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Abstract

CHAOS CONTROL USING A GENERALIZED EXTENDED TIME-DELAYED
FEEDBACK METHOD: APPLICATION TO A NONLINEAR PENDULUM

Author: Arthur Rodrigues Queiroz

Supervisor: Aline Souza de Paula, Dr. Univ (ENM/UnB)

Graduate Program in Mechanical Sciences

Brasília, 2023

Chaos exhibits a richness of periodic patterns with great sensitivity to small disturbances.
Chaos control exploits this sensitivity and, with small disturbances, stabilizes one of its
countless trajectories. This work explores a generalization of the Extended Time-Delayed
Feedback (ETDF) method to stabilize unstable periodic orbits (UPOs). This generalization
considers the complete matrix gain K instead of the conventional scalar gain approach. A
nonlinear pendulum is chosen as the system for applying the method. Three UPOs, with
periodicities 1, 2 and 3, are selected to evaluate the control strategy. The controller gains
are evaluated by determining stability through the largest Lyapunov exponent. The matrix
term 𝐾12 consistently increases system instability across all evaluated cases, leading to its
exclusion for control purposes. Cases involving two parameters with 𝐾11 and 𝐾22, as well
as 𝐾21 and 𝐾22, and the three-parameter case comprising 𝐾11, 𝐾21 and 𝐾22 are considered.
All combinations considered reveal a broader region of stability for the system compared to
the scalar-base approach, but generally with similar magnitudes for the Lyapunov exponent.
The actuation of the controller and the corresponding energy consumption are compared
for each stabilization scenario. The possibility of migration between the selected UPOs is
also evaluated. The results showed good flexibility when using the matrix K, prioritizing
the system’s needs, whether with smaller actuations or energy consumption. In the control
implementations without 𝐾21, it is possible to transition between all orbits according to
the control rule, whereas in those that considered this parameter, the stabilization of the
period-1 UPO is not achieved.

Keywords: Chaos Control; Nonlinear Dynamics; Pendulum; ETDF
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Resumo

CONTROLE DE CAOS UTILIZANDO MÉTODO DA REALIMENTAÇÃO
COM ESTADOS DEFASADOS ESTENDIDOS GENERALIZADO: APLICA-
ÇÃO A UM PÊNDULO NÃO-LINEAR

Autor: Arthur Rodrigues Queiroz

Orientadora: Aline Souza de Paula, Dr. Univ (ENM/UnB)

Programa de Pós Graduação em Ciências Mecânicas

Brasília, 01 de dezembro de 2023

O caos exibe uma riqueza da padrões periódicos com grande sensibilidade a pequenas
perturbações. O controle de caos explora essa sensibilidade, e com pequenas perturbações,
estabiliza uma de suas inúmeras trajetórias. Este trabalho explora uma generalização do
método da Realimentação com Estados Defasados Estendidos (ETDF) para estabilizar
órbitas periódicas instáveis (OPIs). Essa generalização considera a matriz de ganhos K
completa ao invés da abordagem tradicional com ganho escalar. Um pêndulo não-linear
é considerado como sistema para aplicação do método. São selecionadas 3 OPIs para
controle, de periodicidades 1, 2 e 3. A determinação dos ganhos do controlador é feita
através da estabilidade das OPIs utilizando o expoente de Lyapunov máximo. O ganho
𝐾12 da matriz aumenta a instabilidade do sistema em todos os casos avaliados, sendo
desconsiderado. É considerados casos com 2 ganhos combinados, sendo 𝐾11 e 𝐾22, e 𝐾21

e 𝐾22, e o caso com três ganhos 𝐾11, 𝐾21 e 𝐾22. Todas os casos considerados revelam
uma maior região de estabilidade quando comparados ao caso escalar, mas com valores
de magnitudes semelhantes do expoente de Lyapunov. O desempenho do controlador é
avaliado pelas magnitudes de atuação e energia consumida. A possiblidade de migração
entre as OPIs selecionadas também é avaliada, mostrando boa flexibilidade de resposta,
sendo possível priorizar menores atuações ou consumo energético. Nas implementações do
controle sem 𝐾21, é possível transitar entre todas as órbitas conforme a regra de controle,
enquanto nas que consideraram esse ganho, a estabilização da OPI de período-1 não é
alcançada.
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1 Introduction

Natural phenomena are full of nonlinearities in a manner that linear behavior is rare
in nature. One of the possibilities of a nonlinear system response is the chaotic behavior.
This response strongly depends on initial conditions, which makes small perturbations
produce massive, disproportional effects. This sensitivity to initial conditions is such that
there is always uncertainty about the system’s future state due to numerical and measure
limitations. Furthermore, the chaotic response is composed of a dense and infinite set
of unstable periodic orbits (UPO). This richness makes chaos of particular interest in
dynamical system design, conferring flexibility that can be observed by quick changes
among different kinds of responses (LINDNER; DITTO, 1995). Moreover, chaos has an
ergodic characteristic, which implies that the system will visit all parts of the space in
which it is immersed.

For a long time, the study of chaos was left aside; the chaotic response was hard to
predict and analyze and, therefore, unwanted. Due to its richness and sensitivity to distur-
bances, it was commonly confused with randomness. However, this thought/perception was
proven incorrect. While stochastic behavior follows a probability function, chaos, although
unpredictable, occurs in completely deterministic systems (KING; STEWART, 1991).
Chaotic dynamics gained more interest from researchers after 1963, with Lorentz and his
studies on the unpredictability of meteorological models (LORENZ, 1963). Lorentz noticed
that even with a simple system of nonlinear ODEs, a slight variation in its initial conditions
caused the system to move towards a completely different response. Subsequently, chaotic
behavior was verified in several simple dynamic systems, developing chaos theory research
in several areas of knowledge, among them mechanical systems (SHAW; RAND, 1989),
medicine (SKINNER et al., 1992; WEST, 2012), chemistry (SCHÖLL; SCHUSTER, 2008;
GIBB, 2009; RÖSSLER, 1981), ecology (HASTINGS et al., 1993; WORSTER, 1990),
astronomy (ZEEBE; LOURENS, 2019; LASKAR et al., 2011; LECAR et al., 2001), and
communication (ABEL; SCHWARZ, 2002). Recently, chaos research has gone beyond the
mere characterization of behavior, looking for interventions to prevent its emergence or
even, in some situations, seeking it.

Chaos is often unwanted and can harm the system; chaos control can be quite
promising in these situations. For example, in the control of cardiac arrhythmia (LOU-
NIS; BOUKABOU; SOUKKOU, 2020; FERREIRA; SAVI; PAULA, 2014; GARFINKEL
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et al., 1992), energy generation systems based on harnessing vibrational energy (MO-
HAMMADPOUR et al., 2023; TAN et al., 2021; KUMAR; ALI; AROCKIARAJAN, 2016;
DEHGHANI; KHANLO, 2019; BARBOSA et al., 2015), preventing chaos in crystal growth
to prevent structure failures (ZHOU; GREBOGI; REN, 2021), increase comfort in vehicles
on uneven terrain (LITAK et al., 2008).

On the other hand, the chaotic response can also be desirable, for example, in
space navigation where utilizing control to exploit the richness of trajectories enables low
fuel consumption (CHEN; YU, 2003). Search methods of optimization algorithms can take
advantage of chaos as input for its search algorithms, taking advantage of their ergodic
character to avoid local minima (FENG et al., 2017; YANG; LI; CHENG, 2007; LI et al.,
2006). The chaotic broad spectrum has high mixing performance in solid-liquid systems
(GU et al., 2017). Anti-control techniques to generate a chaotic response archive better
results in the vibration compaction (WANG; CHAU, 2008). Furthermore, chaos is used in
commercial fiber-optic data links to improve its transmission rate (ARGYRIS et al., 2005).

The main idea of chaos control is to take advantage of the big sensitivity of the
system to small disturbances, to stabilize one of the infinite UPO immersed in the chaotic
response. The theoretical possibility of stabilizing any of the UPO can provide the system
great flexibility. In addition, the sensitivity to small disturbances implies a stabilization
with small perturbations associated with low energy consumption. The Ott-Grebogy-York
(OGY) method (OTT; GREBOGI; YORKE, 1990) was a pioneer in chaos control. This
discrete method applies a perturbation in a specific control section to stabilize the UPO.
The first continuous method was the Time-Delayed Feedback (TDF), proposed by Pyragas
(1992), where disturbance is continuously applied to the system based on a delayed and the
actual states of the system. Subsequently, Socolar, Sukow & Gauthier (1994) proposed the
Extended Time-Delayed Feedback (ETDF) where the control action is based on several
delayed states of the system.

The nonlinear pendulum has been vastly used as the base for numerical simulations
in chaos control control methods. This pendulum was previously studied by (BLACKBURN;
BAKER, 1998), (FRANCA; SAVI, 2001), (DESERIO, 2003), (PINTO; SAVI, 2003),
(PEREIRA-PINTO; FERREIRA; SAVI, 2004), (SAVI, 2006), (PAULA; SAVI; PEREIRA-
PINTO, 2006), (BESSA; PAULA; SAVI, 2009),(PAULA; SAVI, 2009a), (PAULA; SAVI,
2011), (BESSA; PAULA; SAVI, 2014), (PAULA; SAVI, 2015), (COSTA; SAVI, 2017),
(COSTA; SAVI, 2018). These studies evaluated the chaotic dynamics present in the system,
applying and developing control methods. As a contribution of the present work, there is
the publication Queiroz, Paula & Savi (2023).

3



1.1 Objectives

In the existing literature, the prevailing approach to the ETDF method often treats
the gain matrix K as a scalar 𝐾. This dissertation aims to investigate a generalization
of the Extended Time-Delayed Feedback method for chaos control by considering the
complete gain matrix K instead of the conventional scalar approach. In the present study,
the influence of the complete matrix is evaluated. The gains are chosen based on the values
of the maximum Lyapunov exponents. Control performance is evaluated for different values
of K by means of control actuation magnitudes and energy consumption.

1.2 Text Organization

This dissertation is divided into 7 chapters. The first chapter presents an intro-
duction to this work, the objectives, methodology, and organization. Chapter 2 brings a
literature review about studies of chaos on mechanical systems and chaos control. Chapter
3 presents the nonlinear dynamics analysis tools used in this work and the Extended
Time-Delayed Feedback (ETDF) chaos control method. Chapter 4 aims to present the
studied nonlinear pendulum, the mathematical modeling of the control on it, and a brief
analysis of its dynamics without control.

Chapter 5 presents the first stage of the control. This chapter identifies the UPOs
of interest, and the Lyapunov exponent is calculated. The results of the learning stage
are analyzed. Chapter 6 is presented and analyzes the results of the control. This chapter
compares maximum actuation, energy, and time until stabilization. Finally, Chapter 7
presents the conclusions of this dissertation and proposes future studies.

4



2 Literature review

One of the first names to deal with chaos was Henri Poincaré in his work Poincaré
(1890). Evaluating the three-body problem, he realized the existence of non-periodic orbits
in a problem of extreme mathematical complexity. In this way, he mathematically evidenced
chaotic behavior for the first time. Over time, the chaotic response was evidenced in several
systems but still shunned due to its difficulty and unpredictable behavior (OTANI; JONES,
1997).

Modern computers have brought new light to the study of chaos. Numerical
calculations from the governing equations became feasible even with their large number of
iterations and good precision, thus reaching the solution for several complex and nonlinear
systems. Taking advantage of the new computational capacity, Lorentz observed in weather
forecasting that a single different digit in the computer’s decimal places made his system
evolve to completely different responses, noticing the unpredictability in deterministic
systems (LORENZ, 1963).

