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ABSTRACT

Name: Victor do Prado Brasil
Title: Effects of the Voltage Unbalance on Power Factors Considering the Fairness Perspective for Billing
Purposes
Name of Program: Graduate Program in Electrical Engineering
Date of Defense: Brasília, December 21st, 2023
Supervisor: João Yoshiyuki Ishihara
Co-supervisor: Anésio de Leles Ferreira Filho

Keywords: Power Factor, Billing Policies, Harmonic Distortion, Voltage Unbalance.

The expected growth of distributed photovoltaic generators and electric vehicles in the coming years brings
challenges to power quality in distribution networks, such as potential increase of harmonic distortion and
voltage unbalance. These phenomena have several undesired effects on the grid-connected equipment, especially
induction motors. However, there is not yet a consensus regarding the correct power-related definitions, such
as reactive power and power factor (PF), as well as their appropriate measurement methods when the voltage
is unbalanced or nonsinusoidal. As a result, commercial meters can give different measurements for the same
load and supply conditions, potentially leading to unfair PF charges.

This work evaluates existing PF definitions and their measurement methods, considering the fairness per-
spective for billing purposes under unbalanced nonsinusoidal voltage conditions. Here, the fairness notion is
in the sense that the meter (built based on a particular definition and measurement method) under a nonideal
supply should lead to very close values as if it was submitted to ideal balanced sinusoidal voltages. In other
words, a fair PF definition should depend exclusively on the load’s parameters, not supply quality. The fairness
investigation considered computational simulations with the application of different voltage conditions at the
point of connection of two constant impedance loads, a three-phase induction motor (TIM), and an unbalanced
set of light-emitting diode (LED) lamps. In the sequel, the simulations’ findings were experimentally examined
employing a controlled voltage source, a three-phase induction motor, a mechanical load (DC generator and
a variable resistor), a computer, and a speed sensor. Lastly, an analytical investigation was performed with a
constant impedance load.

The simulations and experimental results show that a PF definition leading to a fair billing for a balanced
constant impedance (the main load investigated in the literature) may not provide a fair billing for a TIM
or a set of LED lamps when supplied with poor quality voltages. Additionally, this work has determined the
fairest PF definitions and characterized the class of their corresponding measurement algorithms for metering
the PF of a balanced constant impedance and a TIM submitted to a wide range of unbalanced nonsinusoidal
voltages. For the LED lamps, none of the existing definitions were shown to be independent of the voltage
supply. Notably, despite being recommended by IEEE Standard 1459-2010, the effective power factor was not
an adequate definition for the investigated supply conditions applied to the TIM.

The results of the analytical investigation reveals that all the investigated definitions are actually non-linear
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functions of the voltage unbalance factor (VUF) and the load’s admittances. In other words, utilizing these five
PF definitions in the presence of voltage and load unbalances may lead to unfair billing scenarios for both the
utility or the customer. It is also proposed new admittance factors that can be employed for billing purposes
because they do not depend on the voltage unbalance but solely on the load’s characteristics.
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RESUMO

Name: Victor do Prado Brasil
Título: Efeitos do Desequilíbrio de Tensão nos Fatores de Potência Considerando a Perspectiva de Justiça para
Fins de Cobrança
Nome do Programa: Programa de Pós-Graduação em Engenharia Elétrica
Data da Defesa: Brasília, 21 de Dezembro de 2023
Orientador: João Yoshiyuki Ishihara
Co-Orientador: Anésio de Leles Ferreira Filho

Palavras-chave: Fator de Potência, Políticas de Cobrança, Distorção Harmônica, Desequilíbrio de Tensão.

O esperado crescimento de geradores fotovoltaicos distribuídos e veículos elétricos nos próximos anos traz
desafios para a qualidade da energia em redes de distribuição, como o aumento potencial da distorção har-
mônica e desequilíbrio de tensão. Esses fenômenos têm vários efeitos indesejados nos equipamentos conectados
à rede, especialmente motores de indução. No entanto, ainda não há um consenso sobre as definições corretas
relacionadas à potência, como potência reativa e fator de potência (FP), bem como seus métodos de medição
apropriados quando a tensão é desequilibrada ou não senoidal. Como resultado, medidores comerciais po-
dem fornecer medidas diferentes para a mesma carga e condições de fornecimento, potencialmente levando a
cobranças injustas de FP.

Este trabalho avalia definições de FP existentes e seus métodos de medição, considerando a perspectiva de
justiça para fins de faturamento em condições de tensão não senoidal e desequilibrada. Aqui, a noção de justiça
é no sentido de que o medidor (construído com base em uma definição e método de medição específicos) sob
um fornecimento não ideal deve levar a valores muito próximos aos obtidos caso estivesse submetido a tensões
senoidais equilibradas ideais. Em outras palavras, uma definição justa de FP deve depender exclusivamente
dos parâmetros da carga, não da qualidade do fornecimento. A investigação de justiça considerou simulações
computacionais com a aplicação de diferentes condições de tensão no ponto de conexão de duas cargas de
impedância constante, um motor de indução trifásico (MIT) e um conjunto desequilibrado de lâmpadas de
diodo emissor de luz (LED). Em seguida, os resultados das simulações foram examinados experimentalmente
usando uma fonte de tensão controlada, um motor de indução trifásico, uma carga mecânica (gerador DC e
um resistor configurável), um computador e um sensor de velocidade. Por fim, uma investigação analítica foi
realizada com uma carga de impedância constante.

Os resultados das simulações e experimentos mostram que uma definição de FP que leva a uma cobrança
justa para uma impedância constante equilibrada pode não proporcionar uma cobrança justa para um MIT
ou um conjunto de lâmpadas LED quando alimentado com tensões de qualidade inferior. Além disso, este
trabalho determinou as definições mais justas de FP e caracterizou a classe de seus algoritmos de medição
correspondentes para medir o FP de uma impedância constante equilibrada e um MIT submetido a uma
ampla gama de tensões desequilibradas não senoidais. Para as lâmpadas LED, nenhuma das definições exis-
tentes mostrou-se independente do fornecimento de tensão. Notavelmente, apesar de ser recomendado pelo
IEEE Standard 1459-2010, o fator de potência efetivo não foi uma definição adequada para as condições de
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fornecimento investigadas aplicadas ao MIT.

Os resultados da investigação analítica revelam que todas as definições investigadas são, na verdade, funções
não lineares do fator de desequilíbrio de tensão (VUF) e das admitâncias da carga. Em outras palavras, utilizar
essas cinco definições de FP na presença de desequilíbrios de tensão e carga pode levar a cenários de cobrança
injusta tanto para a concessionária quanto para o cliente. Também são propostos novos fatores de admitância
que podem ser utilizados para fins de faturamento, pois não dependem do desequilíbrio de tensão, mas apenas
das características da carga.
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CHAPTER 1

Introduction

1.1 Background

The 7th objective of the 2030 Agenda of the United Nations (UN), which is to ensure “access to affordable,
reliable, sustainable, and modern energy for all”, has been driving the development of renewable technologies,
such as solar photovoltaic (PV) generation and electric vehicles (EVs). The analysis performed by [2] projected
that distributed solar PV is likely to more than double in capacity in the period of 2020 - 2024, accounting for
almost half of all solar PV growth. According to [3]: “The expansion of solar PV capacity in the next five years
is expected to be almost double that of the previous five years.”1 The deployment of electric vehicles (EVs) is
growing as well, being driven also by zero emission policies. According to [4], sales of EVs doubled in 2021 to
a new record of 6.6 million. Nonetheless, integration of PV and EVs in distribution grids poses a challenge to
power quality. The grid voltage unbalance, quantified by the voltage unbalance factor (VUF), can be increased
due to irregular charging/generation periods and random geographically distribution of single-phase EVs [5]
and PV systems [6]. Also, harmonic injections of the inverters (used in both EV charging stations and PV
systems) contribute to the total harmonic distortion (THD) [5, 7, 8]. In the ongoing scenario, there is an
expectation of a steep increase of distributed solar PV and EVs, which can further degrade the electric grid
VUF and THD.

PV generators, EVs, as well as other new technologies are mostly based on the advancements of power
electronics, particularly of switching-based devices. If for one hand, these non-linear devices have allowed the
development of several new technologies, on the other hand, they increased the distortion in the currents and
voltages. In this context, concerns regarding the quality of power were raised and have since being a field of
much attention [1,9–81]. The power quality can be divided in two major categories: the quality of the service

1Reference [3] is from 2021, so the next five years period mentioned refers to 2022 - 2026, whereas the previous five refers to
2017 - 2021.

1



1.1 – Background 2

and the quality of the product [82]. Studies regarding the quality of the service usually focus on how well
utilities can manage the problems related to the supply of energy (for example preventing or shortening the
duration of outages). Studies regarding the quality of the product usually focus on phenomena that affect the
voltage delivered by utilities at the customer’s point of common connection (PCC). Any phenomenon that
contributes to the voltages and currents not being balanced and sinusoidal anymore is the subject of such
studies. According to [61], “The development of efficient, high-power, semi-conductor switching devices and
their application to the control of large electrical machines and industrial processes has imposed severe problems
on the electrical utilities, particularly with respect to the measurement of energy flow and the optimum use
of transmission networks. Not only is it necessary to know accurately the active power being delivered to the
load under highly nonsinusoidal conditions, means must also be provided to determine and control the reactive
current so that losses in the network can be minimized.”

Reference [83] reported that approximately 32% of the distribution systems in the United States have
VUF between 1% and 3%. According to [11], a survey conducted by CIGRE showed that the THD is greater
than 3.5% in medium-voltage networks. It is worth mentioning that voltage unbalance can cause overheating,
vibration, reduction in efficiency, and derating of three-phase induction motors (TIM) and transformers [83–87].
Harmonic distortion can also cause derating and torque pulsation of TIMs [87, 88]. According to [87], the
combined effect of voltage unbalance and harmonic distortion can lead to unacceptable TIM vibrations even
when the VUF and the THD are within acceptable levels.

The voltage unbalance and distortion not only impact the end-user’s equipment connected to the grid
[83–88] but they also negatively affect the transmission of power [31,35,44,45,55,61,65,68,89–93]. In balanced
sinusoidal conditions the efficient usage of the transmission can be characterized solely by the reactive power
caused by the phase-shift between voltage and current. If the current is in-phase with the voltage, the reactive
power is zero and the load is utilizing the transmission system with the maximum efficiency. In unbalanced or
nonsinusoidal conditions, however, there are other components which can reduce the transmission efficiency.
Researchers have long been proposing new power theories as an attempt to explain what are these power
components and how they affect the transmission of power [13,14,20,31–33,35,44,45]. Usually, there are four
main aspects which are addressed by these studies, they are:

i) energy billing

ii) evaluation of power quality,

iii) detection of the sources of unbalance and distortion, and

iv) design of power quality enhancement equipment such as active filters or dynamic compensators.

Although several power-related definitions have been proposed in the literature, none of them has yet been
proved to successful and jointly address these four topics [1, 9–81]. The present work focuses mainly on the
power factor (PF) billing. It is worth mentioning that the four topics mentioned above are somehow connected
to each other. For example, utilities apply PF billing policies based on the assumption that the customers’
loads are the source/cause of the low measured PF [9, 11, 94], see also Section 1.2. In addition to discussing
power-related definitions, it is important to discuss the applicable measurement methods (MMs), otherwise
the definitions will remain in the theoretical world and will not be effectively applied in the real world.
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Power-related definitions and MMs are applied to quantify and price the energy consumption and the usage
of the electrical system world-wide [9,11,94]. Although some tariffs account for the grid utilization within the
energy price, there are some situations where the usage of the system exceeds the energy consumption. In
other words, two loads can consume the same amount of electrical energy but with different grid utilizations.
In an extreme situation, a load may not consume any energy but still draw currents from the grid. In balanced
sinusoidal systems, this phenomenon is explained by the transmission of reactive power caused by the phase
shift between voltage and current. Since, in such conditions, it can be shown that the load is the solely
responsible for this phase-shift, some utilities apply a reactive power (or PF) charge to control the system
utilization [9, 11, 94]. Nonetheless, it is difficult to establish general rules for the reactive power because
it depends on the customer’s size (or equivalently on the amount of active power being drawn). The PF,
on the other hand, has a well-defined range of [0, 1], which does not depend on the customer’s size. As a
matter of fact, it should depend only on how efficiently the customer draws energy from the source. It can
be noted that although the PF definitions and MMs discussed in IEEE Standard 1459 [1] give the same value
in balanced sinusoidal conditions, they may provide different values in unbalanced nonsinusoidal conditions.
It is noteworthy that most countries studied by [11] “have not yet established rules for reactive power billing
under nonsinusoidal conditions and keep applying old regulation to systems where voltage and current are not
sinusoidal anymore.” This can potentially lead to a situation where commercial meters may give unexpected
results under unbalanced or nonsinusoidal conditions.

Reference [39] reports an experience in which an industry’s PF dropped from 0.95 to approximately 0.88

after the meter replacement. The new meter would have led to a 4% surcharge in the customer’s bill had
the technician not noticed this discrepancy. One thing that stands out is that these meters were approved
for commercialization and usage. According to [19], the discrepancies shown in [39] were due to different PF
definitions and MMs implemented in the commercial meters. As pointed out by [39], “Utilities must be able
to install any meter in any electrical environment (sinusoidal or nonsinusoidal2) with full confidence that they
will all give the same readings for the same load. Anything less is unacceptable”. Recent studies [9] have
shown that the same PF definition applied to the same load under the same VUF and THD can have different
results since there are different voltage conditions which have the same VUF and THD. Such lack of reliability,
regarding the measured PF, leads to an uncomfortable situation for both the utility and the customer where
they may feel suspicious that the measured PF may be benefitting the other in detriment of them.

As field research, reference [41] investigated the arithmetic, geometric, effective, fundamental, and modified
fundamental PF applied to an arc furnace of a real industry in Taiwan. The authors showed that the selection
of different definitions could cause an impact up to 1% in the customer’s bill. Although this percentage may
seem small, it represents a huge impact for large customers with expensive monthly revenues. It is worth
mentioning that the study of [41] is restricted to industries that use arc furnaces, and it does not consider
different supply conditions and measurement methods.

Reference [11] compared the application of the fundamental reactive power (Q1) and the non-active power
(N) for billing purposes. They computed Q1 and N employing several nonsinusoidal voltages and a current
signal (measured from a residential load) by means of digital simulations. They have shown that in single-phase
nonsinusoidal conditions some PF definitions are affected by voltage variations and their usage in billing policies

2We should also add balanced or unbalanced.
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may lead to unfair charges of end-customers. However, the study was restricted to single-phase systems.

Among all PF definitions, the most important seems to be the effective PF (PF e). In fact, it has been
investigated by several researchers [1, 10, 12–14, 18, 23, 31–33, 35–38, 40, 43–45, 52, 54–57, 59, 91, 95–97] and it
is recommended by IEEE Standard 1459-2010 [1] for unbalanced sinusoidal conditions. For nonsinusoidal
conditions, references [13,37,44,45] ratify PF e as a measure of the energy transmission efficiency in the sense
of [37]. Furthermore, reference [31] showed that the PF e values of balanced constant impedance loads are not
significantly affected by voltage unbalance.

In three-phase three-wire systems, reference [95] analytically showed that the effective PF (PF e) of an
unbalanced constant impedance load can be rewritten solely in terms of the load’s admittances when the
voltage is balanced and sinusoidal. This implies that in this case, the PF e is a characteristic of the load
and it does not depend on any voltage parameter. Also, this allows a clear attribution of responsibility to
the customer to improve its PF. This result was then extended to four-wire systems by [14]. Nonetheless, the
analytical results of both [14,95] are restricted to constant impedance loads under balanced sinusoidal voltages.

In three-phase three-wire systems having balanced nonsinusoidal voltages, reference [12] showed that the
apparent power of an unbalanced constant impedance load can be decomposed into five power components
associated with distinctive phenomena. Each power component is shown to be strictly related to a component
of the Currents Physical Components (CPC) power theory. As a result, reference [12] was able to express the
load’s effective PF in terms of the distinct current components. However, the authors could not provide an
expression for the effective PF solely in terms of the load’s admittances as it was done in [14,95].

Based on the foregoing discussion, it can be noticed that an evaluation of one significant load has not been
done yet. According to [98]: “there are 85 million large electrical motors in the community market. These
consume 65–70% of the energy used within industry.” Additionally, voltage unbalance and harmonic distortion
have harmful (individual and combined) effects on three-phase induction motors (TIMs) [83–87]. Considering
the 7th objective of the UN’s 2030 Agenda, an increasing integration of nonlinear and geographically distributed
grid elements, such as PV systems and EVs, is expected to take place. As a result, voltage unbalance and
harmonic distortion can be further degraded [5–8], potentially leading to unfair PF billing of customers whose
main load is the three-phase induction motor (TIM).
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1.2 Prospect of PF Charging Policies

It is a common practice for utilities to adopt mechanisms to encourage customers to control their reactive
energy consumption. One of these mechanisms is the PF charging, which consists of financially penalising
customers with PF below the established limit. In order to provide a basic overview of the existing charging
policies, this section presents the investigation results of grid codes taken from 6 utilities, 9 states, and 5
countries, considering the four different types of policies adopted worldwide, as presented in [11] and [99].
Table 1.1 show the results.

Table 1.1: PF legal and regulatory aspects in selected utility companies.

Policy Country States Utility
Minimum Demand or

Average Consumption
Minimum Lagging Minimum Leading References

Surcharge over

the total bill
Canada

British Columbia BC-Hydro 35 kW 0.9 Not regulated [100]

Charge “maximum

power demand”
Quebec Hydro-Quebec 65 kW

0.9

(0.95 for large

customers with

5 MW or more)

Not allowed [101]

Charge reactive power Australia

Victoria All 150 kVA

[0.75; 0.95]

depending on demand

and voltage level

[0.8; 0.98]

depending on demand

and voltage level

[102]

Queensland Ergon Energy’s 4 GWh per year 0.8
Allowed only in

specific cases
[103,104]

Western Australia Synergy 1285 kWh per day 0.8 Not allowed [105,106]

Charge reactive energy

England Southern Electric
Southern Electric

Power Distribution
100 kW 0.95

[107–109]

Scotland

Merseyside,

North Wales,

South Scotland

Scottish Power [109–111]

Charge reactive

energy or power
Brasil All All 112.5 kVA 0.92 [112–114]

The four types of charging policies are detailed next.

1. BC-Hydro applies a surcharge percentage proportional to the PF deviation from the minimum accepted
value [100]. Table 1.2, taken from [100], shows the PF range with the respective surcharge applied to the
customer’s bill. For instance, if the load PF is lagging and lower than 0.9 but greater than or equal to
0.88, then a 2% surcharge is applied to the customer’s bill. If the load PF is lagging and lower than 0.88

but greater than or equal to 0.85, then the surcharge increases to 4% of the customer’s bill, and so on.

2. Hydro-Quebec charges the maximum power demand, defined as the greatest value between the maximum
real power (that is the active power) and 90% of the maximum apparent power [101].

3. The third policy, employed in the Australian standards investigated, is the charging of exceeding reactive
power. The Brazilian regulation allows the usage of this policy.

4. The fourth policy, employed in the Scottish and English standards investigated, is the charging of ex-
ceeding reactive energy. This policy is also allowed in the Brazilian regulation.
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Table 1.2: BC-Hydro power factor surcharge policy.

Lagging Power Factor Power Factor Surcharge (%)
90% or more nil

Less than 90% but 88% or more 2%

Less than 88% but 85% or more 4%

Less than 85% but 80% or more 9%

Less than 80% but 75% or more 16%

Less than 75% but 70% or more 24%

Less than 70% but 65% or more 34%

Less than 65% but 60% or more 44%

Less than 60% but 55% or more 57%

Less than 55% but 50% or more 72%

Less than 50% 80%

From Table 1.1, it can be noticed that there is a PF limit/threshold below which charges are applicable,
regardless of the policy adopted. In the case of BC-Hydro [100] and Brazilian utility companies [113], the PF
should also be used to compute the financial charge that will be applied.

In all investigated standards, residential customers are not chargeable [100–114]. This can also be inferred
from Table 1.1 based on the minimum demand3 above which PF evaluation is applied. The minimum demand
threshold (among the investigated standards) found in this investigation was 35 kW, which is not compatible
with residential and small customers. Such demand level is typical of medium and large units (in general,
industries) supplied by three-phase voltages. Therefore, a three-phase PF definition compatible with the
characteristics of TIMs (industries main load [98]) might be more adequate for billing. Nonetheless, it was not
found an explicit statement in the investigated documents about which of the existing PF definitions should
be used.

Considering the foregoing discussion, it can be concluded that the PF is used as a trigger in all four policies
and, in some of them, it is also used in the computation of the financial charge. This initial analysis highlights
that only medium and large customers are subjected to PF billing, in the investigated standards. For this
reason, the usage of TIMs for evaluating different PFs may be more adequate than the constant impedance
load model usually adopted in PF studies. Additionally, it is pointed out the lack of an explicit standardization
of which definition should be used for revenue purposes in the investigated standards.

3Some standards adopt the average consumption over given periods instead of the instantaneous demand.
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1.3 Objectives and Contributions

Based on the foregoing discussion, it can be observed that evaluation of PF definitions and measurement
methods for the three-phase induction motor when the voltages are unbalanced and nonsinusoidal had not
yet been done to the best of our knowledge. Additionally, evaluation of PF definitions when both the load
and the source are unbalanced were also missing. So, the objective of this study is to evaluate the existing
PF definitions and their measurement methods considering the fairness perspective for billing purposes under
unbalanced nonsinusoidal voltage conditions (UNVC).

