sempre melhor a cada dia.

Agradecimentos

Antes de tudo, agradeço a Deus por ter colocado em minha vida cada pessoa que contribuiu de alguma forma na trajetória que resultou nesta tese. Agradeço por ter me dado forças para aceitar cada desafio externo e interno que precisei superar. Agradeço a Deus por ter me iluminado e permitido que eu percebesse inúmeras oportunidades de crescimento e de acolhimento.

Sou muito grata pela confiança que o professor Fabian Borghetti depositou em mim para ser a primeira pessoa a desenvolver sua pesquisa com a câmara fitotron instalada no Laboratório de Termobiologia. Agradeço também pela oportunidade de fazer parte de sua equipe de pesquisa. Agradeço pelo aprendizado único proporcionado por cada um dos meus colegas: Anabele, Cristiele, José Nicola, Bruno, Grazi, Eduardo, Mônica, Diego, Mayco, Laísa, Dani, Rennan, Jéssica, Clapton, Bruna, Andressa, Fernanda e Valéria. Cada um foi importante para minha formação durante o doutorado de diferentes formas.

Agradeço à CAPES pela bolsa de doutorado que me foi concedida e à FAP-DF pelo financiamento do fititron usado nos experimentos. Também agradeço a todas as pessoas que de alguma forma contribuíram financeiramente para a realização dos experimentos em um momento em que as universidades públicas estão sendo desmanteladas pelo governo federal e a redução do investimento em ensino e pesquisa é assombrosa.

Agradeço à minha mãe, Rosana Martins de Castro Chaib, que para mim é um exemplo de mulher intelectual, e me ensinou que o prazer intelectual não é exclusivamente masculino, mas um direito de todos. Agradeço ao meu pai, Homero Chaib Filho, que sempre esteve aberto a ouvir sobre meu trabalho com tanto carinho, permitindo-me viagens poéticas a respeito dos meus estudos. Agradeço aos meus pais pelo exemplo de vida de perseverança, fé, amor e alegria, vividos entre rotinas cansativas e rodas de violão em torno da fogueira.

Aos meus irmãos, Fernando, João Paulo e Danilo, que com suas experiências de vida sempre souberam me ajudar a seguir em frente com bom humor.

Agradeço aos meus amigos, irmãos que a vida me deu, Nathan, Adriana, Lucas e Pétalla, que estiveram sempre ao meu lado nos piores e melhores momentos dessa jornada, trazendo aquela cerveja gelada sempre que eu precisava desabafar sobre algum perrengue do experimento ou quando queria comemorar alguma conquista! Além disso, agradeço novamente ao Nathan, Lucas, Graciele (cunhadinha) e Rafael Caetano, Pedro, Cristiano, Eder e Carina que chegaram a me ajudar na montagem de experimentos. Também gostaria de agradecer ao Maurício e à Cris (amigos da agronomia), que ajudaram a garantir as sementes para o primeiro experimento. Obrigada por estarem sempre comigo!

Ao professor Dr. Guarino R. Coli, agradeço por ter emprestado o porômetro que usei por bastante tempo em meu projeto.

Agradeço a Dona Odete e a Salete por cuidarem com carinho do laboratório e contribuírem tanto para um ambiente tranquilo de convívio e trabalho.

Agradeço aos profissionais que me ajudaram a trilhar esse caminho de superação que foi o doutorado Dr Aldo Neto, meu bem humorado neurologista e Gisele Magalhães, minha empolgada psicóloga.

Agradeço à Natália de Jesus, que com todo carinho cuidou da minha casa e da minha família, possibilitando que eu tivesse tempo para dedicar ao trabalho não-doméstico.

Agradeço aos meus filhos Morena Chaib Ferreira e Jorge Chaib Ferreira, que tiveram tanta paciência e compreensão nos momentos em que tive que me afastar para me dedicar ao doutorado.

Não esqueço uma vez em que a professora Cássia me disse com ar jocoso "ajudar a gente em campo é obrigação do marido". Neste mundo, em que uma mulher que se torna mãe ainda é impelida a se tornar "dona de casa", em que mulheres ainda são menos valorizadas mesmo no mercado de trabalho, mesmo quando mais qualificadas que homens¹, e onde o trabalho doméstico e a carga mental familiar recaem sobre a mulher, a afirmação da professora Cássia me parece mais do que justa. Mas como agradecer à pessoa que sofreu meu sofrimento? Como agradecer a quem diversas vezes deixou tudo de lado para pegar na enxada revirar a terra comigo, para furar e instalar tubos de irrigação, ir noites a dentro pesando amostras no laboratório ao meu lado, para aprender a identificar espécies e poder ajudar a coletar sementes, ou para me dar colo e me ouvir dizer que queria desistir... O Leo não só foi pro campo comigo, ele cuidou dos nossos filhos e de mim e me apoiou a seguir no doutorado e a enfrentar minhas dificuldades. Espero poder agradecer ao meu companheiro, Leonardo Menezes Chaib Ferreira, não apenas nesse texto, mas durante muitos anos de nossas vidas.

Por fim, agradeço a todas as mulheres que se deram de alguma forma para que mais uma mulher pudesse alcançar o título de doutora.

1 Feminismo e política, Flávia Biroli & Luis Felipe Miguel, editora Boitempo. ISBN:9788575593967

As forças da Natureza

Quando o sol,

se derramar em toda a sua essência, desafiando o poder da ciência, pra combater o mal. E o mar, com suas águas bravias, levar consigo o pó dos nossos dias, vai ser um bom sinal. Os palácios vão desabar sob a força de um temporal, e os e os cantos vão sufocar o barulho infernal. Os homens vão se revelar dessa farsa descomunal, Vai voltar tudo ao seu lugar, afinal. Vai resplandecer, uma chuva de prata, do céu vai descer. (- lalaia) O esplendor da mata vai renascer, e o ar de novo, vai ser natural. *Vai florir, cada grande cidade, o mato vai cobrir.* $(-\hat{o} \hat{o})$ das ruínas um novo povo vai surgir, e vai cantar afinal. As pragas e as ervas daninhas, As armas e os homens de mal, vão desaparecer nas cinzas de um carnaval.

João Nogueira

Foto: Adalgisa Chaib

RESUMO

As mudanças climáticas aceleradas pela ação humana têm causado extinções e reduzido a biodiversidade em todo o mundo. Ambientes que apresentam alta frequência de distúrbios, como as savanas, pode estar particularmente ameaçados. O bioma Cerrado, um hotspot de biodiversidade, é composto principalmente por formações savânicas e vem sofrendo grande pressão devido às perdas de habitats e mudanças climáticas. Para compreender os impactos das mudanças climáticas na vegetação do Cerrado, fizemos dois experimentos com espécies arbóreas amplamente distribuídas nesse bioma. No primeiro experimento utilizamos as espécies Qualea grandiflora e Tabebuia aurea para testar o efeito de diferentes durações de veranicos (dias consecutivos sem chuva durante a estação chuvosa) no seu desenvolvimento, utilizando tratamentos de irrigação com intervalos de 1d, 8d e 15d. Os tratamentos de irrigação não causaram mortalidade de plântulas de ambas as espécies. O desenvolvimento inicial de Q. grandiflora não apresentou alterações entre os diferentes tratamentos de irrigação. O tratamento com 15d entre irrigações causou menor acúmulo de biomassa radicular de T. aurea provavelmente devido ao estresse hídrico. No entanto, o crescimento da raiz principal de T. aurea não sofreu alteração entre os tratamentos de irrigação. A profundidade da raiz principal pode ser uma estratégia importante para a sobrevivência de plântulas de espécies arbóreas em savanas, pois permite que alcancem frações do solo onde a água fica disponível por mais tempo ao longo do ano. No segundo experimento utilizamos Kielmeyera coriacea, Qualea grandiflora, Tabebuia aurea e Hymenaea stigonocarpa para observar parâmetros de crescimento das plântulas dessas espécies em dois diferentes cenários: atual, baseado em dados históricos; e futuro, baseado nas projeções do IPCC para 2100 segundo o SSP3-7.0, que para a região do Cerrado significa uma temperatura 2,5°C acima da temperatura atual em média e concentração atmosférica de CO₂ de 860ppm. Todas as espécies apresentaram aumento da taxa de crescimento relativo e da biomassa total quando submetidas ao cenário futuro. A distribuição de biomassa encontrada no cenário atual de K. coriacea e H. stigonocarpa se manteve quando submetidas ao cenário futuro, enquanto que Q. grandiflora e T. aurea apresentaram maior investimento em biomassa aérea do que radicular devido à elevação da temperatura e da concentração de gás carbônico. K. coriacea foi a espécie que apresentou menor alteração dos parâmetros observados no cenário futuro e Q. grandiflora foi a espécie que apresentou maior alteração do crescimento inicial. Embora as respostas ao cenário futuro tenham variado de acordo com a espécie, todas as espécies apresentaram maior acúmulo de biomassa e maior taxa de crescimento relativo no cenário futuro.

Palavras-chave: Mudanças climáticas, plântula, fitotron, biomassa, plasticidade, estresse, elevada [CO₂], temperatura elevada, *Kielmeyera coriacea, Qualea grandiflora, Tabebuia aurea, Hymenaea stigonocarpa*.

ABSTRACT

Human-accelerated climate change has caused extinctions and reduced biodiversity around the world. Environments with a high frequency of disturbances, such as savannas, may be particularly threatened. The Cerrado biome, a biodiversity hotspot, is mainly composed of savanna formations and has been under great pressure due to habitat loss and climate change. To understand the impacts of climate change on Cerrado vegetation, we carried out two experiments with tree species widely distributed in this biome. In the first experiment we used the species Qualea grandiflora and Tabebuia aurea to test the effect of different durations of dry spells on their development, using irrigation treatments with intervals of 1d, 8d and 15d. Simulated dry spells did not cause seedling mortality of both species. The initial development of *O. grandiflora* showed no changes between the different irrigation treatments. Treatment with 15d between irrigations caused less accumulation of *T. aurea* root biomass, probably due to water stress. However, T. aurea taproot growth did not change between irrigation treatments. The taproot depth may be an important strategy for the survival of seedlings of tree species in savannas. In the second experiment, we used Kielmeyera coriacea, Qualea grandiflora, Tabebuia aurea and Hymenaea stigonocarpa to observe seedling growth parameters of these species in two different scenarios: current, based on historical data; and future, based on IPCC projections for 2100 according to SSP3-7.0. All species showed an increase in the relative growth rate and in the total biomass when submitted to the future scenario. The biomass distribution found in the current scenario of K. coriacea and H. stigonocarpa was maintained when submitted to the future scenario, while Q. grandiflora and T. *aurea* showed greater investment in shoot than root biomass due to the increase in temperature and concentration. of carbon dioxide. K. coriacea was the species that presented the smallest change of the parameters observed in the future scenario and Q. grandiflora was the species that presented the greatest alteration of the initial growth. Although responses to the future scenario varied in relation to the species, all species presented higher biomass and relative growth rate under the future scenario.

Keywords: Climate change, seedling, phytotron, biomass, plasticity, stress, high [CO₂], high temperature, Kielmeyera coriacea, Qualea grandiflora, Tabebuia aurea, Hymenaea stigonocarpa.

LISTA DE TABELAS

- 2. **Table S1.2.** Irrigation frequency and volume applied to *Qualea grandiflor*a and *Tabebuia aurea* seedlings during the experimental period (July and October 2018).

 Table S1.3. *P*-values of the effects of the treatments and interactions between the treatments on the growth and biomass parameters based on Kruskal-Wallis (KW) and Nemenyi-Test (NM) of *Qualea grandiflora* and *Tabebuia aurea* seedlings.

4. **Table S1.4.** The growth and biomass parameters of *Qualea grandiflora* and *Tabebuia aurea* seedlings before (60-d-old, initial measurements) and after (90-d-old, final measurements) different irrigation treatments.

5. **Table S1.5.** Methodology and references used to calculate traits of the seedlings studied during the experiment of simulated dry spells performed in a phytotron-type growth chamber in the Laboratório de Termobiologia of the University of Brasília, Brazil.

 Tabela S2.1. Análise de solo extraído da Fazenda Água Limpa (UnB, Brasília - DF) misturado com areia na proporção de 3:1, e sem ter sido misturado.

LISTA DE FIGURAS

1. Figure 1.1. Root dry mass (RM), shoot dry mass (SM), root and shoot biomass partition (R:S), and specific taproot length (STRL) of *Qualea grandiflora* (red) and *Tabebuia aurea* (blue) seedlings exposed to different irrigation treatments (dry spells): daily irrigation, irrigation every 8 d, irrigation every 15 d. Seedlings (60-d old) grown under daily irrigation in red latosol and sand (3:1) were subjected to irrigation treatments for 130 d in tubes (100 cm high and 10 cm diameter) filled with the same substrate in a phytotron chamber under 13 h photoperiod, alternating temperatures of 38/28 °C (12 h/12 h), relative humidity of 70%, and photosynthetic photon flux density of 700 μmol m-2 s-1. Different letters indicate significant differences based on Tukey or Nemenyi tests (Tables S3 and S4). The bars indicate the interquartile range, and the horizontally connected central points indicate the medians. Eight *Q. grandiflora* and 10 *T. aurea* seedlings were used for each treatment. The experiment was conducted between July and October 2018 at the University of Brasília Thermobiology Laboratory, Brasília, Brazil.

Figure 1.2. Leaf mass fraction (LMF), relative growth rate (RGR), specific leaf area (SLA), and net assimilation rate (NAR) of *Qualea grandiflora* (red) and *Tabebuia aurea* (blue) seedling exposed to different irrigation schedules (dry spell treatments): daily irrigation, irrigation every 8 d, irrigation every 15 d. For experimental details refer to Fig. 1. Different letters indicate significant differences based on Tukey or Nemenyi tests (Tables S3 and S4). The bars indicate the interquartile range, and the horizontally connected central points indicate the medians. Eight *Q. grandiflora* and 10 *T. aurea* seedling were used for each treatment.

3. Figure S1.1. Pearson's correlation coefficients among the growth parameters of *Qualea grandiflora* (Table S3) subjected to different irrigation treatments (WI) (Table S2). The parameters include root dry mass (RM), shoot dry mass (SM), root biomass fraction (RMF), shoot biomass fraction (SMF), biomass partition (R:S), number of leaves (Lnum), seedling height (H), taproot length (RL), specific taproot length (STRL), relative growth rate (RGR), root elongation rate (RER), and specific leaf area (SLA). The experiment was performed between July and October 2018 in a phytotron growth chamber in the

Thermobiology Laboratory of the University of Brasília Brazil. Statistical significance was set at: * p < 0.05, ** p < 0.01, *** p < 0.001

4. Figure S1.2. Pearson's correlation coefficients among the growth parameters of *Tabebuia aurea* exposed to different irrigation treatments (WI) (Table S2). The parameters include root dry mass (RM), shoot dry mass (SM), root biomass fraction (RMF), shoot biomass fraction (SMF), biomass partition (R:S), number of leaves (Lnum), seedling height (H), taproot length (RL), specific taproot length (STRL), relative growth rate (RGR), root elongation rate (RER), and specific leaf area (SLA). The experiment was performed between July and October 2018 in a phytotron chamber in the Thermobiology Laboratory of the University of Brasília, Brazil. Statistical significance was set at * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001.

5. Figure S1.3. Sample of each species at the end of the experiment of dry spells in the phytotron. The experiment was performed between July and October 2018 in a phytotron chamber in the Laboratório de Termobiologia of the University of Brasília, Brazil. A) Plant of *Tabebuia aurea* after receiving water every day during 130 d in the phytotron. B) Plant of *Qualea grandiflora* after receiving water every day during 130 d in the phytotron.

6. Figure S1.4. Figures presents a close view of the root storage organ of a sample of *Tabebuia aurea* after receiving the different dry spell treatment at the phytotron during 130 days: A) seedlings irrigated every day, B) seedlings irrigated each 8 days and C) seedlings irrigated each 15 days. The experiment was performed between July and October 2018 in a phytotron chamber in the Laboratório de Termobiologia of the University of Brasília, Brazil.

7. Figura 2.1. Diagrama de Venn onde cada conjunto representa uma espécie, e os elementos contidos em cada conjunto são os parâmetros que apresentaram diferença significativa entre os cenários (p < 0.05). Sendo esses parâmetros: diâmetro da base do caule (ST_D), comprimento específico da raiz principal (STRL), comprimento da raiz principal (RL), taxa de crescimento relativo (RGR), massa seca total (TM), massa seca aérea (SM), altura (H), número de folhas (Lnum), área específica foliar (SLA), fração de biomassa radicular (RMF), fração de biomassa aérea (SMF) e massa seca radicular (RM).</p>

	8
--	---

8. Figura 2.2. À esquerda: plântula de Qualea grandiflora (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de Qualea grandiflora (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros: TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g-1d-1), SMF, RMF, RM (g), STRL (cm g-1), RL (cm), SLA (cm2g-1).

9. Figura 2.3. À esquerda: plântula de Tabebuia aurea (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de Tabebuia aurea (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros: TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g-1d-1), SMF, RMF, RM (g), STRL (cm g-1), RL (cm), SLA (cm2g-1).

10. Figura 2.4. À esquerda: plântula de Hymenaea stignocarpa (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de Hymenaea stignocarpa (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros: TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g-1d-1), SMF, RMF, RM (g), STRL (cm g-1), RL (cm), SLA (cm2g-1).

11. Figura 2.5. À esquerda: plântula de Kielmeyera coriacea (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de Kielmeyera coriacea (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros: TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g-1d-1), SMF, RMF, RM (g), STRL (cm g-1), RL (cm), SLA (cm2g-1).

12. Figura S2.1 Distribuição de 100 pontos aleatórios no território do bioma Cerrado para obtenção dos dados de temperatura máxima, temperatura mínima, e precipitação previstos para os meses de dezembro a abril de 2100 de acordo com o SSP 3-7.0, segundo o modelo MIROC6-ES2L (MIROC6) do IPCC.

13. Figura S2.2 Distribuição da biomassa de plântulas de K. coriacea (A), H. stigonocarpa (B), Q. grandiflora (C), T. aurea (D) após 120 sob o cenário atual (azul – barras à esquerda) ou sob o cenário futuro (cinza – barras à direita) simulados em fitotron no Laboratório de Termobiologia (Universidade de Brasília), entre setembro de 2020 e abril de 2021. As barras representam os valores em g das frações de biomassa de raiz secundária (Raiz sec.), frações de biomassa de raiz secundária, frações de biomassa de raiz principal (Raiz princ.), frações de biomassa foliar (Folha), frações de biomassa caulinar (Caule), e frações de biomassa do cotilédone (Cotilédone).

LISTA DE ABREVIAÇÕES

- 1. TM: Biomassa total (total dry mass)
- 2. RM: biomassa radicular (root dry mass)
- 3. SM: biomassa aérea (shoot dry mass)
- 4. RMF: fração de biomassa radicular (root mass fraction)
- 5. SMF: fração de biomassa aérea (shoot mass fraction)
- 6. RGR: taxa de crescimento relativo (relative growth rate)
- 7. STRL: comprimento específico da raiz principal (specific taproot length)
- 8. H: altura da plântula (seedling height)
- 9. RL: comprimento da raiz principal (taproot length)
- 10. SLA: área específica foliar (specific leaf area)
- 11. RER: taxa de alongamento da raiz principal (taproot elongation rate)
- 12. R:S: partição de biomassa entre raiz e parte aérea (biomass partition root and shoot rate)
- 13. ST_D: diâmetro da base do caule (stem base diameter)
- 14. Lnum: número de folhas da plântula (leaf number)

DADOS BRUTOS

Capítulo I

Chaib Ferreira, Adalgisa Maria (2022), "Climate_dryspells", Mendeley Data, V1, doi: 10.17632/mvd6mntz5p.1

Chaib Ferreira, Adalgisa Maria (2022), "Dryspells_initialdata", Mendeley Data, V1, doi: 10.17632/459sdxmwm4.1

Chaib Ferreira, Adalgisa Maria (2022), "Dryspells_final_mesurements", Mendeley Data, V1, doi: 10.17632/ywmn9cb8g3.1

Capítulo II

Chaib Ferreira, Adalgisa Maria (2022), "Climate_cenarios", Mendeley

Data, v1http://dx.doi.org/10.17632/286cjk5k55.1DOI (is reserved but not active)

SUMÁRIO

1.	. INTRODUÇÃO GERAL 18			
1.1.	RE	FERÊNCIAS	23	
2.	OBJE	τινο	27	
2	.1.	OBJETIVO GERAL	27	
2	.2.	OBJETIVOS ESPECÍFICOS	27	
3.	ORG	ANIZAÇÃO DA TESE E PLANO DE PUBLICAÇÃO	28	
4.	CAPÍ	TULO I	29	
4.1.	IN	TRODUCTION	33	
4.2.	M	ATERIALS AND METHODS	35	
4	.2.1.	Species studied and seed collection	35	
4	.2.2.	Climate data	36	
4	.2.3.	Equipment and assembly and disassembly of the experime	ent 36	
4	.2.4.	Data collection	38	
4	.2.5.	Statistical analysis	39	
4.3.	RE	SULTS	39	
4	.3.1.	Initial growth variables before dry spell treatments	39	
4	.3.2.	Biomass variables after dry spell treatments	40	
4	.3.3.	Growth variables after dry spell treatments	41	
4	.3.4.	Trait correlations	42	
4.4.	DI	SCUSSION	42	
4	.4.1.	Qualea grandiflora: comparison between treatments	43	
4	.4.2.	Tabebuia aurea: comparison between treatments	45	
4	.4.3.	Species comparison	46	
4.5.	СС	NCLUSION	48	
4.6.	RE	FERENCES	49	
4.7.	FIC	GURES	55	
4.8.	SU	PPLEMENTARY MATERIALS	57	
5.	CAPÍ	τυlo II	66	
5.1.	IN	TRODUÇÃO	69	
5.2.	M	ATERIAIS E MÉTODOS	72	
5	.2.1.	Área de estudo	72	
5	.2.2.	Obtenção de dados climáticos e calibragem do fitotron	74	
5	.2.3.	Cenário atual reduzir os subtópicos!	Error! Bookmark not defined.	

5.2.4. cenário futuro reduzir os subtópicos!	75
5.2.5. Introdução das plantas no fitotron e início do experimen Bookmark not defined.	to reduzir os subtópicos! Error!
5.2.6. Desmonte do experimento e obtenção de dados <i>reduzir</i> not defined.	os subtópicos! Error! Bookmark
5.2.7. Análises estatísticas	77
5.3. RESULTADOS	78
5.4. DISCUSSÃO	83
5.5. CONCLUSÃO	88
5.6. REFERÊNCIAS	89
5.7. MATERIAL SUPLEMENTAR	96
6. CONCLUSÃO GERAL	99
7. APÊNDICES	100
7.1. Apêndice I: Dados do capítulo 1	100
7.1.2. Dados finais	101
7.2. Apêndice II: Dados do capítulo 2	105
7.2.1. Dados finais	105
7.3. Apêndice III: Script de análises estatísticas no R do Capítulo 1	121
7.4. Apêndice IV: Script de análises estatísticas no R do Capítulo 2	151
7.4.1. Análises estatísticas do capítulo Il	237

1 1. INTRODUÇÃO GERAL

2 O clima tem sido apontado como o principal agente na determinação da distribuição da 3 vegetação ao redor do mundo (Boonman et al., 2022; García-Valdés et al., 2018; Madani et al., 2018; Vicente-Serrano et al, 2020; Hansson et al, 2023). As mudanças climáticas aceleradas 4 5 pela ação humana trazem uma preocupação latente em relação à biodiversidade (Cordeiro et 6 al., 2021; Velazco et al., 2019). Estudos mostram que o risco de extinção tem se agravado cada 7 vez mais (Pörtner et al., 2022). As alterações de temperatura e precipitação já têm causado efeitos negativos em plantações e levado diversas espécies de plantas nativas a extinções 8 9 localizadas (Cahill et al., 2013). Muitos estudos que buscam projetar a distribuição futura de espécies nativas, no intuito de localizar áreas críticas para preservação, baseiam-se na teoria de 10 11 nichos climáticos, assumindo que esses os fenótipos apresentados no cenário atual irão se 12 manter em um cenário futuro (Román-Palacios and Wiens, 2020), deixando de lado importantes informações a nível do indivíduo relacionadas à plasticidade fenotípica que podem afetar o a 13 14 mortalidade ou a sobrevivência de indivíduos e, portanto, o recrutamento (Ibáñez et al., 2007; 15 Vanderwel et al., 2013). Apesar da importância da plasticidade fenotípica na relação entre as condições ambientais e a capacidade de permanência de uma espécie em um determinado local 16 17 (Aubin et al., 2016; Nicotra et al., 2010), pouco se sabe sobre o comportamento de espécies nativas do Cerrado sujeitas às condições climáticas esperadas para 2100. 18

Estima-se que a concentração de CO₂ atmosférico tenha aumentado drasticamente desde o início da era industrial, saindo de cerca de 280 ppm na época pré-industrial para os atuais 400 ppm (Physical and Basis, 2013; Jin et al, 2023). Projeções para 2100 estimam concentrações de CO₂ atmosférico acima de 800ppm (Meinshausen et al., 2019). A maior disponibilidade atmosférica carbono deve aumentar a frequência com que a Rubisco se liga ao CO₂ em relação às ligações com O2, aumentando a eficiência fotossintética e reduzindo a taxa de fotorrespiração (Mndela et al, 2022, Wang and Wang, 2021). Essa maior eficiência da Rubisco em ambientes com maior [CO₂] atmosférica pode levar a um maior acúmulo de biomassa,
principalmente em espécies C3 (Ainsworth and Long, 2005; Hoffmann et al., 2000; Rosa et al.,
2019; Souza et al., 2016).

No Cerrado, em particular, além do aumento da [CO₂] deve haver um aumento de cerca 29 de 2,5°C na temperatura média (ver seção 5.2). Estima-se que o aumento da temperatura deve 30 31 levar a um maior déficit de pressão de vapor (VPD). Esse aumento do VPD deve intensificar a 32 evapotranspiração e acelerar a perda de água do solo, levando a estações secas mais intensas, com valores de humidade relativa do ar mais baixos durante essa estação (Hoffmann et al., 33 34 2012). Em relação à precipitação é esperada redução de dias com precipitação durante a estação chuvosa, com maior frequência e duração dos períodos sem chuva durante a estação chuvosa, 35 ou seja, aumento de veranicos (Pascale et al., 2016). Veranicos prolongados podem causar 36 estresse hídrico e afetar o recrutamento de plântulas (Hoffmann, 1996), principalmente em um 37 cenário que a maior demanda por transpiração irá exigir maior disponibilidade de água no solo 38 (Kumarathunge et al, 2020). 39

A fase de plântula é a mais vulnerável na vida da planta (Leck et al, 2008), pois essa já 40 não recebe as proteções de que usufrui a semente, e tampouco desenvolveu estruturas de defesa 41 ou biomassa suficientes para defender-se de predadores, patógenos ou rebrotar em caso de perda 42 da parte aérea (Macedo et al, 2022). A forma com que as plântulas respondem às mudanças 43 climáticas interfere diretamente no recrutamento de plântulas e sua sobrevivência, 44 representando um gargalo importante na dinâmica de populações vegetais, e por isso é 45 fundamental compreender essas respostas para melhor projetar alterações da distribuição de 46 47 espécies em resposta às mudanças climáticas (Canham and Murphy, 2016).

48 Devido ao curto período associado a mudanças climáticas consideravelmente sensíveis,
49 é possível que o genótipo de plântulas expostas às condições climáticas de 2100 seja muito
50 próximo ao genótipo das plântulas encontradas no cenário climático atual. Isso permite que

experimentos testando os efeitos do cenário climático futuro em plântulas obtidas de sementes
dispersas no cenário atual possam obter resultados úteis para compreender as respostas dessas
espécies em 2100.

A maioria dos experimentos feitos até o momento para compreender as respostas de 54 plântulas às condições ambientais projetadas para o fim do século se concentram em um ou dois 55 parâmetros ambientais, como temperatura ou disponibilidade hídrica, não obtendo resultados 56 para interações mais complexas, as quais são mais prováveis de serem vivenciadas pelas plantas 57 (Parmesan and Hanley, 2015). Quando essas condições ambientais atuam simultaneamente 58 59 podem ter consequências diferentes no metabolismo da plântula de quando ocorrem isoladamente, como amplificar possíveis prejuízos ou benefícios (Correia et al., 2018; Prasch 60 and Sonnewald, 2015). Assim, alguns trabalhos indicam vantagens em uma maior [CO₂] para 61 espécies arbóreas (Bellasio et al., 2018), pois confere a essas um aumento na taxa fotossintética 62 e maior acúmulo de biomassa, permitindo uma maior capacidade de rebrotar em caso de perda 63 da parte aérea Ainsworth and Long, 2005; Hoffmann et al., 2000; Rosa et al., 2019; Souza et 64 al., 2016), enquanto outros estudos indicam que a alta concentração de CO₂ atmosférico não 65 promove aumento da biomassa quando associado a altas temperaturas (Duan et al., 2015). 66

Enquanto a maior oferta de carbono atmosférico associado a temperaturas mais altas no 67 cenário futuro pode favorecer o ganho de biomassa e acelerar o crescimento de plântulas 68 durante a fase de estabelecimento (Mndela et al, 2022; Ncisana et al, 2022; Wang and Wang, 69 2021), a variação da precipitação associada a temperaturas mais elevadas pode levar a um 70 71 estresse hídrico e anular o efeito fertilizante do alto CO₂ atmosférico (Westerband et al, 2019). 72 Espécies arbóreas de ambiente savânico tendem a investir mais em profundidade de raiz do que 73 espécies florestais (Hoffmann et al, 2004; Paganeli et al, 2020), o que permite alcançar fontes 74 mais estáveis de água durante o ano. Porém, a maior demanda por evapotranspiração 75 ocasionada por temperaturas mais altas e oferta irregular de água, devido às alterações previstas

para a precipitação no cenário futuro, podem prejudicar o desenvolvimento inicial dessas
plântulas durante a estação chuvosa (Kumarathunge et al, 2020).

O Cerrado, segundo maior bioma brasileiro, representa um dos 25 hotspots de 78 biodiversidade global, com alto grau de endemismo, onde aproximadamente 45% das espécies 79 vegetais são endêmicas (Myers et al., 2000). Chegou a ocupar cerca de 25% da área do Brasil 80 e abriga nascentes das três das maiores bacias hidrográficas da América do Sul: Araguaia-81 Tocantins, Prata e São Francisco (Fonseca & Silva Júnior, 2004). O Cerrado é coberto 82 predominantemente por formações savânicas, que ocupam aproximadamente 70% da área do 83 84 bioma (Coutinho, 2006; Françoso et al., 2020; MapBiomas, 2023). Apesar da sua importância devido à biodiversidade e recursos hídricos que abriga, o Cerrado é hoje a principal fronteira 85 agrícola brasileira, e mais de 50% de sua vegetação original já foi desmatada em função da 86 agricultura e ocupação urbana (Lahsen et al., 2016), necessitando de estudos que possibilitem 87 conhecer o comportamento de espécies nativas para alcançar melhores resultados de 88 89 preservação desse ecossistema.

Embora as espécies arbóreas de savanas tenham sido selecionadas para habitarem um 90 ambiente com sazonalidade da precipitação e longos períodos sem chuva durante a estação seca, 91 não sabemos como as plântulas irão ser afetadas pelas maiores temperaturas e pela variação da 92 disponibilidade hídrica durante a fase de estabelecimento esperadas para o cenário de 2100. 93 Nesse contexto podemos perguntar qual será o impacto dos cenários climáticos previstos pelo 94 IPCC para 2100 no recrutamento de plântulas de espécies arbóreas no Cerrado, considerando 95 maior temperatura, redução do número de dias com precipitação durante a estação chuvosa, e 96 97 maior [CO₂] atmosférico. Será que serão favorecidas pelo aumento de [CO₂] atmosférico, e conseguirão fazer uso mais eficiente da água? Ou será que os prejuízos causados pelas altas 98 temperaturas e déficit hídrico no solo serão mais determinantes em seu desenvolvimento que o 99 100 possível benefício causado pela maior [CO₂]?

Espera-se que veranicos prolongados associados a altas temperaturas prejudiquem o
desenvolvimento inicial de espécies arbóreas de cerrado *sensu stricto*, provocando estresse
hídrico devido à maior demanda por água nessas condições em comparação ao desenvolvimento
observado no cenário climático atual.

Já as temperaturas elevadas associadas à alta [CO₂] do cenário futuro permitirão maior
 acúmulo de biomassa durante a fase de crescimento inicial de espécies arbóreas de savana do
 Cerrado, permitindo crescimento mais acelerado quando comparadas às plântulas observadas
 no cenário climático atual.

110 1.1. REFERÊNCIAS

- 111 Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties 112 and plant production to rising CO_2 . New Phytol. 165, 351-372. 113 https://doi.org/10.1111/j.1469-8137.2004.01224.x 114
- Aubin, I., Munson, A.D., Cardou, F., Burton, P.J., Isabel, N., Pedlar, J.H., Paquette, A., Taylor,
 A.R., Delagrange, S., Kebli, H., Messier, C., Shipley, B., Valladares, F., Kattge, J.,
 Boisvert-Marsh, L., McKenney, D., 2016. Traits to stay, traits to move: a review of
 functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees
 to climate change. Environ. Rev. 24, 164–186. https://doi.org/10.1139/er-2015-0072
- Bellasio, C., Quirk, J., Beerling, D.J., 2018. Stomatal and non-stomatal limitations in savanna
 trees and C4 grasses grown at low, ambient and high atmospheric CO₂. Plant Sci. 274,
 181–192. https://doi.org/10.1016/j.plantsci.2018.05.028
- Boonman, C.C.F., Huijbregts, M.A.J., Benítez-López, A., Schipper, A.M., Thuiller, W.,
 Santini, L., 2022. Trait-based projections of climate change effects on global biome
 distributions. Divers. Distrib. 28, 25–37. https://doi.org/10.1111/ddi.13431
- Cahill, A.E., Aiello-Lammens, M.E., Fisher-reid, M.C., Hua, X., Karanewsky, C.J., Ryu, H.Y.,
 Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O., Wiens, J.J., Caitlin Fisher-Reid,
 M., Hua, X., Karanewsky, C.J., Ryu, H.Y., Sbeglia, G.C., Spagnolo, F., Waldron, J.B.,
 Warsi, O., Wiens, J.J., 2013. How does climate change cause extinction? Proc. R. Soc. B
 Biol. Sci. 280. https://doi.org/10.1098/rspb.2012.1890
- Canham, C.D., Murphy, L., 2016. The demography of tree species response to climate: Seedling
 recruitment and survival. Ecosphere 7, 1–16. https://doi.org/10.1002/ecs2.1424
- Cordeiro, N.G., Pereira, K.M.G., Terra, M. de C.N.S., Silveira, E.M. de O., Oliveira, I.M.S. de,
 Acerbi Júnior, F.W., van den Berg, E., Mello, J.M. de, 2021. The role of environmental
 filters in Brazilian savanna vegetation dynamics. For. Ecol. Manage. 500, 119645.
 https://doi.org/10.1016/j.foreco.2021.119645
- Correia, B., Hancock, R.D., Amaral, J., Gomez-Cadenas, A., Valledor, L., Pinto, G., 2018.
 Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That
 Are Not Activated When Subjected to Drought or Heat Stress Alone. Front. Plant Sci. 9,
 1–14. https://doi.org/10.3389/fpls.2018.00819
- 141 Coutinho, L.M., 2006. O conceito de bioma 20, 13–23.
- de Oliveira, A.C.G., Rios, P.M., Pereira, E.G., Souza, J.P., 2021. Growth and competition
 between a native leguminous forb and an alien grass from the Cerrado under elevated
 CO2. Austral Ecol. 46, 750–761. https://doi.org/10.1111/aec.13006
- Duan, H., O'Grady, A.P., Duursma, R.A., Choat, B., Huang, G., Smith, R.A., Jiang, Y., Tissue,
 D.T., 2015. Drought responses of two gymnosperm species with contrasting stomatal
 regulation strategies under elevated [CO 2] and temperature. Tree Physiol. 35, 756–770.
 https://doi.org/10.1093/treephys/tpv047
- Fonseca, M.S. da, Silva Júnior, M.C. da, 2004. Fitossociologia e similaridade florística entre trechos de Cerrado sentido restrito em interflúvio e em vale no Jardim Botânico de Brasília, DF. Acta Bot. Brasilica 18, 19–29. https://doi.org/10.1590/S0102-33062004000100003

- Françoso, R.D., Dexter, K.G., Machado, R.B., Pennington, R.T., Pinto, J.R.R., Brandão, R.A.,
 Ratter, J.A., 2020. Delimiting floristic biogeographic districts in the Cerrado and
 assessing their conservation status. Biodivers. Conserv. 29, 1477–1500.
 https://doi.org/10.1007/s10531-019-01819-3
- García-Valdés, R., Bugmann, H., Morin, X., 2018. Climate change-driven extinctions of tree
 species affect forest functioning more than random extinctions. Divers. Distrib. 24, 906–
 918. https://doi.org/10.1111/ddi.12744
- Hansson, A., Shulmeister, J., Dargusch, P., Hill, G., 2023. A review of factors controlling
 Southern Hemisphere treelines and the implications of climate change on future treeline
 dynamics. Agric. For. Meteorol. 332, 109375.
 https://doi.org/10.1016/j.agrformet.2023.109375
- Hoffmann, W.A., 1996. The Effects of Fire and Cover on Seedling Establishment in a
 Neotropical Savanna. J. Ecol. 84, 383. https://doi.org/10.2307/2261200
- Hoffmann, W.A., Bazzaz, F.A., Chatterton, N.J., Harrison, P.A., Jackson, R.B., 2000. Elevated
 CO 2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317.
 https://doi.org/10.1007/s004420051017
- Hoffmann, W.A., Geiger, E.L., Gotsch, S.G., Rossatto, D.R., Silva, L.C.R., Lau, O.L.,
 Haridasan, M., Franco, A.C., 2012. Ecological thresholds at the savanna-forest boundary:
 How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett.
 15, 759–768. https://doi.org/10.1111/j.1461-0248.2012.01789.x
- Ibáñez, I., Clark, J.S., LaDeau, S., Hille Ris Lambers, J., 2007. Exploiting temporal variability
 to understand tree recruitment response to climate change. Ecol. Monogr. 77, 163–177.
 <u>https://doi.org/10.1890/06-1097</u>
- Jin, X., Deng, X., Chen, J., Zhu, S., Huo, Y., Dai, R., Xu, Q., Cao, M., Wu, Y., 2023. A
 comprehensive evaluation of the spatiotemporal variation of CO2 and its driving forces
 over China. Front. Environ. Sci. 11, 1–17. https://doi.org/10.3389/fenvs.2023.1129639
- Joswig, J.S., Wirth, C., Schuman, M.C., Kattge, J., Reu, B., Wright, I.J., Sippel, S.D., Rüger, 179 N., Richter, R., Schaepman, M.E., van Bodegom, P.M., Cornelissen, J.H.C., Díaz, S., 180 Hattingh, W.N., Kramer, K., Lens, F., Niinemets, Ü., Reich, P.B., Reichstein, M., 181 182 Römermann, C., Schrodt, F., Anand, M., Bahn, M., Byun, C., Campetella, G., Cerabolini, B.E.L., Craine, J.M., Gonzalez-Melo, A., Gutiérrez, A.G., He, T., Higuchi, P., Jactel, H., 183 Kraft, N.J.B., Minden, V., Onipchenko, V., Peñuelas, J., Pillar, V.D., Sosinski, Ê., 184 185 Soudzilovskaia, N.A., Weiher, E., Mahecha, M.D., 2022. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 186 36-50. https://doi.org/10.1038/s41559-021-01616-8 187
- 188 Kumarathunge, D.P., Drake, J.E., Tjoelker, M.G., López, R., Pfautsch, S., Vårhammar, A., Medlyn, B.E., 2020. The temperature optima for tree seedling photosynthesis and growth 189 Glob. Biol. 190 depend on water inputs. Chang. 26, 2544-2560. https://doi.org/10.1111/gcb.14975 191
- Lahsen, M., Bustamante, M.M.C., Dalla-nora, E.L., 2016. Undervaluing and Overexploiting
 9157. <u>https://doi.org/10.1080/00139157.2016.1229537</u>
- Leck, M.A., Parker, V.T., Simpson, R.L., 2008. Seedling Ecology and Evolution. Cambridge
 University Press.

- Liu, H., Ye, Q., Simpson, K.J., Cui, E., Xia, J., 2022. Can evolutionary history predict plant
 plastic responses to climate change?, New Phytologist.
 https://doi.org/10.1111/nph.18194
- Macedo, M.A., Pinhate, S.B., Bowen, E.C., Musso, C., Miranda, H.S., 2022. Constraints on
 tree seedling establishment after fires: passing the germination bottlenecks. Plant Biol.
 https://doi.org/10.1111/plb.13335
- Madani, N., Kimball, J.S., Ballantyne, A.P., Affleck, D.L.R., Van Bodegom, P.M., Reich, P.B.,
 Kattge, J., Sala, A., Nazeri, M., Jones, M.O., Zhao, M., Running, S.W., 2018. Future
 global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 1–10.
 https://doi.org/10.1038/s41598-018-21172-9
- Meinshausen, M., Nicholls, Z., Lewis, J., Gidden, M., Vogel, E., Freund, M., Beyerle, U.,
 Gessner, C., Nauels, A., Bauer, N., Canadell, J., Daniel, J., John, A., Krummel, P.,
 Luderer, G., Meinshausen, N., Montzka, S., Rayner, P., Reimann, S., Smith, S., van den
 Berg, M., Velders, G., Vollmer, M., Wang, H.J., 2019. The SSP greenhouse gas
 concentrations and their extensions to 2500. Geosci. Model Dev. Discuss. 1–77.
 https://doi.org/10.5194/gmd-2019-222
- Mndela, M., Tjelele, J.T., Madakadze, I.C., Mangwane, M., Samuels, I.M., Muller, F., Pule,
 H.T., 2022. A global meta-analysis of woody plant responses to elevated CO2:
 implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecol.
 Process. 11. https://doi.org/10.1186/s13717-022-00397-7
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000.
 Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
 <u>https://doi.org/10.1038/35002501</u>
- Ncisana, L., Mkhize, N.R., Scogings, P.F., 2022. Warming promotes growth of seedlings of a
 woody encroacher in grassland dominated by C4 species. African J. Range Forage Sci.
 39, 272–280. https://doi.org/10.2989/10220119.2021.1913762
- Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot,
 P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M., 2010. Plant
 phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692.
 <u>https://doi.org/10.1016/j.tplants.2010.09.008</u>
- Paganeli, B., Dexter, K.G., Batalha, M.A., 2020. Early growth in a congeneric pair of savanna
 and seasonal forest trees under different nitrogen and phosphorus availability. Theor. Exp.
 Plant Physiol. 8. https://doi.org/10.1007/s40626-019-00164-8
- Parmesan, C., Hanley, M.E., 2015. Plants and climate change: Complexities and surprises. Ann.
 Bot. 116, 849–864. https://doi.org/10.1093/aob/mcv169
- Pascale, S., Lucarini, V., Feng, X., Porporato, A., ul Hasson, S., 2016. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim.
 Dyn. 46, 1331–1350. https://doi.org/10.1007/s00382-015-2648-4
- Physical, T., Basis, S., 2013. CLIMATE CHANGE 2013 Climate Change 2013 Edited by.
- Pörtner, H.-O., Debra C., R., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R.A., Betts,
 R., Ibrahim, Z.Z., 2022. Climate Change 2022 Impacts, Adaptation and Vulnerability Summary for Policymakers, Ipcc.

- Prasch, C.M., Sonnewald, U., 2015. Signaling events in plants: Stress factors in combination
 change the picture. Environ. Exp. Bot. 114, 4–14.
 https://doi.org/10.1016/j.envexpbot.2014.06.020
- Projeto MapBiomas Cobertura E Transições Bioma & Estados (Coleção 7.1) da Série Anual
 de Mapas de Uso e Cobertura da Terra do Brasil, acessado em 30/04/2023 através do link:
 <u>https://mapbiomas.org/estatisticas</u>
- Kumarathunge, D.P., Drake, J.E., Tjoelker, M.G., López, R., Pfautsch, S., Vårhammar, A., 244 245 Medlyn, B.E., 2020. The temperature optima for tree seedling photosynthesis and growth 246 depend on water inputs. Glob. Chang. Biol. 26, 2544-2560. https://doi.org/10.1111/gcb.14975 247
- Román-Palacios, C., Wiens, J.J., 2020. Recent responses to climate change reveal the drivers
 of species extinction and survival. Proc. Natl. Acad. Sci. U. S. A. 117, 4211–4217.
 https://doi.org/10.1073/pnas.1913007117
- Rosa, B.L., Souza, J.P., Pereira, E.G., 2019. Increased atmospheric CO₂ changes the
 photosynthetic responses of acrocomia aculeata (Arecaceae) to drought. Acta Bot.
 Brasilica 33, 486–497. https://doi.org/10.1590/0102-33062019abb0056
- Rosan, T.M., Aragão, L.E.O.C., Oliveras, I., Phillips, O.L., Malhi, Y., Gloor, E., Wagner, F.H.,
 2019. Extensive 21st-Century Woody Encroachment in South America's Savanna.
 Geophys. Res. Lett. 46, 6594–6603. https://doi.org/10.1029/2019GL082327
- Souza, J.P., Melo, N.M.J., Pereira, E.G., Halfeld, A.D., Gomes, I.N., Prado, C.H.B.A., 2016.
 Responses of woody Cerrado species to rising atmospheric CO₂ concentration and water
 stress: gains and losses. Funct. Plant Biol. 43, 1183. https://doi.org/10.1071/FP16138
- Vanderwel, M.C., Lyutsarev, V.S., Purves, D.W., 2013. Climate-related variation in mortality
 and recruitment determine regional forest-type distributions. Glob. Ecol. Biogeogr. 22,
 1192–1203. https://doi.org/10.1111/geb.12081
- Velazco, S.J.E., Villalobos, F., Galvão, F., De Marco Júnior, P., 2019. A dark scenario for
 Cerrado plant species: Effects of future climate, land use and protected areas
 ineffectiveness. Divers. Distrib. 25, 660–673. <u>https://doi.org/10.1111/ddi.12886</u>
- Wang, Z., Wang, C., 2021. Responses of tree leaf gas exchange to elevated CO2 combined with
 changes in temperature and water availability: A global synthesis. Glob. Ecol. Biogeogr.
 30, 2500–2512. <u>https://doi.org/10.1111/geb.13394</u>
- Westerband, A.C., Kagawa-Viviani, A.K., Bogner, K.K., Beilman, D.W., Knight, T.M., Barton,
 K.E., 2019. Seedling drought tolerance and functional traits vary in response to the timing
 of water availability in a keystone Hawaiian tree species. Plant Ecol. 220, 321–344.
 https://doi.org/10.1007/s11258-019-00917-0

274 2. OBJETIVO

275

276

2.1. OBJETIVO GERAL

Compreender o desempenho de plântulas de espécies arbóreas de cerrado *sensu stricto*diante de diferentes cenários climáticos a partir da simulação do clima atual e daquele projetado
pelo IPCC para o período entre 2080 e 2100 (SSP 3-7.0), em câmaras climáticas programadas
para variação nos níveis de CO₂, temperatura e na frequência de irrigação.

- 281
- 282

2.2. OBJETIVOS ESPECÍFICOS

Avaliar o efeito de diferentes intervalos de irrigação no desenvolvimento inicial
 de espécies de Cerrado *sensu stricto* no intuito de simular diferentes intensidades de veranicos
 para compreender seu possível impacto durante o período de recrutamento de plântulas de
 espécies arbóreas.

Avaliar o desenvolvimento inicial por meio de traços funcionais relacionados à
 aquisição de biomassa de plântulas de espécies arbóreas de Cerrado *sensu stricto* quando
 submetidas a um cenário climático previsto para 2100.

Comparar o padrão de crescimento e a correlação entre os traços funcionais
 observados em plântulas de espécies arbóreas de Cerrado *sensu stricto* quando submetidas ao
 cenário climático atual e a um cenário com aumento de temperatura e veranicos recorrentes
 com duração de 8 ou 15 dias.

295 3. ORGANIZAÇÃO DA TESE E PLANO DE PUBLICAÇÃO

Para desenvolver a pesquisa da tese foram realizados dois experimentos, os quais
separam a tese em dois capítulos: Capítulo I – Desenvolvimento inicial de espécies arbóreas
sob veranicos simulados, e Capítulo II – Experimento de cenários climáticos.

O Capítulo I desta tese é composto por um trabalho submetido para a revista científica
Flora (Elsevier) no dia 13 de agosto de 2022 e aceito em fevereiro de 2023.

O Capítulo II da tese apresenta uma proposta de artigo a ser submetido para a revista Global Change Biology ainda em 2023. Nesse artigo discutimos a contribuição do cenário climático previsto para 2100 para a região do Cerrado no fenômeno de adensamento arbóreo em savanas utilizando o resultado de um experimento que mediu diferentes atributos funcionais no desenvolvimento inicial de 4 espécies arbóreas submetidas a esse cenário climático simulado em câmara de fitotron.

308	4. CAPÍTULO I
309	
310	
311	
312	
313	
314	
315	
316	
317	Early development of two savanna tree species
318	under simulated dry spells
319	

'Edited by: Hermann Heilmeler

Journal Pre-proof

Early development of two savanna tree species under simulated dry spells

Adalgisa Maria Chaib , Anabele Stefania Gomes , Fabian Borghetti

 PII:
 S0367-2530(23)00031-2

 DOI:
 https://doi.org/10.1016/j.flora.2023.152241

 Reference:
 FLORA 152241

To appear in: Flora

Received date: 13 August 2022 Revised date: 28 January 2023 Accepted date: 7 February 2023

Please cite this article as: Adalgisa Maria Chaib , Anabele Stefania Gomes , Fabian Borghetti , Early development of two savanna tree species under simulated dry spells, *Flora* (2023), doi: https://doi.org/10.1016/j.flora.2023.152241

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Elsevier GmbH. All rights reserved.

320

321

323			
324	Early development of two savanna tree species under simulated dry spells		
325			
326			
327	Authors:		
328	1- Adalgisa Maria Chaib ¹		
329	2- Anabele Stefania Gomes ¹		
330	3- Fabian Borghetti ¹		
331	Authors' affiliations:		
332	^{1.} University of Brasília, Botany Department		
333	*Corresponding author: Adalgisa Maria Chaib		
334	Email address: dal.chaib@gmail.com		
335 336	Full postal address: Adalgisa Maria Chaib, Departamento de Botânica, Universidade de Brasília, 70910-900, Brasília, Brazil.		
337	1		
338	Highlights		
339	• Dry spells of up to 15 d did not affect the growth of <i>Qualea grandiflora</i> seedlings.		
340	• Dry spells of 15 d caused reduction of <i>Tabebuia aurea</i> seedlings root biomass.		
341	• <i>Tabebuia aurea</i> seedlings invested more biomass in shoot growth and root elongation when		
342	submitted to dry spells.		
343	• The investment in total leaf biomass and net assimilation rate can explain why both		
344	species differed in their dry spell treatments response.		

¹ Abbreviations: TM, total dry mass; RM, root dry mass; SM, shoot dry mass; RMF, root biomass fraction; SMF, shoot biomass fraction; RGR, relative growth rate; STRL, specific taproot length; H, plant height; RL, taproot length; SLA, specific leaf area; RER, taproot elongation rate; R:S, biomass partition root and shoot rate.

345

346

347

- 348
- 349

350 ABSTRACT

The seedling stage represents a bottleneck in plants' life cycle, particularly in savanna 351 352 environments, where the rainy season is the major window of opportunity for seedling 353 development and recruitment of new individuals. However, an increase in the duration and 354 frequency of dry spells (days without rain during the rainy season) is expected due to climate change, which may affect species recruitment and establishment. The aim of this study was to 355 356 examine the effect of simulated dry spells on the growth performance and biomass of Qualea 357 grandiflora and Tabebuia aurea seedlings. Seedlings (60 days-old) were exposed to three 358 irrigation treatments (daily irrigation, irrigation every 8 days, and irrigation every 15 days) for 359 130 days. We found no mortality in any of the irrigation treatments for both species. Although 360 the growth parameters of Q. grandiflora were not significantly affected by the dry spells, the 361 species invested more in shoot growth than in root growth. In contrast, there was a significant decrease in the root dry mass, root:shoot ratio, root biomass fraction, and relative growth rate 362 of T. aurea seedlings exposed to dry spells of 15 days; but there was a significant increase in 363 the specific taproot length and shoot biomass fraction. Overall, the plants showed species-364 specific responses to the dry spell treatments, and dry spells of up to 15 days did not cause 365 366 seedling mortality. Further, T. aurea seedlings invested more resources in taproot growth in response to dry spells. The development of deep-reaching taproots could be an effective 367 368 physiological adaptation strategy for the survival and establishment of young plants and the resilience of native tree populations under future adverse climate scenarios. 369

370 Keywords: Savanna; Dry spell; Biomass Partition; Seedling; Drought Stress

372 4.1. INTRODUCTION

373 In seasonal environments, such as savannas, plant growth and recruitment of new 374 individuals are usually limited to the rainy season, which is conducive for the initial 375 development of plant species (Escobar et al., 2018; Higgins et al., 2000; Oliveira et al., 2005). 376 Approximately 70% of the Cerrado biome is occupied by savanna-like vegetation (Ribeiro and Walter, 2008), constituting the largest area of savanna in South America (Sano et al., 2019; 377 378 Werneck et al., 2012) and a biodiversity hotspot (Myers et al., 2000). However, the diversity 379 and environmental services of the Cerrado biome are at considerable risk of degradation caused by agricultural expansion (Coelho et al., 2020; Françoso et al., 2020; Sano et al., 2019). In 380 381 addition to the dry condition of the savanna, wildfires are among the main factors responsible 382 for tree seedling mortality (Borghetti et al., 2019; Pellizzaro et al., 2017). Although it could 383 take more than 3 years for wildfire to reoccur in the same location (Pereira Júnior et al., 2014), 384 the dry season might reach seedlings with no more than 6 months after germination (Escobar et al., 2018). Therefore, to successfully establish, it is crucial for plants to develop adaptive 385 386 features to tolerate drought-associated fire and water deficit during the dry season (Gignoux et 387 al., 2009).

In the Cerrado, tree seeds tend to germinate at the beginning of the rainy season (Escobar 388 389 et al., 2018), subsequently using this wet period for their initial development and establishment. 390 However, periods of dry spell (days without rain during the rainy season) can interfere with 391 plant growth, which can compromise the development of new individuals (de Mattos et al., 392 2002). Dry spells represent a determinant factor promoting seedling mortality (Higgins et al., 393 2000; Kanegae et al 2000; Hoffmann, 1996). As dry seasons might cause the mortality of seedlings and young tree individuals (Pellizzaro et al., 2017), dry-spell-induced drought stress 394 395 could impact the survival and recruitment rates of young trees under natural conditions 396 (Gignoux et al., 2009). Particularly, dry spells have considerable impacts on seedlings with

poorly developed root systems incapable of sufficient water uptake (Goldstein et al., 2008). The
longer the dry spells, the greater the water deficit and their effects on seedling development
(Blanco-Martínez et al., 2022). Extended periods of drought during the rainy season were
observed to be associated with lower total biomass, higher root biomass, and height reduction
in young tree individuals (Westerband et al., 2019).

Previous studies have reported high survival rates, but low photosynthesis rate and 402 vegetative growth in native *Dipteryx alata* tree seedlings exposed to varying degrees of drought 403 404 stress (Matos et al., 2018). Drought stress tolerance may vary depending on the species and 405 duration of the water deficit period (Westerband et al., 2019). Regardless of the species, drought 406 stress has been shown to stimulate root growth in the seedlings of Mediterranean tree species 407 (Padilla, et al., 2007). Species with storage cotyledons produced longer roots (~40 cm) after 3 months when compared with species with photosynthetic cotyledons (≈20 cm) (Sabova and 408 Borghetti, 2012). Additionally, Saboya and Borghetti (2012) reported that root length was at 409 least four times the shoot length for three Cerrado tree species after 80 days of growth, 410 411 indicating a higher biomass investment in root than in shoot system among these seedlings. 412 Seedlings of savanna species tend to invest considerably more in root than in shoot growth than 413 seedlings of forest species (Hoffmann et al., 2004; Poorter and Garnier, 2007; Tomlinson et al., 2014). 414

The extent of root growth achieved by young plants of savanna tree species during the rainy season may determine their survival during the dry season (García-Núñez et al., 2019; Kanegae et al., 2000). Although this strategy can be decisive for their survival during the dry season, it can be compromised by the occurrence of dry spells during the rainy season. For example, soil water potential was lowered to ca. -1.3 MPa (at 5 cm soil depth) during a dry spell of 9 days, which reduced the emergence and survival rate of *Bowdichia virgilioides* seedlings compared with seedlings that were not exposed to dry spell (Braz et al., 2000). Similarly, there was a 0.67- and 2.6-fold increase, respectively, in the recruitment rates of *Roupala montana*and *Miconia albicans* seedlings under irrigation when compared with unirrigated seedlings
exposed to dry spells of at least 9 days during the rainy season (Hoffmann, 1996).

425 In the Cerrado region, dry spells of 5 to 15 days are common during the rainy season 426 (da Silva et al., 2008). Moreover, climate change models indicate that there may be an increase in the duration and frequency of dry spells in this region (Magalhães et al., 2019). Therefore, 427 investment in root development during the rainy season might be important for the recruitment 428 of Cerrado species. In this study, we examined the effects of simulated dry spells of 8 and 15 429 430 days on the initial development of two Cerrado species widely distributed in the savanna vegetation: Tabebuia aurea (Silva Manso) Benth. & Hook. f. ex. S. Moore (Bignoniaceae) and 431 Qualea grandiflora Mart. (Vochysiaceae). We expected that seedlings exposed to dry spells of 432 433 eight days present higher root biomass and reduction of shoot growth, and seedlings exposed to dry spells of 15 days present reduction of total biomass but higher taproot elongation. It is 434 anticipated that our findings can improve the understanding of climate change impacts on the 435 recruitment of native species. 436

437

4.2. MATERIALS AND METHODS

438

4.2.1. Species studied and seed collection

Qualea grandiflora and Tabebuia aurea are widely distributed in savanna 439 440 physiognomies of the Cerrado (Ratter et al., 2003). Both species are deciduous, anemochorous, and typical of *cerrado sensu stricto* physiognomy (Capuzzo et al., 2012; Ratter et al., 2003), 441 generally occurring on red latosol. The seeds of these species have no dormancy (da Ponte et 442 443 al., 2020; Santos et al., 2019). Seeds were collected between September and October 2017 in savanna areas located in the municipality of Pirenópolis, Goiás state (15° 84' S, 48° 97' W; 800 444 m a.s.l.), at the Brasília National Park (15° 38' S, 48° 01' W; 1.100 m a.s.l.), and the Fazenda 445 Água Limpa (15° 95' S, 47° 92' W; 1.200 m a.s.l.), in the Federal District. Seeds were collected 446
from 10 healthy trees at least 50 meters apart from each other and taken to the *Laboratório de Termobiologia* of the University of Brasília (Darcy Ribeiro Campus). Seeds were processed
and stored at for further analysis.

450

4.2.2. Climate data

The Cerrado central region has an Aw climate according to the Köppen-Geiger classification (Cardoso et al., 2014). The average temperature and rainfall in the region between October and March are around 24.7 °C and 1,284 mm, respectively (Cardoso et al., 2014). The irrigation volume used in this study was based on the average precipitation values recorded from January to April between 1960 and 2016 (Table S1), which was obtained from an automatic climatological station of the National Institute of Meteorology (INMET, 2017). The relative humidity values were also obtained from the climate data (see section 2.3).

Due to the proximity of seedlings to the soil and the direct effects of soil temperature on root development (Kaspar and Bland, 1998; Onwuka, 2018), we defined the minimum and maximum temperature in the growth chamber based on the soil temperature estimates (section 2.3). To obtain these values, we used the minimum and maximum historical atmospheric temperature average obtained between 1960 and 2016 (INMET, 2017 – spreadsheet S1) and calculated the soil temperature by correlating these two variables (Ooi et al., 2009).

464

4.2.3. Equipment and assembly and disassembly of the experiment

The experiment was performed in a climatic chamber (Phytotron type, Eletrolab, Brazil), which allowed the regulation of temperature, air moisture, photosynthetic photon flux density (PPFD), gas concentration, and photoperiod. The chamber was equipped with a manually operated drip irrigation system. The experimental conditions of the chamber were based on historical climatic data (section 4.2.2) and defined as follows: carbon dioxide concentration of 400 μ l l⁻¹, photoperiod of 12 h, alternating fixed day/night temperature 38/28 °C (12 h/12 h), relative humidity of 70%, and PPFD of 700 µmol m⁻² s⁻¹ (da Silva et al., 2008).

The experiment was started in May 2018. The seeds were germinated in Petri dishes containing 472 filter paper and distilled water in a germination chamber (Eletrolab, Brazil) under a 12 h 473 photoperiod at 28 °C. After the radicle protrusion, the seedlings were transferred to plastic bags 474 475 (20 cm height and diameter of 10 cm) filled with dystrophic red latosol (obtained from a soil 476 deep of 30 cm), which was collected from a preserved area at the *Fazenda Água Limpa*. The 477 soil was mixed with sand (3:1 ratio) to keep soil aeration during the experiment. Soil samples 478 (with and without sand) were sent for physical and chemical analyses (Table S1). The initial 479 establishment of the seedlings was conducted in these plastic bags, which were watered every two days for 60 days to assure a high rate of survival. As in the Cerrado anemochoric species 480 disperse seeds at the beginning of the rainy season (October-November) (Escobar, 2018), the 481 simulated dry spell treatments started at a period corresponding to January, when the occurrence 482 of dry spells is usually higher (Assad, 1994). 483

After 60 days, 10 seedlings of T aurea and 8 seedlings of Q. grandiflora were chosen at 484 random for initial measurements (Table S2). These initial measurements were important for the 485 calculations of plant growth variables (Table S3). The remaining seedlings were randomly 486 distributed in groups of 10 (T. aurea) or 8 (Q. grandiflora) seedlings per treatment. To be 487 488 subjected to the dry spell treatments, the 60-day-old seedlings were transferred from the plastic 489 bags to plastic tubes (100 cm high and 10 cm in diameter), closed at the base with a perforated lid to allow the draining of excess water. The tubes were filled with the same substrate as the 490 491 bags and evenly distributed in the phytotron to standardize the effects of the chamber environment on seedling growth. The dry spells were simulated by controlling the frequency of 492 493 irrigation and the volume of water provided per each tube per treatment; daily irrigation (no dry 494 spell), irrigation every 8 days, and irrigation every 15 days. The volume of water provided at 495 each irrigation event was calculated in order that, at the end of the experiment, each seedling in each treatment received the same amount of water (Table S4). The simulated dry spell 496

497 experiment lasted for 130 days, roughly representing the remaining of the rainy season498 (January–April).

After 130 days, the seedlings were carefully removed from the tubes using a gentle stream of running water over a fine mesh to remove the soil and other debris from the root system. Measurements of the growth variables (section 4.2.4) were taken from these seedlings the same day they were removed from the phytotron (Fig. S3).