After that, interest in chaos soared, leading to numerous studies where several
researchers verified the presence of chaos in the most diverse systems. A new theory verified
that the turbulence, in its pressure and velocity variations in a flow, was chaotic (RUELLE;
TAKENS, 1971), subsequently verified experimentally (SWINNEY; GOLLUB, 1981).
May (1976) notice chaotic behavior in the Logistic Map, a simple nonlinear dynamical
equation modeling prey-predator. In chemistry, chaos has been identified experimentally
in reactions (OLSEN; DEGN, 1977; ROUX; SIMOYI; SWINNEY, 1983); in mechanical
oscillators (MOON; HOLMES, 1979); in electrical circuits (LINSAY, 1981). Mandelbrot
studied fractals in several systems, including mathematics, astronomy, chemistry, and
biology (MANDELBROT; MANDELBROT, 1982). Later, it was discovered correspondence
between the Mandelbrot set and the Logistic map (DEVANEY, 1990).

The discovery of bifurcations was a great advance in the study of chaos, discovered
by Feigenbaum (1980). Bifurcations are general behaviors that transition from periodic
to chaotic behavior. A series of period doubling in the bifurcation diagrams lead to the
chaotic behavior (FEIGENBAUM, 1980).

The next sections present a literature review of chaos control methods.

5



2.1 Chaos Control

Control systems aim to command, direct, or regulate the behavior of a specific
system. Despite having the same objectives, chaos control differs from conventional control
techniques in some aspects. The chaos control takes advantage of the great sensitivity to
disturbances and the dense set of unstable periodic orbit (UPO) where, with small actions,
it stabilizes one of these infinite orbits. These proprieties are not present in non-chaotic
responses. Due to the small actuation, this process consumes less energy compared to
control techniques not specifically dedicated to chaos control. Furthermore, chaos control
has great flexibility; the controller can be designed to make the system transit through
different UPOs as needed (OTT; GREBOGI; YORKE, 1990). Moreover, chaos control
techniques are based on the geometrical properties of the attractor of the system; therefore,
they do not need knowledge of the governing equations of the system.

The first chaos control techniques were developed with the intention of avoiding
the chaotic response in the systems. Control methods can be classified as discrete or
continuous. The first chaos control method was known as the OGY method, in honor
of the authors Ott-Grebogy-York, proposed in Ott, Grebogi & Yorke (1990), which is a
discrete method in which the perturbations in a Poincaré section are applied. The first
continuous method proposed was the Time-Delayed Feedback (TDF); in this method, the
control acts continuously and uninterrupted in the system (PYRAGAS, 1992).

Reviews of discrete methods based in OGY technique are presented in Ditto, Spano
& Lindner (1995), Grebogi & Lai (1997), and Boccaletti et al. (2000). A continuous methods
review is presented in Pyragas (2006). Furthermore, Savi, Pereira-Pinto & Ferreira (2006)
presented a review of chaos control applied to mechanical systems. Paula & Savi (2011)
compared various chaos control techniques applied to mechanical systems. The next two
subsections introduce these two precursor methods along with some of the methods that
enhanced them. Moreover, Schöll & Schuster (2008) presents a handbook summarizing the
main chaos control techniques and some applications. Figure 2.1 summarizes this literature
review’s main chaos control methods.

2.1.1 Discrete methods

In chaotic maps, in the vicinity of fixed points, in general, the interactions have
a saddle shape, with a stable direction and an unstable one. The OGY method takes
advantage of these properties by imposing small perturbations in order to force the system
to fall back on the stable direction, stabilizing the UPO. The Jacobian around the fixed
points can derive these acting directions using their eigenvalues and eigenvectors. As the
method is discrete, the control action must wait for the system to be in the vicinity of the
fixed point to carry out such disturbances. This disturbance aims to force the system in
the stable direction to stabilize the desired UPO. The first experimental application of
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Figure 2.1 – Chaos control methods.

this method was implemented in the control of magnetoelastic ribbon (DITTO; RAUSEO;
SPANO, 1990).

Several improvements were presented in subsequent years. Romeiras et al. (1992)
expanded the method aiming at n-dimensional systems. This method generalizes OGY,
approaching it as a pole allocation, making it more flexible in its gain matrix choice.
Gluckman et al. (1997) worked with a high dimensions system with an adaptive control
considering a non-stationary system.

Dressler & Nitsche (1992) implemented OGY with a reconstructed attractor using
delayed states method. This method modified OGY in a way that the Poincaré section
depends on its previous perturbations. So & Ott (1995) extended Romeiras et al. (1992)
method with higher dimensions to reconstruct the phase state.

Bayly & Virgin (1994) made considerations about the practical applicability of OGY.
This work assessed its implementation of some external factors such as high instability, high
nonlinearities, model errors, noise, and uncertainty of the stabilization time. This article led
Hübinger et al. (1994) to propose the semi-continuous (SC) OGY method focusing on the
high instability problem. In this improvement, control sections are inserted in intermediate
phases and equally spaced in the forcing cycle, thus applying the OGY method in each
section. Afterward, this idea was applied to systems with reconstructed Poincaré section
by delayed coordinates (KORTE; SCHOUTEN; BLEEK, 1995). An extension for this
method was proposed to address the control of a high-dimensional double pendulum in
Christini, Collins & Linsay (1996). Another distribution for the intermediary sections was
proposed in order to equalize the rates of flux expansion between sections (RITZ et al.,
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1997).

Another major advance in OGY was the implementation of another control pa-
rameter using pole allocation proposed in Barreto & Grebogi (1995). In this method,
all parameters can actuate simultaneously in all control sections, thus achieving faster
stabilization time and better performance in a noise environment. Paula & Savi (2009b)
proposed implementation of a multiparameter approach to OGY and SC-OGY methods.
In this modification, it is considered an uncoupled approach, where the passive parame-
ter returns to its original value, and a coupled approach, where each parameter always
influences the control.

Christini et al. (1997) proposed a control method without a learning stage; thus,
it does not depend on the system’s mathematical model; it is in real-time and adaptive.
Yu et al. (2001) modified OGY to utilize invariant manifold theory and sliding mode
control to avoid the system Jacobian calculation. Alasty & Salarieh (2005) utilized fuzzy
estimations in a OGY, making it more robust. Yagasaki (2007) proposed a new method
based on OGY in order to stabilize non-periodic trajectories.

2.1.2 Continuous methods

The second main approach to chaos control is the Time-Delayed Feedback (TDF)
method proposed by Pyragas (1992). This method applies a continuous perturbation to
the system based on feedback on the difference between the current and delayed states
of the system. This continuous actuation favors control of highly unstable systems. The
discrete actuation of OGY makes it more difficult to stabilize high Lyapunov exponents
UPO relative to the inverse of the time elapsed between perturbations (PYRAGAS, 1992).
Furthermore, this approach tends to achieve the system’s stabilization faster than the
discrete techniques. There is a necessity for a steady analysis of the system on methods
based on OGY, which does not happen with TDF. TDF method does not depend on
the system model; its implementation only depends on the time delay and the control
gains. These characteristics make its experimental implementation easier. Pyragas &
Tamaševičius (1993) made it the first experimental application to use the control technique
in an electronic chaotic oscillator.

Subsequently, this method was applied experimentally in some works. Hikihara
& Kawagoshi (1996) use the TDF method to control chaos in a magneto-elastic beam
system described by the Duffing equation; Ramesh & Narayanan (2001) use it to control
chaos in a two-dimensional airfoil; Galvanetto (2002) stabilizes a system orbit with dry
friction; Sugimoto & Osuka (2004) apply it to stabilize a walking bipedal robot; Wei et al.
(2004) stabilize an period-1 unstable periodic orbit of a gas discharge plasma. Cai & Chen
(2010) implemented experimentally it in flexible structures; Liu, Yan & Wang (2020) was
successful in stabilizing chaos in micro and nanoelectromechanical resonators.
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The main challenge to the TDF method is the introduction of time-delayed to
the system and the control gain choice. Attempting to solve the time-delay problem,
Boccaletti & Arecchi (1995), Herrmann (2001) proposed adaptive algorithms to adjust the
time-delay. Meanwhile, on the issue of determining the controller’s gains, many papers had
to choose it by a trial and error method as did Pyragas & Tamaševičius (1993). Pyragas
(1992) proposes to evaluate the Lyapunov exponent using the system’s motion equation
to determine the control gains. Lehnert et al. (2011) proposed adaptive algorithms to
adjust the control gains based on the speed gradient method. Several studies implemented
a periodic control gain and eliminated some of the problems of the fixed control gain
(LEONOV, 2014; PYRAGAS; PYRAGAS, 2016; PYRAGAS; PYRAGAS, 2018). Ding
& Lei (2023) introduced a machine learning technique that interacts with the dynamical
system to obtain the control gains without the precise mathematical model of the system.

The modification considered most important to the TDF is Extended Time-Delayed
Feedback (ETDF) (PYRAGAS, 2006). This method, presented in Socolar, Sukow &
Gauthier (1994), uses not only one delayed state of the system but expands it to consider
many previous states. Moreover, this implementation introduces a new control parameter
related to other delayed states of the system. This implementation attempts to stabilize
high periodicity UPOs. Paula & Savi (2009a) used this method to control chaos in a
nonlinear pendulum.

Some studies were made in order to verify stability and prove proprieties of TDF
and ETDF. Ushio (1996) proved that TDF is able to stabilize only a specific class of UPO
characterized by a finite torsion of the state space in discrete systems. Thus, TDF cannot
stabilize UPOs with an odd number of Floquet multipliers bigger than one. Thereafter,
Just et al. (1997), Nakajima (1997) extended these proprieties to continuous systems, and
Nakajima & Ueda (1998b) proved that the same limitation occurs with ETDF. Hooton
& Amann (2012) presented a new limitation to TDF and ETDF related to real Floquet
multipliers larger than unity.

Several studies have attempted to overcome these limitations. Ushio & Yamamoto
(1998) presented modification using nonlinear estimation of stabilised orbits and Ushio
& Yamamoto (1999) used predictive algorithm, both for the discrete case. Nakajima &
Ueda (1998a) proposed a modification to consider half-period delayed feedback; however,
it only worked for symmetric orbits. Pyragas (2001) modified ETDF method to attend to
the limitation related to a finite torsion of the state space. This modification added a new
unstable variable to the system in order to raise the number of positive Floquet exponents
to an even number. This modification was applied experimentally in an electronic system
by Höhne et al. (2007).

TDF and ETDF methods were vastly studied; following there are some of their
main modifications, improvements and applications. Chen & Yu (1999) presented analytical
sufficient conditions for chaos control related to both stabilization and tracking UPO using
TDF. Tian et al. (2009) proposed and derived some analytical conditions for a new control
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method based on the work of (CHEN; YU, 1999). This method considers different control
parameters and successive dislocation of the time-delay feedback.

Vieira & Lichtenberg (1996) generalized ETDF method in order to substitute some
portion of the nonlinear dynamical system with delayed dynamics rather than using a
linear delay function for control. They also proposed a further generalization in which the
control function retains memory of all previous periods. Tian & Yu (2000) adopted optimal
control theory to design a TDF controller. The main idea is to minimize a performance
index in order to stabilize an UPO.

Aiming to establish a chaotic response, Wang, Chen & Yu (2000) proposed an
anti-control chaos method based on the TDF. This method effectively generates chaos or
increments it in finite-dimensional, continuous-time, autonomous systems. Wang & Chau
(2008) implemented the anti-control chaos experimentally in a permanent magnet DC
motor system for vibratory compactors.