When both sources and loads are balanced and provide/consume power only at the fundamental frequency,
the load PF has a unique value that depends entirely on the load’s characteristics, that is, based on its
capacitance or inductance [9,14,95]. In real circumstances, however, the voltages and the load are not perfectly
balanced and sinusoidal/linear [11,83].

Considering that utilities often apply PF billing policies, it is reasonable that the customers should be
charged only for what they are accountable for. Since the load’s admittances are a property of the load, it
is expected that the customer should be responsible for improving the load’s admittances if its susceptances
are too high. The voltage quality, on the other hand, cannot be solely attributed to the customer as there are
other factors that contribute to worsening the voltages (for example, the transmission lines are not perfectly
transposed, single-phase loads are not uniformly distributed between phases throughout the grid, uneven aging
of the grid equipment, etc). Additionally, the load is designed mainly to operate under balanced sinusoidal
nominal voltages. For these reasons, the measured value for each PF definition under balanced sinusoidal
nominal voltages (at the point of connection of the load) is adopted as the reference value for that definition.
Each PF definition may have its own reference value, which may differ from others. It is expected that, if
the load remains constant, a fair PF definition should retain its reference value even when the voltages are
not balanced and sinusoidal anymore. With this viewpoint, the fairest PF definition to be applied in billing
purposes is the one that changes only when the load changes.

The discussion of the relation between the PF of a balanced load and an unbalanced load is related to
whether the PF should measure the load unbalance. But we need to emphasize that this analyzes could
be extended to what the PF should actually measure and whether it should consider other power quality
phenomena. These aspects are beyond the scope of this work, which is focused on the effects of the voltages
on the PF definitions with the viewpoint of accountability and PF billing.

More specifically, this work aims to

i) Evaluate the value of PF definitions for different loads submitted to several UNVC by means of compu-
tational simulation.

ii) Evaluate the value of PF definitions for different loads submitted to several UNVC by means of experi-
mental tests.

iii) Obtain analytical expressions for PF definitions as a function of the VUF and the load’s admittances for
a constant impedance load.

iv) Evaluate the metering of the fairest PF definitions with different measurement algorithms for different
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loads submitted to several UNVC by means of computational simulation.

In [9], we have evaluated some PF definitions concerning voltage unbalance and distortion for a balanced
constant impedance load and a three-phase induction motor (TIM) employing digital simulations and exper-
imental tests. The effect of the measurement algorithm on the final value of the fairest PF definitions has
also been assessed by means of digital simulations. The obtained results have been published by IEEE Access
in [9], which has the following contributions:

i) The paper shows that a PF definition that leads to a fair billing for a constant impedance load may not
provide a fair billing for a TIM in unbalanced and nonsinusoidal voltage conditions (UNVC). In other
words, it shows that the selected load affects the performance of the PF definition.

ii) The paper determines the fairest power factor (PF) definitions and their corresponding measurement
algorithms for metering the PF of any of the two loads, a balanced constant impedance and a TIM,
submitted to a wide range of UNVC.

1.4 Document Outline

This work is organized as follows. Chapter 2 presents some power-related definitions and measurement
methods. It is divided in three sections. The first one, Section 2.1, provides a brief historical overview of the
development of power theories. The second one, Section 2.2, gives some definitions for single and three-phase
systems. The third one, Section 2.3, lists some measurement methods. Chapter 3 presents the methodology
employed in the simulations and the experimental tests. Section 3.1 details how the computational simula-
tions of PF definitions from the fairness perspective were performed. Section 3.2 shows how the measurement
algorithms were simulated. Section 3.3 explains how the experimental tests of PF definitions from the fairness
perspective were conducted. Chapter 4 presents the results from the computational simulation of PF defini-
tions and measurement methods. Section 4.1 shows the results of different PF definitions from the fairness
perspective. In Section 4.2, measurement techniques for the fairest definitions are evaluated under several un-
balanced and nonsinusoidal voltage conditions. The results of the experimental tests of different PF definitions
are shown in Chapter 5. Chapter 6 obtains, for a constant impedance load, analytical expressions for each
PF definition as a function of the load’s admittances and the VUF. At last, Chapter 7 summarizes the main
findings of this work.



CHAPTER 2

Power-Related Definitions and Measurement Methods

2.1 Brief Historical Overview of the Development of Power Theories

This section provides a concise historical overview of the development of power theories (PTs). It contex-
tualizes our research within the wider domain of PTs while highlighting the inherent complexities associated
with understanding and working with power phenomena. Our objective is to offer a broad perspective, rather
than an exhaustive examination of individual theories or an in-depth discussion of their physical foundations.
For those seeking more detailed insights, comprehensive references such as [37,115,116] are recommended.

As the reader will notice, some papers address PTs considering only single-phase systems, some consider
only three-phase systems, and a few others consider more than one type of system. Although it is possible
to present an state of the art for each of these types, such approach may prejudice the notion of time in the
historical development of PTs. So, it seems that considering a unique timeline is the most appropriate way to
present the state-of-the-art as it follows next.

The origins of PTs can be traced back to the classic work of Steinmetz [81] first published in 1892 in
German and recently translated to English by [117]. Steinmetz noticed that the apparent power of a single-
phase arc bulb was higher than the active power and that there was no phase-shift between the currents and
voltages. This experiment raised a fundamental question for the field of PTs: what phenomena in the load are
responsible for the apparent power being higher than the active power?

Shortly after, the increase of three-phase systems drew the attention of researchers to the phenomenon of
unbalance in the voltages and currents. In 1908, reference [79] discussed the issue of defining PF for unbalanced
sinusoidal systems considering that each phase may have a different phase-shift between its current and voltage.
Aiming to combine all-phase shifts in a single-number, reference [79] proposed a three-phase PF definition as

9
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an average of each phase PF weighted by its apparent power, that is

PF a =
PFaSa + PFbSb + PFcSc

Sa + Sb + Sc
. (2.1)

The proposed PF was later named as the arithmetic PF, since it can be rewritten as the total active power
divided by the arithmetic apparent power (given by the sum of the absolute values of each phase apparent
power),

PF a =
P

Sa + Sb + Sc
. (2.2)

Reference [79] claims that the arithmetic PF combines the phase-shifts of the different phases in a single
number which has practical importance. He also developed a measurement method for the proposed definition
which could be realized with the wattmeters and VAR meters available at that time. This might be one of the
reasons why such a simple definition remained in the context of PTs, being cited even in the recent version of
IEEE Std 1459-2010 [1].

In 1920, a special joint committee, composed by the American Institute of Electrical Engineers (AIEE) and
the Technical Section of the National Electric Light Association (NELA), discussed the correct PF definition
for poly-phase systems [72]. Fueled by various sets of papers [71, 73–78], the committee thoroughly discussed
two main existing definitions, the arithmetic and the vector (or geometric) PF definitions. As the problem
proved to be very intricate, the committee concluded that “no agreement has yet been reached upon a definition
of the term as applied to polyphase circuits, nor even upon the underlying purpose which a definition should
serve to express” [72].

It is worth mentioning that one of the papers [77] submitted to the committee had been written by Fortescue,
in which he proposed the positive and negative-sequence PFs. Later on, the decomposition of active, reactive
and apparent powers in the sequence-domain was incorporated in other PTs.

Two years later, in 1922, Buchholz [70] proposed a new apparent power definition based on the concepts
of collective voltage and current for unbalanced three-phase systems with three-wires. The main objective
was that the apparent power should reflect the total losses in the transmission system. For this purpose, the
unbalanced load is compared with a balanced load causing the same transmission losses and drawing balanced
currents equal to the collective current and the voltages supplied being equal to the collective voltage. From
this moment on, several author’s adopted Buchholz apparent power and tried to decompose it in terms of
different power components related to different phenomena [56,61,63,91].

According to Emanuel [37], at about the same time, the proliferation of mercury rectifiers to transportation
and electrochemical processes drew back the attention of researchers to the issue of nonsinusoidal conditions.
In this context, Budeanu proposed a new PT in 1927 [118]. The reactive power was redefined to account
for the harmonics and also a distortion power was proposed to represent the effects of nonsinusoidal voltages
and currents in the transmission of power. Budeanu’s PT was adopted by several engineers and researchers
who tried to design and provide effective measurement methods for the usage in meters [119–121]. Only after
approximately 60 years the flaws of this theory became severe questioned [21, 57, 65, 68]. For more details
regarding Budeanu’s PT, see Appendix II.2

In 1932, considering single-phase nonsinusoidal systems, Fryze [69] proposed a novel viewpoint in the
development of PTs. Instead of decomposing the apparent power in the frequency domain, Fryze proposed
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that the decomposition of power components should start from the analysis of instantaneous quantities. In
this context, he decomposed the instantaneous current into two orthogonal (in the sense of function space)
components, the active and the non-active currents. Fryze showed that the RMS values of these components
multiplied by the voltage RMS value leads to the active (P ) and non-active (QF ) power, respectively. Following
this novel viewpoint, other PTs were developed using the instantaneous current as the starting point [20, 51,
56,60,115].

In 1935, at the request of the A.I.E.E Institute’s Committee on Instruments and Measurements, Curtis
and Silsbee [90] collected the most common definitions at that time considering the following situations:

• single-phase circuits when the currents and potential differences are sinusoidal,

• single-phase circuits with nonsinusoidal currents and potential differences,

• balanced polyphase circuit under sinusoidal conditions,

• balanced polyphase circuit under nonsinusoidal conditions,

• unbalanced polyphase circuit under sinusoidal conditions,

• unbalanced polyphase circuit under nonsinusoidal conditions,

• circuits in which the effective values of the currents and potential differences vary with time.

The objective was to systematically discuss the existing definitions in a way that general acceptance could be
obtained. According to Curtis and Silsbee [90], “To discuss generalizations to more general situations (periodic
but nonsinusoidal polyphase currents and voltages) one should reflect on the questions of which properties of
the concepts of active power, apparent power, and power factor are fundamental and which properties are rather
coincidental, and which features are due to the sinusoidal single-phase situation and should not be expected to
be true in more general cases. A second point of thought is the question of whether several fundamental features
can be generalized to more general situations by a single concept.” With this viewpoint, the authors discuss
the properties of each power definition for each situation and compare them with the properties observed
in single-phase circuit with sinusoidal currents and voltages. Under non-sinusoidal conditions, the authors
evaluate Fryze’s non-active power and Budeanu’s reactive and distortion powers. Considering the unbalance,
the authors evaluate the following aggregating definitions for the apparent power: i) the limiting, ii) the
arithmetic, iii) the vector (or geometric), and iv) the algebraic (or Lyon-Lienard) apparent power. Under more
general conditions, the authors evaluate the possible combinations of non-sinusoidal definitions (Budeanu’s
and Fryze) with the aggregating methods for unbalanced powers (e.g. arithmetic, geometric, etc). The work
of [90] was then used as basis for the formulation of standards.

According to [115], in 1950 Buchholz [122] extended to polyphase systems the collective voltages and
currents proposed previously in [70] for three wire systems. Later on, contributions on Buchholz apparent
power when harmonics are present led to the effective apparent power as defined in [1].

Shortly after, in 1962, Depenbrock building upon the concepts of Fryze and Buchholz proposed, in his
PhD thesis [123], novel instantaneous current components which would be associated with distinct physical
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phenomena in unbalanced nonsinusoidal three-phase systems. However, few papers addressed this theory until
its publication in 1993 in [51], named as the Fryze-Buchholz-Depenbrock (FBD) method.

In 1972, considering single-phase systems, Shepherd and Zakikhani [68] concluded that Budenau’s reactive
power (QB) does not represent any real physical quantity, and that circuit compensation of QB does not
lead to maximum power factor operation. Then, the authors of [68] proposed a novel resolution (based on
the frequency domain) to the apparent power employing new definitions for active (SR), reactive (SX), and
distortion (SD) powers in nonsinusoidal systems. According to the authors, the proposed reactive power
allows assessing how much of the apparent power can be compensated with passive elements. Shortly after the
publication, Shepherd and Zakikhani PT was strongly criticized by three following discussion papers [64,66,67]
mainly because of the lack of physical interpretations and the difficulties of implementation in meters. Further
details of the proposed decomposition can be found in Appendix II.3.

In 1973, reference [65] discussed reactive power definitions and PF improvement based on single-phase
generic current and voltage nonsinusoidal signals. He defined the PF as the ratio between the actual active
power consumed by the load and the maximum average active power that could be obtained with the same
economic effort, i.e., with the same values of RMS voltage and current. He showed that compensation of
Budenau’s reactive power (QB) does not always lead to the minimization of the apparent power. Reference
[65] also examined the “true reactive apparent power” (SX) as defined by [68] and proposed an alternative
reactive power (SQ) to address the impacts of harmonics that may appear in the voltage signal. The author
also proposed a “complimentary reactive power” (SC). He showed that shunt compensation leads to the
minimization of SQ while not affecting the active power P and SC ; leading therefore to a better power factor.
At last, the author commented that defining reactive power is not indispensable for power factor improvement,
since the value of the capacitor (C) for shunt compensation can be obtained through the minimization of the
apparent power with respect to C. It is worth mentioning that the paper is restricted to single-phase (or
balanced) systems.

In 1980, building upon the new viewpoint introduced by Fryze in [69] and considering nonsinusoidal single-
phase systems, Kusters and Moore [61] proposed the decomposition of the instantaneous current into four
components, having the source voltage waveform as a reference. The inductive/capacitive reactive current
(IQL/IQC) components are equivalent currents that would flow through an inductor/capacitor submitted to
the reference voltage. The residual inductive/capacitive reactive current (IQLr/IQCr) are the components that
remain of the current after the active current and IQL/IQC components have been extracted. The multiplication
of these components by the voltage RMS value leads to the inductive reactive power (QL), the capacitive
reactive power (QC), the residual inductive reactive power (QLr), and the residual capacitive reactive power
(QCr). Kusters and Moore also employed QL and QC to design an LC compensator. The method proposed by
Kusters and Moore was also investigated by [62], which showed that in some nonsinusoidal voltage situations,
the best compensation of the reactive current may require the simultaneous use of shunt capacitors and shunt
inductors. Later on, the method for designing the LC compensator was incorporated in [54].

In 1984, following fryze’s approach to the decomposition of the current into instantaneous components,
Akagi, Kanazawa and Nabae [60] proposed the p-q theory for single-phase nonsinusoidal systems. Although
Fryze introduced the concept of instantaneous current components, the p-q theory goes farther by proposing
instantaneous power components, such as the instantaneous active power and instantaneous reactive power.
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The authors employed the method to provide reference signals so that active power filters (APFs) can com-
pensate the instantaneous reactive power without energy storage components. This theory inaugurated the
so-called instantaneous PTs.

It is worth recalling that so far there are three different approaches to defining power components. In the
first one, currents, voltages and powers are described in the frequency domain. This is the approach adopted
in [65, 68, 70–79,118]. In the second approach, adopted by [61, 69, 123], instantaneous current components are
obtained and employed to describe powers in the frequency domain. In the third, inaugurated by the p-q
theory [60], instantaneous current components are employed to derive instantaneous power components.

In 1985, considering single-phase nonsinusoidal conditions, Czarnecki [59] discussed the power definitions
proposed in [61, 62, 68]. Then, he proposes the scattering power (DS) and the Czanercki’s reactive power
(QZ) to decompose the apparent power and shows their relation to the components provided by Fryze [69]
and Shepherd [68]. In the proposed decomposition, DS is caused by the different values of each harmonic
conductance in relation to the equivalent conductance, which accounts for the total active power. The scattering
power does not contribute to the total active power and cannot be compensated by passive devices. Czarnecki’s
reactive power on the other hand, refers to the apparent power component caused only by the phase shift
between voltage and current at each harmonic order. It was shown that QZ can be compensated by passive
devices.

After approximately 60 years of Budeanu’s PT, in 1987 Czarnecki [57] severely questioned Budeanu’s PT
and proposed that it should be abandoned. After thoroughly examining Budeanu’s concepts of reactive power
(QB) and distortion power (DB), he concluded that DB may actually have nothing to do with waveform
distortion in absolute terms (meaning that the waveform is not sinusoidal) or even in relative terms (current
distortion with respect to the voltage). It is also shown that there is no clear interpretation for QB, particularly
due to the fact that in Budeanu’s definition the harmonic reactive components are added and may result in
zero reactive power even when the current is not in-phase with the voltage. This was one of the most severe
critics Budeanu’s PT have received.

In 1988, Czarnecki [56] extended the proposed definitions of [59] to three-phase unbalanced nonlinear loads.
In this case, the load current can be decomposed into active, reactive, scattered, unbalanced and harmonic
generated current components. It is shown that these components are orthogonal to each other and when
multiplied by the voltage RMS value results in the active, reactive, scattered, unbalanced and harmonic
generated powers. It should be noticed that the authors consider only a symmetrical source with nonsinusoidal
voltages supplying unbalanced and non-linear or periodically variant loads. They do not consider unbalanced
voltage sources neither source impedances greater that zero. As a result the harmonics generated by the load
are present only at the current signal.

In 1990, Emanuel [91] provided a review of power definitions and their physical interpretation in single-
phase nonsinusoidal situations. In the review, Emanuel corroborates that Budeanu’s model lacks physical
meaning, particularly due to the algebraic sum of harmonic reactive power components.

Also in 1990, Czarnecki [55] analyzed and discussed the active, reactive and scattering powers in single-
phase nonsinusoidal situations. According to Czarnecki, the sign of the active power at each harmonic order
indicates the direction of the flow of active power at that given frequency, thus allowing to identify who is



2.1 – Brief Historical Overview of the Development of Power Theories 14

acting as source and as load. Both works [91] and [55] considered only single-phase nonsinusoidal conditions.

In 1991, Czarnecki [54] addressed the relative nature of the CPC in single-phase nonsinusoidal conditions.
It is shown that the reference point for the voltage measurement affects the value of the reactive and scattered
currents. Then, it is shown that this relative nature can actually be employed to design series and shunt
passive compensators.

In 1992, Willems [53] proposed a novel interpretation of the p-q theory. For this purpose, Willems derived
the instantaneous active and reactive powers using only phase currents and voltages without Clarke’s trans-
formation. According to Willems, the novel equations allow to extend the concepts to systems with more than
three phases. Additionally, Willems also accounted for zero-sequence components.

In 1993, Depenbrock [51] published the Fryze-Buchholz-Depenbrock PT formulated earlier in 1962 as his
PhD thesis [123].

Also in 1993, Emanuel [52] proposed that Buchholz apparent power can be decomposed as a function
of the positive-sequence active, positive-sequence reactive and unbalanced powers. The unbalanced power is
proposed as being the power associated with either negative or zero-sequence voltages or currents. Using the
symmetrical-sequence components, Emanuel also proposes the usage of the positive-sequence PF.

In 1994, reference [93] addressed the problem of power definitions for PF correction under single-phase
nonsinusoidal conditions, especially considering the effects of non-negligible Thévenin grid equivalent imped-
ance, which had not yet been considered. Existing power definitions at that time did not consider the effects
of the equivalent source impedance. As a result, the PF compensation derived from such power definitions
could lead to harmonic resonance and to the increase of the current RMS value, instead of its reduction. It
is worth highlighting that the current increase due to harmonic resonance can be hazardous to the system
components. With this viewpoint, the paper proposes some power components to account for the effects of
such impedance. The paper concludes that evaluation of the grid equivalent harmonic impedance is required
before implementing PF correction.

In 1995, Czarnecki [95] addressed the power properties of three-phase circuits with three wires supplying
unbalanced loads. Czarnecki shows that the unbalanced power does not occur due to power oscillations and
then explains why this power occurs. To support his argument he shows the presence of unbalanced power in
DC circuits, where certainly there is no oscillations of power. At last, Czarnecki analytically shows that the PF
can be rewritten as a function of the load’s admittances. Thus, the PF is not affected by the source supplier
but only by the load’s characteristics when the the source voltages are balanced and the load is unbalanced.
Additionally, Czarnecki did not consider the effects of non-neglible Thévenin grid impedance.

In 1996, Sharon [49] examined the apparent power and PF definitions and proposed new power transfer
quality factors for single-phase nonsinusoidal situations. According to Sharon, interpreting the PF as a measure
of the degree of utilization of the source power capacity is misleading in nonsinusoidal situations especially
when using conventional capacitive PF compensation. The argument is that capacitive PF compensation
may increase the current RMS value instead of reducing it due to harmonic resonance. To address that, the
paper suggests a quality factor calculated as an weighted average of the fundamental PF, the voltage harmonic
distortion (VHD), and the current harmonic distortion (IHD). The use of this quality factor is illustrated
in relation to PF compensation in nonsinusoidal situations for two source/load configurations. The first is
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a balanced nonsinusoidal voltage source supplying a balanced (linear) constant impedance load (inductive).
The second is a balanced sinusoidal voltage source feeding a six-pulse converter which provides dc voltage to
a constant load (resistor). The paper shows that resonance can occur when shunt compensation is employed
without any filters. One advantage of the proposed quality factor is that the separate measurable components
allow the identification of the specific cause for a low-quality power, and thus one can increase the quality
factor by addressing its lower component. For instance, if the voltage distortion is the lower component in
the quality factor, one may employ dedicated techniques to deal with voltage distortion, instead of trying
to raise the PF with capacitor compensation. It is worth mentioning that the proposed method identifies
which component is contributing to the low quality factor, but without assigning the responsible for that. For
instance, the proposed methodology does not identify when a harmonic producing load causes high voltage
distortion, reducing the quality factor, at another location of the grid. Also, the paper is limited to balanced
systems.

In 1998, Emmanuel [45] examines Buchholz apparent power in unbalanced nonsinusoidal conditions. To the
best of our knowledge, this is the first paper that refers to Buchholz apparent power as the effective apparent
power (Se). Emanuel shows that the losses in the transmission of power are a function of the effective apparent
power. It is also provided a decomposition of Se in terms of the fundamental positive-sequence apparent power,
the unbalanced fundamental apparent power, and the non-60Hz equivalent apparent power. According to
Emmanuel [45], the unbalanced fundamental apparent power is “The recommended quantity to be measured,
that helps to find load unbalance”.