503

4.2.4. Data collection

504 At the beginning (60 days old seedlings) and the end (190 days old seedlings) of the 505 experiment, the following growth parameters of T. aurea and Q. grandiflora seedlings were 506 measured for each treatment (no dry spell, 8-day dry spell, 15-day dry spell): seedling height 507 (H), taproot length (RL) and number of leaves (Lnum) per individual. Thereafter, the root 508 (primary and secondary roots were separated and only taproot was considered) and the shoot 509 (including stems and leaves separately) parts of the seedlings were separately oven-dried at 70 510 °C for 48 h. When present, the cotyledons were also dried but were not included in the shoot mass. After drying, the following variables were determined: total seedling dry mass (TM), root 511 dry mass (RM), shoot dry mass (SM), leaf dry mass (LM), root mass fraction (RMF), shoot 512 513 mass fraction (SMF), leaf mass fraction (LMF), and root: shoot ratio (R:S ratio). Relative growth rate (RGR) was calculated based on total dry mass. Taproot elongation rate (RER) and specific 514 515 taproot length (STRL) (see Tomlinson et al., 2012) were calculated based on taproot mass and 516 taproot length (Table S3). The leaf area necessary to calculate the specific leaf area (SLA) was 517 obtained by analysing the images of previously scanned well developed fresh leaves (three per seedling) from 10 seedlings per treatment for T. aurea and 8 seedlings per treatment for Q. 518 519 grandiflora seedling/treatment combination using ImageJ software.

520 4.2.5. Statistical analysis

521 The dry spell treatments were considered as predictor variables, while the variables measured at the end of the experiment and the indices (section 2.4) were considered as 522 523 dependent variables. Results were considered statistically significant at P < 0.05. All analyses 524 were conducted in the R program (RStudio Team, 2020), using the PMCMR package (Pohlert, 2016). Kruskal-Wallis non-parametric test was used to analyse the data due to the low number 525 of individuals in the samples (Kruskal and Wallis, 1952; Morgan, 2017). Then, pairwise post-526 527 hoc test for multiple comparisons of mean rank sums for unreplicated blocked data was performed (Nemenyi-Test) to identify stochastic dominance between irrigation treatments 528 529 when we found significant differences in the Kruskal-Wallis' test (Pohlert, 2016). Graphs showing the biomass dispersion of observations, interquartile ranges, and medians were 530 generated using the *Flexplot* package (Fife, 2019) in the R program. Pearson's correlation 531 532 analysis was performed to determine the relationships between the traits using the Multi Environment Trials Analysis package (Olivoto, 2019) and the corr coef() command. The raw 533 data used in the initial analysis can be found in worksheet S2 and the raw data from the final 534 535 analysis in worksheet S3 of the supplementary material.

536

537 4.3. RESULTS

No mortality was observed during the experimental period. The *P* values of the data analysed (section 2.5), including biomass and growth variables (section 2.4) of *Q. grandiflora* and *T. aurea* seedlings are shown in Table S5.

541

4.3.1. Initial growth variables before dry spell treatments

Sixty days-old *Qualea grandiflora* seedlings showed a shoot dry mass (SM = 0.26 g) at least twice as large as the root dry mass (RM = 0.11 g), corresponding to *ca*. 70% of the total mass (TM = 0.38 g), while the average shoot height (H) was near to 30% of the average taproot length (RL = 20.62 cm) (Table S2). *Tabebuia aurea* seedlings had a SM around 50% lower than RM, and a root:shoot (R:S) ratio of 1.82. Also, similar to *Q. grandiflora*, the shoot height of *T. aurea* corresponded to roughly 25% of the taproot length (RL = 9.46 cm) (Table S2). The RL of *Q. grandiflora* seedlings was more than twice that of *T. aurea*; however, Lnum and SLA were similar between the two species. The STRL of *Q. grandiflora* was close to 20 times higher than that of *T. aurea* (Table S2).

551

4.3.2. Biomass variables after dry spell treatments

After 130 days of simulated dry spells, we observed that these treatments did not 552 553 significantly affect the TM (Kruskal–Wallis P = 0.1785), RM (Kruskal–Wallis P = 0.810), and 554 SM (Kruskal–Wallis P = 0.954) of Q. grandiflora seedlings. Specifically, TM ranged from 5.4– 5.7 g, RM from 1.6–2.0 g, and SM from 3.7–3.8 (Table S2; Fig. 1A, B). Notably, Q. grandiflora 555 showed lower investment in root mass than in shoot mass, with SM constituting 60–70% of TM 556 in all treatments (Table S2). SMF and RMF (Kruskal–Wallis P = 0.193) and R:S ratio (Fig. 1C; 557 Kruskal–Wallis p = 0.193) were also not significantly affected by the dry spell treatments in 558 559 comparison to the control (no dry spell). Specifically, R:S ranged from 0.40 in the control group to 0.65 in plants under the 15-d dry spell treatment (Fig. 1C). Most of SMF was composed by 560 LMF, where LM of *Q. grandiflora* seedlings ranged from 60% of TM (under 8 days dry spell) 561 562 to 47% of TM (under 15 days dry spell), while in T. aurea seedlings LMF had a significant statistical increase according to the dry spell duration, ranging from 20% of TM when no dry 563 spell was applied to 42% of TM when submitted to 15 days of dry spell. 564

There was a significant decrease in the TM (Kruskal–Wallis P = 0.021) and RM (Kruskal–Wallis P = 0.007) of *T. aurea* seedlings with increasing dry spells; the RM decreased by ca. 55% in seedlings irrigated every 15 days compared to control seedlings (Fig. 1A, Fig. S4). However, there was no significant difference (Kruskal–Wallis P = 0.689) in the SM of *T. aurea* among the treatments (Fig. 1B). Additionally, there was a significant decrease (Kruskal– Wallis P = 0.036, Nemenyi test P = 0.028) in the RMF of *T. aurea* seedlings with increasing dry spell duration, accounting for 73% of TM in seedlings irrigated daily to 54% of the TM in seedlings exposed to dry spells of 15 days. In contrast, there was a significant increase (Kruskal–Wallis P = 0.036) in the SMF of *T. aurea* seedlings with increasing dry spell duration, accounting for 27% in seedlings irrigated daily to 46% of the TM in seedlings exposed to dry spells of 15 days. Additionally, there was a significant decrease (Nemenyi test P = 0.028) in the R:S ratio, from 2.96 under daily irrigation to 1.34 under irrigation every 15 days (Fig. 1C).

577

4.3.3. Growth variables after dry spell treatments

For *Q. grandiflora* seedlings, simulated dry spells did not significantly affect the growth parameters RGR (Kruskal–Wallis P = 0.999), shoot height Kruskal–Wallis P = 0.735) and root length (Kruskal–Wallis P = 0.379) (Table S2, S5; Fig. 2B). In accordance, no significant statistical difference was observed among treatments for SLA (Kruskal–Wallis P = 0.861), LMF (Kruskal–Wallis P = 0.862) and NAR (Kruskal–Wallis P = 0.644) for *Q. grandiflora* seedlings (Table S2, S5; Fig. 2).

In contrast, for T. aurea seedlings, RGR significantly decreased (Kruskal–Wallis P =584 0.021 and Nemenyi P = 0.016) with increasing duration of dry spells, decreasing from 0.026 g 585 $g^{-1} d^{-1}$ in seedlings irrigated daily to 0.023 g $g^{-1} d^{-1}$ in seedlings irrigated every 15 days (Fig. 586 2B). Similarly, NAR of T. aurea seedlings decreased according to the dry spell treatment, 587 ranging from 0.0016 g cm⁻² d⁻¹ in seedlings irrigated daily to 0.0006 g cm⁻² d⁻¹ in seedlings 588 589 irrigated every 15 days (Fig. 2D). STRL significantly increased (Kruskal–Wallis P = 0.01, Nemenyi P = 0.007) with increasing duration of the dry spells, ranging from 9.24 cm g^{-1} in 590 seedlings irrigated daily to 22.12 cm g⁻¹ in seedlings irrigated every 15 days (Fig. 1D). There 591 592 were no significant differences in H, RL (Kruskal–Wallis test P = 0.1), RER (Kruskal–Wallis P = 0.1), Lnum (Kruskal–Wallis P = 0.11), and SLA (Kruskal–Wallis P = 0.712) among the 593

treatments (Table S5, Fig. 2C). Height ranged from 6–9 cm, RL from 98–102 cm, and RER from 0.68-0.71 cm d⁻¹.

596

4.3.4. Trait correlations

RGR of *Q. grandiflora* was positively correlated with RM (r = 0.81) and H (r = 0.62), and negatively correlated with STRL (r = -0.83). In contrast, SLA was not significantly correlated with any of the parameters (Fig. S1). Details of Pearson's correlation analysis for *Q. grandiflora* are shown in Figure S1.

RGR of *T. aurea* was negatively correlated with STRL (r = -0.85), but not significantly with RMF (r = 0.28). SLA of *T. aurea* was not significantly correlated with any variable. The results of Pearson's correlation analysis for *T. aurea* are shown in Figure S2.

604

4.4. DISCUSSION

606 In the present study, we observed different responses in the seedling growth of two 607 savanna tree species to simulated dry spells. While the growth variables of Q. grandiflora 608 seedlings were similar among the different dry spell treatments, the growth variables of T. aurea 609 seedlings were affected by the dry spell duration; notably they reduced TM when subjected to longer dry spells (Table S2). These results indicate that the dry spell treatments used in our 610 611 experiment did not substantially result in drought stress among seedlings of Q. grandiflora, but 612 apparently promoted a drought stress in seedlings of T. aurea. Taken together, these results 613 suggest that seedling responses to dry spells may be related to species-specific growth strategies these tree species might present at their initial growth stage. 614

4.4.1. Qualea grandiflora: comparison between treatments

615

Dry spell treatments did not affect the biomass of *Qualea grandiflora* seedlings. There was no significant difference between TM, RM or SM of *Qualea grandiflora* seedlings subjected to different treatments. As drought stress usually leads to a reduction in biomass acquisition (Mundim and Pringle, 2018; Eziz et al., 2017), these results suggest that the dry spell treatments did not cause drought stress on *Qualea grandiflora* seedlings.

621 Previous studies have reported higher biomass investment in RM, compared with SM, 622 in *Q. grandiflora*, with R:S ratio ranging from 2.5 to 3.5 among seedlings 125 to 150 days-old (Felippe and Dale, 1990; Moreira and Klink, 2000). In contrast, we observed a higher 623 624 investment in SM among Q. grandiflora seedlings, with R:S ranging from 0.41 (under daily 625 irrigation) to 0.65 (under dry spell of 15 days) in 190 days-old seedlings (Table S2). These results might be related to the phenotypic plasticity of Q. grandiflora (Buzatti et al., 2019). 626 Norden et al. (2009) reported that the initial growth stage of Qualea sp is considerably affected 627 628 by light conditions, and low light conditions can suppress shoot growth instead of stimulating 629 etiolation. Qualea grandiflora is among the most widely distributed tree species in the Cerrado 630 biome (Eiten, 1972; Ratter et al., 2003). The species can be found in several physiognomies, including closed-canopy (such as cerradão), to open-canopy as savannas (cerrado sensu 631 632 stricto) and open savannas (campo sujo and campo limpo) (da Ponte et al., 2020; Eiten, 1972; Ratter et al., 2003). 633

SLA, H, and Lnum of *Q. grandiflora* were not significantly affected by increasing dry
spells. After 130 days of dry spell treatments, the RL of *Q. grandiflora* seedlings varied between
106 and 115 cm (Table S2), which was significantly longer than the roots of 150 days-old *Q. grandiflora* seedlings (~57cm) reported by Moreira and Klink (2000).

638 The RGR values recorded for 190 days-old Q. grandiflora seedlings (0.012–0.013)
639 grown in the phytotrons are consistent with values reported in literature (0.015) for seedlings

125 to 150 days-old grown under field conditions (Felippe and Dale, 1990; Moreira and Klink, 640 641 2000). This result suggests that seedlings of Q. grandiflora were able to keep a growth rate 642 similar to what they might present if grown under field conditions. Because higher leaf area per 643 unit of leaf biomass can allow seedlings to increase carbon assimilation (Gibert et al., 2016), 644 seedlings usually present a positive correlation between SLA and RGR. However, we did not 645 find a significant correlation between these parameters for Q. grandiflora seedlings. Previous 646 studies reporting SLA values for Q. grandiflora were mainly focused on adult plants (Franco 647 et al., 2005) and correlation between SLA and RGR can vary depending on the species' life stage (Gibert et al., 2016), and light or nutrient availability (Shipley, 2002; Osone et al., 2008). 648 649 According to these studies, positive correlation between SLA and RGR are found in experiments where light availability is low (Shipley, 2002) or experiments conducted with very 650 small seedlings (Wright et al., 2019). 651

Previous studies have reported a seedling height (H) ranging from 5.3 to 8 cm for one-652 year-old individuals of Q. grandiflora grown under field conditions (Franco, 2002; Pellizzaro 653 et al., 2017). In the present study the average seedling height was around 7 cm for 60 days-old 654 seedlings, and between 22 and 25 cm for 190 days-old seedlings depending on the dry spell 655 656 treatment. However, we should consider that seedlings growing under field conditions face different conditions in comparison to those growing under controlled experimental conditions. 657 Unfortunately, we have not found any information regarding the number of leaves in seedlings 658 659 of the species selected for the present study.

Root growth was not influenced by the dry spell treatments for *Q. grandiflora* seedlings, which maintained RER and STRL similar between the different treatments (Table S2). These results suggest that during the experimental period in the phytotron water shortage did not impair the growth of *Q. grandiflora* seedlings.

4.4.2. Tabebuia aurea: comparison between treatments

664

665 Previous studies reported that when subjected to an irrigation interruption of 10 days, 150 days-old T. aurea seedlings showed a decrease in their rates of photosynthesis and 666 667 transpiration, which returned to their previous values four days after the irrigation was set again 668 (Oliveira et al., 2011). Our results revealed a progressive decrease in the TM of T. aurea seedlings with increasing duration of the dry spells (Table S2), which might be related to an 669 effect of drought stress on their rates of transpiration and photosynthesis (Westerband et al., 670 671 2019; Eziz et al., 2017). Aboveground growth parameters are usually affected when water is a 672 limiting resource (Eziz et al., 2017). Despite the RM reduction among T. aurea seedlings, SLA, 673 Lnum and H were not influenced by the dry spell treatments (Table S2). Previous studies 674 showed that Cerrado tree seedlings present a strong stomatal control (Bucci et al., 2008; Goldstein et al., 2008; Quesada et al., 2008), which might be sufficient to avoid the effects of a 675 676 drought stress, although it might result in a lower carbon acquisition and reduced dry mass incorporation (McDowell et al., 2008). Our study revealed that, although the total dry mass was 677 reduced by the dry spells, T. aurea seedlings kept key parameters for photosynthesis as SLA 678 679 and number of leaves virtually unchanged, irrespective of the treatments.

The significant decrease of the TM of *T. aurea* seedlings associated with the maintenance of the SM indicate that biomass allocation to the roots was reduced by the dry spell treatments, thus resulting in an increase in SMF and decrease in RMF. This outcome is somewhat inconsistent with previous studies, since savanna species are expected to invest more resources in root biomass when exposed to drought stress (Matos et al., 2018).

685 On the other hand, the significant increase in the STRL of *T. aurea* seedlings exposed 686 to dry spells of 15 days in comparison to those irrigated daily suggests that, irrespective of the 687 reduction in biomass allocation to the roots, seedlings of *T. aurea* maintained a RER under 688 moderate dry spells. These results indicate that the decrease in RM did not translate into a decrease in RL. It is important to highlight that RGR was inversely correlated with STRL (Fig.
S1 and S2), suggesting that the decrease in RGR did not affect seedling investment in taproot
elongation. Similar results have been observed among seedlings of other Cerrado tree species
(Saboya and Borghetti, 2012; Zhou et al., 2020), indicating that these species might prioritise
access to water at greater depths in detrimental of root mass storage.

Notably, there were no major differences in growth rates and biomass allocation patterns 694 695 between T. aurea seedlings irrigated daily and those exposed to dry spells of 8 days, suggesting 696 that relatively short dry spells might not compromise the growth and development of this 697 species under field conditions. However, we found that dry spells of 15 days negatively affected 698 the initial growth of *T. aurea* seedlings in comparison to those irrigated daily, indicating that longer periods under water shortage might impact their recruitment rates under field conditions. 699 700 Considering that the total volume of water supplied in each treatment was the same, our results 701 corroborate that the frequency and intensity of drought stress represents a stronger and more 702 direct factor controlling seedling survival and growth than the total water available for a certain period (Tomlinson et al., 2012). 703

704

4.4.3. Species comparison

705 The major filters controlling tree seedling recruitment in savannas are drought and fire 706 (Moreira & Klink, 2000; Gignoux et al., 2009). In mesic savannas, root adaptations, such as 707 rapid taproot growth, may be more related to water availability than to RGR ratio or R:S 708 (Tomlinson et al., 2012, 2014). The STRL values recorded in *Q. grandiflora* seedlings (ranging from 70 m.g⁻¹ to 97 m.g⁻¹) in comparison to those measured in *T. aurea* seedlings (ranging from 709 9 m.g⁻¹ to 22 m.g⁻¹), suggest that *Q. grandiflora* invests more in root elongation than in root 710 711 biomass during the initial growth stage, what might represent an important growth strategy for 712 seedlings to reach deeper soil horizons (Tomlinson et al., 2012). Toward the end of the wet season the upper layers of the soils dry first (Kanegae et al, 2000), what makes the investment 713

in deeper roots a major strategy to cope with drought stress (Padilla and Pugnaire, 2007; Tomlinson et al., 2012; Boonman et al., 2020; Saboya and Borghetti, 2012). A previous study on Mediterranean tree species conducted in a semi-natural condition field site reported that water availability was more important in seedling survival than was biomass allocation to the roots (Padilla and Pugnaire, 2007), indicating that a higher STRL can contribute to avoid drought stress. On the other hand, the RER of both species were similar irrespective of the dry spell treatments (Table S2).

721 While SLA of *Q. grandiflora* and *T. aurea* seedlings were very similar irrespective of 722 the treatments, RGR of *T. aurea* seedlings was twice that of *Q. grandiflora* (Table S2). The 723 duration of dry spells did not affect *Q. grandiflora* RGR, NAR, SLA nor LMF, indicating that 724 gas exchange was similar for seedlings of Q. grandiflora in all treatments (Fig 2). On the other 725 hand, even though SLA of T. aurea seedlings was not affected by the treatments, its LMF increased whith the dry spell duration, what suggests that the RGR decrease of T. aurea 726 seedlings under longer dry spells is related to a decrease of NAR (Fig. 2). These results indicate 727 728 that, for a given value of SLA, T. aurea seedlings presented higher NAR in comparison to Q. 729 grandiflora seedlings (Shipley, 2002).

730 Drought-tolerance and avoidance mechanisms seem to be linked to the conservative-731 acquisitive gradient, where water storage is positively correlated with acquisitive strategies 732 (Fagundes et al., 2022). The presence of water storage traits, as root storage organs (da Silva and Rossatto, 2019) might allow acquisitive species to occupy regions subjected to dry spells 733 (Fagundes et al., 2022). In our study, to maintain a high carbon acquisition level, a higher 734 735 stomatal conductance and gas exchange might be necessary to provide T. aurea physiological 736 conditions for biomass incorporation, revealing an acquisitive strategy for this species (Grime 737 and Pierce, 2012). As mentioned before, stomata closure response to drought stress might 738 explain why dry spells of 15 days affected TM of T. aurea seedlings in comparison to seedlings

irrigated daily. The understanding of the physiological strategies adopted by *Q. grandiflora*seedlings to cope with water shortage, however, demands further studies.

741 4.5. CONCLUSION

742 Our findings showed that the growth rates and biomass variables of *Q. grandiflora* were 743 not significantly affected by dry spells for up to 15 days. In contrast, there was a significant decrease in total biomass of *T. aurea* seedlings when exposed to dry spells of 15 days, although 744 745 the root length and aboveground variables were not affected by water shortage, suggesting 746 that root elongation might be a priority of biomass allocation when experiencing drought stress. 747 Seedlings producing deeper roots might reach soil layers with a more stable water availability, 748 a major strategy to cope with drought stress. Future studies under field conditions will unravel 749 the importance of root length investment for the recruitment of new individuals under harsh 750 savanna landscapes.

751 Acknowledgements

752 We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the doctoral scholarship granted to the first author; the Fundação de 753 Apoio à Pesquisa do Distrito Federal (FAP-DF), for funding the phytotrons (process 754 755 193.000.230/2014); the International Association for vegetations Science (IAVS), for travel grant to attend the 62nd Symposium of the IAVS; and the Dean of Post-Graduation Program of 756 757 the University of Brasília for the resource to translate the manuscript. Fabian Borghetti thanks CNPq for his Productivity Grant (process 312152/2018-3). We would also like to thank 758 759 Professor Thomas Williams for his valuable comments on preliminary versions of the manuscript. 760

761 Declaration of Competing Interest

- 762 The authors declare no known competing financial interests or personal relationships
- that could have appeared to influence the work reported in this paper.
- 4.6. REFERENCES
- Assad, E.D., 1994. Veranicos na região dos cerrados brasileiros frequência e probabilidade de ocorrência, in: Chuva nos cerrados: Análise e espacialização, pp. 43–48. Empresa
 Brasileira de Pesquisa EMBRAPA, Brasília, Distrito Federal.
- Blanco-Martínez, J.R., Huante, P., Pisanty-Baruch, I., Orozco-Segovia, A., Reyes-Ortega, I.,
 Nieto-Vázquez, N., García-Guzmán, G., Sánchez-Coronado, M.E., 2022. Preparing
 seedlings for dry spells: Drought acclimation in the seedlings of two tree species of a
 seasonal tropical dry forest. Flora Morphol. Distrib. Funct. Ecol. Plants 286.
 https://doi.org/10.1016/j.flora.2021.151967
- Boonman, C.C.F., van Langevelde, F., Oliveras, I., Couédon, J., Luijken, N., Martini, D.,
 Veenendaal, E.M., 2020. On the importance of root traits in seedlings of tropical tree
 species. New Phytol. <u>https://doi.org/10.1111/nph.16370</u>
- Borghetti, F., de Andrade, L.A.Z., Schmidt, I.B., Barbosa, E.R.M., 2019. Seed germination and
 seedling recruitment of *Dimorphandra mollis* Benth. in a Neotropical savanna subjected
 to prescribed fires. Folia Geobot. 54, 43–51. <u>https://doi.org/10.1007/s12224-019-09338-</u>
 <u>3</u>.
- Braz, V.S., Kanegae, M.F., Franco, A.C., 2000. Estabelecimento e desenvolvimento de *Dalbergia miscolobium* Benth. em duas fitofisionomias típicas dos cerrados do Brasil Central. Acta Bot. Bras. 14, 27–35. <u>https://doi.org/10.1590/S0102-33062000000100004</u>.
- Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Franco, A.C., Zhang, Y., Hao, G.-Y.,
 2008. Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal
 changes in water availability and evaporative demand. Brazilian J. Plant Physiol. 20, 233–
 245. <u>https://doi.org/10.1590/S1677-04202008000300007</u>
- Buzatti, R.S.O., Pfeilsticker, T.R., Muniz, A.C., Ellis, V.A., de Souza, R.P., Lemos-Filho, J.P.,
 Lovato, M.B., 2019. Disentangling the environmental factors that shape genetic and
 phenotypic leaf trait variation in the tree *Qualea grandiflora* across the Brazilian savanna.
 Front. Plant Sci. 10, 1580. <u>https://doi.org/10.3389/fpls.2019.01580</u>.
- 791 Capuzzo, J.P., Rossatto, D.R., Franco, A.C., 2012. Differences in morphological and physiological leaf characteristics between Tabebuia aurea and T. impetiginosa is related 792 793 their typical habitats of occurrence. Acta Bot. Bras. 26, to 519-526. 794 https://doi.org/10.1590/S0102-33062012000300002.
- Cardoso, M.R.D., Marcuzzo, F.F.N., Barros, J.R., 2014. Climatic classification of Köppen Geiger for the state of Goiás and the Federal District. Acta Geogr. 8, 40–55.
- Coelho, A.J.P., Magnago, L.F.S., Matos, F.A.R., Mota, N.M., Diniz, É.S., Meira-Neto, J.A.A.,
 2020. Effects of anthropogenic disturbances on biodiversity and biomass stock of cerrado,
 the Brazilian savanna. Biodivers. Conserv. 29, 3151–3168.
 <u>https://doi.org/10.1007/s10531-020-02013-6</u>.
- da Ponte, G., Huth, F., Wagner, S., 2020. Ensuring future regeneration success of *Qualea* grandiflora mart. (Vochysiaceae) in neotropical savanna (cerrado) biomes by reviewing

- the available information and identifying research gaps. iForest. 13, 154–164.
 <u>https://doi.org/10.3832/ifor2684-013</u>.
- Da Silva, E.C., Prado, T.B., De Alcântara, R.N., Da Silva Junior, C.D., Nogueira, L.C., 2016.
 Different levels of water deficit induce changes in growth pattern but not in chlorophyll
 fluorescence and water relations of *Hancornia speciosa* Gomes seedlings. Sci. Plena. 12,
 1–13. http://dx.doi.org/10.14808/sci.plena.2016.021001.
- da Silva, F.A.M., Assad, E.D., Evangelista, B.A., 2008. Caracterização climática do bioma
 Cerrado, in: Sano, S.M., Almeida, S.P. de, Ribeiro, J.F. (Eds.), Cerrado: Ecologia e Flora.
 Brasília, DF, pp. 69–87.
 http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/570911
- de Mattos, E.A., Lobo, P.C., Joly, C.A., 2002. Overnight rainfall inducing rapid changes in
 photosynthetic behaviour in a cerrado woody species during a dry spell amidst the rainy
 season. Aust. J. Bot. 50, 241. <u>https://doi.org/10.1071/BT01023</u>
- 816 Eiten, G., 1972. The cerrado vegetation of Brazil. Bot. Rev. 38, 201–341.
 817 <u>https://doi.org/10.1007/BF02859158</u>.
- Escobar, D.F.E., Silveira, F.A.O., Morellato, L.P.C., 2018. Timing of seed dispersal and seed
 dormancy in Brazilian savanna: Two solutions to face seasonality. Ann. Bot. 121, 1197–
 1209. https://doi.org/10.1093/aob/mcy006.
- Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., Fang, J., 2017. Drought effect on plant biomass
 allocation: A meta-analysis. Ecol. Evol. 7, 11002–11010.
 <u>https://doi.org/10.1002/ece3.3630</u>
- Fagundes, M.V., Souza, A.F., Oliveira, R.S., Ganade, G., 2022. Functional traits above and
 below ground allow species with distinct ecological strategies to coexist in the largest
 seasonally dry tropical forest in the Americas. Front. For. Glob. Chang. 5.
 https://doi.org/10.3389/ffgc.2022.93009
- Felippe, G.M., Dale, J.E., 1990. The effects of phosphate supply on growth of plants from the
 Brasilian Cerrado: experiments with seedlings of the annual weed, *Bidens gardneri* Baker
 (Compositeae) and the tree, *Qualea grandiflora* (Mart.) (Vochysiaceae). Oecologia 82,
 81–86. <u>https://doi.org/10.1007/bf00318536</u>
- Fife, D., 2019. Flexplot: Graphically based data analysis. Psychol. Methods.
 https://psycnet.apa.org/doi/10.1037/met0000424.
- Fontana A, Campos DVB de (2017) Carbono orgânico. In: Teixeira PC, Donagemma GK,
 Fontana A., Teixeira WG (eds) Manual de métodos de análise de solo. Brasília, DF.
 Embrapa pp. 360-367.
- Franco, A.C., 2002. Ecophysiology of woody plants. In: Oliveira, P.S., Marquis, R.J. (Eds.),
 The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, pp. 178–
 Columbia University Press, New York, Chichester (West Sussex).
- Franco, A.C., Bustamante, M., Caldas, L.S., Goldstein, G., Meinzer, F.C., Kozovits, A.R.,
 Rundel, P., Coradin, V.T.R., 2005. Leaf functional traits of Neotropical savanna trees in
 relation to seasonal water deficit. Trees 19, 326–335. <u>https://doi.org/10.1007/s00468-</u>
 004-0394-z.
- Françoso, R.D., Dexter, K.G., Machado, R.B., Pennington, R.T., Pinto, J.R.R., Brandão, R.A.,
 Ratter, J.A., 2020. Delimiting floristic biogeographic districts in the cerrado and assessing

- 846
 their conservation status.
 Biodivers.
 Conserv.
 29,
 1477–1500.

 847
 https://doi.org/10.1007/s10531-019-01819-3.
- García-Núñez, C., Pirela, M., Fariñas, M., Azócar, A., 2019. Seasonal patterns of gas exchange
 and water relations in juveniles of two Neotropical savanna tree species differing in leaf
 phenology. Acta Oecol. 95, 57–67. https://doi.org/10.1016/j.actao.2019.01.005.
- Gibert, A., Gray, E.F., Westoby, M., Wright, I.J., Falster, D.S., 2016. On the link between
 functional traits and growth rate: meta-analysis shows effects change with plant size, as
 predicted. J. Ecol. 104, 1488–1503. <u>https://doi.org/10.1111/1365-2745.12594</u>
- Gignoux, J., Lahoreau, G., Julliard, R., Barot, S., 2009. Establishment and early persistence of
 tree seedlings in an annually burned savanna. J. Ecol. 97, 484–495.
 <u>https://doi.org/10.1111/j.1365-2745.2009.01493.x</u>.
- Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A., 2008.
 Water economy of Neotropical savanna trees: Six paradigms revisited. Tree Physiol. 28, 395–404. <u>https://doi.org/10.1093/treephys/28.3.395</u>.
- Grime, J.P., Pierce, S., 2012. The Evolutionary Strategies that Shape Ecosystems, The Evolutionary Strategies that Shape Ecosystems. <u>https://doi.org/10.1002/9781118223246</u>
- Higgins, S.I., Bond, W.J., Trollope, W.S.W., 2000. Fire, resprouting and vulnerability: A recipe
 for grass-tree coexistence in savanna. J. Ecol. 88, 213–229.
 https://doi.org/10.1046/j.1365-2745.2000.00435.x.
- Hoffmann, W.A., 1996. The effects of fire and cover on seedling establishment in a Neotropical
 savanna. J. Ecol. 84, 383–393. <u>https://doi.org/10.2307/2261200</u>.
- Hoffmann, W.A., Orthen, B., Franco, A.C., 2004. Constraints to seedling success of savanna
 and forest trees across the savanna-forest boundary. Oecologia 140, 252–260.
 <u>https://doi.org/10.1007/s00442-004-1595-2</u>
- [Dataset] INMET (Instituto Nacional de Meteorologia do Brasil)–, 2017. Historical Anual Data.
 https://portal.inmet.gov.br/dadoshistoricos. (Accessed 9.16.17).
- 872 Kanegae, M.F., Braz, V.D.S., Franco, A.C., 2000. Efeitos da seca sazonal e disponibilidade de luz na sobrevivência e crescimento de Bowdichia virgilioides em duas fitofisionomias 873 874 dos cerrados do Brasil Central. Rev. bras Bot. 23. 459-468. típicas https://doi.org/10.1590/S0100-84042000000400012. 875
- Kaspar, T.C., Bland, W.L., 1992. Soil temperature and root growth. Soil Sci. 154, 290–299.
- Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat.
 Assoc. 47, 583–621. <u>https://doi.org/10.1080/01621459.1952.10483441</u>.
- Leite, M.B., Xavier, R.O., Oliveira, P.T.S., Silva, F.K.G., Silva Matos, D.M., 2018.
 Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant
 Soil. https://doi.org/10.1007/s11104-018-3599-4
- Magalhães, A.JdS., Alves, J.M.B., Silva, E.Md, Nunes, F.T., Barbosa, A.C.B., Santos, A.C.Sd,
 Sombra, S.S., 2019. Veranicos no brasil: Observações e Modelagens (CMIP5). Rev. Bras.
 meteorol. 34, 597–626. <u>https://doi.org/10.1590/0102-7786344072</u>.
- Matos, F.S., Freitas, I.A.S., Santos, L.V.B.D., Venâncio, D.G., Silveira, P.Sd, 2018. Initial
 growth of *Dipteryx alata* plants under water deficit. Rev. Árvore. 42, 1–8.
 <u>https://doi.org/10.1590/1806-90882018000100003</u>.

- McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J.,
 Sperry, J., West, A., Williams, D.G., Yepez, E. a., 2008. Mechanisms of plant survival
 and mortality during drought: why do some plants survive while others succumb to
 drought? New Phytol. 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
- Melich A (1953) Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Testing
 Division. Raleigh, North Carolina USA: NC State University.
- Moreira, A.G., Klink, C.A., 2000. Biomass allocation and growth of tree seedlings from two
 contrasting Brazilian savannas. Ecotropicos 13, 43–51.
- Morgan, C.J., 2017. Use of proper statistical techniques for research studies with small samples.
 Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L873–L877.
 https://doi.org/10.1152/ajplung.00238.2017.
- Mundim, F.M., Pringle, E.G., 2018. Whole-plant metabolic allocation under water stress. Front.
 Plant Sci. 9, 1–12. <u>https://doi.org/10.3389/fpls.2018.00852</u>
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000.
 Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
 https://doi.org/10.1038/35002501.
- Norden, N., Chave, J., Belbenoit, P., Caubère, A., Châtelet, P., Forget, P.M., Riéra, B., Viers,
 J., Thébaud, C., 2009. Interspecific variation in seedling responses to seed limitation and
 habitat conditions for 14 Neotropical woody species. J. Ecol. 97, 186–197.
 https://doi.org/10.1111/j.1365-2745.2008.01444.x.
- Oliveira, A.K.M., de Gualtieri, S.C.Jd, Bocchese, R.A., 2011. Gas exchange of potted *Tabebuia aurea* plants under hydric stress. Acta sci. Agron. 33, 641–647.
 <u>https://doi.org/10.4025/actasciagron.v33i4.11254</u>.
- Oliveira, R.S., Bezerra, L., Davidson, E.A., Pinto, F., Klink, C.A., Nepstad, D.C., Moreira, A.,
 2005. Deep root function in soil water dynamics in cerrado savannas of central Brazil.
 Funct. Ecology 19, 574–581. https://doi.org/10.1111/j.1365-2435.2005.01003.x.
- Olivoto, T., 2019. Metan: Multi Environment Trials Analysis. R Package Version 1.1. 0.
- Onwuka, B., 2018. Effects of soil temperature on some soil properties and plant growth. APAR
 Sci. 8, 34–37.
- Ooi, M.K.J., Auld, T.D., Denham, A.J., 2009. Climate change and bet-hedging: Interactions
 between increased soil temperatures and seed bank persistence. Glob. Change Biol. 15,
 2375–2386. https://doi.org/10.1111/j.1365-2486.2009.01887.x.
- Osone, Y., Ishida, A., Tateno, M., 2008. Correlation between relative growth rate and specific
 leaf area requires associations of specific leaf area with nitrogen absorption rate of roots.
 New Phytol. 179, 417–427. <u>https://doi.org/10.1111/j.1469-8137.2008.02476.x</u>
- Padilla, F.M., Miranda, J.D.D., Pugnaire, F.I., 2007. Early root growth plasticity in seedlings
 of three Mediterranean woody species. Plant Soil 296, 103–113.
 https://doi.org/10.1007/s11104-007-9294-5
- Padilla, F.M., Pugnaire, F.I., 2007. Rooting depth and soil moisture control Mediterranean
 woody seedling survival during drought. Funct. Ecol. 21, 489–495.
 <u>https://doi.org/10.1111/j.1365-2435.2007.01267.x</u>
- Pellizzaro, K.F., Cordeiro, A.O.O., Alves, M., Motta, C.P., Rezende, G.M., Silva, R.R.P.,
 Ribeiro, J.F., Sampaio, A.B., Vieira, D.L.M., Schmidt, I.B., 2017. 'Cerrado' restoration

- by direct seeding: Field establishment and initial growth of 75 trees, shrubs and grass
 species. Rev. Bras. Bot. 40, 681–693. <u>https://doi.org/10.1007/s40415-017-0371-6</u>.
- Pereira Júnior, A.C., Oliveira, S.L.J., Pereira, J.M.C., Turkman, M.A.A., 2014. Modelling fire
 frequency in a cerrado savanna protected area. PLOS ONE. 9, e102380.
 <u>https://doi.org/10.1371/journal.pone.0102380</u>.
- Pohlert, T., 2016. Calculate Pairwise Multiple Comparisons of Mean Rank Sums, version
 4.1. Package of R.
- Poorter, H., Garnier, E., 2007. Ecological significance of inherent variation in relative growth
 rate and its components. In: Pugnaire, F.I., Valladares, F. (Eds.), Functional Plant
 Ecology, pp. 67–100. CRC Press, Boca Raton, Florida.
- Quesada, C.A., Hodnett, M.G., Breyer, L.M., Santos, A.J.B., Andrade, S., Miranda, H.S.,
 Miranda, A.C., Lloyd, J., 2008. Seasonal variations in soil water in two woodland
 savannas of central Brazil with different fire histories. Tree Physiol. 28, 405–415.
 <u>https://doi.org/10.1093/treephys/28.3.405</u>
- Ratter, J.A., Bridgewater, S., Ribeiro, J.F., 2003. Analysis of the floristic composition of the Brazilian cerrado vegetation III: Comparison of the woody vegetation of 376 areas.
 Edinb. J. Bot. 60, 57–109. https://doi.org/10.1017/S0960428603000064.
- Ribeiro, J.F., Walter, B.M.T., 2008. As principais fitofisionomias do bioma cerrado. In: Sano,
 S.M., Almeida, S.P. (Eds.), Cerrado: Ecologia e flora, pp. 152–212. Empresa Brasileira
 de Pesquisa Agropecuária EMBRAPA, Planaltina.
- 951 RStudio Team, 2020. RStudio: Integrated Development for R. RStudio, 2020.
- Saboya, P., Borghetti, F., 2012. Germination, initial growth, and biomass allocation in three
 native cerrado species. Braz. J. Bot. 35, 129–135. <u>https://doi.org/10.1590/S1806-</u>
 954 <u>99592012000200002</u>.
- Sano, E.E., Rodrigues, A.A., Martins, E.S., Bettiol, G.M., Bustamante, M.M.C., Bezerra, A.S.,
 Couto, A.F., Vasconcelos, V., Schüler, J., Bolfe, E.L., 2019. Cerrado ecoregions: A
 spatial framework to assess and prioritize Brazilian savanna environmental diversity for
 conservation. J. Environ. Manage. 232, 818–828.
 https://doi.org/10.1016/j.jenvman.2018.11.108.
- Santos, B.R.V. dos, Benedito, C.P., Torres, S.B., Leal, C.C.P., Alves, T.R.C., 2019.
 Physiological maturity of Tabebuia aurea (Silva Manso) Benth. & amp; Hook. f. ex S.
 Moore seeds. J. Seed Sci. 41, 498–505. https://doi.org/10.1590/2317-1545v42n4222528
- Sinclair AG (1973) An 'AutoAnalyzer' method for determination of extractable sulphate in
 soil. New Zealand Journal of Agricultural Research 16: 287-292
 https://doi.org/10.1080/00288233.1973.10421147
- Shipley, B., 2002. Trade-offs between net assimilation rate and specific leaf area in determining
 relative growth rate: Relationship with daily irradiance. Funct. Ecol. 16, 682–689.
 <u>https://doi.org/10.1046/j.1365-2435.2002.00672.x</u>
- 969 Teixeira PC, Campos DVB de, Bianchi SR, Pérez DV, Saldanha MFC 692 (2017) Cátions
 970 trocáveis. In: Teixeira PC, Donagemma GK, Fontana A, TeixeiraWG (eds). Manual de
 971 métodos de análise de solo. 3rd Edição.. Brasília, DF. Embrapa.pp. 209-232.

- Tomlinson, K.W., Poorter, L., Bongers, F., Borghetti, F., Jacobs, L., Van Langevelde, F., 2014.
 Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Ann. Bot. 114, 315–324. https://doi.org/10.1093/aob/mcu107.
- Tomlinson, K.W., Sterck, F.J., Bongers, F., da Silva, D.A., Barbosa, E.R.M., Ward, D., Bakker,
 F.T., van Kaauwen, M., Prins, H.H.T., de Bie, S., van Langevelde, F., 2012. Biomass
 partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100,
 1113–1121. <u>https://doi.org/10.1111/j.1365-2745.2012.01975.x.</u>
- Werneck, F.P., Nogueira, C., Colli, G.R., Sites, J.W., Costa, G.C., 2012. Climatic stability in
 the Brazilian cerrado: Implications for biogeographical connections of South American
 savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39,
 1695–1706. <u>https://doi.org/10.1111/j.1365-2699.2012.02715.x</u>.
- Westerband, A.C., Kagawa-Viviani, A.K., Bogner, K.K., Beilman, D.W., Knight, T.M., Barton,
 K.E., 2019. Seedling drought tolerance and functional traits vary in response to the timing
 of water availability in a keystone Hawaiian tree species. Plant Ecol. 220, 321–344.
 https://doi.org/10.1007/s11258-019-00917-0.
- Wright, I.J., Cooke, J., Cernusak, L.A., Hutley, L.B., Scalon, M.C., Tozer, W.C., Lehmann,
 C.E.R., 2019. Stem diameter growth rates in a fire-prone savanna correlate with
 photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral
 Ecol. 44, 339–350. <u>https://doi.org/10.1111/aec.12678</u>
- 291 Zhou, Y., Wigley, B.J., Case, M.F., Coetsee, C., Staver, A.C., 2020. Rooting depth as a key
 202 woody functional trait in savannas. New Phytol. 227, 1350–1361.
 203 https://doi.org/10.1111/nph.16613

997 Fig. 1.1 Root dry mass (RM), shoot dry mass (SM), root: shoot ratio (R:S), and specific taproot length (STRL) of 998 Qualea grandiflora (red) and Tabebuia aurea (blue) seedlings exposed to different irrigation treatments (dry 999 spells): daily irrigation, irrigation every 8 d, irrigation every 15 d. Seedlings (60-d old) grown under daily irrigation 1000 in red latosol and sand (3:1) were subjected to irrigation treatments for 130 d in tubes (100 cm high and 10 cm 1001 diameter) filled with the same substrate in a phytotron chamber under 13 h photoperiod, alternating temperatures 1002 of 38/28 °C (12 h/12 h), relative humidity of 70%, and photosynthetic photon flux density of 700 µmol m⁻² s⁻¹. 1003 Different letters indicate significant differences among treatments based on Tukey or Nemenyi tests (Tables S3 1004 and S4). The bars indicate the interquartile range, and the horizontally connected central points indicate the 1005 medians. Eight Q. grandiflora and 10 T. aurea seedlings were used for each treatment. The experiment was 1006 conducted between July and October 2018 at the University of Brasília Thermobiology Laboratory, Brasília, 1007 Brazil.

1010 Fig. 1.2. Leaf mass fraction (LMF), relative growth rate (RGR), specific leaf area (SLA), and net assimilation rate
1011 (NAR) of *Qualea grandiflora* (red) and *Tabebuia aurea* (blue) seedling exposed to different irrigation schedules
1012 (dry spell treatments): daily irrigation, irrigation every 8 d, irrigation every 15 d. For experimental details refer to
1013 Fig. 1. Different letters indicate significant differences based on Tukey or Nemenyi tests (Tables S3 and S4). The
1014 bars indicate the interquartile range, and the horizontally connected central points indicate the medians. Eight *Q*.
1015 grandiflora and 10 *T. aurea* seedling were used for each treatment.

1017 4.8. SUPPLEMENTARY MATERIALS

1018

1019 Early development of two savanna tree species under simulated dry spells

- 1020 Chaib, A. M., Gomes, A. S., Borghetti, F.
- 1021 Correspondence: <u>dal.chaib@gmail.com</u>
- 1022

Parameters	Unities	Unchanged soil	Soil with sand
Macro nutrients			
pH in water -		5.1	5.1
pH in CaCl2 -		4.3	4.4
М.О.	dag/Kg	4.0	3.5
C Org	%	2.3	2.0
Р	mg/dm³	< 0.3	0.7
Κ	mg/dm³	32.8	47.,5
S	mg/dm³	5.3	7.4
Ca		0.4	0.7
Mg	cmol c/dm ³	0.2	0.3
Al	cmol c/dm ³	0.5	0.3
$H \!+\! Al$	cmol c/dm ³	5.6	5.9
CTC	cmol c/dm ³	6.3	7.0
V	%	11	16
М	%	42	21
Ca/Mg -		2.0	2.3
Ca/K -		4.8	5.8
Mg/K -		2.4	2.5
K	%	1	2
Ca	%	6	10
Mg	%	3	4
Na	%	0	0
H + Al	%	90	84
В	mg/dm³	0.2	0.1
Zn	mg/dm³	0.3	0.5
Fe	mg/dm³	118.8	164.9
Mn	mg/dm³	2.5	10.6
Си	mg/dm³	0.5	0.3
Silt	%	28.2	18.5
Clay	%	68.0	52.0
Sand	%	3.8	29.5
Classification -		Heavy clay	Clay
Type of soil ¹ -		Type 3	Type 3

Table S1.1. Chemical and physical characteristics of experimental soils (Dystrophic Red Latosol) with and without the addition of washed medium sand in the proportion 3: 1 (soil: sand) 1024

1025 Note: tThe experiment was preformed between July and October 2018 in a phytotron-type growth chamber in the 1026 Laboratório de Termobiologia of the University of Brasília, Brazil. The soil was collected at Fazenda Água Limpa (15° 1027 95' S, 47° 92' W;, 1.200 m asl.H), from 30-cm soil depth. The pH in water (1:2.5 soil/water) was checked with a pH 1028 meter, and the organic matter was determined with colorimetric techniques using potassium dichromate, and C Org was 1029 expressed in percentage of Carbon g per sample g (Fontana and Campos, 2017). Cation exchange capacity - CEC 1030 (cmolc/dm³) was calculated by S+H+Al (H+Al extracted by 198 calcium acetate, 0.5 mol/L at pH 7.0). Base saturation 1031 (V) and Al saturation (m) are expressed in percentage of CEC. Nutrient analysis followed Mehlich (1953) with 1032 modifications; The element P was estimated by molybdate - ascorbic acid reaction followed by spectrometry (Teixeira 1033 et al., 2017); The elements K, Ca, Mg, Zn, Fe, Mn, Na and Cu were estimated by a modified Mehlich methodology 1034 followed by atomic spectrometry (Teixeira et al., 2017). K, Ca, Mg, Na and H+Al are presented as change complex 1035 saturation percentage. Total Sulphur (S) measurements followed the mono-calcium-phosphate methodology (Sinclair, 1036 1973), and Boron (B) was extracted using hot water. Soil texture was determined by dispersion of fine air-dried soil with 1037 NaOH, high rotation agitation, sedimentation, and determination of clay by densimetry in the supernatant, coarse sand 1038 and fine sand separated by sieving and silt calculated by difference (dos Santos et al., 2018). All analyses were conducted 1039 by Campo Análises Ltda (Paracatu-MG, Brazil).

Table S1.2. Irrigation frequency and volume applied to *Qualea grandiflora* and *Tabebuia aurea* seedlings during the experimental period (July and October 2018).

WI	Irrigation frequency	Total number of irrigations	Each irrigation volume (ml)	Each irrigation time	Total volume in 130 days (ml)
1	Daily	130	58	2′20′′	7.540
8	At each 8 days	16	471	18′40′′	7.540
15	At each 15 days	8	942	351	7.540

Note: the experiments were performed in a phytotron-type growth chamber in the Thermobiology Laboratory of the University of Brasília, Brazil.

Table S1.3. *P*-values of the effects of the treatments and interactions between the treatments on the growth and biomass parameters based on Kruskal-Wallis (KW) and Nemenyi-Test (NM) of *Qualea grandiflora* and *Tabebuia aurea* seedlings.

_

	Test		TM	RM	SM	RMF	SMF	R:S	RGR	Lnum	Н	RL	RER	STRL	SLA
ıdiflora	KW		0.999	0.810	0.954	0.193	0.193	0.193	0.999	0.151	0.735	0.379	0.379	0.974	0.861
Q. grav	NM		-	-	-	-	-	-	-	-	-	-	-	-	-
	KW		0.021*	0.007**	0.689	0.036*	0.036*	0.036*	0.021*	0.110	0.252	0.100	0.100	0.010*	0.712
-	NM	1x8	0.466	0.230	-	0.248	0.248	0.248	0.466	-	-	-	-	0.371	-
wrea	NM	1x15	0.016*	0.005**	-	0.028*	0.028*	0.028*	0.016*	-	-	-	-	0.007**	-
Τ. ί	NM	8x15	0.252	0.296	-	0.604	0.604	0.604	0.252	-	-	-	-	0.218	-

NO50the treatments include daily irrigation × irrigation at every 8 d (1×8); daily irrigation × irrigation every 15 d (1×15); irrigation every 8 d × integration every 15 d (8×15). The parameters compared were (Table S3): total dry biomass (TM), root dry mass (RM), shoot dry mass (SM), root biomass fraction (SMF), biomass partition (R:S ratio), number of leaves (Lnum), seedling height (H), taproot length (**k05.3**; pecific taproot length (STRL), relative growth rate (RGR), root elongation rate (RER), and specific leaf area (SLA). The experiment was plot54 ned between July and October 2018 in a phytotron-type growth chamber at the Thermobiology Laboratory of the University of Brasília, **Ho356**, Brazil. Statistical significance was set at: * p < 0.05, ** p < 0.01, *** p < 0.001.

1057 Table S1.4. The growth and biomass parameters of *Qualea grandiflora* and *Tabebuia aurea* seedlings

before (60-d-old, initial measurements) and after (190-d-old, final measurements) different irrigationtreatments.

		Initial measurements (Days after germination)		Final measurements (Watering interval)	
		60	1 day	8 days	15 days
	TM (g)	0.38 ± 0.021	5.365 ± 0.924	5.747 ± 1.006	5.587 ± 0.863
	RM (g)	0.11 ± 0.006	1.567 ± 0.289	1.968 ± 0.362	1.894 ± 0.416
Q	SM (g)	0.26 ± 0.018	3.797 ± 0.641	3.778 ± 0.638	3.693 ± 0.618
u a	RMF (g. g ⁻¹)	0.3 ± 0.015	0.288 ± 0.011	0.336 ± 0.014	0.362 ± 0.050
l l	SMF (g. g ⁻¹)	0.7 ± 0.015	0.711 ± 0.011	0.663 ± 0.022	0.637 ± 0.050
e :	R:S (g. g ⁻¹)	0.43 ± 0.031	0.408 ± 0.022	0.509 ± 0.024	0.651 ± 0.160
g .	Lnum	5.1 ± 0.324	20.50 ± 1.679	20.428 ± 1.469	16.714 ± 1.537
r	H (cm)	6.09 ± 0.401	27.087 ± 2.286	27.8 ± 1.970	23.6 ± 2.215
n n	RL (cm)	20.62 ± 0.723	106.775 ± 2.833	115.671 ± 4.427	114.987 ± 4.648
d	RER (cm.d ⁻¹)	0.34 ± 0.012	0.661 ± 0.022	0.730 ± 0.034	0.725 ± 0.035
ı f	STRL (cm.g ⁻¹)	198.84 ± 15.772	97.401 ± 28.968	74.034 ± 13.387	70.314 ± 8.069
l	RGR (g.g ⁻¹ .d ⁻¹)	-	0.012 ± 0.001	0.013 ± 0.001	0.012 ± 0.001
o r	SLA ($cm^2.g^{-1}$)	137.66 ± 5.243	112.448 ± 10.938	111.343 ± 12.165	99.975 ± 5.393
a	LMF (g. g ⁻¹)	-	0.529 ± 0.032	0.599 ± 0.145	0.467 ± 0.081
	NAR (g.cm ⁻² .d ⁻¹)	-	0.0002 ± 0.0005	0.0007 ± 0.0004	0.0003 ± 0.0001
	LM (g)	-	2.874 ± 0.599	2.621 ± 0.604	2.885 ± 0.597
	TM (g)	1.52 ± 0.126	$19.224^a\pm2.718$	$14.770^{ab} \pm 2.012$	$10.796^{\rm b} \pm 1.183$
	RM (g)	0.97 ± 0.103	$13.893^a\pm2.096$	$8.891^{ab}\pm1.181$	$5.996^b\pm0.835$
T	SM (g)	0.54 ± 0.036	5.331 ± 0.910	5.485 ± 0.913	4.799 ± 4.387
a. h	RMF (g. g ⁻¹)	0.63 ± 0.025	$0.726^{\mathrm{a}}\pm0.024$	$0.625^{ab}\pm0.026$	$0.543^b\pm0.032$
e i	SMF (g. g ⁻¹)	0.37 ± 0.025	$0.273^b\pm0.024$	$0.374^{ab}\pm0.026$	$0.456^{\;a} \pm 0.032$
b	R:S (g. g ⁻¹)	1.82 ± 0.189	$2.961^{\mathrm{a}}\pm0.394$	$1.804^{ab}\pm0.204$	$1.342^b\pm0.205$
i i	Lnum	5.8 ± 0.359	10.40 ± 0.858	10.40 ± 0.866	8.60 ± 0.724
a a	H (cm)	2.35 ± 0.222	6.540 ± 0.768	6.714 ± 0.757	8.484 ± 0.985
u .	RL (cm)	9.46 ± 0.549	101.790 ± 1.572	101.940 ± 1.572	98.31 ± 0.689
r.	RER (cm.d ⁻¹)	0.16 ± 0.009	0.710 ± 0.012	0.707 ± 0.012	0.683 ± 0.005
a l	STRL (cm.g ⁻¹)	9.7 ± 0.928	$9.243^{b}\pm1.608$	$14.498^{ab} \pm 2.651$	$22.124^{a} \pm 5.811$
	RGR (g. g ⁻¹ .d ⁻¹)	-	$0.026^{a}\pm0.001$	$0.025^{ab}\pm0.001$	$0.023^b\pm0.001$
	SLA (cm ² .g ⁻¹)	145.45 ± 6.773	94.134 ± 4.052	94.713 ± 4.159	99.540 ± 10.993
	LMF (g. g ⁻¹)	-	0.206 ± 0.022	0.345 ± 0.027	0.417 ± 0.036
	NAR (g.cm ⁻² .d ⁻¹)	-	0.0016 ± 0.0002	0.0008 ± 0.00008	0.0006 ± 0.00008
	LM (g)	-	3.905 ± 0.575	5.079 ± 0.827	4.379 ± 0.584

1060Note: the seedlings (60 d after germination) were subjected to different irrigation treatments: daily irrigation, irrigation every 81061d, and irrigation every 15 d. The parameters measured include total dry mass (TM) root dry mass (RM), shoot dry mass (SM),1062root biomass fraction (RMF), shoot biomass fraction (SMF), biomass partition (R:S ratio), number of leaves (Lnum), seedling1063height (H), taproot length (RL), root elongation rate (RER), specific taproot length (STRL), relative growth rate (RGR), and1064specific leaf area (SLA). The means are presented as means \pm standard deviation (SD). The experiment was performed between1065July and October 2018 in a phytotron-type growth chamber in the Thermobiology Laboratory of the University of Brasília, Brazil.1066Different letters across rows indicate significant statistical differences at p < 0.05.

Table S1.5. Methodology and references used to calculate traits of the seedlings studied during the
 experiment of simulated dry spells performed in a phytotron-type growth chamber in the Laboratório

-	~	~	-
1	0	7	0

de Termobiologia of the University of Brasília, Brazil.

Trait	Unit	Formula	Reference
TM	G	Plant total dry mass	Pérez-Harguindeguy et al., 2013
RM	G	Taproot dry mass	Pérez-Harguindeguy et al., 2013
SM	G	All leaves and stem dry mass	Pérez-Harguindeguy et al., 2013
LM	G	All leaves dry mass	Pérez-Harguindeguy et al., 2013
RMF	g.g ⁻¹	RM/TM	Pérez-Harguindeguy et al., 2013
SMF	g.g ⁻¹	SM/TM	Pérez-Harguindeguy et al., 2013
LMF	g.g ⁻¹	LM/TM	Shipley, 2002
R:S	g.g ⁻¹	RM/SM	Pérez-Harguindeguy et al., 2013
RGR	g.g ⁻¹ .d ⁻¹	(lnTMf – <u>lnTMi</u>)/d	Tomlinson et al., 2012
RER	cm.d ⁻¹	$(RLf - \underline{RLi})/d$	Tomlinson et al., 2012
STRL	cm.g ⁻¹	RL/RM	Tomlinson et al., 2012
SLA	cm ² .g ⁻¹	$[(LA_1/LM_1) + (LA_2/LM_2) + (LA_3/LM_3)]/3$	Pérez-Harguindeguy et al., 2013
NAR	g. cm ⁻² .d ⁻¹	RGR/ (LMF * SLA)	Shipley, B., 2002 (adapted)

Note: the experiments were performed in a phytotron-type growth chamber in the Laboratório de Termobiologia of the
University of Brasília, Brazil. Traits calculated: total dry mass (TM), root dry mass (RM), shoot dry mass (SM), leaf dry
mass (LM), root biomass fraction (RMF), shoot biomass fraction (SMF), leaf biomass fraction (LMF), biomass partitioning
(R:S ratio), relative growth rate (RGR), root elongation rate (RER), specific taproot length (STRL) and specific leaf area
(SLA), and net assimilation rate (NAR).

1076

1079Figure S1.1. Pearson's correlation coefficients among the growth parameters of *Qualea grandiflora* (Table S3) subjected to1080different irrigation treatments (WI) (Table S2). The parameters include root dry mass (RM), shoot dry mass (SM), root1081biomass fraction (RMF), shoot biomass fraction (SMF), biomass partition (R:S), number of leaves (Lnum), seedling height1082(H), taproot length (RL), specific taproot length (STRL), relative growth rate (RGR), root elongation rate (RER), and specific1083leaf area (SLA). The experiment was performed between July and October 2018 in a phytotron growth chamber in the1084Thermobiology Laboratory of the University of Brasília Brazil. Statistical significance was set at: * p < 0.05, ** p < 0.01, ***1085p < 0.001.

1097Figure S1.2. Pearson's correlation coefficients among the growth parameters of *Tabebuia aurea* exposed to different irrigation1098treatments (WI) (Table S2). The parameters include root dry mass (RM), shoot dry mass (SM), root biomass fraction (RMF),1099shoot biomass fraction (SMF), biomass partition (R:S), number of leaves (Lnum), seedling height (H), taproot length (RL),1100specific taproot length (STRL), relative growth rate (RGR), root elongation rate (RER), and specific leaf area (SLA). The1101experiment was performed between July and October 2018 in a phytotron chamber in the Thermobiology Laboratory of the1102University of Brasília, Brazil. Statistical significance was set at * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure S1.3. Sample of each species at the end of the experiment of dry spells in the phytotron. The experiment was performed between July and October 2018 in a phytotron chamber in the Laboratório de Termobiologia of the University of Brasília, Brazil. A) Plant of *Tabebuia aurea* after receiving water every day during 130 d in the phytotron. B) Plant of *Qualea grandiflora* after receiving water every day during 130 d in the phytotron.

- ____

Figure S1.4. Figures presents a close view of the root storage organ of a sample of *Tabebuia aurea* after receiving the different dry spell treatment at the phytotron during 130 days: A) seedlings irrigated every day, B) seedlings irrigated each 8 days and C) seedlings irrigated each 15 days. The experiment was performed between July and October 2018 in a phytotron chamber in the Laboratório de Termobiologia of the University of Brasília, Brazil.

1122	5. CATTOLO II
1123	
1124	
1125	
1126	
1127	
1128	
1129	
1130	
1131	Efeito da elevação da temperatura e do
1132	CO ₂ atmosférico previstos para 2100 no
1133	desenvolvimento inicial de espécies
1134	arbóreas de savana
1135	
1136	

1137 **RESUMO**

1138 A savana brasileira (Cerrado) é considerada um hotspot de biodiversidade. No entanto, as áreas nativas 1139 do Cerrado têm sido ameacadas pelo desenvolvimento agrícola. Além disso, as mudancas climáticas 1140 podem aumentar a pressão de seleção de espécies e, juntos, ambos os processos podem levar a uma 1141 grave perda de biodiversidade e de serviços ambientais. Portanto, é importante entender como as 1142 espécies vão responder às mudanças climáticas. Nosso objetivo foi investigar como as plântulas de espécies arbóreas respondem a um cenário climático futuro simulado em câmaras de crescimento 1143 1144 (fitotrons). Selecionamos quatro espécies arbóreas amplamente distribuídas no Cerrado: Qualea 1145 grandiflora (Vochysiaceae), Hymenaea stignocarpa (Fabaceae), Tabebuia aurea (Bignoniaceae) e 1146 Kielmeyera coriacea (Clusiaceae). Dispusemos suas sementes para germinar em câmaras a 28°C e, a seguir, criamos as mudas em vasos preenchidos com Latossolo Vermelho e areia (proporção de 3x1) a 1147 28°C sob irrigação por 30 dias sob irrigação. Em seguida, transferimos as mudas para tubos plásticos de 1148 1149 1 m de altura e 0,1 m de diâmetro para os experimentos de crescimento. Após 30 dias, 30 indivíduos de cada espécie foram retirados para as medidas iniciais, e outros 30 indivíduos foram transferidos para 1150 cada fitotron, totalizando 90 plantas por espécie. Um dos fitotrons foi configurado com o cenário 1151 climático atual, com base nos dados climáticos dos últimos 50 anos do Cerrado, onde as temperaturas 1152 1153 máxima e mínima foi de 28 °C e 18 °C e a concentração de CO₂ ([CO₂]) foi de 420 ppm. O outro fitotron 1154 foi definido com a prospecção IPCC SSP 3-7,0 para a região do Cerrado para 2100 (base de dados: 1155 WorldClim), onde as temperaturas máximas e mínimas atingiram 2,5 °C acima do cenário climático 1156 atual, e [CO₂] foi de 860 ppm. A umidade foi de 85% para ambos os fitotrons. As plantas foram 1157 cultivadas por 120 dias, sendo irrigadas a cada dois dias com 120 ml de água corrente. Após esse período, procedeu-se à contagem de folhas dos indivíduos e, em seguida, todas as plantas foram desenraizadas e 1158 1159 levadas para secar a 70 °C. Após a secagem, a biomassa das plantas foi medida por partes: total, raiz, parte aérea e folhas. Observamos um aumento significativo de biomassa no cenário futuro para todas as 1160 espécies, provavelmente relacionado à fertilização com CO₂. No entanto, K. coriacea e H. stignocarpa 1161 1162 investiram na raiz e na parte aérea a mesma proporção de biomassa no cenário climático futuro e no 1163 cenário climático atual. O. grandiflora e T. aurea investiram mais de 2 vezes em biomassa aérea do que 1164 radicular das plantas quando estavam sob cenário climático futuro. O aumento da massa aérea para H. 1165 stignocarpa, O. grandiflora e T. aurea pode estar refletindo o número de folhas que foi maior nos 1166 indivíduos no cenário futuro em comparação aos incubados no cenário climático atual. Em conclusão, quando a água não é escassa na fase de recrutamento, há ganho de carbono em resposta ao cenário 1167 1168 climático futuro simulado, mas sua distribuição pode variar entre as espécies.