Tsai, Fuh & Chang (2002) proposed a method using a sliding mode controller with
a time-varying manifold dynamic to control chaos under varying external force and noise
conditions. Nazzal & Natsheh (2007) presented a controller based on the nonlinear sliding
mode and applies it to Chua’s circuit and Lorenz system. Based on the same theory, Bessa,
Paula & Savi (2009) introduced an adaptive fuzzy sliding mode controller to address the
model uncertainties. The convergence proprieties were proven analytically, and the method
was applied numerically to a nonlinear pendulum.
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3 Nonlinear Dynamics and Chaos

This chapter presents some topics in nonlinear dynamics concerning chaotic re-
sponses, analysis tools, and control strategies.

The tools applied to the study of the dynamics of nonlinear systems can be divided
into two categories. The first is the qualitative approach that aims to understand the global
behavior of the system as well as its dynamic evolution. The second is the quantitative
approach that explores the temporal evolution of the system (SAVI, 2006).

The qualitative study uses topology-based geometric techniques, with the Poincaré
map and the bifurcation diagram as its main concepts. These concepts are also necessary
for the quantitative approach, as they provide a global understanding of system behavior.
The quantitative study addresses the determination of dynamic invariant parameters, such
as the Lyapunov exponent.

This chapter also introduces the close return method, based on recurrent points
(AUERBACH et al., 1987a), used to identify the unstable periodic orbits immersed in the
system’s chaotic attractor. Finally, the chapter briefly presents the main chaos control
methods and addresses the continuous chaos control technique Extended Time-Delayed
Feedback method.

3.1 Poincaré Map and Poincaré Section

The Poincaré map is a substate of the phase space that allows the analysis of a
continuous dynamic system in time (flow) in a discrete system (map), creating a secondary
system with a lower dimension. The transformation aims to capture a set of positions in
phase space.

For its construction, it must be intersecting the trajectory with a hyperplane. The
plane is arbitrarily chosen in phase space and must be perpendicular to the trajectory.
Thus, the set of system points is called the Poincaré map, and the chosen hyperplane is
called the Poincaré section (OTANI; JONES, 1997). Figure 3.1 represents the construction
of the section in different forcing phases. In this way, the dimension of the system is
reduced, excluding time, since the trajectory sample is made in a discrete time interval.

Although there is no general methodology for constructing a Poincaré section.
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Figure 3.1 – Construction of the Poincaré map (MOON, 1992).

Usually, the section is related to a specific forcing phase in systems subjected to periodic
forcing. Thus, the sample period is given by 𝑇/𝑛𝑚 = 2𝜋/𝜔, where 𝜔 is the excitation
frequency, and 𝑛𝑚 defines the time step, dividing the forcing period into 𝑛𝑚 points.
Algorithm 3.1 presents this work implementation. In this algorithm, 𝑛𝑝 corresponds to the
total integration time, equivalent to 𝑛𝑝 forcing pe.

Algorithm 3.1 Poincaré map
/*Loop for total time evolution */

for 𝑗𝑝 = 1; 𝑗𝑝 ≤ 𝑛𝑝; 𝑗𝑝 + + do
/*Loop for one forcing period evolution */

for 𝑗𝑛 = 1; 𝑗𝑛 ≤ 𝑛𝑚; 𝑗𝑛 + + do
𝑥()← 𝑓(𝑥());
/*Poincaré map */

if 𝑗𝑛 == 1 then
𝑝𝑜𝑖𝑛𝑐𝑎𝑟𝑒(𝑗𝑝)← 𝑥(𝑖)

end
end

end

The Poincaré map indicates the type of the behavior. For periodic regimes, the
Poincaré map presents a finite number of points. If the periodicity of the orbit is multiple
of the forcing frequency (considering a harmonically excited system), the map presents
the same number of points as the periodicity of the response. Figure 3.2a illustrates both
periodic and chaotic responses obtained numerically. Magenta dots represent the Poincaré
maps, while the black line is the phase space. In a quasi-periodic regime, the Poincaré
map presents a closed curve. Finally, in a chaotic regime, the Poincaré map presents an
infinite set of points, generally with fractal geometry distributed in a lamellar structure,
with empty and dense regions. If the system’s response is chaotic, the maps is related to a
chaotic attractor, while if it presents transient chaos, it is associated with a chaotic saddle.

An attractor is a topological invariant set of the system to which the orbits of the
system tend to converge. A chaotic attractor visualization in a Poincaré map shows a
collection of points arranged in an organized manner.

In non-dissipative chaotic regimes, a cloud of points tends to fill the space. However,
systems in chaotic dissipative regimes are characterized by the horseshoe transformation,
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characteristic of the Cantor set. Attractors can be said to be chaotic or strange, and maybe
both or just one of them simultaneously (GREBOGI et al., 1984).

The strange attractor is a geometric feature of the system, where it represents the
preferential region of the phase space that attracts the states of the system and has a
fractal structure of the Cantor set type (SAVI, 2006). The chaotic attractor, however, is
a physical feature that the Poincaré map visualizes as a collection of points arranged in
an organized way. The chaotic attractor is ergodic, meaning that each point of this set is
visited during the system’s evolution (PEREIRA-PINTO; FERREIRA; SAVI, 2004).

Unlike the attractor, the chaotic saddle in chaos has a repulsive characteristic
and is present in the case of transient chaos. It also has a finite number of points in the
Poincaré section. Chaotic saddles also have a fractal nature, just like the strange attractor.

3.2 Bifurcation Diagram

A bifurcation diagram presents the system’s response influence to a variation of
one of its parameters. This provides a global visualization and allows us to evaluate
where and how the changes in the system response occur. Usually, a small change in a
parameter results in a small quantitative change. However, a bifurcation occurs when a
small parameter change results in a qualitative change.

One can differentiate bifurcations into local bifurcations and global bifurcations.
Local bifurcations deal with a limited region of phase space and deal with, for example,
period doubling. A system can present multiple local bifurcations while it does not have a
qualitative change in the response, so it does not show chaotic behavior. Global bifurcations,
however, characterize a sudden change in the topology and structure in the phase space,
which are not restricted locally. Global bifurcations are present in the transition from
periodic to chaotic behavior or collisions.
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There is no single way to draw a bifurcation diagram. For this work, the brute
force method was adopted (PARKER; CHUA, 2012). This method simulates different
values of the parameter to be evaluated, varying it quasi-statically while analyzing some
responses in the Poincaré section. Algorithm 3.2 presents a pseudo-code for this method,
where 𝛼 is the parameter that is varied, 𝛼0 is its initial condition, 𝑑𝛼 is the step, 𝑥0 is the
initial conditions for each 𝛼.

Algorithm 3.2 Brute force bifurcation diagram
/*Parameter quasi-static varying */

for 𝛼 = 𝛼0; 𝛼 ≤ 𝛼𝑚𝑎𝑥; 𝛼 = 𝛼 + 𝑑𝛼 do
𝑥← 𝑥0
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑛𝑚/𝑛𝑠
/*Loop for time evolution */

for 𝑗𝑝 = 1; 𝑗𝑝 ≤ 𝑛𝑝; 𝑗𝑝 + + do
/*Loop for cycle evolution */

for 𝑗𝑛 = 1; 𝑗𝑛 ≤ 𝑛𝑚; 𝑗𝑛 + + do
𝑥()← 𝑓(𝑥());
/*Poincaré sections */

if 𝑗𝑛 == 1 then
𝑝𝑜𝑖𝑛𝑐𝑎𝑟𝑒(𝑁)← 𝑥(𝑖)

end
𝑖← 𝑖 + 1

end
end

end

Figure 3.3 shows the bifurcation diagram for the limit set of the Logistics Map
when varying the growth rate of a population. The Logistics Map is a polynomial mapping
given by 𝑥𝑛+1 = 𝑟𝑥𝑛(1− 𝑥𝑛), where 0 ≤ 𝑥𝑛 ≤ 1 represents a ratio of existing population
to the maximum possible population and 𝑟 represents the growth rate. The growth rate is
varied to construct the bifurcation diagram. It is possible to observe both local bifurcations,
where the period doubles, and global bifurcations, where the system changes from periodic
to chaotic behavior.
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Figure 3.3 – Bifurcation Diagram of Logistic Map.

3.3 Unstable Periodic Orbits Identification

In general, the initial phase of the control methods is the learning stage, where we
need to identify unstable periodic orbit (UPO) and to determine controller gains. The
second phase consists of the control itself and will be discussed further in the text.

Systems in chaotic regimes are characterized by an infinity of unstable periodic
orbits combined with great sensitivity to initial conditions and their ergodic characteristic.
The existence of these infinite periodic patterns makes chaotic systems very flexible
(ECKMANN; RUELLE, 1985). The ergodic character of the system indicates that all
points close enough to the attractor are visited by the chaotic trajectories at some point
in their evolution (AUERBACH et al., 1987a).

The UPOs are periodic patterns within a system attractor that are part of the set
of topological invariants of the system and, thus, do not suffer topological change with
the change of coordinates (GUNARATNE; LINSAY; VINSON, 1989). Other topological
invariants of the system can be determined from the UPOs such as the Lyapunov exponent
and the fractal dimension of the system (AUERBACH et al., 1987a).

The identification of UPOs can be made by temporal analysis or by the explicit
equation of motion (XU et al., 2002). There are several algorithms for its determination
depending on the specific characteristics of each series. In order to identify UPOs, this
work uses the close-return method (AUERBACH et al., 1987a).

Close-return method is implemented on a Poincaré section in such a way that a
scan of the entire time series is performed, looking for pairs of points that satisfy the
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condition:
|𝜉𝑖 − 𝜉𝑖+𝑘|(𝑁−𝑘)

𝑖=1 ≤ 𝑟1 (3.1)

where 𝑁 is the total number of points in the Poincaré section, 𝑟1 is the tolerance with
which recurrent points are distinguished, and 𝑘 is the maximum period of the orbit to be
found. In this way, we store the points {𝜉𝑖, 𝜉𝑖+1, . . . , 𝜉𝑖+𝑘−1} that satisfy the condition and
belong to the k- orbit periodic in the control Poincaré section. During the search, a given
orbit can be visited more than once, so verifying identical orbits within a 𝑟2 tolerance and
with a permutation of their points is necessary. In the case of equivalent orbits, for the
same period, the real orbit is approximated by the arithmetic mean (SAVI, 2006).

3.4 Lyapunov Exponent

The Lyapunov exponents are a geometric invariant of the system response and are
widely used to characterize chaos. Unlike the tools presented above, the Lyapunov exponent
is a quantitative measure of the system and can, therefore, formally characterize it. The
exponent evaluates the predictability of system response and can be used to evaluate the
capability of an UPO to be stabilized.

The methods to evaluate the Lyapunov exponent of a temporal series can be
classified into trajectory and perturbations methods. The idea behind the trajectory
methods is to relate the evolution of the distance of two close trajectories. Conversely,
the perturbations methods are based on the Jacobian matrix estimation of the trajectory,
which is used to evaluate the Lyapunov spectrum. This work uses the trajectory method
proposed by Wolf et al. (1985).

To evaluate the Lyapunov exponents, we consider a reference path Φ(𝑥1, 𝑡) and
define a neighborhood hypersphere with diameter 𝑑0 at the initial instant 𝑡0. In the neigh-
borhood, a second trajectory Φ(𝑥2, 𝑡) is defined in which 𝑥2 is contained in the previously
defined hypersphere. The set of Lyapunov exponents that generates the dimension of the
hypersphere is associated with the dimension of the dynamical system. With its temporal
evolution, evaluate the divergence or convergence of the second trajectory in relation to
the first. Figure 3.4 geometrically represents the time evolution in which the deformation
of the hypersphere into a hyperellipsoid occurs.