In 1999, Emanuel [44] evaluates apparent power definitions in unbalanced nonsinusoidal conditions. Com-
paring the arithmetic, geometric (or vectorial), and effective apparent power, Emanuel concludes that the
effective apparent power is the definition the most closely related to the transmission losses. For this reason,
Emanuel advocates that the effective apparent power should be employed for the “estimation of the utilization
of distribution lines and equipment supplying systems that are unbalanced and sinusoidal, balanced and non-
sinusoidal and, unbalanced and nonsinusoidal.” It is worth mentioning that Emanuel does not discuss if the
utility has any responsibility over the effective apparent power.

In 2005, reference [32] discussed the effective apparent power in a poly-phase unbalanced nonsinusoidal
system. Since the effective apparent power considers transmission lines with equal resistances, it is not propor-
tional to transmission losses. For this reason, reference [32] proposed a modification of the effective voltages
and currents so that the resulting apparent power accounts for unequal resistances of the transmission lines.
As in most transmission systems, the phases usually have very close resistances. Usually, only the neutral wire
has a different resistance value. The different resistance of the neutral wire was incorporated in the definition
of the effective current provided in the recent version of IEEE Std 1459-2010 [1].

In 2010, IEEE Std 1459-2010 was published collecting the most common power definitions [1]. It is proposed
that the arithmetic and geometric PFs should be replaced by the effective PF.

In 2012, Czarnecki [18] discussed the billing of the active power for unbalanced constant impedance loads
and for induction motors. It is noteworthy that until this moment there was no significant publications
questioning the active power, which was the only quantity that researchers seemed to agree in the field of
power theories. In this innovative approach, Czarnecki decomposes the active power into working, reflected
and detrimental powers, considering the perspectives of the utility and the customer as both of them can
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contribute to a low power quality. Czarnecki concludes that “switching accounts between the energy provider
and its user from that based on the cost of the active energy to the accounts based on the cost of the working
energy creates natural financial incentives for improving the supply quality and the loading quality.” The
author acknowledges, however, that switching to the working energy/power is not simple and further studies
are recommended.

In 2015, Czarnecki [14] addressed the powers and the currents physical components (CPC) of unbalanced
linear loads with a neutral conductor supplied by balanced sinusoidal voltages. The paper is an extension
of [56] to four-wire systems. In such systems, there are zero-sequence currents which lead to the definition
of the unbalanced zero-sequence power (Dz

u). The paper shows that all proposed power definitions can be
expressed in terms of the load parameters. As a result, the load PF is rewritten only in terms of the load’s
impedances, without any dependence on the voltages, currents, nor power. Thus, the authors claim that the
load PF is a property of the load [14]. The paper also presents a method of calculation of LC parameters for
delta and wye passive compensators. The proposed method is validated by a numerical example. The paper
however assumes that the source and the transmission lines have zero impedance, and that the voltages are
balanced sinusoidal.

One year later, Czarnecki [13] addressed the powers and the currents physical components (CPC) of un-
balanced linear loads with a neutral conductor supplied by balanced nonsinusoidal voltages. The paper is an
extension of [14] to systems with non-sinusoidal voltages. In such systems, the total active current is not equal
to the sum of the active currents for each harmonic, because there are different harmonic conductances for
different frequencies. The difference between these two currents is the scattered current, named due to the
scattering of the harmonic conductances (Ge,h) around the total equivalent conductance (Ge). The paper shows
that all proposed power definitions can be expressed in terms of the proposed current components. As a result,
the load PF is rewritten only in terms of the load’s currents. It is worth noting that, differently from [14],
the obtained PF expression is not expressed solely in terms of the load’s admittances without any dependence
on the voltages, currents, nor power. Thus, the authors previous claim that the load PF is a property of the
load [14] could not be confirmed in [13] when the voltages are nonsinusoidal. The paper assumes that the grid
Thévenin impedance is zero and that the voltages are balanced.

Reference [124] addresses 4 different PTs (PTs) and assesses whether they can be easily measured, if they
allow correct quantification of powers and PF for a fair charge, and if they provide the necessary information for
the design of compensation techniques. The first PT addressed is the the Budeanu’s extension to three-phase
systems, despite the previous critics of Budeanu’s theory [21,57,91]. Then, the decomposition of the effective
apparent power in terms of harmonic and sequence components, as provided by IEEE Standard 1459-2010,
is analyzed as a PT. The next is based on wavelet transformations, and the last one is the pq-theory. The
authors concluded that Budeanu’s extension to three-phase systems and the wavelet based PTs fully fulfill the
3 basic requirements desired for PTs. The authors also claim that the power definitions provided by the IEEE
Standard 1459-2010 does not provide a fair charging. Also, the PQ-theory can be employed for compensation
purposes, but cannot be easily measured nor allow correct quantification of powers and PF for a fair charge,
though the definition for fairness is not provided.

In 2022, we [9] have evaluated five different PF definitions applied for both a balanced constant impedance
load and for a three-phase induction motor (TIM) supplied by several unbalanced nonsinusoidal conditions by
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means of digital simulations and experimental tests. We have shown that, under unbalanced nonsinusoidal
voltages, the effective PF and the fundamental arithmetic PF of a three-phase induction motor (TIM) are
significantly affected by the voltage unbalance. Moreover, PF definitions were affected by the voltage unbalance
only when applied to the TIM, but not when applied to a balanced constant impedance load, showing that the
behavior of PF definitions depends on the load under analysis. We concluded that it is necessary to investigate
PF definitions with more loads to attempt a proposition that may be applicable to most of the loads subjected
to PF billing. The methodology employed and the obtained results are part of this PhD thesis and will be
detailed in the following chapters.

Table 2.1 summarizes the works described in this section.

Table 2.1: Historical Summary of Works Discussing Power-Related Definitions.

Reference Authors Title Year
[81] Steinmetz, C. P. Does Phase Displacement Occur in the Current Of Electric

Arcs?
1892

[79] Burt, A. Three-Phase Power-Factor 1908
[125] Fortescue, C. L. Method of symmetrical co-ordinates applied to the solution

of polyphase networks
1918

[77] Fortescue, C. L. Polyphase Power Representation by Means of Symmetrical
Coordinates

1920

[72]
Special Joint
Committee

Power Factor in Polyphase Circuits 1920

[70] Buchholz, F The Three-Phase Apparent Power with Uneven Load on the
Three Branches

1922

[118] Budeanu, C I Reactive and fictitious powers 1927
[69] Fryze, S Active, Reactive and Apparent Power in Circuits with Non-

sinusoidal Voltage and Current
1932

[90]
Curtis, H. L.
Silsbee, F. B.

Definitions of Power and Related Quantities 1935

[122] Buchholz, F. Das Begriffssystem Rechtleistung, Wirkleistung, totale
Blindleistung

1950

[123] Depenbrock, M. Investigations of the Voltage and Power Conditions at Con-
verters Without Energy Storage

1962

[68]
Shepherd, W.
Zakikhani, P.

Suggested Definition of Reactive Power for Nonsinusoidal
Systems

1972

[65] Sharon, D. Reactive-Power Definitions and Power-Factor Improvement
in Nonlinear Systems

1973

[61]
Kusters, N.L.
Moore, W.J.M.

On the Definition of Reactive Power Under Non-Sinusoidal
Conditions

1980
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Table 2.1: Historical Summary of Works Discussing Power-Related Definitions.

Reference Authors Title Year

[60]
Akagi, H.
Kanazawa, Y.
Nabae, A.

Instantaneous Reactive Power Compensators Comprising
Switching Devices Without Energy Storage Components

1984

[59] Czarnecki, L. S. Considerations on the Reactive Power in Nonsinusoidal Sit-
uations

1985

[57] Czarnecki, L. S. What is Wrong with the Budeanu Concept of Reactive and
Distortion Power and Why It Should be Abandoned

1987

[56] Czarnecki, L. S. Orthogonal Decomposition of the Currents in a 3-phase Non-
linear Asymmetrical Circuit with a Nonsinusoidal Voltage
Source

1988

[91] Emanuel, A. E. Powers in nonsinusoidal situations-a review of definitions and
physical meaning

1990

[55]
Czarnecki, L. S.
Swietlicki, T.

Powers in Nonsinusoidal Networks : Their Interpretation,
Analysis, and Measurement

1990

[54] Czarnecki, L. S. Scattered and Reactive Current, Voltage, and Power in Cir-
cuits with Nonsinusoidal Waveforms and Their Compensa-
tion

1991

[53] Willems, J. L. A New Interpretation of the Akagi-Nabae Power Compo-
nents for Nonsinusoidal Three-Phase Situations

1992

[51] Depenbrock, M. The FBD-Method, a generally applicable tool for analyzing
power relations

1993

[52] Emanuel, A. E. On the Definition of Power Factor and Apparent Power in
Unbalanced Polyphase Circuits with Sinusoidal Voltage and
Currents

1993

[93]
Sasdelli, R.
Menchetti, A.
Montanari, G. C.

Power Definitions for Power-Factor Correction Under Non-
sinusoidal Conditions

1994

[95] Czarnecki, L. S. Power related phenomena in three-phase unbalanced systems 1995
[49] Sharon, D. Power Factor Definitions and Power Transfer Quality in Non-

sinusoidal Situations
1996

[45] Emanuel, A. E. The Buchholz-Goodhue Apparent Power Definition: The
Practical Approach For Nonsinusoidal And Unbalanced Sys-
tems

1998

[44] Emanuel, A. E. Apparent Power Definitions For Three-Phase Systems 1999
[32] Jeon, S. Definitions Of Apparent Power And Power Factor In A

Power System Having Transmission Lines With Unequal Re-
sistances

2005
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Table 2.1: Historical Summary of Works Discussing Power-Related Definitions.

Reference Authors Title Year
[1] IEEE IEEE Standard 1459-2010 - Definitions for the Measure-

ment of Electric Power Quantities Under Sinusoidal, Non-
sinusoidal, Balanced, or Unbalanced Conditions

2010

[18] Czarnecki, L. S. Working, Reflected and Detrimental Active Powers 2012

[14]
Czarnecki, L. S.
Haley, P. M.

Unbalanced Power in Four-Wire Systems and its Reactive
Compensation

2015

[13]
Czarnecki, L. S.
Haley, P. M.

Power Properties of Four-Wire Systems at Nonsinusoidal
Supply Voltage

2016

[124]
Nicolae, P. M.
Nicolae, I. D.
Nicolae, M. S.

Powers and Power Factor in Non-Sinusoidal and Non-
Symmetrical Regimes in Three-Phase Systems

2022

[9]
Brasil, V. P.
Ishihara, J. Y.
Ferreira Filho, A. d. L.

Fair Power Factor Billing Under Unbalanced and Nonsinu-
soidal Voltage Supply

2022

2.2 Power Factor Definitions

2.2.1 Single-Phase Systems

In single-phase systems, the instantaneous voltage is given by

v(t) = v1(t) +
∑
h∈H

vh(t) (2.3)

in which v1(t) is the instantaneous fundamental voltage, vh(t) is the instantaneous voltage of order h, and H
is the set of nonfundamental components (which may include harmonics, interharmonics and subharmonics).
If vh(t) is nil for all values of h and t, then the voltage is considered sinusoidal. If vh(t) is not nil for some
value of h and t, then the voltage is distorted. The fundamental instantaneous voltage is given by

v1(t) =
√

2V1 sin(ωt) (2.4)

where V1 is the fundamental voltage RMS value and ω is the angular frequency of the system. The voltages
vh(t) are given by

vh(t) =
√

2Vh sin(hωt+ βh) (2.5)

where Vh is the RMS value of the voltage vh(t), and βh is the phase shift of vh(t) with respect to v1(t). The
voltage RMS value is given by the square root of the sum of the squared components of V1 and Vh, that is,

V =

√
V 2
1 +

∑
h∈H

V 2
h . (2.6)
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From (2.6), it can be observed that V ≥ V1 and V ≥ Vh for any value of h.

Similarly to the voltage, the instantaneous current is given by

i(t) = i1(t) +
∑
h∈H

ih(t) (2.7)

in which i1(t) is the instantaneous fundamental current, and ih(t) is the instantaneous current of order h. The
fundamental instantaneous current is given by

i1(t) =
√

2I1 sin(ωt+ θ1) (2.8)

in which I1 is the fundamental current RMS value and θ1 is the phase shift between i1(t) and v1(t). Positive
values of θ1 indicate that i1(t) leads v1(t), whereas negative values indicate that i1(t) lags v1(t). The currents
ih(t) are given by

ih(t) =
√

2Ih sin(hωt+ αh + θh) (2.9)

where Ih is the RMS value of ih(t), βh is the same as in (2.5) and θh is the phase shift between ih(t) and vh(t).
The current RMS is equal to

I =

√
I21 +

∑
h∈H

I2h, (2.10)

and it is always greater than or equal to the components I1 or Ih, for any value of h.

The instantaneous voltage and current are the foundation for all other concepts in power systems. These
basic quantities are often measured and used to calculate further complex quantities. With the foundation
laid, it is possible to represent the instantaneous power p(t) in terms of v(t) and i(t). The scientific community
agrees on the definition and meaning of p(t), differently from the other power-related definitions such as PF,
apparent and reactive power. The instantaneous power is defined as the product of v(t) and i(t), that is

p(t) =

(
v1(t) +

∑
h∈H

vh(t)

)(
i1(t) +

∑
h∈H

ih(t)

)
. (2.11)

In terms of its physical meaning, it is the instantaneous rate of energy flow in the system, being commonly
measured in units of W . The instantaneous power can be decomposed into

p(t) = p1(t) + pH(t) + pii(t) (2.12)

in which
p1(t) = v1(t)i1(t) (2.13)

is the instantaneous fundamental power,

pH(t) =

(∑
h∈H

vh(t)

)(∑
h∈H

ih(t)

)
(2.14)

is the instantaneous distortion power, and

pii(t) = v1(t)
∑
h∈H

ih(t) + i1(t)
∑
h∈H

vh(t) (2.15)
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is the instantaneous distortion intrinsic power. If the set H is composed only by harmonic components, then
pH(t) and pii(t) can be called instantaneous harmonic power and instantaneous harmonic intrinsic power,
respectively.

The active power P is the average rate of energy flow over a given period of time. Mathematically,

P =
1

kT

∫ τ+kT

τ
p(t)dt (2.16)

where τ is the moment the measurement started, k is a multiplier (preferably integer1) that defines the
window of calculation, and T is the period of the sinusoidal fundamental voltage v1(t). The active power can
be decomposed in terms of frequency components as

P = P1 + PH (2.17)

in which
P1 = V1I1 cos (θ1) (2.18)

is the fundamental active power, and
PH =

∑
h∈H

VhIh cos (θh) (2.19)

is the nonfundamental active power. It is worth mentioning that pii(t) has nil average value and, for this
reason, it does not contribute to the active power P .

The active power P can either represent the energy transferred to a load or dissipated in the transmission
process. The load usually converts the electrical energy carried by P into thermal, mechanical, or another
form of energy. Thus, the load owner is interested in how much active power the load needs to perform its
job. On the other hand, utilities are also concerned about the transmission losses, which can be significantly
affected by the load’s current. Transmission losses higher than the typical values may endanger equipment
integrity and indicate problems (such as faults or energy theft). For this reason, it is important to account for
the effects of each load on the grid. The following example shows the necessity of establishing a figure of merit
to quantify the load’s usage of the transmission system caused by the phase displacement between current and
voltage.

Example 1 [Usage of the transmission system not caused by the active power]
Consider the case where the transmission system is represented by a series resistor RL, as shown in Figure

2.1. The transmission loss ∆P is given by
∆P = RLI

2, (2.20)

in which I is the current RMS given by (2.10). The transmission losses are mainly due to the Joule effect,
converting electrical energy into thermal energy (heat). A very high value of ∆P can indicate over heating of
the transmission equipment. In fact, the heating of such equipment is so related to the flow of current that it is
common to find the thermal limit of transmission cables defined as the maximum current RMS they can safely
carry.

1If the multiplier k is not integer, the window of calculation will not be a multiple of the period T . This will result in
measurement errors.
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Figure 2.1: Single-phase system in which a generator supplies sinusoidal voltage to a load by means of a
transmission line

One may think that monitoring the load’s active power is enough to ensure proper values of current in
the transmission system. However, loads can draw different currents and still have the same active power.
For simplicity, consider only the fundamental active power, described in (2.18). If P1 and V1 are constant,
then I1 is inversely proportional to cos(θ1). As a result, a decrease of cos(θ1) causes an increase of I1 and,
consequently, an increase of ∆P . Although utilities can monitor the current of each load, it is challenging to
establish limits for this quantity because it depends on the customer’s “size”, that is, the amount of consumed
active power. Given that θ1 has a well-defined range of [−90°, 90°], it is possible to make general rules for θ1
regardless of the customer’s “size”.

The fundamental current phase shift θ1 is often related to the load’s reactive elements (inductors and
capacitors). Such elements draw currents that are orthogonal to the voltage applied to them. In other words,
θ1 is −90° for inductors and 90° for capacitors. One can immediately check in (2.18) that the load does not
consume fundamental active power if θ1 = ±90°. Nevertheless, the load still draws current from the generator,
causing transmission losses. In this case, the customer would not pay for energy consumption because there
is none. However, he should still be responsible for the transmission system’s usage and losses. This simple
example highlights the importance of establishing a figure of merit to quantify the usage of the transmission
system caused by the phase displacement between current and voltage. The existing attempts employ the concepts
of PF, apparent and reactive power. Definitions for such quantities are provided next.

2.2.1.1 Fundamental Power Factor

The electrical system is designed to operate constantly close to the nominal frequency, usually 50 Hz or
60 Hz. Components at other frequency values (such as harmonics, interharmonics, and subharmonics) are
undesired and result from the nonlinearities of grid-connected equipment. As utilities seek to diminish the
presence of these nonfundamental components, the bulk of energy flow occurs at the fundamental frequency.
So, it is necessary to have a clear definition for the fundamental PF, apparent and reactive power. Also,
reference [11] points out the fundamental reactive power as the fairest for billing purposes of a residential
customer supplied by a low-voltage single-phase system.

Taking into account only the fundamental frequency components, the instantaneous fundamental power
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shown in (2.13) can be decomposed into

p1(t) = p1p(t) + p1q(t) (2.21)

where
p1p(t) = V1I1 cos(θ1) [1− cos(2ωt)] (2.22)

is the instantaneous fundamental active power, and

p1q(t) = V1I1 sin(θ1) sin(2ωt) (2.23)

is the instantaneous fundamental reactive power.

Figure 2.2 illustrates p1(t), p1p(t), and p1q(t), considering ω ≈ 377 rad/s, V1 = 1 V, I1 = 1 A, and θ1 = 30°.
It is noteworthy that p1(t) is oscillatory and sometimes it becomes negative, meaning that the energy flows
back from the load to the source. The contributions of each component (p1p(t) and p1q(t)) to the inversion of
energy flow and to the transmission of the active power P are investigated next.

It is noteworthy that cos(2ωt) and sin(2ωt) are symmetric about the t-axis, resulting in a null mean over a
given period multiple of T . Also, they are in the range [−1, 1]. As a result, p1p(t) is always greater than zero,
with mean and amplitude given by P1. Since p1p(t) is the only component that contributes to P1, it is called
instantaneous fundamental active power. On the other hand, p1q(t) oscillates around zero with amplitude
equal to the fundamental reactive power, that is

Q1 = V1I1 sin(θ1). (2.24)

Q1 is greater than zero only if sin(θ1) is greater than zero, resulting in negative values of p1(t) for some t. So,
at the fundamental frequency, the instantaneous inversion of energy flow occurs due to the phase displacement
between voltage and current, which causes transmission losses as shown in Example 1.

The oscillatory component of p1(t) satisfies the following relation

V1I1 cos(2ωt+ θ1) = V1I1 [cos(θ1) cos(2ωt)− sin(θ1) sin(2ωt)] , (2.25)

that can be further simplified into

S1 cos(2ωt+ θ1) = P1 cos(2ωt)−Q1 sin(2ωt) (2.26)

in which
S1 = V1I1 (2.27)

is the fundamental apparent power. Equation (2.26) can be graphically represented with the coordinate system
that has the x-coordinate associated to cos(2ωt) and the y-coordinate associated to − sin(2ωt), as shown in
Figure 2.3, often referred to as the power triangle. Notice that the angle between S1 and P1 is equal to θ1.
Additionally, this triangle is rectangle meaning that

S1 =
√
P 2
1 +Q2

1. (2.28)

Back to the problem of establishing a figure of merit to quantify the usage of the transmission system, it is
noteworthy that the matter can be discussed considering the concepts of S1 and Q1. The fundamental apparent
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Figure 2.2: Instantaneous fundamental power and its active and reactive components.

Figure 2.3: Power triangle for the fundamental components of single-phase systems
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power S1 is directly proportional to I1 and the transmission losses. As a result, the degree of utilization of
the system can be quantified by S1, which can also be interpreted as the maximum active power that can be
delivered to the load, considering V1 and I1 constant. Ideally, the transmission system should be used only
to transfer active power, that is S1 = P1. However, in most practical situations, loads draw currents with
some phase shift relative to the voltage. This results in the usage of the grid to transfer reactive power Q1. In
Example 1, the loads had the same P1 but different S1 because one had a higher Q1. Although S1 and Q1 can
be used to quantify how much of the transmission system is being used by the customer, these two quantities
depend on the customer’s “size”. As a result, it is difficult to establish general rules for different customers.