1169 ABSTRACT

Effect of predicted rise in temperature and atmospheric CO₂ by 2100 on early development of savanna tree species

1172 The Brazilian savanna (Cerrado) is considered a biodiversity hotspot. However, Cerrado's native areas 1173 have been threatened by agricultural development. In addition, climate change may increase species selection pressure and, together, both processes may lead to a serious loss of biodiversity and 1174 1175 environmental services. Therefore, it is important to understand how species are going to respond to 1176 climate change. We aimed to investigate how tree seedlings respond to a future climate scenario 1177 simulated in growth chambers (phytotrons). We selected four widely distributed tree species from the Cerrado savanna: Qualea grandiflora (Vochysiaceae), Hymenaea stignocarpa (Fabaceae), Tabebuia 1178 aurea (Bignoniaceae) and Kielmeyera coriacea (Clusiaceae). We disposed their seeds to germinate in 1179 chambers at 28°C, and then raised the seedlings in pots filled with Red Latosol and sand (proportion of 1180 3x1) under irrigation at 28 °C for 30 days. After that, we transferred the seedlings to plastic tubes of 1 1181 m high and of 0.1 m in diameter for the growth experiments. When the first pair of leaves appeared, 30 1182 individuals of each species were taken for initial measures, and other 33 individuals were transferred to 1183 each phytotron, summing up a total of 96 plants per species. One of the phytotrons was set with the 1184 current climate scenario, based on the last 50 years climate data from the Cerrado where max and min 1185 temperatures was 28 °C and 18 °C, and CO₂ concentration ([CO₂]) was 420 ppm. The other phytotron 1186 1187 was set with the IPCC SSP 3-7,0 prospection for the Cerrado region for 2100 (WorldClim), where max 1188 and min temperatures reached 2.5 °C higher than at current climate scenario, and [CO₂] was 860 ppm. 1189 Humidity was 85 % for both phytotrons. Plants were grown for 120 days, being irrigated every two days 1190 with 120 ml of tap water. After this period, we proceeded with leaf counting of the individuals and then 1191 all plants were uprooted and taken to dry at 70 °C. After drying, plants biomass was measured by parts: 1192 total, root, shoot, and leaves. We observed a significant increase of biomass in the future scenario for 1193 all species, probably related to CO₂ fertilization. However, K. coriacea was the only one that invested 1194 more carbon on roots than shoot, with 57 % more root biomass under future climate scenario. H. stignocarpa invested the same proportion on root and shoot under future climate scenario as under 1195 current climate scenario. O. grandiflora and T. aurea invested more than 2 times in shoot than root 1196 biomass of plants when they were under future climate scenario. The increase in shoot mass for H. 1197 stignocarpa, Q. grandiflora and T. aurea can be reflecting the leaf number that was bigger in individuals 1198 1199 under the future scenario in comparison to those incubated in current climate scenario. In conclusion, when water is not scarce at the recruitment stage, there is carbon gain in response to the simulated future 1200 1201 climate scenario, but its distribution can vary among species.

1202 5.1. INTRODUÇÃO

1203 As savanas representam aproximadamente um terço da vegetação terrestre, no entanto 1204 ainda falta muito conhecimento a respeito do funcionamento de seus mecanismos ecológicos e, consequentemente, falta informação que oriente sobre meios de conservação e restauração 1205 1206 ambiental (Buisson et al, 2021, 2022). O relatório divulgado pelo Painel Intergovernamental de Mudanças Climáticas (IPCC) em 2022 afirma que os hotspots mais ameaçados pelas mudanças 1207 1208 climáticas na América do Sul são as savanas (Pörtner et al., 2022). Entre essas, está a savana 1209 brasileira conhecida como "Cerrado", sendo a savana mais biodiversa do mundo, da qual apenas 20% do território permanece bem preservado (Strassburg et al., 2017). Tendo em vista a pressão 1210 1211 sofrida pelo Cerrado tanto pela perda de habitat (Diniz-filho et al, 2020), quanto pelas mudanças 1212 climáticas, estudos que tratem da capacidade de estabelecimento de indivíduos sob o cenário 1213 climático futuro previsto para essa região são de grande importância para a preservação da 1214 biodiversidade.

As mudanças climáticas aceleradas pela ação humana vêm ocorrendo em uma 1215 1216 velocidade que dificulta que ocorra adaptação das espécies, e diversas populações de determinadas espécies têm migrado para regiões onde o clima passou a ser favorável para seu 1217 1218 desenvolvimento (Mathys et al, 2018; Zu et al, 2021). Porém, uma série de fatores como 1219 topografia, competição, fertilidade sob condições climáticas futuras, alcance em distância e 1220 velocidade de dispersão e distúrbios como o fogo podem dificultar a migração, reduzindo a velocidade de expansão geográfica da espécie e impossibilitando que alcancem locais 1221 1222 apropriados para seu estabelecimento a tempo (Hampe, 2011; Liang et al, 2018; Beloiu et al, 2022; Boisvert- Marsh et al, 2022). 1223

Por sua vez, a velocidade em que as mudanças têm ocorrido faz com que o genótipo de
plântulas submetidas ao cenário climático futuro seja muito semelhante ao das plântulas

encontradas no cenário climático atual (Hoffmann & Sgró, 2011). A fase de crescimento inicial
é o estágio mais vulnerável na vida da planta, fazendo da capacidade de plântulas em suportar
as condições climáticas futuras um gargalo na sobrevivência do indivíduo e na manutenção da
espécie em uma determinada área (Leck et al, 2008). Assim, a permanência de espécies arbóreas
de savanas nesses ambientes irá depender, em grande parte, de sua plasticidade e capacidade de
aclimatação às novas condições ambientais (Larson et al, 2020; Lewandrowski et al., 2021;
Nicotra et al, 2010).

1233 Em savanas, a sobrevivência de plântulas de espécies arbóreas depende, entre outras 1234 coisas, do bom aproveitamento da janela de oportunidade representada pela estação chuvosa (Escobar et al, 2018). A elevação da temperatura projetada para 2100 pode reduzir essa janela 1235 de oportunidade ao acelerar a redução do potencial hídrico do solo após o início da estação seca 1236 1237 devido ao aumento do déficit de pressão de vapor de água (VPD) e consequente redução a umidade relativa do ar (Hofmann et al., 2021), o que pode prejudicar o estabelecimento de 1238 novos indivíduos. Além disso, temperaturas mais elevadas podem aumentar a demanda por 1239 1240 transpiração, exigindo maior alongamento radicular para permitir o alcance de frações do solo onde a água continua disponível por mais tempo após o fim das chuvas (Villalobos-Vega et al., 1241 1242 2014; Padilla and Pugnaire, 2007; Tomlinson et al., 2012; Boonman et al., 2020; Saboya & 1243 Borghetti, 2012). Por outro lado, as temperaturas mais elevadas esperadas para o cenário climático futuro podem favorecer o recrutamento de indivíduos ao aumentar a taxa de 1244 crescimento radicular (Stevens et al, 2014). 1245

Embora a elevação da temperatura possa levar à queda da eficiência fotossintética devido à menor afinidade da Rubisco com o dióxido de carbono e ao aumento da respiração mitocondrial (Lambers & Oliveira, 2019), projeta-se que a concentração de CO₂ atmosférico seja o dobro da observada atualmente em 2100 (Meinshausen et al., 2019), o que pode favorecer a assimilação de carbono e evitar o aumento da fotorrespiração (Dusenge et al., 2019). Estudos testando o efeito de concentrações elevadas de CO₂ no crescimento inicial de espécies arbóreas
de savanas mostram um maior ganho de biomassa nessas condições (Hoffmann, 2000; Kgope
et al., 2010; Buitenwerf et al, 2012), o que favorece o estabelecimento de novos indivíduos.

Devido ao efeito oposto que temperaturas elevadas e a alta concentração de CO₂ 1254 1255 atmosférico podem ocasionar na fisiologia das plantas, estudos que avaliem o efeito conjunto desses dois fatores são extremamente importantes. Apgaua e colaboradores (2019) observaram 1256 efeito sinérgico entre a [CO₂] e a temperatura elevados em plântulas de espécie de Eucalyptus 1257 nativa de savana em ambiente natural, que promoveu o aumento no crescimento e na aquisição 1258 1259 de biomassa quando a água não foi um fator limitante. Isso indica que a interação entre a 1260 temperatura e o CO₂ elevados pode favorecer o recrutamento de espécies arbóreas de savanas. No entanto, dependendo da capacidade de aclimatação foliar, a temperatura elevada pode 1261 reduzir a aquisição de carbono por plântulas expostas a altos níveis de CO₂ atmosférico, mesmo 1262 sem haver restrição hídrica (Murphy& Way, 2021). 1263

Espécies arbóreas de savana tendem a alocar uma maior fração de biomassa para a fração radicular (raízes e órgão de reserva abaixo do solo), o que confere a elas maior proteção no caso de ocorrência de fogo e maior resistência ao déficit hídrico do solo causado pela sazonalidade da precipitação (Bucci et al, 2008; Oliveira& Klink, 2005; Kanegae et al, 2000).

A facilidade de obtenção de CO₂ devido a sua maior disponibilidade no cenário futuro pode ocasionar menor investimento em área e biomassa foliar, permitindo que o carbono direcionado para a fração aérea seja utilizado no crescimento em altura (Qi et al, 2019), podendo favorecer a sobrevivência no caso de passagem de fogo (Rodriguez-Cubillo et al, 2021) ou o melhor desenvolvimento no caso de sombreamento pelo componente herbáceo (Gignoux et al, 2016).
1274 Além da maior aquisição de CO₂, o aumento da temperatura pode acelerar o 1275 metabolismo, aumentando a taxa de crescimento e o desenvolvimento das plântulas (Ncisana 1276 et al, 2022). Portanto espera-se que no cenário futuro as plântulas apresentem maior acúmulo 1277 de biomassa em comparação ao cenário atual e desenvolvimento de plântulas mais acelerado.

Para compreender como o cenário climático esperado para 2100 irá afetar o desenvolvimento inicial de espécies arbóreas de uma savana neotropical, simulamos os meses da estação chuvosa do cenário climático atual e do cenário futuro previsto para 2100 (Pörtner et al., 2022) em câmaras fitotrôn contendo plantas de 4 espécies amplamente distribuídas no Cerrado e comparamos os dados de biomassa e crescimento inicial obtidos nos dois cenários climáticos.

1284

1285

5.2.

MATERIAIS E MÉTODOS 5.2.1. ÁREA DE ESTUDO

O Cerrado, segundo maior bioma brasileiro, é considerado um hotspot de biodiversidade 1286 global (Myers et al., 2000), com alto grau de endemismo (Forzza et al, 2012), e está localizado 1287 1288 no centro do território brasileiro, conectando os outros biomas. As savanas são a vegetação dominante, cobrindo cerca de 70% da região (da Silva & Bates, 2002). A região é formada por 1289 platôs que variam entre 500 e 1.700 m de altitude (Ribeiro & Walter, 2008). O solo do Cerrado 1290 é predominantemente composto por Latossolo Vermelho, um solo profundo, altamente 1291 intemperizado, apresentando em geral baixa fertilidade e alta acidez e saturação de alumínio 1292 (Abreu et al, 2017). A precipitação anual média é de 2.300 mm. O Cerrado abriga a maior área 1293 1294 do Aquifero Guarani, além das principais nascentes das três maiores bacias hidrográficas do Brasil (Oliveira et al, 2017). 1295

1296As sementes de *Kielmeyera coriacea*, *Tabebuia aurea* e *Qualea grandiflora* foram1297coletadas de 10 indivíduos adultos, sadios, com distância de no mínimo 1km entre eles. Entre

agosto e novembro de 2019 no Parque Nacional de Brasília (15° 38' 28" S 48° 1' 15" O -1298 ICMBio) em cerrado sensu stricto, e levadas para armazenamento em sacos de papel em câmara 1299 fria (18°C) no Laboratório de Termobiologia (UnB, Brasília - Brasil). As sementes de 1300 1301 Hymenaea stigonocarpa foram gentilmente oferecidas pela Rede de Sementes do Cerrado, que nos cedeu quantidade suficiente de sementes saudáveis, coletadas em 2020 na região da 1302 1303 Chapada dos Veadeiros, no Estado de Goiás (14º 10' S 47º 30' O) em cerrado sensu stricto que também foram e levadas para armazenamento em sacos de papel em câmara fria (18°C) no 1304 1305 Laboratório de Termobiologia (UnB, Brasília – Brasil).

1306 A partir de 15 de setembro de 2020 lotes de 250 sementes de cada espécie foram 1307 colocados para germinar sobre papel filtro embebido com água destilada, em placas de Petri com 10 sementes, sendo ao todo 25 placas de Petri por espécie, em câmara a temperatura 1308 1309 constante de 28°C e fotoperíodo de 12h. Quando observada a curvatura da radícula emitida por cada semente, essa era transferida para saco plástico com 25cm de altura e 10cm de diâmetro, 1310 1311 uma semente germinante por saco, preenchido com solo nativo de área de cerrado sensu stricto 1312 (Latossolo vermelho distrófico), retirado da "Fazenda água Limpa" (UnB – Distrito Federal, Brasil) no ano de 2019, misturado com areia lavada na proporção de 3:1 (solo:areia). Para 1313 1314 produção das mudas, as plântulas permaneceram em área externa coberta do laboratório de 1315 Termobiologia (UnB, Brasília), com temperatura ambiente, entre 18°C e 35°C. Foi feita irrigação a cada dois dias, ou diária quando necessário, de modo que a água não fosse limitante 1316 para o desenvolvimento das plântulas. 1317

Após a emissão do primeiro par de folhas de cada espécie (cerca 20 dias para *Hymenaea* 1319 *stigonocarpa* e 30 dias para as demais espécies), as plantas foram agrupadas em três grupos 1320 buscando a melhor homogeneidade possível, levando em conta a altura, tamanho das folhas e 1321 diâmetro da base do caule. Para cada espécie, dois grupos foram compostos por 35 indivíduos 1322 (a serem levados às duas câmaras fitotrôn, ver seções 2.2.1 e 2.2.2), e o terceiro grupo composto por 30 indivíduos para medidas iniciais das mudas antes do início do experimento nos fitotrôns
(Apêndice II – Dados Iniciais). O uso de um número maior de indivíduos levados aos fototrôns
teve o objetivo de garantir um número mínimo de 30 indivíduos por espécie e por tratamento
para as análises estatísticas (seção 2.5). Todos os indivíduos usados nos experimentos nos
fitotrôns foram transferidos em um mesmo dia.

1328

5.2.2. CALIBRAGEM DOS FITOTRONS

Foram utilizadas duas câmaras climáticas *walk-in* (fitotrôns), modelo EL011, com dimensões internas (cm) de 227 (largura) x 216 (profundidade) x 246 (altura), produzidos e montados pela empresa Eletrolab. Para ambos os cenários climáticos (atual e futuro) foi feita uma média dos parâmetros climáticos (precipitação, temperatura e umidade relativa do ar) obtidos em estações meteorológicas (cenário atual) e projetados (cenário futuro) para os meses de dezembro a março para ambos os cenários (seções 1.2.1 e 1.2.2).

Os dados de precipitação diária e temperatura ao longo do dia dos últimos 60 anos (de 1335 1336 1960 a 2020), obtidos de estações meteorológicas distribuídas por todo o território do Cerrado, relativos aos meses de novembro a abril (INPE, 2020), foram utilizados para estabelecer o 1337 volume e frequência de irrigação e a umidade relativa do ar utilizados nos dois cenários, e a 1338 rampa de temperatura programada para o fitotron com o cenário atual. Também foi programada 1339 uma rampa de luminosidade ao longo do dia, sendo igual para os dois fitotrons, com fotoperíodo 1340 1341 de 13h de luminosidade, conforme a duração do dia durante o verão na maior parte da região do Cerrado. A irrigação foi realizada a cada dois dias, por método de gotejamento automatizado. 1342 Considerando que 1 mm de água precipitado corresponde a 1000 ml/m² de água e utilizando a 1343 1344 área superficial do tubo em que cada planta foi cultivada para calcular o volume de água a ser ofertado a cada indivíduo. 1345

A precipitação média obtida a partir desses dados foi de 230mm/mês. Esse valor foi utilizado para calcular a irrigação ofertada para cada muda conforme descrito anteriormente. A temperaturas máxima (diurna) e mínima (noturna) encontradas foram de 30°C e 20°C, respectivamente, e a umidade relativa do ar variou em média entre 65% e 80% (tabela S2.2). A concentração de CO₂ atmosférico no cenário atual foi de 420ppm (Magalhães et al., 2019), e a densidade de fluxo de fótons acima das plantas em um plano horizontal variou entre 210 μ mol/m²/s e 700 μ mol/m²/s (tabela S2.2).

Para definir os parâmetros do cenário futuro utilizamos o cenário SSP3-7.0 proposto pelo IPCC (2020). O cenário SSP3-7.0 utiliza modelos que consideram uma forte mudança de uso da terra e altas emissões de aerossóis, o que o levou a ser considerado um importante experimento no projeto CMIP6 (Neill et al., 2016). Apesar de não ser o cenário com a maior previsão de concentração de CO_2 em 2100, o cenário SSP3-7.0 pode ser o que deve trazer piores consequências econômicas e sociais para a região da América Latina, inclusive com os maiores índices de perda de produto interno bruto (PIB) (Chen et al., 2020).

Em estudos realizados com os modelos apresentados para o CMIP5, os modelos que apresentaram melhores resultados para os biomas brasileiros, inclusive o Cerrado, foram o MIROC5 e o HadGEM2-ES (Almagro et al., 2020). Em nosso trabalho utilizamos o modelo MIROC-ES2L (Hajima et al., 2020), que além de ser baseado no modelo MIROC5.2, traz um componente que considera a interação carbono-nitrogênio para contabilizar o controle de nutrientes do solo no crescimento de plantas e no sumidouro terrestre de carbono (Hajima et al., 2020).

Os dados de precipitação e temperatura máxima e mínima utilizados no cenário futuro
foram provenientes do modelo MIROC6-ES2L, pertencentes ao banco de dados da fase 6 do
Projeto de Intercomparação de Modelo Acoplado (CMIP6), com *downscale* calibrado segundo
o patamar climático WorldClim 2.1 e obtido na resolução 2,5 minutos (Fick et al, 2017). Foram

1371 considerados os dados das projeções para o período entre 2081 e 2100, obtidos na plataforma WorldClim (Worldclim, 2020) em formato geotiff. e posteriormente visualizados no programa 1372 Qgis (versão 3.14). Um shapefile do Cerrado (Assis et al, 2019), foi sobreposto ao mapa 1373 1374 contendo os dados climáticos de precipitação e temperatura máxima e mínima, dentro do qual foram distribuídos aleatoriamente 100 pontos afastados entre si (Figura S2.1). Foi feita uma 1375 1376 média com os valores atribuídos a cada ponto disposto no território do Cerrado, relativos aos meses entre dezembro e março, para cada variável climática. As médias de temperatura obtidas 1377 foram 2.5°C acima do encontrado para o cenário atual, assim estabelecidas a temperatura 1378 mínima 22.5°C e a máxima 32.5°C para o cenário futuro simulado em nosso experimento 1379 (tabela S2.2). 1380

A variação na precipitação da estação chuvosa como um todo encontrada na comparação 1381 1382 entre os dois cenários a serem simulados foi cerca de 7% menor no cenário futuro que no atual. Com base em resultados anteriores (Capítulo I desta tese), concluímos que essa variação seria 1383 muito pequena para uma aplicação experimental devido à capacidade de retenção de água do 1384 substrato utilizado além de ser semelhante ao erro experimental imposto pelo equipamento de 1385 irrigação. Portanto, para reduzir o número de variáveis experimentais decidimos aplicar a 1386 1387 mesma quantidade de água nos dois cenários simulados. Foi mantida uma irrigação de 120ml 1388 de água por plântula a cada dois dias para ambos os cenários.

A concentração de CO₂ atmosférico utilizado no cenário futuro foi de 862.8 ppm,
projetada para o ano de 2100 no Hemisfério Sul no cenário SSP 3-7.0, de acordo com o modelo
MIROC6-ES2L (Meinshausen et al., 2019).

1392

5.2.3. COLETA DE DADOS

Após 120 dias de crescimento nos cenários climáticos simulados, as plantas foram
removidas dos tubos para medidas de crescimento. As plantas foram cuidadosamente retiradas

dos tubos com auxílio de uma mangueira com água corrente para desprendimento da terra das
raízes, evitando perda de raízes laterais que pudesse interferir no valor de biomassa radicular
final.

Assim que toda a terra era removida, as plantas permaneceram com as raízes imersas 1398 em água até serem separadas em partes da seguinte maneira: raiz principal, raiz secundária, 1399 1400 caule, cotilédones – quando presentes – e folhas. As seguintes medidas foram tomadas: Altura das plantas (H), comprimento da raiz principal (RL), diâmetro da base (St_D), e número de 1401 folhas (Lnum) área foliar e massa seca correspondente de três folhas de cada indivíduo (quando 1402 1403 possível) para cálculos do SLA. Cada parte da plântula foi identificada quanto ao indivíduo, espécie e cenário a que foi submetida e colocadas para secar em estufa a 70°C para estimativa 1404 de massa seca. As seguintes medidas foram obtidas: biomassa total (TM), biomassa da raiz -1405 1406 raiz principal e secundárias - (RM), biomassa aérea (SM). Com estas medidas foi possível calcular a fração de biomassa radicular (RMF), a fração de biomassa aérea (SMF), a área 1407 1408 específica foliar (SLA), e a taxa de crescimento relativo baseado na biomassa (RGR), com base na variação da biomassa durante o período do experimento (conforme tabela S1.5 do capítulo I 1409 1410 desta tese).

1411

5.2.4. ANÁLISES ESTATÍSTICAS

Todas as análises foram realizadas no programa R na plataforma RStudio (RStudio
Team (2020), 2020). A análise exploratória dos dados, assim como os gráficos apresentados
nesse trabalho foram feitas com o pacote flexplot() (Fife, 2019) ou ggplot2 (Wickham, 2009).

A comparação entre os dois cenários foi feita em cada atributo medido para cada espécie
separadamente, utilizando-se modelos lineares generalizados com o pacote glm2 (Donoghoe,
2018), com o comando glm2() (α=0.05). As variáveis preditoras foram espécies (*Kielmeyera coriacea, Tabebuia aurea, Qualea grandiflora* e *Hymenaea stigonocarpa*) e cenário (atual e

futuro). As variáveis resposta foram altura, diâmetro basal, número de folhas comprimento da 1419 raiz principal, massa seca total, massa seca radicular, massa seca aérea, fração de biomassa 1420 1421 radicular, fração de biomassa aérea e taxa de crescimento relativo. Para determinar a família de 1422 distribuição para os dados analisados em cada modelo utilizamos os pacote fitdistplus (Delignette-muller et al., 2013), com o comando gofstat(), e os testes "adtest", "cvmtest" e 1423 1424 "kstest". As distribuições Gamma ou gaussiana foram as adequadas dos atributos medidos na análise de regressão para comparação entre os cenários. (Todas as análises podem ser 1425 1426 encontradas no Apêndice IV)

1427 5.3. RESULTADOS

1428Todas as espécies apresentaram aumento significativo (p < 0.05) de TM, SM e RGR no1429cenário futuro em comparação às plantas crescidas sob o cenário atual (Fig 1).

1430

Figura 5.3.1. Diagrama de Venn onde cada conjunto representa uma espécie, e os elementos contidos em cada conjunto são os parâmetros que apresentaram diferença significativa entre os cenários (p < 0.05). Sendo esses parâmetros: diâmetro da base do caule (ST_D), comprimento específico da raiz principal (STRL), comprimento da raiz principal (RL), taxa de crescimento relativo (RGR), massa seca total (TM), massa seca aérea (SM), altura (H), número de folhas (Lnum), área específica foliar (SLA), fração de biomassa radicular (RMF), fração de biomassa aérea (SMF) e massa seca radicular (RM).

A espécie que apresentou diferença significativa de maior número de parâmetros foi Q. 1438 grandiflora, tendo apresentado aumento nos valores observados no cenário futuro em 11 dos 1439 13 parâmetros. K. coriacea apresentou o menor número de parâmetros com diferença entre os 1440 1441 cenários, com alteração de 5 dos 13 parâmetros avaliados. Tanto H. stigonocarpa quanto T. 1442 aurea apresentaram diferença significativa entre os cenários em 8 dos 13 parâmetros (Fig 1). Q. grandiflora foi a espécie que obteve o maior ganho em H quando submetida ao 1443 1444 cenário futuro (t= - 8.621, p<0.001), apresentando um incremento de cerca de 55% (Fig 2), enquanto que T. aurea apresentou incremento em H de aproximadamente 35% (t= - 4.969, 1445 p<0.001) (Fig 3) e H. stigonocarpa de 30% (t= - 4.547, p<0.001) (Fig 4). Assim como H, o Ln 1446 1447 apenas não apresentou aumento significativo no cenário futuro para K. coriacea (Fig 5), enquanto que Q. grandiflora foi a espécie que apresentou a maior variação em Ln, com um aumento de cerca de 130% (t= - 5.514, p<0.001), para H. stigonocarpa esse aumento foi de 85% (t= -6.765, p<0.001) e para *T. aurea* de 65% (t= - 8.354, p<0.001).

1451	O St_D não foi um parâmetro muito influenciado pelo cenário futuro, tendo apresentado
1452	incremento significativo (t= - 3.864, p<0.001) apenas para Q. grandiflora (Fig 1 e 2).

				Qualea	grar	ndiflora				
	CENÁ	RIO ATU	AL	N.	- 20.0 _10.0	X	CE	NÁRIO	FUTUR	C
TRAIT	Média	DP			0.0 cm	- 3	_	TRAIT	Média	DP
ТМ	1.021	0.055		ř.	_10.0	6		ТМ	1.854***	0.127
Lnum	5.077	0.571	D,		20.0	R		Lnum	10.94***	0.669
Н	8.627	0.302						Н	13.12***	0.412
SM	0.272	0.018			_30.0			SM	1.001***	0.071
St_D	0.2004	0.005			_40.0			St_D	0.229***	0.005
RGR	0.019	0.0005			_50.0			RGR	0.024***	0.0006
SMF	0.272	0.014			_60.0			SMF	0.402***	0.014
RMF	0.728	0.014			70.0			RMF	0.558***	0.014
RM	0.749	0.046			_70.0			RM	0.853	0.065
STRL	144.01	9.914			_80.0			STRL	186.52*	15.828
RL	81.33	2.883	1		_90.0			RL	100.4***	0.859
SLA	92.47	5.241			_100.0			SLA	112.3**	2.745
					110.0	V				

Figura 5.3.2. À esquerda: plântula de Qualea grandiflora (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de Qualea grandiflora (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros (seção 5.2.3): TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g⁻¹d⁻¹), SMF, RMF, RM (g), STRL (cm g⁻¹), RL (cm), SLA (cm²g⁻¹).

				Tabe	buia	aurea				
	CENÁF	rio atu	AL		20.0 _10.0	21	CEN/	ário f	UTURO	
TRAIT	Média	EP		V.	- 0.0 cm			TRAIT	Média	EP
ТМ	2.540	0.141	9	6	_10.0			ТМ	3.366***	0.207
Lnum	7.129	0.317		*	20.0	N N		Lnum	11.90***	0.448
н	3.137	0.302		ſ	_20.0	t in the second s		н	4.287***	0.215
SM	0.656	0.018			_30.0	þ		SM	1.484***	0.104
St_D	0.423	0.019			_40.0	ļ		St_D	0.433	0.015
RGR	0.020	0.0005			_50.0	<u>}</u>		RGR	0.022*	0.0006
SMF	0.261	0.018	-		_60.0	1		SMF	0.443***	0.018
RMF	0.739	0.018	1			(p		RMF	0.557***	0.018
RM	1.884	0.113	Ţ		_70.0			RM	1.882	0.140
STRL	69.68	4.813]		_80.0			STRL	81.58	7.098
RL	94.54	2.398			_90.0			RL	98.40	0.738
SLA	123.50	4.892			_100.0	2		SLA	147.8**	7.604

Figura 5.3.3. À esquerda: plântula de *Tabebuia aurea* (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de *Tabebuia aurea* (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros (seção 5.2.3): TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g⁻¹d⁻¹), SMF, RMF, RM (g), STRL (cm g⁻¹), RL (cm), SLA (cm²g⁻¹).

1468 O RL teve aumento significativo (t= - 4.184, p<0.001) para *K. coriacea*, com incremento 1469 de aproximadamente 40% (figura 4), e para *Q. grandiflora* (t= - 6.018, p<0.001), com 1470 incremento de aproximadamente 25% (figura 2).

Quando comparadas às plantas submetidas ao cenário atual, houve em média um 1471 1472 aumento de cerca de 75% de Q. grandiflora (figura 2), 30% de T. aurea (figura 3), 60% de H. 1473 stigonocarpa (figura 4) e 50% da TM de K. coriacea (figura 5). Houve aumento significativo da biomassa radicular (RM) apenas para K. coriacea (t= - 2.837, p = 0.007), sendo em média 1474 de 55% maior em comparação ao cenário atual, e para H. stigonocarpa (t= - 4.94, p<0.001), 1475 1476 que teve aproximadamente 60% mais RM no cenário futuro. O maior incremento em SM foi de Q. grandiflora (175%), seguido de T. aurea (109%), H. stigonocarpa (65%) e por último K. 1477 1478 coriacea (12%).

	Hymenaea stigonocaropa							
С	ENÁRIO	ATUAL		_20.0	P	CENÁ	RIO FUTL	JRO
				_10.0	s and the second s			
TRAIT	Média	EP		- 0.0 cm		TRAIT	Média	EP
ТМ	6.22	0.296	- State	_10.0	R	ТМ	9.931***	0.566
Lnum	2.167	0.152	- C	20.0	No.	Lnum	4.067***	0.203
н	18.42	0.849	- A		4	н	24.18***	0.887
SM	2.409	0.105		_30.0	1	SM	3.847***	0.171
St_D	0.426	0.009	A	_40.0	a a a a a a a a a a a a a a a a a a a	St_D	0.442	0.010
RGR	0.013	0.0004		_50.0		RGR	0.017***	0.0005
SMF	0.391	0.009	the second se	_60.0		SMF	0.401	0.012
RMF	0.609	0.009	Q	_70.0		RMF	0.598	0.012
RM	3.811	0.212	-	80.0		RM	6.084***	0.435
STRL	39.72	1.932	3	_00.0		STRL	28.61**	2.864
RL	107.338	1.068	7	_90.0	ų.	RL	107.61	1.096
SLA	107.338	1.953	1	_100.0	(SLA	91.04**	6.104

 Figura 5.3.4: À esquerda: plântula de *Hymenaea stignocarpa* (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de *Hymenaea stignocarpa* (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros (seção 5.2.3): TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g⁻¹d⁻¹), SMF, RMF, RM (g), STRL (cm g⁻¹), RL (cm), SLA (cm²g⁻¹).

	Kielmeyera coriacea							
	CEN	ÁRIO ATU/	AL 🧳	10.0	×	CENÁ	RIO FUTU	RO
TR	AIT Média	a EP		- 0.0 cm		TRAI	T Média	EP
тм	1.569	0.095	r z	_10.0	4	тм	2.770**	0.393
Lnu	um 1.273	0.097		20.0		Lnun	n 1.476	0.148
н	3.345	0.334				н	3.129	0.275
SM	0.160	0.014		_30.0		SM	0.208*	0.017
St_	D 0.247	0.006		_40.0		St_D	0.253	0.006
RG	R 0.019	0.0005				RGR	0.024**	0.0007
SM	F 0.111	0.013		_50.0		SMF	0.094	0.011
RM	IF 0.889	0.013		_60.0		RMF	0.906	0.011
RM	1.408	0.096	4	70.0		RM	2.561**	0.391
ST	RL 53.68	4.784				STRL	49.19	4.786
RL	61.24	3.993	i f	_80.0		RL	87.6***	3.401
SLA	A 115.34	7.128	к	_90.0		SLA	111.17	5.907
				100				

Figura 5.3.5: À esquerda: plântula de *Kielmeyera coriacea* (n=30) crescida durante 120 dias em fitotron com o cenário atual. À direita: plântula de *Kielmeyera coriacea* (n=30) crescida durante 120 dias em fitotron com o cenário futuro projetado para 2100 na região central do Brasil. Para cada cenário, estão apresentados na figura os valores correspondentes de média e erro padrão dos parâmetros (seção 5.2.3): TM(g), Lnum, H (cm), SM (g), St_D (cm), RGR (g g⁻¹d⁻¹), SMF, RMF, RM (g), STRL (cm g⁻¹), RL (cm), SLA (cm²g⁻¹).

1492 DISCUSSÃO

O cenário futuro utilizado em nosso experimento provocou o aumento de biomassa das
plântulas de todas as espécies estudadas. A maior assimilação de carbono observada em
plântulas submetidas ao cenário futuro deve-se à maior eficiência da Rubisco, aumentando a
assimilação de CO₂ e reduzindo as taxas de fotorrespiração (Drake et al, 1997).

A forma com que uma planta aloca a biomassa está relacionada com a disponibilidade 1497 1498 de recursos no ambiente em que se encontra (Qi et al., 2019). A diferença de disponibilidade 1499 de carbono atmosférico e temperatura entre os cenários testados em nosso trabalho resultou em 1500 diferenças quanto à partição de biomassa, resultando em dois grupos sob a influência do cenário futuro: 1) manutenção do padrão de alocação de biomassa (H. stigonocarpa e K. coriacea) 1501 (Figuras 2.3 e 2.4); 2) aumento de alocação de biomassa na fração aérea e alocação de biomassa 1502 radicular semelhante à do cenário atual (Q. grandiflora e T. aurea) (Figuras 2.1 e 2.2). Essa 1503 1504 diferença pode indicar que as espécies apresentam diferenças na capacidade de captação ou aproveitamento dos recursos ambientais disponíveis, sugerindo diferentes formas de 1505 1506 aclimatação ao cenário futuro.

Q. grandiflora apresentou maior comprimento da raiz principal sem ter aumentado a 1507 biomassa radicular no cenário futuro, resultando em menor investimento de biomassa por 1508 1509 comprimento radicular, o que é considerado uma estratégia para permitir o acesso à água (Tomlinson et al, 2012). Diante da intensificação da estação seca esperada para o cenário futuro 1510 (Hoffman et al., 2021; Weigelt et al., 2021) o desenvolvimento mais acelerado da raiz principal 1511 1512 para alcançar maiores profundidades do solo no cenário futuro apresentado por K. coriacea e 1513 O. grandiflora é uma resposta apresentada no cenário futuro que pode contribuir para o 1514 recrutamento de espécies arbóreas de savana.

1515 *H. stigonocarpa* se comportou de modo conservativo no cenário futuro em relação ao
1516 SLA, apresentando redução desse parâmetro (Figura 2.4) e produzindo folhas mais espessas, o

1517 que permite uma maior economia de recursos uma vez que a maior concentração de CO₂ atmosférico permite a mesma captação desse recurso a partir de uma área foliar menor (Wang 1518 et al, 2020). Por outro lado, Q. grandiflora e T. aurea tiveram aumento do SLA, apresentando 1519 1520 maior área foliar para um mesmo valor de massa seca investida. O maior investimento em biomassa foliar no cenário futuro observado para de Q. grandiflora e T. aurea pode indicar uma 1521 1522 priorização em alocar recursos para obter um crescimento mais acelerado, caracterizando um comportamento aquisitivo (Grime& Pierce, 2012; Fagundes et al, 2022; Weigelt et al., 2021). 1523 Além disso, para que a planta possa aumentar assimilação de carbono por um período maior 1524 em um ambiente com alta concentração de CO₂ atmosférico, é preciso um aumento da relação 1525 dreno-fonte (Amsterdam, 1991), o que pode ter contribuído para que essas espécies 1526 apresentassem um maior investimento na fração aérea do que na fração radicular no cenário 1527 1528 futuro, reforcando a ideia de que O. grandiflora e T. aurea apresentaram comportamento aquisitivo (Figuras 2.2 e 2.3). 1529

1530 Em relação à produção foliar, três das quatro espécies estudadas (O. grandiflora, T. aurea e H. stigonocarpa) apresentaram maior número de folhas (Figuras 2.2, 2.3 e 2.4). Mesmo 1531 apresentando um maior número de folhas e maior biomassa foliar no cenário futuro, H. 1532 1533 stigonocarpa manteve a partição de biomassa apresentada no cenário atual e foi a única espécie 1534 que apresentou aumento de biomassa de raiz secundária no cenário futuro (Figura S2.2). A maior oferta de CO₂ no cenário futuro pode fazer com que a disponibilidade de nutrientes do 1535 1536 solo limite o crescimento e a taxa fotossintética (Wieder et al, 2015). Como a composição do 1537 solo nos dois cenários climáticos era semelhante, a alta [CO₂] do cenário futuro pode ter levado à maior produção de raízes secundárias em H. stigonocarpa para obtenção de nutrientes e 1538 1539 manutenção do ganho mais acelerado de biomassa nesse cenário (Iversen, 2010). Embora H. stigonocarpa tenha apresentado no geral um crescimento mais acelerado no cenário futuro 1540 devido à maior aquisição de biomassa, a redução do SLA e a manutenção do padrão de alocação 1541

de biomassa podem indicar que a espécie apresenta um comportamento conservativo, em que a
prioridade é alocar recursos para garantir a sobrevivência do indivíduo frente a possíveis
distúrbios (Grime& Pierce, 2012; Fagundes et al, 2022; Weigelt et al., 2021).

Assim como H. stigonocarpa, K. coriacea também manteve a partição de biomassa do 1545 1546 cenário futuro semelhante à observada no cenário atual, além de não apresentar alteração do 1547 SLA e nem do número de folhas quando submetida ao cenário futuro (Figura 2.5). O maior investimento no comprimento da raiz principal acompanhado de maior investimento em 1548 biomassa da raiz principal, aparentando maior investimento no órgão de reserva radicular 1549 1550 (Figura 5), contribuem para compreender o comportamento de K. coriacea como conservativo (Grime& Pierce, 2012; Fagundes et al, 2022; Weigelt et al., 2021). Entre as espécies utilizadas, 1551 K. coriacea foi a menos plástica, o que indica uma baixa influência das alterações ambientais 1552 testadas na expressão gênica dessa espécie. 1553

Embora tanto K. coriacea quanto T. aurea apresentem órgão de reserva subterrâneo, as 1554 duas espécies aparentam adotar diferentes estratégias de sobrevivência. Enquanto K. coriacea 1555 manteve a proporção entre biomassa radicular e aérea nos dois cenários estudados, T. aurea 1556 apresentou aumento de massa seca aérea no cenário futuro e a massa seca radicular manteve 1557 um valor semelhante nos dois cenários, resultando em um maior investimento em biomassa 1558 aérea em relação à biomassa radicular de *T. aurea* no cenário futuro em comparação ao cenário 1559 atual. Considerando esse aspecto, podemos considerar que K. coriacea teve um comportamento 1560 1561 mais conservativo em relação à distribuição da biomassa, pois em ambiente de savana é muito 1562 comum a perda da parte aérea e a necessidade do uso de reservas subterrâneas para rebrotar 1563 (Bond, 2008). O xilopódio é um órgão de reserva que teve origem em diversos momentos evolutivos, podendo ser encontrado em espécies com origens filogenéticas muito distintas 1564 (Simon & Pennington, 2012). O xilopódio pode ser fonte de diversos recursos como água, 1565 1566 nutrientes e carboidratos em momentos de escassez, sendo possível que diferentes filtros

ambientais tenham favorecido o desenvolvimento desse órgão em diferentes espécies (Simon & Pennington, 2012). É possível que estudos filogenéticos associados aos resultados obtidos
em nosso experimento, possam ajudar a responder quais pressões evolutivas levaram à
divergência das respostas apresentadas por essas espécies no presente trabalho.

A aquisição de biomassa durante o estágio inicial de desenvolvimento de uma planta 1571 1572 pode estar associada à massa da semente (Baraloto et al, 2005; Saatkamp et al, 2019). A variação na biomassa total observada entre o cenário futuro e o atual de K. coriacea, Q. 1573 grandiflora e T. aurea foi semelhante (cerca de 0,8g) (Figuras 2.2, 2.3 e 2.5), enquanto que ao 1574 1575 mesmo tempo H. stigonocarpa apresentou um incremento de biomassa total de 3,7g no cenário futuro (Figura 2.4). K. coriacea, Q. grandiflora e T. aurea são dispersas por anemocoria, 1576 possuem sementes mais leves e cotilédones fotossintetizantes, enquanto que H. stigonocarpa é 1577 1578 dispersa por zoocoria e possui sementes maiores e mais pesadas, apresentando cotilédones de reserva. Esse resultado reforça estudos que defendem que a variação do incremento de biomassa 1579 1580 e a taxa de crescimento relativo são mais pronunciados em plantas com sementes maiores quando submetidas a maiores temperaturas e [CO₂] (Jones & Reekie, 2007; Khurana& Singh, 1581 2004). 1582

1583 Q. grandiflora foi a única que passou a alocar mais da metade da biomassa total para 1584 fração aérea no cenário futuro (Figura 2.2). Mesmo sendo uma espécie com grande plasticidade fenotípica (Buzatti et al., 2019) e a que apresenta a maior frequência e distribuição no Cerrado 1585 1586 (Ratter et al., 2003), sua distribuição é restrita ao Cerrado (da Ponte et al, 2020). Sendo o padrão de distribuição de biomassa um atributo relacionado ao tipo de ambiente em que a espécie se 1587 1588 encontra (Qi et al, 2019), esse resultado torna-se surpreendente. Por outro lado, a inversão no padrão de alocação de biomassa foi observada em outros experimentos com elevação de 1589 temperatura e [CO₂] (Avila et al, 2020; Forbes et al, 2020; Apgaua et al, 2019). No caso de 1590 1591 espécies de *Eucalyptus* em savanas, a modificação do padrão de alocação de biomassa só foi observada quando o CO₂ elevado foi aplicado juntamente com temperaturas mais altas, caso
contrário apenas se observou o aumento da biomassa em função da maior oferta de carbono
atmosférico (Apgaua et al, 2019).

A longo prazo, a limitação de recursos pode levar a uma estagnação ou até mesmo a queda do aumento da taxa de crescimento no cenário futuro (Maschler et al, 2022). Porém o incremento de biomassa na fase de plântula em espécies arbóreas de savana favorece a sobrevivência de plântulas diante de distúrbios ambientais que normalmente controlam essas populações, como o fogo e a sazonalidade da precipitação (Cardoso et al., 2016; Freschet et al., 2021, Gignoux et al., 2009, Moreira & Klink, 2000), podendo gerar um grande impacto no ecossistema (Kgope et al., 2010).

1602 Em conjunto nossos resultados indicam que o cenário climático esperado para 2100 no Cerrado favorece o desenvolvimento inicial de espécies arbóreas frente aos principais fatores 1603 que controlam as populações dessas espécies (Cardoso et al., 2016; Freschet et al., 2021, 1604 1605 Gignoux et al., 2009, Moreira & Klink, 2000). Além de facilitar o aumento do número de 1606 indivíduos de espécies arbóreas, esse cenário futuro também estimula o crescimento aéreo e a produção foliar, o que poderá intensificar o sombreamento em áreas de savana e prejudicar o 1607 estabelecimento de espécies do estrato herbáceo típicas de savana que demandam alta 1608 luminosidade (Raymundo et al, 2022). Por outro lado, a sazonalidade da precipitação e a 1609 intensificação do estresse hídrico durante a estação seca no cenário futuro (Hofmann et al., 1610 2021) poderão limitar a ocupação dessas áreas por espécies sensíveis ao estresse hídrico 1611 (Villalobos-Veja et al., 2014). Em geral, a resistência à seca e ao sombreamento estão 1612 1613 associadas a diferentes conjuntos de atributos funcionais, fazendo com que essas estratégias 1614 ocorram de modo independente entre si (Markesteijn & Poorter, 2009).

1615 5.4. CONCLUSÃO

1616 Nosso trabalho evidencia que o cenário futuro esperado para 2100 favoreceu o desenvolvimento inicial de espécies arbóreas de savana neotropical. Devido ao incremento 1617 significativo de biomassa observado no cenário futuro em todas as espécies estudadas, com 1618 1619 maior proporção na fração aérea em metade dessas espécies, nossos resultados trazem fortes indícios de que a elevação da [CO₂] atmosférico pode ser um fator importante do processo de 1620 1621 adensamento arbóreo que vem ocorrendo mundialmente em savanas, com maior velocidade em savanas da América do Sul podendo levar a grande perda de biodiversidade (Rosan et al., 2019; 1622 Abreu et al., 2017). A elevação da $[CO_2]$ e da temperatura no cenário futuro provocou ao mesmo 1623 tempo o incremento de atributos que contribuem para o aumento do sombreamento em savanas 1624 (H, Ln, SM) e o alcance de profundidades maiores no perfil do solo (RL). O efeito das mudanças 1625 climáticas a nível de indivíduo pode ter grandes consequências na composição da vegetação e 1626 1627 deve ser considerado em ações de preservação ambiental para a melhor preservação da biodiversidade em savanas. 1628

1629 5.5. REFERÊNCIAS

1630	Abreu, R.C.R., Hoffmann, W.A., Vasconcelos, H.L., Pilon, N.A., Rossatto, D.R., Durigan, G.,
1631	2017. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3,
1632	e1701284. https://doi.org/10.1126/sciadv.1701284
1633	Almagro, A., Oliveira, P.T.S., Rosolem, R., Hagemann, S., Nobre, C.A., 2020. Performance
1634	evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil.
1635	Atmos. Res. 244, 105053. https://doi.org/10.1016/j.atmosres.2020.105053
1636	Amsterdam, M.C., 1991. Effects of source-sink relations on photosynthetic acclimation to
1637	elevated CO_2 869–875.
1638	Apgaua, D.M.G., Tng, D.Y.P., Forbes, S.J., Ishida, Y.F., Vogado, N.O., Cernusak, L.A.,
1639	Laurance, S.G.W., 2019. Elevated temperature and CO ₂ cause differential growth
1640	stimulation and drought survival responses in eucalypt species from contrasting habitats.
1641	Tree Physiol. 39, 1806–1820. https://doi.org/10.1093/treephys/tpz095
1642	Assis, L. F. F. G.; Ferreira, K. R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.;
1643	Rodrigues, J.; Maciel, A.; Camargo, C. TerraBrasilis: A Spatial Data Analytics
1644	Infrastructure for Large-Scale Thematic Mapping. ISPRS International Journal of Geo-
1645	Information. 8, 513, 2019. DOI: 10.3390/ijgi8110513
1646	Avila, R.T., de Almeida, W.L., Costa, L.C., Machado, K.L.G., Barbosa, M.L., de Souza, R.P.B.,
1647	Martino, P.B., Juárez, M.A.T., Marçal, D.M.S., Martins, S.C.V., Ramalho, J.D.C.,
1648	DaMatta, F.M., 2020. Elevated air [CO ₂] improves photosynthetic performance and alters
1649	biomass accumulation and partitioning in drought-stressed coffee plants. Environ. Exp. Bot.
1650	177, 104137. https://doi.org/10.1016/j.envexpbot.2020.104137
1651	Beloiu, M., Poursanidis, D., Tsakirakis, A., Chrysoulakis, N., Hoffmann, S., Lymberakis, P.,
1652	Barnias, A., Kienle, D., Beierkuhnlein, C., 2022. No treeline shift despite climate change
1653	over the last 70 years. For. Ecosyst. 9, 100002. https://doi.org/10.1016/j.fecs.2022.100002
1654	Boisvert-Marsh, L., Pedlar, J.H., de Blois, S., Le Squin, A., Lawrence, K., McKenney, D.W.,
1655	Williams, C., Aubin, I., 2022. Migration-based simulations for Canadian trees show limited
1656	tracking of suitable climate under climate change. Divers. Distrib. 28, 2330–2348.
1657	https://doi.org/10.1111/ddi.13630
1658	Boonman, C.C.F., van Langevelde, F., Oliveras, I., Couédon, J., Luijken, N., Martini, D.,
1659	Veenendaal, E.M., 2020. On the importance of root traits in seedlings of tropical tree
1660	species. New Phytol. https://doi.org/10.1111/nph.16370
1661	Buisson, E., Fidelis, A., Overbeck, G.E., Schmidt, I.B., Durigan, G., Young, T.P., Alvarado,
1662	S.T., Arruda, A.J., Boisson, S., Bond, W., Coutinho, A., Kirkman, K., Oliveira, R.S.,
1663	Schmitt, M.H., Siebert, F., Siebert, S.J., Thompson, D.I., Silveira, F.A.O., 2021. A research
1664	agenda for the restoration of tropical and subtropical grasslands and savannas. Restor. Ecol.
1665	29, 1–18. https://doi.org/10.1111/rec.13292
1666	Buzatti, R.S. de O., Pfeilsticker, T.R., Muniz, A.C., Ellis, V.A., Souza, R.P. de, Lemos-Filho,
1667	J.P., Lovato, M.B., 2019. Disentangling the Environmental Factors That Shape Genetic and

1668 1669	Phenotypic Leaf Trait Variation in the Tree Qualea grandiflora Across the Brazilian Savanna. Front. Plant Sci. 10, 1–14. https://doi.org/10.3389/fpls.2019.01580
1670	Cardoso A.W. Medina-Vega I.A. Malhi Y. Adu-Bredu S. Ametsitsi G.K.D. Diaghletev
1671	G van Langevelde E Veenendaal E Oliveras I 2016 Winners and losers: Tronical
1672	forest tree seedling survival across a West African forest-sayanna transition Ecol Evol 6
1672	3417 3420 https://doi.org/10.1002/aca3.2123
10/5	5417-5429. https://doi.org/10.1002/ece5.2155
1674	Chen, Y., Liu, A., Cheng, X., 2020. Quantifying economic impacts of climate change under nine
1675	future emission scenarios within CMIP6. Sci. Total Environ. 703, 134950.
1676	https://doi.org/10.1016/j.scitotenv.2019.134950
1677	Da Ponte, G., Huth, F., Wagner, S., 2020. Ensuring future regeneration success of qualea
1678	grandiflora mart. (vochysiaceae) in neotropical savanna (cerrado) biomes by reviewing the
1679	available information and identifying research gaps. [Forest 13, 154–164
1680	https://doi.org/10.3832/ifor2684-013
1601	De Silve IMC Retes IM 2002 Riegeographics patterns and accompation in the South
1001	Da Silva, J.M.C., Bates, J.M., 2002. Diogeographics patients and coservation in the South
1682	American Cerrado: A tropical savanna hotspot. Bioscience. https://doi.org/10.1641/0006-
1683	3568(2002)052[0225:bpacit]2.0.co;2
1684	Delignette-muller, A.M.L., Pouillot, R., Dutang, C., 2013. Package ' fitdistrplus .'
1685	Diniz-Filho, J.A.F., de Oliveira Ferraz Barbosa, A.C., Chaves, L.J., da Silva e Souza, K.,
1686	Dobrovolski, R., Rattis, L., Terribile, L.C., Lima-Ribeiro, M.S., de Oliveira, G., Brum,
1687	F.T., Loyola, R., de Campos Telles, M.P., 2020. Overcoming the worst of both worlds:
1688	integrating climate change and habitat loss into spatial conservation planning of genetic
1689	diversity in the Brazilian Cerrado. Biodivers. Conserv. 29, 1555–1570.
1690	https://doi.org/10.1007/s10531-018-1667-y
1691	Donoghoe, M.M.W., 2018. Fitting Generalized Linear Models - Package 'glm2' August.
1692	Dusenge, M.E., Duarte, A.G., Way, D.A., 2019. Plant carbon metabolism and climate change:
1693	elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration.
1694	New Phytol. 221, 32–49. https://doi.org/10.1111/nph.15283
1695	Fagundes, M.V., Souza, A.F., Oliveira, R.S., Ganade, G., 2022, Functional traits above and
1696	below ground allow species with distinct ecological strategies to coexist in the largest
1697	seasonally dry tropical forest in the Americas Front For Glob Chang 5
1698	https://doi.org/10.3389/ffgc.2022.930099
1600	Fife D 2010 Elevelot: graphically based data analysis 1, 35
1099	https://doi.org/10.21224/cof.ic/kb022
1700	https://doi.org/10.31234/081.10/kh9C3
1701	Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for
1702	global land areas. International Journal of Climatology 37 (12): 4302-4315.
1703	Forbes, S.J., Cernusak, L.A., Northfield, T.D., Gleadow, R.M., Lambert, S., Cheesman, A.W.,
1704	2020. Elevated temperature and carbon dioxide alter resource allocation to growth, storage
1705	and defence in cassava (Manihot esculenta). Environ. Exp. Bot. 173, 103997.
1706	https://doi.org/10.1016/j.envexpbot.2020.103997

1707	Forzza, R.C., Baumgratz, J.F.A., Bicudo, C.E.M., Canhos, D.A.L., Carvalho, A.A., Coelho,
1708	M.A.N., Costa, A.F., Costa, D.P., Hopkins, M.G., Leitman, P.M., Lohmann, L.G.,
1709	Lughadha, E.N., Maia, L.C., Martinelli, G., Menezes, M., Morim, M.P., Peixoto, A.L.,
1710	Pirani, J.R., Prado, J., Queiroz, L.P., Souza, S., Souza, V.C., Stehmann, J.R., Sylvestre,
1711	L.S., Walter, B.M.T., Zappi, D.C., 2012. New brazilian floristic list highlights conservation
1712	challenges. Bioscience 62, 39-45. https://doi.org/10.1525/bio.2012.62.1.8
1713	Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett,
1714	R.D., De Deyn, G.B., Johnson, D., Klimešová, J., Lukac, M., McCormack, M.L., Meier,
1715	I.C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska-
1716	Zadworna, A., Blancaflor, E.B., Brunner, I., Gessler, A., Hobbie, S.E., Iversen, C.M.,
1717	Mommer, L., Picon-Cochard, C., Postma, J.A., Rose, L., Ryser, P., Scherer-Lorenzen, M.,
1718	Soudzilovskaia, N.A., Sun, T., Valverde-Barrantes, O.J., Weigelt, A., York, L.M., Stokes,
1719	A., 2021. Root traits as drivers of plant and ecosystem functioning: current understanding,
1720	pitfalls and future research needs. New Phytol. 232, 1123–1158.
1721	https://doi.org/10.1111/nph.17072
1722	Gignoux, J., Lahoreau, G., Julliard, R., Barot, S., 2009. Establishment and early persistence of
1723	tree seedlings in an annually burned savanna. J. Ecol. 97, 484–495.
1724	https://doi.org/10.1111/j.1365-2745.2009.01493.x
1725	Gignoux, J., Konaté, S., Lahoreau, G., Le Roux, X., Simioni, G., 2016. Allocation strategies of
1726	savanna and forest tree seedlings in response to fire and shading: outcomes of a field
1727	experiment. Sci. Rep. 6, 38838. https://doi.org/10.1038/srep38838
1728	Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A., 2008.
1729	Water economy of Neotropical savanna trees: Six paradigms revisited. Tree Physiol. 28,
1730	395-404. https://doi.org/10.1093/treephys/28.3.395
1731	Grime, J.P., Pierce, S., 2012. The Evolutionary Strategies that Shape Ecosystems, The
1732	Evolutionary Strategies that Shape Ecosystems. https://doi.org/10.1002/9781118223246
1733	Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.A., Abe, M., 2020.
1734	Development of the MIROC-ES2L Earth system model and the evaluation of
1735	biogeochemical processes and feedbacks 2197–2244.
1736	Hampe, A., 2011. Plants on the move: The role of seed dispersal and initial population
1737	establishment for climate-driven range expansions. Acta Oecologica 37, 666–673.
1738	https://doi.org/10.1016/j.actao.2011.05.001
1739	Hoffmann, A.A., Sgrò, C.M., 2011. Climate change and evolutionary adaptationHoffmann A. A.
1740	& Sgrò C. M. (2011) Climate change and evolutionary adaptation. Nature 470, 479–485.
1741	Nature 470, 479–485.
1742	Hoffmann, W.A., Bazzaz, F.A., Chatterton, N.J., Harrison, P.A., Jackson, R.B., 2000. Elevated
1743	CO 2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317.
1744	https://doi.org/10.1007/s004420051017
1745	Hofmann, G.S., Cardoso, M.F., Alves, R.J.V., Weber, E.J., Barbosa, A.A., de Toledo, P.M.,
1/46	Pontual, F.B., Salles, L. de O., Hasenack, H., Cordeiro, J.L.P., Aquino, F.E., de Oliveira,

1747 1748	L.F.B., 2021. The Brazilian Cerrado is becoming hotter and drier. Glob. Chang. Biol. 1–14. https://doi.org/10.1111/gcb.15712
1749	Iversen, C.M., 2010. Digging deeper: Fine-root responses to rising atmospheric CO ₂
1750	concentration in forested ecosystems. New Phytol. 186, 346–357.
1751	https://doi.org/10.1111/j.1469-8137.2009.03122.x
1752	Jones, T.A., Reekie, E.G., 2007. Effect of seed size on seedling growth response to elevated CO ₂
1753	in Picea abies and Picea rubens. Plant Biol. 9, 766-775. https://doi.org/10.1055/s-2007-
1754	965251
1755	Kanegae, M.F., Braz, V., Franco, A., 2000. Effects of seasonal drought and light availability on
1756	growth and survival of Bowdichia virgilioides in two characteristic savanna physiognomies
1757	of Central Brazil. Brazilian J. Bot. 23, 459–468.
1758	Kgope, B.S., Bond, W.J., Midgley, G.F., 2010. Growth responses of African savanna trees
1759	implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover.
1760	Austral Ecol. 35, 451–463. https://doi.org/10.1111/j.1442-9993.2009.02046.x
1761	Khurana, E., Singh, J.S., 2004. Germination and seedling growth of five tree species from
1762	tropical dry forest in relation to water stress: Impact of seed size. J. Trop. Ecol. 20, 385-
1763	396. https://doi.org/10.1017/S026646740400135X
1764	Lambers, H., Oliveira, R.S., 2019. Physiological Ecology, in: Lambers, H., Oliveira, R.S. (Eds.),
1765	Plant Physiological Ecology. Elsevier, pp. 2744–2751. https://doi.org/10.1016/B978-
1766	008045405-4.00819-3
1767	Larson, J.E., Anacker, B.L., Wanous, S., Funk, J.L., 2020. Ecological strategies begin at
1768	germination: Traits, plasticity and survival in the first 4 days of plant life. Funct. Ecol. 34,
1769	968–979. https://doi.org/10.1111/1365-2435.13543
1770	Leck, M.A., Simpson, R.L., Parker, V.T., 2008. Why seedlings?, in: Leck, M.A., Parker, V.T.,
1771	Simpson, R.L. (Eds.), Seedling Ecology and Evolution. Cambridge University Press, pp. 3–
1772	13.
1773	Lewandrowski, W., Stevens, J.C., Webber, B.L., L. Dalziell, E., Trudgen, M.S., Bateman, A.M.,
1774	Erickson, T.E., 2021. Global change impacts on arid zone ecosystems: Seedling
1775	establishment processes are threatened by temperature and water stress. Ecol. Evol. 11,
1776	8071-8084. https://doi.org/10.1002/ece3.7638
1777	Liang, Y., Duveneck, M.J., Gustafson, E.J., Serra-Diaz, J.M., Thompson, J.R., 2018. How
1778	disturbance, competition, and dispersal interact to prevent tree range boundaries from
1779	keeping pace with climate change. Glob. Chang. Biol. 24, e335–e351.
1780	https://doi.org/10.1111/gcb.13847
1781	Magalhães, A.J. da S., Alves, J.M.B., Silva, E.M. da, Nunes, F.T., Barbosa, A.C.B., Santos,
1782	A.C.S. dos, Sombra, S.S., 2019. Veranicos no Brasil: Observações e Modelagens (CMIP5).
1783	Rev. Bras. Meteorol. 34, 597-626. https://doi.org/10.1590/0102-7786344072

1784 1785	Markesteijn, L., Poorter, L., 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought, and shade tolerance. J. Ecol. 97, 311, 325
1786	https://doi.org/10.1111/j.1365-2745.2008.01466.x
1787	Maschler, J., Bialic-Murphy, L., Wan, J., Andresen, L.C., Zohner, C.M., Reich, P.B., Lüscher,
1788	A., Schneider, M.K., Müller, C., Moser, G., Dukes, J.S., Kappel Schmidt, I., Bilton, M.,
1789	Zhu, K., Crowther, T.W., 2022. Links across ecological scales: Plant biomass responses to
1790	elevated CO ₂ . Glob. Chang. Biol. 6115-6134. https://doi.org/10.1111/gcb.16351
1791	Mathys, A.S., Coops, N.C., Simard, S.W., Waring, R.H., Aitken, S.N., 2018. Diverging
1792	distribution of seedlings and mature trees reflects recent climate change in British
1793	Columbia. Ecol. Modell. 384, 145–153. https://doi.org/10.1016/j.ecolmodel.2018.06.008
1794	Meinshausen, M., Nicholls, Z., Lewis, J., Gidden, M., Vogel, E., Freund, M., Beyerle, U.,
1795	Gessner, C., Nauels, A., Bauer, N., Canadell, J., Daniel, J., John, A., Krummel, P., Luderer,
1796	G., Meinshausen, N., Montzka, S., Rayner, P., Reimann, S., Smith, S., van den Berg, M.,
1797	Velders, G., Vollmer, M., Wang, H.J., 2019. The SSP greenhouse gas concentrations and
1798	their extensions to 2500. Geosci. Model Dev. Discuss. 1-77. https://doi.org/10.5194/gmd-
1799	2019-222
1800	Mndela, M., Tjelele, J.T., Madakadze, I.C., Mangwane, M., Samuels, I.M., Muller, F., Pule,
1801	H.T., 2022. A global meta-analysis of woody plant responses to elevated CO ₂ : implications
1802	on biomass, growth, leaf N content, photosynthesis and water relations. Ecol. Process. 11.
1803	https://doi.org/10.1186/s13717-022-00397-7
1804	Moreira, A.G., Klink, C.A., 2000. Biomass allocation and growth of tree seedlings from two
1805	contrasting Brazilian savannas. Ecotropicos 13, 43–51.
1806	Murphy, B.K., Way, D.A., 2021. Warming and elevated CO2 alter tamarack C fluxes, growth and
1807	mortality: evidence for heat stress-related C starvation in the absence of water stress. Tree
1808	Physiol. 41, 2341–2358. https://doi.org/10.1093/treephys/tpab077
1809	Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000.
1810	Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
1811	https://doi.org/10.1038/35002501
1812	Ncisana, L., Mkhize, N.R., Scogings, P.F., 2022. Warming promotes growth of seedlings of a
1813	woody encroacher in grassland dominated by C4 species. African J. Range Forage Sci. 39,
1814	272-280. https://doi.org/10.2989/10220119.2021.1913762
1815	Neill, B.C. O&apos., Tebaldi, C., van Vuuren, D., Eyring, V., Friedlingstein, P., Hurtt, G.,
1816	Knutti, R., Kriegler, E., Lamarque, JF., Lowe, J., Meehl, J., Moss, R., Riahi, K.,
1817	Sanderson, B.M., 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for
1818	CMIP6. Geosci. Model Dev. Discuss. 1-35. https://doi.org/10.5194/gmd-2016-84
1010	
1819	Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot,
1819 1820	Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M., 2010. Plant
1819 1820 1821	Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot,P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M., 2010. Plantphenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692.