Thus, the diameter of the hypersphere can be expressed by:

𝑑(𝑡) = 𝑑0𝑏
𝜆𝑡 (3.2)

where 𝑏 is a base of reference for the logarithm. Thus, the Lyapunov exponent is defined
as:

𝜆 = 1
𝑡

log𝑏

(︃
𝑑(𝑡)
𝑑0

)︃
(3.3)

Thus, the sign of the Lyapunov exponent defines the divergence as positive and
the convergence as negative. The stability of a trajectory is associated with the negative
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Figure 3.4 – Lyapunov exponent (SAVI, 2006).

sign of the exponent, while the instability is associated with the positive sign. It is worth
noting that each degree of freedom of the system is associated with a different exponent.
Thus, a system with at least one positive exponent is associated with a local divergence
that characterizes the typical sensitivity to initial conditions of chaos. Therefore, for a
non-autonomous system, it is enough to evaluate the greatest Lyapunov exponent to
analyze the stability of an UPO (PYRAGAS, 1995).

When a reference trajectory is evaluated, it will diverge from the evaluated trajectory
if it is chaotic. However, the Lyapunov exponent can only be calculated in the vicinity of
the reference path where the linearization is valid. To define the Lyapunov exponent by the
dynamical system extension and monitor the neighboring trajectories, Wolf et al. (1985)
proposed an evaluation of the average of the exponential growth in several trajectory
points. To this end, every time the distance 𝑑(𝑡) becomes too large, a new 𝑑0(𝑡) is defined
in which the divergence is reassessed, as shown in Figure 3.5. The distance 𝑑0 is defined
as the Euclidean norm between the points in the neighborhood 𝑄0 and in the system
𝑃0. Then, the evolution of these 2 points is evaluated up to a time 𝑡1, two new points 𝑃1

and 𝑄′
1 are defined, and a new tangential distance 𝑑(𝑡1). That is, each time the exponent

moves away from the reference trajectory, a value of the exponent is taken, and a new
evaluation begins in the neighborhood of the system.

Figure 3.5 – Calculation of the Lyapunov exponent (SAVI, 2006).
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Thus, for this type of evaluation, the Lyapunov exponent is defined as:

𝜆 = 1
𝑡𝑛 − 𝑡0

𝑛∑︁
𝑘=1

log𝑏

(︃
𝑑(𝑡𝑘)

𝑑0(𝑡𝑘−1)

)︃
(3.4)

3.5 Chaos Control

Chaos control exploits the unique characteristics of systems that exhibit chaotic
responses. Thus, it consists of applying small perturbations to the system to stabilize it in
a specific unstable periodic orbit. This allows the dynamic system to move from orbit to
orbit according to need, giving it great flexibility.

The Time-Delayed Feedback (TDF) method proposed in Pyragas (1992) was the
first continuous method proposed in the literature, acting continuously and uninterrupted
in the system. Continuous methods favor the control of systems that have high Lyapunov
exponents. Continuous controllers are also less sensitive to external noise than discrete
controllers (PAULA; SAVI, 2011). ETDF improves on TDF in terms of stabilizing time
and robustness. This work investigates a generalized form of the ETDF.

3.5.1 Extended Time-Delayed Feedback Method (ETDF)

The ETDF method is applied to dynamical systems modeled by systems of nonlinear
ordinary differential equations of the form:

ẋ(𝑡) = f(x, 𝑡) + B(𝑡) (3.5)

where x(𝑡) ∈ 𝑅𝑛 is the vector containing the state variables, f(x, 𝑡) ∈ 𝑅𝑛 defines the
dynamics of the system and B(𝑡) ∈ 𝑅𝑛 is associated with the control.

Therefore, the control law is given by:

B(𝑡) = K[(1−𝑅)𝑆𝜏 − 𝑥] (3.6)

with,
S𝜏 =

∞∑︁
𝑚=1

𝑅𝑚−1x𝑚𝜏 (3.7)

where K ∈ 𝑅𝑛×𝑛 is the gain matrix, 𝜏 is the time delay, 0 ≤ 𝑅 < 1 is a controller parameter
related to delayed states, 𝑥 = 𝑥(𝑡) and x𝑚𝜏 = x(𝑡−𝑚𝜏), and 𝑚 represents the number of
the delayed state. Usually, the literature uses the K as a scalar 𝐾.

While the TDF considers only one delayed state of the system in the control law,
the ETDF considers several. Notably, for 𝑅 = 0, the equation falls under the control law
of the TDF method, where only a single delayed state of the system is considered.

When the system trajectory is correspond to an UPO, the Equation (3.6) is null
for any 𝑅 since x(𝑡−𝑚𝜏) = x(𝑡) for all 𝑚 and 𝜏 = 𝑇𝑖, where 𝑇𝑖 is the periodicity of the
i𝑡ℎ UPO.
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In this work, it is considered 3 delayed states, 𝑚 = 3. Thus,

S𝜏 = x(𝑡− 𝜏) + 𝑅x(𝑡− 2𝜏) + 𝑅2x(𝑡− 2𝜏) (3.8)

Differential equations govern the dynamical system with the controller with time
delay Delayed Differential Equation (DDE). Unlike ODEs that have their solution system’s
current state of the system, the solution of DDEs dependencies on previous states.

The term 𝑆𝜏 has information for 𝑡 < 𝑚𝜏 ; therefore, the evaluation of the DDE has
to wait for the system evolution. This work’s control action starts when all delayed states
are known. This way, for the adopted value 𝑚 = 3, the control starts when 𝑡 > 3𝜏.

The learning stage in continuous methods consists of identifying the UPO that you
want to stabilize and determining the gain K and if using ETDF, the gain 𝑅. The control
phase starts with the defined gains, and its gains are used to determine the necessary
disturbances.

The ETDF control method occurs continuously in the system (KITTEL; PYRAGAS;
RICHTER, 1994). This control acts by slightly modifying the Lyapunov exponent in the
UPO of interest, making it stable. For this, the control gains must be chosen in such a
way that all Lyapunov exponents become negative (KITTEL; PARISI; PYRAGAS, 1995).

However, it is sufficient to determine the largest Lyapunov exponent in a non-
autonomous system to stabilize the UPO (PYRAGAS, 1995). Thus, for a constant value
of 𝑅, an interval of values for 𝐾 can be determined. That is, to achieve stabilization of a
given UPO, the controller gains must be defined so that the largest Lyapunov exponent is
less than zero, 𝜆(𝐾, 𝑅) < 0. It is also proposed to adopt gains associated with minimum
values of 𝜆(𝐾, 𝑅) so that there is a greater convergence in close orbits, making it less
susceptible to noise.

For the ETDF method with 3 states delayed in time, we have the following DDE:

ẋ = f(x, 𝑡) + B(𝑡, x, x𝜏 , x2𝜏 , x3𝜏 ) (3.9)

Therefore, to calculate x = x(𝑡) in a time greater than 𝑡, the function x(𝑡) must be
known in the interval (𝑡− 3𝜏, 𝑡). The Equation (3.9) has an infinite dimension system and,
consequently, infinite Lyapunov exponents. Numerically, it is only possible to determine a
finite number of exponents, but it is enough to determine the largest exponent to verify
(VICENTE et al., 2005) stability.

3.5.2 Determining gains from the Lyapunov exponent

The choice of suitable gains 𝑅 and 𝐾 makes the stabilization of the system in a
specific UPO to be achieved. Such values are determined during the system learning phase.
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To calculate the Lyapunov exponent, the continuous evolution of the infinite-
dimensional system is approximated by a finite number of elements whose values change in
discrete steps over time (FARMER, 1982). With this, the function 𝑥𝑖(𝑡), with 𝑖 = 1, . . . , 𝑛,
in the interval (𝑡−3𝜏, 𝑡) can be approximated by 𝑁 spacing samples Δ𝑡 = 3𝜏/(𝑁−1). The
system goes from 𝑛 state variables to 𝑛(𝑁 + 1) variables. A vector 𝑧 is used to represent
these state variables, where 𝑧𝑛+1, . . . , 𝑧𝑛(𝑁+1) are related to the states delayed in time of
𝑥(𝑡) in the form:

(𝑧1, 𝑧2, . . . , 𝑧𝑛, . . . , 𝑧𝑛+𝑁 , . . . , 𝑧𝑛+(𝑛−1)𝑁+1, . . . , 𝑧𝑛(𝑁+1)) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡),

𝑥1(𝑡−Δ𝑡), . . . , 𝑥1(𝑡−𝑁Δ𝑡), . . . , 𝑥𝑛(𝑡−Δ𝑡), . . . , 𝑥𝑛(𝑡−𝑁Δ𝑡)) (3.10)

In this work, the approach presented in Sprott (2007) is used, where the DDE
is replaced by a set of ODEs. Therefore, the infinite-dimensional continuous system is
represented by a system of 𝑛(𝑁 + 1) finite-dimensional ODEs, allowing its resolution by
any method indicated for nonlinear ODEs. Like this:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇�𝑗 = 𝑄𝑗(𝑧1, 𝑧2, . . . , 𝑧𝑛) + 𝐵𝑗(𝑡, 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛+1, . . . , 𝑧𝑛(𝑁+1)) for 1 ≤ 𝑗 ≤ 𝑛

�̇�𝑛+1+(𝑗−1)𝑁 = 𝑁(𝑧𝑗 − 𝑧𝑛+2+(𝑗−1)𝑁)/2𝜏 to 1 ≤ 𝑗 ≤ 𝑛

�̇�𝑛+𝑖+(𝑗−1)𝑁 = 𝑁(𝑧𝑛+𝑖+(𝑗−1)𝑁−1 − 𝑧𝑛+𝑖+(𝑗−1)𝑁+1)/2𝜏 for 2 ≤ 𝑖 ≤ (𝑁 − 1)

e 1 ≤ 𝑗 ≤ 𝑛

�̇�𝑛+𝑗𝑁 = 𝑁(𝑧𝑛+𝑗𝑁−1 − 𝑧𝑛+𝑗𝑁)/𝜏 for 1 ≤ 𝑗 ≤ 𝑛

(3.11)
where 𝑁 = 3𝜏/Δ𝑡 + 1. The calculation of the Lyapunov exponent can be performed from
these equations by the (WOLF et al., 1985) algorithm. It is also possible to calculate the
exponent of an UPO of interest by integrating the system along its orbit. With this, it is
possible to choose the control gains adopted to stabilize the UPO.

With this, including the equations of motion in Eq. (3.11) and their linearizations,
one obtains a set of (𝑁 + 2)2 + (𝑁 + 2) ODEs that allow the implementation of the
algorithm of (WOLF et al., 1985), which evaluates the UPO time series. The system can
be reduced to just 𝑁 + 2 variables to calculate only the largest Lyapunov exponent with a
modification to the algorithm. Due to the large number of ODEs to be solved, the learning
phase has a high computational cost.

The algorithm checks the greatest Lyapunov exponent for specific controller gains.
To evaluate the stabilization capacity of an UPO, the exponent must be calculated for
several gains of the controller. Thus, the choice of controller gains related to negative
exponent values can, by hypothesis, stabilize the chosen orbit. Furthermore, the minimum
value of the exponent provides a higher rate of convergence of close orbits and makes the
method more robust to (PYRAGAS, 1995) noise.
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4 Nonlinear Pendulum

This chapter presents the nonlinear pendulum studied in this work. This system has
been previously studied by different authors (BLACKBURN; BAKER, 1998; FRANCA;
SAVI, 2001), (PINTO; SAVI, 2003), (PAULA; SAVI; PEREIRA-PINTO, 2006), (PAULA,
2010). Initially, the mathematical model is obtained without and with control action
considering the generalized ETDF method. In the sequence, the dynamical response
without control is evaluated, showing a general overview of system behavior.