Seeking to define a figure of merit that does not depend on the customer’s “size”, an alternative is to use
the fundamental power factor (PF1) defined as

PF1 =
P1

S1
. (2.29)

PF1 can be understood as the ratio of the actual fundamental active power and the maximum fundamental
active power possible, considering V1 and I1 constant. Applying (2.28) into (2.29), PF1 can be rewritten as

PF1 =
P1√

P 2
1 +Q2

1

. (2.30)

Alternatively, it can be defined in terms of the phase shift between the current and voltage

PF1 = cos(θ1). (2.31)

It is noteworthy that (2.29), (2.30) and (2.31) are equivalent to each other.

The issues regarding Budeanu’s power definitions are extensively pointed out in [21] and [57]. In [57], the
concept of reactive power is defined as the amplitude of the alternating flow of energy generalized from (2.23).
Reference [57] showed that the instantaneous power can have an alternating flow of energy when QB is zero.
So, the behavior of QB is not uniquely related to the alternating flow of energy. Reference [12] also points
out that QB may be zero due to the cancellation between different frequency components. According to [21],
there are several ways of compensating QB. Some of them can increase the current RMS values, but only one
can reduce the current RMS value. This leads to a non-optimal condition that cannot be assessed by QB.
In [57], it is also pointed out that there is no physical meaning for DB. For instance, distorted power may
be zero if a nonsinusoidal voltage supplies a resistor. Additionally, there are cases where the distorted power
is zero and the load’s current does not have the same waveform as the voltage supply. In other words, the
current waveform is distorted in relation to the voltage waveform. Therefore, Budeanu’s power definitions do
not provide basis for performing compensation or quantifying the voltage and current distortions.

2.2.2 Three-Phase Systems

In three phase systems, there are three energized (or hot) conductors with voltages that contain fundamental
components and may contain nonfundamental components of order h. In this work, we adopt the following
notation. The first subscript indicates how frequency components are addressed. If the first subscript is 1,
then only the fundamental frequency component is being accounted for. If it is equal to h, then only frequency
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components of order h are being accounted for. The first subscript can also be equal to N or B indicating
that frequency components are addressed with Fryze’s or Buedanu’s power theories. The second subscript, if it
exists, represents each of the system phases. For example, Budeanu’s reactive power of phase “b” is denoted by
QB,b, where the the upper case subscript “B” indicates Budeanu’s definition, whereas subscript “b” represents
the phase “b”. At last, the superscript indicates the aggregating method to deal with different values between
phases.

The instantaneous voltages measured with respect to a neutral point (the ground, a neutral conductor or
the virtual star point) are given by

va(t) = v1,a(t) +
∑
h∈H

vh,a(t) (2.32)

vb(t) = v1,b(t) +
∑
h∈H

vh,b(t) (2.33)

vc(t) = v1,c(t) +
∑
h∈H

vh,c(t) (2.34)

in which

v1,a(t) =
√

2V1,a sin (ωt) (2.35)

v1,b(t) =
√

2V1,b sin (ωt− γ1,ab) (2.36)

v1,c(t) =
√

2V1,c sin (ωt+ γ1,ca) (2.37)

are the instantaneous fundamental voltages of phases a, b, and c, respectively; and

vh,a(t) =
√

2Vh,a sin (ωt+ βh) (2.38)

vh,b(t) =
√

2Vh,b sin (ωt+ βh − γh,ab) (2.39)

vh,c(t) =
√

2Vh,c sin (ωt+ βh + γh,ca) (2.40)

are the instantaneous voltages of order h of phases a, b, and c, respectively. The upper case V1,x is the
RMS value of the fundamental voltage of phase x = a, b, c. γ1,ab and γ1,ca are the phase shifts between the
fundamental voltages of phases a-b and c-a. Similarly, Vh,x is the RMS value of the voltage of order h of phase
x = a, b, c. γh,ab and γh,ca are the phase shifts between the voltages of order h of phases a-b and c-a. At last,
βh is the phase shift of vh,a(t) with respect to v1,a(t).

In the absence of accessible neutral points, such as ground or fourth conductor, phase-to-phase voltage
measurements can be employed. Being computed as

vab(t) = va(t)− vb(t) (2.41)

vbc(t) = vb(t)− vc(t) (2.42)

vca(t) = vc(t)− va(t), (2.43)

phase-to-phase voltages have the property of adding up to zero. So, their values can be determined only by
two measurements. For example, if vbc(t) and vca(t) are measured, then vab(t) can be computed as

vab(t) = − [vbc(t) + vca(t)] . (2.44)
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The instantaneous currents flowing through each phase are defined as

ia(t) = i1,a(t) +
∑
h∈H

ih,a(t) (2.45)

ib(t) = i1,b(t) +
∑
h∈H

ih,b(t) (2.46)

ic(t) = i1,c(t) +
∑
h∈H

ih,c(t) (2.47)

where

i1,a(t) =
√

2I1,a sin (ωt+ θ1,a) (2.48)

i1,b(t) =
√

2I1,b sin (ωt− γ1,ab + θ1,b) (2.49)

i1,c(t) =
√

2I1,c sin (ωt+ γ1,ca + θ1,c) (2.50)

are the instantaneous fundamental currents of phases a, b, and c, respectively; and

ih,a(t) =
√

2Ih,a sin (ωt+ βh + θh,a) (2.51)

ih,b(t) =
√

2Ih,b sin (ωt+ βh − γh,ab + θh,b) (2.52)

ih,c(t) =
√

2Ih,c sin (ωt+ βh + γh,ca + θh,c) (2.53)

are the instantaneous current of order h of phases a, b, and c, respectively. I1,x is the RMS value of the
fundamental current of phase x = a, b, c, and θ1,x is the phase shift between i1,x(t) and v1,x(t). Likewise, Ih,x
is the RMS value of the current of order h of phase x = a, b, c, and θh,x is the phase shift of ih,x(t) with respect
to vh,x(t).

The instantaneous power transmitted by each phase is given by

pa(t) = va(t)ia(t) (2.54)

pb(t) = vb(t)ib(t) (2.55)

pc(t) = vc(t)ic(t). (2.56)

Each phase instantaneous power can be decomposed as shown in (2.12). The active power of each phase (Px,
x = a, b, c) is defined as the average of the instantaneous power of that phase, in the same way as in single-phase
systems. Px, x = a, b, c, can be decomposed as in (2.17). The three-phase (or total, or load) instantaneous
power p3φ(t) is given by the summation

p3φ(t) =
∑

x=a,b,c

px(t). (2.57)

If the system has only three-wires without ground-connection, then p3φ(t) can be computed with phase-to-phase
voltages as

p3φ(t) = vab(t)ia(t)− vbc(t)ic(t). (2.58)

The three-phase active power is defined as the average of p3φ(t), that is,

P3φ =
1

kT

∫ τ+kT

τ
p3φ(t)dt, (2.59)
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but can also be computed as the summation of each phase active power, i.e.

P3φ =
∑

x=a,b,c

Px. (2.60)

If the voltage supply is perfectly sinusoidal, then vh,x(t) is nil for all values of h, x and t. As a result,
Vx = V1,x for x = a, b, c and γh,ab = γh,ca = 0. If the voltage supply is perfectly sinusoidal and balanced
(symmetrical), then Va = Vb = Vc, and γ1,ab = γ1,ca = 120°. If the load is also perfectly sinusoidal and
balanced, then Ix = I1,x for x = a, b, c, and Ia = Ib = Ic, and θ1,a = θ1,b = θ1,c. In this specific case,
the oscillatory components of the instantaneous power of each phase add up to zero, and p3φ(t) is equal
and constant to P3φ. Additionally, each phase has the same value of active power, composed only by the
fundamental active power, that is Px = P1,x with x = a, b, c. Similarly, the reactive and apparent power are
composed only by fundamental components and each phase has the same value as the remaining phases. In
this case, the definition employed (Fundamental, Fryze or Budeanu) does not matter.

If the voltage supply or the load is not perfectly balanced, then each phase will have different instantaneous
active powers as well as different PFs, apparent, and reactive powers. In this case, how to compute the load
PF? The following sections shows some load PF definitions.

2.2.2.1 The Fundamental Arithmetic Power Factor

One way of computing the load PF is to compute the load fundamental apparent power as the arithmetic
sum of each phase fundamental apparent power, that is,

Sa1 = S1,a + S1,b + S1,c. (2.61)

The fundamental arithmetic power factor is given by

PF a1 =
P1,3φ

Sa1
. (2.62)

2.2.2.2 The Fundamental Geometric Power factor

The fundamental geometric apparent power is defined as

Sg1 =
√
P 2
1,3φ +Q2

1,3φ, (2.63)

where
Q1,3φ =

∑
x=a,b,c

Q1,x (2.64)

is the three-phase fundamental reactive power.

The fundamental geometric power factor is defined as

PF g1 =
P1,3φ

Sg1
. (2.65)

Figure 2.4 shows graphically the difference between the fundamental arithmetic apparent power (Sa1 ) and
the fundamental geometric apparent power (S1g). Sg1 takes into account the direction of each apparent power,
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Figure 2.4: Power triangles for each phase of an unbalanced system, and the resulting fundamental arithmetic
apparent power and the fundamental geometric apparent power. Based on [1].

adding them up geometrically. Sa1 , on the other hand, adds the modulus of each phase apparent power,
not taking into account their direction. As a result, the relation Sa1 ≥ Sg1 is always true, or alternatively
PF a1 ≤ PF

g
1 .

The definitions presented in (2.62) and (2.65) allows computing the load PF. Although these definitions
use fundamental components only, they can be extended with usage of different reactive and apparent power
definitions. For example, they can be used with Budeanu’s definitions, leading to the Budeanu’s Arithmetic
PF or to the Budeanu’s geometric PF.

2.2.2.3 The Fundamental Positive Sequence Power Factor

According to Fortescue’s theory of symmetrical components, the voltages and currents of any three-phase
unbalanced system can be computed by the voltages and currents of three balanced three-phase systems
denoted as positive, negative and zero sequence, respectively. Since these equivalent circuits are balanced,
they can be represented only by one of the phases, usually phase “A”. The voltages can be computed by the
voltages in the sequence domain as V1,a

V1,b

V1,c

 =

1 1 1

1 ααα2 ααα

1 ααα ααα2


︸ ︷︷ ︸

F

V
z
1

V+
1

V−1

 (2.66)

where F is Fortescue’s matrix, ααα = 1 120°, and Vz
1,V

+
1 , and V−1 are the fundamental zero, positive and

negative-sequence voltage components, respectively. The currents can be computed analogously.
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Figure 2.5: Power triangles for each phase of the positive sequence, and the resulting fundamental positive
sequence arithmetical apparent power and the fundamental positive sequence geometrical apparent power.

Alternatively, the load PF can be adopted as the fundamental positive sequence PF given by

PF+
1 =

P+
1

S+
1

, (2.67)

in which the superscript + indicates positive sequence components, being P+
1 the fundamental positive sequence

active power and S+
1 the fundamental positive sequence apparent power. The positive sequence system is

completely balanced meaning that each phase has the same powers as the other phases, as shown in Figure
2.5. As a result, S+

1 can be computed as S+
1 = S+a

1 or S+
1 = S+g

1 in which

S+a
1
4
= S+

1,a + S+
1,b + S+

1,c (2.68)

is the fundamental positive sequence arithmetical apparent power, and

S+g
1
4
=

√(
P+
1

)2
+
(
Q+

1

)2 (2.69)

is the fundamental positive sequence geometrical apparent power.

Setting S+
1 = S+a

1 or S+
1 = S+g

1 in (2.67) leads respectively to the fundamental positive sequence arith-
metical power factor

PF+a
1 =

P+
1

S+a
1

(2.70)

and to the fundamental positive sequence geometrical power factor

PF+g
1 =

P+
1

S+g
1

. (2.71)

The quantities S+a
1 and S+g

1 (consequently, PF+a
1 and PF+g

1 ) are mathematically equivalent as can be observed
from Figure 2.5. Nonetheless, S+a

1 and S+g
1 may have different values depending on the chosen measurement
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method2. Since this subsection deals only with definitions, the fundamental positive sequence power factor
will be simply denoted by PF+

1 .

2.2.2.4 The Effective Power Factor

It is also possible to employ the effective power factor (PF e) as the load PF. The effective power factor is
computed as

PF e =
P3φ

Se
(2.72)

in which
Se = 3V eIe (2.73)

is the effective apparent power, and V e and Ie are the effective voltage and current respectively. In terms of
symmetrical sequence components, they are computed as

V e =

√
(V +)2 + (V −)2 +

(V z)2

1 + ξ
(2.74)

Ie =

√
(I+)2 + (I−)2 + (1 + 3ρ) (I0)2, (2.75)

where V +, V −, and V z are the positive, negative, and zero sequence voltage RMS values, respectively. It is
worth mentioning that all distortion components of order h should be considered for the computation of the
RMS value. For instance,

V + =

√(
V +
1

)2
+
∑
h∈H

(
V +
h

)2
. (2.76)

V − and V z are computed analogously. Likewise, I+, I−, and I0 refer to the currents sequence components
RMS values. The variables ξ and ρ are used to consider the effects of zero sequence components in four-wire
systems. If ξ and ρ are unknown, it is recommended to set them to one [1]. In three-wire systems, the effective
voltage and current is computed with (2.74) and (2.75), considering that V z = I0 = 0.

2.3 Measurement Methods

This section collects methods for the measurement of the power factor definitions presented in Section 2.2.
It is worth mentioning that the methods may differ on the algorithms used as well the quantities employed. For
instance, the value of PF1,a can be obtained with the measurement of: P1,a and S1,a (using the measurements
of V1,a and I1,a); or P1,a and Q1,a. The quality of the measurement depends on the implemented algorithms.

There is a wide range of algorithms inspired on different techniques. Existing solutions range from the
usage of phasor measurement units (PMUs), which estimates voltage and current phasor for each harmonic,
to solutions based on voltage and current instantaneous samples [126]. Some phasor estimation techniques

2The apparent power S+a
1 can be measured based on the RMS values of fundamental positive sequence voltage and current

of each phase, whereas S+g
1 requires the measurement of fundamental active and reactive power. The methods for measuring

the voltage and current RMS values are different from those used to measure the active and reactive power. As a result, the
measurements of PF+a

1 and PF+g
1 may have different values.
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include those based on the fast Fourier transform (FFT) [127] and on the wavelet transform [42,46]. According
to [11], accuracy, simplicity and the ease of calculation are often taken into account when selecting which
method to be implemented in the energy meter.

2.3.1 Fourier Transform

Usage of voltage and current harmonic decomposition gives high accuracy and flexibility to work with
different PF definitions. For instance, it allows measuring power harmonic components defined by IEEE
Standard 1459-2010 [1]. Other power quantities, such as those proposed by the currents physical components
(CPC) [13] and by the conservative power theory (CPT) [20], can also be assessed. On the other hand, it
increases computational complexity.

2.3.2 Active Power Measurement Method

It is known that the total three-phase active power is obtained by adding up the total active power of each
phase. According to [1], the total active power, in balanced nonsinusoidal conditions, can be decomposed into
fundamental active power (P1) and total harmonic active power (PH). In unbalanced sinusoidal situations, the
active power can be decomposed into positive, negative, and zero sequence powers, denoted by P+, P−, and
P 0, respectively. In the general case, where voltage unbalance and harmonic distortion can be present, these
last two decompositions can be superimposed resulting in 6 components: P+

1 , P−1 , P 0
1 , P

+
H , P−H , and P 0

H .

The total and the positive sequence active powers are measured, respectively, by [1]

P3φ =
∑

x=a,b,c

1

kN

τ+kN∑
s=τ

vx(s)ix(s) (2.77)

P+ = 3
1

kT

τ+kN∑
s=τ

v+a (s)i+a (s), (2.78)

where vx(s) and ix(s) are the voltage and current samples from phase x = a, b, c; v+x (s) and i+x (s) are the
positive sequence voltage and current samples from phase x = a, b, c; τ is the first sample measured in the
window of calculations; N is the number of samples per cycle; and k is the total number of cycles measured.

2.3.3 Reactive Power Measurement Methods

Since the main objective of this work is to compare PF definitions, we restrict the study of measurement
techniques to two simple algorithms: the methods of voltage integration and of 90º displacement of voltage.
These techniques can be easily and cheaply implemented in the development of a meter.

2.3.3.1 90º Displacement of Voltage

The 90° displacement of voltage, proposed by [126], allows an approximate computation of the reactive
power of each phase of the system. For this purpose, a delayed voltage signal is employed in order to simulate
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a 90° phase shift. Mathematically, the reactive power measured is

Qx,displacement =
1

kT

∫ τ+kT

τ
vx

(
t− T

4

)
· ix(t)dt (2.79)

If the phase x has sinusoidal voltage and current, then

Qx,displacement =
−2VxIx
kT

∫ τ+kT

τ
cos (ωt) sin (ωt+ θx) dt (2.80)

Qx,displacement =
−2VxIx
kT

∫ τ+kT

τ

[
sin (ωt) cos (ωt) cos (θx) + sin (θx) cos2 (ωt)

]
dt. (2.81)

After some simplifications,
Qx,displacement = VxIx sin (θx) (2.82)

is exactly equal to the definition of reactive power in sinusoidal conditions.

If the phase x has nonsinusoidal voltage and current, then

Qx,displacement =
−2

kT

∫ τ+kT

τ

[
v1,x

(
t− T

4

)
+
∑
h∈H

vh,x

(
t− T

4

)][
i1,x(t) +

∑
h∈H

ih,x(t)

]
dt. (2.83)

After some simplifications,
Qx,displacement = Q1 − P2 −Q3 + P4 −Q5 . . . (2.84)

It is noteworthy that Qx,displacement is not any of the reactive power definitions discussed in Section 2.2.
Nevertheless, in the study performed by [11] using common distortion levels, Qx,displacement was approximately
equal to Q1,x.

2.3.3.2 Voltage Integration

In the voltage integration method proposed by [120], the reactive power is estimated using a 90° phase shift
in sinusoidal signals obtained from voltage integration as follows

Qx,integration =
ω

kT

∫ τ+kT

τ

[∫
vx(t)dt

]
ix(t)dt. (2.85)

If the phase x has sinusoidal voltage and current, then

Qx,integration =
−2VxIx
kT

∫ τ+kT

τ
cos (ωt) sin (ωt+ θ1,x) dt. (2.86)

Qx,integration =
−VxIx
kT

∫ τ+kT

τ
[sin (2ωt+ θ1)− sin (θ1)] dt. (2.87)

After some simplifications,
Qx,integration = VxIx sin (θx) (2.88)

is exactly equal to the definition of reactive power in sinusoidal conditions.
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If the phase x has nonsinusoidal voltage and current, then

Qx,integration =
1

kT

∫ τ+kT

τ

[∫
v1,x(t)dt+

∑
h∈H

∫
vh,xdt

][
i1,x(t) +

∑
h∈H

ih,x(t)

]
dt. (2.89)

After some simplifications,

Qx,integration = Q1 +
Q2

2
+
Q3

3
+
Q4

4
+ . . . (2.90)

It is noteworthy that Qx,integration is not any of the reactive power definitions discussed in Section 2.2. The
harmonic components are reduced by a factor equivalent to its harmonic order. In the study performed by [11]
using common distortion levels, Qx,integration was approximately equal to Q1,x.

2.3.4 Positive Sequence Power Measurement Algorithms

It is known that performing FFT is computationally costly and that physical filters have limitations [128–
130]. Therefore, we propose here the usage of v+a and i+a to measure P+

1 , Q+
1 , and PF

+g
1 .

First, the phase “a” instantaneous positive sequence voltage is extracted with the proposed algorithm
of [131] as follows,

v+a (t) =
1

3

[
va(t) + vb

(
t− 2T

3

)
+ vc

(
t− T

3

)]
. (2.91)

The instantaneous positive sequence current i+a (t) is computed analogously. Then, it is assumed that P+
1 is

approximately equal to P+, which is computed by (2.78). According to [11], Qx,integration and Qx,displacement are
approximately equal to Q1,x under common distortion levels. So, Q+

1 is estimated with the 90° displacement
of voltage as

Q+
1,x,displacement ≈

3

kT

∫ τ+kT

τ
v+a

(
t− T

4

)
· i+a (t)dt (2.92)

or Q+
1 is estimated with the voltage integration as

Q+
1,x,integration ≈

3ω

kT

∫ τ+kT

τ

[∫
v+a (t)dt

]
i+a (t)dt. (2.93)

Having computed P+
1 and Q+

1 , the value of PF+g
1 is obtained by

PF+g
1 =

P+
1√

(P+
1 )2 + (Q+

1 )2
. (2.94)

To obtain the value of PF+a
1 as

PF+a
1 =

P+
1

S1,a + S1,b + S1,c
, (2.95)

it is necessary to calculate the fundamental RMS value of the voltage and current of each phase, which was
achieved with the method proposed in [127].



CHAPTER 3

Methodology for Computational and Experimental Investigation of PF Fairness

In order to assess the fairness of each PF definition and measurement algorithm, we adopt the PF value
measured with a given definition under balanced sinusoidal nominal voltages (at the point of connection of
the load) as the reference for that PF definition. Each PF definition may have its own reference value, which
may differ from others. It is expected that, if the load remains constant, a fair PF definition should retain
its reference value even when the voltages are not balanced and sinusoidal anymore. With this viewpoint, the
fairest PF definition to be applied in billing purposes is the one that changes only when the load changes.
To evaluate the proposed definition of fairness, the methodology applied in the computational simulations
is presented followed by the experimental tests. Lastly, the methodology to assess the accuracy of some
measurement algorithms by means of a time-domain computational simulation is presented.

3.1 Computational Simulations of Power Factor Definitions from the Fair-
ness Perspective

The computational simulations were performed with Matlab student license [132]. We simulated a set of
unbalanced nonsinusoidal voltage conditions (UNVC) applied to the point of connection of a given load which
is kept constant throughout the simulations. An electrical model is employed to compute the load’s current
and, consequently, the different PF definitions.