1823 1824	NOAA-ESRL, GMD. (2020, January 26). We clome to the Mauna Loa Observatory. (Webpage).
1024	Kenneveu nom nups.//www.esn.noaa.gov/gniu/obop/nno/ [Dany CO2]
1825	Oliveira, R.S., Davidson, E.A., Klink, C.A., Moreira, A., 2005. Deep root function in soil water
1826	dynamics in cerrado savannas of central Brazil 574–581. https://doi.org/10.1111/j.1365-
1827	2435.2005.01003.x
1828	Padilla, F.M., Miranda, J.D.D., Pugnaire, F.I., 2007. Early root growth plasticity in seedlings of
1829	three Mediterranean woody species. Plant Soil 296, 103–113.
1830	https://doi.org/10.1007/s11104-007-9294-5
1831	Pörtner, HO., Debra C., R., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R.A., Betts, R.,
1832	Ibrahim, Z.Z., 2022. Climate Change 2022 - Impacts, Adaptation and Vulnerability -
1833	Summary for Policymakers, Ipcc.
1834	Qi, Y., Wei, W., Chen, C., Chen, L., 2019. Plant root-shoot biomass allocation over diverse
1835	biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606.
1836	https://doi.org/10.1016/j.gecco.2019.e00606
1837	Ratter, J.A., Bridgewater, S., Ribeiro, J.F., 2003. Analysis of the floristic composition of the
1838	Brazilian cerrado vegetation III: Comparison of the woody vegetation of 376 areas.
1839	Edinburgh J. Bot. 60, 57-109. https://doi.org/10.1017/S0960428603000064
1840	Raymundo, D., Oliveira-Neto, N.E., Martini, V., Araújo, T.N., Calaça, D., de Oliveira, D.C.,
1841	2022. Assessing woody plant encroachment by comparing adult and juvenile tree
1842	components in a Brazilian savanna. Flora Morphol. Distrib. Funct. Ecol. Plants 291,
1843	152060. https://doi.org/10.1016/j.flora.2022.152060
1844	Ribeiro, J.F., Walter, B.M.T., 2008. As principais fitofisionomias do bioma Cerrado, in: Sano,
1845	S.M., Almeida, S.P. (Eds.), Cerrado: Ecologia e Flora. Empresa Brasileira de Pesquisa
1846	Agropecuária - EMBRAPA, Planaltina, pp. 152–212.
1847	Rodriguez-Cubillo, D., Pilon, N.A.L., Durigan, G., 2021. Tree height is more important than
1848	bark thickness, leaf habit or habitat preference to survive fire in the cerrado of south-east
1849	Brazil. Int. J. Wildl. Fire 30, 899–910. https://doi.org/10.1071/WF21091
1850	Rosan, T.M., Aragão, L.E.O.C., Oliveras, I., Phillips, O.L., Malhi, Y., Gloor, E., Wagner, F.H., 2019.
1851	Extensive 21st-Century Woody Encroachment in South America's Savanna. Geophys. Res.
1852	Lett. 46, 6594–6603. https://doi.org/10.1029/2019GL082327
1853	RStudio Team (2020), 2020. RStudio: Integrated Development for R. RStudio.
1854	Saboya, P., Borghetti, F., 2012. Germination, initial growth, and biomass allocation in three
1855	native Cerrado species. Brazilian J. Bot. 35, 129-135. https://doi.org/10.1590/S1806-
1856	99592012000200002
1857	Simon, M.F., Pennington, T., 2012. Evidence for adaptation to fire regimes in the tropical
1858	savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711–723.
1859	https://doi.org/10.1086/665973

1860	Stevens, N., Seal, C.E., Archibald, S., Bond, W., 2014. Increasing temperatures can improve
1861	seedling establishment in arid-adapted savanna trees. Oecologia 175, 1029–1040.
1862	https://doi.org/10.1007/s00442-014-2958-y
1863	Strassburg, B.B.N., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R.,
1864	Latawiec, A.E., Oliveira Filho, F.J.B., De Scaramuzza, C.A.M., Scarano, F.R., Soares-
1865	Filho, B., Balmford, A., 2017. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1.
1866	https://doi.org/10.1038/s41559-017-0099
1867	Tomlinson, K.W., Sterck, F.J., Bongers, F., da Silva, D.A., Barbosa, E.R.M., Ward, D., Bakker,
1868	F.T., van Kaauwen, M., Prins, H.H.T., de Bie, S., van Langevelde, F., 2012. Biomass
1869	partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100,
1870	1113–1121.
1871	Villalobos-Vega, R., Salazar, A., Miralles-Wilhelm, F., Haridasan, M., Franco, A.C., Goldstein,
1872	G., 2014. Do groundwater dynamics drive spatial patterns of tree density and diversity in
1873	Neotropical savannas? J. Veg. Sci. 25, 1465–1473.
1874	Wang, N., Gao, G., Wang, Y., Wang, D., Wang, Z., Gu, J., 2020. Coordinated responses of leaf
1875	and absorptive root traits under elevated CO ₂ concentration in temperate woody and
1876	herbaceous species. Environ. Exp. Bot. 179, 104199.
1877	https://doi.org/10.1016/j.envexpbot.2020.104199
1878	 Weigelt, A., Mommer, L., Andraczek, K., Iversen, C.M., Bergmann, J., Bruelheide, H., Fan, Y.,
1879	Freschet, G.T., Guerrero-Ramírez, N.R., Kattge, J., Kuyper, T.W., Laughlin, D.C., Meier,
1880	I.C., van der Plas, F., Poorter, H., Roumet, C., van Ruijven, J., Sabatini, F.M., Semchenko,
1881	M., Sweeney, C.J., Valverde-Barrantes, O.J., York, L.M., McCormack, M.L., 2021. An
1882	integrated framework of plant form and function: the belowground perspective. New
1883	Phytol. 232, 42–59. https://doi.org/10.1111/nph.17590
1884	Wickham, H., 2009. Ggplot2, Ying, Media.
1885	Wieder, W.R., Cleveland, C.C., Smith, W.K., Todd-Brown, K., 2015. Future productivity and
1886	carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444.
1887	https://doi.org/10.1038/NGEO2413
1888	Zu, K., Wang, Z., Zhu, X., Lenoir, J., Shrestha, N., Lyu, T., Luo, A., Li, Y., Ji, C., Peng, S.,
1889	Meng, J., Zhou, J., 2021. Upward shift and elevational range contractions of subtropical
1890	mountain plants in response to climate change. Sci. Total Environ. 783, 146896.
1891	https://doi.org/10.1016/j.scitotenv.2021.146896
1892	
1893	

5.6.

MATERIAL SUPLEMENTAR

Figura S2.1: Distribuição de 100 pontos aleatórios no território do bioma Cerrado para obtenção dos dados de temperatura máxima, temperatura mínima, e precipitação previstos para os meses de dezembro a abril de 2100 de acordo com o SSP 3-7.0, segundo o modelo MIROC6-ES2L (MIROC6) do IPCC.

Figura S2.2. Distribuição da biomassa de plântulas de *K. coriacea* (A), *H. stigonocarpa* (B), *Q. grandiflora* (C), *T. aurea* (D) após
120 sob o cenário atual (azul – barras à esquerda) ou sob o cenário futuro (cinza – barras à direita) simulados em fitotron no
Laboratório de Termobiologia (Universidade de Brasília), entre setembro de 2020 e abril de 2021. As barras representam os valores
em g das frações de biomassa de raiz secundária (Raiz sec.), frações de biomassa de raiz secundária, frações de biomassa de raiz
principal (Raiz princ.), frações de biomassa foliar (Folha), frações de biomassa caulinar (Caule), e frações de biomassa do cotilédone (Cotilédone).

1909 Tabela S2.1. Análise de solo extraído da Fazenda Água Limpa (UnB, Brasília - DF) misturado com areia

1910 na proporção de 3:1, e sem ter sido misturado.

Parâmetro	unidade	solo + areia	solo original
COMPLEXO SORTIVO			
pH em H2O,	na	5.6	5.7
FÓSFORO - P, extraído com Mehlich	mg/dm3 = ppm	1.8	1.3
CÁLCIO - Ca	cmolc/dm3 = mE/100mL	0.4	0.3
MAGNÉSIO - Mg	cmolcdm3 = mE/100mL	0.1	0.1
POTÁSSIO - K	cmolcdm3 = mE/100mL	0.01	0.04
SÓDIO - Na	cmolcdm3 = mE/100mL	0.07	0.07
ALUMÍNIO - Al	cmolcdm3 = mE/100mL	0.8	0.7
ACIDEZ (H + Al)	cmolcdm3 = mE/100mL	3.2	3
SOMA DAS BASES	cmolcdm3 = mE/100mL	0.6	0.5
CAPACIDADE DE TROCA DE		2.9	2.5
CÁTIONS - CTC ou T, a pH 7	cmolc/dm5	3.8	3.5
SATURAÇÃO por BASES - V, em	%	15	15
SATURAÇÃO por ALUMÍNIO - m	%	58	58
SATURAÇÃO com SÓDIO - ISNa	%	12	14
CARBONO ORGÂNICO - C	g/kg	11.5	16.1
MATÉRIA ORGÂNICA - MO	g/kg	19.8	27.7
MICRONUTRIENTES			
BORO DISPONÍVEL - B, em	mg/dm3 = ppm	0.03	0.04
COBRE DISPONÍVEL - Cu	mg/dm3 = ppm	0.4	0.3
FERRO DISPONÍVEL - Fe	mg/dm3 = ppm	111	73.6
MANGANÊS DISPONÍVEL - Mn	mg/dm3 = ppm	14.9	4.6
ZINCO DISPONÍVEL - Zn	mg/dm3 = ppm	1	0.7
ENXOFRE DISPONÍVEL - S	mg/dm3 = ppm	2.9	7.1
COMPOSIÇÃO GRANULOMÉTRICA			
Argila	g/Kg	550	500
Areia	g/Kg	375	300
Silte	g/Kg	75	200

Nota: O solo com areia foi utilizado como substrato para as plântulas no experimento de cenários climáticos realizado em fitotron no laboratório de Termobiologia (Universidade de Brasília).

Tabela S2.2 Temperatura (°C) e umidade relativa do ar (%) programadas nos dois fitotrons conforme o cenário
de tico simulado em cada um: cenário atual ou cenário futuro.
1923

Horário (h)	ť	emperatura (°C)	Umidade relativa (%)	Luz		
				(µmol / m² / s)		
	Cenário atual	Cenário futuro		Cenário atual e futuro		
0:00	24	26.5	80	-		
1:00	24	26.5	80	-		
2:00	24	26.5	80	-		
3:00	24	26.5	80	-		
4:00	22	24.5	85	-		
5:00	22	24.5	85	-		
6:00	22	24.5	85	-		
7:00	22	24.5	85	210		
8:00	20	22.5	85	210		
9:00	20	22.5	85	210		
10:00	23	25.5	85	420		
11:00	23	25.5	85	700		
12:00	25	27.5	85	700		
13:00	27	29.5	80	700		
14:00	27	29.5	70	700		
15:00	30	32.5	65	420		
16:00	30	32.5	65	420		
17:00	30	32.5	65	210		
18:00	27	29.5	70	210		
19:00	27	29.5	70	210		
20:00	27	29.5	70	-		
21:00	27	29.5	70	-		
22:00	25.5	28	80	-		
23:00	25.5	28	80	-		

1924: Na última coluna, cada "X" refere-se a um conjunto de lâmpadas acesas nos fitotrons. Ao todo são três conjuntos de lâmpadas em cada **1925** ôn. A incidência luminosa ao nível da parte superior dos tubos onde se encontravam as plantas era de 210 μ mol / m² / s quando haviam **1926** onjunto de lâmpadas acesas ("X"), de 420 μ mol / m² / s quando haviam dois conjuntos de lâmpadas acesas ("XX"), e de 700 μ mol / m² **1926** undo haviam três conjuntos de lâmpadas acesas ("XX").

6. CONCLUSÃO GERAL

No geral pudemos observar que quando submetidas a temperatura e concentração de
CO₂ elevadas, plântulas de espécies arbóreas de savana apresentam a intensidade de alocação
de biomassa para a fração radicular ou aérea dependerá do grau de tolerância ao estresse
ambiental encontrado pela plântula. Nossos resultados indicam que a alocação de biomassa e o
desenvolvimento da parte aérea, assim como o investimento em comprimento da raiz principal,
foi mais importante do que o acúmulo de biomassa nas raízes.

O aumento de copa (Ln), altura (H) e biomassa aérea (SM) encontrados em nosso 1936 1937 trabalho estão de acordo com resultados obtidos em simulações que indicam o risco de adensamento arbóreo em savanas (Kumar et al 2021). Porém é importante enfatizar que os 1938 diferentes níveis e tipos de plasticidade no processo de aclimatação ao cenário futuro irão variar 1939 conforme a espécie e podem influenciar o cenário futuro de diferentes formas. Portanto, para 1940 uma projeção mais localizada dos impactos do cenário climático futuro, é importante levar em 1941 1942 consideração a composição florística e conhecer melhor as respostas das espécies nativas a esse 1943 cenário esperado.

1944 7. APÊNDICES

1945

7.1. APÊNDICE I: DADOS DO CAPÍTULO 1

Dados inciais

1946 7.1.1.

1947

species	days old	plant	Н	Lnum	RL	SM	RM	М	RM:SM	SLA	STRL	RER	SMF	RMF
T. aurea	60	1	2.50	6.00	7.41	0.55	0.52	1.07	0.96	146.97	14.14	0.12	0.51	0.49
T. aurea	60	2	3.10	6.00	7.92	0.43	0.48	0.91	1.11	160.72	16.60	0.13	0.47	0.53
T. aurea	60	3	1.80	6.00	12.19	0.66	1.43	2.09	2.17	128.22	8.51	0.20	0.32	0.68
T. aurea	60	4	2.00	6.00	9.65	0.51	0.92	1.43	1.82	92.86	10.49	0.16	0.35	0.65
T. aurea	60	5	3.70	4.00	9.73	0.33	0.98	1.30	2.99	157.33	9.97	0.16	0.25	0.75
T. aurea	60	6	2.40	6.00	7.40	0.59	0.97	1.55	1.65	162.19	7.66	0.12	0.38	0.62
T. aurea	60	7	2.30	8.00	10.39	0.59	1.09	1.68	1.86	156.72	9.51	0.17	0.35	0.65
T. aurea	60	8	1.90	6.00	12.15	0.73	1.42	2.15	1.94	155.46	8.56	0.20	0.34	0.66
T. aurea	60	9	2.60	6.00	9.04	0.56	0.79	1.35	1.41	156.44	11.40	0.15	0.41	0.59
T. aurea	60	10	1.20	4.00	8.73	0.50	1.17	1.67	2.36	137.64	7.46	0.15	0.30	0.70
Q. grandiflora	60	1	4.50	6.00	18.60	0.24	0.14	0.38	0.59	123.24	132.86	0.31	0.63	0.37
Q. grandiflora	60	2	7.50	5.00	20.90	0.36	0.11	0.47	0.32	126.78	183.33	0.35	0.76	0.24
Q. grandiflora	60	3	5.40	6.00	22.70	0.21	0.08	0.30	0.39	160.71	273.49	0.38	0.72	0.28
Q. grandiflora	60	4	4.30	4.00	17.40	0.20	0.09	0.29	0.47	137.65	187.10	0.29	0.68	0.32
Q. grandiflora	60	5	6.00	6.00	21.60	0.24	0.12	0.36	0.50	129.45	180.00	0.36	0.67	0.33
Q. grandiflora	60	6	6.50	4.00	19.30	0.28	0.12	0.41	0.44	126.31	155.65	0.32	0.70	0.30
Q. grandiflora	60	7	6.90	6.00	20.80	0.29	0.11	0.41	0.38	130.87	185.71	0.35	0.72	0.28
Q. grandiflora	60	8	6.50	6.00	23.40	0.28	0.10	0.37	0.36	158.79	238.78	0.39	0.74	0.26
10/0														

7.1.2. DADOS FINAIS

species	plant	trat.	Н	Lnum	SM	RM	ТМ	RS	SLA	RGR	STRL	RER
T. aurea	1	1	8	12	1.5760	4.7060	6.2820	2.9860	97.5379	0.0195	20.8245	0.6811
T. aurea	2	1	6	12	6.6708	20.3697	27.0405	3.0536	79.4110	0.0300	4.9043	0.6957
T. aurea	3	1	8	12	11.4690	17.7025	29.1715	1.5435	83.7613	0.0305	5.6715	0.6995
T. aurea	4	1	10	10	5.3660	26.9736	32.3396	5.0268	97.7589	0.0313	3.7333	0.7018
T. aurea	5	1	4	11	5.0525	15.1921	20.2446	3.0068	97.0856	0.0279	6.5165	0.6888
T. aurea	6	1	4	15	3.7029	9.9138	13.6167	2.6773	91.5137	0.0250	9.9962	0.6895
T. aurea	7	1	6	9	1.3790	7.0922	8.4712	5.1430	88.6142	0.0216	13.7757	0.6788
T. aurea	8	1	4	8	5.8622	9.4323	15.2945	1.6090	104.5853	0.0259	11.2910	0.7465
T. aurea	9	1	6	5	6.8594	13.7736	20.6330	2.0080	81.1130	0.0280	8.2694	0.8034
T. aurea	10	1	11	10	5.3732	13.7776	19.1508	2.5641	122.6428	0.0275	7.4541	0.7172
T. aurea	1	8	8	12	8.6421	11.9284	20.5705	1.3803	97.5379	0.0280	8.2157	0.6811
T. aurea	2	8	6	12	8.2880	13.4895	21.7775	1.6276	79.4110	0.0284	7.4058	0.6957
T. aurea	3	8	8	12	7.8693	7.3713	15.2406	0.9367	83.7613	0.0259	13.6204	0.6995
T. aurea	4	8	10	10	8.0018	10.8669	18.8687	1.3581	97.7589	0.0274	9.2667	0.7018
T. aurea	5	8	4	11	2.4651	5.4694	7.9345	2.2187	97.0856	0.0212	18.1007	0.6888
T. aurea	6	8	4	15	1.6113	4.9278	6.5391	3.0583	88.6142	0.0198	20.1104	0.6895
T. aurea	7	8	6	9	5.8801	11.7007	17.5808	1.9899	104.5853	0.0269	8.3499	0.6788
T. aurea	8	8	6	5	2.0411	3.4604	5.5015	1.6954	81.1130	0.0185	32.9153	0.8034
T. aurea	9	8	8	8	5.4877	14.5319	20.0196	2.6481	86.2611	0.0278	7.1223	0.7234
T. aurea	10	8	11	10	4.5725	5.1655	9.7380	1.1297	122.6428	0.0226	19.8819	0.7172
T. aurea	1	15	10	8	8.5048	4.6324	13.1372	0.5447	81.4089	0.0248	21.2633	0.6849
T. aurea	2	15	5	12	3.4269	2.7351	6.1620	0.7981	99.1982	0.0193	35.9402	0.6834
T. aurea	3	15	8	6	6.2866	7.9057	14.1923	1.2575	108.0730	0.0253	12.6238	0.6949
T. aurea	4	15	9	5	5.0098	8.3465	13.3563	1.6660	86.3370	0.0249	11.5977	0.6718
T. aurea	5	15	12	8	6.7344	6.8747	13.6091	1.0208	100.8356	0.0250	13.9933	0.6672
T. aurea	6	15	3	8	2.7798	5.8996	8.6794	2.1223	102.4169	0.0218	17.2046	0.7080
T. aurea	7	15	8	10	4.8974	5.5567	10.4541	1.1346	83.9266	0.0231	17.2404	0.6641
T. aurea	8	15	9	8	3.5905	9.7611	13.3516	2.7186	94.6073	0.0249	10.3779	0.7065
T. aurea	9	15	10	10	4.7530	6.7817	11.5347	1.4268	99.4796	0.0239	14.2147	0.6688
T. aurea	10	15	12	11	2.0119	1.4748	3.4867	0.7330	170.4490	0.0152	66.7887	0.6849

species	plant	trat.	RMF	SMF	RL	LA 1	LA2	LA3	LM1	LM2	LM 3	LMt	LMF	NAR
T. aurea	1	1	0.749	0.251	98.00	93.17	91.45	105.25	1.014	0.887	na	1.105	0.176	0.0011
T. aurea	2	1	0.753	0.247	99.90	105.32	61.9	92.99	1.257	0.825	na	5.888	0.218	0.0017
T. aurea	3	1	0.607	0.393	100.40	76.2	71.83	93.93	0.873	0.930	1.082	5.491	0.188	0.0019
T. aurea	4	1	0.834	0.166	100.70	107.02	86.04	78.65	0.998	0.897	0.873	4.785	0.148	0.0022
T. aurea	5	1	0.750	0.250	99.00	33.31	20.91	26.8	0.502	0.179	0.248	4.662	0.230	0.0012
T. aurea	6	1	0.728	0.272	99.10	14.42	10.09	19.47	0.160	0.131	0.181	3.255	0.239	0.0011
T. aurea	7	1	0.837	0.163	97.70	70.04	76.74	44.87	0.783	0.795	0.562	1.088	0.128	0.0019
T. aurea	8	1	0.617	0.383	106.50	23.79	28.67	30.5	0.246	0.267	0.278	5.358	0.350	0.0007
T. aurea	9	1	0.668	0.332	113.90	30.52	35.88	22.82	0.441	0.300	0.418	2.370	0.115	0.0030
T. aurea	10	1	0.719	0.281	102.70	57.02	51.09	57.87	0.530	0.335	0.537	5.042	0.263	0.0009
T. aurea	1	8	0.580	0.420	98.00	93.17	91.45	105.25	1.014	0.887	na	8.142	0.396	0.0007
T. aurea	2	8	0.619	0.381	99.90	105.32	61.9	92.99	1.257	0.825	na	7.797	0.358	0.0010
T. aurea	3	8	0.484	0.516	100.40	76.2	71.83	93.93	0.873	0.930	1.082	7.680	0.504	0.0006
T. aurea	4	8	0.576	0.424	100.70	107.02	86.04	78.65	0.998	0.897	0.873	7.247	0.384	0.0007
T. aurea	5	8	0.689	0.311	99.00	33.31	20.91	26.8	0.502	0.179	0.248	2.297	0.290	0.0008
T. aurea	6	8	0.754	0.246	99.10	70.04	76.74	44.87	0.783	0.795	0.562	1.477	0.226	0.0010
T. aurea	7	8	0.666	0.334	97.70	23.79	28.67	30.5	0.246	0.267	0.278	5.572	0.317	0.0008
T. aurea	8	8	0.629	0.371	113.90	30.52	35.88	22.82	0.441	0.300	0.418	1.717	0.312	0.0007
T. aurea	9	8	0.726	0.274	103.50	82.93	69.04	83.47	0.929	0.810	0.991	4.732	0.236	0.0014
T. aurea	10	8	0.530	0.470	102.70	57.02	51.09	57.87	0.530	0.335	0.537	4.132	0.424	0.0004
T. aurea	1	15	0.353	0.647	98.50	91.01	92.27	83.43	1.068	1.061	1.158	7.957	0.606	0.0005
T. aurea	2	15	0.444	0.556	98.30	71.96	102.88	103.46	0.808	0.969	1.011	3.211	0.521	0.0004
T. aurea	3	15	0.557	0.443	99.80	80.08	116.68	123.08	0.745	1.059	1.156	5.851	0.412	0.0006
T. aurea	4	15	0.625	0.375	96.80	60.13	80.76	85.12	0.814	0.914	0.879	4.486	0.336	0.0009
T. aurea	5	15	0.505	0.495	96.20	56.38	54.09	55.97	0.524	0.587	0.545	6.097	0.448	0.0006
T. aurea	6	15	0.680	0.320	101.50	56.77	40.74	23.26	0.514	0.368	0.270	2.606	0.300	0.0007
T. aurea	7	15	0.532	0.468	95.80	69.32	49.64	45.56	0.791	0.589	0.571	4.466	0.427	0.0006
T. aurea	8	15	0.731	0.269	101.30	40.8	40.97	45.87	0.446	0.431	0.471	3.101	0.232	0.0011
T. aurea	9	15	0.588	0.412	96.40	42.11	54.61	66.85	0.475	0.517	0.642	4.211	0.365	0.0007
T. aurea	10	15	0.423	0.577	98.50	38.11	41.85	33.25	0.219	0.238	0.206	1.808	0.519	0.0002

species	plant	trat.	Η	Lnum	SM	RM	ТМ	RS	SLA	RGR	STRL	RER
Q. grandiflora	1	1	36	24	5.910	2.486	8.396	0.421	112.454	0.017	41.194	0.628
Q. grandiflora	2	1	29	20	4.464	1.611	6.074	0.361	88.520	0.014	64.064	0.634
Q. grandiflora	3	1	27	22	3.222	1.056	4.278	0.328	134.043	0.011	91.098	0.581
Q. grandiflora	4	1	27	28	1.020	0.372	1.392	0.364	167.681	0.003	291.095	0.673
Q. grandiflora	5	1	13	12	2.608	1.368	3.975	0.524	84.650	0.011	71.658	0.594
Q. grandiflora	6	1	31	18	6.369	2.914	9.283	0.457	64.790	0.017	39.128	0.717
Q. grandiflora	7	1	28	18	4.309	1.715	6.024	0.398	95.432	0.014	67.988	0.737
Q. grandiflora	8	1	26	22	2.479	1.023	3.502	0.413	115.181	0.010	112.990	0.730
Q. grandiflora	1	8	23	22	2.225	0.890	3.115	0.400	120.159	0.009	116.245	0.636
Q. grandiflora	2	8	22	14	2.229	1.152	3.381	0.517	107.448	0.010	98.776	0.716
Q. grandiflora	3	8	34	22	7.251	3.742	10.993	0.516	75.496	0.019	33.115	0.794
Q. grandiflora	4	8	24	22	2.447	1.114	3.560	0.455	105.742	0.010	124.259	0.905
Q. grandiflora	5	8	25	15	3.732	2.290	6.022	0.614	183.326	0.014	50.736	0.734
Q. grandiflora	6	8	35	24	4.750	2.683	7.433	0.565	93.988	0.016	41.782	0.703
Q. grandiflora	7	8	32	24	3.819	1.911	4.730	0.500	87.089	0.014	53.326	0.624
Q. grandiflora	8	8	15	5	0.331	1.727	2.057	0.785	109.908	0.006	63.767	0.687
Q. grandiflora	1	15	28	20	3.961	1.288	5.249	0.325	120.159	0.013	99.573	0.827
Q. grandiflora	2	15	33	18	6.477	1.599	8.076	0.247	107.448	0.016	71.433	0.719
Q. grandiflora	3	15	29	19	5.241	4.608	9.849	0.879	75.496	0.018	27.907	0.830
Q. grandiflora	4	15	14	8	0.887	1.358	2.245	1.532	105.742	0.007	78.916	0.665
Q. grandiflora	5	15	9	na	1.445	1.328	2.773	0.918	183.326	0.008	77.062	0.627
Q. grandiflora	6	15	27	14	4.547	1.628	6.174	0.358	93.988	0.014	82.089	0.868
Q. grandiflora	7	15	28	20	3.175	1.434	4.609	0.452	87.089	0.012	71.429	0.628
Q. grandiflora	8	15	21	18	3.819	1.911	5.730	0.500	109.908	0.014	54.111	0.636

species	plant	trat.	RMF	SMF	RL	LA 1	LA2	LA3	LM1	LM2	LM 3	LMt	LMF	NAR
Q. grandiflora	1	1	0.296	0.704	102.40	42.94	31.48	26.36	0.380	0.299	0.222	4.614	0.550	0.0003
Q. grandiflora	2	1	0.265	0.735	103.20	26.72	16.69	20.74	0.303	0.187	0.235	3.548	0.584	0.0003
Q. grandiflora	3	1	0.247	0.753	96.20	30.1	19.44	17.33	0.215	0.150	0.131	2.579	0.603	0.0001
Q. grandiflora	4	1	0.267	0.733	108.20	4.93	5.2	6.81	0.033	0.030	0.038	0.740	0.532	0.0000
Q. grandiflora	5	1	0.344	0.656	98.00	16.55	10.7	15.77	0.183	0.155	0.167	1.231	0.310	0.0004
Q. grandiflora	6	1	0.314	0.686	114.00	38.17	35.81	22.08	0.605	0.559	0.329	4.998	0.538	0.0005
Q. grandiflora	7	1	0.285	0.715	116.60	39.47	39.72	25.98	0.414	0.419	0.270	3.307	0.549	0.0003
Q. grandiflora	8	1	0.292	0.708	115.60	21.69	16.77	12.69	0.192	0.139	0.114	1.978	0.565	0.0002
Q. grandiflora	1	8	0.286	0.714	103.40	22.54	23.24	18.27	0.191	0.192	0.150	1.8335	0.589	0.0001
Q. grandiflora	2	8	0.341	0.659	113.80	27.17	21.24	28.86	0.271	0.181	0.275	1.555	0.460	0.0002
Q. grandiflora	3	8	0.340	0.660	123.90	45.88	26.27	42.79	0.616	0.333	0.585	5.822	0.530	0.0005
Q. grandiflora	4	8	0.313	0.687	138.40	18.56	14.84	10.04	0.176	0.136	0.098	1.856	0.521	0.0002
Q. grandiflora	5	8	0.380	0.620	116.20	3.46	3.92	3.07	0.040	0.027	0.010	0.116	0.019	0.0040
Q. grandiflora	6	8	0.361	0.639	112.10	31.55	24.45	23.48	0.339	0.267	0.241	3.057	0.411	0.0004
Q. grandiflora	7	8	0.404	0.807	101.90	27.51	17.19	17.29	0.320	0.195	0.198	3.732	0.789	0.0002
Q. grandiflora	8	8	0.839	0.161	110.10	26.53	25.04	21.43	0.237	0.229	0.198	2.995	1.456	0.0000
Q. grandiflora	1	15	0.245	0.755	128.20	22.54	23.24	18.27	0.191	0.192	0.150	3.093	0.589	0.0002
Q. grandiflora	2	15	0.198	0.802	114.20	27.17	21.24	28.86	0.271	0.181	0.275	5.063	0.627	0.0002
Q. grandiflora	3	15	0.468	0.532	128.60	45.88	26.27	42.79	0.616	0.333	0.585	4.333	0.440	0.0005
Q. grandiflora	4	15	0.605	0.395	107.20	18.56	14.84	10.04	0.176	0.136	0.098	0.450	0.201	0.0003
Q. grandiflora	5	15	0.479	0.521	102.30	3.46	3.92	3.07	0.040	0.027	0.010	0.204	0.074	0.0006
Q. grandiflora	6	15	0.264	0.736	133.60	31.55	24.45	23.48	0.339	0.267	0.241	0.975	0.158	0.0010
Q. grandiflora	7	15	0.311	0.689	102.40	27.51	17.19	17.29	0.320	0.195	0.198	3.666	0.796	0.0002
Q. grandiflora	8	15	0.334	0.666	103.40	26.53	25.04	21.43	0.237	0.229	0.198	2.622	0.458	0.0003

1957 7.2. APÊNDICE II: DADOS DO CAPÍTULO 2

1958

7.2.1. DADOS FINAIS

sp	cen	ST_D	Н	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	ТМ
Kc	А	0.216	3.1	1	66.2	0.6195	0.0587	0.0253	0.1086	0.0828	0.6782	0.1081	0.7863
Kc	А	0.2655	3	2	25.3	1.2105	0.2871	0.0453	0.1941	0.1909	1.4976	0.2362	1.7338
Kc	А	0.249	2.4	1	58	1.4083	0.3156	0.0255	0.1655	0.0976	1.7239	0.1231	1.847
Kc	А	0.261	2.7	1	84.5	1.2993	0.1298	0.0254	0.1645	0.1247	1.4291	0.1501	1.5792
Kc	А	0.303	3.5	2	86	1.8625	0.259	0.0446	0.17	0.1303	2.1215	0.1749	2.2964
Kc	А	0.276	3.4	1	97.6	1.8478	0.1532	0.0388	0.1571	0.1414	2.001	0.1802	2.1812
Kc	А	0.2145	2.6	1	71.3	1.415	0.2248	0.021	0.1567	0.0739	1.6398	0.0949	1.7347
Kc	А	0.2285	6.5	1	36	0.7834	0.095	0.0257	0.1677	0.134	0.8784	0.1597	1.0381
Kc	А	0.263	2.8	2	48	1.2917	0.358	0.0333	0.1682	0.196	1.6497	0.2293	1.879
Kc	А	0.2255	3.5	1	55	1.3991	0.1292	0.0254	0.1834	0.1068	1.5283	0.1322	1.6605
Kc	А	0.2615	2.7	2	62.8	1.5352	0.099	0.077	0.0322	0.1122	1.6342	0.1892	1.8234
Kc	А	0.232	3.4	1	80.2	1.224	0.1197	0.0311	0.1617	0.0722	1.3437	0.1033	1.447
Kc	А	0.2095	7.2	1	31	1.6098	0.0565	0.049	0.1848	0.1154	1.6663	0.1644	1.8307
Kc	А	0.2065	7.3	1	50	2.1173	0.1152	0.019	0.2218	0.1047	2.2325	0.1237	2.3562
Kc	А	0.285	2	1	68.7	1.6067	0.1807	0.0219	0.207	0.0807	1.7874	0.1026	1.89
Kc	А	0.2325	2.3	1	31.7	1.1238	0.1154	0.0229	0.1562	0.1834	1.2392	0.2063	1.4455
Kc	А	0.233	3	2	67.5	1.1725	0.144	0.03	0.1574	0.146	1.3165	0.176	1.4925
Kc	А	0.2335	2.5	1	60.5	0.7468	0.07	0.0254	0.2077	0.1	0.8168	0.1254	0.9422
Kc	А	0.208	3.5	2	91	1.1241	0.0318	0.0364	0.1368	0.1319	1.1559	0.1683	1.3242
Kc	А	0.293	3	2	47.7	0.9862	0.102	0.0268	0.1287	0.1199	1.0882	0.1467	1.2349
Kc	А	0.2255	2	1	78	1.1481	0.26	0.033	0.15	0.0773	1.4081	0.1103	1.5184
Kc	А	na	na	na	na	na	na	na	na	na	na	na	na
Kc	А	0.217	3	1	25.9	1.2357	0.0609	0.0386	0.164	0.0851	1.2966	0.1237	1.4203
Kc	А	0.262	2.7	2	66	2.1488	0.2752	0.0463	0.1891	0.1912	2.424	0.2375	2.6615
Kc	А	0.252	2.2	1	71.4	0.7549	0.0827	0.0232	0.1754	0.0474	0.8376	0.0706	0.9082
Kc	А	0.2685	1.8	1	38	0.683	0.1053	0.0169	0.2051	0.3483	0.7883	0.3652	1.1535
Kc	А	0.24	3	1	63.5	0.813	0.1079	0.085	0.0235	0.178	0.9209	0.263	1.1839
Kc	А	0.2295	3.12	1	68.7	1.0208	0.0603	0.025	0.1096	0.0902	1.0811	0.1152	1.1963

sp	cen	ST_D	Η	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	ТМ
Та	А	0.358	3.4	8	98.2	1.722	0.5052	0.0849	0.1025	0.8527	2.2272	0.9376	3.1648
Та	А	0.4395	3	6	94.5	1.3598	0.298	0.0755	0.0818	0.7906	1.6578	0.8661	2.5239
Та	А	0.334	2.4	8	97.4	1.3247	0.3884	0.0526	0.0561	0.5653	1.7131	0.6179	2.331
Та	А	0.6105	4.5	10	102	1.5455	0.4758	0.1473	0.0912	1.1899	2.0213	1.3372	3.3585
Та	А	0.345	2.5	10	95.2	1.2006	0.3099	0.0684	0	0.8971	1.5105	0.9655	2.476
Та	А	0.348	2.7	8	98.3	0.5417	0.1589	0.0513	0.0595	0.3405	0.7006	0.3918	1.0924
Та	А	0.4205	3.1	8	93.2	1.5444	0.5328	0.0974	0.0845	0.7163	2.0772	0.8137	2.8909
Та	А	0.441	3.7	4	96	1.3237	0.1778	0.1002	0.1075	0.4608	1.5015	0.561	2.0625
Та	А	0.4625	3.3	6	98	2.0043	0.4881	0.0824	0.0897	0.6172	2.4924	0.6996	3.192
Та	А	0.4395	3.5	6	94	1.832	0.4123	0.0819	0.0788	0.5967	2.2443	0.6786	2.9229
Та	А	0.4405	4.5	12	96	1.304	0.2257	0.0913	0.0865	0.705	1.5297	0.7963	2.326
Та	А	0.46	3.3	6	95.9	1.7676	0.4449	0.1023	0.1133	0.6629	2.2125	0.7652	2.9777
Та	А	0.3965	3.2	6	95.2	1.817	0.633	0.0786	0.0777	0.1167	2.45	0.1953	2.6453
Та	А	0.4335	3.2	8	93.4	2.0255	0.484	0.92	0.0817	0.6905	2.5095	1.6105	4.12
Та	А	0.3745	3.4	10	95.1	1.0534	0.242	0.0642	0.0736	0.8126	1.2954	0.8768	2.1722
Та	А	0.3155	2.2	4	96	0.9534	0.2641	0.0286	0.0935	0.3088	1.2175	0.3374	1.5549
Та	А	0.358	2.5	6	98	1.2239	0.8333	0.0556	0.09	0.7102	2.0572	0.7658	2.823
Та	А	0.3895	2.3	8	97	1.7527	0.2726	0.0652	0.0841	0.5895	2.0253	0.6547	2.68
Та	А	0.4335	3	6	97	1.749	0.5219	0.1029	0.094	0.779	2.2709	0.8819	3.1528
Та	А	0.3275	2.8	6	29	0.38	0.046	0.0428	0.0702	0.3102	0.426	0.353	0.779
Та	А	0.2775	1.9	6	77.2	1.3184	0.1548	0.0449	0.0737	0.398	1.4732	0.4429	1.9161
Та	А	0.54	2.8	7	95.3	1.5178	0.3988	0.0928	0.0733	0.1099	1.9166	0.2027	2.1193
Та	А	0.485	3.3	6	97.8	1.8914	0.6753	0.0931	0.0483	0.1827	2.5667	0.2758	2.8425
Та	А	0.3175	2.9	8	97.2	0.8644	0.2676	0.0476	0.1189	0.4443	1.132	0.4919	1.6239
Та	А	0.6975	3.9	8	95.7	2.2558	0.4672	0.1155	0.1099	0.874	2.723	0.9895	3.7125
Та	А	0.555	3.2	6	96.9	2.1702	0.358	0.1157	0.0862	0.6757	2.5282	0.7914	3.3196
Та	А	0.315	3	6	95.2	1.2822	0.228	0.0582	0.0636	0.3469	1.5102	0.4051	1.9153
Та	А	0.686	4.2	6	115	2.6826	0.7795	0.1605	0.1017	0.1727	3.4621	0.3332	3.7953
Та	А	0.3115	2.5	6	96	1.3322	0.1533	0.0527	0.0856	0.3771	1.4855	0.4298	1.9153
Та	А	0.442	4.02	8	107	1.6555	0.4629	0.1019	0.099	0.6401	2.1184	0.742	2.8604
Та	А	0.345	3.02	8	98	1.0959	0.2528	0.0597	0	0.0731	1.3487	0.1328	1.4815

sp	cen	ST_D	Η	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	TM
Qg	А	0.2095	10.2	7	88.6	0.4316	0.2078	0.1231	0.1255	0.1871	0.6394	0.3102	0.9496
Qg	А	0.241	8.6	6	104	0.7899	0.4552	0.1333	0.1455	0.294	1.2451	0.4273	1.6724
Qg	А	0.2175	7	na	na	0.6833	0.0596	0.1356	0.1453	0.0285	0.7429	0.1641	0.907
Qg	А	0.18	7.3	6	77.3	0.6433	0.171	0.1035	1.064	0.1853	0.8143	0.2888	1.1031
Qg	А	0.207	6.4	3	100.2	0.5429	0.1956	0.1128	0.1037	0.1306	0.7385	0.2434	0.9819
Qg	А	0.222	8.5	2	74.5	0.488	0.1226	0.1065	0.125	0.1022	0.6106	0.2087	0.8193
Qg	А	0.1695	8	0	46	0.3363	0.0975	0.089	0.151	na	0.4338	0.089	0.5228
Qg	А	0.146	7.3	4	70.5	0.2456	0.0844	0.0599	0.1132	0.0672	0.33	0.1271	0.4571
Qg	А	0.189	10.2	7	68.3	0.359	0.03	0.1015	0.0821	0.1331	0.389	0.2346	0.6236
Qg	А	0.197	10	8	104.2	0.9876	0.1297	0.1074	0.1293	0.3349	1.1173	0.4423	1.5596
Qg	А	0.215	8.5	3	97.5	0.4409	0.061	0.119	0.0991	0.0559	0.5019	0.1749	0.6768
Qg	А	0.206	8.7	6	85	0.5434	0.1573	0.108	0.1308	0.1391	0.7007	0.2471	0.9478
Qg	А	0.1965	13	8	60.5	0.6625	0.0713	0.1175	0.1351	0.278	0.7338	0.3955	1.1293
Qg	А	0.233	9.5	11	84	0.3677	0.1018	0.1201	0.1215	0.1637	0.4695	0.2838	0.7533
Qg	А	0.1835	8	6	54.5	0.172	0.1547	0.0888	0.1154	0.1413	0.3267	0.2301	0.5568
Qg	А	0.207	9	8	57	0.5026	0.048	0.0992	0.129	0.186	0.5506	0.2852	0.8358
Qg	А	0.1715	7.5	6	65.5	0.3775	0.1157	0.0928	0.0542	0.2489	0.4932	0.3417	0.8349
Qg	А	0.216	10.5	3	78	0.7241	0.093	0.1622	0.1267	0.0867	0.8171	0.2489	1.066
Qg	А	0.1725	9.7	12	51	0.5204	0.1847	0.0771	0.127	0.3867	0.7051	0.4638	1.1689
Qg	А	0.2	7.9	6	85.4	0.7663	0.1019	0.106	0.1008	0.2173	0.8682	0.3233	1.1915
Qg	А	0.237	8.5	1	97.5	0.7245	0.1355	0.1277	0.1282	0.0499	0.86	0.1776	1.0376
Qg	А	0.162	6.5	4	78	0.4532	0.068	0.0654	0.09	0.1064	0.5212	0.1718	0.693
Qg	А	0.2135	7	1	82.6	0.7406	0.1544	0.111	0.1114	0.0499	0.895	0.1609	1.0559
Qg	А	0.1745	9	1	90	0.8163	0.0922	0.113	0.1202	0.0532	0.9085	0.1662	1.0747
Qg	А	0.2055	9.3	2	85	0.9752	0.1151	0.1529	0.121	0.0655	1.0903	0.2184	1.3087
Qg	А	0.1895	7.3	6	81	0.9466	0.1439	0.08	0.129	0.1737	1.0905	0.2537	1.3442
Qg	А	0.2165	10	4	103	0.8561	0.1249	0.1551	0.1	0.1717	0.981	0.3268	1.3078
Qg	А	0.225	7.3	3	81	0.6943	0.1063	0.1244	0.1768	0.1655	0.8006	0.2899	1.0905
Qg	А	0.179	6.6	4	65	0.5101	0.1083	0.0956	0.0933	0.1595	0.6184	0.2551	0.8735
Qg	А	na	na	na	na	0.6796	0.1836	0.0888	0.104	0.1903	0.8632	0.2791	1.1423
Qg	А	na	na	na	na	0.4916	0.1232	0.097	0.139	0.1643	0.6148	0.2613	0.8761
sp	cen	ST_D	Н	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	TM
----	-----	--------	------	------	-------	--------	--------	--------	------	--------	--------	--------	--------
Hs	А	0.448	17.5	2	97.2	2.1475	0.642	0.827	na	1.9052	2.7895	2.7322	5.5217
Hs	А	0.373	21.4	3	109	2.5902	0.8633	0.54	na	1.6082	3.4535	2.1482	5.6017
Hs	А	0.418	16	2	108	1.7708	0.2945	0.6392	na	1.198	2.0653	1.8372	3.9025
Hs	А	0.4445	24.4	3	103.8	2.9777	0.9388	0.892	na	1.7339	3.9165	2.6259	6.5424
Hs	А	0.3885	14.8	1	111.5	3.6405	0.2971	0.635	na	2.038	3.9376	2.673	6.6106
Hs	А	0.4885	18.4	2	110	4.3108	1.1599	0.8952	na	2.2348	5.4707	3.13	8.6007
Hs	А	0.3905	18.9	3	112.2	2.7923	0.3861	0.51	na	1.6412	3.1784	2.1512	5.3296
Hs	А	0.426	17.3	2	115.6	2.2125	1.3468	0.5485	na	2.04	3.5593	2.5885	6.1478
Hs	А	0.456	24	3	105	2.7374	0.6548	0.7716	na	1.4887	3.3922	2.2603	5.6525
Hs	А	0.5325	10.4	1	108	3.7977	1.4987	0.735	na	1.7368	5.2964	2.4718	7.7682
Hs	А	0.442	19.7	2	97.8	3.0653	0.5556	0.6387	na	1.676	3.6209	2.3147	5.9356
Hs	А	0.3505	15	2	113.6	3.0873	0.369	0.4626	na	1.2414	3.4563	1.704	5.1603
Hs	А	0.413	20.1	2	100.2	2.974	0.4482	0.6737	na	1.677	3.4222	2.3507	5.7729
Hs	А	0.4875	11	1	113.2	4.099	2.0108	0.6642	na	1.6808	6.1098	2.345	8.4548
Hs	А	0.398	17	4	114.4	2.0182	0.6821	0.4109	na	0.955	2.7003	1.3659	4.0662
Hs	А	0.4225	12	1	106.9	2.0564	0.962	0.5587	na	1.6231	3.0184	2.1818	5.2002
Hs	А	0.344	20.8	2	117	2.5832	1.1753	0.564	na	1.5807	3.7585	2.1447	5.9032
Hs	А	0.3485	12.4	2	100.5	2.0978	0.5928	0.4253	na	1.0217	2.6906	1.447	4.1376
Hs	А	0.3645	13.5	2	106	1.7666	0.3572	0.4553	na	1.0484	2.1238	1.5037	3.6275
Hs	А	0.3595	17.4	1	105.4	2.3161	0.5354	0.4407	na	1.3779	2.8515	1.8186	4.6701
Hs	А	0.4265	24	1	107	3.1481	1.0417	0.9646	na	1.7825	4.1898	2.7471	6.9369
Hs	А	0.413	26.5	3	107	3.4642	2.2806	0.898	na	2.3828	5.7448	3.2808	9.0256
Hs	А	0.4655	31	4	115.5	3.027	1.118	0.9047	na	2.3922	4.145	3.2969	7.4419
Hs	А	0.4165	17.7	2	101.8	2.1612	0.6234	0.5775	na	1.5545	2.7846	2.132	4.9166
Hs	А	0.539	21	3	112.2	4.6202	1.3144	1.0106	na	2.4412	5.9346	3.4518	9.3864
Hs	А	0.408	19.2	2	102.8	2.5752	1.1034	0.5598	na	1.7805	3.6786	2.3403	6.0189
Hs	А	0.4685	25.6	3	104.5	2.8391	1.5163	0.8563	na	2.5127	4.3554	3.369	7.7244
Hs	А	0.4095	16	2	105.5	2.5959	1.2004	0.458	na	1.6335	3.7963	2.0915	5.8878
Hs	А	0.4705	23.2	3	116	4.6836	1.7103	0.7192	na	2.4763	6.3939	3.1955	9.5894
Hs	А	0.4355	16.5	2	98.5	2.0608	0.6626	0.5551	na	1.965	2.7234	2.5201	5.2435
Hs	А	0.469	16.4	2	101.4	4.5613	0.9586	0.9164	na	2.4119	5.5199	3.3283	8.8482

sp	cen	ST_D	Н	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	ТМ
Kc	F	0.254	3.5	1	80.3	1.0834	0.2198	0.0351	0.1451	0.1836	1.3032	0.2187	1.5219
Kc	F	0.2555	3.8	1	89.8	1.3493	0.0777	0.0208	0.1768	0.1607	1.427	0.1815	1.6085
Kc	F	0.278	3	3	81.5	0.904	0.0822	0.0245	0.0871	0.1772	0.9862	0.2017	1.1879
Kc	F	0.2145	2.5	1	94.8	1.25	0.383	0.0366	0.093	0.163	1.633	0.1996	1.8326
Kc	F	0.243	2.9	2	76	1.5881	0.0649	0.0306	0.2372	0.2134	1.653	0.244	1.897
Kc	F	0.2795	3.5	2	89.9	2.413	0.2339	0.0471	0.147	0.2116	2.6469	0.2587	2.9056
Kc	F	0.244	2.03	2	83.7	1.748	0.1336	0.0293	0.1258	0.295	1.8816	0.3243	2.2059
Kc	F	0.238	2.2	1	97	2.018	0.0995	0.027	0.143	0.08	2.1175	0.107	2.2245
Kc	F	0.226	4.2	1	96.4	1.2785	na	na	na	na	1.2785	na	1.2785
Kc	F	0.2495	2.5	1	100	1.7477	0.078	0.035	0.13	0.1226	1.8257	0.1576	1.9833
Kc	F	0.255	2.7	1	94.3	2.115	0.0799	0.0226	0.199	0.1988	2.1949	0.2214	2.4163
Kc	F	0.2425	2.7	1	100	5.1904	0.1422	0.0435	0.1356	0.0896	5.3326	0.1331	5.4657
Kc	F	0.2815	2.4	2	77.5	1.3686	0.3051	0.044	0.1558	0.2101	1.6737	0.2541	1.9278
Kc	F	0.225	7.5	2	99.6	2.258	0.3046	0.0745	0.2992	0.2398	2.5626	0.3143	2.8769
Kc	F	0.2465	2.5	2	96.5	2.143	0.2219	0.0408	0.1659	0.178	2.3649	0.2188	2.5837
Kc	F	0.2425	2.4	1	73	0.9734	0.1429	0.0254	0.1517	0.0724	1.1163	0.0978	1.2141
Kc	F	0.231	2.4	1	88	1.765	0.22071	0.03318	0.1916	0.1869	1.98571	0.22008	2.20579
Kc	F	0.2345	2.8	1	0.53	1.2625	0.0537	0.0276	0.1797	na	1.3162	0.0276	1.3438
Kc	F	0.2505	3	2	98.5	1.1945	0.0443	0.0398	0.1844	0.3274	1.2388	0.3672	1.606
Kc	F	0.276	2	1	98	2.2007	0.1263	0.0201	0.2528	0.1641	2.327	0.1842	2.5112
Kc	F	0.2415	3	1	73	1.3216	na	0.0296	0.2348	na	1.3216	0.0296	1.3512
Kc	F	0.2695	3.2	1	60.9	1.2306	0.1182	0.0387	0.2305	0.1866	1.3488	0.2253	1.5741
Kc	F	0.269	3.4	1	86	0.8236	0.1255	0.0358	0.2725	na	0.9491	0.0358	0.9849
Kc	F	0.1965	2.5	2	85.4	1.6184	0.1838	0.0361	0.1325	na	1.8022	0.0361	1.8383
Kc	F	0.3145	5.7	3	103	7.8218	0.254	0.1088	0.1531	0.2864	8.0758	0.3952	8.471
Kc	F	0.2815	2.8	4	71.8	1.9852	0.117	0.0354	0.2097	0.2379	2.1022	0.2733	2.3755
Kc	F	0.2655	2.5	1	98.7	1.453	0.1896	0.0423	0.1295	0.1038	1.6426	0.1461	1.7887
Kc	F	0.201	3	1	50	6.1202	0.1271	0.0294	0.1511	0.0656	6.2473	0.095	6.3423
Kc	F	0.22	2.7	1	99.2	1.4124	0.1335	0.0293	0.1556	0.0973	1.5459	0.1266	1.6725
Kc	F	0.1985	2.03	2	99.1	1.2019	0.1954	0.0262	0.1735	na	1.3973	0.0262	1.4235
Kc	F	0.269	3	1	55.2	2.2802	0.2565	0.039	0.1756	0.1503	2.5367	0.1893	2.726
Kc	F	0.276	2.7	1	85.6	2.4429	0.1736	0.0305	0.2354	0.1318	2.6165	0.1623	2.7788
196	57												

sp	cen	ST_D	Η	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	TM
Та	F	0.648	2.5	10	97	2.025	0.6816	0.1199	0.0825	1.6686	2.7066	1.7885	4.4951
Ta	F	0.484	3.2	8	94.4	2.6435	0.633	0.1177	0.0749	0.9383	3.2765	1.056	4.3325
Та	F	0.4	4	12	96.5	2.1264	0.4055	0.1227	na	1.5842	2.5319	1.7069	4.2388
Та	F	0.3915	5.4	16	96.8	0.9568	0.4136	0.1061	na	0.3184	1.3704	0.4245	1.7949
Ta	F	0.6365	6.4	10	93.8	1.93	0.4159	0.1703	na	1.956	2.3459	2.1263	4.4722
Ta	F	0.3725	4.2	11	97.2	1.8245	0.455	0.95	na	1.1953	2.2795	2.1453	4.4248
Ta	F	0.445	5	12	97	0.7609	0.2522	0.0765	0.0873	1.097	1.0131	1.1735	2.1866
Ta	F	0.521	4.4	10	104	1.151	0.3638	0.1112	0.0574	1.4252	1.5148	1.5364	3.0512
Та	F	0.384	3	11	102	1.759	0.9387	0.0942	na	2.4458	2.6977	2.54	5.2377
Ta	F	0.3865	3.5	12	98.4	1.711	0.2851	0.075	0.0466	1.223	1.9961	1.298	3.2941
Та	F	0.4685	5	12	96.4	2.4129	0.5651	0.1677	0.0998	2.0479	2.978	2.2156	5.1936
Та	F	0.38	3.4	12	94.1	1.5187	0.2813	0.0722	0.087	0.9902	1.8	1.0624	2.8624
Та	F	0.45	6.4	12	96	1.5684	0.6003	0.1411	0.0808	1.694	2.1687	1.8351	4.0038
Та	F	0.4135	3.6	8	97	2.4171	0.4926	0.0874	0.0918	0.7922	2.9097	0.8796	3.7893
Та	F	0.3455	4.4	12	95	1.3975	0.5974	0.0766	0.0779	1.4611	1.9949	1.5377	3.5326
Та	F	0.4795	4	12	101	1.1671	0.3071	0.1312	na	1.3982	1.4742	1.5294	3.0036
Та	F	0.3925	4.5	14	96.4	1.0652	0.2565	0.0885	0.0362	1.0179	1.3217	1.1064	2.4281
Та	F	0.415	5	18	98.3	1.0753	0.5517	0.1091	0.0661	1.874	1.627	1.9831	3.6101
Та	F	0.435	3.3	14	96.7	2.7118	0.7257	0.1096	0.0733	1.7125	3.4375	1.8221	5.2596
Та	F	0.624	4.3	12	98	2.4168	1.13	0.1779	0.0417	2.3	3.5468	2.4779	6.0247
Та	F	0.3665	6.5	10	102	0.4642	0.1337	0.0953	0.0813	0.3533	0.5979	0.4486	1.0465
Та	F	0.5005	5.1	18	106.8	0.7654	0.4926	0.1467	na	1.882	1.258	2.0287	3.2867
Та	F	0.3375	6.2	13	94.5	1.0023	0.5046	0.1025	0.0761	1.2506	1.5069	1.3531	2.86
Та	F	0.322	4.5	10	100	1.0817	0.1543	0.0827	0.0736	0.9472	1.236	1.0299	2.2659
Та	F	0.468	4.7	14	97	0.9738	0.3657	0.1109	0.0784	1.4312	1.3395	1.5421	2.8816
Та	F	0.4055	3.5	10	98.5	0.7504	0.1944	0.0495	0.0709	0.8858	0.9448	0.9353	1.8801
Та	F	0.4115	2.6	10	96.5	1.025	0.5106	0.0908	0.0692	1.5798	1.5356	1.6706	3.2062
Та	F	0.388	2.5	10	113	1.0889	0.089	0.0568	0.0805	0.6857	1.1779	0.7425	1.9204
Ta	F	0.324	4.2	12	97	1.2607	0.2705	0.0674	0.042	1.13	1.5312	1.1974	2.7286
Та	F	0.42	5.5	14	96.5	0.9983	0.2889	0.1125	0.0849	2.3723	1.2872	2.4848	3.772
Та	F	0.4425	2.8	10	100.5	1.7455	0.2761	0.061	0.0294	1.0021	2.0216	1.0631	3.0847
1969													

sp	cen	ST_D	Н	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	ТМ
Qg	F	0.223	11.6	11	101	0.8118	0.36	0.1853	0.1312	0.6511	1.1718	0.8364	2.0082
Qg	F	0.2835	15.3	8	99.6	1.1088	0.527	0.2802	0.1573	1.0385	1.6358	1.3187	2.9545
Qg	F	0.178	14.4	6	103.1	0.4208	0.2038	0.185	0.1689	0.6859	0.6246	0.8709	1.4955
Qg	F	0.191	12.2	6	102.1	0.2304	0.121	0.118	0.0967	0.318	0.3514	0.436	0.7874
Qg	F	0.2075	13.8	7	101	0.77	0.0938	0.2076	0.1224	0.7165	0.8638	0.9241	1.7879
Qg	F	0.2295	10.4	8	106.5	1.07	0.18	0.1567	0.1511	0.6255	1.25	0.7822	2.0322
Qg	F	0.2235	7.6	20	104	0.2973	0.24	0.15	0.1385	0.5792	0.5373	0.7292	1.2665
Qg	F	0.194	11.3	5	100	0.349	0.094	0.1172	0.1275	0.3566	0.443	0.4738	0.9168
Qg	F	0.2685	14.7	9	103.4	1.017	0.219	0.2425	0.127	1.341	1.236	1.5835	2.8195
Qg	F	0.248	15.4	10	102.5	0.9965	0.2706	0.2245	0.1682	1.587	1.2671	1.8115	3.0786
Qg	F	0.2155	11.3	6	101	0.6149	0.1438	0.1838	0.1529	0.5658	0.7587	0.7496	1.5083
Qg	F	0.1725	10.4	11	99.8	0.3914	0.0865	0.088	0.198	0.4707	0.4779	0.5587	1.0366
Qg	F	0.2115	11.2	12	100.5	0.3907	0.0705	0.0846	0.1241	0.3966	0.4612	0.4812	0.9424
Qg	F	0.177	11.5	14	100.3	0.2775	0.0863	0.11	0.0672	0.3698	0.3638	0.4798	0.8436
Qg	F	0.216	14.2	10	100.3	0.5363	0.189	0.1613	0.1413	0.7979	0.7253	0.9592	1.6845
Qg	F	0.249	11.8	12	103.2	0.3559	0.124	0.1804	0.1495	0.7272	0.4799	0.9076	1.3875
Qg	F	0.2355	10	19	99	0.39	0.1399	0.2143	0.1776	0.8237	0.5299	1.038	1.5679
Qg	F	0.2315	12.5	12	103.2	0.8187	0.2818	0.2039	0.13	0.8173	1.1005	1.0212	2.1217
Qg	F	0.2205	19.8	10	82.6	0.8281	0.1096	0.2851	0.1442	1.0965	0.9377	1.3816	2.3193
Qg	F	0.276	17.4	11	93.2	1.532	0.168	0.3282	0.093	1.3321	1.7	1.6603	3.3603
Qg	F	0.17	11.7	6	99.8	0.6257	0.05606	0.0882	0.1081	0.152	0.68176	0.2402	0.92196
Qg	F	0.2265	11.5	13	93	0.3565	0.1427	0.1562	0.1188	0.522	0.4992	0.6782	1.1774
Qg	F	0.218	11.3	20	111.2	0.6779	0.0744	0.1866	0.11	1.0566	0.7523	1.2432	1.9955
Qg	F	0.2815	15.5	9	101	1.149	0.2377	0.3611	0.1528	1.2839	1.3867	1.645	3.0317
Qg	F	0.2285	14.7	14	100.6	0.446	0.166	0.2236	0.1015	0.8822	0.612	1.1058	1.7178
Qg	F	0.2515	14.6	9	100.3	0.747	0.112	0.2555	0.1322	0.985	0.859	1.2405	2.0995
Qg	F	0.268	14	8	99.6	0.657	0.1737	0.24	0.104	0.7274	0.8307	0.9674	1.7981
Qg	F	0.2535	12.3	16	100	0.454	0.1	0.19	0.1012	0.715	0.554	0.905	1.459
Qg	F	0.2375	13.5	12	100.5	0.533	0.0899	0.179	0.1629	0.55	0.6229	0.729	1.3519
Qg	F	0.2735	15.4	12	107.2	0.852	0.2235	0.2977	0.19	1.339	1.0755	1.6367	2.7122
Qg	F	0.2555	14.2	12	103.3	0.579	0.91	0.3043	0.1277	1.239	1.489	1.5433	3.0323
Qg	F	0.236	14	11	100	0.7799	0.0958	0.2028	0.1021	0.958	0.8757	1.1608	2.0365
Qg	F	0.211	13.4	12	91	0.903	0.1051	0.1908	0.1408	0.742	1.0081	0.9328	1.9409
19	70												

sp	cen	ST_D	Η	Lnum	RL	TpRM	ScRM	StM	CotM	TLM	RM	SM	TM
Hs	F	0.3665	16.9	2	120	4.1813	0.5971	0.6155	na	2.0741	4.7784	2.6896	7.468
Hs	F	0.484	27.3	3	114	6.7801	2.0496	1.1739	na	3.4415	8.8297	4.6154	13.4451
Hs	F	0.409	16.3	6	114.5	2.9467	0.5666	0.5018	na	1.785	3.5133	2.2868	5.8001
Hs	F	0.5025	28.6	6	105.2	4.904	1.5676	1.1313	na	4.1475	6.4716	5.2788	11.7504
Hs	F	0.48	22.6	5	110	4.2549	1.4194	0.8997	na	3.188	5.6743	4.0877	9.762
Hs	F	0.4695	39.2	5	113	3.7989	1.382	1.3548	na	4.8573	5.1809	6.2121	11.393
Hs	F	0.4855	29.5	3	110.5	5.6415	1.248	1.4414	na	2.9082	6.8895	4.3496	11.2391
Hs	F	0.556	26.9	5	113.5	4.276	1.1004	1.193	na	3.2807	5.3764	4.4737	9.8501
Hs	F	0.4355	30.5	5	118.7	5.1571	1.0319	0.9642	na	3.4579	6.189	4.4221	10.6111
Hs	F	0.4525	25.8	5	108	6.0944	2.2947	0.9151	na	3.6155	8.3891	4.5306	12.9197
Hs	F	0.392	21.9	2	110.2	3.3116	1.811	0.7553	na	2.7512	5.1226	3.5065	8.6291
Hs	F	0.334	23.9	4	98	4.1001	1.2766	0.6405	na	3.0318	5.3767	3.6723	9.049
Hs	F	0.456	26.5	3	103.8	2.528	0.6627	1.0057	na	2.1743	3.1907	3.18	6.3707
Hs	F	0.379	19	4	104	3.1304	1.5707	0.6422	na	2.8422	4.7011	3.4844	8.1855
Hs	F	0.431	23.5	4	105	4.7167	2.6528	0.707	na	3.1755	7.3695	3.8825	11.252
Hs	F	0.454	24.5	3	100.1	3.9309	1.5727	0.7881	na	2.816	5.5036	3.6041	9.1077
Hs	F	0.472	28.6	6	108.9	5.569	6.7021	1.0173	na	4.3682	12.2711	5.3855	17.6566
Hs	F	0.3925	23.7	4	100.4	3.4778	1.055	0.8292	na	2.3845	4.5328	3.2137	7.7465
Hs	F	0.341	24	4	99	1.0534	0.6219	0.4802	na	1.8366	1.6753	2.3168	3.9921
Hs	F	0.5835	29.7	5	100.7	4.9299	2.6485	1.3712	na	4.4183	7.5784	5.7895	13.3679
Hs	F	0.47	22.4	4	105	5.9964	2.3868	0.8897	na	3.4668	8.3832	4.3565	12.7397
Hs	F	0.481	19	3	107	5.8999	1.1586	0.8735	na	2.734	7.0585	3.6075	10.666
Hs	F	0.4855	21.5	5	118.4	4.8162	2.8852	0.8808	na	3.3107	7.7014	4.1915	11.8929
Hs	F	0.3685	24.8	4	110	2.1966	0.2308	0.5485	na	1.7122	2.4274	2.2607	4.6881
Hs	F	0.459	25.2	5	103.5	4.7725	0.7281	0.8744	na	2.9516	5.5006	3.826	9.3266
Hs	F	0.4005	17.5	4	105.6	3.3847	1.3812	0.6302	na	2.1954	4.7659	2.8256	7.5915
Hs	F	0.458	21	4	104	1.9144	1.1507	0.5866	na	2.2076	3.0651	2.7942	5.8593
Hs	F	0.4335	31.5	5	101	5.295	2.1873	1.1713	na	3.2244	7.4823	4.3957	11.878
Hs	F	0.56	20.9	3	101	6.5977	1.8611	0.9807	na	3.2753	8.4588	4.256	12.7148
Hs	F	0.4585	20.7	3	111	8.7739	2.3946	1.1048	na	3.257	11.1685	4.3618	15.5303
Hs	F	0.4075	21.7	3	112	4.6825	0.7818	0.8806	na	2.4636	5.4643	3.3442	8.8085
1971	-												