4.1 Mathematical Model

Consider the mechanical pendulum shown in Figure 4.1. The apparatus consists of
a metallic disk (1) with an eccentrically concentrated mass (3). The disk is fixed to the
axis of a rotation sensor (4) and a magnetic device (2) that allows adjusting the energy
dissipation of the system, acting as damping. The wires with springs (8) act as an elastic
element of the system, providing torsional rigidity. One of the ends of the wire is connected
to an electric motor (6) that supplies energy to the system, exciting the pendulum through
a pulley connected to the axis of the rotation sensor. The motor is powered by a power
source (5), which regulates the rotation frequency by varying the electrical output voltage.

The simplified representation presented in Figure 4.2 is considered for mathematical
modeling in which the forces acting on the disk axis and dimensional aspects of the
apparatus, used to describe the dynamics of the system, are represented.

Initially, it is considered the balance of moments about the axis of rotation of the
disc. The angular position, 𝜑, is considered to be zero at the lowest point of its path, and
a positive for counterclockwise rotation is assumed. It is also assumed that the forcing
phase, 𝜃𝑓𝑜𝑟𝑐𝑒, is null when the rod is at the highest point of its trajectory, also assumed
positive in the counterclockwise direction.

From the free-body diagram, presented Figure 4.2(b), and the geometric configura-
tions, shown in 4.2(c), we have the external forces exerted by the wire-spring sets 𝐹1 and
𝐹2 are given by the following equations:

𝐹1 = 𝑘

(︃√︁
𝑎2 + 𝑏2 − 2𝑎𝑏 cos(�̄�𝑡)− (𝑎− 𝑏)− 𝑑

2𝜑

)︃
(4.1)
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Figure 4.1 – Nonlinear pendulum and accessories: (1) Metal disk, (2) Damping device, (3)
Eccentric mass, (4) Rotation sensor, (5) Power source, (6) electric motor, (7)
data acquisition device, and (8) springs and wires (PAULA; SAVI; PEREIRA-
PINTO, 2006).

𝐹2 = 𝑘𝑑

2 𝜑 (4.2)

where 𝑎 is the distance from the electric motor shaft to the wire guide, 𝑏 is the length of
the electric motor rod, 𝑑 is the diameter of the driving pulley of the metal disc, 𝑘 is the
spring stiffness constant, and �̄� is the rotation frequency of the forcing electric motor.

The sum of moments arising from the wire-spring sets, weight, and viscous damping
and dry friction is given by:

∑︁
T = 𝐹1 + 𝐹2

2 𝑑− 𝜇 sgn(𝜑)− 𝜁�̇�− 𝑚𝑔 sin(𝜑)
2 𝐷 = 𝐼𝜑 (4.3)

where 𝑚 is the concentrated mass value, 𝜁 represents the viscous damping constant, 𝜇

represents the dry friction constant, sgn is the sign function, 𝐷 is twice the distance of
the concentrated mass to the axis of the rotation sensor, 𝑔 is the acceleration of gravity,
and 𝐼 is the moment of inertia of the disc and mass set.

Substituting the Equations (4.1) and (4.2) into Equation (4.3) we obtain the
equation of motion:

𝜑 + 𝜁

𝐼
�̇� + 𝑘𝑑2

2𝐼
𝜑 + 𝜇 sgn(�̇�)

𝐼
+ 𝑚𝑔𝐷 sin(𝜑)

2𝐼
= 𝑘𝑑

2𝐼

(︂√︁
𝑎2 + 𝑏2 − 2𝑎𝑏 cos( 𝑏𝑎𝑟𝜔𝑡)− (𝑎− 𝑏)

)︂
(4.4)

The equation exhibits a discontinuity due to the term representing dry friction.
The discontinuity comes from the fact that the friction has the same module but with
a positive or negative sign depending on the direction of the velocity. This sign change
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Figure 4.2 – Nonlinear pendulum representation: (a) Physical model: 1-Metallic disk,
2-Eccentric mass, 3-Damping device, 4-Rotation sensor, 5-Wire-spring set
and 6-Electric engine; (b) Metal disc: geometry and acting forces; and (c)
Excitation system: geometry (PAULA; SAVI; PEREIRA-PINTO, 2006).

characteristic is instantaneous; therefore, it entails a non-smooth discontinuous function
that can generate numerical errors that tend to propagate. To avoid this problem, we can
apply the following function to smooth out the term (LEINE, 2000):

𝜇 sgn(�̇�) = 2
𝜋

𝜇 arctan(𝑞 · �̇�) (4.5)

where 𝑞 takes on a large value as 𝑞 = 106.

Substituting the Equation (4.5) into (4.6) and rewriting the equation of motion in
the form of a system of first-order ordinary differential equations as a function of the state
variables (𝑥1, 𝑥2) = (𝜑, �̇�), one obtains:⎧⎨⎩𝑥1

𝑥2

⎫⎬⎭ =
⎡⎣ 0 1
−𝑘𝑑2

2𝐼
− 𝜁

𝐼

⎤⎦⎧⎨⎩𝑥1

𝑥2

⎫⎬⎭+

⎧⎨⎩ 0
𝑘𝑑
2𝐼

Δ(𝑡)− 𝑚𝑔𝐷
2𝐼

sin(𝑥1)− 2𝜇
𝐼𝜋

arctan(𝑞 𝑥2)

⎫⎬⎭ (4.6)

where Δ(𝑡) = (
√︁

𝑎2 + 𝑏2 − 2𝑎𝑏 cos(�̄�𝑡)− (𝑎− 𝑏).

It is assumed the same parameters presented for all numerical simulations: 𝑎 =
1.6× 10−1 m; 𝑏 = 6.0× 10−2 m; 𝑑 = 4.8× 10−2 m; 𝐷 = 9.5× 10−2 m; 𝑚 = 1.47× 10−2 kg;
𝐼 = 1.738× 10−4 kg m2; 𝑘 = 2.47 N/m; 𝜁 = 2.368× 10−5 kg m2 s−1; 𝑚𝑢 = 1.272× 10−4

Nm; 𝜔 = 5.61 rad/s (PAULA; SAVI; PEREIRA-PINTO, 2006).

4.2 Mathematical Model with Generalized ETDF Control

Chaos control in the nonlinear pendulum involves introducing small perturbations
to the system. These perturbations are applied through actuators that are connected to
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the pendulum, introducing small torques.

The actuation of the control parameter, Δ𝑙, consists of a variation of the length of
the wire-spring set at the end that is not connected to the electric motor, as illustrated in
Figure 4.3.

Figure 4.3 – Control actuation schematic representation (PAULA, 2005).

Rewriting the Equation (4.6) in the form of a system of first-order ordinary
differential equations as a function of the state variables (𝑥1, 𝑥2) = (𝜑, �̇�) and introducing
the controller action B(𝑡):

⎧⎨⎩𝑥1

𝑥2

⎫⎬⎭ =
⎡⎣ 0 1
−𝑘𝑑2

2𝐼
− 𝜁

𝐼

⎤⎦⎧⎨⎩𝑥1

𝑥2

⎫⎬⎭+

⎧⎨⎩ 𝐵1(𝑡)
𝑘𝑑
2𝐼

Δ𝑓(𝑡)− 𝑚𝑔𝐷
2𝐼

sin(𝑥1)− 2𝜇
𝐼𝜋

arctan(𝑞𝑥2) + 𝐵2(𝑡)

⎫⎬⎭ (4.7)

where:

B(𝑡) =

⎧⎨⎩𝐵1(𝑡)
𝐵2(𝑡)

⎫⎬⎭ =
⎡⎣𝑘11 𝑘12

𝑘21 𝑘22

⎤⎦⎧⎨⎩(1−𝑅)𝑆𝜏1 − 𝑥1

(1−𝑅)𝑆𝜏2 − 𝑥2

⎫⎬⎭ (4.8)

Usually, the literature presents the formulation where only the term 𝑘22 is non-null,
representing a torque that is exclusively dependent on the pendulum velocity. In this
context, the gain matrix K is reduced to a scalar, denoted as follows:

K =
⎡⎣𝐾11 𝐾12

𝐾21 𝐾22

⎤⎦ =
⎡⎣0 0
0 𝐾22

⎤⎦ =
⎡⎣0 0
0 𝐾

⎤⎦ (4.9)
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With this assumption, 𝐵1 = 0 and 𝐵2 = −𝑘𝑑
2𝐼

Δ𝑙(𝑡). Thus, from Eq. 4.8 the value of
Δ𝑙(𝑡) is given by:

Δ𝑙 = −2𝐼

𝑘𝑑
𝐾[(1−𝑅)𝑆𝜏2 − 𝑥2] (4.10)

This work explores all terms of the gain matrix K. Thus, from Equation 4.8 we
obtain:

⎧⎨⎩𝐵1(𝑡)
𝐵2(𝑡)

⎫⎬⎭ =

⎧⎨⎩𝐾11[(1−𝑅)𝑆𝜏1 − 𝑥1] + 𝐾12[(1−𝑅)𝑆𝜏2 − 𝑥2]
𝐾21[(1−𝑅)𝑆𝜏1 − 𝑥1] + 𝐾22[(1−𝑅)𝑆𝜏2 − 𝑥2]

⎫⎬⎭ (4.11)

The control action 𝐵1(𝑡) is associated with imposing a change in angular velocity
on the system. On the other hand, the control action for 𝐵2(𝑡) is associated with a torque,
which is related to the variation of the length of the wire-spring set illustrated in Figure
4.3, and is given by:

𝐵2 = −𝑘𝑑

2𝐼
Δ𝑙 = 𝐾21[(1−𝑅)𝑆1𝜏 − 𝑥1] + 𝐾22[(1−𝑅)𝑆2𝜏 − 𝑥2] (4.12)

where 𝑆𝑖𝜏 = 𝑥𝑖(𝑡− 𝜏) + 𝑅𝑥𝑖(𝑡− 𝜏) + 𝑅2𝑥𝑖(𝑡− 𝜏) with 𝑖 = 1, 2.

4.3 Dynamical Response without Control

The nonlinear pendulum subjected to periodic forcing can exhibit various responses.
A bifurcation diagram is constructed to conduct a comprehensive analysis of the potential
system behaviors. The system response is acquired through numerical integration of the
mathematical model, employing a fourth-order Runge-Kutta method. In all computations,
a time step of ℎ = 2𝜋

150�̄�
was used. The bifurcation diagram depicts the angular position

for a frequency excitation ranging from 3.0 rad/s to 7.0 rad/s with increments of 0.004
rad/s. The initial conditions are null for the first forcing cycle. For each forcing frequency,
a time integration of 200 forcing cycles was performed, with the initial 50 periods being
disregarded as transient. The bifurcation diagram is shown in Figure 4.4.

From the bifurcation diagram, one can notice distinct regions related to periodic
and a non-periodic motions. For lower frequencies, in the range of 3.00 ≤ 𝜔 ≤ 5.32 rad/s
we observe a periodic motion of periodicity one. This periodic region is followed by a
chaotic region from 5.33 ≤ 𝜔 ≤ 5.78 rad/s and 5.87 ≤ 𝜔 ≤ 5.91 rad/s. In the range
5.78 ≤ 𝜔 ≤ 5.87 we observe a periodic window. For frequencies higher than 𝜔 = 6.096, we
observe periodic motion region.

For the chaotic behavior analysis, the forcing frequency 𝜔 = 5.61 rad/s was chosen,
which is within the chaotic region identified by the bifurcation diagram. Figure 4.5 shows
the Poincaré map for the chosen forcing frequency, considering two different Poincaré
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Figure 4.4 – Bifurcation Diagram.

sections. These sections are defined with respect to the forcing phase, with one located at
0 rad and the other at 𝜋 rad. The control method is applied to this chaotic behavior.
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(b) Forcing phase: 𝜋 rad.