This work considers three different types of loads in the simulations. The first load is a constant impedance,
following the literature trend [1, 12, 14, 31, 33, 37, 44, 45, 52, 95]. The second load is a TIM because, in the
policies studied in Section 1.2, PF billing applies for medium and large customers, and the TIM represents
approximately 65–70% of industries total energy consumption [133]. The third load is an unbalanced set of
light-emitting diode (LED) lamps. In the following we present the specific details for each simulated load.

35
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Table 3.1: Voltage Harmonics

Harmonic order 1 3 5 7

Magnitude [% of nominal] 100 2 3 1

Angle [degrees] 0 70 −90 −145

3.1.1 Constant Impedance Loads

Three-phase constant impedance loads can have distinct types of connections.In this work, we use delta-
connected loads with the following values Zab = Zbc = Zca = 1 cos−1(0.95) pu, Zab = Zbc = Zca = 54 Ω, and
Zab = 56 Ω and Zbc = Zca → ∞ (open circuit between phases “b”-“c” and “c”-“a”). This load is said to be
constant if both the impedance magnitude and angle are constant.

The unbalanced voltage conditions used in the simulations and experimental tests are applied directly at
the point of connection of the load. They consist of nil zero-sequence (V z = 0), nominal positive-sequence
(V + = 1 pu = 220 V) and several negative-sequence magnitudes (V −) and angles (θ−1 ). All combinations of
V − ∈ [0, 0.03] pu in steps of 0.0005 pu (61 values) and θ−1 ∈ [0°, 345°] in steps of 15° (24 values) are considered.
The angle θ+ is zero in all cases, because it is the angular reference. The magnitude of V − was chosen so that
the maximum voltage unbalance factor (VUF), given by

VUF =
V −

V +
, (3.1)

is equal to 3%, which is slightly higher than the VUF usual limits in existing regulations, but common in real
distribution systems according to [83].

After defining the set of unbalanced conditions, the voltage harmonics described in Table 3.1 are super-
imposed proportionally to each of the system unbalanced voltages. According to [11], the third, fifth and
seventh harmonics components (with their magnitude and angle values presented in Table 3.1) are typical for
voltage distortions in power systems. Proceeding in this way, a total of 1 464 unbalanced nonsinusoidal voltage
conditions (UNVC) are simulated.

3.1.2 Three-Phase Induction Motor

The simulated TIM is delta-connected, 220 V (line-to-line), 7.5 kW, 60 Hz and has six poles. It is modeled
accordingly to [84,134] with the electrical parameters shown in Table 3.2. Figure 3.1 shows the electrical model
of the motor, in which

sh =
hns − nm
hns

, (3.2)

is the motor slip at frequency order h1,

ns =
120f

poles
, (3.3)

is the motor synchronous speed, nm is the rotor speed, in rotations per minute (r.p.m), and f is the system
frequency in Hz. It is worth mentioning that sh approaches 1 as h increases. For example, if a motor operates

1For concision purposes, we refer to the motor slip at the fundamental frequency if the order h is not specified.
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(a) Positive sequence. (b) Negative sequence.

Figure 3.1: Three-phase induction motor electrical model, having Xs, Xr and Xm measured at the fundamental
frequency.

Table 3.2: TIM Equivalent Circuit Parameters at 60 Hz

Parameter RS Rr XS Xr Xm

Value (Ω) 0.294 0.144 0.503 0.209 13.25

with nm = 1780 rpm and ns = 1800 rpm, then s1 = 0.01 and s7 = 0.86. This means that at higher harmonic
orders, the active power transmitted to the shaft of the motor (which is proportional to the variable resistances
Rr/sh and Rr/(2 − sh)) is lower than at the fundamental. Also, the closer sh is to 1, the closer the positive
and negative sequence models are to each other.

It should be highlighted that the motor operates a mechanical load with constant speed, meaning that s1 is
set to 1.5% for all conditions. Since the desired mechanical output is constant and the motor parameters are not
modified throughout the simulations, the load can be considered constant from the customer’s perspective. In
fact, when the motor speed is constant, the electrical model simplifies to a special type of constant impedance
load with admittance matrix given by

Y z+−
h =

0 0 0

0 Y+
h 0

0 0 Y−h

 , (3.4)

where Y+
h and Y−h are the equivalent positive and negative-sequence admittances, respectively. At last, the

motor reactive power is partially compensated by balanced delta-connected capacitors so that its PFref is equal
to 0.95.

The UNVC consists of positive, negative and zero sequence voltages with different magnitudes and angles.
After defining the unbalanced conditions, a set of harmonics is applied proportionally to each phase. All
combinations of V + ∈ [0.9, 1.1] pu in steps of 0.05 pu and of V − and V 0 ∈ [0, 0.03] pu in steps of 0.005 pu are
considered. These magnitudes were chosen so that the positive sequence is never greater or less than 10% of
the nominal voltage and so that the maximum VUF (3.1) is below 3.5%, which is slightly higher than the VUF
usual limits in existing regulations [83, 112]. In fact, a voltage unbalance between 1% and 3% is present in
32% of the distributions systems in the United States, according to [83]. In terms of standards, the European
Standard EN 51060, for example, establishes that the VUF should be lower than 2% in 95% of 10 minutes
periods, according to [83]. The angles θ0 and θ− used in the database range from 0 to 330° in steps of 30°.
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Figure 3.2: Set of unbalanced voltage conditions employed in the computational simulations of the TIM.

The angle θ+ is zero in all cases, because it is the angular reference.

Figure 3.2 illustrates the set of unbalanced voltage conditions selected for the simulations. It is noteworthy
that the first 245 conditions, shown in the bottom graph of Figure 3.2, refer to the variation of V +, V − and
V 0, while keeping θ− = θ0 = 0. Then, the value of θ− is changed and the 245 combinations of V +, V − and
V 0 are repeated for this new value of θ−. The last variable to change is θ0. Combining all possible values
of V + (5 different values), V − (7), V 0 (7), θ− (12), θ0 (12), results in 5 × 7 × 7 × 12 × 12 = 35280 different
voltage conditions. After defining the set of unbalanced conditions, the voltage harmonics described in [11] are
superimposed proportionally to each of the system unbalanced voltages. According to [11], the third, fifth and
seventh harmonics components (with their magnitude and angle values presented in Table 3.1) are typical for
voltage distortions in power systems. Proceeding in this way, a total of 35280 UNVC are simulated.

3.1.3 Unbalanced Non-linear load

The unbalanced non-linear load selected for analysis was a set of light-emitting diode (LED) lamps as
shown in Figure 3.3 (a). The lamps are connected between a phase and the ground (grounded-wye). In each
phase, all lamps are connected in parallel, so that they are submitted to the same voltages and the total current
is simply the addition of each lamp’s current. The load consists of 500 lamps at phase “a”, 250 at phase “b”
and 1 000 at phase “c”. Each lamp was simulated using the electrical model provided in [135] and illustrated
in Figure 3.3 (b). The parameters for the LED model are shown in Table 3.3. The same set of UNVC applied
to the motor is applied to the unbalanced non-linear load.
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(a) (b)

Figure 3.3: (a)Unbalanced non-linear load consisting of LED lamps connected in grounded-wye configuration.
(b) Electrical model for each LED lamp.

Table 3.3: Parameters for each LED lamp simulated.

Parameter Value
R 22.26 Ω

C 3.04 µF

ID 35 mA

3.2 Computational Simulations of Measurement Algorithms

Existing power meters can be categorized into analog (electromechanical) and digital (electronic) meters.
Analog meters were prevalent in the very early applications but are prone to issues with loose electrome-
chanical parts, dust accumulation and metal oxidation. With advancements in integrated circuits (ICs) and
microcontrollers, digital meters have become more reliable and cost-effective compared to traditional analog
meters [136]. The ongoing trend indicates that, as technology matures and becomes more affordable, digital
meters will likely replace analog meters as the primary choice in facilities worldwide.

Figure 3.4 shows a very simplified diagram of a digital meter. The first stage of the meter is composed
by current transformers (CT) and potential transformers (PT). Then, the analog signals are filtered and
digitalized. Lastly, the digital signals serve as input for the metering algorithms implemented in a computing
processing unit (CPU, encompassing various implementations such as microcontrollers) and the results are
displayed by a human-machine (HM) interface.

Figure 3.4: Simplified diagram of a digital meter.
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Figure 3.5: Voltage noise spectrum.

There are different algorithms for power metering that can be implemented in a CPU as shown in Section
2.3. Some of them, like those based on Fourier or Wavelet transforms, provide more accurate results at the cost
of higher computational power, thus requiring more expensive CPUs. On the other hand, the 90° displacement
of voltage and the voltage integration algorithms can be implemented with very low computational power, thus
with cheaper CPUs, but at the cost of higher metering errors.

We have developed a digital simulation to evaluate the metering algorithms implemented in a CPU. For
this purpose, the same loads and set of UNVC described in Section 3.1 are employed. The voltage and current
waveforms are considered already filtered, sampled at a rate of 64 samples per cycle and digitalized. This means
that we are not simulating an analog signal being filtered, sampled and digitalized. In fact, our evaluation
considers the current and voltage signals that will serve as inputs to the CPU. A window of calculations of 1s
is employed for each condition of the set of UNVC. In the case of instantaneous positive sequence components,
values in the first cycle are not taken into account since the estimation process is only possible after two thirds
of a cycle.

After the processes of filtering, sampling and digitalization, the current and voltage signals should be
almost noiseless. However, depending on the quality of the meter’s parts, the digitalized signal may still be
contaminated with noise. In order to evaluate the effects of noise in the input signal of the metering algorithms,
we simulate two sets of signals (with and without noise). We adopt an additive white gaussian noise (AWGN)
with standard deviation of 0.2 pu, that is equivalent to a signal-to-noise ratio (SNR) of approximately 14 dB.
For each UNVC a different AWGN signal is generated with the same sampling rate as the voltage and current
signals. It is noteworthy that 64 samples per cycle in a 60 Hz system results in a sampling rate of 3, 840 Hz.
Since the noise is white, the noise spectrum is almost flat for all frequencies evaluated from 0 to 1920 Hz,
considering the Nyquist criteria. Figure 3.5 shows the noise spectrum RMS value in the voltage signal for one
of the conditions. It is noteworthy that for each individual frequency the noise magnitude is lower than (1.5%),
however the SNR is not as low due to the spread over all evaluated frequencies.
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The following approximations are considered to compute PF g1 and PF+g
1 . The harmonic active power

is considered negligible with respect to the total fundamental active power [37, 137]. So, P1 is measured
applying (2.77). Similarly, P+

1 is measured with (2.78). According to [11], the reactive power computed by
the 90° displacement of voltage (2.79) and the voltage integration (2.85) methods is approximately equal to
the fundamental reactive power considering common distortion levels.

To measure PF+a
1 , it is necessary to compute P+

1 and S+a
1 . It is noteworthy that S+a

1 can be obtained
using voltage and current RMS measurements or using active and reactive power measurements. Since we are
already using P+

1 and Q+
1 to obtain PF+g

1 , we are going to use measurements of V +
1 and I+1 to obtain PF+a

1 .
For this purpose, the FFT-based method proposed in [127] is applied to v+(t) and i+(t) to extract the RMS
value at the fundamental frequency. Then, S+a

1 is computed as

S+a
1 = 3V +

1 I
+
1 . (3.5)

At last, the error (∆PF ) is computed as the difference between the PF measurement (PFmeas.) and the
PFref.. In particular, the error for PF g1 is

∆PF g1 = PF g1,meas. − PFref., (3.6)

for PF+g
1 is

∆PF+g
1 = PF+g

1,meas. − PFref., (3.7)

and for PF+a
1 is

∆PF+a
1 = PF+a

1,meas. − PFref., (3.8)

where PF g1,meas., PF
+a
1,meas., and PF

+g
1,meas. are computed with (2.65), (2.70), and (2.71), respectively.

3.3 Experimental Tests of Power Factor Definitions from the Fairness Per-
spective

The experimental tests were performed for both the constant impedance loads and the induction motor.
Currently, it was not possible to evaluate the unbalanced non-linear load experimentally.

The basic setup consists of a computer, a controlled voltage source (California Instruments CSW 11110),
a power quality analyzer (Elspec G4500 Blackbox) and the load being evaluated. A control algorithm was
developed in the computer which allows to establish several unbalanced nonsinusoidal voltage conditions and
the duration that each condition should be applied to the load. The algorithm automatically changes conditions
after the specified time and it also reads the power quality measurements every three seconds. The computer
controls the CSW 1110 by a serial cable RS232 protocol and controls the power quality analyzer by a serial
cable using RS485 Modbus protocol.

Considering that each load requires adaptations to the basic setup described above and that a different set
of UNVC was employed to each load, we provide the specific details regarding the experimental tests with the
constant impedance load and the induction motor in the following sections.
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(a) (b) (c)

Figure 3.6: Equipment used in the experimental setup. (a) Computer and controlled voltage source California
Instruments CSW 11110. (b) Power quality meter Eslpec G4500 Blackbox. (c) Three-phase variable resistor.

Figure 3.7: Experimental setup diagram for the constant impedance load.

3.3.1 Constant Impedance Load

For the constant impedance load, in addition to the basic setup described, it is also employed a three-phase
variable resistor (from Micateck). Figure 3.6 show the equipment used for this load. Figure 3.8 shows a diagram
of the experimental setup. The CSW 1110 applies the unbalanced and nonsinusoidal voltages defined to supply
the three-phase variable resistor. The power quality analyzer is used to measure the voltage and the current
phasors of each condition, which are then used by the computer to calculate the different PF definitions.

It is noteworthy that the same loads and set of UNVC employed in the simulations of the constant imped-
ance load (see section 3.1.1) is also employed in the experimental tests.

3.3.2 Three-Phase Induction Motor

The experimental setup consists of a controlled voltage source (California Instruments CSW 11110), a
power quality analyzer (Elspec G4500 Blackbox), a speed sensor, a 4 kW DC generator, a variable resistor
(from Micateck) and a 1,5 kW three-phase squirrel cage induction motor (4 poles, 60 Hz, 220 V and delta-
connected).
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Figure 3.8: Connections of the equipment used in the experimental setup for the three-phase induction motor.

Figure 3.9: Motor and CC generator with coupled shafts employed in the experimental tests

The CSW 1110 supplies the motor with unbalanced and nonsinusoidal voltages. The motor drives the DC
generator, which feeds the variable resistor. The DC generator and the variable resistor, working together,
emulate a mechanical load in the motor shaft. The variable resistor is adjusted so that the motor operates with
nominal power. A speed sensor is used to check if the motor speed was constant throughout the experiment.
The power quality analyzer measures voltage and current phasors every 3 seconds. These measurements
are then employed in the computer to obtain the PF value of each definition. The connections between the
equipment are shown in Figure 3.8. Figure 3.9 shows the motor and the CC generator with their shafts coupled
by a torque sensor.

The experimental tests were elaborated in order to assess the validity of the conclusions drawn from the
simulations study. For this purpose, the evaluation of the PF definitions was performed with a TIM (different
from the one used in the simulations) operating close to nominal power and with different supply conditions
(another collection of VUF values, harmonic spectra, and distortion levels). In the construction of the set of
unbalanced voltages, 9 values of V + are taken into consideration, starting from 0.86 up to 1.06 in steps of
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Figure 3.10: Set of unbalanced voltage conditions employed in the experimental tests.

0.025 pu. For each value of V +, the following scenarios are evaluated: 8 with VUF ∈ [0.5, 4]% in steps of 0.5%,
and 6 with θ− ∈ [0°, 120°] in steps of 24°; resulting in 9 × 8 × 6 = 432 unbalanced conditions. Additionally,
the 10 balanced scenarios with nil VUF and V + ∈ [0.86, 1.06] in steps of 0.025 pu and with V + = 1 pu are
considered, leading to a set of 442 conditions, which are shown in Figure 3.10. First, different values of θ−

are combined with a given value of V + and VUF. Then, the value of V UF changes and the variation of θ−

is repeated. At last, after evaluating different values of VUF and θ− for a given value of V +, we change the
value V + and repeat the process.

For the harmonics, it is considered the pairs of harmonics: (third, fifth), (third, seventh), and (fifth,
seventh). Individual distortion levels of 2%, 5% and 8% are considered for each pair of harmonics. In total,
9 harmonic conditions are considered. The final set of supply scenarios is obtained by the combination of the
442 voltage unbalance values with the 9 harmonic distortion values. Applying combinatory analysis, the total
set of 442× 9 =3978 conditions is applied to the motor for 30 seconds each.

After running the experiment, we noticed that the motor speed (consequently, the motor slip) was not
constant during the simulation. Figure 3.11 shows the motor slip as a function of the VUF. It can be observed
that the motor slip varied from 2% up to 3.2% throughout the test. Additionally, it seems that the VUF did
not significantly affect the motor slip. Given that we want to consider the motor as a constant load from the
customer’s perspective, we want to evaluate conditions in which the motor slip is approximately constant. For
this purpose, we selected the intermediate value of 2.5% slip with ±0.1% tolerance. 901 conditions met the
criteria and were selected to perform the analysis.
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Figure 3.11: TIM slip as a function of the VUF with experimental data (THD of 2%, 5%, and 8%).



CHAPTER 4

Computational Evaluation of Power Factor Definitions and Measurement Methods

4.1 Computational Evaluation of Power Factor Definitions from the Fair-
ness Perspective

This chapter presents the findings of the computational simulations considering the fairness perspective.
The results for each load is presented in a separate section. Lastly, the chapter’s conclusions are summarized.

4.1.1 Balanced Constant Impedance Loads

4.1.1.1 Per-phase Power Factor Definition

After running the computational simulations of 1 464 voltage conditions applied to both balanced constant
impedance loads, the voltage and current phasors were obtained for each condition. Figure 4.1 shows the
results for the PF1,a as a function of the VUF for the load having Zab = Zbc = Zca = 1 cos−1(0.95) pu. It
can be observed that PF1,a is not affected by the voltage unbalance and it was equal to the reference PF. The
same result was obtained for phases “b” and “c”.

4.1.1.2 Three-phase Power Factor definitions

The three-phase PF definitions were computed and are shown in Figure 4.2 as a function of the VUF
for the load having Zab = Zbc = Zca = 1 cos−1(0.95) pu. It is noteworthy that PF g1 = PF e1 = PF a1 =

PF+
1 = PFref = 0.95 for all simulated values of VUF. Analogous results were obtained for the load having

Zab = Zbc = Zca = 54 Ω, with the difference that the reference value of each definition was equal to 1.

46
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Figure 4.1: PF1,a of the delta-connected balanced constant impedance load, having Zab = Zbc = Zca =

1 cos−1(0.95) pu, as a function of VUF with simulated data (THD of 3.74%).

Figure 4.2: Different 3φ PF definitions computed for the balanced constant impedance load, having Zab =

Zbc = Zca = 1 cos−1(0.95) pu, as a function of the VUF with simulated data (THD of 3.74%).
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(a) (b)

Figure 4.3: Per Phase PF of the unbalanced resistive load as a function of VUF with simulated data. (a)
PF1,a. (b) PF1,b.

Figure 4.4: Phasor diagram for the voltages and currents of the unbalanced resistive load.

4.1.2 Unbalanced Constant Impedance Loads

For the unbalanced constant impedance load, in balanced sinusoidal conditions some PF definitions have
distinct values [13, 14, 95, 97]. So, it is expected that they may also provide different values in unbalanced
nonsinusoidal conditions. For this reason, the results for each PF definition are presented next. At last, a
comparative analysis is performed to summarize the findings of the simulation.

4.1.2.1 Fundamental Per-Phase Power Factor

Figure 4.3 shows the fundamental PF for phases “a” and “b” as a function of the VUF with the simulated
data. It is not possible to compute PF1,c because the current at phase “c” is zero. Analyzing Figure 4.3, it
can be observed that in this case both PF1,a and PF1,b have a unique value of 0.866 when the VUF is equal
to zero. When the VUF is greater than zero, there are several different values of PF1,a and PF1,b for a given
VUF and PF1,a is always leading, whereas PF1,b is lagging1. As the VUF increases, the range of values of
PF1,a and PF1,b also increases.

1It is worth recalling that there are several voltage conditions which lead to the same VUF. In the particular case of this
work, for each VUF there are 24 different values for the angle of the negative-sequence voltage, resulting in 24 different voltage
conditions. Also, there are some overlapping points in Figure 4.3.
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(a) (b) (c)

Figure 4.5: Per Phase PF of the unbalanced resistive load with simulated data. (a) 2D scatter plot of PF1,a

as a function of VUF with the θ−1 as the colorbar. (b) 2D scatter plot of PF1,a as a function of θ−1 with the
VUF as the colorbar. (c) 3D scatter plot of PF1,a as a function of the VUF and θ−1 PF1,a as the colorbar.

The fact that PF1,b is lagging and PF1,a is leading can be partially explained by the special asymmetry
of the load, which causes phase “a” current to be the negative of phase “b” current and phase “c” current to
be equal to zero. As shown in Figure 4.4, if the phase shift between the fundamental voltage and current at
phase “a” is lower than the complementary of the phase shift between the fundamental voltages at phases “a”
and “b”, it is expected that the fundamental PF at each phase will have opposite “signs” (one leading and the
other lagging). It is noteworthy that, although the currents of phases “a” and “b” have equal absolute value,
the fundamental PF at each phase may have different values. In general, as the current comes near to the
voltage in phase “a” (increasing PF1,a), the opposite happens with the voltage and current at phase “b”, that
is, they move away from each other, thus decreasing PF1,b.