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Kc	А	6.273821	0.105303	0.862521	0.137479	100.6905	0.015121	106.8604	0.47381
Kc	А	6.34039	0.110105	0.863767	0.136233	134.671	0.021985	20.90045	0.10767
Kc	А	14.00406	0.052842	0.933351	0.066649	129.232	0.022545	41.18441	0.39705
Kc	А	9.520986	0.078964	0.904952	0.095048	101.3977	0.021158	65.03502	0.631563
Kc	А	12.12979	0.056741	0.923837	0.076163	127.8661	0.021947	46.1745	0.578307
Kc	А	11.10433	0.064827	0.917385	0.082615	128.6639	0.021369	52.81957	0.665092
Kc	А	17.27924	0.042601	0.945293	0.054707	121.5347	0.020536	50.38869	0.480716
Kc	А	5.500313	0.129082	0.846161	0.153839	94.31013	0.017293	45.95354	0.200585
Kc	А	7.194505	0.104311	0.877967	0.122033	119.7839	0.021196	37.16033	0.288154
Kc	А	11.56051	0.064318	0.920385	0.079615	130.531	0.019071	39.31099	0.327083
Kc	А	8.637421	0.061533	0.896238	0.103762	116.8013	0.019958	40.90672	0.391076
Kc	А	13.00774	0.049896	0.928611	0.071389	171.2205	0.020206	65.52288	0.588304
Kc	А	10.13564	0.063036	0.910198	0.089802	113.5167	0.022269	19.25705	0.156725
Kc	А	18.0477	0.044436	0.9475	0.0525	114.0714	0.024483	23.61498	0.323392
Kc	А	17.42105	0.042698	0.945714	0.054286	173.8335	0.022353	42.75845	0.483188
Kc	А	6.006786	0.126877	0.857281	0.142719	na	0.020743	28.20787	0.167267
Kc	А	7.480114	0.097822	0.882077	0.117923	68.9914	0.019293	57.5693	0.449311
Kc	А	6.513557	0.106135	0.866907	0.133093	147.5373	0.016736	81.01232	0.422917
Kc	А	6.868093	0.099607	0.872904	0.127096	na	0.019775	80.95365	0.695238
Kc	А	7.41786	0.097093	0.881205	0.118795	123.0503	0.018652	48.36747	0.30058
Kc	А	12.76609	0.050909	0.927358	0.072642	123.0377	0.019435	67.93833	0.536088
Kc	А	10.48181	0.059917	0.912906	0.087094	na	0.020584	20.95978	0.115015
Kc	А	na							
Kc	А	10.20632	0.071839	0.910765	0.089235	na	0.026242	30.71482	0.476276
Kc	А	11.86402	0.052191	0.922264	0.077736	115.7853	0.016408	94.58206	0.520238
Kc	А	2.158543	0.301951	0.683398	0.316602	26.80633	0.017164	55.6369	0.20551
Kc	А	3.501521	0.150351	0.777853	0.222147	54.2048	0.016689	78.10578	0.399735
Kc	А	9.384549	0.075399	0.903703	0.096297	na	0.018868	67.30016	0.496131

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Та	А	2.375427	0.269433	0.703741	0.296259	117.736	0.023613	57.02671	0.696
Та	А	1.914098	0.313245	0.656841	0.343159	123.0525	0.021728	69.49551	0.665167
Та	А	2.772455	0.242514	0.734921	0.265079	125.1528	0.021065	73.52608	0.689333
Та	А	1.511591	0.354295	0.601846	0.398154	127.9725	0.024108	65.99806	0.727667
Та	А	1.564474	0.362318	0.610057	0.389943	119.6413	0.02139	79.29369	0.665455
Та	А	1.788157	0.311699	0.64134	0.35866	171.9796	0.014627	181.4658	0.691074
Та	А	2.552784	0.247778	0.718531	0.281469	142.7933	0.02267	60.34706	0.648926
Та	А	2.676471	0.223418	0.728	0.272	114.2705	0.01988	72.52399	0.672066
Та	А	3.562607	0.193358	0.780827	0.219173	145.5671	0.023296	48.89488	0.682951
Та	А	3.30725	0.204147	0.767833	0.232167	122.2087	0.022575	51.31004	0.650164
Та	А	1.92101	0.303095	0.657653	0.342347	154.0694	0.020702	73.61963	0.666557
Та	А	2.891401	0.222621	0.743023	0.256977	125.3793	0.022727	54.25436	0.665738
Та	А	12.5448	0.044116	0.926171	0.073829	87.7404	0.021406	52.39406	0.649355
Та	А	1.558212	0.167597	0.609102	0.390898	112.1417	0.024979	46.11207	0.634839
Та	А	1.477418	0.374091	0.596354	0.403646	104.9396	0.019817	90.2791	0.648548
Та	А	3.608477	0.198598	0.783009	0.216991	133.2804	0.016585	100.6923	0.635313
Та	А	2.686341	0.251576	0.728728	0.271272	124.9353	0.021245	80.0719	0.650938
Та	А	3.093478	0.219963	0.755709	0.244291	158.3191	0.020839	55.34318	0.643125
Та	А	2.575009	0.247082	0.72028	0.27972	116.1471	0.022108	55.46026	0.643125
Та	А	1.206799	0.398203	0.546855	0.453145	198.6555	0.011099	76.31579	0.111008
Та	А	3.326259	0.207714	0.768853	0.231147	104.7609	0.018076	58.55583	0.484651
Та	А	9.455353	0.051857	0.904355	0.095645	89.599	0.018857	62.78825	0.624961
Та	А	9.306381	0.064274	0.902973	0.097027	84.14083	0.021133	51.70773	0.644341
Та	А	2.301281	0.273601	0.697087	0.302913	117.0699	0.016537	112.4479	0.629924
Та	А	2.751895	0.235421	0.733468	0.266532	106.3883	0.022849	42.42397	0.618473
Та	А	3.194592	0.203549	0.761598	0.238402	105.0224	0.021995	44.65026	0.627634
Та	А	3.727968	0.18112	0.788493	0.211507	125.4715	0.017797	74.24739	0.614656
Та	А	10.39046	0.045504	0.912207	0.087793	71.65653	0.022843	42.86886	0.76
Та	А	3.456259	0.196888	0.775597	0.224403	144.6911	0.017662	72.06125	0.616061
Та	А	2.854987	0.22378	0.740596	0.259404	160.797	0.020701	64.63304	0.699394
Та	А	10.15587	0.049342	0.910361	0.089639	92.94007	0.015716	89.42422	0.631212

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Qg	А	2.061251	0.19703	0.673336	0.326664	102.6022	0.014952	205.2827	0.664404
Qg	А	2.913878	0.175795	0.744499	0.255501	106.7113	0.025859	131.6622	0.805688
Qg	А	4.527118	0.031422	0.819074	0.180926	41.6356	0.020246	147.8121	0.778165
Qg	А	2.819598	0.167981	0.738192	0.261808	112.9091	0.022041	120.1617	0.560734
Qg	А	3.0341	0.133007	0.752113	0.247887	129.5997	0.020974	184.5644	0.770826
Qg	А	2.925731	0.124741	0.74527	0.25473	78.24149	0.018965	152.6639	0.525405
Qg	А	4.874157	na	0.829763	0.170237	na	0.014917	136.7826	0.268649
Qg	А	2.596381	0.147014	0.721943	0.278057	95.50796	0.013708	287.0521	0.489369
Qg	А	1.658142	0.213438	0.623797	0.376203	134.8619	0.016506	190.2507	0.46955
Qg	А	2.526113	0.214735	0.716402	0.283598	105.5254	0.023494	105.5083	0.752308
Qg	А	2.86964	0.082595	0.741578	0.258422	88.451	0.016359	221.1386	0.695043
Qg	А	2.835694	0.146761	0.739291	0.260709	104.4157	0.019237	156.4225	0.588205
Qg	А	1.855373	0.24617	0.649783	0.350217	104.1025	0.020735	91.32075	0.378803
Qg	А	1.654334	0.217311	0.623258	0.376742	105.3211	0.017274	228.4471	0.579658
Qg	А	1.419817	0.253772	0.586746	0.413254	na	0.014691	316.8605	0.327521
Qg	А	1.930575	0.222541	0.65877	0.34123	92.37421	0.018163	113.4103	0.348889
Qg	А	1.443371	0.29812	0.590729	0.409271	89.82511	0.017129	173.5099	0.397742
Qg	А	3.282845	0.081332	0.76651	0.23349	62.53685	0.019099	107.7199	0.498548
Qg	А	1.520267	0.330824	0.603217	0.396783	93.67374	0.019842	98.00154	0.280806
Qg	А	2.685431	0.182375	0.728661	0.271339	122.6861	0.019679	111.4446	0.549365
Qg	А	4.842342	0.048092	0.828836	0.171164	34.87749	0.018582	134.5756	0.645397
Qg	А	3.03376	0.153535	0.752092	0.247908	105.6739	0.015378	172.1094	0.490635
Qg	А	5.562461	0.047258	0.847618	0.152382	33.70908	0.018285	111.5312	0.514884
Qg	А	5.466306	0.049502	0.845352	0.154648	39.84375	0.018422	110.2536	0.572248
Qg	А	4.992216	0.05005	0.833117	0.166883	79.69272	0.019949	87.16161	0.533488
Qg	А	4.298384	0.129222	0.811263	0.188737	112.7913	0.020156	85.56941	0.502481
Qg	А	3.001836	0.131289	0.750115	0.249885	65.12625	0.019944	120.313	0.673023
Qg	А	2.761642	0.151765	0.734159	0.265841	94.72681	0.018535	116.6643	0.502481
Qg	А	2.424147	0.182599	0.707956	0.292044	108.4245	0.016815	127.426	0.37845
Qg	А	3.092798	0.166594	0.755668	0.244332	126.0417	0.018749	na	na
Qg	А	2.352851	0.187536	0.701746	0.298254	110.89	0.016709	na	na

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Hs	А	1.020972	0.345039	0.505189	0.494811	68.25115	0.013027	45.26193	0.528261
Hs	А	1.607625	0.287091	0.616509	0.383491	77.04706	0.013163	42.08169	0.613768
Hs	А	1.124156	0.306983	0.529225	0.470775	74.49436	0.009662	60.98938	0.782243
Hs	А	1.491489	0.265025	0.598634	0.401366	89.33158	0.014491	34.85912	0.742991
Hs	А	1.473101	0.096058	0.595649	0.404351	59.51683	0.014587	30.62766	0.814953
Hs	А	1.747827	0.259839	0.636076	0.363924	70.4369	0.017047	25.51731	0.800935
Hs	А	1.477501	0.307941	0.596367	0.403633	79.82124	0.012574	40.18193	0.813889
Hs	А	1.375043	0.331826	0.578955	0.421045	102.5627	0.013909	52.24859	0.84537
Hs	А	1.500774	0.26337	0.600124	0.399876	84.9757	0.013124	38.35757	0.747222
Hs	А	2.14273	0.223578	0.681805	0.318195	65.71434	0.015516	28.43827	0.754054
Hs	А	1.564306	0.282364	0.610031	0.389969	64.6013	0.013091	31.90552	0.662162
Hs	А	2.028345	0.240567	0.669787	0.330213	75.59827	0.01183	36.79591	0.804505
Hs	А	1.455822	0.290495	0.592804	0.407196	60.55349	0.012841	33.692	0.683784
Hs	А	2.605458	0.198798	0.722643	0.277357	78.74662	0.016133	27.61649	0.79375
Hs	А	1.976938	0.234863	0.664084	0.335916	86.05516	0.009597	56.68417	0.804464
Hs	А	1.383445	0.312123	0.580439	0.419561	53.21801	0.011794	51.98405	0.7375
Hs	А	1.75246	0.26777	0.636689	0.363311	77.11022	0.012926	45.29266	0.827679
Hs	А	1.859433	0.246931	0.65028	0.34972	81.20258	0.009753	47.90733	0.680357
Hs	А	1.412383	0.289014	0.585472	0.414528	67.03006	0.008502	60.00226	0.723009
Hs	А	1.567964	0.295047	0.610586	0.389414	77.06642	0.010738	45.50753	0.717699
Hs	А	1.525172	0.256959	0.603987	0.396013	59.63783	0.014239	33.98876	0.731858
Hs	А	1.751036	0.264005	0.636501	0.363499	na	0.016569	30.88736	0.731858
Hs	А	1.257242	0.32145	0.556981	0.443019	80.36892	0.014861	38.15659	0.80708
Hs	А	1.306098	0.316174	0.566367	0.433633	62.3732	0.011095	47.10346	0.679825
Hs	А	1.719277	0.260078	0.632255	0.367745	75.0233	0.016767	24.28466	0.771053
Hs	А	1.57185	0.295818	0.611175	0.388825	66.04637	0.012869	39.91923	0.688596
Hs	А	1.292787	0.325294	0.56385	0.43615	79.78439	0.015058	36.80744	0.703509
Hs	А	1.815109	0.277438	0.644774	0.355226	77.59405	0.012676	40.64101	0.712281
Hs	А	2.000908	0.258233	0.666767	0.333233	62.15922	0.016955	24.76727	0.804386
Hs	А	1.080671	0.37475	0.519386	0.480614	81.84916	0.011659	47.79697	0.650877
Hs	А	1.658474	0.026107	0.623844	0.376156	63.75699	0.016249	22.2305	0.676316

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Kc	F	5.958848	0.120639	0.856298	0.143702	na	0.020831	74.11852	0.594395
Kc	F	7.862259	0.099907	0.887162	0.112838	77.41228	0.021134	66.55303	0.672515
Kc	F	4.88944	0.149171	0.830205	0.169795	143.666	0.018639	90.15487	0.605015
Kc	F	8.181363	0.088945	0.891084	0.108916	63.59391	0.019842	75.84	0.638021
Kc	F	6.77459	0.112493	0.871376	0.128624	69.71689	0.022984	47.85593	0.56131
Kc	F	10.23154	0.072825	0.910965	0.089035	137.9832	0.023814	37.25653	0.609259
Kc	F	5.802035	0.133732	0.852985	0.147015	na	0.022522	47.8833	0.583196
Kc	F	19.78972	0.035963	0.951899	0.048101	117.5353	0.021524	48.06739	0.660367
Kc	F	na	na	na	na	na	na	75.40086	0.660847
Kc	F	11.58439	0.061816	0.920536	0.079464	133.9299	0.020784	57.21806	0.689418
Kc	F	9.913731	0.082275	0.908372	0.091628	na	0.022002	44.58629	0.634115
Kc	F	40.06461	0.016393	0.975648	0.024352	131.8506	0.028829	19.26634	0.689418
Kc	F	6.586777	0.108984	0.868192	0.131808	120.096	0.022924	56.62721	0.569617
Kc	F	8.153357	0.083354	0.89075	0.10925	115.026	0.026234	44.10983	0.75848
Kc	F	10.8085	0.068893	0.915315	0.084685	107.3573	0.025515	45.03033	0.737758
Kc	F	11.41411	0.059633	0.919447	0.080553	na	0.019171	74.99486	0.539339
Kc	F	9.022674	0.084732	0.900226	0.099774	94.15549	0.024116	49.85836	0.662537
Kc	F	47.68841	na	0.979461	0.020539	na	0.018231	0.419802	-0.09846
Kc	F	3.373638	0.203861	0.771357	0.228643	70.97869	0.021307	82.46128	0.755457
Kc	F	12.63301	0.065347	0.926649	0.073351	106.095	0.025489	44.53129	0.757738
Kc	F	44.64865	na	0.978094	0.021906	na	0.018187	55.23608	0.467708
Kc	F	5.986684	0.118544	0.856871	0.143129	94.91481	0.020762	49.48805	0.415362
Kc	F	26.51117	na	0.963651	0.036349	na	0.016351	104.4196	0.569271
Kc	F	49.92244	na	0.980362	0.019638	na	0.020199	52.76817	0.564583
Kc	F	20.43472	0.033809	0.953347	0.046653	158.6122	0.032307	13.16832	0.713228
Kc	F	7.691914	0.100147	0.884951	0.115049	na	0.025218	36.16764	0.528529
Kc	F	11.24298	0.058031	0.918321	0.081679	106.396	0.02246	67.92842	0.763988
Kc	F	65.76105	0.010343	0.985021	0.014979	139.965	0.03001	8.169668	0.292593
Kc	F	12.2109	0.058176	0.924305	0.075695	85.44596	0.02186	70.23506	0.768452
Kc	F	53.33206	na	0.981595	0.018405	na	0.018627	82.45278	0.671615
Kc	F	13.40042	0.055136	0.930558	0.069442	131.2293	0.025762	24.2084	0.369006
Kc	F	16.12138	0.047431	0.941593	0.058407	128.5116	0.025704	35.04032	0.630145

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Та	F	1.513335	0.371204	0.602122	0.397878	110.6415	0.026538	47.90123	0.686
Та	F	3.102746	0.216572	0.756261	0.243739	102.1411	0.026231	35.71023	0.664333
Та	F	1.483332	0.373738	0.597315	0.402685	114.832	0.026048	45.38187	0.681833
Та	F	3.228269	0.177391	0.763497	0.236503	127.6735	0.018887	101.1706	0.684333
Та	F	1.103278	0.437369	0.524552	0.475448	114.5992	0.026061	48.60104	0.648525
Та	F	1.062555	0.270137	0.515165	0.484835	120.2692	0.025973	53.27487	0.676393
Та	F	0.863315	0.501692	0.463322	0.536678	147.6577	0.020196	127.4806	0.674754
Та	F	0.985941	0.467095	0.49646	0.50354	143.1914	0.022927	90.35621	0.732131
Та	F	1.062087	0.466961	0.515054	0.484946	117.0578	0.027356	57.98749	0.715738
Та	F	1.537827	0.37127	0.605962	0.394038	131.6494	0.023363	57.51023	0.68065
Та	F	1.344105	0.394312	0.573398	0.426602	na	0.027065	39.95193	0.66439
Та	F	1.694277	0.345933	0.628843	0.371157	152.7708	0.022221	61.96089	0.645691
Та	F	1.181788	0.423098	0.54166	0.45834	210.4633	0.024748	61.20888	0.655806
Та	F	3.307981	0.209062	0.767873	0.232127	134.3618	0.024304	40.13074	0.663871
Та	F	1.297327	0.413605	0.564712	0.435288	120.628	0.023738	67.97853	0.647742
Та	F	0.963907	0.465508	0.490811	0.509189	110.2152	0.021729	86.53929	0.674375
Та	F	1.194595	0.419217	0.544335	0.455665	117.077	0.020067	90.49944	0.638438
Та	F	0.820433	0.519099	0.45068	0.54932	143.4559	0.023166	91.41635	0.653281
Та	F	1.886559	0.325595	0.653567	0.346433	153.316	0.026106	35.65897	0.640781
Та	F	1.431373	0.381762	0.58871	0.41129	143.7122	0.026956	40.54949	0.645891
Та	F	1.332813	0.337602	0.571333	0.428667	188.0818	0.013387	219.7329	0.676899
Та	F	0.620102	0.572611	0.382755	0.617245	166.0412	0.022259	139.5349	0.714109
Та	F	1.113665	0.437273	0.526888	0.473112	116.5242	0.021181	94.28315	0.61876
Та	F	1.200117	0.418024	0.545479	0.454521	155.8408	0.01908	92.44707	0.651298
Та	F	0.868621	0.496669	0.464846	0.535154	217.1358	0.020915	99.60978	0.628397
Та	F	1.010157	0.471145	0.502526	0.497474	285.4691	0.017655	131.2633	0.639847
Та	F	0.919191	0.492733	0.478947	0.521053	104.4918	0.02173	94.14634	0.62458
Та	F	1.586397	0.357061	0.613362	0.386638	154.3713	0.017682	103.7745	0.744848
Та	F	1.278771	0.414132	0.561167	0.438833	168.6199	0.020343	76.94138	0.623636
Та	F	0.51803	0.628924	0.341251	0.658749	137.9828	0.022796	96.66433	0.619848
Та	F	1.901609	0.324861	0.655364	0.344636	223.6837	0.021273	57.57663	0.650152

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Qg	F	1.401004	0.324221	0.583508	0.416492	132.632	0.027538	124.4149	0.778135
Qg	F	1.240464	0.351498	0.553664	0.446336	95.5183	0.03108	89.82684	0.765291
Qg	F	0.717189	0.458643	0.417653	0.582347	120.5652	0.024833	245.0095	0.797401
Qg	F	0.805963	0.403861	0.446279	0.553721	85.77824	0.018948	443.1424	0.788226
Qg	F	0.934747	0.400749	0.483137	0.516863	122.7987	0.026472	131.1688	0.778135
Qg	F	1.598057	0.307795	0.615097	0.384903	114.6577	0.027149	99.53271	0.813664
Qg	F	0.736835	0.457323	0.42424	0.57576	157.1311	0.022889	349.815	0.791141
Qg	F	0.934994	0.388962	0.483202	0.516798	114.4343	0.019978	286.533	0.755105
Qg	F	0.780549	0.475616	0.438376	0.561624	83.50319	0.030099	101.6716	0.785736
Qg	F	0.699476	0.515494	0.411583	0.588417	97.18098	0.029559	102.86	0.744109
Qg	F	1.01214	0.375124	0.503017	0.496983	115.0947	0.023408	164.2544	0.731178
Qg	F	0.855379	0.454081	0.461026	0.538974	111.3187	0.020175	254.9821	0.720833
Qg	F	0.958437	0.42084	0.489389	0.510611	126.6165	0.019354	257.2306	0.726868
Qg	F	0.758233	0.438359	0.431247	0.568753	129.6658	0.018399	361.4414	0.725144
Qg	F	0.756151	0.473672	0.430573	0.569427	105.3193	0.024153	187.0222	0.718946
Qg	F	0.528757	0.524108	0.345874	0.654126	114.3107	0.022495	289.9691	0.743732
Qg	F	0.510501	0.525352	0.337968	0.662032	129.7065	0.022211	253.8462	0.667876
Qg	F	1.077654	0.38521	0.518688	0.481312	111.6877	0.02465	126.0535	0.701747
Qg	F	0.678706	0.472772	0.404303	0.595697	113.9174	0.025368	99.74641	0.535618
Qg	F	1.023911	0.396423	0.505907	0.494093	93.92329	0.028358	60.83551	0.621102
Qg	F	2.838301	0.164866	0.739468	0.260532	104.2642	0.017928	159.5014	0.674328
Qg	F	0.736066	0.44335	0.423985	0.576015	108.4332	0.019901	260.8696	0.619489
Qg	F	0.605132	0.529491	0.376998	0.623002	117.6045	0.023772	164.036	0.754101
Qg	F	0.842979	0.423492	0.4574	0.5426	98.97953	0.027091	87.90252	0.673148
Qg	F	0.553445	0.513564	0.35627	0.64373	113.4422	0.022583	225.5605	0.669974
Qg	F	0.692463	0.469159	0.409145	0.590855	103.6142	0.024175	134.2704	0.667593
Qg	F	0.858693	0.404538	0.461988	0.538012	113.9589	0.022412	151.5982	0.646641
Qg	F	0.612155	0.490062	0.379712	0.620288	110.6983	0.020792	220.2643	0.649742
Qg	F	0.854458	0.406835	0.460759	0.539241	105.565	0.020201	188.5553	0.653618
Qg	F	0.657115	0.493695	0.396542	0.603458	103.9911	0.025401	125.8216	0.700128
Qg	F	0.964816	0.408601	0.491046	0.508954	92.11797	0.026259	178.4111	0.670128
Qg	F	0.754394	0.470415	0.430002	0.569998	111.0618	0.023197	128.2216	0.644744
Qg	F	1.080725	0.382297	0.519398	0.480602	146.9613	0.022827	100.7752	0.575513

sp	cen	RS	LMF	RMF	SMF	SLA	RGR	STRL	RER
Hs	F	1.776621	0.277732	0.63985	0.36015	64.33503	0.015876	28.69921	0.902767
Hs	F	1.913095	0.255967	0.656723	0.343277	83.41847	0.021423	16.81391	0.846164
Hs	F	1.536339	0.307753	0.605731	0.394269	99.17484	0.013365	38.85703	0.842928
Hs	F	1.22596	0.352967	0.550756	0.449244	47.5871	0.019963	21.45188	0.756013
Hs	F	1.38814	0.326572	0.581264	0.418736	79.53097	0.018231	25.85255	0.800872
Hs	F	0.834001	0.426341	0.454744	0.545256	92.76503	0.019675	29.74545	0.82891
Hs	F	1.583939	0.258757	0.612994	0.387006	89.67273	0.019548	19.58699	0.805545
Hs	F	1.201779	0.333063	0.545822	0.454178	82.58905	0.018315	26.5435	0.833583
Hs	F	1.399561	0.325876	0.583257	0.416743	82.09384	0.01901	23.01681	0.882181
Hs	F	1.851653	0.279844	0.649326	0.350674	89.27722	0.020099	17.72119	0.753994
Hs	F	1.460887	0.318828	0.593642	0.406358	86.29901	0.016462	33.27697	0.773814
Hs	F	1.464123	0.335043	0.594176	0.405824	104.6303	0.01689	23.90186	0.663904
Hs	F	1.003365	0.341297	0.50084	0.49916	98.23083	0.013729	41.06013	0.716156
Hs	F	1.349185	0.347224	0.57432	0.42568	91.03035	0.015844	33.22259	0.711548
Hs	F	1.898133	0.282216	0.65495	0.34505	84.11452	0.018685	22.26133	0.720476
Hs	F	1.527039	0.309189	0.60428	0.39572	92.27408	0.016797	25.46491	0.676726
Hs	F	2.278544	0.247398	0.694987	0.305013	79.71878	0.022708	19.55468	0.755298
Hs	F	1.410461	0.307816	0.585142	0.414858	88.68161	0.015352	28.86883	0.679405
Hs	F	0.723109	0.460059	0.419654	0.580346	74.56216	0.00935	93.98139	0.661003
Hs	F	1.30899	0.330516	0.56691	0.43309	na	0.020045	20.42638	0.676047
Hs	F	1.924297	0.272126	0.658037	0.341963	85.86313	0.019619	17.51051	0.7141
Hs	F	1.956618	0.256329	0.661776	0.338224	76.09796	0.018046	18.1359	0.731799
Hs	F	1.837385	0.278376	0.647563	0.352437	104.4581	0.01901	24.5837	0.832684
Hs	F	1.073738	0.365223	0.517779	0.482221	87.06954	0.010677	50.07739	0.751696
Hs	F	1.437689	0.316471	0.589775	0.410225	73.96983	0.016711	21.68675	0.694678
Hs	F	1.686686	0.289192	0.627794	0.372206	85.60776	0.014905	31.19922	0.713099
Hs	F	1.096951	0.376769	0.523117	0.476883	73.26831	0.012633	54.32511	0.699064
Hs	F	1.702186	0.27146	0.629929	0.370071	91.7072	0.018832	19.0746	0.672749
Hs	F	1.9875	0.257597	0.665272	0.334728	257.0403	0.019429	15.30837	0.672749
Hs	F	2.560525	0.209719	0.719143	0.280857	88.61613	0.021184	12.65116	0.760468
Hs	F	1.633963	0.279684	0.620344	0.379656	97.56193	0.01621	23.91885	0.76924

1990	7.3.	APÊNDICE	III: SCRIPT D	E ANÁLISES ESTA	ATÍSTICAS	NO
1991		R DO CAPÍ	TULO 1			
1992	## 18/11/202	22				
1993	## gráficos d	e correlação de Qg	e Ta			
1994						
1995	library(readxl))				
1996	f_Planilha_S3	_dbrutos_final_arti	go_veranicos_ <- r	ead_excel("C:/Users/dalch/I	Desktop/Douto	rado -
1997	geral/artigo	Veranicos	2021/Editado	Elsevier/conferindo	revisão	da
1998	Elsevier/f_Pla	nilha_S3_dbrutos_f	inal(artigo_veranico	os).xlsx",		
1999			col_types = c("te	ext", "numeric", "numeric",		
2000			"numer	ic", "numeric", "numeric",		
2001			"numer	ic", "numeric", "numeric",		
2002			"numer	ic", "numeric", "numeric",		
2003			"numer	ic", "numeric", "numeric",		
2004			"numer	ic"))		
2005	View(f_Planil	ha_S3_dbrutos_fina	al_artigo_veranicos_)		
2006						
2007	attach(f_Plani	lha_S3_dbrutos_fin	al_artigo_veranicos_	_)		
2008						
2009	##############	¥####				
2010	## Fazendo no	ova análise para incl	uir parâmetros suge	ridos pelo revisor no		
2011	#### segundo	pedido de revisão	da Flora			
2012	library(readxl))				
2013						
2014	f_Planilha_S3	_dbrutos_final_LM	F_			<-
2015	read_excel("C	:/Users/dalch/Deskt	top/f_Planilha_S3_d	brutos_final(LMF).xlsx",		
2016		col_	types = $c("text","null$	meric", "skip", "numeric",		

2017	"numeric", "numeric",	"numeric",
2018	"numeric", "numeric",	"numeric",
2019	"numeric", "numeric",	"numeric",
2020	"numeric", "numeric",	"numeric",
2021	"numeric", "skip", "ski	p", "skip",
2022	"skip", "skip", "skip", "	"numeric",
2023	"numeric", "numeric",	"numeric"))
2024	View(f_Planilha_S3_dbrutos_final_LMF_)	
2025		
2026	attach(f_Planilha_S3_dbrutos_final_LMF_)	
2027		
2028	library(tidyverse)	
2029	library(flexplot)	
2030	library(ggplot2)	
2031	library(dplyr)	
2032	library(car)	
2033	library(fitdistrplus)	
2034		
2035	Qd1 <- f_Planilha_S3_dbrutos_final_LMF_ %>% na.omit()	
2036	attach(Qd1)	
2037		
2038	esp <- c(Qd1\$species)	
2039	esp	
2040	tratamento <- c(Qd1\$tratamento)	
2041	tratamento	
2042	H <- c(Qd1\$H)	
2043	Lnum <- c(Qd1\$Lnum)	

2044	RM	<- c(Qd1\$RM)

- 2045 SM <- c(Qd1\$SM)
- 2046 TM <- c(Qd1\$TM)
- 2047 RMF <-c(Qd1\$RMF)
- $2048 \qquad SMF \quad <- c(Qd1\$SMF)$
- $2049 \qquad STRL \quad <- c(Qd1\$STRL)$
- $2050 \quad RER \quad <- c(Qd1\$RER)$
- $2051 \qquad RGR \quad <- c(Qd1\$RGR)$
- 2052 RL <- c(Qd1 RL)
- $2053 \qquad SLA \quad <- c(Qd1\$SLA)$
- $2054 \qquad RS <- c(Qd1\$RS)$
- $2055 \qquad LMF <- c(Qd1\$LMF)$
- $2056 \qquad LMt <- c(Qd1\$LMt)$
- 2057 NAR <- c(Qd1\$NAR)
- $2058 \qquad LAm <- c(Qd1\$LAm)$
- 2059
- 2060
- 2062 library(metan)
- 2063 library(corrplot)
- 2064 library(RColorBrewer)
- 2065
- 2066
- 2067
- 2068 ###Qualea:
- 2069
- 2070 data_Qg.ver <- f_Planilha_S3_dbrutos_final_LMF_[

2071	f_Planilha_S3_dbrutos_final_LMF_\$species == "Qualea grandiflora",
2072]
2073	data_Qg.ver_no_na<- data_Qg.ver %>% na.omit()
2074	data_Qg.ver_no_na
2075	
2076	## médias e erro
2077	######################################
2078	Qd1\$tratamento <- as.factor(Qd1\$tratamento)
2079	tratamento <-as.factor(Qd1\$tratamento)
2080	tratamento
2081	
2082	### para Qg
2083	
2084	data_Qg.ver1 <- data_Qg.ver_no_na[data_Qg.ver_no_na\$tratamento == "1",-(2)]
2085	data_Qg.ver1
2086	
2087	data_Qg.ver8 <- data_Qg.ver_no_na[data_Qg.ver_no_na\$tratamento == "8",-(2)]
2088	data_Qg.ver8
2089	
2090	data_Qg.ver15 <- data_Qg.ver_no_na[data_Qg.ver_no_na\$tratamento == "15",-(2)]
2091	data_Qg.ver15
2092	
2093	QgH_1 <- c(data_Qg.ver1\$H)
2094	QgLnum_1 <- c(data_Qg.ver1\$Lnum)
2095	QgRM_1 <- c(data_Qg.ver1\$RM)
2096	QgSM_1 <- c(data_Qg.ver1\$SM)
2097	QgTM_1 <- c(data_Qg.ver1\$TM)

- 2098 QgRMF_1 <- c(data_Qg.ver1\$RMF)
- $2099 \qquad QgSMF_1 <- c(data_Qg.ver1\$SMF)$
- 2100 QgSTRL_1<- c(data_Qg.ver1\$STRL)
- 2101 QgRER_1 <- c(data_Qg.ver1\$RER)
- 2102 $QgRGR_1 <- c(data_Qg.ver1\$RGR)$
- 2103 $QgRL_1 <- c(data_Qg.ver1\$RL)$
- $2104 \qquad QgSLA_1 <- c(data_Qg.ver1\$SLA)$
- $2105 \qquad QgRS_1 <- c(data_Qg.ver1\$RS)$
- 2106 $QgLMF_1 <- c(data_Qg.ver1$LMF)$
- 2107 $QgLMt_1 <- c(data_Qg.ver1\$LMt)$
- 2108 $QgNAR_1 <- c(data_Qg.ver1$NAR)$
- $2109 \qquad QgLAm_1 <- c(data_Qg.ver1\$LAm)$
- 2110
- 2111
- 2112
- $\label{eq:linear} \texttt{2113} \qquad m_QgH_1{<}{-} mean(QgH_1)$
- 2114 m_QgH_1
- 2115 $se_QgH_1 \le sd(QgH_1) / sqrt(8)$
- 2116 se_QgH_1
- 2117
- 2118 m_QgLnum_1<- mean(QgLnum_1)
- 2119 m_QgLnum_1
- $\label{eq:linear} \texttt{2120} \qquad se_QgLnum_1 <- \ sd(QgLnum_1) \ / \ sqrt(8)$
- 2121 se_QgLnum_1
- 2122
- 2123 $m_QgRM_1 <- mean(QgRM_1)$
- 2124 m_QgRM_1

2125	$se_QgRM_1 <- sd(QgRM_1) / sqrt(8)$
2126	se_QgRM_1
2127	
2128	m_QgSM_1<- mean(QgSM_1)
2129	m_QgSM_1
2130	$se_QgSM_1 <- sd(QgSM_1) / sqrt(8)$
2131	se_QgSM_1
2132	
2133	m_QgTM_1<- mean(QgTM_1)
2134	m_QgTM_1
2135	$se_QgTM_1 <- sd(QgTM_1) / sqrt(8)$
2136	se_QgTM_1
2137	
2138	m_QgRMF_1<- mean(QgRMF_1)
2139	m_QgRMF_1
2140	se_QgRMF_1 <- sd(QgRMF_1) / sqrt(8)
2141	se_QgRMF_1
2142	
2143	m_QgSMF_1<- mean(QgSMF_1)
2144	m_QgSMF_1
2145	$se_QgSMF_1 <- sd(QgSMF_1) / sqrt(8)$
2146	se_QgSMF_1

- $m_QgRS_1 <- mean(QgRS_1)$
- 2150 m_QgRS_1
- $\label{eq:se_QgRS_1} \texttt{se_QgRS_1} <- \operatorname{sd}(QgRS_1) \, / \, \operatorname{sqrt}(8)$

2152	se_QgRS_1
2153	
2154	m_QgSTRL_1<- mean(QgSTRL_1)
2155	m_QgSTRL_1
2156	se_QgSTRL_1 <- sd(QgSTRL_1) / sqrt(8)
2157	se_QgSTRL_1
2158	
2159	m_QgRGR_1<- mean(QgRGR_1)
2160	m_QgRGR_1
2161	se_QgRGR_1 <- sd(QgRGR_1) / sqrt(8)
2162	se_QgRGR_1
2163	
2164	m_QgRER_1<- mean(QgRER_1)
2165	m_QgRER_1
2166	se_QgRER_1 <- sd(QgRER_1) / sqrt(8)
2167	se_QgRER_1
2168	
2169	m_QgSLA_1<- mean(QgSLA_1)
2170	m_QgSLA_1
2171	se_QgSLA_1 <- sd(QgSLA_1) / sqrt(8)
2172	se_QgSLA_1
2173	
2174	m_QgRL_1<- mean(QgRL_1)
2175	m_QgRL_1
2176	$se_QgRL_1 <- sd(QgRL_1) / sqrt(8)$

- 2177 se_QgRL_1

2179	
2180	m_QgLMF_1<- mean(QgLMF_1)
2181	m_QgLMF_1
2182	se_QgLMF_1 <- sd(QgLMF_1) / sqrt(8)
2183	se_QgLMF_1
2184	
2185	m_QgLMt_1<- mean(QgLMt_1)
2186	m_QgLMt_1
2187	$se_QgLMt_1 <- sd(QgLMt_1) / sqrt(8)$
2188	se_QgLMt_1
2189	
2190	m_QgNAR_1<- mean(QgNAR_1)
2191	m_QgNAR_1
2192	se_QgNAR_1 <- sd(QgNAR_1) / sqrt(8)
2193	se_QgNAR_1
2194	
2195	m_QgLAm_1<- mean(QgLAm_1)
2196	m_QgLAm_1
2197	se_QgLAm_1 <- sd(QgLAm_1) / sqrt(8)
2198	se_QgLAm_1
2199	
2200	###
2201	QgH_8 <- c(data_Qg.ver8\$H)
2202	QgLnum_8 <- c(data_Qg.ver8\$Lnum)
2203	QgRM_8 <- c(data_Qg.ver8\$RM)
2204	QgSM_8 <- c(data_Qg.ver8\$SM)

 $\label{eq:gtm_s} 2205 \qquad QgTM_8 \ <- \ c(data_Qg.ver8\$TM)$

- 2206 QgRMF_8 <- c(data_Qg.ver8\$RMF)
- $2207 \qquad QgSMF_8 <- c(data_Qg.ver8\$SMF)$
- 2208 QgSTRL_8<- c(data_Qg.ver8\$STRL)
- 2209 $QgRER_8 <- c(data_Qg.ver8\$RER)$
- 2210 $QgRGR_8 <- c(data_Qg.ver8\$RGR)$
- 2211 $QgRL_8 <- c(data_Qg.ver8\$RL)$
- $2212 \qquad QgSLA_8 <- c(data_Qg.ver8\$SLA)$
- $\label{eq:grs_scalar} 2213 \qquad QgRS_8 <- c(data_Qg.ver8\$RS)$
- 2214
- $2215 \qquad m_QgH_8 <- mean(QgH_8)$
- 2216 m_QgH_8
- 2217 se_QgH_8 <- sd(QgH_8) / sqrt(8)
- 2218 se_QgH_8
- 2219
- 2220 m_QgLnum_8<- mean(QgLnum_8)
- 2221 m_QgLnum_8
- se_QgLnum_8
- 2224
- $\label{eq:m_QgRM_8} 2225 \qquad m_QgRM_8 <- \mbox{ mean}(QgRM_8)$
- 2226 m_QgRM_8
- $\label{eq:se_QgRM_8} \texttt{se_QgRM_8} \mathrel{<\!\!\!\!\!-} \mathsf{sd}(\mathsf{QgRM_8}) \, / \, \mathsf{sqrt(8)}$
- 2228 se_QgRM_8
- 2229
- $\label{eq:m_QgSM_8} 2230 \qquad m_QgSM_8 <- \mbox{ mean}(QgSM_8)$
- 2231 m_QgSM_8
- $\label{eq:se_QgSM_8} \texttt{se_QgSM_8} \mathrel{<\!\!\!\!\!-} \mathsf{sd}(\mathsf{QgSM_8}) \, / \, \mathsf{sqrt}(8)$

2233	se_QgSM_8
2234	
2235	m_QgTM_8<- mean(QgTM_8)
2236	m_QgTM_8
2237	se_QgTM_8 <- sd(QgTM_8) / sqrt(8)
2238	se_QgTM_8
2239	
2240	m_QgRMF_8<- mean(QgRMF_8)
2241	m_QgRMF_8
2242	se_QgRMF_8 <- sd(QgRMF_8) / sqrt(8)
2243	se_QgRMF_8
2244	
2245	m_QgSMF_8<- mean(QgSMF_8)
2246	m_QgSMF_8
2247	se_QgSMF_8 <- sd(QgSMF_8) / sqrt(8)
2248	se_QgSMF_8
2249	
2250	
2251	m_QgRS_8<- mean(QgRS_8)
2252	m_QgRS_8
2253	se_QgRS_8 <- sd(QgRS_8) / sqrt(8)
2254	se_QgRS_8
2255	
2256	m_QgSTRL_8<- mean(QgSTRL_8)
2257	m_QgSTRL_8
2258	se_QgSTRL_8 <- sd(QgSTRL_8) / sqrt(8)
2259	se_QgSTRL_8

2260	
2261	m_QgRGR_8<- mean(QgRGR_8)
2262	m_QgRGR_8
2263	se_QgRGR_8 <- sd(QgRGR_8) / sqrt(8)
2264	se_QgRGR_8
2265	
2266	m_QgRER_8<- mean(QgRER_8)
2267	m_QgRER_8
2268	se_QgRER_8 <- sd(QgRER_8) / sqrt(8)
2269	se_QgRER_8
2270	
2271	m_QgSLA_8<- mean(QgSLA_8)
2272	m_QgSLA_8
2273	se_QgSLA_8 <- sd(QgSLA_8) / sqrt(8)
2274	se_QgSLA_8
2275	
2276	m_QgRL_8<- mean(QgRL_8)
2277	m_QgRL_8
2278	se_QgRL_8 <- sd(QgRL_8) / sqrt(8)
2279	se_QgRL_8
2280	
2281	
2282	m_QgLMF_8<- mean(QgLMF_8)
2283	m_QgLMF_8
2284	se_QgLMF_8 <- sd(QgLMF_8) / sqrt(8)
2285	se_QgLMF_8
2286	

- 2287 m_QgLMt_8<- mean(QgLMt_8) 2288 m_QgLMt_8 2289 $se_QgLMt_8 <- sd(QgLMt_8) / sqrt(8)$ 2290 se_QgLMt_8 2291 2292 m_QgNAR_8<- mean(QgNAR_8) 2293 m_QgNAR_8 2294 se_QgNAR_8 <- sd(QgNAR_8) / sqrt(8) 2295 se_QgNAR_8 2296 2297 m_QgLAm_8<- mean(QgLAm_8) 2298 m_QgLAm_8 2299 se_QgLAm_8 <- sd(QgLAm_8) / sqrt(8)</pre> 2300 se_QgLAm_8
 - 2301
 - 2302 ###
 - 2303 QgH_15 <- c(data_Qg.ver15\$H)
 - 2304 QgLnum_15 <- c(data_Qg.ver15\$Lnum)
 - 2305 $QgRM_{15} <- c(data_Qg.ver15\$RM)$
 - $2306 \qquad QgSM_15 \ <- \ c(data_Qg.ver15\$SM)$
 - $2307 \qquad QgTM_15 \ <- \ c(data_Qg.ver15\$TM)$
 - $2308 \qquad QgRMF_15 <- c(data_Qg.ver15\$RMF)$
 - $\label{eq:gsmf_15} 2309 \qquad QgSMF_15 <- c(data_Qg.ver15\$SMF)$
 - 2310 QgSTRL_15<- c(data_Qg.ver15\$STRL)
 - 2311 $QgRER_{15} <- c(data_Qg.ver15\$RER)$
 - $\label{eq:grad_loss} 2312 \qquad QgRGR_15 <- c(data_Qg.ver15\$RGR)$
 - 2313 $QgRL_{15} <- c(data_Qg.ver15\$RL)$

2314 QgSLA_15 <- c(data_Qg.ver15\$SLA) 2315 QgRS_15 <- c(data_Qg.ver15\$RS) 2316 2317 $m_QgH_15 <- mean(QgH_15)$ 2318 m_QgH_15 2319 $se_QgH_15 \le sd(QgH_15) / sqrt(8)$ 2320 se_QgH_15 2321 2322 m_QgLnum_15<- mean(QgLnum_15) 2323 m_QgLnum_15 2324 se_QgLnum_15 <- sd(QgLnum_15) / sqrt(8) 2325 se_QgLnum_15 2326 2327 m_QgRM_15<- mean(QgRM_15) 2328 m_QgRM_15 2329 $se_QgRM_{15} <- sd(QgRM_{15}) / sqrt(8)$ 2330 se_QgRM_15 2331 2332 m_QgSM_15<- mean(QgSM_15) 2333 m_QgSM_15 2334 se_QgSM_15 <- sd(QgSM_15) / sqrt(8) 2335 se_QgSM_15 2336 2337 m_QgTM_15<- mean(QgTM_15) 2338 m_QgTM_15 2339 $se_QgTM_15 <- sd(QgTM_15) / sqrt(8)$ 2340 se_QgTM_15

2341	
2342	m_QgRMF_15<- mean(QgRMF_15)
2343	m_QgRMF_15
2344	se_QgRMF_15 <- sd(QgRMF_15) / sqrt(8)
2345	se_QgRMF_15
2346	
2347	m_QgSMF_15<- mean(QgSMF_15)
2348	m_QgSMF_15
2349	$se_QgSMF_{15} <- sd(QgSMF_{15}) / sqrt(8)$
2350	se_QgSMF_15
2351	
2352	m_QgRS_15<- mean(QgRS_15)
2353	m_QgRS_15
2354	se_QgRS_15 <- sd(QgRS_15) / sqrt(8)
2355	se_QgRS_15
2356	
2357	m_QgSTRL_15<- mean(QgSTRL_15)
2358	m_QgSTRL_15
2359	se_QgSTRL_15 <- sd(QgSTRL_15) / sqrt(8)
2360	se_QgSTRL_15
2361	
2362	m_QgRGR_15<- mean(QgRGR_15)
2363	m_QgRGR_15
2364	se_QgRGR_15 <- sd(QgRGR_15) / sqrt(8)
2365	se_QgRGR_15
2366	

2367 m_QgRER_15<- mean(QgRER_15)

2368	m_QgRER_15
2369	se_QgRER_15 <- sd(QgRER_15) / sqrt(8)
2370	se_QgRER_15
2371	
2372	m_QgSLA_15<- mean(QgSLA_15)
2373	m_QgSLA_15
2374	se_QgSLA_15 <- sd(QgSLA_15) / sqrt(8)
2375	se_QgSLA_15
2376	
2377	m_QgRL_15<- mean(QgRL_15)
2378	m_QgRL_15
2379	se_QgRL_15 <- sd(QgRL_15) / sqrt(8)
2380	se_QgRL_15
2381	
2382	##### Tabebuia
2383	data_Ta.ver <- f_Planilha_S3_dbrutos_final_LMF_[
2384	f_Planilha_S3_dbrutos_final_LMF_\$species == "Tabebuia aurea",-(2)]
2385	data_Ta.ver_no_na<- data_Ta.ver %>% na.omit()
2386	data_Ta.ver_no_na
2387	
2388	data_Ta.ver1 <- data_Ta.ver_no_na[data_Ta.ver_no_na\$tratamento == "1",-(2)]
2389	data_Ta.ver1
2390	
2391	data_Ta.ver8 <- data_Ta.ver_no_na[data_Ta.ver_no_na\$tratamento == "8",-(2)]
2392	data_Ta.ver8
2393	
2394	data_Ta.ver15 <- data_Ta.ver_no_na[data_Ta.ver_no_na\$tratamento == "15",-(2)]

```
2395 data_Ta.ver15
```

- $2397 \qquad TaH_1 <- c(data_Ta.ver1\$H)$
- 2398 TaLnum_1 <- c(data_Ta.ver1\$Lnum)
- $2399 \quad TaRM_1 \ <- \ c(data_Ta.ver1\$RM)$
- $2400 \quad TaSM_1 \ {\rm <-} \ c(data_Ta.ver1\$SM)$
- $2401 \qquad TaTM_1 \ <- \ c(data_Ta.ver1\$TM)$
- $2402 \qquad TaRMF_1 <- c(data_Ta.ver1\$RMF)$
- 2403 TaSMF_1 <- c(data_Ta.ver1\$SMF)
- 2404 TaSTRL_1<- c(data_Ta.ver1\$STRL)
- 2405 TaRER_1 <- c(data_Ta.ver1\$RER)
- $2406 \qquad TaRGR_1 <- c(data_Ta.ver1\$RGR)$
- 2407 TaRL_1 <- $c(data_Ta.ver1\$RL)$
- $2408 \qquad TaSLA_1 <- c(data_Ta.ver1\$SLA)$
- $2409 \qquad TaRS_1 <- c(data_Ta.ver1\$RS)$
- 2410
- 2411 $m_TaH_1 <- mean(TaH_1)$
- 2412 m_TaH_1
- 2413 se_TaH_1 <- sd(TaH_1) / sqrt(10)
- 2414 se_TaH_1
- 2415
- 2416 m_TaLnum_1<- mean(TaLnum_1)
- 2417 m_TaLnum_1
- 2418 se_TaLnum_1 <- sd(TaLnum_1) / sqrt(10)
- 2419 se_TaLnum_1
- 2420
- $\label{eq:lambda} \texttt{2421} \qquad m_TaRM_1{<\!\!-} mean(TaRM_1)$

- 2422 m_TaRM_1 2423 se_TaRM_1 <- sd(TaRM_1) / sqrt(10) 2424 se_TaRM_1 2425 2426 m_TaSM_1<- mean(TaSM_1) 2427 m_TaSM_1 2428 $se_TaSM_1 \le sd(TaSM_1) / sqrt(10)$ 2429 se_TaSM_1 2430 2431 m_TaTM_1<- mean(TaTM_1) 2432 m_TaTM_1 2433 se_TaTM_1 <- sd(TaTM_1) / sqrt(10) 2434 se_TaTM_1 2435 2436 m_TaRMF_1<- mean(TaRMF_1) 2437 m_TaRMF_1 2438 se_TaRMF_1 <- sd(TaRMF_1) / sqrt(10) 2439 se_TaRMF_1 2440 2441 m_TaSMF_1<- mean(TaSMF_1) 2442 m_TaSMF_1 2443 se_TaSMF_1 <- sd(TaSMF_1) / sqrt(10) 2444 se_TaSMF_1 2445
- $2446 \qquad m_TaRS_1 <- mean(TaRS_1)$
- 2447 m_TaRS_1
- $\label{eq:se_target} \texttt{2448} \qquad \texttt{se_TaRS_1} <-\texttt{sd}(\texttt{TaRS_1}) \,/\, \texttt{sqrt}(10)$

2449	se_TaRS_1
2450	
2451	m_TaSTRL_1<- mean(TaSTRL_1)
2452	m_TaSTRL_1
2453	se_TaSTRL_1 <- sd(TaSTRL_1) / sqrt(10)
2454	se_TaSTRL_1
2455	
2456	m_TaRGR_1<- mean(TaRGR_1)
2457	m_TaRGR_1
2458	se_TaRGR_1 <- sd(TaRGR_1) / sqrt(10)
2459	se_TaRGR_1
2460	
2461	m_TaRER_1<- mean(TaRER_1)
2462	m_TaRER_1
2463	se_TaRER_1 <- sd(TaRER_1) / sqrt(10)
2464	se_TaRER_1
2465	
2466	m_TaSLA_1<- mean(TaSLA_1)
2467	m_TaSLA_1
2468	se_TaSLA_1 <- sd(TaSLA_1) / sqrt(10)
2469	se_TaSLA_1
2470	
2471	m_TaRL_1<- mean(TaRL_1)
2472	m_TaRL_1
2473	se_TaRL_1 <- sd(TaRL_1) / sqrt(10)
2474	se_TaRL_1
2475	

- 2476 ###
- 2477
- 2478 TaH_8 <- c(data_Ta.ver8\$H)
- 2479 TaLnum_8 <- c(data_Ta.ver8\$Lnum)
- $2480 \qquad TaRM_8 \ <- \ c(data_Ta.ver8\$RM)$
- $2481 \quad TaSM_8 \ <- \ c(data_Ta.ver8\$SM)$
- 2482 TaTM_8 <- $c(data_Ta.ver8$ \$TM)
- $2483 \qquad TaRMF_8 <- c(data_Ta.ver8\$RMF)$
- 2484 TaSMF_8 <- $c(data_Ta.ver8\$SMF)$
- 2485 TaSTRL_8<- c(data_Ta.ver8\$STRL)
- 2486 TaRER_8 <- c(data_Ta.ver8\$RER)
- 2487 TaRGR_8 <- $c(data_Ta.ver8\$RGR)$
- 2488 TaRL_8 <- $c(data_Ta.ver8$ RL)
- 2489 TaSLA_8 <- $c(data_Ta.ver8$ \$SLA)
- $2490 \qquad TaRS_8 <- c(data_Ta.ver8\$RS)$
- 2491
- 2492 m_TaH_8<- mean(TaH_8)
- 2493 m_TaH_8
- 2494 se_TaH_8 <- sd(TaH_8) / sqrt(10)
- 2495 se_TaH_8
- 2496
- 2497 m_TaLnum_8<- mean(TaLnum_8)
- 2498 m_TaLnum_8
- 2499 se_TaLnum_8 <- sd(TaLnum_8) / sqrt(10)
- 2500 se_TaLnum_8
- 2501
- 2502 m_TaRM_8<- mean(TaRM_8)

- 2503 m_TaRM_8 2504 se_TaRM_8 <- sd(TaRM_8) / sqrt(10) 2505 se_TaRM_8 2506 2507 m_TaSM_8<- mean(TaSM_8) 2508 m_TaSM_8 2509 $se_TaSM_8 \le sd(TaSM_8) / sqrt(10)$ 2510 se_TaSM_8 2511 2512 m_TaTM_8<- mean(TaTM_8) 2513 m_TaTM_8 2514 se_TaTM_8 <- sd(TaTM_8) / sqrt(10) 2515 se_TaTM_8 2516 2517 m_TaRMF_8<- mean(TaRMF_8) 2518 m_TaRMF_8 2519 se_TaRMF_8 <- sd(TaRMF_8) / sqrt(10) 2520 se_TaRMF_8 2521 2522 m_TaSMF_8<- mean(TaSMF_8) 2523 m_TaSMF_8 2524 se_TaSMF_8 <- sd(TaSMF_8) / sqrt(10) 2525 se_TaSMF_8
- 2526
- 2527
- 2528 m_TaRS_8<- mean(TaRS_8)
- 2529 m_TaRS_8

- 2530 se_TaRS_8 <- sd(TaRS_8) / sqrt(10)
- 2531 se_TaRS_8
- 2532
- 2533 m_TaSTRL_8<- mean(TaSTRL_8)
- 2534 m_TaSTRL_8
- 2535 se_TaSTRL_8 <- sd(TaSTRL_8) / sqrt(10)
- 2536 se_TaSTRL_8
- 2537
- 2538 m_TaRGR_8<- mean(TaRGR_8)
- 2539 m_TaRGR_8
- $2540 \qquad se_TaRGR_8 <- sd(TaRGR_8) / sqrt(10)$
- 2541 se_TaRGR_8
- 2542
- 2543 m_TaRER_8<- mean(TaRER_8)
- 2544 m_TaRER_8
- $2545 \qquad se_TaRER_8 <- sd(TaRER_8) / sqrt(10)$
- 2546 se_TaRER_8
- 2547
- 2548 m_TaSLA_8<- mean(TaSLA_8)
- 2549 m_TaSLA_8
- $\label{eq:se_task_s} \texttt{2550} \qquad \texttt{se_TaSLA_8} <- \ \texttt{sd}(\texttt{TaSLA_8}) \ / \ \texttt{sqrt}(10)$
- 2551 se_TaSLA_8
- 2552
- 2553 m_TaRL_8<- mean(TaRL_8)
- 2554 m_TaRL_8
- $2555 \qquad se_TaRL_8 <- sd(TaRL_8) / sqrt(10)$
- 2556 se_TaRL_8

- 2557
- 2558 ##
- $2559 \qquad TaH_{15} <- c(data_{Ta.ver15})$
- 2560 TaLnum_15 <- c(data_Ta.ver15\$Lnum)
- $2561 \quad TaRM_15 \ <- \ c(data_Ta.ver15\$RM)$
- $2562 \qquad TaSM_15 \ <\ \ c(data_Ta.ver15\$SM)$
- $2563 \qquad TaTM_15 \ <- \ c(data_Ta.ver15\$TM)$
- $2564 \qquad TaRMF_{15} <- c(data_Ta.ver15\$RMF)$
- 2565 TaSMF_15 <- c(data_Ta.ver15\$SMF)
- 2566 TaSTRL_15<- c(data_Ta.ver15\$STRL)
- 2567 TaRER_15 <- $c(data_Ta.ver15$ RER)
- $2568 \qquad TaRGR_{15} <- c(data_{Ta.ver15}RGR)$
- $2569 \quad TaRL_{15} <- c(data_Ta.ver15\$RL)$
- $2570 \quad TaSLA_15 <- c(data_Ta.ver15\$SLA)$
- $2571 \quad TaRS_15 <- c(data_Ta.ver15\$RS)$
- 2572
- 2573 m_TaH_15<- mean(TaH_15)
- 2574 m_TaH_15
- 2575 se_TaH_15 <- sd(TaH_15) / sqrt(10)
- 2576 se_TaH_15
- 2577
- 2578 m_TaLnum_15<- mean(TaLnum_15)
- 2579 m_TaLnum_15
- 2580 se_TaLnum_15 <- sd(TaLnum_15) / sqrt(10)
- 2581 se_TaLnum_15
- 2582
- $2583 \qquad m_TaRM_15{<\!\!-mean}(TaRM_15)$

- 2584 m_TaRM_15 2585 se_TaRM_15 <- sd(TaRM_15) / sqrt(10) 2586 se_TaRM_15 2587 2588 m_TaSM_15<- mean(TaSM_15) 2589 $m_{TaSM_{15}}$ 2590 se_TaSM_15 <- sd(TaSM_15) / sqrt(10) 2591 se_TaSM_15 2592 2593 m_TaTM_15<- mean(TaTM_15) 2594 m_TaTM_15 2595 se_TaTM_15 <- sd(TaTM_15) / sqrt(10) 2596 se_TaTM_15 2597 2598 m_TaRMF_15<- mean(TaRMF_15) 2599 m_TaRMF_15 2600 se_TaRMF_15 <- sd(TaRMF_15) / sqrt(10) 2601 se_TaRMF_15 2602 2603 m_TaSMF_15<- mean(TaSMF_15) 2604 m_TaSMF_15 2605 se_TaSMF_15 <- sd(TaSMF_15) / sqrt(10) 2606 se_TaSMF_15 2607 2608 m_TaRS_15<- mean(TaRS_15)
- 2609 m_TaRS_15
| 2611 | se_TaRS_15 |
|------|---|
| 2612 | |
| 2613 | m_TaSTRL_15<- mean(TaSTRL_15) |
| 2614 | m_TaSTRL_15 |
| 2615 | se_TaSTRL_15 <- sd(TaSTRL_15) / sqrt(10) |
| 2616 | se_TaSTRL_15 |
| 2617 | |
| 2618 | m_TaRGR_15<- mean(TaRGR_15) |
| 2619 | m_TaRGR_15 |
| 2620 | se_TaRGR_15 <- sd(TaRGR_15) / sqrt(10) |
| 2621 | se_TaRGR_15 |
| 2622 | |
| 2623 | m_TaRER_15<- mean(TaRER_15) |
| 2624 | m_TaRER_15 |
| 2625 | se_TaRER_15 <- sd(TaRER_15) / sqrt(10) |
| 2626 | se_TaRER_15 |
| 2627 | |
| 2628 | m_TaSLA_15<- mean(TaSLA_15) |
| 2629 | m_TaSLA_15 |
| 2630 | se_TaSLA_15 <- sd(TaSLA_15) / sqrt(10) |
| 2631 | se_TaSLA_15 |
| 2632 | |
| 2633 | m_TaRL_15<- mean(TaRL_15) |
| 2634 | m_TaRL_15 |
| 2635 | se_TaRL_15 <- sd(TaRL_15) / sqrt(10) |
| 2636 | se_TaRL_15 |
| 2637 | |
| 2638 | ###### correlação |
| 2639 | Qgcorr<-corr_coef(data_Qg.ver_no_na) |
| 2640 | |
| 2641 | plot(Qgcorr, col.low = "#FF8493", col.high ="#20B2AA") #esse foi o escolhido! |
| 2642 | |
| 2643 | corr_plot(data_Qg.ver_no_na) |
| 2644 | |