Figure 4.5 – Poincaré Sections for 𝜔 = 5.61 rad/s.
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5 Learning Stage

This chapter presents the first step of chaos control strategy: the learning stage.
The learning stage consists of identifying the UPOs and determining the control gains. In
the present work, the gains were chosen from the maximum Lyapunov exponent of each
UPO.

5.1 Unstable Periodic Orbits Identification

The learning stage’s initial phase involves identifying the UPOs targeted for sta-
bilization. To achieve this objective, the simulation used an integration time of 20000
forcing cycles, where the initial 150 forcing cycles were discarded as transient. The initial
conditions considered were null.

The identification of UPOs was accomplished through the close-return method
(AUERBACH et al., 1987b) with a tolerance of 𝑟1 = 0.01. This method relies on recurrence
points in the Poincaré map. From the generated time series, considering the adopted
tolerance and periodicity up to 6, 15 unstable periodic orbits were identified. Table 1 shows
the number of UPOs identified for each periodicity.

Orbits with periodicities 1, 2 and 3 were selected for stabilization. In Figure 5.1a
the chaotic attractor is presented together with the chosen UPOs. Additionally Figures
5.1(b-d) depict UPOs of period-1, period-2 and period-3, respectively, in phase space.Table
2 provides the Lyapunov exponent for each selected UPO without control, showing their
unstable nature from the positive values.

Period Number of UPOs
Period-1 1
Period-2 1
Period-3 1
Period-4 2
Period-5 4
Period-6 6

Table 1 – Number of Identified UPOs.
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Figure 5.1 – UPOs of the control rule.

Period Lyapunov Exponent
1 1.531
2 1.411
3 0.638

Table 2 – Lyapunov exponent for selected UPOs without control.

5.2 Control Gains Evaluation

The second phase of the learning stage is the evaluation of the control gains from an
analysis of the largest Lyapunov exponents of each UPO. This is the most computationally
expensive part of the control process.

Different controller gains are considered in this phase. The evaluation is performed
for values of 𝑅 = 0.0, 𝑅 = 0.2, and 𝑅 = 0.4. Regarding the matrix K, the gains 𝐾11, 𝐾12,
𝐾21, and 𝐾22 are combined two by two and systematically varied from 0 to 2.5 with an
increments of 0.1. Additionally, only the gain 𝐾22 is also considered, as is common in the
literature, for comparison with the generalized ETDF.

The criterion for selection involves choosing values for 𝑅 and K in order to minimize
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the largest Lyapunov exponent. Minimal value of the largest Lyapunov exponent values
provide faster convergence rates (PYRAGAS, 1995). Moreover, the choice of lower 𝑅

and K values implies less modification to the system, which is desired for the control.
Stabilizing higher periodicity UPOs tends to be more difficult, requiring greater values of
𝑅 to achieve negative Lyapunov exponents (PAULA; SAVI, 2009a).

5.2.1 Period-1 UPO

Figures 5.2, 5.3, 5.5, 5.4, and 5.6 depict the maximum Lyapunov exponent of the
period-1 UPO for different K values. Figure 5.2 shows the conventional approach with a
scalar 𝐾 for 𝑅 = 0.0, 𝑅 = 0.2, and 𝑅 = 0.4 (PAULA; SAVI, 2009a; PAULA; SAVI, 2011).
The selected gains are 𝑅 = 0.0, 𝐾 = 1.9, 𝜆 = −0.448, and it is represented with ∘ in the
Figure. Figures 5.3, 5.5, 5.4, and 5.6 are displayed as contour plots for the assessment of
maximum Lyapunov exponents using 2 gains simultaneously at a time.

0 0.5 1 1.5 2 2.5

K
22

-0.5

0

0.5

1

1.5

2

L
y
a
p
u
n
o
v
 E

x
p
o
n
e
n
t

R=0.0

R=0.2

R=0.4

Selected Gain

Figure 5.2 – Period-1 UPO largest Lyapunov exponent for scalar 𝐾 with multiple 𝑅.

Figure 5.3 incorporates gains 𝐾11 and 𝐾12 in the analysis. We observe that at lower
values of 𝐾12, negative Lyapunov exponents are attained for higher values of the gain 𝐾11.
It’s worth noting that these values surpass those associated with the conventional approach.
Otherwise, an increase in 𝐾12 leads to an elevation of the Lyapunov exponent, making the
orbit more unstable. The unstable behavior may be desired in specific situations, as when
needed to change the UPO to be stabilized.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.3 – Period-1 UPO largest Lyapunov exponent for 𝐾11 and 𝐾12 and multiple 𝑅
values.

The results obtained for 𝐾11 and 𝐾22 are presented in Figure 5.4. Both gains
similarly influence the Lyapunov exponent values, consistently decreasing them. When
both gains are elevated, the Lyapunov exponent increases. The region of negative values
is more extensive than when compared to the case of a scalar gain. The area expands
considerably when increasing the valor of 𝑅. The selected gains are 𝑅 = 0.0, 𝐾11 = 0.2,
𝐾22 = 1.8 with 𝜆 = −0.448.

30



(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.4 – Period-1 UPO largest Lyapunov exponent for 𝐾11 and 𝐾22 and multiple 𝑅
values.

Figure 5.5 depicts the Lyapunov exponent considering both 𝐾21 and 𝐾22. Note that
the minimum values of the maximum Lyapunov exponent are observed around 𝐾21 = 1.
In comparison to the control system using only scalar gains, the generalized gain exhibits
a more extensive region characterized by negative exponents. Moreover, the negative
Lyapunov exponents regions became larger with higher values of 𝑅. The magnitude of
the maximum Lyapunov exponent’s minimum value is the same magnitude as the scalar
approach. The selected gains are 𝑅 = 0.0, 𝐾21 = 0.2, 𝐾22 = 1.7 with 𝜆 = −0.284, and it
is represented with ∘ in the Figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.5 – Period-1 UPO largest Lyapunov exponent for 𝐾21 and 𝐾22 and multiple 𝑅
values.

Figure 5.6 presents the Lyapunov exponents when considering 3 gains of K, with
𝐾11 = 0.2 and varying values for 𝐾21 and 𝐾22. The magnitude of the exponent is consistent
with other evaluations for this UPO. Employing the method using these 3 gains and 𝑅 = 0.4
results in a larger region of negative exponents. The selected gains are 𝑅 = 0.0, 𝐾11 = 0.2,
𝐾21 = 0.2, 𝐾22 = 1.4 with 𝜆 = −0.442, and it is represented with ∘ in the Figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.6 – Period-1 UPO largest Lyapunov exponent for 𝐾11 = 0.2, varying 𝐾21 and
𝐾22 and multiples 𝑅.

5.2.2 Period-2 UPO

Similarly to the analysis of the period-1 UPO, Figures 5.7, 5.8, 5.10, 5.9, and 5.11
depict the maximum Lyapunov exponents for the period-2 UPO considering different K
values. The approach with a scalar 𝐾 is shown in Figure 5.7. no 𝐾 value yields negative
exponents for this UPO when 𝑅 = 0.0. However, negative values are observed for both
𝑅 = 0.2 and 𝑅 = 0.4. The selected gains are 𝑅 = 0.2, 𝐾 = 1.2 with 𝜆 = −0.108, and it is
represented with ∘ in the Figure.

Figure 5.8 refers to the Lyapunov exponents when analysing gains 𝐾11 and 𝐾12

for period-2 UPO. Similarly to the period-1 orbit, the increasing gain 𝐾12 made it more
unstable, with higher Lyapunov exponents. gain 𝐾11 had a small influence on the system
stability, though it could make a small region of negative exponents by itself with 𝑅 = 0.4.
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Figure 5.7 – Period-2 UPO largest Lyapunov exponent for scalar 𝐾 with multiple 𝑅.

(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.8 – Period-2 UPO largest Lyapunov exponent for 𝐾11 and 𝐾12 and multiple 𝑅
values.

The Lyapunov exponents for 𝐾11 and 𝐾22 is shown in Figure 5.9. Unlike 𝐾22, 𝐾11

gain cannot make the orbit stable by itself. When considering 𝑅 = 0.2, minimum values
of the maximum Lyapunov exponent are observed around 𝐾22 = 1.2 when considering

34



it individually. The combination of both 𝐾11 and 𝐾22 made a the minimal values of the
exponent observed around 𝐾11 = 0.2 and 𝐾22 = 1.0, reducing the 𝐾22 magnitude. This
combination achieved lower Lyapunov exponents than the scalar approach. Moreover, the
region of negative exponents is larger than the case with scalar gain. The selected gains
are 𝑅 = 0.2, 𝐾11 = 0.2, 𝐾22 = 1.0 with 𝜆 = −0.152, and it is represented with ∘ in the
Figure.

(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.9 – Period-2 UPO largest Lyapunov exponent for 𝐾11 and 𝐾22 and multiple 𝑅
values.

Figure 5.10 incorporates the Lyapunov exponents analysis for 𝐾21 and 𝐾22. To
achieve stability conditions for the system, values of 𝑅 = 0.2 or 𝑅 = 0.4 were required.
The gain 𝐾22 had a greater influence on decreasing the Lyapunov exponent. 𝐾21 could
not reach a stable condition by itself, but combined with 𝐾22, it attains lower values. A
combined use of the gains allowed a greater range for negative values of the Lyapunov
exponent. The selected gains are 𝑅 = 0.2, 𝐾21 = 0.7, 𝐾22 = 1.2 with 𝜆 = −0.162, and it
is represented with ∘ in the Figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.10 – Period-2 UPO largest Lyapunov exponent for 𝐾21 and 𝐾22 and multiple 𝑅
values.

Figure 5.11 demonstrate the Lyapunov exponents when considering 3 gains of K,
multiples values for multiple values for 𝐾21 and 𝐾22 and 𝐾11 = 0.4. This combination of
gains achieved lower Lyapunov exponent values than the scalar and 2-gains evaluations.
The selected gains are 𝑅 = 0.2, 𝐾11 = 0.4, 𝐾21 = 0.4, 𝐾22 = 0.8 with 𝜆 = −0.192, and it
is represented with ∘ in the Figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.11 – Period-2 UPO largest Lyapunov exponent for 𝐾11 = 0.4, varying 𝐾21 and
𝐾22 and multiples 𝑅.

5.2.3 Period-3 UPO

Similarly to the analysis of the period-1 and period-2, period-3 UPO study is shown
in Figures 5.12, 5.13, 5.15, 5.14, and 5.16 for various K configurations.

The approach with a scalar 𝐾 is depicted in Figure 5.12. The scalar approach
reaches negative Lyapunov exponents for all 𝑅 values. The selected gains are 𝑅 = 0.2,
𝐾 = 0.6 with 𝜆 = −0.198, and it is represented with ∘ in the Figure.
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Figure 5.12 – Period-3 UPO largest Lyapunov exponent for scalar 𝐾 with multiple 𝑅.

Figure 5.13 represents the Lyapunov exponent when assessing both 𝐾11 and 𝐾12

values for various 𝑅 values. Similarly to the period-1 and 2 UPOs, 𝐾12 acted by increasing
the Lyapunov exponent. On the other side, 𝐾11 had a little impact on the exponent, it
managed to make it a negative for a small area for each 𝑅 evaluated, but only for near
zero values.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.13 – Period-3 UPO largest Lyapunov exponent for 𝐾11 and 𝐾12 and multiple 𝑅
values.