Figure 4.5 shows the scatter plot of PF1,a as a function of both the VUF and the negative-sequence voltage
angle (θ−1 ). It can be observed that PF1,a is affected by both the VUF and θ−1 . When the VUF is equal
to zero, PF1,a had only one value equal to its reference (0.866). When the VUF increases, PF1,a may have
different values for the same VUF depending on the value of θ−1 . In Figure 4.5 (b), for a given value of the
VUF (equivalently for a given color in the graph), it can be observed an approximately sinusoidal dependence
of PF1,a with respect to θ−1 , in which the VUF appears to increase the amplitude of the sine. The result of
considering different values for the VUF is a stack of these sine-shaped curves. The curve shows that for the
VUF greater than zero, there are two values of θ−1 (120° and 300°) which lead to PF1,a values equal to the
reference. Conversely, for certain values of θ−1 (approximately between [0°, 120°] and [300°, 360°]), an increase
in the VUF results in an elevation of PF1,a. Likewise, certain θ−1 values (approximately within [120°, 300°])
result in a decline of PF1,a as the VUF increases.

4.1.2.2 Three-phase Power Factor definitions

Figure 4.6 shows the scatter plot for each three-phase PF definition computed for the unbalanced resistive
load as a function of the VUF with simulated data. Due to the load asymmetry, the PF definitions have
different reference values measured under balanced sinusoidal nominal voltage conditions. Considering that
there are different PF references, it is necessary to evaluate each PF definition separately with respect to its
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Figure 4.6: 3φ PF definitions computed for the unbalanced load as a function of the VUF with simulated data.

reference. When the VUF is equal to zero, PF g1 and PF+
1 are equal to their reference PF value of 1. Similarly,

PF a1 is equal to its reference of 0.866, which is the same value obtained for the reference of PF1,a. These
definitions (PF g1 , PF

+
1 , and PF a1 ) consider only the fundamental component. For this reason, their value

under balanced nonsinusoidal nominal voltage is equal to their reference. Although PF e considers all voltage
harmonics, its value when the voltage is balanced is approximately equal to its reference (0.707). When the
VUF is greater than zero, PF g1 and PF+

1 have the same value as their reference, that is 1, for all voltage
conditions, being therefore unaffected by the VUF. On the other hand, there are several voltage conditions
that lead to different values of PF a1 and PF e. As a matter of fact, the values of PF a1 are very similar to
those obtained for PF1,x, x ∈ [a, b]. The variations of PF a1 and PF e around their reference values (0.866 and
0.707, respectively) are approximately symmetrical and increase with the VUF. The highest and lowest values
obtained for PF a1 are 0.879 and 0.853, and for PF e are 0.728 and 0.686. Comparing PF e with PF a1 , it can
be observed that the variation (in terms of absolute values) of PF e is higher than the observed for PF a1 , that
is 0.042 against 0.026. Also, in the obtained results PF e ≤ PF a1 ≤ PF

g
1 = PF+

1 independently of the VUF.

Considering that PF e and PF a1 had multiple values for the same VUF, a detailed analysis of these two
definitions is provided next.

Figure 6.1 and 4.8 show the scatter plot of PF e and PF a1 , respectively, as a function of the VUF (or
equivalently V −, since V + was equal to 1) and the negative-sequence voltage angle (θ−1 ). It can be observed
that the results are analogous to those obtained with PF1,a in Figure 4.5. In both cases, the graphs show a
sinusoidal dependence with respect to θ−1 , being the VUF the sine amplitude.

When the VUF is equal to zero, PF e and PF a1 have only one value approximately equal to their reference
values of 0.707 and 0.866, respectively. When the VUF is greater than zero, there are two values of θ−1
(approximately 150° and 330°) which lead to PF e and PF a1 being equal to their references. Also, there are
some values of θ−1 (between [0°, 150°] and [330°, 360°], approximately) in which an increase of the VUF leads
to higher PF e and PF a1 . Likewise, there are some values of θ−1 (between 150° and 330°) in which an increase
of the VUF results in a decrease of PF e and PF a1 .

The results obtained also allow comparing unbalanced and balanced loads. It was shown in subsection
6.3.1 that for balanced constant impedance loads the PF definitions investigated provided the same constant
value independently of the VUF. On the other hand, for the unbalanced load, PF1,x, x = a, b, c, PF e, and PF a1
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(a) (b) (c)

Figure 4.7: PF e of the unbalanced resistive load with simulated data. (a) 2D scatter plot of PF e as a function
of VUF with the θ−1 as the colorbar. (b) 2D scatter plot of PF e as a function of θ−1 with the VUF as the
colorbar. (c) 3D scatter plot of PF e as a function of the VUF and θ−1 with PF e as the colorbar.

(a) (b) (c)

Figure 4.8: PF a1 of the unbalanced resistive load with simulated data. (a) 2D scatter plot of PF a1 as a function
of VUF with the θ−1 as the colorbar. (b) 2D scatter plot of PF a1 as a function of θ−1 with the VUF as the
colorbar. (c) 3D scatter plot of PF a1 as a function of the VUF and θ−1 with PF a1 as the colorbar.

were sensitive to the voltage unbalance because each of them had multiple values for a given VUF greater than
zero. In particular, there were several values of PF e when the VUF was greater than zero. The spreading of
PF e was symmetrical around the value measured at zero VUF and it increased with the VUF. In the case of
the unbalanced load, it can be concluded that the proposed equivalence by the effective PF is not always true
when the VUF is greater than zero, because the PF e of the balance load is unaffected by the VUF while the
PF e of the unbalanced load is affected by the VUF. As a matter of fact, the two loads had the same PF e only
when θ− was equal to 150° or 330°.

Table 6.2 summarizes the values obtained in the simulations for each PF definition. The results obtained
allow comparing a specific PF definition when applied to unbalanced and balanced loads by comparing the
values along the same row of Table 6.2. Selecting a column and comparing the values across rows allows
comparing the application of different PF definitions for the same load and voltage condition.

Comparing the PF definitions for the same load, it can be observed that all the investigated definitions yield
the same result for the balanced load independently of the voltages applied. For the unbalanced load under
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Table 4.1: Summary of the simulation results.

Balanced Load Unbalanced Load
Balanced Unbalanced Balanced Unbalanced
Voltages Voltages Voltages Voltages

PF1,a 1 1 0.866 [0.850, 0.880]

PF a1 1 1 0.866 [0.853, 0.879]

PF g1 1 1 1 1

PF+
1 1 1 1 1

PF e 1 1 0.707 [0.686, 0.728]

Figure 4.9: PF1,a of the TIM as a function of VUF with simulated data (THD of 3.74%).

balanced voltage conditions, the fundamental per-phase PF have the same value as the fundamental arithmetic
PF. The fundamental geometric and positive-sequence PFs have the same value of 1 (equal to the balanced
load). In this case, the following inequality holds PF g1 = PF+

1 ≥ PF1,a = PF a1 ≥ PF e. For the unbalanced
load under unbalanced voltage conditions, the fundamental per-phase PF, the fundamental arithmetic PF and
the effective PF are significantly affected by the voltage unbalance and they do not have a unique value. The
highest variation was observed for PF e (0.042), followed by PF1,a (0.03) and PF a1 (0.026).

4.1.3 Three-Phase Induction Motors

4.1.3.1 Per-phase Power Factor Definitions

Figure 4.9 shows a scatter plot of PF1,a as a function of the VUF for all 35280 conditions of the database.
Many of these conditions result in the same pair of VUF and PF values, leading to the superimposition of
points in the graph. From Figure 4.9, it can be observed that PF1,a can have different values for the same
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Figure 4.10: TIM PF1,x, x = a, b, c values for the first 35 unbalanced nonsinusoidal voltage conditions simulated
(θ− = θ0 = V 0 = 0, and THD of 3.74%).

Table 4.2: TIM Fundamental Power Factor per phase for two conditions.

Condition PF1,a PF1B PF1C

V1 = 1∠0

V2 = 0.01∠0
0.91 0.97 0.96

V1 = 1∠0

V2 = 0.01∠30°
0.96 0.97 0.91

VUF. For instance, a 1.5% VUF results in PF1,a values ranging from 0.88 lagging up to 0.99 lagging. For a
VUF of 3%, there are conditions that lead to PF1,a values in between 0.8 lagging and 0.999 leading. Therefore,
it can be concluded that the interval of possible values for PF1,a increases with the VUF. Additionally, leading
PF is unacceptable in some regulations as shown in Section 1.2.

The results for phases “b” and “c” are analogous to those presented for phase “a” in Figure 4.9. From
Figure 4.10, which shows PF1,x, x = a, b, c for the first 35 UNVC, it can be observed that each phase have a
different PF value for each condition. In these first 35 conditions (θ− = θ0 = V 0 = 0), PF1,a ≤ PF1,c ≤ PF1,b.
However, for a different value of θ− the relation between the values of PF1,a, PF1,c, and PF1,b may change,
as shown in Table 4.2, which presentes two different conditions with 1% VUF. In the first, θ− = θ0 = V 0 = 0°
and PF1,a ≤ PF1,c ≤ PF1,b. In the second, θ0 = V 0 = 0 and θ− = 30° and PF1,c ≤ PF1,a ≤ PF1,b.

In order to assess the VUF associated with conditions that causes charges in at least one of the phases,
the minimum value of the fundamental PF between phases (PF1min) is computed for each condition, and is
shown in Figure 4.11.

Similarly to PF1,a shown in Figure 4.9, there are conditions with the same VUF that leads to different
values of PF1min as shown in Figure 4.11. The range of possible values also increases with the VUF. From
Figure 4.11, it can be observed that for a VUF of 1% there are some conditions conducting to PF1min < 0.92,
which means that PF1,x, x = a, b, c is lower than 0.92 in at least one of the phases. For VUF equal or greater
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Figure 4.11: PF1min of the TIM as a function of VUF with simulated data (THD of 3.74%).

than 1.5%, all simulated conditions yielded PF1min < 0.92, meaning that at least one phase PF1,x, x = a, b, c

is lower than the commonly acceptable value of 0.92. In both situations, the VUF is still within the usually
acceptable limit of 2% [83], and the utility has no obligation to improve the supply quality. Nonetheless, the
existing unbalance in the grid may result in PF charges if a per phase charging is applied or if PF1min is
utilized as the three-phase definition.

Summarizing, there are several conditions with the same VUF yielding different PF1,x values. Some
conditions can even result in leading PF, which is unacceptable in some regulations as shown in Section 1.2.
Moreover, when the VUF is equal or greater than 1.5%, at least one of PF1,x, x = a, b, c is less than 0.92.
What stands out is that the customer’s load was held constant with PFref equal to 0.95. Therefore, these
approaches are not suitable for billing purposes of TIMs.

4.1.3.2 Three-phase Power Factor Definitions

Figure 4.12 shows the scatter plot for each definition computed for the TIM against the respective VUF
associated with the supply condition. First, it should be noted that for balanced conditions, PF a1 , PF

g
1 , PF

e

and PF+
1 are equal to the reference value of 0.95. For unbalanced conditions, it can be observed that PF a1

and PF e are lower than PFref. For unbalance close to 2.5%, their values are lower than 0.92 and the customer
may be penalized. Also, PF a1 can have different values for the same VUF. Similarly to the per phase PF1,a

presented in Section 4.1.3.1, the range of possible values for PF a1 increase with the VUF. So, neither PF a1
nor PF e are suitable for billing purposes given their sensitivity to the VU. On the other hand, both PF g1 and
PF+

1 are approximately constant and equal to PFref. Therefore, PF
g
1 and PF+

1 are recommended for revenue
purposes.

We also performed a simulation with the TIM considering fixed values of VUF equal to 1.5% and 2%.
The harmonics are kept with the same angle and proportion to each other. The THD varies from 3.74% up
to 8%. Figure 4.13 (a) shows the results obtained for the investigated PF definitions as a function of the
THD considering VUF of 1.5%. It can be noticed that PF g1 , PF

a
1 , and PF

+
1 are not significantly affected by

the variation of the THD because these definitions are based on the fundamental components of voltage and
current. On the other hand, the increase of the THD reduced the value of the PF e. This makes sense because
the THD increases the RMS value of the voltage and current, consequently increasing the effective apparent
power. As a result, the PF e decreases with respect to the THD increase. At last, it is worthy mentioning that
the definitions do not have the same values because of the VUF equal to 1.5%. Similar results are observed
with VUF equal to 2%, as shown in Figure 4.13.
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Figure 4.12: Different 3φ PF definitions computed for the TIM as a function of the VUF with simulated data
(THD of 3.74%).

(a) VUF of 1.5% (b) VUF of 2%

Figure 4.13: Different 3φ PF definitions computed for the TIM as a function of the THD with simulated data.
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(a) PF1,a (b) PF1,b (c) PF1,c

Figure 4.14: Per Phase PF of the LED load as a function of VUF with simulated data (THD of 3.74%).

Summarizing, PF a1 and PF e1 were shown to be significantly affected by the VUF. With VUF of 2%, their
values were already below 0.92 and the customer may be penalized. Also, PF a1 can have different values for the
same VUF. The range of possible values of PF a1 is shown to increase with the VUF. With respect to different
THD values, PF e is the most affected definition. Hence, PF a1 and PF e1 are not suitable for billing purposes of
TIMs. On the other hand, PF g1 and PF+

1 were constantly close to the PFref independently of the VUF and
THD. Therefore, PF g1 and PF+g

1 are recommended for billing purposes of TIMs.

4.1.4 Light Emitting Diodes (LEDs)

4.1.4.1 Fundamental Per-Phase Power Factor

Figure 4.14 shows the fundamental PF for phases “a”, “b”, and “c” as a function of the VUF with the
simulated data having THD of 3.74%. It can be observed in Figure 4.14 that all phases had the same PF
behavior. So, the analyzes of PF1,a applies to the other phases. PF1,a is always leading and there are several
different values of PF1,a when the VUF is equal to zero. As the VUF increases, the range of values of PF1,a

also slightly increases.

One may ask why PF1,a have multiple values even when the VUF is zero. This can be explained due
to the reference point of voltage measurement. If a common point is selected as a reference for all voltage
measurements, this point acts as a common mode voltage component, which can be computed based on the
zero sequence voltage. As the reader may recall, the voltage dataset employed in this simulations (the same
employed for the TIM) contains 7 different values of V z, starting from 0 to 0.03 pu in steps of 0.005 pu. Also,
the dataset contains 12 different values for the zero sequence angle, θz, starting from 0 to 330° in steps of 30°.
Since the zero sequence voltage component affects all phases in the same way, any changes in this component
is equivalent to changing the reference point of measurement. As a result, all PF definitions that are affected
by the choice of the reference point of measurement will be affected by the value of V z and θz. It is noteworthy
that this behavior was not observed for the TIM, even though the same set of UNVC was employed.

In order to visualize the effects of V z, Figure 4.15 shows PF1,a of the set of LED lamps as a function of V z

with the VUF equal to zero. It can be observed that for V z equal to zero and the VUF equal to zero, there
are different values for PF1,a according to the positive-sequence voltage magnitude V +. For each value of V +,
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the range of value of PF1,a increases with V z. It is noteworthy that this spread of the values of PF1,a occurs
symmetrically around the value measured with V z equal to zero. Also the spread of PF1,a does not appear to
be affected by V +.

Figure 4.15: PF1,a of the LED load as a function of V0 with VUF equal to zero.

4.1.4.2 Three-phase Power Factor Definitions

Figure 4.16 shows the scatter plot for each definition computed for the unbalanced non-linear load (set of
LED lamps) as a function of the VUF. It should be noted that even for balanced conditions, PF a1 , PF

g
1 , PF

e

and PF+
1 have multiple values. Remember the dataset contains 5 different values of V + and 7 different values

of V z. In order to exclude these two variables, we filter the dataset to those conditions with V + = 1 pu and
V z = 0.

Figure 4.17 shows the scatter plot for each definition computed for the unbalanced non-linear load (set
of LED lamps) as a function of the VUF considering the subset with V + = 1 pu and V z = 0. In this case
when the VUF is zero, all definitions had only one value which was equal to their reference values. As the
VUF increases, the range of possible values for each definition also increased. In terms of absolute values, the
highest variation was observed for PF e (0.0114), followed by PF+

1 (0.0106), then PF g1 and PF a1 (both with
0.0021). It is noteworthy that in the case of the LED lamps, the variations with respect to the VUF are lower
1.2× 10−2.

Considering the full dataset (with all different values of V + and V z), the highest variation was observed
for PF+

1 (0.0407), followed by PF e (0.0255), then PF g1 and PF a1 (both with 0.0233). So, it can be concluded
that, for this specific load, the impacts of V + and V z on the PF values were higher than the VUF.
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Figure 4.16: Different 3φ PF definitions computed for the set of LED lamps as a function of the VUF with
simulated data (THD of 3.74%).

(a) (b)

Figure 4.17: Different 3φ PF definitions computed for the set of LED lamps as a function of the VUF with
the subset of simulated data having V + = 1 pu and V z = 0 (THD of 3.74%).
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Figure 4.18: ∆PF+g
1 and ∆PF g1 with 90° voltage displacement and voltage integration measurement methods

for the constant impedance load with simulated data (THD of 3.74%).

4.2 Computational Evaluation of Measurement Algorithms’ Effects on the
Fairest Power Factor Definitions

This chapter evaluates the accuracy of the measurement methods discussed in Section 2.3.3 considering the
methodology presented in Section 3.2. The accuracy here is assessed by the difference between the measured
and the reference values of that PF definition for that load.

4.2.1 Accuracy of Measurement Algorithms Without Noise

The values of ∆PF+a
1 obtained without noise for the constant impedance load (Zab = Zbc = Zca =

1 cos−1(0.95) pu and the TIM were approximately constant (lower than 0.0003 in module) with regard to
the VUF. Therefore, the computation of PF+a

1 with the FFT-based method proposed in [127] is shown to be
accurate.

Fig. 4.18 shows ∆PF g1 and ∆PF+g
1 for the constant impedance load obtained by the 90° displacement of

voltage and by the voltage integration techniques as function of VUF. From Fig. 4.18, it is possible to verify
small errors (of order 10−5) for both measurement methods.

Fig. 4.19 shows ∆PF g1 and ∆PF+g
1 for the TIM obtained by the 90° displacement of voltage and by the

voltage integration techniques as function of VUF. From Fig. 4.19, it is possible to verify small errors (of
order 10−3) for both measurement methods. Errors of order 10−3 are negligible within the existing regulations
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Figure 4.19: ∆PF+g
1 and ∆PF g1 measured with the 90° voltage displacement and voltage integration methods

for the TIM considering noiseless voltage and current signals of simulated data (THD of 3.74%).

discussed in Section 1.2.

It can also be observed that for VUF equal to zero, both techniques had deviations close to zero. On
the other hand, for a 3% VUF, the methods applied to obtain PF+g

1 presented errors from −2 × 10−3 up to
+2 × 10−3, depending on the VU condition. As a mater of fact, PF+g

1 reading presented different errors for
the same VUF (greater than zero) depending on the condition. This phenomenon is noted to be intensified
proportionally to the increase of VUF. This behaviour was not verified for PF g1 . On the other hand, PF g1
readings deviate negatively from its reference value, resulting in ∆PF g1 up to −3 × 10−3 for VUF equal to
3.4%. For VUF greater than 2.5%, ∆PF g1 readings are higher in module than ∆PF+g

1 .

4.2.2 Accuracy of Measurement Algorithms With Noise

In this section, it is evaluated how the measurement methods perform with noisy voltage and current signals.
For this purpose, an additive white Gaussian noise with standard deviation of 0.2 pu was superimposed in the
signals used in Section 4.2.1. For concision purposes, the results are presented only for the TIM.

The values of the TIM ∆PF+a
1 obtained with noise were approximately constant (lower, in module, than

0.0003) with regard to the VUF. Therefore, the computation of PF+a
1 with the FFT-based method proposed

in [127] is shown to be robust to the presence of noise in the voltage and current signals.

Fig. 4.20 shows, as a function of the VUF, the measurement errors of the TIM PF+g
1 and PF g1 employing

the 90° displacement of voltage and the voltage integration methods. It can be seen that the values of ∆PF g1
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Figure 4.20: ∆PF+g
1 and ∆PF g1 measured with the 90° voltage displacement and voltage integration methods

for the TIM considering noisy voltage and current signals of simulated data (THD of 3.74%).

measured with both methods is approximately equal to those obtained in Fig. 4.19. On the other hand,
the results of PF+g

1 evaluations with the 90° displacement of voltage or the voltage integration methods are
sensitive to noise. Nonetheless, the maximum and minimum values of ∆PF+g

1 are similar to those obtained
under noiseless conditions (of order 10−3). Therefore, both PF g1 and PF+g

1 can be accurately measured by
the 90° displacement of voltage and the voltage integration methods considering voltage and current signals
with noise up to 0.2 pu.

4.3 Chapter Remarks

In this chapter, we investigated different PF definitions and measurement methods by means of computa-
tional simulations. The application of different PF definitions to balanced and unbalanced constant impedance
loads, to an induction motor and to an unbalanced non-linear load composed by light-emitting diode (LED)
lamps revealed that each PF definition had a different behavior for each load.

For the balanced constant impedance load, all definitions provided constant values equal to their refer-
ences even when the voltages were unbalanced and nonsinusoidal. For the unbalanced constant impedance
load, only the fundamental geometric and the fundamental positive sequence PFs were constant and equal to
their reference values. The fundamental per-phase, the fundamental arithmetic and the effective PFs under
unbalanced voltages can be lower or higher than their reference values. In this sense, their application may
lead to billing scenarios unfair to the utility (if the customer would be charged under balanced voltages, but
his PF gets higher due to the voltage unbalance) or the customer (if he would not be charged under balanced
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voltages).

For the induction motor, only the fundamental geometric and the fundamental positive sequence PFs were
constant and equal to their reference values. In this case, the fundamental arithmetic and the effective PFs
under unbalanced voltages were lower than their reference values. The fundamental per-phase PF, on the other
hand, could be higher or lower than its reference value, potentially leading to billing scenarios unfair to the
utility or the customer.