2645	###Tabebuia
2646	data_Ta.ver <- f_Planilha_S3_dbrutos_final_artigo_veranicos_[
2647	f_Planilha_S3_dbrutos_final_artigo_veranicos_\$species == "Tabebuia aurea",
2648	-(2)]
2649	data_Ta.ver_no_na<- data_Ta.ver %>% na.omit()
2650	data_Ta.ver_no_na
2651	
2652	Tacorr<-corr_coef(data_Ta.ver_no_na)
2653	
2654	plot(Tacorr, col.low = "#FF1493", col.high ="#20B2AA") #esse foi o escolhido!
2655	
2656	corr_plot(data_Qg.ver_no_na)
2657	
2658	#######################################
2659	## análises estatísticas para Tabebuia.
2660	##
2661	###### como diferem?
2662	library(PMCMR)
2663	
2664	######################################
2665	#T_RM<-(dados.v[1:33,]\$RM)
2666	#T_trat.v<-(dados.v[1:33,]\$tratamento)
2667	#str(T_trat.v)
2668	#T_trat<-as.factor(T_trat.v)
2669	#T_trat
2670	<pre>#posthoc.kruskal.nemenyi.test(T_RM, T_trat, method = "Tukey")</pre>
2671	***************************************
2672	### como estou fazendo agora:
2673	data_Ta.ver <- f_Planilha_S3_dbrutos_final_LMF_[
2674	f_Planilha_S3_dbrutos_final_LMF_\$species == "Tabebuia aurea",]
2675	data_Ta.ver_no_na<- data_Ta.ver %>% na.omit()
2676	data_Ta.ver_no_na
2677	
2678	TaH <- c(data_Ta.ver_no_na\$H)

- 2679 TaLnum <- c(data_Ta.ver_no_na\$Lnum)
- 2680 TaRM <- c(data_Ta.ver_no_na\$RM)
- $2681 \qquad TaSM \ <- \ c(data_Ta.ver_no_na\$SM)$
- $2682 \qquad TaTM <- c(data_Ta.ver_no_na\$TM)$
- $2683 \qquad TaRMF <- c(data_Ta.ver_no_na\$RMF)$
- $2684 \qquad TaSMF <- c(data_Ta.ver_no_na\$SMF)$
- 2685 TaSTRL<- c(data_Ta.ver_no_na\$STRL)
- $2686 \qquad TaRER <- c(data_Ta.ver_no_na\$RER)$
- $2687 \qquad TaRGR <- c(data_Ta.ver_no_na\$RGR)$
- $2688 \qquad TaRL \ <- \ c(data_Ta.ver_no_na\$RL)$
- $2689 \qquad TaSLA <- c(data_Ta.ver_no_na\$SLA)$
- $2690 \qquad TaRS <- c(data_Ta.ver_no_na\$RS)$
- $2691 \qquad TaLMF <- c(data_Ta.ver_no_na\$LMF)$
- $2692 \qquad TaLMt <- c(data_Ta.ver_no_na\$LMt)$
- $2693 \qquad TaNAR <- c(data_Ta.ver_no_na\$NAR)$
- $2694 \qquad TaLAm <- c(data_Ta.ver_no_na\$LAm)$
- 2695
- $\label{eq:constraint} 2696 \qquad T_trat.v <- \ as.factor(data_Ta.ver_no_na\$tratamento)$
- 2697 T_trat.v
- 2698
- 2699 kruskal.test(TaRM ~ T_trat.v)
- 2700 kruskal.test(TaSM ~ T_trat.v)
- 2701 kruskal.test(TaRMF ~ T_trat.v)
- 2702 kruskal.test(TaSMF ~ T_trat.v)
- 2703 kruskal.test(TaH ~ T_trat.v)
- 2704 kruskal.test(TaLnum ~ T_trat.v)
- 2705 kruskal.test(TaRGR ~ T_trat.v)
- 2706 kruskal.test(TaRER ~ T_trat.v)
- 2707 kruskal.test(TaSTRL~ T_trat.v)
- 2708 kruskal.test(TaRS ~ T_trat.v)
- 2709 kruskal.test(TaSLA ~ T_trat.v)
- 2710 kruskal.test(TaLMF ~ T_trat.v)
- 2711 kruskal.test(TaLMt ~ T_trat.v)
- 2712 kruskal.test(TaNAR ~ T_trat.v)

2713 kruskal.test(TaLAm ~ T_trat.v)

2714

2715	
2716	posthoc.kruskal.nemenyi.test(TaRM, T_trat.v, method = "Tukey")
2717	posthoc.kruskal.nemenyi.test(TaSM, T_trat.v, method = "Tukey")
2718	posthoc.kruskal.nemenyi.test(TaRMF, T_trat.v, method = "Tukey")
2719	posthoc.kruskal.nemenyi.test(TaSMF, T_trat.v, method = "Tukey")
2720	posthoc.kruskal.nemenyi.test(Taalt, T_trat.v, method = "Tukey")
2721	posthoc.kruskal.nemenyi.test(TaLnum, T_trat.v, method = "Tukey")
2722	<pre>posthoc.kruskal.nemenyi.test(TaRGR, T_trat.v, method = "Tukey")</pre>
2723	<pre>posthoc.kruskal.nemenyi.test(TaRER, T_trat.v, method = "Tukey")</pre>
2724	posthoc.kruskal.nemenyi.test(TaSTRL, T_trat.v, method = "Tukey")
2725	posthoc.kruskal.nemenyi.test(TaRS, T_trat.v, method = "Tukey")
2726	posthoc.kruskal.nemenyi.test(TaSLA, T_trat.v, method = "Tukey")
2727	posthoc.kruskal.nemenyi.test(TaLMF, T_trat.v, method = "Tukey")
2728	posthoc.kruskal.nemenyi.test(TaLMt, T_trat.v, method = "Tukey")
2729	posthoc.kruskal.nemenyi.test(TaNAR, T_trat.v, method = "Tukey")
2730	posthoc.kruskal.nemenyi.test(TaLAm, T_trat.v, method = "Tukey")
2731	
2732	#######################################
2733	## análises estatísticas para Qualea.
2734	data_Qg.ver <- f_Planilha_S3_dbrutos_final_LMF_[
2735	f_Planilha_S3_dbrutos_final_LMF_\$species == "Qualea grandiflora",
2736]
2737	data_Qg.ver_no_na<- data_Qg.ver %>% na.omit()
2738	data_Qg.ver_no_na
2739	
2740	
2741	Q_trat.v <- as.factor(data_Qg.ver_no_na\$tratamento)
2742	Q_trat.v
2743	
2744	QgH <- c(data_Qg.ver_no_na\$H)
2745	QgLnum <- c(data_Qg.ver_no_na\$Lnum)
2746	QgRM <- c(data_Qg.ver_no_na\$RM)

- $\label{eq:gsm} 2747 \qquad QgSM \ <- \ c(data_Qg.ver_no_na\$SM)$
- $2748 \qquad QgTM \ <- \ c(data_Qg.ver_no_na\$TM)$
- $\label{eq:graded} 2749 \qquad QgRMF <- \ c(data_Qg.ver_no_na\$RMF)$
- $\label{eq:gsmf} 2750 \qquad QgSMF <- \ c(data_Qg.ver_no_na\$SMF)$
- 2751 $QgSTRL <- c(data_Qg.ver_no_na\$STRL)$
- 2752 QgRER <- c(data_Qg.ver_no_na\$RER)
- $\label{eq:group_constraint} 2753 \qquad QgRGR <- c(data_Qg.ver_no_na\$RGR)$
- $2754 \qquad QgRL \ <- \ c(data_Qg.ver_no_na\$RL)$
- $\label{eq:gsla} 2755 \qquad QgSLA <- c(data_Qg.ver_no_na\$SLA)$
- $\label{eq:QgRS} 2756 \qquad QgRS <- c(data_Qg.ver_no_na\$RS)$
- $\label{eq:glmf} 2757 \qquad QgLMF <- \ c(data_Qg.ver_no_na\$LMF)$
- $\label{eq:glmt} 2758 \qquad QgLMt <- c(data_Qg.ver_no_na\$LMt)$
- $\label{eq:qgNAR} 2759 \qquad QgNAR <- c(data_Qg.ver_no_na\$NAR)$
- $\label{eq:QgLAm} 2760 \qquad QgLAm <- c(data_Qg.ver_no_na\$LAm)$
- 2761
- 2762 kruskal.test(QgRM ~ Q_trat.v)
- 2763 kruskal.test(QgSM ~ Q_trat.v)
- 2764 kruskal.test(QgRMF ~ Q_trat.v)
- 2765 kruskal.test(QgSMF ~ T_trat.v)
- 2766 kruskal.test(QgH ~ Q_trat.v)
- 2767 kruskal.test(QgLnum ~ Q_trat.v)
- 2768 kruskal.test(QgRGR ~ Q_trat.v)
- 2769 kruskal.test(QgRER ~ Q_trat.v)
- 2770 kruskal.test(QgSTRL~ Q_trat.v)
- 2771 kruskal.test(QgRS ~ Q_trat.v)
- 2772 kruskal.test(QgSLA ~ Q_trat.v)
- 2773 kruskal.test(QgLMF ~ Q_trat.v)
- 2774 kruskal.test(QgLMt ~ Q_trat.v)
- 2775 kruskal.test(QgNAR ~ Q_trat.v)
- 2776 kruskal.test(QgLAm ~ Q_trat.v)
- 2777
- 2778
- 2779
- 2780

2781	data_Qg.ver <- f_Planilha_S3_dbrutos_final_LMF_[
2782	f_Planilha_S3_dbrutos_final_LMF_\$species == "Qualea grandiflora",
2783]
2784	data_Qg.ver_no_na<- data_Qg.ver %>% na.omit()
2785	data_Qg.ver_no_na
2786	
2787	#######################################
2788	# comparar as sp
2789	LMF.v<- glm(LMF*esp_num~tratamento)
2790	LMF.v
2791	
2792	library(cowplot)
2793	
2794	a<- flexplot(RGR ~ tratamento species, data = Qd1, se = F, alpha = $.3$)+
2795	$scale_x_discrete(limits = c("1", "8", "15"))$
2796	plot_grid(a)
2797	
2798	b<- flexplot(LMF ~ tratamento species, data = Qd1, se = F, alpha = $.3$)+
2799	$scale_x_discrete(limits = c("1", "8", "15"))$
2800	
2801	
2802	c<- flexplot(NAR ~ tratamento species, data = Qd1, se = F, alpha = $.3$)+
2803	scale_x_discrete(limits = c("1", "8", "15"))
2804	
2805	d<- flexplot(SLA ~ tratamento species, data = Qd1, se = F, alpha = $.3$)+
2806	$scale_x_discrete(limits = c("1", "8", "15"))$
2807	
2808	cowplot::plot_grid(a,b,c,d)
2809	
2810	############ um gráfico mais bonito
2811	
2812	x= flexplot(LMF ~ tratamento + species,
2813	data = $Qd1$, se = F, alpha = .3) +
2814	$scale_x_discrete(limits = c("1", "8", "15"))$

2815	
2816	z= flexplot(RGR ~ tratamento + species,
2817	data = $Qd1$, se = F, alpha = .3) +
2818	$scale_x_discrete(limits = c("1", "8", "15"))$
2819	
2820	$y = flexplot(SLA \sim tratamento + species,$
2821	data = $Qd1$, se = F, alpha = .3) +
2822	$scale_x_discrete(limits = c("1", "8", "15"))$
2823	
2824	w = flexplot(NAR ~ tratamento + species,
2825	data = $Qd1$, se = F, alpha = .3) +
2826	$scale_x_discrete(limits = c("1", "8", "15"))$
2827	cowplot::plot_grid(x, z, y, w, nrow = 2)
2828	
2829	
2830	

7.4. APÊNDICE IV: SCRIPT DE ANÁLISES ESTATÍSTICAS NO

R DO CAPÍTULO 2

2833 library(readxl)

2834 Dados_cen_final_nov2022_ <- read_excel("C:/Users/dalch/Desktop/TESE (final)/tese_PARTES/5. cap 2835 2/6. dados/Dados_cen(final_nov2022).xlsx", col_types = c("text", "text", "numeric", 2836 "numeric", "numeric", "numeric", 2837 "numeric", "numeric", "numeric", 2838 "skip", "numeric", "numeric", "numeric", 2839 2840 "numeric", "numeric", "numeric", 2841 "numeric", "numeric", "numeric", "numeric", "numeric", "numeric")) 2842 2843 View(Dados_cen_final_nov2022_) 2844 2845 2846 attach(Dados_cen_final_nov2022_) 2847 dados1<-c(Dados cen final nov2022) 2848 dados<-na.omit(dados1) 2849 head(dados) 2850 str(dados) 2851 2852 dados.df<-data.frame(dados) 2853 str(dados.df) 2854 2855 library(tidyverse) 2856 library(flexplot) 2857 library(ggplot2) 2858 library(dplyr) library(car) 2859 2860 library(fitdistrplus) 2861 dados.df<-data.frame(Dados_cen_final_nov2022_) 2862 2863 2864 ####### O Leo da Ana me ajudou pq estava dando NAs no cen

2865	#ele me passou esse código:
2866	dados_no_na <- Dados_cen_final_nov2022_ %>% na.omit()
2867	str(dados_no_na)
2868	
2869	
2870	esp <- c(dados_no_na\$sp)
2871	esp
2872	cen <- c(dados_no_na\$cen)
2873	cen
2874	d_base <- c(dados_no_na\$ST_D)
2875	H <- c(dados_no_na\$H)
2876	Lnum <- c(dados_no_na\$Lnum)
2877	RM <- c(dados_no_na\$RM)
2878	SM <- c(dados_no_na\$SM)
2879	Mt <- c(dados_no_na\$TM)
2880	RMF <- c(dados_no_na\$RMF)
2881	SMF <- c(dados_no_na\$SMF)
2882	LMF <- c(dados_no_na\$LMF)
2883	STRL <- c(dados_no_na\$STRL)
2884	RER <- c(dados_no_na\$RER)
2885	RGR <- c(dados_no_na\$RGR)
2886	RL <- c(dados_no_na\$RL)
2887	ScRM <- c(dados_no_na\$ScRM)
2888	TpRM <- c(dados_no_na\$TpRM)
2889	StM <- c(dados_no_na\$StM)
2890	SLA <- c(dados_no_na\$SLA)
2891	
2892	######################################
2893	
2894	data_Kc <- dados_no_na[dados_no_na\$sp == "Kc",]
2895	data_Kc
2896	
2897	data_Ta <- dados_no_na[dados_no_na\$sp == "Ta",]
2898	data_Ta

data_Qg <- dados_no_na[dados_no_na\$sp == "Qg",]
data_Qg
data_Hs <- dados_no_na[dados_no_na\$sp == "Hs",]
data_Hs
+++++++++++++++++++++++++++++++++++++++
#
######################################
Qg_F <- data_Qg[data_Qg\$cen=="F",]
Qg_A <- data_Qg[data_Qg\$cen=="A",]
summary(Qg_A)
summary(Qg_F)
######################################
Ta_F <- data_Ta[data_Ta\$cen=="F",]
Ta_A <- data_Ta[data_Ta\$cen=="A",]
summary(Ta_A)
summary(Ta_F)
######################################
Kc_F <- data_Kc[data_Kc\$cen=="F",]
Kc_A <- data_Kc[data_Kc\$cen=="A",]
summary(Kc_A)
summary(Kc_F)

2933	######################################
2934	
2935	Hs_F <- data_Hs[data_Hs\$cen=="F",]
2936	Hs_A <- data_Hs[data_Hs\$cen=="A",]
2937	
2938	summary(Hs_A)
2939	summary(Hs_F)
2940	
2941	######
2942	******************
2943 2944	######################################
2945	#dados_cenarios_ago2022_
2946	#flexplot e GLM de todas as sp
2947	#
2948	###
2949	## flexplot
2950	$Mt_all = flexplot(TM \sim cen + sp,$
2951 2952	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
2953	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
2954	
2955	Mt_all
2956	
2957	### boxplot para todas
2958	ggplot(dados_no_na, aes(x=esp, y=MT, fill=cen)) +
2959	geom_boxplot()
2960	
2961	
2962	############boxplot para Qg
2963	
2964	
2965	ggplot(data_Qg, aes(x=sp, y=TM, fill=cen)) +
2966	geom_boxplot()
2967	

2968	###### GLM para Qg
2969	
2970	hist(TM)
2971	Mt_Qg<- c(data_Qg\$TM)
2972	
2973	hist(Mt_Qg)
2974	
2975	fnorm<-fitdist(data_Qg\$TM, distr = "norm")
2976	fgamma<-fitdist(data_Qg\$TM, distr = "gamma")
2977	plot(fnorm)
2978	plot(fgamma)
2979	par(mfrow=c(1,1))
2980	famm_Mt_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
2981	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
2982	#results of the tests
2983	## chi square test (with corresponding table)
2984	famm_Mt_Qg\$chisqpvalue
2985	famm_Mt_Qg\$chisqtable
2986	
2987	## Anderson-Darling test
2988	famm_Mt_Qg\$adtest
2989	## Cramer von Mises test
2990	famm_Mt_Qg\$cvmtest
2991	##Kolmogorov - Smirnov test
2992	famm_Mt_Qg\$kstest
2993	
2994	
2995	$Mt_m1_Qg <-glm(data_Qg\$TM \sim cen, family = Gamma(), data = data_Qg)$
2996	Mt_m1_Qg
2997	summary(Mt_m1_Qg)
2998	
2999	
3000	######################################
3001	####

3002	### boxplot para Ta
3003	
3004	ggplot(data_Ta, aes(x=esp., y=TM, fill=cen)) +
3005	geom_boxplot()
3006	
3007	### GLM para Ta
3008	
3009	Mt_Ta<- c(data_Ta\$TM)
3010	
3011	hist(Mt_Ta)
3012	
3013	fnorm2<-fitdist(data_Ta\$TM, distr = "norm")
3014	fgamma2<-fitdist(data_Ta\$TM, distr = "gamma")
3015	plot(fnorm2)
3016	plot(fgamma2)
3017	par(mfrow=c(1,1))
3018	famm_Mt_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
3019	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
3020	#results of the tests
3021	## chi square test (with corresponding table)
3022	famm_Mt_Ta\$chisqpvalue
3023	famm_Mt_Ta\$chisqtable
3024	
3025	## Anderson-Darling test
3026	famm_Mt_Ta\$adtest
3027	## Cramer von Mises test
3028	famm_Mt_Ta\$cvmtest
3029	##Kolmogorov - Smirnov test
3030	famm_Mt_Ta\$kstest
3031	
3032	
3033	$Mt_m1_Ta <-glm(data_Ta Ta TM ~cen, family = Gamma(), data = data_Ta)$
3034	Mt_m1_Ta
3035	summary(Mt_m1_Ta)

3036	
3037	
3038	#####
3039	######################################
3040	### boxplot para Kc
3041	
3042	ggplot(data_Kc, aes(x=esp, y=TM, fill=cen)) +
3043	geom_boxplot()
3044	
3045	###### GLM
3046	
3047	Mt_Kc<- c(data_Kc\$TM)
3048	
3049	hist(Mt_Kc)
3050	
3051	fnorm3<-fitdist(data_Kc\$TM, distr = "norm")
3052	fgamma3<-fitdist(data_Kc\$TM, distr = "gamma")
3053	plot(fnorm3)
3054	plot(fgamma3)
3055	par(mfrow=c(1,1))
3056	famm_Mt_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
3057	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
3058	#results of the tests
3059	## chi square test (with corresponding table)
3060	famm_Mt_Kc\$chisqpvalue
3061	famm_Mt_Kc\$chisqtable
3062	
3063	## Anderson-Darling test
3064	famm_Mt_Kc\$adtest
3065	## Cramer von Mises test
3066	famm_Mt_Kc\$cvmtest
3067	##Kolmogorov - Smirnov test
3068	famm_Mt_Kc\$kstest
3069	

3070	
3071	Mt_m1_Kc<-glm(data_Kc\$TM~cen,family = Gamma(),data = data_Kc)
3072	Mt_m1_Kc
3073	summary(Mt_m1_Kc)
3074	
3075	#####
3076	######################################
3077	### boxplot para Hs
3078	
3079	ggplot(data_Hs, aes(x=esp, y=Mt, fill=cen)) +
3080	geom_boxplot()
3081	
3082	###### GLM para Hs
3083	
3084	Mt_Hs<- c(data_Hs\$TM)
3085	
3086	hist(Mt_Hs)
3087	
3088	fnorm4<-fitdist(data_Hs\$TM, distr = "norm")
3089	fgamma4<-fitdist(data_Hs\$TM, distr = "gamma")
3090	plot(fnorm4)
3091	plot(fgamma4)
3092	par(mfrow=c(1,1))
3093	$famm_Mt_Hs <-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))$
3094	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
3095	#results of the tests
3096	## chi square test (with corresponding table)
3097	famm_Mt_Hs\$chisqpvalue
3098	famm_Mt_Hs\$chisqtable
3099	
3100	## Anderson-Darling test
3101	famm_Mt_Hs\$adtest
3102	## Cramer von Mises test
3103	famm Mt Hs\$cvmtest

3104	##Kolmogorov - Smirnov test
3105	famm_Mt_Hs\$kstest
3106	
3107	
3108	$Mt_m1_Hs <-glm(data_Hs\TM \sim cen, family = Gamma(), data = data_Hs)$
3109	Mt_m1_Hs
3110	summary(Mt_m1_Hs)
3111	
3112	
3113 3114	######################################
3115	#dados_cenarios_ago2022_
3116	#flexplot e GLM de todas as sp
3117	#
3118	###
3119	## flexplot
3120	$ScRM_all = flexplot(ScRM \sim cen + sp,$
3121 3122	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
3123	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
3124	
3125	ScRM_all
3126	
3127	### boxplot para todas
3128	ggplot(dados_no_na, aes(x=esp, y=ScRM, fill=cen)) +
3129	geom_boxplot()
3130	
3131	
3132	###########boxplot para Qg
3133	
3134	
3135	ggplot(data_Qg, aes(x=sp, y=ScRM, fill=cen)) +
3136	geom_boxplot()
3137	
3138	###### GLM para Qg

3139	
3140	hist(ScRM)
3141	ScRM_Qg<- c(data_Qg\$ScRM)
3142	
3143	hist(ScRM_Qg)
3144	
3145	fnorm<-fitdist(data_Qg\$ScRM, distr = "norm")
3146	fgamma<-fitdist(data_Qg\$ScRM, distr = "gamma")
3147	plot(fnorm)
3148	plot(fgamma)
3149	par(mfrow=c(1,1))
3150	famm_ScRM_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
3151	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
3152	#results of the tests
3153	## chi square test (with corresponding table)
3154	famm_ScRM_Qg\$chisqpvalue
3155	famm_ScRM_Qg\$chisqtable
3156	
3157	## Anderson-Darling test
3158	famm_ScRM_Qg\$adtest
3159	## Cramer von Mises test
3160	famm_ScRM_Qg\$cvmtest
3161	##Kolmogorov - Smirnov test
3162	famm_ScRM_Qg\$kstest
3163	
3164	
3165	$ScRM_m1_Qg <-glm(data_Qg\$ScRM \sim cen, family = Gamma(), data = data_Qg)$
3166	ScRM_m1_Qg
3167	summary(ScRM_m1_Qg)
3168	
3169	
3170	######################################
3171	####
3172	### boxplot para Ta

3173	
3174	ggplot(data_Ta, aes(x=sp, y=ScRM, fill=cen)) +
3175	geom_boxplot()
3176	
3177	### GLM para Ta
3178	
3179	ScRM_Ta<- c(data_Ta\$ScRM)
3180	
3181	hist(ScRM_Ta)
3182	
3183	fnorm2<-fitdist(data_Ta\$ScRM, distr = "norm")
3184	fgamma2<-fitdist(data_Ta\$ScRM, distr = "gamma")
3185	plot(fnorm2)
3186	plot(fgamma2)
3187	par(mfrow=c(1,1))
3188	famm_ScRM_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
3189	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
3190	#results of the tests
3191	## chi square test (with corresponding table)
3192	famm_ScRM_Ta\$chisqpvalue
3193	famm_ScRM_Ta\$chisqtable
3194	
3195	## Anderson-Darling test
3196	famm_ScRM_Ta\$adtest
3197	## Cramer von Mises test
3198	famm_ScRM_Ta\$cvmtest
3199	##Kolmogorov - Smirnov test
3200	famm_ScRM_Ta\$kstest
3201	
3202	
3203	$ScRM_m1_Ta <-glm(data_Ta \$ScRM \sim cen, family = Gamma(), data = data_Ta)$
3204	ScRM_m1_Ta
3205	summary(ScRM_m1_Ta)
3206	

3207	
3208	#####
3209	######################################
3210	### boxplot para Kc
3211	
3212	ggplot(data_Kc, aes(x=sp, y=ScRM, fill=cen)) +
3213	geom_boxplot()
3214	
3215	###### GLM
3216	
3217	ScRM_Kc<- c(data_Kc\$ScRM)
3218	
3219	hist(ScRM_Kc)
3220	
3221	fnorm3<-fitdist(data_Kc\$ScRM, distr = "norm")
3222	fgamma3<-fitdist(data_Kc\$ScRM, distr = "gamma")
3223	plot(fnorm3)
3224	plot(fgamma3)
3225	par(mfrow=c(1,1))
3226	famm_ScRM_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
3227	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
3228	#results of the tests
3229	## chi square test (with corresponding table)
3230	famm_ScRM_Kc\$chisqpvalue
3231	famm_ScRM_Kc\$chisqtable
3232	
3233	## Anderson-Darling test
3234	famm_ScRM_Kc\$adtest
3235	## Cramer von Mises test
3236	famm_ScRM_Kc\$cvmtest
3237	##Kolmogorov - Smirnov test
3238	famm_ScRM_Kc\$kstest
3239	
3240	

3241	$ScRM_m1_Kc <-glm(data_Kc\$ScRM - cen, family = Gamma(), data = data_Kc)$
3242	ScRM_m1_Kc
3243	summary(ScRM_m1_Kc)
3244	
3245	#####
3246	######################################
3247	### boxplot para Hs
3248	
3249	ggplot(data_Hs, aes(x=sp, y=ScRM, fill=cen)) +
3250	geom_boxplot()
3251	
3252	###### GLM para Hs
3253	
3254	ScRM_Hs<- c(data_Hs\$ScRM)
3255	
3256	hist(ScRM_Hs)
3257	
3258	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm")
3258 3259	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma")
3258 3259 3260	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4)
3258 3259 3260 3261	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4)
3258 3259 3260 3261 3262	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1))
3258 3259 3260 3261 3262 3263	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
3258 3259 3260 3261 3262 3263 3264	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
3258 3259 3260 3261 3262 3263 3264 3265	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests</pre>
3258 3259 3260 3261 3262 3263 3264 3265 3266	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table)</pre>
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table) famm_ScRM_Hs\$chisqpvalue</pre>
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table) famm_ScRM_Hs\$chisqpvalue famm_ScRM_Hs\$chisqptable</pre>
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table) famm_ScRM_Hs\$chisqpvalue famm_ScRM_Hs\$chisqtable
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table) famm_ScRM_Hs\$chisqpvalue famm_ScRM_Hs\$chisqtable ## Anderson-Darling test</pre>
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table) famm_ScRM_Hs\$chisqpvalue famm_ScRM_Hs\$chisqtable ## Anderson-Darling test famm_ScRM_Hs\$adtest</pre>
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3271	fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) #results of the tests ## chi square test (with corresponding table) famm_ScRM_Hs\$chisqpvalue famm_ScRM_Hs\$chisqtable ## Anderson-Darling test famm_ScRM_Hs\$adtest ## Cramer von Mises test
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273	<pre>fnorm4<-fitdist(data_Hs\$ScRM, distr = "norm") fgamma4<-fitdist(data_Hs\$ScRM, distr = "gamma") plot(fnorm4) plot(fgamma4) plot(fgamma4) par(mfrow=c(1,1)) famm_ScRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) fmscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) fmscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) fmscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) fmscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma")) fmm_ScRM_Hs\$chisqpvalue fmm_ScRM_Hs\$chisqpvalue fmm_ScRM_Hs\$chisqtable fmm_ScRM_Hs\$attest fmm_ScRM_Hs\$attest fmm_ScRM_Hs\$attest</pre>

3275	famm_ScRM_Hs\$kstest
3276	
3277	
3278	ScRM_m1_Hs<-glm(data_Hs\$ScRM~cen,family = Gamma(),data = data_Hs)
3279	ScRM_m1_Hs
3280	summary(ScRM_m1_Hs)
3281	
3282	
3283 3284	######################################
3285	#dados_cenarios_ago2022_
3286	#flexplot e GLM de todas as sp
3287	#
3288	###
3289	## flexplot
3290	TpRM_all= flexplot(TpRM ~ cen + sp,
3291 3292	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
3293	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
3294	
3295	TpRM_all
3296	
3297	### boxplot para todas
3298	ggplot(dados_no_na, aes(x=esp, y=TpRM, fill=cen)) +
3299	geom_boxplot()
3300	
3301	
3302	###########boxplot para Qg
3303	
3304	
3305	ggplot(data_Qg, aes(x=esp, y=TpRM, fill=cen)) +
3306	geom_boxplot()
3307	
3308	###### GLM para Qg
3309	

3310	hist(TpRM)
3311	TpRM_Qg<- c(data_Qg\$TpRM)
3312	
3313	hist(TpRM_Qg)
3314	
3315	fnorm<-fitdist(data_Qg\$TpRM, distr = "norm")
3316	fgamma<-fitdist(data_Qg\$TpRM, distr = "gamma")
3317	plot(fnorm)
3318	plot(fgamma)
3319	par(mfrow=c(1,1))
3320	famm_TpRM_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
3321	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
3322	#results of the tests
3323	## chi square test (with corresponding table)
3324	famm_TpRM_Qg\$chisqpvalue
3325	famm_TpRM_Qg\$chisqtable
3326	
3327	## Anderson-Darling test
3328	famm_TpRM_Qg\$adtest
3329	## Cramer von Mises test
3330	famm_TpRM_Qg\$cvmtest
3331	##Kolmogorov - Smirnov test
3332	famm_TpRM_Qg\$kstest
3333	
3334	
3335	$TpRM_m1_Qg <-glm(data_Qg\$TpRM \sim cen, family = Gamma(), data = data_Qg)$
3336	TpRM_m1_Qg
3337	summary(TpRM_m1_Qg)
3338	
3339	
3340	######################################
3341	####
3342	### boxplot para Ta
3343	

3344	ggplot(data_Ta, aes(x=esp., y=TpRM, fill=cen)) +
3345	geom_boxplot()
3346	
3347	### GLM para Ta
3348	
3349	TpRM_Ta<- c(data_Ta\$TpRM)
3350	
3351	hist(TpRM_Ta)
3352	
3353	fnorm2<-fitdist(data_Ta\$TpRM, distr = "norm")
3354	fgamma2<-fitdist(data_Ta\$TpRM, distr = "gamma")
3355	plot(fnorm2)
3356	plot(fgamma2)
3357	par(mfrow=c(1,1))
3358	famm_TpRM_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
3359	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
3360	#results of the tests
3361	## chi square test (with corresponding table)
3362	famm_TpRM_Ta\$chisqpvalue
3363	famm_TpRM_Ta\$chisqtable
3364	
3365	## Anderson-Darling test
3366	famm_TpRM_Ta\$adtest
3367	## Cramer von Mises test
3368	famm_TpRM_Ta\$cvmtest
3369	##Kolmogorov - Smirnov test
3370	famm_TpRM_Ta\$kstest
3371	
3372	
3373	$TpRM_m1_Ta <-glm(data_Ta\$TpRM \sim cen, family = Gamma(), data = data_Ta)$
3374	TpRM_m1_Ta
3375	summary(TpRM_m1_Ta)
3376	
3377	

3378	#####
3379	######################################
3380	### boxplot para Kc
3381	
3382	ggplot(data_Kc, aes(x=esp, y=TpRM, fill=cen)) +
3383	geom_boxplot()
3384	
3385	###### GLM
3386	
3387	TpRM_Kc<- c(data_Kc\$TpRM)
3388	
3389	hist(TpRM_Kc)
3390	
3391	fnorm3<-fitdist(data_Kc\$TpRM, distr = "norm")
3392	fgamma3<-fitdist(data_Kc\$TpRM, distr = "gamma")
3393	plot(fnorm3)
3394	plot(fgamma3)
3395	par(mfrow=c(1,1))
3396	famm_TpRM_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
3397	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
3398	#results of the tests
3399	## chi square test (with corresponding table)
3400	famm_TpRM_Kc\$chisqpvalue
3401	famm_TpRM_Kc\$chisqtable
3402	
3403	## Anderson-Darling test
3404	famm_TpRM_Kc\$adtest
3405	## Cramer von Mises test
3406	famm_TpRM_Kc\$cvmtest
3407	##Kolmogorov - Smirnov test
3408	famm_TpRM_Kc\$kstest
3409	
3410	
3411	$TpRM_m1_Kc <-glm(data_Kc\$TpRM \sim cen, family = Gamma(), data = data_Kc)$

3412	TpRM_m1_Kc
3413	summary(TpRM_m1_Kc)
3414	
3415	#####
3416	######################################
3417	### boxplot para Hs
3418	
3419	ggplot(data_Hs, aes(x=esp, y=TpRM, fill=cen)) +
3420	geom_boxplot()
3421	
3422	###### GLM para Hs
3423	
3424	TpRM_Hs<- c(data_Hs\$TpRM)
3425	
3426	hist(TpRM_Hs)
3427	
3428	fnorm4<-fitdist(data_Hs\$TpRM, distr = "norm")
3429	fgamma4<-fitdist(data_Hs\$TpRM, distr = "gamma")
3430	plot(fnorm4)
3431	plot(fgamma4)
3432	par(mfrow=c(1,1))
3433	famm_TpRM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
3434	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
3435	#results of the tests
3436	## chi square test (with corresponding table)
3437	famm_TpRM_Hs\$chisqpvalue
3438	famm_TpRM_Hs\$chisqtable
3439	
3440	## Anderson-Darling test
3441	famm_TpRM_Hs\$adtest
3442	## Cramer von Mises test
3443	famm_TpRM_Hs\$cvmtest
3444	##Kolmogorov - Smirnov test
3445	famm_TpRM_Hs\$kstest

3446	
3447	
3448	TpRM_m1_Hs<-glm(data_Hs\$TpRM~cen,family = Gamma(),data = data_Hs)
3449	TpRM_m1_Hs
3450	summary(TpRM_m1_Hs)
3451	
3452	
3453	######################################
3454	#dados_cenarios_ago2022_
3455	#flexplot e GLM de todas as sp
3456	#
3457	###
3458	## flexplot
3459	$StM_all = flexplot(StM \sim cen + sp,$
3460 3461	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
3462	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
3463	
3464	StM_all
3465	
3466	### boxplot para todas
3467	ggplot(dados_no_na, aes(x=esp, y=StM, fill=cen)) +
3468	geom_boxplot()
3469	
3470	
3471	##########boxplot para Qg
3472	
3473	
3474	ggplot(data_Qg, aes(x=esp, y=StM, fill=cen)) +
3475	geom_boxplot()
3476	
3477	###### GLM para Qg
3478	
3479	hist(StM)
3480	StM_Qg<- c(data_Qg\$StM)

3481	
3482	hist(StM_Qg)
3483	
3484	fnorm<-fitdist(data_Qg\$StM, distr = "norm")
3485	fgamma<-fitdist(data_Qg\$StM, distr = "gamma")
3486	plot(fnorm)
3487	plot(fgamma)
3488	par(mfrow=c(1,1))
3489	$famm_StM_Qg{<-}gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))$
3490	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
3491	#results of the tests
3492	## chi square test (with corresponding table)
3493	famm_StM_Qg\$chisqpvalue
3494	famm_StM_Qg\$chisqtable
3495	
3496	## Anderson-Darling test
3497	famm_StM_Qg\$adtest
3498	## Cramer von Mises test
3499	famm_StM_Qg\$cvmtest
3500	##Kolmogorov - Smirnov test
3501	famm_StM_Qg\$kstest
3502	
3503	
3504	$StM_m1_Qg <-glm(data_Qg\$StM \sim cen, family = Gamma(), data = data_Qg)$
3505	StM_m1_Qg
3506	summary(StM_m1_Qg)
3507	
3508	
3509	######################################
3510	####
3511	### boxplot para Ta
3512	
3513	ggplot(data_Ta, aes(x=esp., y=StM, fill=cen)) +
3514	geom_boxplot()

3515	
3516	### GLM para Ta
3517	
3518	StM_Ta<- c(data_Ta\$StM)
3519	
3520	hist(StM_Ta)
3521	
3522	fnorm2<-fitdist(data_Ta\$StM, distr = "norm")
3523	fgamma2<-fitdist(data_Ta\$StM, distr = "gamma")
3524	plot(fnorm2)
3525	plot(fgamma2)
3526	par(mfrow=c(1,1))
3527	$famm_StM_Ta{<-gofstat}(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))$
3528	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
3529	#results of the tests
3530	## chi square test (with corresponding table)
3531	famm_StM_Ta\$chisqpvalue
3532	famm_StM_Ta\$chisqtable
3533	
3534	## Anderson-Darling test
3535	famm_StM_Ta\$adtest
3536	## Cramer von Mises test
3537	famm_StM_Ta\$cvmtest
3538	##Kolmogorov - Smirnov test
3539	famm_StM_Ta\$kstest
3540	
3541	
3542	$StM_m1_Ta <-glm(data_Ta \$StM \sim cen, family = Gamma(), data = data_Ta)$
3543	StM_m1_Ta
3544	summary(StM_m1_Ta)
3545	
3546	
3547	#####
3548	######################################

3549	### boxplot para Kc
3550	
3551	ggplot(data_Kc, aes(x=esp, y=StM, fill=cen)) +
3552	geom_boxplot()
3553	
3554	###### GLM
3555	
3556	StM_Kc<- c(data_Kc\$StM)
3557	
3558	hist(StM_Kc)
3559	
3560	fnorm3<-fitdist(data_Kc\$StM, distr = "norm")
3561	fgamma3<-fitdist(data_Kc\$StM, distr = "gamma")
3562	plot(fnorm3)
3563	plot(fgamma3)
3564	par(mfrow=c(1,1))
3565	famm_StM_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
3566	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
3567	#results of the tests
3568	## chi square test (with corresponding table)
3569	famm_StM_Kc\$chisqpvalue
3570	famm_StM_Kc\$chisqtable
3571	
3572	## Anderson-Darling test
3573	famm_StM_Kc\$adtest
3574	## Cramer von Mises test
3575	famm_StM_Kc\$cvmtest
3576	##Kolmogorov - Smirnov test
3577	famm_StM_Kc\$kstest
3578	
3579	
3580	StM_m1_Kc<-glm(data_Kc\$StM~cen,family = Gamma(),data = data_Kc)
3581	StM_m1_Kc
3582	summary(StM_m1_Kc)

3583	
3584	#####
3585	######################################
3586	### boxplot para Hs
3587	
3588	ggplot(data_Hs, aes(x=esp, y=StM, fill=cen)) +
3589	geom_boxplot()
3590	
3591	###### GLM para Hs
3592	
3593	StM_Hs<- c(data_Hs\$StM)
3594	
3595	hist(StM_Hs)
3596	
3597	fnorm4<-fitdist(data_Hs\$StM, distr = "norm")
3598	fgamma4<-fitdist(data_Hs\$StM, distr = "gamma")
3599	plot(fnorm4)
3600	plot(fgamma4)
3601	par(mfrow=c(1,1))
3602	famm_StM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
3603	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
3604	#results of the tests
3605	## chi square test (with corresponding table)
3606	famm_StM_Hs\$chisqpvalue
3607	famm_StM_Hs\$chisqtable
3608	
3609	## Anderson-Darling test
3610	famm_StM_Hs\$adtest
3611	## Cramer von Mises test
3612	famm_StM_Hs\$cvmtest
3613	##Kolmogorov - Smirnov test
3614	famm_StM_Hs\$kstest
3615	
3616	

3617	StM_m1_Hs<-glm(data_Hs\$StM~cen,family = Gamma(),data = data_Hs)
3618	StM_m1_Hs
3619	summary(StM_m1_Hs)
3620	
3621	
3622	######################################
3623	#dados_cenarios_ago2022_
3624	#flexplot e GLM de todas as sp
3625	#
3626	###
3627	## flexplot
3628	$TLM_all = flexplot(TLM \sim cen + sp,$
3629 3630	data = dados_no_na, se = F, alpha = .3) + scale_x_discrete(limits=c("A","F")) + ## para arrumar ordem dos dados no eixo x
3631	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
3632	
3633	TLM_all
3634	
3635	### boxplot para todas
3636	ggplot(dados_no_na, aes(x=esp, y=TLM, fill=cen)) +
3637	geom_boxplot()
3638	
3639	
3640	###########boxplot para Qg
3641	
3642	
3643	ggplot(data_Qg, aes(x=esp, y=TLM, fill=cen)) +
3644	geom_boxplot()
3645	
3646	###### GLM para Qg
3647	
3648	hist(TLM)
3649	TLM_Qg<- c(data_Qg\$TLM)
3650	
3651	hist(TLM_Qg)

3652	
3653	fnorm<-fitdist(data_Qg\$TLM, distr = "norm")
3654	fgamma<-fitdist(data_Qg\$TLM, distr = "gamma")
3655	plot(fnorm)
3656	plot(fgamma)
3657	par(mfrow=c(1,1))
3658	famm_TLM_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
3659	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
3660	#results of the tests
3661	## chi square test (with corresponding table)
3662	famm_TLM_Qg\$chisqpvalue
3663	famm_TLM_Qg\$chisqtable
3664	
3665	## Anderson-Darling test
3666	famm_TLM_Qg\$adtest
3667	## Cramer von Mises test
3668	famm_TLM_Qg\$cvmtest
3669	##Kolmogorov - Smirnov test
3670	famm_TLM_Qg\$kstest
3671	
3672	
3673	$TLM_m1_Qg <-glm(data_Qg\$TLM~cen,family = Gamma(),data = data_Qg)$
3674	TLM_m1_Qg
3675	summary(TLM_m1_Qg)
3676	
3677	
3678	######################################
3679	####
3680	### boxplot para Ta
3681	
3682	ggplot(data_Ta, aes(x=esp., y=TLM, fill=cen)) +
3683	geom_boxplot()
3684	
3685	### GLM para Ta

3686	
3687	TLM_Ta<- c(data_Ta\$TLM)
3688	
3689	hist(TLM_Ta)
3690	
3691	fnorm2<-fitdist(data_Ta\$TLM, distr = "norm")
3692	fgamma2<-fitdist(data_Ta\$TLM, distr = "gamma")
3693	plot(fnorm2)
3694	plot(fgamma2)
3695	par(mfrow=c(1,1))
3696	famm_TLM_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
3697	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
3698	#results of the tests
3699	## chi square test (with corresponding table)
3700	famm_TLM_Ta\$chisqpvalue
3701	famm_TLM_Ta\$chisqtable
3702	
3703	## Anderson-Darling test
3704	famm_TLM_Ta\$adtest
3705	## Cramer von Mises test
3706	famm_TLM_Ta\$cvmtest
3707	##Kolmogorov - Smirnov test
3708	famm_TLM_Ta\$kstest
3709	
3710	
3711	$TLM_m1_Ta <-glm(data_Ta TLM - cen, family = Gamma(), data = data_Ta)$
3712	TLM_m1_Ta
3713	summary(TLM_m1_Ta)
3714	
3715	
3716	#####
3717	######################################
3718	### boxplot para Kc
3719	

3720	ggplot(data_Kc, aes(x=esp, y=TLM, fill=cen)) +
3721	geom_boxplot()
3722	
3723	###### GLM
3724	
3725	TLM_Kc<- c(data_Kc\$TLM)
3726	
3727	hist(TLM_Kc)
3728	
3729	fnorm3<-fitdist(data_Kc\$TLM, distr = "norm")
3730	fgamma3<-fitdist(data_Kc\$TLM, distr = "gamma")
3731	plot(fnorm3)
3732	plot(fgamma3)
3733	par(mfrow=c(1,1))
3734	famm_TLM_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
3735	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
3736	#results of the tests
3737	## chi square test (with corresponding table)
3738	famm_TLM_Kc\$chisqpvalue
3739	famm_TLM_Kc\$chisqtable
3740	
3741	## Anderson-Darling test
3742	famm_TLM_Kc\$adtest
3743	## Cramer von Mises test
3744	famm_TLM_Kc\$cvmtest
3745	##Kolmogorov - Smirnov test
3746	famm_TLM_Kc\$kstest
3747	
3748	
3749	TLM_m1_Kc<-glm(data_Kc\$TLM~cen,family = Gamma(),data = data_Kc)
3750	TLM_m1_Kc
3751	summary(TLM_m1_Kc)
3752	
3753	#####

3754	######################################
3755	### boxplot para Hs
3756	
3757	ggplot(data_Hs, aes(x=esp, y=TLM, fill=cen)) +
3758	geom_boxplot()
3759	
3760	###### GLM para Hs
3761	
3762	TLM_Hs<- c(data_Hs\$TLM)
3763	
3764	hist(TLM_Hs)
3765	
3766	fnorm4<-fitdist(data_Hs\$TLM, distr = "norm")
3767	fgamma4<-fitdist(data_Hs\$TLM, distr = "gamma")
3768	plot(fnorm4)
3769	plot(fgamma4)
3770	par(mfrow=c(1,1))
3771	famm_TLM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
3772	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
3773	#results of the tests
3774	## chi square test (with corresponding table)
3775	famm_TLM_Hs\$chisqpvalue
3776	famm_TLM_Hs\$chisqtable
3777	
3778	## Anderson-Darling test
3779	famm_TLM_Hs\$adtest
3780	## Cramer von Mises test
3781	famm_TLM_Hs\$cvmtest
3782	##Kolmogorov - Smirnov test
3783	famm_TLM_Hs\$kstest
3784	
3785	
3786	TLM_m1_Hs<-glm(data_Hs\$TLM~cen,family = Gamma(),data = data_Hs)
3787	TLM_m1_Hs

3788	summary(TLM_m1_Hs)
3789	
3790	
3791	######################################
3792	#dados_cenarios_ago2022_
3793	#flexplot e GLM de todas as sp
3794	#
3795	###
3796	## flexplot
3797	$SLA_all = flexplot(SLA \sim cen + sp,$
3798 3799	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
3800	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
3801	
3802	SLA_all
3803	
3804	### boxplot para todas
3805	ggplot(dados_no_na, aes(x=esp, y=SLA, fill=cen)) +
3806	geom_boxplot()
3807	
3808	
3809	############boxplot para Qg
3810	
3811	
3812	ggplot(data_Qg, aes(x=esp, y=SLA, fill=cen)) +
3813	geom_boxplot()
3814	
3815	###### GLM para Qg
3816	
3817	hist(SLA)
3818	SLA_Qg<- c(data_Qg\$SLA)
3819	
3820	hist(SLA_Qg)
3821	
3822	fnorm<-fitdist(data_Qg\$SLA, distr = "norm")
3823	fgamma<-fitdist(data_Qg\$SLA, distr = "gamma")
------	--
3824	plot(fnorm)
3825	plot(fgamma)
3826	par(mfrow=c(1,1))
3827	famm_SLA_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
3828	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
3829	#results of the tests
3830	## chi square test (with corresponding table)
3831	famm_SLA_Qg\$chisqpvalue
3832	famm_SLA_Qg\$chisqtable
3833	
3834	## Anderson-Darling test
3835	famm_SLA_Qg\$adtest
3836	## Cramer von Mises test
3837	famm_SLA_Qg\$cvmtest
3838	##Kolmogorov - Smirnov test
3839	famm_SLA_Qg\$kstest
3840	
3841	
3842	$SLA_m1_Qg <-glm(data_Qg\$SLA \sim cen, family = Gamma(), data = data_Qg)$
3843	SLA_m1_Qg
3844	summary(SLA_m1_Qg)
3845	
3846	
3847	########################## para Ta #######
3848	####
3849	### boxplot para Ta
3850	
3851	ggplot(data_Ta, aes(x=esp., y=SLA, fill=cen)) +
3852	geom_boxplot()
3853	
3854	### GLM para Ta
3855	

3856 SLA_Ta<- c(data_Ta\$SLA)

3857	
3858	hist(SLA_Ta)
3859	
3860	fnorm2<-fitdist(data_Ta\$SLA, distr = "norm")
3861	fgamma2<-fitdist(data_Ta\$SLA, distr = "gamma")
3862	plot(fnorm2)
3863	plot(fgamma2)
3864	par(mfrow=c(1,1))
3865	$famm_SLA_Ta{<-gofstat}(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))$
3866	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
3867	#results of the tests
3868	## chi square test (with corresponding table)
3869	famm_SLA_Ta\$chisqpvalue
3870	famm_SLA_Ta\$chisqtable
3871	
3872	## Anderson-Darling test
3873	famm_SLA_Ta\$adtest
3874	## Cramer von Mises test
3875	famm_SLA_Ta\$cvmtest
3876	##Kolmogorov - Smirnov test
3877	famm_SLA_Ta\$kstest
3878	
3879	
3880	$SLA_m1_Ta <-glm(data_Ta \$SLA \sim cen, family = Gamma(), data = data_Ta)$
3881	SLA_m1_Ta
3882	summary(SLA_m1_Ta)
3883	
3884	
3885	#####
3886	######################### para Kc ###################################
3887	### boxplot para Kc
3888	
3889	ggplot(data_Kc, aes(x=esp, y=SLA, fill=cen)) +
3890	geom_boxplot()

3891	
3892	###### GLM
3893	
3894	SLA_Kc<- c(data_Kc\$SLA)
3895	
3896	hist(SLA_Kc)
3897	
3898	fnorm3<-fitdist(data_Kc\$SLA, distr = "norm")
3899	fgamma3<-fitdist(data_Kc\$SLA, distr = "gamma")
3900	plot(fnorm3)
3901	plot(fgamma3)
3902	par(mfrow=c(1,1))
3903	famm_SLA_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
3904	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
3905	#results of the tests
3906	## chi square test (with corresponding table)
3907	famm_SLA_Kc\$chisqpvalue
3908	famm_SLA_Kc\$chisqtable
3909	
3910	## Anderson-Darling test
3911	famm_SLA_Kc\$adtest
3912	## Cramer von Mises test
3913	famm_SLA_Kc\$cvmtest
3914	##Kolmogorov - Smirnov test
3915	famm_SLA_Kc\$kstest
3916	
3917	
3918	$SLA_m1_Kc <-glm(data_Kc SLA ~cen, family = Gamma(), data = data_Kc)$
3919	SLA_m1_Kc
3920	summary(SLA_m1_Kc)
3921	
3922	#####
3923	######################################
3924	### boxplot para Hs

3925	
3926	ggplot(data_Hs, aes(x=sp, y=SLA, fill=cen)) +
3927	geom_boxplot()
3928	
3929	###### GLM para Hs
3930	
3931	SLA_Hs<- c(data_Hs\$SLA)
3932	
3933	hist(SLA_Hs)
3934	
3935	fnorm4<-fitdist(data_Hs\$SLA, distr = "norm")
3936	fgamma4<-fitdist(data_Hs\$SLA, distr = "gamma")
3937	plot(fnorm4)
3938	plot(fgamma4)
3939	par(mfrow=c(1,1))
3940	famm_SLA_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
3941	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
3942	#results of the tests
3943	## chi square test (with corresponding table)
3944	famm_SLA_Hs\$chisqpvalue
3945	famm_SLA_Hs\$chisqtable
3946	## Anderson-Darling test
3947	famm_SLA_Hs\$adtest
3948	## Cramer von Mises test
3949	famm_SLA_Hs\$cvmtest
3950	##Kolmogorov - Smirnov test
3951	famm_SLA_Hs\$kstest
3952	
3953	$SLA_m1_Hs <-glm(data_Hs\$SLA \sim cen, family = Gamma(), data = data_Hs)$
3954	SLA_m1_Hs
3955	summary(SLA_m1_Hs)
3956	
3957	######################################
3958	#

3959	#flexplot e GLM de todas as sp
3960	## flexplot
3961	$H_all = flexplot(H \sim cen + esp.,$
3962 3963	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
3964	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
3965	
3966	H_all
3967	
3968	##########boxplot para Qg
3969	
3970	ggplot(data_Qg, aes(x=esp., y=H, fill=cen)) +
3971	geom_boxplot()
3972	###### GLM para Qg
3973	hist(H)
3974	H_Qg<- c(data_Qg\$H)
3975	
3976	hist(H_Qg)
3977	fnorm<-fitdist(data_Qg\$H, distr = "norm")
3978	fgamma<-fitdist(data_Qg\$H, distr = "gamma")
3979	plot(fnorm)
3980	plot(fgamma)
3981	par(mfrow=c(1,1))
3982	famm_H_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
3983	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
3984	#results of the tests
3985	## chi square test (with corresponding table)
3986	famm_H_Qg\$chisqpvalue
3987	famm_H_Qg\$chisqtable
3988	
3989	## Anderson-Darling test
3990	famm_H_Qg\$adtest
3991	## Cramer von Mises test
3992	famm_H_Qg\$cvmtest
3993	##Kolmogorov - Smirnov test

3994	famm_H_Qg\$kstest
3995	famm_H_Qg\$adtest
3996	
3997	$H_m1_Qg <-glm(data_Qg$H~cen,family = Gamma(),data = data_Qg)$
3998	H_m1_Qg
3999	summary(H_m1_Qg)
4000	
4001	
4002	######################################
4003	### boxplot para Ta
4004	ggplot(data_Ta, aes(x=esp., y=H, fill=cen)) +
4005	geom_boxplot()
4006	### GLM para Ta
4007	
4008	H_Ta<- c(data_Ta\$H)
4009	
4010	hist(H_Ta)
4011	
4012	fnorm2<-fitdist(data_Ta\$H, distr = "norm")
4013	fgamma2<-fitdist(data_Ta\$H, distr = "gamma")
4014	plot(fnorm2)
4015	plot(fgamma2)
4016	par(mfrow=c(1,1))
4017	famm_H_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
4018	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4019	#results of the tests
4020	## chi square test (with corresponding table)
4021	famm_H_Ta\$chisqpvalue
4022	famm_H_Ta\$chisqtable
4023	## Anderson-Darling test
4024	famm_H_Ta\$adtest
4025	## Cramer von Mises test
4026	famm_H_Ta\$cvmtest
4027	##Kolmogorov - Smirnov test

4028	famm_H_Ta\$kstest
4029	H_m1_Ta<-glm(data_Ta\$H~cen,family = Gamma(),data = data_Ta)
4030	H_m1_Ta
4031	summary(H_m1_Ta)
4032	
4033	H_m2_Ta<-glm(data_Ta\$H~cen,family = gaussian(),data = data_Ta)
4034	H_m2_Ta
4035	summary(H_m2_Ta)
4036	
4037	#####
4038	######################################
4039	### boxplot para Kc
4040	
4041	ggplot(data_Kc, aes(x=esp., y=H, fill=cen)) +
4042	geom_boxplot()
4043	
4044	###### GLM
4045	
4046	H_Kc<- c(data_Kc\$H)
4047	
4048	hist(H_Kc)
4049	
4050	fnorm2<-fitdist(data_Kc\$H, distr = "norm")
4051	fgamma2<-fitdist(data_Kc\$H, distr = "gamma")
4052	plot(fnorm2)
4053	plot(fgamma2)
4054	par(mfrow=c(1,1))
4055	famm_H_Kc<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
4056	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4057	#results of the tests
4058	## chi square test (with corresponding table)
4059	famm_H_Kc\$chisqpvalue
4060	famm_H_Kc\$chisqtable
4061	

4062	## Anderson-Darling test
4063	famm_H_Kc\$adtest
4064	## Cramer von Mises test
4065	famm_H_Kc\$cvmtest
4066	##Kolmogorov - Smirnov test
4067	famm_H_Kc\$kstest
4068	
4069	
4070	H_m1_Kc<-glm(data_Kc\$H~cen,family = Gamma(),data = data_Kc)
4071	H_m1_Kc
4072	summary(H_m1_Kc)
4073	
4074	#####
4075	################################ para Hs
4076	### boxplot para Hs
4077	
4078	ggplot(data_Hs, aes(x=esp., y=H, fill=cen)) +
4079	geom_boxplot()
4080	
4081	###### GLM para Hs
4082	
4083	H_Hs<- c(data_Hs\$H)
4084	
4085	hist(H_Hs)
4086	
4087	fnorm4<-fitdist(data_Hs\$H, distr = "norm")
4088	fgamma4<-fitdist(data_Hs\$H, distr = "gamma")
4089	plot(fnorm4)
4090	plot(fgamma4)
4091	par(mfrow=c(1,1))
4092	famm_H_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
4093	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
4094	#results of the tests
4095	## chi square test (with corresponding table)

4096	famm_H_Hs\$chisqpvalue
4097	famm_H_Hs\$chisqtable
4098	
4099	## Anderson-Darling test
4100	famm_H_Hs\$adtest
4101	## Cramer von Mises test
4102	famm_H_Hs\$cvmtest
4103	##Kolmogorov - Smirnov test
4104	famm_H_Hs\$kstest
4105	
4106	
4107	H_m1_Hs<-glm(data_Hs\$H~cen,family = Gamma(),data = data_Hs)
4108	H_m1_Hs
4109	summary(H_m1_Hs)
4110	
4111	######################################
4112	#
4113	#flexplot e GLM de todas as sp
4114	#
4115	###
4116	## flexplot
4117	$d_base_all=flexplot(d_base \sim cen + esp.,$
4118 4119	$data = dados_no_na, se = F, alpha = .3) + scale_x_discrete(limits=c("A", "F")) + \#\# para arrumar ordem dos dados no eixo x$
4120	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
4121	
4122	d_base_all
4123	
4124	###########boxplot para Qg
4125	
4126	ggplot(data_Qg, aes(x=esp., y=d_base, fill=cen)) +
4127	geom_boxplot()
4128	
4129	###### GLM para Qg
4130	

4131	hist(d_base)
4132	d_base_Qg<- c(data_Qg\$d_base)
4133	
4134	hist(d_base_Qg)
4135	
4136	fnorm<-fitdist(data_Qg\$d_base, distr = "norm")
4137	fgamma<-fitdist(data_Qg\$d_base, distr = "gamma")
4138	plot(fnorm)
4139	plot(fgamma)
4140	par(mfrow=c(1,1))
4141	famm_d_base_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
4142	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
4143	#results of the tests
4144	## chi square test (with corresponding table)
4145	famm_d_base_Qg\$chisqpvalue
4146	famm_d_base_Qg\$chisqtable
4147	
4148	## Anderson-Darling test
4149	famm_d_base_Qg\$adtest
4150	## Cramer von Mises test
4151	famm_d_base_Qg\$cvmtest
4152	##Kolmogorov - Smirnov test
4153	famm_d_base_Qg\$kstest
4154	famm_d_base_Qg\$adtest
4155	
4156	
4157	$d_base_m1_Qg <-glm(data_Qg\$d_base~cen,family = Gamma(),data = data_Qg)$
4158	d_base_m1_Qg
4159	summary(d_base_m1_Qg)
4160	
4161	
4162	######################################
4163	####
4164	### boxplot para Ta

4165	
4166	ggplot(data_Ta, aes(x=esp., y=d_base, fill=cen)) +
4167	geom_boxplot()
4168	
4169	### GLM para Ta
4170	
4171	d_base_Ta<- c(data_Ta\$d_base)
4172	
4173	hist(d_base_Ta)
4174	
4175	fnorm2<-fitdist(data_Ta\$d_base, distr = "norm")
4176	fgamma2<-fitdist(data_Ta\$d_base, distr = "gamma")
4177	plot(fnorm2)
4178	plot(fgamma2)
4179	par(mfrow=c(1,1))
4180	famm_d_base_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
4181	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4182	#results of the tests
4183	## chi square test (with corresponding table)
4184	famm_d_base_Ta\$chisqpvalue
4185	famm_H_Ta\$chisqtable
4186	
4187	## Anderson-Darling test
4188	famm_d_base_Ta\$adtest
4189	## Cramer von Mises test
4190	famm_d_base_Ta\$cvmtest
4191	##Kolmogorov - Smirnov test
4192	famm_d_base_Ta\$kstest
4193	
4194	
4195	d_base_m1_Ta<-glm(data_Ta\$d_base~cen,family = Gamma(),data = data_Ta)
4196	d_base_m1_Ta
4197	summary(d_base_m1_Ta)
4198	

4199	$d_base_m2_Ta <-glm(data_Ta$d_base~cen,family = gaussian(),data = data_Ta)$
4200	d_base_m2_Ta
4201	summary(d_base_m2_Ta)
4202	
4203	#####
4204	######################################
4205	### boxplot para Kc
4206	
4207	ggplot(data_Kc, aes(x=esp., y=d_base, fill=cen)) +
4208	geom_boxplot()
4209	
4210	###### GLM
4211	
4212	d_base_Kc<- c(data_Kc\$d_base)
4213	
4214	hist(d_base_Kc)
4215	
4216	fnorm3<-fitdist(data_Kc\$d_base, distr = "norm")
4217	fgamma3<-fitdist(data_Kc\$d_base, distr = "gamma")
4218	plot(fnorm3)
4219	plot(fgamma3)
4220	par(mfrow=c(1,1))
4221	famm_d_base_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
4222	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
4223	#results of the tests
4224	## chi square test (with corresponding table)
4225	famm_d_base_Kc\$chisqpvalue
4226	famm_d_base_Kc\$chisqtable
4227	
4228	## Anderson-Darling test
4229	famm_d_base_Kc\$adtest
4230	## Cramer von Mises test
4231	famm_d_base_Kc\$cvmtest
4232	##Kolmogorov - Smirnov test

4233	famm_d_base_Kc\$kstest
4234	
4235	
4236	$d_base_m1_Kc <-glm(data_Kc\$d_base~cen, family = Gamma(), data = data_Kc)$
4237	d_base_m1_Kc
4238	summary(d_base_m1_Kc)
4239	
4240	#####
4241	########################### para Hs
4242	### boxplot para Hs
4243	
4244	ggplot(data_Hs, aes(x=esp., y=d_base, fill=cen)) +
4245	geom_boxplot()
4246	
4247	###### GLM para Hs
4248	
4249	d_base_Hs<- c(data_Hs\$d_base)
4250	
4251	hist(d_base_Hs)
4252	
4253	fnorm4<-fitdist(data_Hs\$d_base, distr = "norm")
4254	fgamma4<-fitdist(data_Hs\$d_base, distr = "gamma")
4255	plot(fnorm4)
4256	plot(fgamma4)
4257	par(mfrow=c(1,1))
4258	$famm_d_base_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))$
4259	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
4260	#results of the tests
4261	## chi square test (with corresponding table)
4262	famm_d_base_Hs\$chisqpvalue
4263	famm_d_base_Hs\$chisqtable
4264	
4265	## Anderson-Darling test
4266	famm_d_base_Hs\$adtest

4267	## Cramer von Mises test
4268	famm_d_base_Hs\$cvmtest
4269	##Kolmogorov - Smirnov test
4270	famm_d_base_Hs\$kstest
4271	
4272	
4273	d_base_m1_Hs<-glm(data_Hs\$d_base~cen,family = Gamma(),data = data_Hs)
4274	d_base_m1_Hs
4275	summary(d_base_m1_Hs)
4276	
4277	######################################
4278	#
4279	#flexplot e GLM de todas as sp
4280	#
4281	###
4282	## flexplot
4283	$RER_all = flexplot(RGR \sim cen + esp,$
4284 4285	data = dados_no_na, se = F, alpha = .3) + scale_x_discrete(limits=c("A","F")) + ## para arrumar ordem dos dados no eixo x
4286	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
4287	
4288	RGR_all
4289	
4290	##########boxplot para Qg
4291	
4292	ggplot(data_Qg, aes(x=esp, y=RGR, fill=cen)) +
4293	geom_boxplot()
4294	
4295	###### GLM para Qg
4296	
4297	hist(RGR)
4298	
4299	RGR_Qg<- c(data_Qg\$RGR)
4300	
4301	hist(RGR_Qg)