The evaluation for both 𝐾11 and 𝐾22 is shown in Figure 5.14. 𝐾11 reached negative
values for the Lyapunov exponent by itself, as did 𝐾22. The 𝐾11 gain had more influence
in decreasing the exponent when compared to 𝐾22. The combination of both gains leads to
a region for negative exponents with lower values than when considering the scalar 𝐾. The
selected gains are 𝑅 = 0.2, 𝐾11 = 0.4, 𝐾22 = 0.4 with 𝜆 = −0.202, and it is represented
with ∘ in the Figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.14 – Period-3 UPO largest Lyapunov exponent for 𝐾11 and 𝐾22 and multiple 𝑅
values.

Figure 5.15 shows Lyapunov exponents for period-3 UPO when considering 𝐾21

and 𝐾22. Different from period-1 and similarly to period-2 UPOs, 𝐾21 had a lesser impact
in decreasing Lyapunov exponents. It made a bigger area of negative value, and they were
smaller than the scalar approach. The selected gains are 𝑅 = 0.2, 𝐾21 = 0.4, 𝐾22 = 0.6
with 𝜆 = −0.189, and it is represented with ∘ in the Figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.15 – Period-3 UPO largest Lyapunov exponent for 𝐾21 and 𝐾22 and multiple 𝑅
values.

Figure 5.16 evaluates the maximum Lyapunov exponent considering 𝐾11 = 0.2,
and varying 𝐾21 and 𝐾22. The negative exponent area is increased when compared with
the situation where 𝐾11 = 0, Figure 5.15, for the correspondent value of 𝑅. Despite the
area increase, the exponents values have the same order of magnitude. The selected gains
are 𝑅 = 0.2, 𝐾11 = 0.2, 𝐾21 = 0.4, 𝐾22 = 0.6 with 𝜆 = −0.194, and it is represented with
∘ in the figure.
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(a) 𝑅 = 0.0. (b) 𝑅 = 0.2.

(c) 𝑅 = 0.4.

Figure 5.16 – Period-3 UPO largest Lyapunov exponent for 𝐾11 = 0.2, varying 𝐾21 and
𝐾22 and multiples 𝑅.

5.2.4 Selected Gains

Four different combinations of gains were selected for stabilizing each unstable
periodic orbit. The classical approach with scalar gain 𝐾 = 𝐾22, and situations with both
𝐾21 and 𝐾22; both 𝐾11 and 𝐾22; and with 𝐾11, 𝐾21, and 𝐾22. The chosen values for the
controller gains for scalar and matrix K are shown in Tables 3 and 4, respectively.

Period R 𝐾22
Lyapunov
Exponent

1 0.0 1.9 -0.448
2 0.2 1.2 -0.108
3 0.2 0.6 -0.198

Table 3 – Selected gains for control with scalar 𝐾 and respective value of maximum
Lyapunov Exponents.
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Period 𝑅 𝐾11 𝐾12 𝐾21 𝐾22
Lyapunov
Exponent

1 0.0 0.0 0.0 0.2 1.7 -0.284
1 0.0 0.2 0.0 0.0 1.8 -0.448
1 0.0 0.2 0.0 0.2 1.4 -0.442
2 0.2 0.0 0.0 0.7 1.2 -0.152
2 0.2 0.2 0.0 0.0 1.0 -0.162
2 0.2 0.4 0.0 0.4 0.8 -0.192
3 0.2 0.0 0.0 0.4 0.6 -0.189
3 0.2 0.4 0.0 0.0 0.4 -0.202
3 0.2 0.2 0.0 0.4 0.6 -0.194

Table 4 – Selected gains for control with matrix K and respective maximum Lyapunov
Exponents.
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6 Stabilization Stage

This chapter presents the results of the stabilization stage when small perturbations
are imposed to the system to stabilize one of its UPOs.

The controller performance is evaluated by considering the following criteria: UPO
stabilization time, energy required for stabilization, and maximum perturbation of Δ𝑙,
related to 𝐵2 actuation. The stabilization time is evaluated by considering the Euclidean
distance between �̇� and 𝜑 of the reference orbits and the controlled trajectory. A threshold
of the Euclidean distance is stipulated, being dis = 1 for the period-1 UPO and dis = 3
for period-2 and period-3 UPOs.

The controller energy consumption is estimated for both 𝐵1 and 𝐵2 actuation. In
the case of 𝐵1, the instantaneous power is computed as Potinst = 𝐵1𝐼𝜑. Power consumption
for 𝐵2 is obtained from the torques applied by the controller 𝐵2, 𝜏 = 𝑘𝑑

2 Δ𝑙, being computed
as 𝑃 = 𝜏 �̇�. Energy consumption is determined by integrating the sum of the instantaneous
power of each actuation term over time.

This study provides a comparative analysis of control performance employing two
different approaches: the reference case, characterized by the classical scalar gain 𝐾 = 𝐾22

commonly used in the literature (PAULA; SAVI, 2009a; PAULA; SAVI, 2011), and the
generalized ETDF control. The matrix gain K is examined across three scenarios: using
both 𝐾21 and 𝐾22 where only 𝐵2 action occurs; using both 𝐾11 and 𝐾22 which means that
the control action has both 𝐵1 and 𝐵2; and using 𝐾11, 𝐾21 and 𝐾22. The gain 𝐾12 is not
considered because it destabilizes the UPOs, as evidenced by the evaluation of maximum
Lyapunov exponents.

6.1 Period-1 UPO Stabilization

Figure 6.1 shows the stabilization results for the period-1 UPO with 𝐾21 and
𝐾22 compared with the reference case. Sub-figure (a) depicts the target UPO in black
and phase space in steady regime obtained from both controls evaluated; Sub-figure (b)
shows the control signal in time; and Sub-figure (c) shows the instantaneous power control
consumption. Blue lines refer to scalar 𝐾 approach, and the red ones are associated with
the generalized ETDF. Nevertheless, control signals are similar in both strategies; the
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energy consumption is lower in when both gains are used simultaneously. The total energy
consumption of actuators is 𝐸 = 34.4 J for a scalar gain and 𝐸 = 29.3 for generalized
control. The stabilization with K presents a maximum actuation value of Δ𝑙 = 117.6 mm
while the scalar gain 𝐾 presents Δ𝑙 = 129.4 mm. Therefore, incorporating both gains
enables the system to be stabilized at a similar time when compared to the reference case
but with smaller maximum actuation and smaller energy consumption.

Some other combinations of 𝐾21 and 𝐾22 are able to stabilize the pendulum within
less time or with a smaller actuation than considering only the scalar gain; therefore, it
increases possible control gain choices, bringing more flexibility to the controller.
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(c) Power consumed by control action.

Figure 6.1 – Period-1 UPO control comparison of scalar 𝐾 with both 𝐾21 and 𝐾22.

Figure 6.2 reveals similar results to the previous analysis for generalized ETDF
with 𝐾11 and 𝐾22. Sub-figures 6.2b and 6.2c present both 𝐵1 and 𝐵2 control action and
its power consumption separately. The stabilization time for the scalar 𝐾 was of 𝑡 = 14.1
s, while for 𝐾11 and 𝐾22 it reduced to 𝑡 = 9.7 s, 31% decrease. The maximum actuation
for the matrix approach for 𝐵2 control was Δ𝑙 = 119.6 mm, approximately 7% less than
the scalar reference. The total energy consumption amounted to 𝐸 = 30.4 J, reflecting
11% less than the reference control.
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(b) Control signal in time.
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(c) Power consumed by control action.

Figure 6.2 – Period-1 UPO control comparison of scalar 𝐾 with both 𝐾11 and 𝐾22.

Period-1 UPO stabilization comparing scalar 𝐾 to when using three gains on K is
presented in Figure 6.3. The maximum actuation of the matrix approach was Δ𝑙 = 96.5
mm, 25% less than the scalar. Otherwise, the energy consumption was 𝐸 = 42.8 J and
time until stabilization 𝑡 = 18.5 s, both higher than the scalar situation. This situation
is better suited for situations with a lower actuation and when energy and time are not
priorities.
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(c) Power consumed by control action.

Figure 6.3 – Period-1 UPO control comparison of scalar 𝐾 with 𝐾11, 𝐾21, and 𝐾22.

6.2 Period-2 UPO Stabilization

Figure 6.4 compares the scalar approach with when using 𝐾21 and 𝐾22 on K for
period-2 UPO. The scalar approach had a maximum actuation of Δ𝑙 = 77.1 mm, consumed
𝐸 = 45.5 J to stabilize the reference UPO. When considering 𝐾21 and 𝐾22, the system
was stabilized with Δ𝑙 = 81.5 mm and consumed 𝐸 = 59.8 J. This approach used 2 gains
related to 𝐵2 control. These values were 𝐾21 = 0.7 and 𝐾22 = 1.2, influencing the control
to have bigger actuation. This resulted in greater actuation and consumption than the
conventional approach.
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Figure 6.4 – Period-2 UPO control comparison of scalar 𝐾 with both 𝐾21 and 𝐾22.

Period-2 control using 𝐾11 and 𝐾22 is shown in Figure 6.5. This configuration used
a maximum actuation of Δ𝑙 = 60.1 mm, 22 % of the scalar approach. On the other hand,
it consumed 𝐸 = 47.4 J, about the same as the reference.
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(c) Power consumed by control action.

Figure 6.5 – Period-2 UPO control comparison of scalar 𝐾 with both 𝐾11 and 𝐾22.

Figure 6.6 brings the period-2 UPO control considering 𝐾11, 𝐾21, and 𝐾22. The
stabilization occurred with a maximum actuator displacement of Δ𝑙 = 54.2 mm, 29,7
% less than the scalar. The energy consumption was 𝐸 = 40.8 J, about 10% smaller.
This configuration of 3 elements in K could achieve a smaller Lyapunov exponent with
smaller gains values. The smaller gains are related to the actuation intensity and energy
consumption. The use of 3 gains in the controller made possible the choice of smaller gains
with a higher convergence rate related to the Lyapunov exponent.
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(b) Control signal in time.
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(c) Power consumed by control action.

Figure 6.6 – Period-2 UPO control comparison of scalar 𝐾 with 𝐾11, 𝐾21, and 𝐾22.

6.3 Period-3 UPO Stabilization

The period-3 UPO stabilization comparison between a scalar 𝐾 and using both
𝐾21 and 𝐾22 is shown in Figure 6.7. The scalar approach had a maximum actuation
of Δ𝑙 = 40.6 mm and an energy consumption of 𝐸 = 40.6 J. On the other hand, the
matrix approach had a maximum actuation of Δ𝑙 = 40.4 mm and energy consumption
of 𝐸 = 35.2 J. While the maximum actuation of both was very similar, it had 13% less
energy consumption, and the stabilization was achieved faster.
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Figure 6.7 – Period-3 UPO control comparison of scalar 𝐾 with both 𝐾21 and 𝐾22.

Figure 6.8 is related to the use of 𝐾11 and 𝐾22 gains on the control. This approach
had the smaller maximum actuation of all period-3 with Δ𝑙 = 27.2 mm, 33 % less than
the scalar one. It also had a smaller energy consumption with 𝐸 = 23.2 J, 43 % smaller.
Furthermore, it was able to stabilize the desired orbit in less time.
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Figure 6.8 – Period-3 UPO control comparison of scalar 𝐾 with both 𝐾11 and 𝐾22.

Stabilization using 𝐾11, 𝐾21, and 𝐾22 is shown in Figure 6.9. The phase space
of the matrix form, Sub-figure 6.9a, has a wider band showing that the control is not
precisely on the reference UPO. Despite this, the stabilization with three gains had a
similar actuation to the scalar one with Δ𝑙 = 40.3 mm. Otherwise, energy consumption
was higher with 𝐸 = 41.7 J. Since perfect stabilization was not achieved, the control
consumption was impacted.
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Figure 6.9 – Period-3 UPO control comparison of scalar 𝐾 with 𝐾11, 𝐾21, and 𝐾22.