For the unbalanced non-linear load composed by LED lamps, it was observed that the fundamental per-
phase PF is affected by both the zero and positive-sequence magnitudes. As a result voltage levels higher or
lower than the nominal may increase or reduce (respectively) the fundamental per-phase PF with respect to
its reference value. Lastly, the sensitivity to the zero-sequence component implies that this PF definition is
affected by the choice of the measurement point. All three-phase definitions were shown to be affected by
V z, V +, and V −. However, for nominal voltages (V + = 1 pu) and zero common mode voltages (V z = 0),
their variation with respect to the VUF was lower than 1.14 × 10−2. On the other hand, when all possible
values of V z, V +, and V − from the dataset were present, the variations of each PF definitions were lower than
4.1× 10−2. It can be concluded that none of these definitions were able to maintain the load’s PF equal to its
reference value when the voltages are not balanced, sinusoidal and nominal anymore.

Lastly, this chapter has also assessed the accuracy of the measurement algorithms for the fairest PF defini-
tions obtained in the simulations. It is noteworthy that the simulation did not consider all the parts of a digital
meter but only the measurement algorithms implemented in a CPU. An experimental test could potentially
increase the noise in the input signals of the algorithms, but this has also been evaluated computationally by
changing the SNR. It was shown the sample-based active power method and the reactive power methods of the
90° displacement of voltage and the voltage integration were tested to measure PF g1 and PF+g

1 . In the case of
PF+g

1 , estimation of instantaneous positive sequence components was performed with a time-delay method.
The measurement of PF+a

1 was performed with the modified cosine method [127]. Simulations results showed
that PF g1 , PF

+g
1 , and PF+a

1 have the property of being accurately measurable even considering an approx-
imately 14 db of SNR in the voltage and current signals. Additionally, PF g1 and PF+g

1 can be accurately
measured by simple methods such as the 90° displacement and voltage integration methods. In other words,
the measured values of PF g1 , and PF

+g
1 have little sensibility on the measurement algorithm, and they are not

significantly affected even if the utility delivers unbalanced nonsinusoidal voltages



CHAPTER 5

Experimental Evaluation of Power Factor Definitions from the Fairness Perspective

5.1 Unbalanced Constant Impedance Loads

5.1.1 Per-phase Power Factor Definition

This section presents the results of the experimental tests with the unbalanced constant impedance load.
Figure 5.1 shows the fundamental PF for phases “a” and “b” as a function of the VUF with the experimental
data. It is not possible to compute PF1,c because the current at phase “c” is zero. Analyzing Figure 4.3, it can
be observed that the overall behavior is very similar to that obtained in the simulations (Figure 4.3), but with
some distinct values. For example, PF1,a and PF1,b are equal to 0.85 and 0.88, respectively, when the VUF is
close to zero.

Figure 5.2 shows the experimental results in the form of a scatter plot of PF1,a as a function of both
the negative-sequence voltage magnitude (V −) and angle (θ−). It can be observed that the simulations and
experimental results are very similar, having the same overall shape. The values in Figure 5.2 are different
from those of the simulation because the experimental load had to be smaller (drawing less active power)
due to practical limitations. Nonetheless, the conclusion derived from the curve shape are ratified with the
experimental tests.

The experimental results corroborate the conclusions drawn from the simulation outcomes. Although the
numerical values for each voltage condition did not precisely align with those obtained in the simulations, it was
evident that the overall trends exhibited by each definition closely mirrored those observed in the simulations.
Notably, under balanced voltage conditions with a VUF equal to zero, the per-phase fundamental PF exhibited
the most distinct variation from the simulation results. In this case, the difference is lower than 0.015.

The application of the per-phase fundamental PF or the fundamental arithmetic PF or the effective PF
for billing purposes may lead to unexpected PF values and to possible unequal treatment between customers.

63
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(a) (b)

Figure 5.1: Per Phase PF of the unbalanced resistive load as a function of VUF with experimental data.(a)
PF1,a. (b) PF1,b.

(a) (b) (c)

Figure 5.2: Per Phase PF of the unbalanced resistive load with experimental data (a) 2D scatter plot of PF1,a

as a function of VUF with the θ− as the colorbar. (b) 2D scatter plot of PF1,a as a function of θ− with the
VUF as the colorbar. (c) 3D scatter plot of PF1,a in the z-axis, θ− in the x-axis, and the VUF in the y-axis
with PF1,a as the colorbar.
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For example, consider two customers with identical loads submitted to the same VUF. The application of any
of these definitions may lead to the PF of one of the customers being lower than the other. The reason for
different readings in this hypothetical situation is the angle of the negative-sequence component of the voltages
supplied to both customers.

On the other hand, the application of the per-phase fundamental PF or the three-phase fundamental
arithmetic or effective PFs may potentially lead to unfair billing scenarios for the utility. Remember, the
variations of these PFs can be positive or negative with respect to their reference value. This can lead to a
situation where the customer’s PF under balanced sinusoidal voltages would be lower than the established
limits, resulting in charges. However, the voltages supplied are not balanced due to other factors (such as the
influence of other customers). As a result, the actual PF of that customer gets higher than the utility limits.
This conducts to the customer that should be charged not being charged as a consequence of other factors
unrelated to him. This case, therefore, represents an unfair billing scenario from the utility perspective.

Another hypothetical situation that may happen when employing the fundamental per-phase PF is that,
depending on the local charging policy, the customer may be charged twice. The first time for a lagging low
PF value in one the phases. The second for a leading low PF value in another phase. In addition to a low
PF value in both phases, the customer may also be charged due to the fact that one of the phases has a
leading PF, which according to [9] is not allowed by some utilities (e.g. Hydro-Quebec in Canada or Synergy
in Australia). This situation, where one of the phases is lagging and the other is leading, can be observed
with the simulation results shown in Table 5.1. Such double charge should be thoroughly discussed since the
fundamental per-phase PF in this case is not behaving like in balanced sinusoidal voltage conditions, in which
according to [11] most PF billing policies were designed.

Table 5.1: Values of the fundamental PF for phases “a” and “b” for the same voltage condition.

Condition PF1,a PF1,b

V−1 = 0.03 30° 0.88 leading 0.87 lagging

At last, only the usage of PF g1 and PF+
1 is shown to always provide the same value for the unbalanced load

even under unbalanced and nonsinusoidal voltage conditions. So, these two definitions are the only reliable
ones to employ for billing purposes of resistive constant impedance loads.

5.1.2 Three-phase PF definitions

Figure 5.3 shows the scatter plot for each three-phase PF definition computed for the unbalanced resistive
load as a function of the VUF with experimental data. It can be observed that the simulations and experimental
results are very similar, having the same overall shape but different values. When the VUF is equal to zero,
PF g1 and PF+

1 are equal to their reference PF value of 1, and PF a1 and PF e are equal to their reference
values of 0.866 and 0.706, respectively. When the VUF is greater than zero, PF g1 and PF+

1 still have the
same reference value of 1 for all voltage conditions, being therefore unaffected by the VUF. On the other
hand, there are several voltage conditions that lead to different PF a1 and PF e values. The highest and lowest
values obtained for PF a1 were 0.878 and 0.852, respectively, and for PF e were 0.727 and 0.685, respectively.
The variations of PF a1 and PF e around theirs reference values are approximately symmetrical and increased



5.1 – Unbalanced Constant Impedance Loads 66

Figure 5.3: 3φ PF definitions computed for the unbalanced resistive load as a function of the VUF with
experimental data.

with the VUF. Comparing PF e with PF a1 , it can be observed that the variation (in terms of absolute values)
of PF e was higher than the observed for PF a1 , that is 0.021 against 0.012. Like simulations results, in the
experimental results PFe ≤ PF a1 ≤ PF

g
1 = PF+

1 independently of the VUF.

Figure 5.4 shows the scatter plot of PF e as a function of both the negative-sequence voltage magnitude
(V −) and angle (θ−). Analogous results have been found for PF a1 (which is not shown here for concision
purposes) and for PF1,a as shown in Figure 5.2. It can be observed a sinusoidal dependance with respect to
θ−, being V − the sine amplitude. When V − is equal to zero, PF e and PF a1 had only one value approximately
equal to their reference values of 0.71 and 0.866, respectively. When V − is greater than zero, there are two
values of θ− (approximately 150° and 330°) which lead to PF e and PF a1 values equal to their reference values.
Also, there are some values of θ− (between [0°, 150°] and [330°, 360°], approximately) which cause PF e and
PF a1 to increase with the increase of V −. Likewise, there are some values of θ− (between 150° and 330°) which
cause PF e and PF a1 to decrease with the increase of V −.

In the experimental results, PF1,a and PF1,b were equal to 0.85 and 0.88 when the VUF was close to zero,
respectively, but the former was leading while the latter was lagging. In the simulations, both phases had the
same fundamental PF value when the VUF was close to zero. In both simulations and experimental tests, for
a given value of the VUF greater than zero, there were different values for PF1,x, x = a, b and this range of
values increased symmetrically around the reference value with the VUF increase.

It was shown that, similar to the simulations, each three-phase PF definition had a different behavior in
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(a) (b) (c)

Figure 5.4: PF e of the unbalanced resistive load with experimental data. (a) 2D scatter plot of PF e as a
function of VUF with the θ− as the colorbar. (b) 2D scatter plot of PF e as a function of θ− with the VUF as
the colorbar. (c) 3D scatter plot of PF e in the z-axis, θ− in the x-axis, and the VUF in the y-axis with PF e

as the colorbar.

the experimental results. PF g1 , PF
e, and PF a1 had different reference PF values, so they had to be analyzed

separately with respect to their own PF reference value. PF g1 and PF+
1 had the same reference value of 1

and were unaffected by the VUF. On the other hand, PF a1 and PF e1 were affected by V − and θ−. For a
given VUF greater than zero, there were different values of PF e and PF a1 around their reference value (0.71

and 0.86, respectively, in the experimental results and 0.706, 0.865, respectively, in the simulations). In both
simulations and experimental tests, the range of possible values of PF e and of PF a1 symmetrically increased
with the VUF.

5.2 Three-Phase Induction Motors

In this section, the sensitivity to the voltage unbalance of different PF definitions is evaluated experimentally
with a motor operating under unbalanced and distorted voltages. The methodology employed to obtain the
results is described in section 3.3.

5.2.1 Per Phase PF Definitions

Figure 5.5 shows a scatter plot of PF1,a as a function of the VUF for the 901 experimental conditions.
Many of these conditions result in the same pair of VUF and PF, leading to the superimposition of points in
the graph. From Figure 5.5, it can be observed that PF1,a can have different values for the same VUF. For
instance, a 1.5% VUF results in PF1,a ranging from 0.96 up to 0.99. For a VUF of 3%, there are conditions
that lead to PF1,a in between 0.93 and 1. Therefore, it can be concluded that the interval of possible values
for PF1,a increases with the VUF.

The results for phases “b” and “c” are analogous to those presented for phase “a”. However, it was observed
that each phase had a different PF value for each VU condition. Table 5.2 shows PF1,x, x = a, b, c for a given
voltage condition with 1% VUF. It can be observed in this case that all phases have a distinct PF1,x, x = a, b, c

value. More specifically, PF1,b ≤ PF1,a ≤ PF1,c. In order to assess the VUF associated with conditions
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Figure 5.5: PF1,a of the TIM as a function of VUF with experimental data (THD values of 2%, 5%, and 8%).

Table 5.2: TIM Fundamental Power Factor per phase for two experimental conditions.

Condition PF1,a PF1,c PF1,c

V1 = 1∠0

V2 = 0.01∠52°
0.98 0.97 0.99

that causes charges in at least one of the phases, the minimum value of the fundamental PF between phases
(PF1min) is computed for each condition, and it is shown in Figure 4.11.

Similarly to PF1,a shown in Figure 4.9, there are conditions with the same VUF that leads to different
values of PF1min as shown in Figure 4.11. The range of possible values also increases with the VUF. From
Figure 4.11, it can be observed that for a VUF of 3.5% there are some conditions conducting to values of
PF1,x, x = a, b, c lower than 0.92 in at least one of the phases. Therefore, the experimental result ratify that
the per phase PF is not suitable for billing purposes of TIMs.

5.2.2 Three-Phase Power Factor Definitions

In Fig. 5.7, it can be seen that the TIM three-phase PFs have a more scattered pattern when compared
to the correspondent PFs in Fig. 4.12. This scattering shows that the points obtained experimentally do
not superimpose as perfectly as in Fig. 4.12, meaning that more supply conditions lead to results with the
same VUF but different PF values. In Fig. 5.7, it can be seen that PF e and PF a1 definitions presented the
greatest scattering bands for any fixed VUF. In other words, PF e and PF a1 are the most vulnerable to the
VUF and the THD. Although all PF definitions present some sensitivity to the presence of unbalance and
distortion, one can see that the general behavior of the PFs to the VUF is similar in Figures 5.7 and 4.12.
When the VUF increases, it can be observed that the scattering band of PF e and PF a1 shifts down, the
PF g1 band shifts down slightly, and the position of the band of PF+

1 is the most stable presenting the least
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Figure 5.6: PF1min of the TIM as a function of VUF with experimental data (THD values of 2%, 5%, and
8%).

variation with respect to VUF changes. In particular, considering the worst case, it can be seen that, for any
VUF, the lower values of PFs are such that PF+

1 ≥ PF g1 ≥ PF a1 ≥ PF e. Based on these results, it can be
concluded that the experimental investigation and the simulation study are in accordance, indicating that the
most recommendable PF definitions for revenue purposes are PF+

1 and PF g1 .

5.3 Chapter Remarks

This Chapter presented the results of the experimental evaluation of power factor definitions from the
fairness perspective, considering the unbalanced constant impedance load and the induction motor. With both
loads, the experimental results corroborated the conclusions drawn from the simulation outcomes.

For the unbalanced constant impedance load, the same conditions of the simulations were employed. Al-
though the numerical values for each voltage condition did not precisely align with those obtained in the
simulations, it was evident that the overall trends exhibited by each power factor (PF) definition closely mir-
rored those observed in the simulations. Notably, under balanced voltage conditions with a VUF equal to zero,
the per-phase fundamental PF exhibited the most distinct variation from the simulation results, though with
a difference of less than 0.015.

For the motor, we considered a different motor with a different set of voltage conditions. As expected, the
results for each VUF did not match the simulation results, neither their reference values. Nonetheless, the
overall behavior with respect to the VUF confirmed the validity of the conclusions drawn from the simulations.
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Figure 5.7: Different 3φ PF definitions computed for the TIM as a function of the VUF with experimental
data (THD values of 2%, 5%, and 8%).



CHAPTER 6

Analytical Investigation of Power Factor Definitions for Constant Impedance Loads

6.1 Analytical Investigation of Power Factor Definitions for Constant Im-
pedance Loads

Analytical expressions for each PF definition will be derived as functions of the load’s parameters using
voltage and current phasors. Since phasors are defined for a specific frequency, it is important to specify the
frequency for which they are computed. In this section, all phasors are referenced at the fundamental frequency
unless stated otherwise for the sake of conciseness. Additionally, we adopt the angle of the positive-sequence
voltage at the fundamental frequency as the angular reference to simplify complex equations. We will first
derive expressions for each PF definition while considering unbalanced loads. Subsequently, we will analyze
the special case of balanced loads, where the load’s parameters are evenly distributed between phases.

A load modeled as as constant impedance has a linear V-I curve with the slope defined by the impedance
magnitude. In single-phase systems, the load impedance is a complex number defined in the frequency domain
by the ratio of the voltage and current phasors. The inverse of the impedance is the admittance (y) which is
very useful to rewrite the current in terms of the voltage.

In three-phase systems, a constant impedance load can be modeled by impedances connected between
phases (in case of delta-connected loads) or between a phase and a common point (in the wye connection), and
the common point may be connected to a fourth conductor or to the ground. Such loads can be represented
in terms of admittance matrices which provide a transformation from the voltages to line currents. Further
details on admittance matrices can be found in [138]. In the following, a short description of such matrices
is given for delta-connected loads for the sake of conciseness. A more detailed investigation considering other
connections and types of loads should be addressed in future works.
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The line currents for a delta-connected load are given byIh,aIh,b

Ih,c


︸ ︷︷ ︸
Ih,abc

=

(yh,ab + yh,ca) −yh,ab −yh,ca

−yh,ab (yh,bc + yh,ab) −yh,bc

−yh,ca −yh,bc (yh,ca + yh,ab)


︸ ︷︷ ︸

Yh,abc

Vh,a

Vh,b

Vh,c


︸ ︷︷ ︸
Vh,abc

. (6.1)

where yh,ab, yh,bc, and yh,ca are the admittances between phases “a”-“b”, “b”-“c”, and “c”-“a”, respectively. It
is noteworthy that in (6.1), the voltages are measured with respect to the ground voltage (that is a point with
nil zero-sequence component).

Applying the Fortescue transformation (2.66) to the voltages and currents,

Iz+−h = F−1Yh,abcF︸ ︷︷ ︸
Y z+−

V z+−
h (6.2)

where Iz+−h = [Izh, I
+
h , I
−
h ]T and V z+−

h = [Vz
h,V

+
h ,V

−
h ]T , and Y z+− is the admittance matrix in the sequence

domain. For delta-connected loads, it can be shown that

Y z+−
h =

0 0 0

0 Ys
h Y+−

h

0 Y−+h Ys
h

 , (6.3)

in which

Ys
h = yh,ab + yh,bc + yh,ca = |Ys

h| ϕsh (6.4)

Y−+h = −(yh,abααα
2 + yh,bc + yh,caααα) = |Y−+h | ϕ

−+
h (6.5)

are the equivalent admittance and the unbalanced admittance proposed by [95], respectively, and

Y+−
h = −(yh,abααα+ yh,bc + yh,caααα

2) = |Y+−
h | ϕ

+−
h (6.6)

is the negative-to-positive transadmittance.

It is noteworthy that the equation for Yz+− shows that delta-connected loads are not affected by zero-
sequence voltages (first column of Yz+− is composed of zeros) and they do not contribute with zero-sequence
currents (first row of Yz+− is composed of zeros).

If the voltage negative-sequence component is zero, then the load’s current can be completely described in
terms of Ys

h and Y−+h . The expressions for Ys
h and Y−+h were found using a different approach in [95]. In

the present approach, however, it is clearly shown that Y−+h does not fully reflect the load unbalance because
it only accounts for the effects of the positive-sequence voltage on the negative-sequence current. In practical
situations, the voltage has a negative-sequence component which also affects the positive-sequence current.
This is accounted for by the term Y+−

h In reference [95], this term was not obtained because only balanced
voltages were considered, that is the voltage negative-sequence was zero. The existence of this additional
impedance Y+−

h makes sense in terms of mathematics because the load has three independent admittances
(variables), therefore it cannot be fully represented in terms of only two fictitious admittances Ys

h and Y−+h .
A third fictitious admittance Y+−

h is necessary to fully represent the load.
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With the admittance matrix in the sequence domain, it is possible to rewrite the active power and the
different definitions for apparent power in terms of the voltages and admittances in the sequence domain. For
that purpose, first we need to rewrite the currents and voltages of each phase. The phase voltages can be
rewritten in terms of the sequence components, considering that V z = 0, as

Vh,a = V+
h + V−h

Vh,b = ααα2V+
h +αααV−h

Vh,c = αααV+
h +ααα2V−h

, (6.7)

and the currents likewise 
Ih,a = I+h + I−h

Ih,b = ααα2I+h +αααI−h

Ih,c = αααI+h +ααα2I−h

. (6.8)

Considering the admittance matrix in the sequence domain, the phase currents can be rewritten in terms of
the admittances and the voltages in the sequences as

Ih,a = (Ys
hV

+
h + Y+−

h V−h ) + (Y−+h V+
h + Ys

hV
−
h )

Ih,b = ααα2(Ys
hV

+
h + Y+−

h V−h ) +ααα(Y−+h V+
h + Ys

hV
−
h )

Ih,c = ααα(V+
h + Y+−

h V−h ) +ααα2(Y−+h V+
h + Ys

hV
−
h )

. (6.9)

Grouping the common terms, the current of phase “a” is given by

Ih,a = y+
h,aV

+
h + y−h,aV

−
h (6.10)

where

y+
h,a = Ys

h + Y−+h = yh,abβββ + yh,caβββ
∗ = g+h + jb+h = |y+

h,a| ϕ
+
h,a, (6.11)

y−h,a = Ys
h + Y+−

h = yh,abβββ
∗ + yh,caβββ = g−h + jb−h = |y−h,a| ϕ

−
h,a, (6.12)

and βββ = 1−ααα2 =
√

3 30°. It should be noticed that y+
h,a is equal to y−h,a if and only if yh,ab is equal to yh,ca.

The complex power of phase “a” in the sequence domain is simply the product of the voltage phasor and
the current conjugated phasor, leading to

Sh,a = (V+
h + V−h )(y+

h,aV
+
h + y−h,aV

−
h )∗. (6.13)

Similar expressions can be obtained for phases “b” and “c”,Sh,b = (αααV+
h + V−h )(αααy+

h,bV
+
h + y−h,bV

−
h )∗

Sh,c = (V+
h +αααV−h )(y+

h,cV
+
h +αααy−h,cV

−
h )∗

where 

y+
h,b = Ys

h +ααα2Y−+h = yh,bcβββ + yh,abβββ
∗

y−h,b = Ys
h +αααY+−

h = yh,bcβββ
∗ + yh,abβββ

y+
h,c = Ys

h +αααY−+h = yh,caβββ + yh,bcβββ
∗

y−h,c = Ys
h +ααα2Y+−

h = yh,caβββ
∗ + yh,bcβββ.
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It is noteworthy that Sh,a is a function of y+
h,a and y−h,a. As a result Sh,a depends only on yh,ab and yh,ca,

but not on yh,bc. This is expected since in delta-connected loads the current of phase “a” is not affected by the
load’s admittance between phases “b” and “c”. In the case of Sh,b, the expressions for y+

h,b and y−h,b depend
only on yh,ab and yh,bc. Likewise, for Sh,c a dependance on yh,bc and yh,ca is observed.