4302	
4303	fnorm<-fitdist(data_Qg\$RGR, distr = "norm")
4304	fgamma<-fitdist(data_Qg\$RGR, distr = "gamma")
4305	plot(fnorm)
4306	plot(fgamma)
4307	par(mfrow=c(1,1))
4308	famm_RGR_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
4309	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
4310	#results of the tests
4311	## chi square test (with corresponding table)
4312	famm_RGR_Qg\$chisqpvalue
4313	famm_RGR_Qg\$chisqtable
4314	
4315	## Anderson-Darling test
4316	famm_RGR_Qg\$adtest
4317	## Cramer von Mises test
4318	famm_RGR_Qg\$cvmtest
4319	##Kolmogorov - Smirnov test
4320	famm_RGR_Qg\$kstest
4321	famm_RGR_Qg\$adtest
4322	
4323	
4324	$RGR_m1_Qg <-glm(data_Qg\$RGR \sim cen, family = Gamma(), data = data_Qg)$
4325	RGR_m1_Qg
4326	summary(RGR_m1_Qg)
4327	
4328	
4329	######################################
4330	####
4331	### boxplot para Ta
4332	
4333	ggplot(data_Ta, aes(x=esp, y=RGR, fill=cen)) +
4334	geom_boxplot()
4335	

4336	### GLM para Ta
4337	
4338	RGR_Ta<- c(data_Ta\$RGR)
4339	
4340	hist(RGR_Ta)
4341	
4342	fnorm2<-fitdist(data_Ta\$RGR, distr = "norm")
4343	fgamma2<-fitdist(data_Ta\$RGR, distr = "gamma")
4344	plot(fnorm2)
4345	plot(fgamma2)
4346	par(mfrow=c(1,1))
4347	famm_RGR_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
4348	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4349	#results of the tests
4350	## chi square test (with corresponding table)
4351	famm_RGR_Ta\$chisqpvalue
4352	famm_H_Ta\$chisqtable
4353	
4354	## Anderson-Darling test
4355	famm_RGR_Ta\$adtest
4356	## Cramer von Mises test
4357	famm_RGR_Ta\$cvmtest
4358	##Kolmogorov - Smirnov test
4359	famm_RGR_Ta\$kstest
4360	
4361	
4362	$RGR_m1_Ta <-glm(data_Ta\$RGR ~cen, family = Gamma(), data = data_Ta)$
4363	RGR_m1_Ta
4364	summary(RGR_m1_Ta)
4365	
4366	$RGR_m2_Ta <-glm(data_Ta RGR \sim cen, family = gaussian(), data = data_Ta)$
4367	RGR_m2_Ta
4368	summary(RGR_m2_Ta)
4369	

4370	#####
4371	######################################
4372	### boxplot para Kc
4373	
4374	ggplot(data_Kc, aes(x=esp, y=RGR, fill=cen)) +
4375	geom_boxplot()
4376	
4377	###### GLM
4378	
4379	RGR_Kc<- c(data_Kc\$RGR)
4380	
4381	hist(RGR_Kc)
4382	
4383	fnorm3<-fitdist(data_Kc\$RGR, distr = "norm")
4384	fgamma3<-fitdist(data_Kc\$RGR, distr = "gamma")
4385	plot(fnorm3)
4386	plot(fgamma3)
4387	par(mfrow=c(1,1))
4388	famm_RGR_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
4389	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
4390	#results of the tests
4391	## chi square test (with corresponding table)
4392	famm_RGR_Kc\$chisqpvalue
4393	famm_RGR_Kc\$chisqtable
4394	
4395	## Anderson-Darling test
4396	famm_RGR_Kc\$adtest
4397	## Cramer von Mises test
4398	famm_RGR_Kc\$cvmtest
4399	##Kolmogorov - Smirnov test
4400	famm_RGR_Kc\$kstest
4401	
4402	
4403	RGR_m1_Kc<-glm(data_Kc\$RGR~cen,family = Gamma(),data = data_Kc)

4404	RGR_m1_Kc
4405	summary(RGR_m1_Kc)
4406	
4407	#####
4408	######################################
4409	### boxplot para Hs
4410	
4411	ggplot(data_Hs, aes(x=esp, y=RGR, fill=cen)) +
4412	geom_boxplot()
4413	
4414	###### GLM para Hs
4415	
4416	RGR_Hs<- c(data_Hs\$RGR)
4417	
4418	hist(RGR_Hs)
4419	
4420	fnorm4<-fitdist(data_Hs\$RGR, distr = "norm")
4421	fgamma4<-fitdist(data_Hs\$RGR, distr = "gamma")
4422	plot(fnorm4)
4423	plot(fgamma4)
4424	par(mfrow=c(1,1))
4425	famm_RGR_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
4426	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
4427	#results of the tests
4428	## chi square test (with corresponding table)
4429	famm_RGR_Hs\$chisqpvalue
4430	famm_RGR_Hs\$chisqtable
4431	
4432	## Anderson-Darling test
4433	famm_RGR_Hs\$adtest
4434	## Cramer von Mises test
4435	famm_RGR_Hs\$cvmtest
4436	##Kolmogorov - Smirnov test
4437	famm_RGR_Hs\$kstest

4438	
4439	
4440	$RGR_m1_Hs <-glm(data_Hs RGR \sim cen, family = Gamma(), data = data_Hs)$
4441	RGR_m1_Hs
4442	summary(RGR_m1_Hs)
4443	
4444	######################################
4445	#
4446	#flexplot e GLM de todas as sp
4447	#
4448	###
4449	## flexplot
4450	$RER_all = flexplot(RER \sim cen + esp,$
4451 4452	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
4453	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
4454	
4455	RER_all
4456	
4457	###########boxplot para Qg
4458	
4459	ggplot(data_Qg, aes(x=esp, y=RER, fill=cen)) +
4460	geom_boxplot()
4461	
4462	###### GLM para Qg
4463	
4464	hist(RER)
4465	
4466	RER_Qg<- c(data_Qg\$RER)
4467	
4468	hist(RER_Qg)
4469	
4470	fnorm<-fitdist(data_Qg\$RER, distr = "norm")
4471	fgamma<-fitdist(data_Qg\$RER, distr = "gamma")
4472	plot(fnorm)

4473	plot(fgamma)
------	--------------

- 4474 par(mfrow=c(1,1))
- 4475 famm_RER_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
- 4476 denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
- 4477 #results of the tests
- 4478 ## chi square test (with corresponding table...)
- 4479 famm_RER_Qg\$chisqpvalue
- 4480 famm_RER_Qg\$chisqtable
- 4481
- 4482 ## Anderson-Darling test
- 4483 famm_RER_Qg\$adtest
- 4484 ## Cramer von Mises test
- 4485 famm_RER_Qg\$cvmtest
- 4486 ##Kolmogorov Smirnov test
- 4487 famm_RER_Qg\$kstest
- 4488 famm_RER_Qg\$adtest
- 4489
- 4490
- 4491 $RER_m1_Qg <-glm(data_Qg\RER ~cen, family = Gamma(), data = data_Qg)$
- 4492 RER_m1_Qg
- 4493 summary(RER_m1_Qg)
- 4494
- 4495
- 4497 ####
- 4498 ### boxplot para Ta
- 4499
- 4500 ggplot(data_Ta, aes(x=esp, y=RER, fill=cen)) +
- 4501 geom_boxplot()
- 4502
- 4503 ### GLM para Ta
- 4504
- 4505 RER_Ta<- c(data_Ta\$RER)
- 4506

4507	hist(RER_Ta)
4508	
4509	fnorm2<-fitdist(data_Ta\$RER, distr = "norm")
4510	fgamma2<-fitdist(data_Ta\$RER, distr = "gamma")
4511	plot(fnorm2)
4512	plot(fgamma2)
4513	par(mfrow=c(1,1))
4514	famm_RER_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
4515	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4516	#results of the tests
4517	## chi square test (with corresponding table)
4518	famm_RER_Ta\$chisqpvalue
4519	famm_RER_Ta\$chisqtable
4520	
4521	## Anderson-Darling test
4522	famm_RER_Ta\$adtest
4523	## Cramer von Mises test
4524	famm_RER_Ta\$cvmtest
4525	##Kolmogorov - Smirnov test
4526	famm_RER_Ta\$kstest
4527	
4528	
4529	$RER_m1_Ta <-glm(data_Ta\$RER \sim cen, family = Gamma(), data = data_Ta)$
4530	RER_m1_Ta
4531	summary(RER_m1_Ta)
4532	
4533	$RER_m2_Ta <-glm(data_Ta\$RER \sim cen, family = gaussian(), data = data_Ta)$
4534	RER_m2_Ta
4535	summary(RER_m2_Ta)
4536	
4537	#####
4538	######################################
4539	### boxplot para Kc
4540	

4541	ggplot(data_Kc, aes(x=esp, y=RER, fill=cen)) +
4542	geom_boxplot()
4543	
4544	###### GLM
4545	
4546	RER_Kc<- c(data_Kc\$RER)
4547	
4548	hist(RER_Kc)
4549	
4550	fnorm3<-fitdist(data_Kc\$RER, distr = "norm")
4551	fgamma3<-fitdist(data_Kc\$RER, distr = "gamma")
4552	plot(fnorm3)
4553	plot(fgamma3)
4554	par(mfrow=c(1,1))
4555	famm_RER_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
4556	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
4557	#results of the tests
4558	## chi square test (with corresponding table)
4559	famm_RER_Kc\$chisqpvalue
4560	famm_RER_Kc\$chisqtable
4561	## Anderson-Darling test
4562	famm_RER_Kc\$adtest
4563	## Cramer von Mises test
4564	famm_RER_Kc\$cvmtest
4565	##Kolmogorov - Smirnov test
4566	famm_RER_Kc\$kstest
4567	
4568	$RER_m1_Kc<-glm(data_Kc\$RER\simcen, family = Gamma(), data = data_Kc)$
4569	RER_m1_Kc
4570	summary(RER_m1_Kc)
4571	#####
4572	######################################
4573	### boxplot para Hs
4574	

4575	ggplot(data_Hs, aes(x=esp, y=RER, fill=cen)) +
4576	geom_boxplot()
4577	###### GLM para Hs
4578	
4579	RER_Hs<- c(data_Hs\$RER)
4580	
4581	hist(RER_Hs)
4582	fnorm4<-fitdist(data_Hs\$RER, distr = "norm")
4583	fgamma4<-fitdist(data_Hs\$RER, distr = "gamma")
4584	plot(fnorm4)
4585	plot(fgamma4)
4586	par(mfrow=c(1,1))
4587	$famm_RER_Hs{-gofstat}(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))$
4588	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
4589	#results of the tests
4590	## chi square test (with corresponding table)
4591	famm_RER_Hs\$chisqpvalue
4592	famm_RER_Hs\$chisqtable
4593	## Anderson-Darling test
4594	famm_RER_Hs\$adtest
4595	## Cramer von Mises test
4596	famm_RER_Hs\$cvmtest
4597	##Kolmogorov - Smirnov test
4598	famm_RER_Hs\$kstest
4599	
4600	$RER_m1_Hs <-glm(data_Hs\$RER \sim cen, family = Gamma(), data = data_Hs)$
4601	RER_m1_Hs
4602	summary(RER_m1_Hs)
4603	
4604	######################################
4605	#
4606	#flexplot e GLM de todas as sp
4607	## flexplot
4608	$SLA_all = flexplot(SLA \sim cen + esp,$

4609 4610	data = dados_no_na, se = F, alpha = .3) + scale_x_discrete(limits=c("A","F")) + ## para arrumar ordem dos dados no eixo x
4611	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
4612	SLA_all
4613	###########boxplot para Qg
4614	
4615	ggplot(data_Qg, aes(x=esp, y=SLA, fill=cen)) +
4616	geom_boxplot()
4617	###### GLM para Qg
4618	hist(SLA)
4619	SLA_Qg<- c(data_Qg\$SLA)
4620	
4621	hist(SLA_Qg)
4622	fnorm<-fitdist(data_Qg\$SLA, distr = "norm")
4623	fgamma<-fitdist(data_Qg\$SLA, distr = "gamma")
4624	plot(fnorm)
4625	plot(fgamma)
4626	par(mfrow=c(1,1))
4627	famm_SLA_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
4628	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
4629	#results of the tests
4630	## chi square test (with corresponding table)
4631	famm_SLA_Qg\$chisqpvalue
4632	famm_SLA_Qg\$chisqtable
4633	## Anderson-Darling test
4634	famm_SLA_Qg\$adtest
4635	## Cramer von Mises test
4636	famm_SLA_Qg\$cvmtest
4637	##Kolmogorov - Smirnov test
4638	famm_SLA_Qg\$kstest
4639	famm_SLA_Qg\$adtest
4640	
4641	$SLA_m1_Qg <-glm(data_Qg \\SLA \\-cen, family = Gamma(), data = data_Qg)$
4642	SLA_m1_Qg
4643	summary(SLA_m1_Qg)

4644	
4645	######################################
4646	####
4647	### boxplot para Ta
4648	ggplot(data_Ta, aes(x=esp, y=SLA, fill=cen)) +
4649	geom_boxplot()
4650	
4651	### GLM para Ta
4652	SLA_Ta<- c(data_Ta\$SLA)
4653	hist(SLA_Ta)
4654	fnorm2<-fitdist(data_Ta\$SLA, distr = "norm")
4655	fgamma2<-fitdist(data_Ta\$SLA, distr = "gamma")
4656	plot(fnorm2)
4657	plot(fgamma2)
4658	par(mfrow=c(1,1))
4659	$famm_SLA_Ta{<-}gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))$
4660	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4661	#results of the tests
4662	## chi square test (with corresponding table)
4663	famm_SLA_Ta\$chisqpvalue
4664	famm_SLA_Ta\$chisqtable
4665	## Anderson-Darling test
4666	famm_SLA_Ta\$adtest
4667	## Cramer von Mises test
4668	famm_SLA_Ta\$cvmtest
4669	##Kolmogorov - Smirnov test
4670	famm_SLA_Ta\$kstest
4671	
4672	$SLA_m1_Ta <-glm(data_Ta SLA ~cen, family = Gamma(), data = data_Ta)$
4673	SLA_m1_Ta
4674	summary(SLA_m1_Ta)
4675	SLA_m2_Ta<-glm(data_Ta\$SLA~cen,family = gaussian(),data = data_Ta)
4676	SLA_m2_Ta
4677	summary(SLA_m2_Ta)

4678	#####
4679	######################################
4680	### boxplot para Kc
4681	
4682	ggplot(data_Kc, aes(x=esp, y=SLA, fill=cen)) +
4683	geom_boxplot()
4684	###### GLM
4685	
4686	SLA_Kc<- c(data_Kc\$SLA)
4687	hist(SLA_Kc)
4688	fnorm3<-fitdist(data_Kc\$SLA, distr = "norm")
4689	fgamma3<-fitdist(data_Kc\$SLA, distr = "gamma")
4690	plot(fnorm3)
4691	plot(fgamma3)
4692	par(mfrow=c(1,1))
4693	famm_SLA_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
4694	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
4695	#results of the tests
4696	## chi square test (with corresponding table)
4697	famm_SLA_Kc\$chisqpvalue
4698	famm_SLA_Kc\$chisqtable
4699	## Anderson-Darling test
4700	famm_SLA_Kc\$adtest
4701	## Cramer von Mises test
4702	famm_SLA_Kc\$cvmtest
4703	##Kolmogorov - Smirnov test
4704	famm_SLA_Kc\$kstest
4705	
4706	$SLA_m1_Kc <-glm(data_Kc SLA \sim cen, family = Gamma(), data = data_Kc)$
4707	SLA_m1_Kc
4708	summary(SLA_m1_Kc)
4709	
4710	######################################
4711	### boxplot para Hs

4712	
4713	ggplot(data_Hs, aes(x=esp, y=SLA, fill=cen)) +
4714	geom_boxplot()
4715	
4716	###### GLM para Hs
4717	
4718	SLA_Hs<- c(data_Hs\$SLA)
4719	hist(SLA_Hs)
4720	fnorm4<-fitdist(data_Hs\$SLA, distr = "norm")
4721	fgamma4<-fitdist(data_Hs\$SLA, distr = "gamma")
4722	plot(fnorm4)
4723	plot(fgamma4)
4724	par(mfrow=c(1,1))
4725	famm_SLA_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
4726	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
4727	#results of the tests
4728	## chi square test (with corresponding table)
4729	famm_SLA_Hs\$chisqpvalue
4730	famm_SLA_Hs\$chisqtable
4731	
4732	## Anderson-Darling test
4733	famm_SLA_Hs\$adtest
4734	## Cramer von Mises test
4735	famm_SLA_Hs\$cvmtest
4736	##Kolmogorov - Smirnov test
4737	famm_SLA_Hs\$kstest
4738	
4739	$SLA_m1_Hs <-glm(data_Hs\$SLA \sim cen, family = Gamma(), data = data_Hs)$
4740	SLA_m1_Hs
4741	summary(SLA_m1_Hs)
4742	
4743	######################################
4744	##flexplot e GLM de todas as sp
4745	

4746	## flexplot
4747	$nL_all = flexplot(nL \sim cen + esp,$
4748 4749	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
4750	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
4751	
4752	nL_all
4753	###########boxplot para Qg
4754	
4755	ggplot(data_Qg, aes(x=esp, y=nL, fill=cen)) +
4756	geom_boxplot()
4757	
4758	###### GLM para Qg
4759	
4760	hist(nL)
4761	nL_Qg<- c(data_Qg\$nL)
4762	
4763	hist(nL_Qg)
4764	
4765	fnorm<-fitdist(data_Qg\$nL, distr = "norm")
4766	fgamma<-fitdist(data_Qg\$nL, distr = "gamma")
4767	plot(fnorm)
4768	plot(fgamma)
4769	par(mfrow=c(1,1))
4770	famm_nL_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
4771	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
4772	#results of the tests
4773	## chi square test (with corresponding table)
4774	famm_nL_Qg\$chisqpvalue
4775	famm_nL_Qg\$chisqtable
4776	
4777	## Anderson-Darling test
4778	famm_nL_Qg\$adtest
4779	## Cramer von Mises test
4780	famm_nL_Qg\$cvmtest

4781	##Kolmogorov - Smirnov test
4782	famm_nL_Qg\$kstest
4783	
4784	
4785	$nL_m1_Qg <-glm(data_Qg\$nL~cen, family = Gamma(), data = data_Qg)$
4786	nL_m1_Qg
4787	summary(nL_m1_Qg)
4788	
4789	######################################
4790	### boxplot para Ta
4791	
4792	ggplot(data_Ta, aes(x=esp, y=nL, fill=cen)) +
4793	geom_boxplot()
4794	
4795	### GLM para Ta
4796	nL_Ta<- c(data_Ta\$nL)
4797	
4798	hist(nL_Ta)
4799	fnorm2<-fitdist(data_Ta\$nL, distr = "norm")
4800	fgamma2<-fitdist(data_Ta\$nL, distr = "gamma")
4801	plot(fnorm2)
4802	plot(fgamma2)
4803	par(mfrow=c(1,1))
4804	$famm_nL_Ta <-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))$
4805	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4806	#results of the tests
4807	## chi square test (with corresponding table)
4808	famm_nL_Ta\$chisqpvalue
4809	famm_nL_Ta\$chisqtable
4810	## Anderson-Darling test
4811	famm_nL_Ta\$adtest
4812	## Cramer von Mises test
4813	famm_nL_Ta\$cvmtest
4814	##Kolmogorov - Smirnov test

4815	famm_nL_Ta\$kstest
4816	
4817	$nL_m1_Ta <-glm(data_Ta\$nL~cen, family = Gamma(), data = data_Ta)$
4818	nL_m1_Ta
4819	summary(nL_m1_Ta)
4820	
4821	$nL_m2_Ta <-glm(data_Ta nL~cen, family = gaussian(), data = data_Ta)$
4822	nL_m2_Ta
4823	summary(nL_m2_Ta)
4824	######################################
4825	### boxplot para Kc
4826	ggplot(data_Kc, aes(x=esp, y=nL, fill=cen)) +
4827	geom_boxplot()
4828	
4829	###### GLM
4830	nL_Kc<- c(data_Kc\$nL)
4831	hist(nL_Kc)
4832	
4833	fnorm3<-fitdist(data_Kc\$nL, distr = "norm")
4834	fgamma3<-fitdist(data_Kc\$nL, distr = "gamma")
4835	plot(fnorm3)
4836	plot(fgamma3)
4837	par(mfrow=c(1,1))
4838	famm_nL_Kc<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
4839	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4840	#results of the tests
4841	## chi square test (with corresponding table)
4842	famm_nL_Kc\$chisqpvalue
4843	famm_nL_Kc\$chisqtable
4844	## Anderson-Darling test
4845	famm_nL_Kc\$adtest
4846	## Cramer von Mises test
4847	famm_nL_Kc\$cvmtest
4848	##Kolmogorov - Smirnov test

4849	famm_nL_Kc\$kstest
4850	
4851	$nL_m1_Kc<-glm(data_Kc\nL~cen,family = Gamma(),data = data_Kc)$
4852	nL_m1_Kc
4853	summary(nL_m1_Kc)
4854	
4855	######################################
4856	### boxplot para Hs
4857	ggplot(data_Hs, aes(x=esp, y=nL, fill=cen)) +
4858	geom_boxplot()
4859	
4860	###### GLM para Hs
4861	
4862	nL_Hs<- c(data_Hs\$nL)
4863	
4864	hist(nL_Hs)
4865	fnorm4<-fitdist(data_Hs\$nL, distr = "norm")
4866	fgamma4<-fitdist(data_Hs\$nL, distr = "gamma")
4867	plot(fnorm4)
4868	plot(fgamma4)
4869	par(mfrow=c(1,1))
4870	$famm_nL_Hs <-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))$
4871	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
4872	#results of the tests
4873	## chi square test (with corresponding table)
4874	famm_nL_Hs\$chisqpvalue
4875	famm_nL_Hs\$chisqtable
4876	## Anderson-Darling test
4877	famm_nL_Hs\$adtest
4878	## Cramer von Mises test
4879	famm_nL_Hs\$cvmtest
4880	##Kolmogorov - Smirnov test
4881	famm_nL_Hs\$kstest
4882	

4883	$nL_m1_Hs <-glm(data_Hs\nL ~cen, family = Gamma(), data = data_Hs)$
4884	nL_m1_Hs
4885	summary(nL_m1_Hs)
4886	
4887	######################################
4888	#flexplot e GLM de todas as sp
4889	## flexplot
4890	$STRL_all = flexplot(STRL \sim cen + esp,$
4891 4892	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A","F"))$ + ## para arrumar ordem dos dados no eixo x
4893	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
4894	
4895	STRL_all
4896	##########boxplot para Qg
4897	ggplot(data_Qg, aes(x=esp, y=STRL, fill=cen)) +
4898	geom_boxplot()
4899	
4900	###### GLM para Qg
4901	hist(STRL)
4902	STRL_Qg<- c(data_Qg\$STRL)
4903	hist(STRL_Qg)
4904	fnorm<-fitdist(data_Qg\$STRL, distr = "norm")
4905	fgamma<-fitdist(data_Qg\$STRL, distr = "gamma")
4906	plot(fnorm)
4907	plot(fgamma)
4908	par(mfrow=c(1,1))
4909	famm_STRL_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
4910	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
4911	#results of the tests
4912	## chi square test (with corresponding table)
4913	famm_STRL_Qg\$chisqpvalue
4914	famm_STRL_Qg\$chisqtable
4915	## Anderson-Darling test
4916	famm_STRL_Qg\$adtest
4917	## Cramer von Mises test

4918	famm_STRL_Qg\$cvmtest
4919	##Kolmogorov - Smirnov test
4920	famm_STRL_Qg\$kstest
4921	
4922	$STRL_m1_Qg <-glm(data_Qg\$STRL \sim cen, family = Gamma(), data = data_Qg)$
4923	STRL_m1_Qg
4924	summary(STRL_m1_Qg)
4925	
4926	######################################
4927	### boxplot para Ta
4928	
4929	ggplot(data_Ta, aes(x=esp, y=STRL, fill=cen)) +
4930	geom_boxplot()
4931	
4932	### GLM para Ta
4933	
4934	STRL_Ta<- c(data_Ta\$STRL)
4935	
4936	hist(STRL_Ta)
4937	fnorm2<-fitdist(data_Ta\$STRL, distr = "norm")
4938	fgamma2<-fitdist(data_Ta\$STRL, distr = "gamma")
4939	plot(fnorm2)
4940	plot(fgamma2)
4941	par(mfrow=c(1,1))
4942	$famm_STRL_Ta{<-gofstat}(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))$
4943	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
4944	#results of the tests
4945	## chi square test (with corresponding table)
4946	famm_STRL_Ta\$chisqpvalue
4947	famm_STRL_Ta\$chisqtable
4948	## Anderson-Darling test
4949	famm_STRL_Ta\$adtest
4950	## Cramer von Mises test
4951	famm_STRL_Ta\$cvmtest

4952	##Kolmogorov - Smirnov test
4953	famm_STRL_Ta\$kstest
4954	
4955	$STRL_m1_Ta <-glm(data_Ta \$STRL ~cen, family = Gamma(), data = data_Ta)$
4956	STRL_m1_Ta
4957	summary(STRL_m1_Ta)
4958	
4959	$STRL_m2_Ta <-glm(data_Ta \$STRL \sim cen, family = gaussian(), data = data_Ta)$
4960	STRL_m2_Ta
4961	summary(STRL_m2_Ta)
4962	######################################
4963	### boxplot para Kc
4964	
4965	ggplot(data_Kc, aes(x=esp, y=STRL, fill=cen)) +
4966	geom_boxplot()
4967	
4968	###### GLM
4969	STRL_Kc<- c(data_Kc\$STRL)
4970	hist(STRL_Kc)
4971	
4972	fnorm3<-fitdist(data_Kc\$STRL, distr = "norm")
4973	fgamma3<-fitdist(data_Kc\$STRL, distr = "gamma")
4974	plot(fnorm3)
4975	plot(fgamma3)
4976	par(mfrow=c(1,1))
4977	$famm_STRL_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))$
4978	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
4979	#results of the tests
4980	## chi square test (with corresponding table)
4981	famm_STRL_Kc\$chisqpvalue
4982	famm_STRL_Kc\$chisqtable
4983	## Anderson-Darling test
4984	famm_STRL_Kc\$adtest
4985	## Cramer von Mises test

4986	famm_STRL_Kc\$cvmtest
4987	##Kolmogorov - Smirnov test
4988	famm_STRL_Kc\$kstest
4989	
4990	
4991	STRL_m1_Kc<-glm(data_Kc\$STRL~cen,family = Gamma(),data = data_Kc)
4992	STRL_m1_Kc
4993	summary(STRL_m1_Kc)
4994	
4995	######################################
4996	### boxplot para Hs
4997	
4998	ggplot(data_Hs, aes(x=esp, y=STRL, fill=cen)) +
4999	geom_boxplot()
5000	
5001	###### GLM para Hs
5002	STRL_Hs<- c(data_Hs\$STRL)
5003	hist(STRL_Hs)
5004	
5005	fnorm4<-fitdist(data_Hs\$STRL, distr = "norm")
5006	fgamma4<-fitdist(data_Hs\$STRL, distr = "gamma")
5007	plot(fnorm4)
5008	plot(fgamma4)
5009	par(mfrow=c(1,1))
5010	$famm_STRL_Hs{-gofstat}(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))$
5011	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
5012	#results of the tests
5013	## chi square test (with corresponding table)
5014	famm_STRL_Hs\$chisqpvalue
5015	famm_STRL_Hs\$chisqtable
5016	## Anderson-Darling test
5017	famm_STRL_Hs\$adtest
5018	## Cramer von Mises test
5019	famm_STRL_Hs\$cvmtest

5020	##Kolmogorov - Smirnov test
5021	famm_STRL_Hs\$kstest
5022	
5023	
5024	$STRL_m1_Hs <-glm(data_Hs\$STRL \sim cen, family = Gamma(), data = data_Hs)$
5025	STRL_m1_Hs
5026	summary(STRL_m1_Hs)
5027	
5028	######################################
5029	#
5030	#flexplot e GLM de todas as sp
5031	## flexplot
5032	$RMF_all = flexplot(RMF \sim cen + esp,$
5033 5034	data = dados_no_na, se = F, alpha = .3) + scale_x_discrete(limits=c("A","F")) + ## para arrumar ordem dos dados no eixo x
5035	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
5036	
5037	RMF_all
5038	
5039	###########boxplot para Qg
5040	ggplot(data_Qg, aes(x=esp, y=RMF, fill=cen)) +
5041	geom_boxplot()
5042	
5043	###### GLM para Qg
5044	
5045	hist(RMF)
5046	RMF_Qg<- c(data_Qg\$RMF)
5047	hist(RMF_Qg)
5048	
5049	fnorm<-fitdist(data_Qg\$RMF, distr = "norm")
5050	fgamma<-fitdist(data_Qg\$RMF, distr = "gamma")
5051	plot(fnorm)
5052	plot(fgamma)
5053	par(mfrow=c(1,1))
5054	famm_RMF_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
5055	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
------	--
5056	#results of the tests
5057	## chi square test (with corresponding table)
5058	famm_RMF_Qg\$chisqpvalue
5059	famm_RMF_Qg\$chisqtable
5060	## Anderson-Darling test
5061	famm_RMF_Qg\$adtest
5062	## Cramer von Mises test
5063	famm_RMF_Qg\$cvmtest
5064	##Kolmogorov - Smirnov test
5065	famm_RMF_Qg\$kstest
5066	
5067	$RMF_m1_Qg <-glm(data_Qg\$RMF \sim cen, family = Gamma(), data = data_Qg)$
5068	RMF_m1_Qg
5069	summary(RMF_m1_Qg)
5070	
5071	######################################
5072	### boxplot para Ta
5073	
5074	ggplot(data_Ta, aes(x=esp, y=RMF, fill=cen)) +
5075	geom_boxplot()
5076	
5077	### GLM para Ta
5078	RMF_Ta<- c(data_Ta\$RMF)
5079	
5080	hist(RMF_Ta)
5081	fnorm2<-fitdist(data_Ta\$RMF, distr = "norm")
5082	fgamma2<-fitdist(data_Ta\$RMF, distr = "gamma")
5083	plot(fnorm2)
5084	plot(fgamma2)
5085	par(mfrow=c(1,1))
5086	famm_RMF_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
5087	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
5088	#results of the tests

5089	## chi square test (with corresponding table)
5090	famm_RMF_Ta\$chisqpvalue
5091	famm_RMF_Ta\$chisqtable
5092	## Anderson-Darling test
5093	famm_RMF_Ta\$adtest
5094	## Cramer von Mises test
5095	famm_RMF_Ta\$cvmtest
5096	##Kolmogorov - Smirnov test
5097	famm_RMF_Ta\$kstest
5098	
5099	$RMF_m1_Ta <-glm(data_Ta\$RMF \sim cen, family = Gamma(), data = data_Ta)$
5100	RMF_m1_Ta
5101	summary(RMF_m1_Ta)
5102	
5103	RMF_m2_Ta<-glm(data_Ta\$RMF~cen,family = gaussian(),data = data_Ta)
5104	RMF_m2_Ta
5105	summary(RMF_m2_Ta)
5106	
5107	######################################
5108	### boxplot para Kc
5109	ggplot(data_Kc, aes(x=esp, y=RMF, fill=cen)) +
5110	geom_boxplot()
5111	
5112	###### GLM
5113	RMF_Kc<- c(data_Kc\$RMF)
5114	
5115	hist(RMF_Kc)
5116	fnorm3<-fitdist(data_Kc\$RMF, distr = "norm")
5117	fgamma3<-fitdist(data_Kc\$RMF, distr = "gamma")
5118	plot(fnorm3)
5119	plot(fgamma3)
5120	par(mfrow=c(1,1))
5121	famm_RMF_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
5122	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))

5123	#results of the tests
5124	## chi square test (with corresponding table)
5125	famm_RMF_Kc\$chisqpvalue
5126	famm_RMF_Kc\$chisqtable
5127	
5128	## Anderson-Darling test
5129	famm_RMF_Kc\$adtest
5130	## Cramer von Mises test
5131	famm_RMF_Kc\$cvmtest
5132	##Kolmogorov - Smirnov test
5133	famm_RMF_Kc\$kstest
5134	
5135	
5136	$RMF_m1_Kc<-glm(data_Kc\$RMF~cen, family = Gamma(), data = data_Kc)$
5137	RMF_m1_Kc
5138	summary(RMF_m1_Kc)
5139	
5140	######################################
5141	### boxplot para Hs
5142	ggplot(data_Hs, aes(x=esp, y=RMF, fill=cen)) +
5143	geom_boxplot()
5144	##### GLM para Hs
5145	
5146	RMF_Hs<- c(data_Hs\$RMF)
5147	
5148	hist(RMF_Hs)
5149	fnorm4<-fitdist(data_Hs\$RMF, distr = "norm")
5150	fgamma4<-fitdist(data_Hs\$RMF, distr = "gamma")
5151	plot(fnorm4)
5152	plot(fgamma4)
5153	par(mfrow=c(1,1))
5154	famm_RMF_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
5155	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))

5156 #results of the tests

5157	## chi square test (with corresponding table)
5158	famm_RMF_Hs\$chisqpvalue
5159	famm_RMF_Hs\$chisqtable
5160	## Anderson-Darling test
5161	famm_RMF_Hs\$adtest
5162	## Cramer von Mises test
5163	famm_RMF_Hs\$cvmtest
5164	##Kolmogorov - Smirnov test
5165	famm_RMF_Hs\$kstest
5166	
5167	$RMF_m1_Hs <-glm(data_HsRMF \sim cen, family = Gamma(), data = data_Hs)$
5168	RMF_m1_Hs
5169	summary(RMF_m1_Hs)
5170	
5171	######################################
5172	#flexplot e GLM de todas as sp
5173	###
5174	## flexplot
5175	$SMF_all = flexplot(SMF \sim cen + esp,$
5176 5177	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
5178	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
5179	SMF_all
5180	
5181	##########boxplot para Qg
5182	ggplot(data_Qg, aes(x=esp, y=SMF, fill=cen)) +
5183	geom_boxplot()
5184	###### GLM para Qg
5185	
5186	hist(SMF)
5187	SMF_Qg<- c(data_Qg\$SMF)
5188	hist(SMF_Qg)
5189	
5190	fnorm<-fitdist(data_Qg\$SMF, distr = "norm")
5191	fgamma<-fitdist(data_Qg\$SMF, distr = "gamma")

- 5192 plot(fnorm)
- 5193 plot(fgamma)
- 5194 par(mfrow=c(1,1))
- 5195 $famm_SMF_Qg <-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))$
- 5196 denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
- 5197 #results of the tests
- 5198 ## chi square test (with corresponding table...)
- 5199 famm_SMF_Qg\$chisqpvalue
- 5200 famm_SMF_Qg\$chisqtable
- 5201 ## Anderson-Darling test
- 5202 famm_SMF_Qg\$adtest
- 5203 ## Cramer von Mises test
- 5204 famm_SMF_Qg\$cvmtest
- 5205 ##Kolmogorov Smirnov test
- 5206 famm_SMF_Qg\$kstest
- 5207
- $\label{eq:source} 5208 \qquad SMF_m1_Qg <-glm(data_Qg\$SMF ~cen, family = Gamma(), data = data_Qg)$
- 5209 SMF_m1_Qg
- 5210 summary(SMF_m1_Qg)
- 5211
- 5212 ###################### para Ta #######
- 5213 ### boxplot para Ta
- 5214
- 5215 ggplot(data_Ta, aes(x=esp, y=SMF, fill=cen)) +
- 5216 geom_boxplot()
- 5217
- 5218 ### GLM para Ta
- 5219 SMF_Ta<- c(data_Ta\$SMF)
- 5220
- 5221 hist(SMF_Ta)
- 5222 fnorm2<-fitdist(data_Ta\$SMF, distr = "norm")
- 5223 fgamma2<-fitdist(data_Ta\$SMF, distr = "gamma")
- 5224 plot(fnorm2)
- 5225 plot(fgamma2)

5226	par(mfrow=c(1,1))
5227	famm_SMF_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
5228	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
5229	#results of the tests
5230	## chi square test (with corresponding table)
5231	famm_SMF_Ta\$chisqpvalue
5232	famm_SMF_Ta\$chisqtable
5233	## Anderson-Darling test
5234	famm_SMF_Ta\$adtest
5235	## Cramer von Mises test
5236	famm_SMF_Ta\$cvmtest
5237	##Kolmogorov - Smirnov test
5238	famm_SMF_Ta\$kstest
5239	
5240	
5241	$SMF_m1_Ta <-glm(data_Ta\$SMF ~cen, family = Gamma(), data = data_Ta)$
5242	SMF_m1_Ta
5243	summary(SMF_m1_Ta)
5244	$SMF_m2_Ta <-glm(data_Ta\$SMF ~cen, family = gaussian(), data = data_Ta)$
5245	SMF_m2_Ta
5246	summary(SMF_m2_Ta)
5247	
5248	#####
5249	######################################
5250	### boxplot para Kc
5251	ggplot(data_Kc, aes(x=esp, y=SMF, fill=cen)) +
5252	geom_boxplot()
5253	
5254	###### GLM
5255	
5256	SMF_Kc<- c(data_Kc\$SMF)
5257	hist(SMF_Kc)
5258	
5259	fnorm3<-fitdist(data_Kc\$SMF, distr = "norm")

- 5260 fgamma3<-fitdist(data_Kc\$SMF, distr = "gamma")
- 5261 plot(fnorm3)
- 5262 plot(fgamma3)
- **5263** par(mfrow=c(1,1))
- 5264 famm_SMF_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
- 5265 denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
- 5266 #results of the tests
- 5267 ## chi square test (with corresponding table...)
- 5268 famm_SMF_Kc\$chisqpvalue
- 5269 famm_SMF_Kc\$chisqtable
- 5270 ## Anderson-Darling test
- 5271 famm_SMF_Kc\$adtest
- 5272 ## Cramer von Mises test
- 5273 famm_SMF_Kc\$cvmtest
- 5274 ##Kolmogorov Smirnov test
- 5275 famm_SMF_Kc\$kstest
- 5276
- $\label{eq:source} 5277 \qquad SMF_m1_Kc <-glm(data_Kc\$SMF ~cen, family = Gamma(), data = data_Kc)$
- 5278 SMF_m1_Kc
- 5279 summary(SMF_m1_Kc)
- 5280 ###################### para Hs ######
- 5281 ### boxplot para Hs
- 5282 ggplot(data_Hs, aes(x=esp, y=SMF, fill=cen)) +
- 5283 geom_boxplot()
- 5284
- 5285 ###### GLM para Hs
- 5286 SMF_Hs<- c(data_Hs\$SMF)
- 5287 hist(SMF_Hs)
- 5288
- 5289 fnorm4<-fitdist(data_Hs\$SMF, distr = "norm")
- 5290 fgamma4<-fitdist(data_Hs\$SMF, distr = "gamma")
- 5291 plot(fnorm4)
- 5292 plot(fgamma4)
- 5293 par(mfrow=c(1,1))

5294	famm_SMF_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
5295	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
5296	#results of the tests
5297	## chi square test (with corresponding table)
5298	famm_SMF_Hs\$chisqpvalue
5299	famm_SMF_Hs\$chisqtable
5300	
5301	## Anderson-Darling test
5302	famm_SMF_Hs\$adtest
5303	## Cramer von Mises test
5304	famm_SMF_Hs\$cvmtest
5305	##Kolmogorov - Smirnov test
5306	famm_SMF_Hs\$kstest
5307	
5308	
5309	SMF_m1_Hs<-glm(data_Hs\$SMF~cen,family = Gamma(),data = data_Hs)
5310	SMF_m1_Hs
5311	summary(SMF_m1_Hs)
5312	######################################
5313	#
5314	#flexplot e GLM de todas as sp
5315	
5316	###
5317	## flexplot
5318	St_dens_all= flexplot(St_dens ~ cen + esp,
5319 5320	$data = dados_no_na, se = F, alpha = .3) + scale_x_discrete(limits=c("A","F")) + \#\# para arrumar ordem dos dados no eixo x$
5321	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
5322	St_dens_all
5323	
5324	##########boxplot para Qg
5325	ggplot(data_Qg, aes(x=esp, y=St_dens, fill=cen)) +
5326	geom_boxplot()
5327	
5328	###### GLM para Qg

5329	
5330	hist(St_dens)
5331	
5332	St_dens_Qg<- c(data_Qg\$St_dens)
5333	hist(St_dens_Qg)
5334	
5335	fnorm<-fitdist(data_Qg\$St_dens, distr = "norm")
5336	fgamma<-fitdist(data_Qg\$St_dens, distr = "gamma")
5337	plot(fnorm)
5338	plot(fgamma)
5339	par(mfrow=c(1,1))
5340	famm_St_dens_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
5341	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
5342	#results of the tests
5343	## chi square test (with corresponding table)
5344	famm_St_dens_Qg\$chisqpvalue
5345	famm_St_dens_Qg\$chisqtable
5346	## Anderson-Darling test
5347	famm_St_dens_Qg\$adtest
5348	## Cramer von Mises test
5349	famm_St_dens_Qg\$cvmtest
5350	##Kolmogorov - Smirnov test
5351	famm_St_dens_Qg\$kstest
5352	
5353	
5354	
5355	$St_dens_m1_Qg <-glm(data_Qg\$St_dens~cen,family = Gamma(),data = data_Qg)$
5356	St_dens_m1_Qg
5357	summary(St_dens_m1_Qg)
5358	
5359	######################################
5360	### boxplot para Ta
5361	ggplot(data_Ta, aes(x=esp, y=St_dens, fill=cen)) +
5362	geom_boxplot()

5363	
5364	### GLM para Ta
5365	St_dens_Ta<- c(data_Ta\$St_dens)
5366	
5367	hist(St_dens_Ta)
5368	
5369	fnorm2<-fitdist(data_Ta\$St_dens, distr = "norm")
5370	fgamma2<-fitdist(data_Ta\$St_dens, distr = "gamma")
5371	plot(fnorm2)
5372	plot(fgamma2)
5373	par(mfrow=c(1,1))
5374	famm_St_dens_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
5375	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
5376	#results of the tests
5377	## chi square test (with corresponding table)
5378	famm_St_dens_Ta\$chisqpvalue
5379	famm_St_dens_Ta\$chisqtable
5380	## Anderson-Darling test
5381	famm_St_dens_Ta\$adtest
5382	## Cramer von Mises test
5383	famm_St_dens_Ta\$cvmtest
5384	##Kolmogorov - Smirnov test
5385	famm_St_dens_Ta\$kstest
5386	
5387	$St_dens_m1_Ta <-glm(data_Ta\$St_dens~cen, family = Gamma(), data = data_Ta)$
5388	St_dens_m1_Ta
5389	summary(St_dens_m1_Ta)
5390	
5391	$St_dens_m2_Ta <-glm(data_Ta\$St_dens \sim cen, family = gaussian(), data = data_Ta)$
5392	St_dens_m2_Ta
5393	summary(St_dens_m2_Ta)
5394	
5395	######################################
5396	### boxplot para Kc

5397	
5398	ggplot(data_Kc, aes(x=esp, y=St_dens, fill=cen)) +
5399	geom_boxplot()
5400	
5401	###### GLM
5402	St_dens_Kc<- c(data_Kc\$St_dens)
5403	
5404	hist(St_dens_Kc)
5405	
5406	fnorm3<-fitdist(data_Kc\$St_dens, distr = "norm")
5407	fgamma3<-fitdist(data_Kc\$St_dens, distr = "gamma")
5408	plot(fnorm3)
5409	plot(fgamma3)
5410	par(mfrow=c(1,1))
5411	famm_St_dens_Kc<-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))
5412	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
5413	#results of the tests
5414	## chi square test (with corresponding table)
5415	famm_St_dens_Kc\$chisqpvalue
5416	famm_St_dens_Kc\$chisqtable
5417	## Anderson-Darling test
5418	famm_St_dens_Kc\$adtest
5419	## Cramer von Mises test
5420	famm_St_dens_Kc\$cvmtest
5421	##Kolmogorov - Smirnov test
5422	famm_St_dens_Kc\$kstest
5423	
5424	$St_dens_m1_Kc <-glm(data_Kc\$St_dens \sim cen, family = Gamma(), data = data_Kc)$
5425	St_dens_m1_Kc
5426	summary(St_dens_m1_Kc)
5427	
5428	#####
5429	######################################
5430	### boxplot para Hs

5431	
5432	ggplot(data_Hs, aes(x=esp, y=St_dens, fill=cen)) +
5433	geom_boxplot()
5434	
5435	###### GLM para Hs
5436	
5437	St_dens_Hs<- c(data_Hs\$St_dens)
5438	
5439	hist(St_dens_Hs)
5440	fnorm4<-fitdist(data_Hs\$St_dens, distr = "norm")
5441	fgamma4<-fitdist(data_Hs\$St_dens, distr = "gamma")
5442	plot(fnorm4)
5443	plot(fgamma4)
5444	par(mfrow=c(1,1))
5445	famm_St_dens_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
5446	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
5447	#results of the tests
5448	## chi square test (with corresponding table)
5449	famm_St_dens_Hs\$chisqpvalue
5450	famm_St_dens_Hs\$chisqtable
5451	## Anderson-Darling test
5452	famm_St_dens_Hs\$adtest
5453	## Cramer von Mises test
5454	famm_St_dens_Hs\$cvmtest
5455	##Kolmogorov - Smirnov test
5456	famm_St_dens_Hs\$kstest
5457	
5458	$St_dens_m1_Hs<-glm(data_Hs\$St_dens~cen,family = Gamma(),data = data_Hs)$
5459	St_dens_m1_Hs
5460	summary(St_dens_m1_Hs)
5461	
5462	######################################
5463	#
5464	#flexplot e GLM de todas as sp

5465	## flexplot
5466	$SM_all = flexplot(SM \sim cen + esp,$
5467 5468	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
5469	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
5470	SM_all
5471	###########boxplot para Qg
5472	
5473	ggplot(data_Qg, aes(x=esp, y=SM, fill=cen)) +
5474	geom_boxplot()
5475	
5476	###### GLM para Qg
5477	
5478	hist(SM)
5479	SM_Qg<- c(data_Qg\$SM)
5480	
5481	hist(SM_Qg)
5482	fnorm<-fitdist(data_Qg\$SM, distr = "norm")
5483	fgamma<-fitdist(data_Qg\$SM, distr = "gamma")
5484	plot(fnorm)
5485	plot(fgamma)
5486	par(mfrow=c(1,1))
5487	famm_SM_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
5488	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
5489	#results of the tests
5490	## chi square test (with corresponding table)
5491	famm_SM_Qg\$chisqpvalue
5492	famm_SM_Qg\$chisqtable
5493	## Anderson-Darling test
5494	famm_SM_Qg\$adtest
5495	## Cramer von Mises test
5496	famm_SM_Qg\$cvmtest
5497	##Kolmogorov - Smirnov test
5498	famm_SM_Qg\$kstest

5500	SM_m1_Qg<-glm(data_Qg\$SM~cen,family = Gamma(),data = data_Qg)
5501	SM_m1_Qg
5502	summary(SM_m1_Qg)
5503	
5504	######################################
5505	### boxplot para Ta
5506	
5507	ggplot(data_Ta, aes(x=esp, y=SM, fill=cen)) +
5508	geom_boxplot()
5509	
5510	### GLM para Ta
5511	SM_Ta<- c(data_Ta\$SM)
5512	hist(SM_Ta)
5513	
5514	fnorm2<-fitdist(data_Ta\$SM, distr = "norm")
5515	fgamma2<-fitdist(data_Ta\$SM, distr = "gamma")
5516	plot(fnorm2)
5517	plot(fgamma2)
5518	par(mfrow=c(1,1))
5519	$famm_SM_Ta{<-}gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))$
5520	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
5521	#results of the tests
5522	## chi square test (with corresponding table)
5523	famm_SM_Ta\$chisqpvalue
5524	famm_SM_Ta\$chisqtable
5525	
5526	## Anderson-Darling test
5527	famm_SM_Ta\$adtest
5528	## Cramer von Mises test
5529	famm_SM_Ta\$cvmtest
5530	##Kolmogorov - Smirnov test
5531	famm_SM_Ta\$kstest
5532	
5533	

5534	SM_m1_Ta<-glm(data_Ta\$SM~cen,family = Gamma(),data = data_Ta)
5535	SM_m1_Ta
5536	summary(SM_m1_Ta)
5537	$SM_m2_Ta <-glm(data_Ta \$SM \sim cen, family = gaussian(), data = data_Ta)$
5538	SM_m2_Ta
5539	summary(SM_m2_Ta)
5540	
5541	########################### para Kc ########
5542	### boxplot para Kc
5543	ggplot(data_Kc, aes(x=esp, y=SM, fill=cen)) +
5544	geom_boxplot()
5545	
5546	###### GLM
5547	SM_Kc<- c(data_Kc\$SM)
5548	
5549	hist(SM_Kc)
5550	fnorm3<-fitdist(data_Kc\$SM, distr = "norm")
5551	fgamma3<-fitdist(data_Kc\$SM, distr = "gamma")
5552	plot(fnorm3)
5553	plot(fgamma3)
5554	par(mfrow=c(1,1))
5555	$famm_SM_Kc <-gofstat(list(fnorm3,fgamma3),fitnames = c("norm","gamma"))$
5556	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
5557	#results of the tests
5558	## chi square test (with corresponding table)
5559	famm_SM_Kc\$chisqpvalue
5560	famm_SM_Kc\$chisqtable
5561	## Anderson-Darling test
5562	famm_SM_Kc\$adtest
5563	## Cramer von Mises test
5564	famm_SM_Kc\$cvmtest
5565	##Kolmogorov - Smirnov test
5566	famm_SM_Kc\$kstest

5568	$SM_m1_Kc <-glm(data_Kc\$SM \sim cen, family = Gamma(), data = data_Kc)$
5569	SM_m1_Kc
5570	summary(SM_m1_Kc)
5571	
5572	######################################
5573	### boxplot para Hs
5574	
5575	ggplot(data_Hs, aes(x=esp, y=SM, fill=cen)) +
5576	geom_boxplot()
5577	
5578	###### GLM para Hs
5579	
5580	SM_Hs<- c(data_Hs\$SM)
5581	
5582	hist(SM_Hs)
5583	fnorm4<-fitdist(data_Hs\$SM, distr = "norm")
5584	fgamma4<-fitdist(data_Hs\$SM, distr = "gamma")
5585	plot(fnorm4)
5586	plot(fgamma4)
5587	par(mfrow=c(1,1))
5588	famm_SM_Hs<-gofstat(list(fnorm4,fgamma4),fitnames = c("norm","gamma"))
5589	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
5590	#results of the tests
5591	## chi square test (with corresponding table)
5592	famm_SM_Hs\$chisqpvalue
5593	famm_SM_Hs\$chisqtable
5594	## Anderson-Darling test
5595	famm_SM_Hs\$adtest
5596	## Cramer von Mises test
5597	famm_SM_Hs\$cvmtest
5598	##Kolmogorov - Smirnov test
5599	famm_SM_Hs\$kstest
5600	
5601	

5602	SM_m1_Hs<-glm(data_Hs\$SM~cen,family = Gamma(),data = data_Hs)
5603	SM_m1_Hs
5604	summary(SM_m1_Hs)
5605	
5606	######################################
5607	#flexplot e GLM de todas as sp
5608	## flexplot
5609	$RM_all = flexplot(RM \sim cen + esp,$
5610 5611	$data = dados_no_na$, $se = F$, $alpha = .3$) + $scale_x_discrete(limits=c("A", "F"))$ + ## para arrumar ordem dos dados no eixo x
5612	theme(axis.text.x = element_text(angle=0, hjust=1, vjust=.2))
5613	
5614	RM_all
5615	
5616	###########boxplot para Qg
5617	
5618	ggplot(data_Qg, aes(x=esp, y=RM, fill=cen)) +
5619	geom_boxplot()
5620	###### GLM para Qg
5621	hist(RM)
5622	
5623	RM_Qg<- c(data_Qg\$RM)
5624	hist(RM_Qg)
5625	fnorm<-fitdist(data_Qg\$RM, distr = "norm")
5626	fgamma<-fitdist(data_Qg\$RM, distr = "gamma")
5627	plot(fnorm)
5628	plot(fgamma)
5629	par(mfrow=c(1,1))
5630	famm_RM_Qg<-gofstat(list(fnorm,fgamma),fitnames = c("norm","gamma"))
5631	denscomp(list(fnorm,fgamma),legendtext = c("norm","gamma"))
5632	#results of the tests
5633	## chi square test (with corresponding table)
5634	famm_RM_Qg\$chisqpvalue
5635	famm_RM_Qg\$chisqtable
5636	## Anderson-Darling test

5637	famm_RM_Qg\$adtest
5638	## Cramer von Mises test
5639	famm_RM_Qg\$cvmtest
5640	##Kolmogorov - Smirnov test
5641	famm_RM_Qg\$kstest
5642	
5643	
5644	
5645	$RM_m1_Qg <-glm(data_Qg\$RM \sim cen, family = Gamma(), data = data_Qg)$
5646	RM_m1_Qg
5647	summary(RM_m1_Qg)
5648	
5649	######################################
5650	####
5651	### boxplot para Ta
5652	ggplot(data_Ta, aes(x=esp, y=RM, fill=cen)) +
5653	geom_boxplot()
5654	
5655	### GLM para Ta
5656	
5657	RM_Ta<- c(data_Ta\$RM)
5658	hist(RM_Ta)
5659	fnorm2<-fitdist(data_Ta\$RM, distr = "norm")
5660	fgamma2<-fitdist(data_Ta\$RM, distr = "gamma")
5661	plot(fnorm2)
5662	plot(fgamma2)
5663	par(mfrow=c(1,1))
5664	famm_RM_Ta<-gofstat(list(fnorm2,fgamma2),fitnames = c("norm","gamma"))
5665	denscomp(list(fnorm2,fgamma2),legendtext = c("norm","gamma"))
5666	#results of the tests
5667	## chi square test (with corresponding table)
5668	famm_RM_Ta\$chisqpvalue
5669	famm_RM_Ta\$chisqtable
5670	## Anderson-Darling test

5671	famm_RM_Ta\$adtest
5672	## Cramer von Mises test
5673	famm_RM_Ta\$cvmtest
5674	##Kolmogorov - Smirnov test
5675	famm_RM_Ta\$kstest
5676	
5677	$RM_m1_Ta <-glm(data_Ta\$RM \sim cen, family = Gamma(), data = data_Ta)$
5678	RM_m1_Ta
5679	summary(RM_m1_Ta)
5680	$RM_m2_Ta <-glm(data_Ta\$RM \sim cen, family = gaussian(), data = data_Ta)$
5681	RM_m2_Ta
5682	summary(RM_m2_Ta)
5683	
5684	#####
5685	########################## para Kc ########
5686	### boxplot para Kc
5687	ggplot(data_Kc, aes(x=esp, y=RM, fill=cen)) +
5688	geom_boxplot()
5689	
5690	###### GLM
5691	
5692	RM_Kc<- c(data_Kc\$RM)
5693	hist(RM_Kc)
5694	fnorm3<-fitdist(data_Kc\$RM, distr = "norm")
5695	fgamma3<-fitdist(data_Kc\$RM, distr = "gamma")
5696	plot(fnorm3)
5697	plot(fgamma3)
5698	par(mfrow=c(1,1))
5699	$famm_RM_Kc <-gofstat(list(fnorm3, fgamma3), fitnames = c("norm", "gamma"))$
5700	denscomp(list(fnorm3,fgamma3),legendtext = c("norm","gamma"))
5701	#results of the tests
5702	## chi square test (with corresponding table)
5703	famm_RM_Kc\$chisqpvalue
5704	famm_RM_Kc\$chisqtable

5705	## Anderson-Darling test
5706	famm_RM_Kc\$adtest
5707	## Cramer von Mises test
5708	famm_RM_Kc\$cvmtest
5709	##Kolmogorov - Smirnov test
5710	famm_RM_Kc\$kstest
5711	
5712	
5713	RM_m1_Kc<-glm(data_Kc\$RM~cen,family = Gamma(),data = data_Kc)
5714	RM_m1_Kc
5715	summary(RM_m1_Kc)
5716	
5717	######################################
5718	### boxplot para Hs
5719	ggplot(data_Hs, aes(x=esp, y=RM, fill=cen)) +
5720	geom_boxplot()
5721	###### GLM para Hs
5722	RM_Hs<- c(data_Hs\$RM)
5723	hist(RM_Hs)
5724	fnorm4<-fitdist(data_Hs\$RM, distr = "norm")
5725	fgamma4<-fitdist(data_Hs\$RM, distr = "gamma")
5726	plot(fnorm4)
5727	plot(fgamma4)
5728	par(mfrow=c(1,1))
5729	$famm_RM_Hs <-gofstat(list(fnorm4, fgamma4), fitnames = c("norm", "gamma"))$
5730	denscomp(list(fnorm4,fgamma4),legendtext = c("norm","gamma"))
5731	#results of the tests
5732	## chi square test (with corresponding table)
5733	famm_RM_Hs\$chisqpvalue
5734	famm_RM_Hs\$chisqtable
5735	## Anderson-Darling test
5736	famm_RM_Hs\$adtest
5737	## Cramer von Mises test
5738	famm_RM_Hs\$cvmtest

- 5739 ##Kolmogorov Smirnov test
- 5740 famm_RM_Hs\$kstest
- 5741
- 5742 RM_m1_Hs<-glm(data_Hs\$RM~cen,family = Gamma(),data = data_Hs)
- 5743 RM_m1_Hs
- 5744 summary(RM_m1_Hs)
- 5745
- 5746

5747 ANÁLISES ESTATÍSTICAS DO CAPÍTULO II 7.4.1. 5748 5749 5750 5751 summary(Qg_A) 5752 ST_D Η Lnum cen sp 5753 Length:26 Length:26 Min. :0.1460 Min. : 6.400 Min. : 1.000 5754 Class :character Class :character 1st Ou.:0.1822 1st Ou.: 7.300 1st Ou.: 3.000 5755 Mode :character Mode :character Median :0.2057 Median : 8.550 Median : 5.000 Mean :0.2004 Mean : 8.627 Mean : 5.077 5756 5757 3rd Qu.:0.2157 3rd Qu.: 9.650 3rd Qu.: 6.750 Max. :0.2410 Max. :13.000 Max. :12.000 5758 RL TpRM ScRM StM TLM 5759 Min. : 51.00 Min. :0.2456 Min. :0.0300 Min. :0.05990 Min. :0.04990 5760 5761 1st Qu.: 71.50 1st Qu.:0.4619 1st Qu.:0.0924 1st Qu.:0.09978 1st Qu.:0.09058 Median: 81.80 Median: 0.5934 Median: 0.1154 Median: 0.10950 Median: 0.16160 5762 5763 Mean : 81.33 Mean :0.6196 Mean :0.1300 Mean :0.11058 Mean :0.16123 3rd Qu.: 89.65 3rd Qu.:0.7599 3rd Qu.:0.1518 3rd Qu.:0.12235 3rd Qu.:0.18682 5764 5765 Max. :104.20 Max. :0.9876 Max. :0.4552 Max. :0.16220 Max. :0.38670

5766 RM SM TM RS LMF Min. :0.3300 Min. :0.1271 Min. :0.4571 Min. :1.443 Min. :0.04726 5767 1st Qu.:0.5656 1st Qu.:0.2111 1st Qu.:0.8351 1st Qu.:2.152 1st Qu.:0.12586 5768 5769 Median :0.7361 Median :0.2544 Median :1.0468 Median :2.828 Median :0.15265 Mean :0.7496 Mean :0.2718 Mean :1.0214 Mean :2.961 Mean :0.15866 5770 3rd Qu.:0.8883 3rd Qu.:0.3200 3rd Qu.:1.1590 3rd Qu.:3.034 3rd Qu.:0.20934 5771 Max. :1.2451 Max. :0.4638 Max. :1.6724 Max. :5.562 Max. :0.33082 5772 RMF SMF SLA RGR STRL 5773 Min. :0.5907 Min. :0.1524 Min. : 33.71 Min. :0.01371 Min. : 85.57 5774 5775 1st Qu.:0.6820 1st Qu.:0.2479 1st Qu.: 81.88 1st Qu.:0.01717 1st Qu.:110.55 Median :0.7387 Median :0.2613 Median : 99.06 Median :0.01877 Median :123.87 5776 Mean :0.7280 Mean :0.2720 Mean : 92.47 Mean :0.01885 Mean :144.01 5777 5778 3rd Qu.:0.7521 3rd Qu.:0.3180 3rd Qu.:106.45 3rd Qu.:0.01995 3rd Qu.:173.16 5779 Max. :0.8476 Max. :0.4093 Max. :134.86 Max. :0.02586 Max. :287.05 5780 RER

5781 Min. :0.2808

237

5782	1st Qu.:0.4897
5783	Median :0.5294
5784	Mean :0.5449
5785	3rd Qu.:0.6311
5786	Max. :0.8057
5787	> summary(Qg_F)
5788	sp cen ST_D H Lnum
5789	Length:33 Length:33 Min. :0.1700 Min. : 7.60 Min. : 5.00
5790	Class :character Class :character 1st Qu.:0.2115 1st Qu.:11.50 1st Qu.: 8.00
5791	Mode :character Mode :character Median :0.2285 Median :13.40 Median :11.00
5792	Mean :0.2292 Mean :13.12 Mean :10.94
5793	3rd Qu.:0.2515 3rd Qu.:14.60 3rd Qu.:12.00
5794	Max. :0.2835 Max. :19.80 Max. :20.00
5795	RL TpRM ScRM StM TLM
5796	Min. : 82.6 Min. :0.2304 Min. :0.05606 Min. :0.0846 Min. :0.1520
5797	1st Qu.: 99.8 1st Qu.:0.3914 1st Qu.:0.09580 1st Qu.:0.1567 1st Qu.:0.5658
5798	Median :100.5 Median :0.6257 Median :0.14270 Median :0.1900 Median :0.7274
5799	Mean :100.4 Mean :0.6657 Mean :0.18774 Mean :0.1995 Mean :0.8015
5800	3rd Qu.:103.1 3rd Qu.:0.8281 3rd Qu.:0.21900 3rd Qu.:0.2400 3rd Qu.:1.0385
5801	Max. :111.2 Max. :1.5320 Max. :0.91000 Max. :0.3611 Max. :1.5870
5802	RM SM TM RS LMF
5803	Min. :0.3514 Min. :0.2402 Min. :0.7874 Min. :0.5105 Min. :0.1649
5804	1st Qu.:0.5373 1st Qu.:0.7292 1st Qu.:1.3519 1st Qu.:0.6995 1st Qu.:0.3964
5805	Median :0.7587 Median :0.9328 Median :1.7879 Median :0.8060 Median :0.4384
5806	Mean :0.8534 Mean :1.0010 Mean :1.8544 Mean :0.9109 Mean :0.4288
5807	3rd Qu.:1.1005 3rd Qu.:1.2432 3rd Qu.:2.1217 3rd Qu.:0.9648 3rd Qu.:0.4737
5808	Max. :1.7000 Max. :1.8115 Max. :3.3603 Max. :2.8383 Max. :0.5295
5809	RMF SMF SLA RGR STRL
5810	Min. :0.3380 Min. :0.2605 Min. : 83.5 Min. :0.01793 Min. : 60.84
5811	1st Qu.:0.4116 1st Qu.:0.5090 1st Qu.:104.0 1st Qu.:0.02079 1st Qu.:124.41
5812	Median :0.4463 Median :0.5537 Median :111.7 Median :0.02341 Median :164.04
5813	Mean :0.4602 Mean :0.5398 Mean :112.3 Mean :0.02375 Mean :186.52
5814	3rd Qu.:0.4910 3rd Qu.:0.5884 3rd Qu.:117.6 3rd Qu.:0.02626 3rd Qu.:253.85
5815	Max. :0.7395 Max. :0.6620 Max. :157.1 Max. :0.03108 Max. :443.14