6.4 Control Performance Comparison

This section presents a comparative analysis of the generalized ETDF control
performance for the different combinations of control gains employed to control chaos
in the nonlinear pendulum. Initially, a baseline is defined with the conventional scalar
approach. Following this, the control strategy incorporates various control gains of the K
matrix.

Table 5 provides a summary of control performance in stabilizing the three orbits,
considering different combinations of control gains.
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Period 𝑅 𝐾11 𝐾21 𝐾22
Lyapunov
Exponent

Δ𝑙𝑚𝑎𝑥

[mm]
𝐵1 Control
Energy [mJ]

𝐵2 Control
Energy [J]

1 0.0 1.9 -0.448 129.4 34.4
1 0.0 0.2 1.7 -0.284 117.6 29.3
1 0.0 0.2 1.8 -0.448 119.6 11.2 30.4
1 0.0 0.2 0.2 1.4 -0.442 96.5 22.9 42.8
2 0.2 1.2 -0.108 77.1 45.4
2 0.2 0.7 1.2 -0.152 81.5 59.8
2 0.2 0.2 1.0 -0.162 60.1 32.2 47.5
2 0.2 0.4 0.4 0.8 -0.192 54.2 68.9 40.7
3 0.2 0.6 -0.198 40.6 41.0
3 0.2 0.4 0.6 -0.189 40.5 35.2
3 0.2 0.4 0.4 -0.202 40.3 49.9 41.6
3 0.2 0.2 0.4 0.6 -0.194 27.2 81.2 23.1

Table 5 – Comparison of control performance for different sets of control gains.

The control using both 𝐾21 and 𝐾22 exhibited higher energy consumption for
the period-1 and period-2 UPOs but a smaller consumption for the period-3 UPO. The
combination of 2 gains generally results in decreased control actuation and, therefore,
lowers energy consumption. Period-2 UPO control featured a higher value of the 𝐾21

gain in comparison to the other orbits, which lead to a bigger energy consumption and
actuation. The introduction of a second gain makes the control more versatile, providing
more options to prioritize either faster stabilization or energy consumption.

The approach considering both 𝐾11 and 𝐾22 had a similar total energy consumption
to the baseline in all 3 cases. The maximum actuation was smaller in both period-1 and 2
UPOs. Stabilization was achieved faster in all evaluated orbits. The energy consumption
related to the 𝐵1 control action evaluated is around 1000 times less than the 𝐵2.

6.5 Control Rule

In this section, a control rule, considering the sequential stabilization of the three
UPOs, is employed to verify the control method’s capability to migrate between them.
The control rule addresses the stabilization of each orbit during 300 forcing period cycles,
starting with the period-2, followed by the period-3, and finally the period-1 UPOs.

Figure 6.10 presents the control rule results for the conventional approach with
a scalar 𝐾. Figure 6.10(a) presents the desired behavior in magenta and the system
response in black, while Figure 6.10(b) displays the corresponding control signal. Results
are shown over time but exclusively feature the points of the Poincaré map. Results show
that the scalar strategy successfully stabilizes the 3 UPOs in the sequence defined by the
control rule. The gains used for stabilizing were 𝑅 = 0.2, 𝐾22 = 1.2 for period-2; 𝑅 = 0.0,
𝐾22 = 1.9 for period-1; 𝑅 = 0.2, 𝐾22 = 0.6 for period-3.
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(a) Signal in time. (b) Control signal in time.

Figure 6.10 – Control rules with a scalar 𝐾.

Figure 6.11 shows the results for a different control rule when using both 𝐾21

and 𝐾22. The control rule addresses the stabilization of each orbit during 300 forcing
period cycles, but now starting with the period-2, followed by the period-1, and finally the
period-3 UPOs. Although this strategy stabilized period-2 and period-3 UPOs it was not
able to stabilize the desired period-1 UPO, stabilizing a period-3 orbit instead. The gains
used for stabilizing were 𝑅 = 0.2, 𝐾21 = 0.7, 𝐾22 = 1.2 for period-2; 𝑅 = 0.0, 𝐾21 = 0.2,
𝐾22 = 1.7 for period-1; 𝑅 = 0.2, 𝐾21 = 0.4, 𝐾22 = 0.6 for period-3.
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Figure 6.11 – Control rules with 𝐾21 and 𝐾22.

Figure 6.12 shows the results for the same previous control rule when using both
𝐾11 and 𝐾22. The control was successful in stabilizing all UPO and migrating between
them in the control rules. The gains used for stabilizing were 𝑅 = 0.2, 𝐾11 = 0.2, 𝐾22 = 1.0
for period-2; 𝑅 = 0.0, 𝐾11 = 0.2, 𝐾22 = 1.8 for period-1; 𝑅 = 0.2, 𝐾11 = 0.4, 𝐾22 = 0.4
for period-3.
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(a) Signal in time.
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(b) Control signal in time.

Figure 6.12 – Control rules with 𝐾11 and 𝐾22.

The strategy with 𝐾11, 𝐾21 and 𝐾22 gains is now used to perform the control rule.
Similarly to 𝐾21 and 𝐾22 case, the control was unsuccessful in stabilizing the period-1
orbit but stabilized a period-3 orbit instead. This suggests that 𝐾21 gain posed challenges
in stabilizing the period-1 orbit. The gains used for stabilizing were 𝑅 = 0.2, 𝐾11 = 0.4,
𝐾21 = 0.4, 𝐾22 = 0.8 for period-2; 𝑅 = 0.0, 𝐾11 = 0.2, 𝐾21 = 0.2, 𝐾22 = 1.4 for period-1;
𝑅 = 0.2, 𝐾11 = 0.2, 𝐾21 = 0.4, 𝐾22 = 0.6 for period-3.
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Figure 6.13 – Control rules with 𝐾11, 𝐾21, and 𝐾22.

When considering 𝐾11, 𝐾21 and 𝐾22 simultaneously the stabilization consumed
less energy for period-2 and period-3 UPOs. The actuations were significantly smaller for
all cases. Higher periodicity orbits had a tendency to consume less energy related to 𝐵2

and higher energy to 𝐵1.

6.5.1 Concluding remarks

System migration between different UPOs was successful achieved in the control
without 𝐾22 gain. In all cases with 𝐾22 gain, when decreasing the periodicity of the orbit,
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the control suppressed the chaotic behavior but stabilized a higher periodicity UPO. Table
6 shows the energy to stabilize each orbit in the control rule.

Control Rule Period Energy B1 [J] Energy B2 [J] Energy Total [J]

𝐾22

2 50.2E+0 50.2E+0
1 19.6E+0 19.6E+0
3 30.4E+0 30.4E+0

𝐾21; 𝐾22

2 64.6E+0 64.6E+0
1 1.5E+3 1.5E+3
3 26.3E+0 26.3E+0

𝐾11; 𝐾22

2 34.6E-3 51.5E+0 51.5E+0
1 17.6E-3 35.1E+0 35.1E+0
3 65.2E-3 19.0E+0 19.1E+0

𝐾11; 𝐾21; 𝐾22

2 73.6E-3 43.9E+0 44.0E+0
1 844.3E-3 1.2E+3 1.2E+3
3 24.7E-3 23.6E+0 23.6E+0

Table 6 – Comparison of control performance for different sets of control rules.

57



7 CONCLUSION

This study presents and analyses a generalization of the Extended Time-Delayed
Feedback incorporating multiple terms of the gain matrix K for controlling chaos in a
nonlinear pendulum.

Initially, the work presents a bibliography review that provides an overview of
the background and context of chaos control techniques. The review also highlights the
limitations of existing methods and the need for new approaches to control chaos in
complex systems.

Several authors have previously analyzed the nonlinear pendulum system studied
in this dissertation, and its chaotic behavior has been well-documented. The mathematical
modeling of the system without control has been evaluated numerically, providing a general
overview of its dynamics. Based on this initial analysis, a specific chaotic response is
selected to assess the effectiveness of the control procedures.

The learning stage is executed by identifying UPOs and using the maximum
Lyapunov exponents to assess the stability of these orbits. This assessment is then
employed to define the gains of the controller. The Lyapunov exponents evaluation is the
most computationally expensive part of the chaos control. The use of multiple gains in the
K matrix causes the computational cost to be greater than in the strategy with a scalar.

During the learning stage, 15 UPOs from periods 1 to 6 were identified, among
which three were selected for stabilization. Gain 𝐾12 increased the Lyapunov exponents for
all UPOs evaluated, making them more unstable. Thus, this control gain was not considered
for control purposes. The maximum Lyapunov exponents calculation using the complete
matrix K revealed a larger region of negative values for the exponent when compared
with the case with a scalar gain 𝐾. A larger area of negative Lyapunov exponent increases
the number of possibilities for successful control, making it more versatile. In terms of
the magnitude of the maximum Lyapunov exponent, consistent orders of magnitude were
observed for all cases, with no discernible trends associated with control gains. Therefore,
it appears that this parameter may not be the most suitable criterion for determining the
best set of control gains.

Maximum actuation and energy consumption required to stabilize the selected
orbits were considered as comparison criteria for the stabilization stage. Most cases with
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generalized ETDF were able to reduce the maximum actuation when compared to the
scalar baseline. The control with three gains in the K matrix consistently exhibited
lower actuation levels across all tests. When considering two gains in the matrix K for
the stabilization of Period-1 and Period-3 orbits, the magnitude of the actuation was
slightly smaller than that of the scalar baseline. Among all cases, only the stabilization
of the Period-2 UPO with both 𝐾21 and 𝐾22 exhibited a higher maximum actuation in
comparison to the baseline control. This is the result of high values of 𝐾21 for period-2
orbit.

Regarding energy consumption, the results were dependent on the UPO and the
control strategy. Control using both 𝐾21 and 𝐾22 was successful in reducing consumption
in period-1 and period-3 approaches. In the case of the period-2 UPO, the choice of a high
value of 𝐾21 gain soared control energy consumption, similarly to actuation. Contrary
to the actuation magnitude, when using both 𝐾11 and 𝐾22, the energy consumption had
the same order of magnitude for most orbits, reducing it only in period-1 UPO. Control
strategy considering three gains in K matrix decreased consumption in both period-2 and
period-3 UPOs, achieving about have of the baseline consumption in period-3.

The control strategy’s ability to transition between orbits provides flexibility in
chaos control. This capability was evaluated using a control rule associated with the
sequential stabilization of three different UPOs, performed by each set of adopted control
gains. All strategies without 𝐾21 gain were successful in orbit migration. In the cases
where 𝐾21 gain was considered, the control method was not able to stabilize the period-1
UPO in the sequential stabilization, making the system trajectory falls in a period-3 orbit
instead. This difficulty of stabilizing the period-1 UPO can possibly be solved by selecting
an appropriate time, linked to the system state, to activate the control.

The generalization of Extended Time-Delayed Feedback was effective in stabilizing
the investigated unstable periodic orbits. The method is more versatile than the scalar
approach. It has a wider range of negative Lyapunov values, which implies more possibilities
for effective control. The use of multiple gains for control gains allows the choice of those
that are most suitable for the real problem, prioritizing reduction of energy consumption
or maximum actuation of the system.

For future work, it is proposed to investigate the use of the 𝐾12 gain to increase the
system’s instability and facilitate migration between orbits. Furthermore, it is proposed to
investigate the generalized ETDF utilizing 0–1 test instead of Lyapunov exponents due to
reduced computational expense. Finally, the utilization of machine learning techniques for
the learning stage is proposed.
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