5816	RER
5817	Min. :0.5356
5818	1st Qu.:0.6676
5819	Median :0.7189
5820	Mean :0.7057
5821	3rd Qu.:0.7551
5822	Max. :0.8137
5823	
5824	std.error(Qg_A\$H)
5825	[1] 0.301614
5826	<pre>>std.error(Qg_F\$H)</pre>
5827	[1] 0.4117004
5828	>
5829	> std.error(Qg_A\$ST_D)
5830	[1] 0.004658353
5831	<pre>> std.error(Qg_F\$ST_D)</pre>
5832	[1] 0.005512798
5833	>
5834	<pre>> std.error(Qg_A\$RL)</pre>
5835	[1] 2.882626
5836	<pre>> std.error(Qg_F\$RL)</pre>
5837	[1] 0.8586068
5838	>
5839	<pre>> std.error(Qg_A\$Lnum)</pre>
5840	[1] 0.5708915
5841	<pre>> std.error(Qg_F\$Lnum)</pre>
5842	[1] 0.6698872
5843	>
5844	<pre>> std.error(Qg_A\$TM)</pre>
5845	[1] 0.05521322
5846	<pre>>std.error(Qg_F\$TM)</pre>
5847	[1] 0.1272773
5848	>
5849	<pre>> std.error(Qg_A\$RM)</pre>

5850	[1] 0.0465318
5851	<pre>> std.error(Qg_F\$RM)</pre>
5852	[1] 0.06512664
5853	>
5854	<pre>> std.error(Qg_A\$SM)</pre>
5855	[1] 0.01762037
5856	<pre>> std.error(Qg_F\$SM)</pre>
5857	[1] 0.07081724
5858	>
5859	<pre>> std.error(Qg_A\$RMF)</pre>
5860	[1] 0.01420205
5861	<pre>> std.error(Qg_F\$RMF)</pre>
5862	[1] 0.0141594
5863	>
5864	<pre>> std.error(Qg_A\$SMF)</pre>
5865	[1] 0.01420205
5866	<pre>> std.error(Qg_F\$SMF)</pre>
5867	[1] 0.0141594
5868	>
5869	<pre>> std.error(Qg_A\$RGR)</pre>
5870	[1] 0.0005130239
5871	<pre>> std.error(Qg_F\$RGR)</pre>
5872	[1] 0.0006035291
5873	>
5874	> std.error(Qg_A\$SLA)
5875	[1] 5.241104
5876	<pre>> std.error(Qg_F\$SLA)</pre>
5877	[1] 2.745227
5878	>
5879	<pre>> std.error(Qg_A\$STRL)</pre>
5880	[1] 9.914294
5881	<pre>> std.error(Qg_F\$STRL)</pre>
5882	[1] 15.82884
5883	

5884	#######################################
5885	
5886	##summary(Mt_m1_Qg)
5887	Call:
5888	$glm(formula = data_Qg$ TM ~ cen, family = Gamma(), data = data_Qg)
5889	
5890	Deviance Residuals:
5891	Min 1Q Median 3Q Max
5892	-0.74991 -0.25362 -0.03065 0.13787 0.65972
5893	
5894	Coefficients:
5895	Estimate Std. Error t value Pr(> t)
5896	(Intercept) 0.97903 0.06668 14.683 < 2e-16 ***
5897	cenF -0.43976 0.07422 -5.925 1.91e-07 ***
5898	
5899	##summary(ScRM_m1_Qg)
5900	
5901	Call:
5902	$glm(formula = data_Qg\$ScRM \sim cen, family = Gamma(), data = data_Qg)$
5903	
5904	Deviance Residuals:
5905	Min 1Q Median 3Q Max
5906	-1.1807 -0.5375 -0.1771 0.1676 2.1301
5907	
5908	Coefficients:
5909	Estimate Std. Error t value Pr(> t)
5910	(Intercept) 7.693 1.149 6.698 1.01e-08 ***
5911	cenF -2.367 1.348 -1.756 0.0845.
5912	
5913	##summary(TpRM_m1_Qg)
5914	
5915	Call:
5916	glm(formula = data_Qg\$TpRM ~ cen, family = Gamma(), data = data_Qg)
5917	

5918 **Deviance Residuals:** 5919 Min 10 Median 3Q Max 5920 -0.90232 -0.36760 -0.06129 0.22342 0.96737 5921 Coefficients: 5922 5923 Estimate Std. Error t value Pr(>|t|) 5924 (Intercept) 1.6139 0.1286 12.545 <2e-16 *** 5925 -0.1116 0.1669 -0.669 0.506 cenF 5926 5927 ##summary(StM_m1_Qg) 5928 5929 Call: 5930 $glm(formula = data_Qg$ $StM \sim cen, family = Gamma(), data = data_Qg)$ 5931 5932 **Deviance Residuals:** 5933 1Q Median 3Q Min Max 5934 -0.75079 -0.15619 -0.02901 0.12038 0.65851 5935 5936 Coefficients: Estimate Std. Error t value Pr(>|t|) 5937 5938 (Intercept) 9.0435 0.5320 17.000 < 2e-16 *** 5939 cenF -4.0301 0.5929 -6.797 6.92e-09 *** 5940 5941 ##summary(SLA_m1_Qg) 5942 5943 Call: 5944 $glm(formula = data_Qg$ SLA ~ cen, family = Gamma(), data = data_Qg) 5945 5946 **Deviance Residuals:** 5947 Min 1Q Median 30 Max 5948 $-0.86447 \ -0.07781 \ \ 0.01418 \ \ 0.12851 \ \ 0.40268$ 5949 Coefficients: 5950 5951 Estimate Std. Error t value Pr(>|t|)

5952	(Intercept) 0.0108144 0.0004632 23.347 < 2e-16 ***
5953	cenF -0.0019110 0.0005737 -3.331 0.00152 **
5954	
5955	##summary(H_m1_Qg)
5956	
5957	Call:
5958	$glm(formula = data_Qg$ \$H ~ cen, family = Gamma(), data = data_Qg)
5959	
5960	Deviance Residuals:
5961	Min 1Q Median 3Q Max
5962	-0.50040 -0.14558 -0.00312 0.11251 0.44198
5963	
5964	Coefficients:
5965	Estimate Std. Error t value Pr(> t)
5966	(Intercept) 0.115916 0.004078 28.422 < 2e-16 ***
5967	cenF -0.039686 0.004722 -8.404 1.47e-11 ***
5968	
5969	## summary(ST_D_m1_Qg)
5970	
5971	Call:
5972	$glm(formula = data_Qg\$ST_D \sim cen, family = Gamma(), data = data_Qg)$
5973	
5974	Deviance Residuals:
5975	Min 1Q Median 3Q Max
5976	-0.301028 -0.080318 0.001454 0.082100 0.220583
5977	
5978	Coefficients:
5979	Estimate Std. Error t value Pr(> t)
5980	(Intercept) 4.9890 0.1271 39.246 < 2e-16 ***
5981	cenF -0.6253 0.1609 -3.886 0.000268 ***
5982	
5983	## summary(RGR_m1_Qg)
5984	
5985	Call:

```
5986
        glm(formula = data_Qg RGR ~ cen, family = Gamma(), data = data_Qg)
5987
5988
        Deviance Residuals:
5989
          Min
                   1Q Median
                                   3Q
                                         Max
5990
        -0.30248 -0.10315 -0.01426 0.06795 0.33377
5991
5992
        Coefficients:
5993
              Estimate Std. Error t value Pr(>|t|)
5994
        (Intercept) 53.052
                           1.487 35.688 < 2e-16 ***
5995
                           1.818 -6.017 1.35e-07 ***
        cenF
                 -10.942
5996
5997
        ## summary(Lnum_m1_Qg)
5998
5999
        Call:
6000
        glm(formula = data_Qg$Lnum ~ cen, family = Gamma(), data = data_Qg)
6001
6002
        Deviance Residuals:
6003
           Min
                   10 Median
                                   3Q
                                         Max
6004
        -1.28193 -0.35650 0.00553 0.17184 1.00343
6005
6006
        Coefficients:
6007
              Estimate Std. Error t value Pr(>|t|)
6008
        (Intercept) 0.19697 0.01786 11.031 9.12e-16 ***
                -0.10556 0.01931 -5.466 1.06e-06 ***
6009
        cenF
6010
6011
        ##summary(STRL_m1_Qg)
6012
6013
        Call:
6014
        glm(formula = data_Qg\$STRL \sim cen, family = Gamma(), data = data_Qg)
6015
6016
        Deviance Residuals:
6017
          Min
                  1Q Median
                                 3Q
                                       Max
        -0.9450 -0.3572 -0.1258 0.2723 1.0104
6018
6019
```

6020	Coefficients:
6021	Estimate Std. Error t value Pr(> t)
6022	(Intercept) 0.0069441 0.0005897 11.776 <2e-16 ***
6023	cenF -0.0015828 0.0007148 -2.214 0.0308 *
6024	
6025	
6026	
6027	##summary(RMF_m1_Qg)
6028	
6029	Call:
6030	$glm(formula = data_Qg\$RMF \sim cen, family = Gamma(), data = data_Qg)$
6031	
6032	Deviance Residuals:
6033	Min 1Q Median 3Q Max
6034	-0.29366 -0.09690 0.00116 0.05704 0.51485
6035	
6036	Coefficients:
6037	Estimate Std. Error t value Pr(> t)
6038	(Intercept) 1.37364 0.03984 34.48 <2e-16 ***
6039	cenF 0.79921 0.06868 11.64 <2e-16 ***
6040	
6041	##summary(SM_m1_Qg)
6042	
6043	Call:
6044	$glm(formula = data_Qg\$SM \sim cen, family = Gamma(), data = data_Qg)$
6045	
6046	Deviance Residuals:
6047	Min 1Q Median 3Q Max
6048	-1.15517 -0.28838 -0.06816 0.20630 0.65814
6049	
6050	Coefficients:
6051	Estimate Std. Error t value Pr(> t)
6052	(Intercept) 3.6791 0.2706 13.596 < 2e-16 ***
6053	cenF -2.6800 0.2784 -9.628 1.48e-13 ***

6054	
6055	##summary(RM_m1_Qg)
6056	
6057	Call:
6058	glm(formula = data_Qg\$RM ~ cen, family = Gamma(), data = data_Qg)
6059	
6060	Deviance Residuals:
6061	Min 1Q Median 3Q Max
6062	-0.77340 -0.35935 -0.02685 0.21959 0.77829
6063	
6064	Coefficients:
6065	Estimate Std. Error t value Pr(> t)
6066	(Intercept) 1.3340 0.1019 13.086 <2e-16 ***
6067	cenF -0.1623 0.1293 -1.255 0.215
6068	
6069	## summary(RL_m1_Qg)
6070	
6071	Call:
6072	$glm(formula = data_Qg$ RL ~ cen, family = Gamma(), data = data_Qg)
6073	
6074	Deviance Residuals:
6075	Min 1Q Median 3Q Max
6076	$-0.43305 \ -0.02786 \ 0.00081 \ 0.03386 \ 0.25846$
6077	
6078	Coefficients:
6079	Estimate Std. Error t value Pr(> t)
6080	(Intercept) 0.0122955 0.0003019 40.721 < 2e-16 ***
6081	cenF -0.0023371 0.0003719 -6.285 4.9e-08 ***
6082	
6083	
6084	*****
6086	***************************************
0000	$summary(T_{0}, \Lambda)$
008/	summary(ra_A)
8800	sp cen SI_D H Lnum

Та

Min. :0.2775 Min. :1.900 Min. : 4.000 6089 Length:31 Length:31 Class :character Class :character 1st Qu.:0.3450 1st Qu.:2.750 1st Qu.: 6.000 6090 Mode :character Mode :character Median :0.4205 Median :3.100 Median : 6.000 6091 6092 Mean :0.4226 Mean :3.137 Mean : 7.129 6093 3rd Qu.:0.4510 3rd Qu.:3.400 3rd Qu.: 8.000 Max. :0.6975 Max. :4.500 Max. :12.000 6094 RL 6095 TpRM ScRM StM TLM Min. : 29.00 Min. : 0.380 Min. : 0.0460 Min. : 0.0286 Min. : 0.0731 6096 6097 1st Qu.: 95.20 1st Qu.:1.253 1st Qu.:0.2474 1st Qu.:0.0569 1st Qu.:0.3437 6098 Median : 96.00 Median :1.518 Median :0.3884 Median :0.0819 Median :0.5967 6099 Mean : 94.54 Mean : 1.500 Mean : 0.3843 Mean : 0.1076 Mean : 0.5486 3rd Qu.: 97.90 3rd Qu.:1.792 3rd Qu.:0.4860 3rd Qu.:0.1011 3rd Qu.:0.7133 6100 6101 Max. :115.00 Max. :2.683 Max. :0.8333 Max. :0.9200 Max. :1.1899 TM RS LMF 6102 RM SM 6103 Min. :0.426 Min. :0.1328 Min. :0.779 Min. : 1.207 Min. :0.04412 1st Qu.:1.494 1st Qu.:0.3985 1st Qu.:1.989 1st Qu.: 2.111 1st Qu.:0.19512 6104 6105 Median : 2.021 Median : 0.6786 Median : 2.645 Median : 2.772 Median : 0.22342 Mean :1.884 Mean :0.6562 Mean :2.540 Mean : 3.823 Mean :0.22201 6106 6107 3rd Ou.:2.258 3rd Ou.:0.8399 3rd Ou.:3.065 3rd Ou.: 3.509 3rd Ou.:0.27152 6108 Max. :3.462 Max. :1.6105 Max. :4.120 Max. :12.545 Max. :0.39820 6109 RMF SMF SLA RGR STRL 6110 Min. :0.5469 Min. :0.07383 Min. : 71.66 Min. :0.01110 Min. : 42.42 1st Qu.:0.6774 1st Qu.:0.22179 1st Qu.:105.71 1st Qu.:0.01847 1st Qu.: 53.32 6111 Median :0.7349 Median :0.26508 Median :122.21 Median :0.02113 Median : 64.63 6112 6113 Mean :0.7389 Mean :0.26108 Mean :123.50 Mean :0.02034 Mean : 69.68 3rd Qu.:0.7782 3rd Qu.:0.32263 3rd Qu.:138.04 3rd Qu.:0.02262 3rd Qu.: 75.28 6114 6115 Max. :0.9262 Max. :0.45315 Max. :198.66 Max. :0.02498 Max. :181.47 6116 RER Min. :0.1110 6117 6118 1st Ou.:0.6306 6119 Median :0.6489 6120 Mean :0.6351 6121 3rd Qu.:0.6693 Max. :0.7600 6122

 $6123 > summary(Ta_F)$

ST D Η 6124 cen Lnum sp Min. :0.3220 Min. :2.500 Min. : 8.00 6125 Length:30 Length:30 Class :character Class :character 1st Qu.:0.3846 1st Qu.:3.425 1st Qu.:10.00 6126 6127 Mode :character Mode :character Median :0.4125 Median :4.250 Median :12.00 Mean :0.4330 Mean :4.287 Mean :11.90 6128 6129 3rd Qu.:0.4635 3rd Qu.:5.000 3rd Qu.:12.75 Max. :0.6480 Max. :6.500 Max. :18.00 6130 6131 RL **TpRM** ScRM StM TLM Min. : 93.80 Min. :0.4642 Min. :0.0890 Min. :0.04950 Min. :0.3184 6132 6133 1st Qu.: 96.50 1st Qu.:1.0080 1st Qu.:0.2774 1st Qu.:0.07812 1st Qu.:0.9932 Median: 97.00 Median: 1.2139 Median: 0.4096 Median: 0.10430 Median: 1.3244 6134 6135 Mean : 98.40 Mean : 1.4461 Mean : 0.4356 Mean : 0.13044 Mean : 1.3537 3rd Qu.: 99.62 3rd Qu.:1.8081 3rd Qu.:0.5414 3rd Qu.:0.11935 3rd Qu.:1.6877 6136 6137 Max. :113.00 Max. :2.7118 Max. :1.1300 Max. :0.95000 Max. :2.4458 RM TM RS 6138 SM LMF 6139 Min. :0.5979 Min. :0.4245 Min. :1.046 Min. :0.518 Min. :0.1774 1st Qu.:1.3261 1st Qu.:1.0626 1st Qu.:2.761 1st Qu.:0.992 1st Qu.:0.3487 6140 6141 Median :1.5813 Median :1.5329 Median :3.246 Median :1.197 Median :0.4161 6142 Mean :1.8817 Mean :1.4842 Mean :3.366 Mean :1.402 Mean :0.4036 6143 3rd Qu.:2.3293 3rd Qu.:1.8318 3rd Qu.:4.180 3rd Qu.:1.532 3rd Qu.:0.4671 6144 Max. :3.5468 Max. :2.5400 Max. :6.025 Max. :3.308 Max. :0.6289 RMF SMF SLA RGR STRL 6145 Min. :0.3413 Min. :0.2321 Min. :102.1 Min. :0.01339 Min. : 35.66 6146 6147 1st Qu.:0.4980 1st Qu.:0.3950 1st Qu.:117.1 1st Qu.:0.02049 1st Qu.: 54.33 Median :0.5449 Median :0.4551 Median :140.6 Median :0.02253 Median : 81.74 6148 6149 Mean :0.5572 Mean :0.4428 Mean :147.8 Mean :0.02250 Mean : 81.58 3rd Qu.:0.6050 3rd Qu.:0.5020 3rd Qu.:155.5 3rd Qu.:0.02567 3rd Qu.: 96.07 6150 Max. :0.7679 Max. :0.6587 Max. :285.5 Max. :0.02736 Max. :219.73 6151 6152 RER 6153 Min. :0.6188 6154 1st Qu.:0.6420 6155 Median :0.6545 Mean :0.6634 6156

6157	3rd Qu.:0.6797
6158	Max. :0.7448
6159	
6160	###
6161	> std.error(Ta_A\$H)
6162	[1] 0.1150076
6163	<pre>> std.error(Ta_F\$H)</pre>
6164	[1] 0.2146761
6165	>
6166	> std.error(Ta_A\$ST_D)
6167	[1] 0.01897175
6168	<pre>> std.error(Ta_F\$ST_D)</pre>
6169	[1] 0.01545983
6170	>
6171	<pre>> std.error(Ta_A\$RL)</pre>
6172	[1] 2.398475
6173	<pre>> std.error(Ta_F\$RL)</pre>
6174	[1] 0.7385989
6175	>
6176	<pre>> std.error(Ta_A\$Lnum)</pre>
6177	[1] 0.3170494
6178	<pre>> std.error(Ta_F\$Lnum)</pre>
6179	[1] 0.4481123
6180	>
6181	<pre>> std.error(Ta_A\$TM)</pre>
6182	[1] 0.141469
6183	<pre>> std.error(Ta_F\$TM)</pre>
6184	[1] 0.2074348
6185	>
6186	<pre>> std.error(Ta_A\$RM)</pre>
6187	[1] 0.113367
6188	<pre>> std.error(Ta_F\$RM)</pre>
6189	[1] 0.1398907
6190	>

- 6191 > std.error(Qg_A\$SM) 6192 [1] 0.01762037 6193 > std.error(Ta_F\$SM) 6194 [1] 0.1042436 6195 > 6196 > std.error(Ta_A\$RMF) 6197 [1] 0.01781508 6198 > std.error(Ta_F\$RMF) 6199 [1] 0.01825998 6200 > 6201 > std.error(Ta_A\$SMF) 6202 [1] 0.01781508 6203 > std.error(Ta_F\$SMF) 6204 [1] 0.01825998 6205 >6206 > std.error(Ta_A\$RGR) 6207 [1] 0.0005543409 6208 > std.error(Ta_F\$RGR) 6209 [1] 0.0005995452 6210 > 6211 > std.error(Ta_A\$SLA) 6212 [1] 4.892494 6213 > std.error(Ta_F\$SLA) 6214 [1] 7.603923 6215 > 6216 > std.error(Ta_A\$STRL) 6217 [1] 4.813579 6218 > std.error(Ta_F\$STRL) 6219 [1] 7.097902 6220 6221 6222 6223 ##summary(Mt_m1_Ta)
- 6224

```
6225
        Call:
6226
        glm(formula = data_Ta TM \sim cen, family = Gamma(), data = data_Ta)
6227
6228
        Deviance Residuals:
                   1Q Median
6229
           Min
                                   3Q
                                          Max
6230
        -0.98860 \ -0.20279 \ -0.02146 \ \ 0.22410 \ \ 0.64462
6231
6232
        Coefficients:
6233
              Estimate Std. Error t value Pr(>|t|)
6234
        (Intercept) 0.39366 0.02290 17.191 < 2e-16 ***
                 -0.09656 0.02886 -3.346 0.00143 **
6235
        cenF
6236
6237
        ##summary(ScRM_m1_Ta)
6238
6239
        Call:
6240
        glm(formula = data_Ta$ScRM ~ cen, family = Gamma(), data = data_Ta)
6241
        Deviance Residuals:
6242
6243
           Min
                   1Q Median
                                   30
                                          Max
        -1.57636 -0.42375 -0.05134 0.24601 1.13221
6244
6245
6246
        Coefficients:
6247
              Estimate Std. Error t value Pr(>|t|)
6248
        (Intercept) 2.6022 0.2391 10.881 9.88e-16 ***
6249
        cenF
                 -0.3064
                           0.3212 -0.954 0.344
6250
6251
        ##summary(TpRM_m1_Ta)
6252
6253
        Call:
        glm(formula = data_Ta\$TpRM \sim cen, family = Gamma(), data = data_Ta)
6254
6255
6256
        Deviance Residuals:
6257
           Min
                   1Q Median
                                   3Q
                                          Max
6258
        -1.11915 -0.29088 -0.09637 0.20250 0.70217
```
6259	
6260	Coefficients:
6261	Estimate Std. Error t value Pr(> t)
6262	(Intercept) 0.66679 0.04478 14.89 <2e-16 ***
6263	cenF 0.02474 0.06507 0.38 0.705
6264	
6265	##summary(StM_m1_Ta)
6266	
6267	Call:
6268	glm(formula = data_Ta\$StM ~ cen, family = Gamma(), data = data_Ta)
6269	
6270	Deviance Residuals:
6271	Min 1Q Median 3Q Max
6272	-1.0871 -0.5068 -0.2556 -0.0705 3.2873
6273	
6274	Coefficients:
6275	Estimate Std. Error t value Pr(> t)
6276	(Intercept) 9.293 2.213 4.200 9.14e-05 ***
6277	cenF -1.626 2.888 -0.563 0.575
6278	
6279	##summary(SLA_m1_Ta)
6280	
6281	Call:
6282	glm(formula = data_Ta\$SLA ~ cen, family = Gamma(), data = data_Ta)
6283	
6284	Deviance Residuals:
6285	Min 1Q Median 3Q Max
6286	-0.49915 -0.19649 -0.03150 0.07719 0.73918
6287	
6288	Coefficients:
6289	Estimate Std. Error t value Pr(> t)
6290	(Intercept) 0.0080971 0.0003672 22.048 < 2e-16 ***
6291	cenF -0.0013312 0.0004818 -2.763 0.00763 **
6292	

6293	## summary(H_m1_Ta)
6294	
6295	Call:
6296	glm(formula = data_Ta\$H ~ cen, family = Gamma(), data = data_Ta)
6297	
6298	Deviance Residuals:
6299	Min 1Q Median 3Q Max
6300	-0.49482 -0.19612 -0.01177 0.11161 0.44730
6301	
6302	Coefficients:
6303	Estimate Std. Error t value Pr(> t)
6304	(Intercept) 0.31880 0.01381 23.084 < 2e-16 ***
6305	cenF -0.08552 0.01721 -4.969 6.11e-06 ***
6306	
6307	## summary(ST_D_m2_Ta)
6308	
6309	Call:
6310	glm(formula = data_Ta\$ST_D ~ cen, family = gaussian(), data = data_Ta)
6311	
6312	Deviance Residuals:
6313	Min 1Q Median 3Q Max
6314	-0.14506 -0.06456 -0.01950 0.03500 0.27493
6315	
6316	Coefficients:
6317	Estimate Std. Error t value Pr(> t)
6318	(Intercept) 0.42256 0.01723 24.532 <2e-16 ***
6319	cenF 0.01044 0.02456 0.425 0.672
6320	
6321	##summary(RGR_m1_Ta)
6322	
6323	Call:
6324	glm(formula = data_Ta\$RGR ~ cen, family = Gamma(), data = data_Ta)
6325	
6326	Deviance Residuals:

6327	Min 1Q Median 3Q Max
6328	-0.55040 -0.09898 0.02418 0.11032 0.21258
6329	
6330	Coefficients:
6331	Estimate Std. Error t value Pr(> t)
6332	(Intercept) 49.158 1.315 37.387 <2e-16 ***
6333	cenF -4.708 1.786 -2.636 0.0107 *
6334	
6335	##summary(Lnum_m1_Ta)
6336	
6337	Call:
6338	glm(formula = data_Ta\$Lnum ~ cen, family = Gamma(), data = data_Ta)
6339	
6340	Deviance Residuals:
6341	Min 1Q Median 3Q Max
6342	-0.52719 -0.16760 0.00838 0.11752 0.57013
6343	
6344	Coefficients:
6345	Estimate Std. Error t value Pr(> t)
6346	(Intercept) 0.140271 0.005750 24.396 < 2e-16 ***
6347	cenF -0.056238 0.006732 -8.354 1.38e-11 ***
6348	
6349	## summary(RMF_m2_Ta)
6350	
6351	Call:
6352	$glm(formula = data_Ta\$RMF \sim cen, family = gaussian(), data = data_Ta)$
6353	
6354	Deviance Residuals:
6355	Min 1Q Median 3Q Max
6356	-0.215909 -0.060700 -0.005448 0.044092 0.210712
6357	
6358	Coefficients:
6359	Estimate Std. Error t value Pr(> t)
6360	(Intercept) 0.73892 0.01789 41.308 < 2e-16 ***

6361	cenF -0.18176 0.02551 -7.126 1.66e-09 ***
6362	
6363	## summary(SM_m2_Ta)
6364	
6365	Call:
6366	glm(formula = data_Ta\$SM ~ cen, family = gaussian(), data = data_Ta)
6367	
6368	Deviance Residuals:
6369	Min 1Q Median 3Q Max
6370	-1.05967 -0.31883 0.04337 0.22567 1.05583
6371	
6372	Coefficients:
6373	Estimate Std. Error t value Pr(> t)
6374	(Intercept) 0.65623 0.08351 7.858 9.52e-11 ***
6375	cenF 0.82795 0.11909 6.953 3.26e-09 ***
6376	
6377	##ummary(RM_m1_Ta)
6378	
6379	Call:
6380	glm(formula = data_Ta\$RM ~ cen, family = Gamma(), data = data_Ta)
6381	
6382	Deviance Residuals:
6383	Min 1Q Median 3Q Max
6384	-1.19401 -0.30114 -0.04404 0.19814 0.70858
6385	
6386	Coefficients:
6387	Estimate Std. Error t value Pr(> t)
6388	(Intercept) 0.5307810 0.0354876 14.957 <2e-16 ***
6389	cenF 0.0006665 0.0506359 0.013 0.99
6390	
6391	##summary(RL_m1_Ta)
6392	
6393	Call:
6394	glm(formula = data_Ta\$RL ~ cen, family = Gamma(), data = data_Ta)

6395		
6396	Deviance Residuals:	
6397	Min 1Q Median 3Q Max	
6398	-0.98840 -0.01426 0.00698 0.02789 0.20253	
6399		
6400	Coefficients:	
6401	Estimate Std. Error t value Pr(> t)	
6402	(Intercept) 0.0105777 0.0001990 53.143 <2e-16 ***	
6403	cenF -0.0004147 0.0002782 -1.491 0.141	
6404		
6405	##summary(STRL_m2_Ta)	
6406		
6407	Call:	
6408	glm(formula = data_Ta\$STRL ~ cen, family = gaussian(), data = data_Ta)	
6409		
6410	Deviance Residuals:	
6411	Min 1Q Median 3Q Max	
6412	-45.917 -20.790 -4.635 10.871 138.157	
6413		
6414	Coefficients:	
6415	Estimate Std. Error t value Pr(> t)	
6416	(Intercept) 69.685 5.979 11.655 <2e-16 ***	
6417	cenF 11.891 8.525 1.395 0.168	
6418		
6419 6420	######################################	Hs
6421		
6422	summary(Hs_A)	
6423	sp cen ST_D H Lnum	
6424	Length:30 Length:30 Min. :0.3440 Min. :10.40 Min. :1.000	
6425	Class :character Class :character 1st Qu.:0.3924 1st Qu.:16.00 1st Qu.:2.000	
6426	Mode :character Mode :character Median :0.4243 Median :17.60 Median :2.000	
6427	Mean :0.4268 Mean :18.42 Mean :2.167	
6428	3rd Qu.:0.4631 3rd Qu.:20.95 3rd Qu.:3.000	
6429	Max. :0.5390 Max. :31.00 Max. :4.000	

RL TpRM ScRM StM TLM 6430 Min. : 97.2 Min. :1.767 Min. :0.2945 Min. :0.4109 Min. :0.955 6431 1st Qu.:103.0 1st Qu.:2.174 1st Qu.:0.5649 1st Qu.:0.5421 1st Qu.:1.561 6432 6433 Median :107.0 Median :2.765 Median :0.9011 Median :0.6369 Median :1.679 6434 Mean :107.3 Mean :2.910 Mean :0.9006 Mean :0.6603 Mean :1.749 3rd Qu.:112.2 3rd Qu.:3.133 3rd Qu.:1.1715 3rd Qu.:0.8132 3rd Qu.:2.020 6435 6436 Max. :117.0 Max. :4.684 Max. :2.0108 Max. :1.0106 Max. :2.513 6437 RM SM TM RS LMF Min. :2.065 Min. :1.366 Min. :3.627 Min. :1.021 Min. :0.02611 6438 6439 1st Qu.:2.893 1st Qu.:2.135 1st Qu.:5.211 1st Qu.:1.391 1st Qu.:0.25728 6440 Median :3.590 Median :2.343 Median :5.896 Median :1.545 Median :0.27990 Mean :3.811 Mean :2.409 Mean :6.220 Mean :1.593 Mean :0.26857 6441 6442 3rd Qu.:4.179 3rd Qu.:2.717 3rd Qu.:7.316 3rd Qu.:1.751 3rd Qu.:0.30770 6443 Max. :6.394 Max. :3.452 Max. :9.589 Max. :2.605 Max. :0.37475 6444 RMF SMF SLA RGR STRL Min. :0.5052 Min. :0.2774 Min. : 53.22 Min. :0.008502 Min. :22.23 6445 6446 1st Qu.:0.5817 1st Qu.:0.3635 1st Qu.: 64.88 1st Qu.:0.011803 1st Qu.:32.35 Median :0.6070 Median :0.3930 Median : 75.31 Median :0.013059 Median :39.14 6447 6448 Mean :0.6084 Mean :0.3916 Mean : 73.40 Mean :0.013224 Mean :39.72 6449 3rd Qu.:0.6365 3rd Qu.:0.4183 3rd Qu.: 79.81 3rd Qu.:0.014793 3rd Qu.:46.70 6450 Max. :0.7226 Max. :0.4948 Max. :102.56 Max. :0.017047 Max. :60.99 6451 RER Min. :0.5283 6452 6453 1st Qu.:0.6850 6454 Median :0.7402 6455 Mean :0.7368 6456 3rd Qu.:0.8035 6457 Max. :0.8454 6458 > summary(Hs F) 6459 ST D Η Lnum sp cen 6460 Length:30 Length:30 Min. :0.3340 Min. :16.30 Min. :2.000 6461 Class :character Class :character 1st Qu.:0.4022 1st Qu.:21.12 1st Qu.:3.000 6462 Mode :character Mode :character Median :0.4550 Median :23.80 Median :4.000 6463 Mean :0.4425 Mean :24.18 Mean :4.067

6464	3rd Qu.:0.4780 3rd Qu.:26.80 3rd Qu.:5.000
6465	Max. :0.5600 Max. :39.20 Max. :6.000
6466	RL TpRM ScRM StM TLM
6467	Min. : 98.0 Min. :1.053 Min. :0.2308 Min. :0.4802 Min. :1.712
6468	1st Qu.:103.8 1st Qu.:3.408 1st Qu.:1.0377 1st Qu.:0.6584 1st Qu.:2.404
6469	Median :107.5 Median :4.479 Median :1.3816 Median :0.8807 Median :2.992
6470	Mean :107.8 Mean :4.473 Mean :1.6110 Mean :0.8826 Mean :2.964
6471	3rd Qu.:111.8 3rd Qu.:5.500 3rd Qu.:2.0025 3rd Qu.:1.0144 3rd Qu.:3.303
6472	Max. :120.0 Max. :8.774 Max. :6.7021 Max. :1.4414 Max. :4.857
6473	RM SM TM RS LMF
6474	Min. : 1.675 Min. : 2.261 Min. : 3.992 Min. : 0.7231 Min. : 0.2097
6475	1st Qu.: 4.769 1st Qu.: 3.246 1st Qu.: 7.856 1st Qu.: 1.3589 1st Qu.: 0.2735
6476	Median : 5.502 Median : 3.854 Median : 9.806 Median : 1.5317 Median : 0.3078
6477	Mean : 6.084 Mean : 3.847 Mean : 9.931 Mean : 1.5574 Mean : 0.3089
6478	3rd Qu.: 7.454 3rd Qu.:4.387 3rd Qu.:11.846 3rd Qu.:1.8481 3rd Qu.:0.3345
6479	Max. :12.271 Max. :6.212 Max. :17.657 Max. :2.5605 Max. :0.4601
6480	RMF SMF SLA RGR STRL
6481	Min. :0.4197 Min. :0.2809 Min. :47.59 Min. :0.00935 Min. :12.65
6482	1st Qu.:0.5761 1st Qu.:0.3511 1st Qu.: 80.31 1st Qu.:0.01585 1st Qu.:19.56
6483	Median :0.6050 Median :0.3950 Median : 86.68 Median :0.01814 Median :24.25
6484	Mean :0.5988 Mean :0.4012 Mean :91.04 Mean :0.01729 Mean :28.61
6485	3rd Qu.:0.6489 3rd Qu.:0.4239 3rd Qu.: 92.13 3rd Qu.:0.01952 3rd Qu.:30.84
6486	Max. :0.7191 Max. :0.5803 Max. :257.04 Max. :0.02271 Max. :93.98
6487	RER
6488	Min. :0.6610
6489	1st Qu.:0.7022
6490	Median :0.7528
6491	Mean :0.7541
6492	3rd Qu.:0.8044
6493	Max. :0.9028
6494	
6495	std.error(Hs_A\$H)
6496	[1] 0.8497383
6497	> std.error(Hs_F\$H)

6498	[1] 0.8870252
6499	>
6500	<pre>> std.error(Hs_A\$ST_D)</pre>
6501	[1] 0.009277045
6502	<pre>> std.error(Hs_F\$ST_D)</pre>
6503	[1] 0.01010964
6504	>
6505	<pre>> std.error(Hs_A\$RL)</pre>
6506	[1] 1.068566
6507	<pre>> std.error(Hs_F\$RL)</pre>
6508	[1] 1.09648
6509	>
6510	<pre>> std.error(Hs_A\$Lnum)</pre>
6511	[1] 0.15225
6512	<pre>> std.error(Hs_F\$Lnum)</pre>
6513	[1] 0.203042
6514	>
6515	<pre>> std.error(Hs_A\$TM)</pre>
6516	[1] 0.2968778
6517	<pre>> std.error(Hs_F\$TM)</pre>
6518	[1] 0.5660409
6519	>
6520	<pre>> std.error(Hs_A\$RM)</pre>
6521	[1] 0.2123691
6522	<pre>> std.error(Hs_F\$RM)</pre>
6523	[1] 0.4348676
6524	>
6525	<pre>> std.error(Hs_A\$SM)</pre>
6526	[1] 0.1053035
6527	<pre>> std.error(Hs_F\$SM)</pre>
6528	[1] 0.1711766
6529	>
6530	<pre>> std.error(Hs_A\$RMF)</pre>
6531	[1] 0.008866564

6532	<pre>> std.error(Hs_F\$RMF)</pre>
6533	[1] 0.01234643
6534	>
6535	<pre>> std.error(Hs_A\$SMF)</pre>
6536	[1] 0.008866564
6537	<pre>> std.error(Hs_F\$SMF)</pre>
6538	[1] 0.01234643
6539	>
6540	> std.error(Hs_A\$RGR)
6541	[1] 0.0004199812
6542	<pre>> std.error(Hs_F\$RGR)</pre>
6543	[1] 0.0005701719
6544	>
6545	<pre>> std.error(Hs_A\$SLA)</pre>
6546	[1] 1.953027
6547	<pre>> std.error(Hs_F\$SLA)</pre>
6548	[1] 6.104325
6549	>
6550	> std.error(Hs_A\$STRL)
6551	[1] 1.9324
6552	<pre>> std.error(Hs_F\$STRL)</pre>
6553	[1] 2.863996
6554	#######################################
6555	##summary(Mt_m1_Hs)
6556	
6557	Call:
6558	glm(formula = data_Hs\$TM ~ cen, family = Gamma(), data = data_Hs)
6559	
6560	Deviance Residuals:
6561	Min 1Q Median 3Q Max
6562	-0.79160 -0.18266 -0.04913 0.18464 0.63639
6563	
6564	Coefficients:
6565	Estimate Std. Error t value Pr(> t)

6566	(Intercept) 0.160772 0.008452 19.023 < 2e-16 ***
6567	cenF -0.060075 0.009972 -6.024 1.24e-07 ***
6568	
6569	##summary(ScRM_m1_Hs)
6570	
6571	Call:
6572	glm(formula = data_Hs\$ScRM ~ cen, family = Gamma(), data = data_Hs)
6573	
6574	Deviance Residuals:
6575	Min 1Q Median 3Q Max
6576	-1.4740 -0.4228 -0.1367 0.2677 1.8626
6577	
6578	Coefficients:
6579	Estimate Std. Error t value Pr(> t)
6580	(Intercept) 1.1103 0.1264 8.785 3.01e-12 ***
6581	cenF -0.4896 0.1448 -3.381 0.0013 **
6582	
6583	##summary(TpRM_m1_Hs)
6584	
6585	Call:
6586	glm(formula = data_Hs\$TpRM ~ cen, family = Gamma(), data = data_Hs)
6587	
6588	Deviance Residuals:
6589	Min 1Q Median 3Q Max
6590	-1.16747 -0.27067 -0.04291 0.18711 0.75876
6591	
6592	Coefficients:
6593	Estimate Std. Error t value Pr(> t)
6594	(Intercept) 0.34359 0.02071 16.593 < 2e-16 ***
6595	cenF -0.12001 0.02471 -4.858 9.38e-06 ***
6596	
6597	##summary(StM_m1_Hs)
6598	
6599	Call:

```
6600
        glm(formula = data_Hs$StM ~ cen, family = Gamma(), data = data_Hs)
6601
6602
        Deviance Residuals:
6603
          Min
                   1Q Median
                                   3Q
                                         Max
6604
        -0.55269 -0.22235 -0.00981 0.17824 0.53413
6605
        Coefficients:
6606
6607
              Estimate Std. Error t value Pr(>|t|)
        (Intercept) 1.51440 0.07617 19.882 < 2e-16 ***
6608
6609
        cenF
                -0.38136 0.09513 -4.009 0.000177 ***
6610
        ##summary(SLA_m1_Hs)
6611
6612
6613
        Call:
6614
        glm(formula = data_Hs$SLA ~ cen, family = Gamma(), data = data_Hs)
6615
6616
        Deviance Residuals:
6617
          Min
                   10 Median
                                   3Q
                                         Max
6618
        -0.58558 -0.12623 -0.02651 0.07028 1.25333
6619
6620
        Coefficients:
6621
               Estimate Std. Error t value Pr(>|t|)
6622
        (Intercept) 0.0136244 0.0006950 19.605 < 2e-16 ***
                -0.0026404 0.0008927 -2.958 0.00448 **
6623
        cenF
6624
6625
        ##summary(H_m1_Hs)
6626
6627
        Call:
6628
        glm(formula = data_Hs$H ~ cen, family = Gamma(), data = data_Hs)
6629
6630
        Deviance Residuals:
6631
          Min
                   1Q Median
                                   3Q
                                         Max
        -0.52199 -0.13766 -0.02419 0.12391 0.56992
6632
6633
```

```
6634
        Coefficients:
6635
               Estimate Std. Error t value Pr(>|t|)
6636
        (Intercept) 0.054289 0.002263 23.995 < 2e-16 ***
6637
        cenF
                -0.012932 0.002844 -4.547 2.82e-05 ***
6638
        ##summary(ST_D_m1_Hs)
6639
6640
6641
        Call:
        glm(formula = data_Hs$ST_D ~ cen, family = Gamma(), data = data_Hs)
6642
6643
6644
        Deviance Residuals:
6645
           Min
                    1Q Median
                                     3Q
                                            Max
6646
        -0.268673 -0.088835 0.009772 0.083037 0.245155
6647
6648
        Coefficients:
6649
              Estimate Std. Error t value Pr(>|t|)
6650
        (Intercept) 2.34302 0.05225 44.845 <2e-16 ***
        cenF
                -0.08305 0.07259 -1.144 0.257
6651
6652
6653
        ## summary(RGR_m1_Hs)
6654
6655
        Call:
6656
        glm(formula = data_Hs$RGR ~ cen, family = Gamma(), data = data_Hs)
6657
6658
        Deviance Residuals:
          Min
                   1Q Median
6659
                                   3Q
                                         Max
6660
        -0.55757 -0.11011 -0.00885 0.12079 0.28581
6661
6662
        Coefficients:
6663
              Estimate Std. Error t value Pr(>|t|)
6664
        (Intercept) 75.618
                           2.448 30.886 < 2e-16 ***
                           3.083 -5.764 3.33e-07 ***
6665
        cenF
                 -17.767
6666
6667
        ## summary(Lnum_m1_Hs)
```

6668	
6669	Call:
6670	glm(formula = data_Hs\$Lnum ~ cen, family = Gamma(), data = data_Hs)
6671	
6672	Deviance Residuals:
6673	Min 1Q Median 3Q Max
6674	-0.68517 -0.28954 -0.07899 0.21398 0.68271
6675	
6676	Coefficients:
6677	Estimate Std. Error t value Pr(> t)
6678	(Intercept) 0.46154 0.02813 16.406 < 2e-16 ***
6679	cenF -0.21564 0.03188 -6.765 7.27e-09 ***
6680	
6681	##summary(STRL_m1_Hs)
6682	
6683	Call:
6684	glm(formula = data_Hs\$STRL ~ cen, family = Gamma(), data = data_Hs)
6685	
6686	Deviance Residuals:
6687	Min 1Q Median 3Q Max
6688	-0.71866 -0.28525 -0.07539 0.14266 1.48016
6689	
6690	Coefficients:
6691	Estimate Std. Error t value Pr(> t)
6692	(Intercept) 0.025175 0.001981 12.707 <2e-16 ***
6693	cenF 0.009775 0.003390 2.884 0.0055 **
6694	
6695	## summary(RMF_m1_Hs)
6696	
6697	Call:
6698	glm(formula = data_Hs\$RMF ~ cen, family = Gamma(), data = data_Hs)
6699	
6700	Deviance Residuals:
6701	Min 1Q Median 3Q Max

6702	-0.33558 -0.04270 0.00320 0.06718 0.18896
6703	
6704	Coefficients:
6705	Estimate Std. Error t value Pr(> t)
6706	(Intercept) 1.64377 0.02935 56.007 <2e-16 ***
6707	cenF 0.02633 0.04184 0.629 0.532
6708	
6709	##summary(SM_m1_Hs)
6710	
6711	Call:
6712	glm(formula = data_Hs\$SM ~ cen, family = Gamma(), data = data_Hs)
6713	
6714	Deviance Residuals:
6715	Min 1Q Median 3Q Max
6716	-0.51842 -0.13717 -0.02556 0.13006 0.52072
6717	
6718	Coefficients:
6719	Estimate Std. Error t value Pr(> t)
6720	(Intercept) 0.41513 0.01831 22.672 < 2e-16 ***
6721	cenF -0.15519 0.02160 -7.184 1.44e-09 ***
6722	
6723	##summary(RM_m1_Hs)
6724	
6725	Call:
6726	glm(formula = data_Hs\$RM ~ cen, family = Gamma(), data = data_Hs)
6727	
6728	Deviance Residuals:
6729	Min 1Q Median 3Q Max
6730	-1.06301 -0.23774 -0.08251 0.16381 0.79424
6731	
6732	Coefficients:
6733	Estimate Std. Error t value Pr(> t)
6734	(Intercept) 0.26239 0.01682 15.60 < 2e-16 ***
6735	cenF -0.09802 0.01984 -4.94 6.99e-06 ***

6736		
6737	##summary(RL_m1_Hs)	
6738		
6739	Call:	
6740	glm(formula = data_Hs\$RL ~ cen, family = Gamma(), data = data_Hs)	
6741		
6742	Deviance Residuals:	
6743	Min 1Q Median 3Q Max	
6744	-0.097706 -0.038686 -0.003731 0.044516 0.108748	
6745		
6746	Coefficients:	
6747	Estimate Std. Error t value Pr(> t)	
6748	(Intercept) 9.315e-03 9.372e-05 99.391 <2e-16 ***	
6749	cenF -4.261e-05 1.322e-04 -0.322 0.748	
6750		
6751 6752	######################################	Kc
6753		
6754		
6755	summary(Kc_A)	
6756	sp cen ST_D H Lnum	
6757	Length:22 Length:22 Min. :0.2065 Min. :1.800 Min. :1.000	
6758	Class :character Class :character 1st Qu.:0.2263 1st Qu.:2.525 1st Qu.:1.000	
6759	Mode :character Mode :character Median :0.2445 Median :3.000 Median :1.000	
6760	Mean :0.2474 Mean :3.345 Mean :1.273	
6761	3rd Qu.:0.2649 3rd Qu.:3.400 3rd Qu.:1.750	
6762	Max. :0.3030 Max. :7.300 Max. :2.000	
6763	RL TpRM ScRM StM TLM	
6764	Min. :25.30 Min. :0.6195 Min. :0.05650 Min. :0.01690 Min. :0.0474	
6765	1st Qu.:48.50 1st Qu.:0.8563 1st Qu.:0.09975 1st Qu.:0.02533 1st Qu.:0.0865	
6766	Median :63.15 Median :1.2578 Median :0.12445 Median :0.02625 Median :0.1138	
6767	Mean :61.24 Mean :1.2516 Mean :0.15697 Mean :0.03403 Mean :0.1264	
6768	3rd Qu.:71.38 3rd Qu.:1.5051 3rd Qu.:0.21377 3rd Qu.:0.03742 3rd Qu.:0.1396	
6769	Max. :97.60 Max. :2.1173 Max. :0.35800 Max. :0.08500 Max. :0.3483	
6770	RM SM TM RS LMF	

Min. :0.6782 Min. :0.0706 Min. :0.7863 Min. : 2.159 Min. :0.04260 6771 6772 1st Qu.:0.9627 1st Qu.:0.1135 1st Qu.:1.1966 1st Qu.: 6.684 1st Qu.:0.05235 Median :1.4633 Median :0.1484 Median :1.6199 Median : 9.828 Median :0.06457 6773 6774 Mean :1.4085 Mean :0.1604 Mean :1.5690 Mean : 9.994 Mean :0.08760 6775 3rd Qu.:1.6622 3rd Qu.:0.1792 3rd Qu.:1.8429 3rd Qu.:12.607 3rd Qu.:0.10506 Max. :2.2325 Max. :0.3652 Max. :2.3562 Max. :18.048 Max. :0.30195 6776 6777 RMF SMF SLA RGR STRL Min. :0.6834 Min. :0.05250 Min. : 26.81 Min. :0.01512 Min. : 19.26 6778 6779 1st Qu.:0.8697 1st Qu.:0.07352 1st Qu.:104.43 1st Qu.:0.01763 1st Qu.: 40.98 6780 Median :0.9076 Median :0.09242 Median :120.66 Median :0.02008 Median : 49.38 6781 Mean :0.8893 Mean :0.11068 Mean :115.34 Mean :0.01981 Mean : 53.68 3rd Ou.:0.9265 3rd Ou.:0.13033 3rd Ou.:129.09 3rd Ou.:0.02180 3rd Ou.: 65.40 6782 6783 Max. :0.9475 Max. :0.31660 Max. :173.83 Max. :0.02448 Max. :106.86 RER 6784 6785 Min. :0.1077 6786 1st Qu.:0.3063 6787 Median :0.4113 Mean :0.4058 6788 6789 3rd Ou.:0.5110 6790 Max. :0.6651 6791 > summary(Kc F) 6792 ST_D Η Lnum cen sp Min. :0.2010 Min. :2.000 Min. :1.000 6793 Length:21 Length:21 6794 Class :character Class :character 1st Qu.:0.2380 1st Qu.:2.500 1st Qu.:1.000 6795 Mode :character Mode :character Median :0.2505 Median :2.700 Median :1.000 Mean :0.2536 Mean :3.129 Mean :1.476 6796 6797 3rd Ou.:0.2760 3rd Ou.:3.000 3rd Ou.:2.000 6798 Max. :0.3145 Max. :7.500 Max. :3.000 RL TpRM ScRM StM 6799 TLM Min. : 50.0 Min. :0.904 Min. :0.0443 Min. :0.02010 Min. :0.0656 6800 6801 1st Qu.: 81.5 1st Qu.:1.369 1st Qu.:0.0995 1st Qu.:0.02940 1st Qu.:0.1226 Median : 94.8 Median : 1.765 Median : 0.1422 Median : 0.03660 Median : 0.1641 6802 6803 Mean : 87.6 Mean :2.388 Mean :0.1732 Mean :0.03978 Mean :0.1689 6804 3rd Qu.: 98.7 3rd Qu.: 2.280 3rd Qu.: 0.2339 3rd Qu.: 0.04230 3rd Qu.: 0.2101

6805	Max. :103.0 Max. :7.822 Max. :0.3830 Max. :0.10880 Max. :0.3274							
6806	RM SM TM RS LMF							
6807	Min. :0.9862 Min. :0.0950 Min. :1.188 Min. : 3.374 Min. :0.01034							
6808	1st Qu.:1.6330 1st Qu.:0.1576 1st Qu.:1.789 1st Qu.: 7.862 1st Qu.:0.05514							
6809	Median :1.9857 Median :0.1996 Median :2.206 Median :10.809 Median :0.06889							
6810	Mean :2.5613 Mean :0.2087 Mean :2.770 Mean :14.529 Mean :0.07782							
6811	3rd Qu.:2.5626 3rd Qu.:0.2440 3rd Qu.:2.779 3rd Qu.:13.400 3rd Qu.:0.09991							
6812	Max. :8.0758 Max. :0.3952 Max. :8.471 Max. :65.761 Max. :0.20386							
6813	RMF SMF SLA RGR STRL							
6814	Min. :0.7714 Min. :0.01498 Min. : 63.59 Min. :0.01864 Min. : 8.17							
6815	1st Qu.:0.8872 1st Qu.:0.06944 1st Qu.: 94.16 1st Qu.:0.02131 1st Qu.:37.26							
6816	Median :0.9153 Median :0.08468 Median :115.03 Median :0.02298 Median :48.07							
6817	Mean :0.9058 Mean :0.09422 Mean :111.17 Mean :0.02390 Mean :49.19							
6818	3rd Qu.:0.9306 3rd Qu.:0.11284 3rd Qu.:131.85 3rd Qu.:0.02570 3rd Qu.:66.55							
6819	Max. :0.9850 Max. :0.22864 Max. :158.61 Max. :0.03231 Max. :90.15							
6820	RER							
6821	Min. :0.2926							
6822	1st Qu.:0.6050							
6823	Median :0.6625							
6824	Mean :0.6343							
6825	3rd Qu.:0.7378							
6826	Max. :0.7685							
6827								
6828								
6829	std.error(Kc_A\$H)							
6830	[1] 0.3343746							
6831	> std.error(Kc_F\$H)							
6832	[1] 0.2750015							
6833	>							
6834	> std.error(Kc_A\$ST_D)							
6835	[1] 0.005887214							
6836	> std.error(Kc_F\$ST_D)							
6837	[1] 0.005916295							
6838	>							

6839 > std.error(Kc_A\$RL) 6840 [1] 3.993005 6841 > std.error(Kc_F\$RL) 6842 [1] 3.400739 6843 > 6844 > std.error(Kc_A\$Lnum) 6845 [1] 0.09718591 6846 > std.error(Kc_F\$Lnum) 6847 [1] 0.1483087 6848 > 6849 > std.error(Kc_A\$TM) 6850 [1] 0.09507547 6851 > std.error(Kc_F\$TM) 6852 [1] 0.3935572 6853 >6854 > std.error(Kc_A\$RM) 6855 [1] 0.09603925 6856 > std.error(Kc_F\$RM) 6857 [1] 0.3909287 6858 > 6859 > std.error(Kc_A\$SM) 6860 [1] 0.01425702 6861 > std.error(Kc_F\$SM) 6862 [1] 0.01715668 6863 > 6864 > std.error(Kc_A\$RMF) 6865 [1] 0.01300992 6866 > std.error(Kc_F\$RMF) 6867 [1] 0.01072463 6868 > 6869 > std.error(Kc_A\$SMF) 6870 [1] 0.01300992 > std.error(Kc_F\$SMF) 6871 6872 [1] 0.01072463

6873	>					
6874	> std.error(Kc_A\$RGR)					
6875	[1] 0.0005230258					
6876	> std.error(Kc_F\$RGR)					
6877	[1] 0.0007581438					
6878	>					
6879	> std.error(Kc_A\$SLA)					
6880	[1] 7.127763					
6881	<pre>> std.error(Kc_F\$SLA)</pre>					
6882	[1] 5.90682					
6883	>					
6884	> std.error(Kc_A\$STRL)					
6885	[1] 4.783939					
6886	> std.error(Kc_F\$STRL)					
6887	[1] 4.786222					
6888	>					
6889	#######################################					
6890	##summary(Mt_m1_Kc)					
6891						
6892	Call:					
6893	glm(formula = data_Kc\$TM ~ cen, family = Gamma(), data = data_Kc)					
6894						
6895	Deviance Residuals:					
6896	Min 1Q Median 3Q Max					
6897	-0.74230 -0.37128 -0.06882 0.12814 1.37137					
6898						
6899	Coefficients:					
6900	Estimate Std. Error t value Pr(> t)					
6901	(Intercept) 0.63737 0.06770 9.415 8.35e-12 ***					
6902	cenF -0.27635 0.07825 -3.532 0.00104 **					
6903						
6904	##summary(ScRM_m1_Kc)					
6905						
6906	Call:					

```
6907
        glm(formula = data_Kc\$ScRM \sim cen, family = Gamma(), data = data_Kc)
6908
6909
        Deviance Residuals:
6910
          Min
                  1Q Median
                                3Q
                                      Max
6911
        -1.1128 -0.4458 -0.1908 0.3492 0.9552
6912
6913
        Coefficients:
              Estimate Std. Error t value Pr(>|t|)
6914
6915
        (Intercept) 6.3705 0.7426 8.578 1.08e-10 ***
6916
        cenF
                 -0.5962
                          1.0130 -0.589 0.559
6917
        ## summary(TpRM_m1_Kc)
6918
6919
6920
        Call:
6921
        glm(formula = data_Kc$TpRM ~ cen, family = Gamma(), data = data_Kc)
6922
6923
        Deviance Residuals:
6924
                  10 Median
                                  3Q
          Min
                                         Max
6925
        -0.83664 -0.46263 -0.08065 0.11694 1.47570
6926
6927
        Coefficients:
6928
              Estimate Std. Error t value Pr(>|t|)
6929
        (Intercept) 0.79899 0.09736 8.207 3.45e-10 ***
                -0.38026 0.11048 -3.442 0.00134 **
6930
        cenF
6931
6932
        ## summary(StM_m1_Kc)
6933
6934
        Call:
6935
        glm(formula = data_Kc$StM ~ cen, family = Gamma(), data = data_Kc)
6936
6937
        Deviance Residuals:
6938
           Min
                   1Q Median
                                  3Q
                                         Max
6939
        -0.62691 -0.28520 -0.12546 0.07628 1.20722
6940
```

```
6941
        Coefficients:
6942
              Estimate Std. Error t value Pr(>|t|)
6943
        (Intercept) 29.388
                            3.152 9.323 1.1e-11 ***
                          4.190 -1.015 0.316
6944
        cenF
                 -4.253
6945
6946
        ## summary(SLA_m1_Kc)
6947
6948
        Call:
        glm(formula = data_Kc$SLA ~ cen, family = Gamma(), data = data_Kc)
6949
6950
6951
        Deviance Residuals:
6952
          Min
                  1Q Median
                                   3Q
                                         Max
6953
        -1.17616 -0.14342 0.03802 0.15381 0.44026
6954
6955
        Coefficients:
6956
               Estimate Std. Error t value Pr(>|t|)
6957
        (Intercept) 0.0086698 0.0004958 17.49 <2e-16 ***
                0.0003258 0.0007233 0.45 0.655
6958
        cenF
6959
6960
        ##summary(H_m1_Kc)
6961
6962
        Call:
6963
        glm(formula = data_Kc$H ~ cen, family = Gamma(), data = data_Kc)
6964
6965
        Deviance Residuals:
6966
          Min
                   1Q Median
                                   3Q
                                         Max
6967
        -0.56189 -0.22907 -0.10705 0.01622 1.02268
6968
6969
        Coefficients:
6970
              Estimate Std. Error t value Pr(>|t|)
6971
        (Intercept) 0.29891 0.02790 10.712 1.87e-13 ***
6972
                 0.02072 0.04137 0.501 0.619
        cenF
6973
6974
        ##summary(ST_D_m1_Kc)
```

6975							
6976	Call:						
6977	glm(formula = data_Kc\$ST_D ~ cen, family = Gamma(), data = data_Kc)						
6978							
6979	Deviance Residuals:						
6980	Min 1Q Median 3Q Max						
6981	-0.22394 -0.08471 -0.01244 0.07736 0.22305						
6982							
6983	Coefficients:						
6984	Estimate Std. Error t value Pr(> t)						
6985	(Intercept) 4.04263 0.09424 42.896 <2e-16 ***						
6986	cenF -0.10008 0.13316 -0.752 0.457						
6987							
6988	##summary(RGR_m1_Kc)						
6989							
6990	Call:						
6991	glm(formula = data_Kc\$RGR ~ cen, family = Gamma(), data = data_Kc)						
6992							
6993	Deviance Residuals:						
6994	Min 1Q Median 3Q Max						
6995	-0.25856 -0.11678 -0.00378 0.07618 0.31711						
6996							
6997	Coefficients:						
6998	Estimate Std. Error t value Pr(> t)						
6999	(Intercept) 50.474 1.450 34.809 < 2e-16 ***						
7000	cenF -8.641 1.902 -4.545 4.79e-05 ***						
7001							
7002	##summary(Lnum_m1_Kc)						
7003							
7004	Call:						
7005	glm(formula = data_Kc\$Lnum ~ cen, family = poisson(), data = data_Kc)						
7006							
7007	Deviance Residuals:						
7008	Min 1Q Median 3Q Max						

```
7009
       -0.4165 -0.4165 -0.2513 0.4088 1.0988
7010
7011
        Coefficients:
7012
              Estimate Std. Error z value Pr(>|z|)
7013
        (Intercept) 0.2412 0.1890 1.276 0.202
7014
        cenF
                 0.1483 0.2607 0.569 0.569
7015
7016
        ## summary(STRL_m1_Kc)
7017
        Call:
7018
7019
        glm(formula = data_Kc$STRL ~ cen, family = Gamma(), data = data_Kc)
7020
7021
        Deviance Residuals:
7022
          Min
                  1Q Median
                                   3Q
                                         Max
7023
        -1.38666 \ -0.26285 \ -0.02745 \ \ 0.22560 \ \ 0.77734
7024
        Coefficients:
7025
7026
              Estimate Std. Error t value Pr(>|t|)
7027
        (Intercept) 0.018627 0.001715 10.863 1.22e-13 ***
                0.001700 0.002571 0.661 0.512
7028
        cenF
7029
7030
        ## summary(RMF_m1_Kc)
7031
        Call:
7032
7033
        glm(formula = data_Kc$RMF ~ cen, family = Gamma(), data = data_Kc)
7034
7035
        Deviance Residuals:
7036
          Min
                  1Q Median
                                   3Q
                                         Max
7037
        -0.25230 -0.02305 0.01378 0.03868 0.08506
7038
7039
        Coefficients:
7040
              Estimate Std. Error t value Pr(>|t|)
        (Intercept) 1.12446 0.01487 75.62 <2e-16 ***
7041
                -0.02044 0.02108 -0.97 0.338
7042
        cenF
```

7043								
7044	## summary(SM_m1_Kc)							
7045								
7046	Call:							
7047	glm(formula = data_Kc\$SM ~ cen, family = Gamma(), data = data_Kc)							
7048								
7049	Deviance Residuals:							
7050	Min 1Q Median 3Q Max							
7051	-0.72227 -0.30224 -0.06573 0.13965 0.95281							
7052								
7053	Coefficients:							
7054	Estimate Std. Error t value Pr(> t)							
7055	(Intercept) 6.2339 0.5287 11.790 9.44e-15 ***							
7056	cenF -1.4412 0.6728 -2.142 0.0382 *							
7057								
7058	##summary(RM_m1_Kc)							
7059								
7060	Call:							
7061	glm(formula = data_Kc\$RM ~ cen, family = Gamma(), data = data_Kc)							
7062								
7063	Deviance Residuals:							
7064	Min 1Q Median 3Q Max							
7065	-0.82397 -0.41620 -0.06683 0.15417 1.41747							
7066								
7067	Coefficients:							
7068	Estimate Std. Error t value Pr(> t)							
7069	(Intercept) 0.70995 0.08165 8.695 7.53e-11 ***							
7070	cenF -0.31953 0.09370 -3.410 0.00147 **							
7071								
7072	##summary(RL_m1_Kc)							
7073								
7074	Call:							
7075	glm(formula = data_Kc\$RL ~ cen, family = Gamma(), data = data_Kc)							
7076								

7077 Deviance Residuals:

7078	Min	1Q	Median	3Q	Max		
7079	-0.77083	-0.129	46 0.03652	0.129	03 0.50535	5	
7080							
7081	Coefficier	nts:					
7082	Estimate Std. Error t value Pr(> t)						
7083	(Intercept) 0.016	53302 0.000	8763 1	$8.636 < 2e^{-1}$	-16 ***	
7084	cenF	-0.0049	9153 0.0010)775 -4.	.562 4.53e-()5 ***	

276