The sum of the complex powers Sh,a, Sh,b, and Sh,c (using the angle of the positive-sequence voltage as
the angular reference) is given by∑

x∈[a,b,c]

Sh,x = (V+
h + V−h )(y+

h,aV
+
h + y−h,aV

−
h )∗+

(αααV+
h + V−h )(αααy+

h,bV
+
h + y−h,bV

−
h )∗+

(V+
h +αααV−h )(y+

h,cV
+
h +αααy−h,cV

−
h )∗ (6.14)∑

x∈[a,b,c]

Sh,x = y+
h,a
∗|V+

h |
2 + y−h,a

∗
(V −h )2 + y+

h,a
∗
V+

h
∗
V−h + y−h,a

∗
V+

hV
−
h
∗
+

y+
h,b
∗|V+

h |
2 + y−h,b

∗
(V −h )2 +ααα2y+

h,b
∗
V+

h
∗
V−h +αααy−h,b

∗
V+

hV
−
h
∗
+

y+
h,c
∗|V+

h |
2 + y−h,c

∗
(V −h )2 +αααy+

h,c
∗
V+

h
∗
V−h +ααα2y−h,c

∗
V+

hV
−
h
∗ (6.15)

Grouping the terms by the voltages, leads to∑
x∈[a,b,c]

Sh,x = (y+
h,a + y+

h,b + y+
h,c)∗|V+

h |
2 + (y−h,a + y−h,b + y−h,c)∗|V−h |

2+

(y+
h,a +αααy+

h,b +ααα2y+
h,c)∗V+

h
∗
V−h +

(y−h,a +ααα2y−h,b +αααy−h,c)∗V+
hV
−
h
∗ (6.16)∑

x∈[a,b,c]

Sh,x =
[
(Ys

h + Y−+h ) + (Ys
h +ααα2Y−+h ) + (Ys

h +αααY−+h )
]∗ |V+

h |
2+

[
(Ys

h + Y+−
h ) + (Ys

h +αααY+−
h ) + (Ys

h +ααα2Y+−
h )

]∗ |V−h |2+[
(Ys

h + Y−+h ) +ααα(Ys
h +ααα2Y−+h ) +ααα2(Ys

h +αααY−+h )
]∗

V+
h
∗
V−h +[

(Ys
h + Y+−

h ) +ααα2(Ys
h +αααY+−

h ) +ααα(Ys
h +ααα2Y+−

h )
]∗

V+
hV
−
h
∗
. (6.17)

Considering the identity 1 +ααα+ααα2 = 0, the sum of the complex powers simplifies to∑
x∈[a,b,c]

Sh,x = 3

{[
|V+

h |
2 + |V−h |

2
]
Ys

h
∗ + Y−+h

∗
V+

h
∗
V−h + Y+−

h
∗
V+

hV
−
h
∗
}
. (6.18)
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Extracting the real part of (6.18),

Ph = <

 ∑
x∈[a,b,c]

Sh,x

 (6.19)

Ph = 3<
{[
|V+

h |
2 + |V−h |

2
]
Ys

h
∗ + Y−+h

∗
V+

h
∗
V−h + Y+−

h
∗
V+

hV
−
h
∗} (6.20)

Ph = 3
{[
|V+

h |
2 + |V−h |

2
]
<(Ys

h
∗) + <(Y−+h

∗
V+

h
∗
V−h ) + <(Y+−

h
∗
V+

hV
−
h
∗
)
}

(6.21)

Ph = 3
{[
|V+

h |
2 + |V−h |

2
]
Gsh + <(|Y−+h |e

−jϕ−+
h |V+

h |e
−jθ+h |V−h |e

jθ−h ) + <(|Y+−
h |e

−jϕ+−
h |V+

h |e
jθ+h |V−h |e

−jθ−h )
}

(6.22)

Ph = 3
{[
|V+

h |
2 + |V−h |

2
]
Gsh + <(|Y−+h ||V

+
h ||V

−
h |e

jθ−h −jϕ
−+
h −jθ+h ) + <(|Y+−

h ||V
+
h ||V

−
h |e
−jθ−h +jθ+h −jϕ

+−
h )
}
(6.23)

Ph = 3

{[
|V+

h |
2 + |V−h |

2
]
Gsh + |V+

hV
−
h |
[
|Y−+h | cos(θ−h − θ

+
h − ϕ

−+
h ) + |Y+−

h | cos(θ−h − θ
+
h + ϕ+−

h )
]}

. (6.24)

Changing the order of the terms inside the squared brackets

Ph = 3

{[
|V+

h |
2 + |V−h |

2
]
Gsh + |V+

hV
−
h |
[
|Y+−

h | cos(θ−h − θ
+
h + ϕ+−

h ) + |Y−+h | cos(θ−h − θ
+
h − ϕ

−+
h )

]}
. (6.25)

Considering the trigonometric identity (I.1), shown in appendix I, with x = θ−h −θ
+
h , a = Y+−

h and b = Y−+h
∗,

then c = YP
h = |YP

h | ϕPh and

Ph = 3

{[
|V+

h |
2 + |V−h |

2
]
Gsh + |V+

hV
−
h ||Y

P
h | cos(θ−h − θ

+
h + ϕPh )

}
. (6.26)

It is worth noting that YP
h can be rewritten only in terms of the load’s conductances as

YP
h = Y+−

h + Y−+h
∗

= −2(Gh,abααα+Gh,bc +Gh,caααα
2). (6.27)

Adding up the individual harmonic active powers, its is found that the total active power is given by

P =
∑
h∈H

3|V+
h |

2
[
Gsh(1 + VUF2) + |YP

h | cos(θ−h − θ
+
h + ϕPh )VUF

]
, (6.28)

where Gsh is the equivalent conductance given by the real part of Ys
h and YP

h = Y+−
h + (Y−+h )∗ = |YP

h | ϕPh .

Extracting the imaginary part of (6.18),

Qh = =

 ∑
x∈[a,b,c]

Sh,x

 (6.29)

Qh = 3=
{[
|V+

h |
2 + |V−h |

2
]
Ys

h
∗ + Y−+h

∗
V+

h
∗
V−h + Y+−

h
∗
V+

hV
−
h
∗} (6.30)

Qh = 3
{[
|V+

h |
2 + |V−h |

2
]
=(Ys

h
∗) + =(Y−+h

∗
V+

h
∗
V−h ) + =(Y+−

h
∗
V+

hV
−
h
∗
)
}

(6.31)

Qh = 3
{[
|V+

h |
2 + |V−h |

2
]

(−Bs
h) + =(|Y−+h |e

−jϕ−+
h |V+

h |e
−jθ+h |V−h |e

jθ−h ) + =(|Y+−
h |e

−jϕ+−
h |V+

h |e
jθ+h |V−h |e

−jθ−h )
}

(6.32)

Qh = 3
{[
|V+

h |
2 + |V−h |

2
]

(−Bs
h) + =(|Y−+h ||V

+
h ||V

−
h |e

jθ−h −jϕ
−+
h −jθ+h ) + =(|Y+−

h ||V
+
h ||V

−
h |e
−jθ−h +jθ+h −jϕ

+−
h )
}

(6.33)

Qh = 3

{[
|V+

h |
2 + |V−h |

2
]

(−Bs
h) + |V+

hV
−
h |
[
|Y−+h | sin(θ−h − θ

+
h − ϕ

−+
h )− |Y+−

h | sin(θ−h − θ
+
h + ϕ+−

h )
]}

.

(6.34)
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Changing the order of the terms inside the squared brackets

Qh = 3

{[
|V+

h |
2 + |V−h |

2
]

(−Bs
h)− |V+

hV
−
h |
[
|Y+−

h | sin(θ−h − θ
+
h + ϕ+−

h )− |Y−+h | sin(θ−h − θ
+
h − ϕ

−+
h )

]}
.

(6.35)

Considering the trigonometric identity (I.2), shown in appendix I, with x = θ−h −θ
+
h , a = Y+−

h and b = −Y−+h
∗,

then c = YQ
h = |YQ

h | ϕ
Q
h and

Qh = −3

{[
|V+

h |
2 + |V−h |

2
]
Bs
h + |V+

hV
−
h ||Y

Q
h | sin(θ−h − θ

+
h + ϕQh )

}
. (6.36)

It is worth noting that YQ
h can be rewritten only in terms of the load’s susceptances as

YQ
h = Y+−

h −Y−+h
∗

= −2(Bh,abααα+Bh,bc +Bh,caααα
2). (6.37)

Considering the fundamental positive-sequence voltage as the angular reference, leads to θ+1 = 0, V+
1 = V +

1

and the fundamental active power is

P1 = 3|V+
1 |

2
[
Gs1(1 + VUF2) + |YP

1 | cos(θ−1 + ϕP1 )VUF
]

(6.38)

Likewise, the fundamental reactive power is given by

Q1 = −3|V+
1 |

2
[
Bs

1(1 + VUF2) + |YQ
1 | sin(θ−1 + ϕQ1 )VUF

]
. (6.39)

With the expressions for the active and complex powers of each phase, we investigate the PF definitions next.

6.1.1 Fundamental Per-Phase Power Factor

In the following, we proceed to rewrite PF1,a in terms of the VUF and the load admittances. First, the
active and apparent power are obtained in terms of the VUF and the load admittances. Then, these powers
are used to compute PF1,a. Although only PF1,a is obtained and discussed for the sake of concision, analogous
equations and conclusions can be obtained for phases “b” and “c”.

After some algebraic manipulations, the fundamental active power of phase “a” can be rewritten as

P1,a = |V+
1 |

2
[
g+1 + |yP

1,a| cos(θ−1 + ϕP1,a)VUF + g−1 VUF
2
]

(6.40)

where yP
1,a = (y+

1,a)∗ + y−1,a. Considering the positive-sequence voltage as the angular reference, the cosine
law can be applied to the complex power in (6.13) to obtain the fundamental apparent power of phase “a” as
in (6.41). Dividing the active power (6.40) by the apparent power (6.41), the fundamental PF of phase “a” is
found as (6.42). It can be observed that (6.42) is a non-linear function of the VUF and the load’s admittances.
So, first, we are going to examine the non-linear PF expression considering the scenarios in which the load
and/or the voltages are balanced. Then, we are linearizing (6.42) in order to discuss the expected behavior
when both the load and the voltages are unbalanced.
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S1,a = |V +|2
√

1 + 2 cos(θ−1 )VUF + VUF2
√
|y+

1,a|2 + 2|y+
1,a||y

−
1,a| cos(θ−1 + ϕ−1,a − ϕ

+
1,a)VUF + |y−1,a|2VUF

2

(6.41)

PF1,a =
g+ + |yP

1,a| cos(θ−1 + ϕP1,a)VUF + g−VUF2√
1 + 2 cos(θ−1 )VUF + VUF2

√
|y+

1,a|2 + 2|y+
1,a||y

−
1,a| cos(θ−1 + ϕ−1,a − ϕ

+
1,a)VUF + |y−1,a|2VUF

2

(6.42)

When the voltages are balanced, i.e. the VUF is equal to zero, the fundamental power factor of phase “a”
simplifies to

PF1,a =
g+

|y+
1,a|

, if VUF = 0. (6.43)

It is worth mentioning that (6.43) depends exclusively on the load’s admittances y1,ab and y1,ca. So it is not
affected by any voltage parameters and it is valid for both balanced and unbalanced loads.

If the voltages are unbalanced but the load is balanced, then V − 6= 0 and yh,ab = yh,ca = yh,bc = y, thus
y+
h,a = y−h,a = Ys

h. Under these constraints, the complex power of (6.13) simplifies to

S1,a = |V+
1 + V−1 |

2(Ys
1)∗ (6.44)

and the fundamental power factor of phase “a” is

PF1,a =
g+

|y+
1,a|

=
Gs1
|Ys

1|
. (6.45)

It can be observed that (6.45) is once again not affected by any voltage parameters, but only by the load’s
admittance angle.

At last, equation (6.42) can be linearized considering that in real distribution grids utilities seek to maintain
the VUF within certain established limits. According to [83], a VUF up to 3% is common in real distribution
systems, tough it may be higher than the VUF limits in some regulations. So, the non-linear formula for PF1,a

can be linearized using the first two coefficients of its Taylor series, resulting in

PF1,a ≈
g+

|y+
1,a|

+

∣∣∣∣∣ yu
a

y+
1,a

∣∣∣∣∣ cos(θ−1 + ϕu1,a)VUF (6.46)

where yu
a = yP

1,a − g+(1 + y−1,a/y
+
1,a). It can be observed that this linearized equation shows that PF1,a has a

sinusoidal dependence with respect to the negative-sequence angle and having the VUF multiplying the sine
amplitude, thus explaining the results observed in the simulations and experimental tests.

6.1.2 Fundamental Arithmetic Power Factor

The fundamental arithmetic PF can be computed in terms of the load’s fundamental active power and
arithmetic apparent power. The fundamental active power of delta-connected loads can be expressed in terms
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of sequence components as in (6.38). The fundamental arithmetic apparent power can be obtained from the
arithmetic sum of each phase fundamental apparent power. For phase “a”, the fundamental apparent power
is given by (6.41). The fundamental apparent powers of phases “b” and “c” are given by (6.47) and (6.48),
respectively.

S1,b = |V+
1 |

2
√

1 + 2 cos(θ−1 − 120°)VUF + VUF2√
|y+

1,b|2 + 2|y+
1,b||y

−
1,b| cos(θ−1 + ϕ−1,b − ϕ

+
1,b − 120°)VUF + |y−1,b|2VUF

2 (6.47)

S1,c = |V+
1 |

2
√

1 + 2 cos(θ−1 + 120°)VUF + VUF2√
|y+

1,c|2 + 2|y+
1,c||y

−
1,c| cos(θ−1 + ϕ−1,c − ϕ

+
1,c + 120°)VUF + |y−1,c|2VUF

2 (6.48)

Having the fundamental apparent power for each phase, the fundamental arithmetic PF is found as

PF a1 =
3|V+

1 |2
[
Gs1(1 + VUF2) + |YP

1 | cos(θ−1 + ϕP1 )VUF
]

Sa + Sb + Sc
. (6.49)

It can be observed that PF a1 is a non-linear function of the VUF and the load’s admittances.

When the source is balanced, the VUF is equal to zero and the fundamental arithmetic apparent power
simplifies to

Sa1 =
∑

x∈[a,b,c]

|Sx| = |V+
1 |

2Aa, if VUF = 0 (6.50)

where Aa = |y+
1,a|+ |y

+
1,b|+ |y

+
1,c|. In this case, the fundamental active power, given by

P1 = 3Gs1|V+
1 |

2, if VUF = 0, (6.51)

depends only on the equivalent conductance Gs1 and on the fundamental positive-sequence voltage V +
1 . These

simplifications lead to

PF a1 =
3Gs1
Aa

, if VUF = 0, (6.52)

which depends solely on the load’s admittance and not on the voltages. It is noteworthy that (6.52) is valid
for both balanced and unbalanced loads as long as the voltages are balanced.

When the source is unbalanced and the load is balanced, then V − 6= 0, yh,ab = yh,bc = yh,ca, Y+−
h =

Y−+h = 0, and y+
h,a = y−h,a = y+

h,b = y−h,b = y+
h,c = y−h,c = Ys

h. Under these constraints, (6.38) simplifies to

P1 = 3Gs1
[
|V+

1 |
2 + |V−1 |

2
]
, if yh,ab = yh,bc = yh,ca, (6.53)

the fundamental arithmetic apparent power simplifies to

Sa1 = 3
[
|V+

1 |
2 + |V−1 |

2
]
|Ys

1|, if yh,ab = yh,bc = yh,ca (6.54)

and the fundamental arithmetic PF simplifies to

PF a1 =
Gs1
Aa

=
Gs1
|Ys

1|
, if yh,ab = yh,bc = yh,ca (6.55)
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from which it is clear that only the load’s parameters affects the value of PF a1 .

At last, equation (6.49) can be linearized for small VUF as mentioned before. So, the non-linear formula
for PF a1 can be linearized using the first two coefficients of its Taylor series, resulting in

PF a1 ≈
3Gs1
Aa

+
3 |Yau

1 |
Aa

cos(θ−1 + ϕau1 )VUF (6.56)

where

Yau
1 = YP

1 −
Gs1
Aa

(yu
a + yu

b + yu
c ) = |Yau

1 | ϕau1 (6.57)

yu
a = |y+

1,a|

(
1 +

y−1,a

y+
1,a

)
(6.58)

yu
b = |y+

1,b|ααα
2

(
1 +

y−1,b

y+
1,b

)
(6.59)

yu
c = |y+

1,c|ααα

(
1 +

y−1,c

y+
1,c

)
. (6.60)

Based on the this linearized equation (6.56), it can be observed a sinusoidal dependence with respect to the
negative-sequence angle, having the VUF multiplying the sine amplitude. Therefore, (6.56) explains the results
observed in the simulations and experimental tests.

Summarizing, when the source or the load are balanced, then PF a1 depends exclusively on the load’s
admittances. When the voltages and the load are both unbalanced, it was shown that PF a1 is a non-linear
function of the VUF and the load’s admittances. For small VUF values, PF a1 is approximately sinusoidal,
having the VUF as the sine amplitude and the negative-sequence voltage angle as the sine argument.

6.1.3 Fundamental Geometric Power Factor

The fundamental geometric PF can be computed by dividing the active power given in (6.38) by the
fundamental geometric apparent power, which is the absolute value of (6.18). Computing the absolute value
of (6.18) by adding the squares of the real and imaginary parts leads to

(Sg1)2 = 9|V+
1 |

4

{
|Ys

1|2(1 + VUF2)2+

2|Ys
1|(1 + VUF2)VUF

[
|Y+−

1 | cos(ϕ+−
1 + θ−1 − ϕ

e
1) + |Y−+1 Ys

1| cos(ϕ−+1 − θ−1 − ϕ
e
1)
]

+

VUF2
[
|Y+−

1 |
2 + |Y−+1 |

2 + 2|Y+−
1 ||Y

−+
1 | cos(ϕ+−

1 − ϕ−+1 + 2θ−1 )
]}

. (6.61)

Applying the trigonometric identity (I.1), the following simplification is obtained

Sg1 = 3|V +|2
√
|Ys

1|2(1 + VUF2)2 + 2(1 + VUF2)|Yc
1|VUF cos(θ−1 + θc1) + |Yd

1 |2VUF
2, (6.62)

where

Yc
1 = Y+−

1 Ys
1
∗ + Y−+1

∗
Ys

1 (6.63)
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and

Yd
1 = Y+−

1

V−1
|V−1 |

+ Y−+1

V−1
∗

|V−1 |
. (6.64)

Diving (6.38) by (6.62), the exact expression for the PF g1 is obtained as

PF g1 =
Gs1
(
1 + VUF2

)
+ |YP

1 | cos(θ−1 + ϕP1 )VUF√
|Ys

1|2(1 + VUF2)2 + 2(1 + VUF2)|Yc
1|VUF cos(θ−1 + θc1) + |Yd

1 |2VUF
2
. (6.65)

If the load is purely resistive, then Ys
h = Gsh, θ

s
h = 0 and the fundamental reactive geometric power given

by (6.39) is zero. So, the fundamental apparent power geometric power is simply given by the fundamental
active power and PF g1 is constant and equal to one. This explains the results obtained in the simulations and
experimental tests. It is noteworthy that if the load is not purely resistive, then Bs

h 6= 0 and PF g1 will be a
non-linear function of the negative-sequence voltage angle and magnitude.

When the source is balanced, VUF = 0 and the fundamental geometric apparent power simplifies to

Sg1 =

∣∣∣∣∣∣
∑

x∈[a,b,c]

S1,x

∣∣∣∣∣∣ = 3|V+
1 |

2|Ys
1|, if VUF = 0. (6.66)

In this case, the fundamental active power is given by (6.51) and it depends only on the equivalent conductance
Gs1 and on the fundamental positive-sequence voltage V +

1 . These simplifications lead to

PF g1 =
Gs1
|Ys

1|
, if VUF = 0, (6.67)

which is valid for both balanced and unbalanced loads and it depends solely on the load’s admittance and not
on the voltages.

When the source is unbalanced and the load is balanced, then V − 6= 0, yh,ab = yh,bc = yh,ca, Y+−
h =

Y−+h = 0, and y+
h,a = y−h,a = y+

h,b = y−h,b = y+
h,c = y−h,c = Ys

h. Under these constraints, (6.38) simplifies to
(6.53) and the fundamental geometric apparent power simplifies to

Sg1 = 3
[
|V+

1 |
2 + |V−1 |

2
]
|Ys

1|, if yh,ab = yh,bc = yh,ca, (6.68)

and the fundamental geometric PF simplifies to (6.67) from which it is clear that only the load’s parameters
affects the value of PF g1 .

At last, equation (6.65) can be linearized for small VUF as mentioned before. So, the non-linear formula
for PF g1 can be linearized using the first two coefficients of its Taylor series, resulting in

PF g1 ≈
Gs1
Ys

1

+

∣∣∣∣Yτ

Ys
1

∣∣∣∣ cos(θ−1 + τ)VUF (6.69)

where

Yτ = YP
1 −

Gs1
|Ys

1|2
Y c. (6.70)
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Based on the this linearized equation (6.69), it can be observed a sinusoidal dependence with respect to the
negative-sequence angle, having the VUF multiplying the sine amplitude. However, as mentioned before, if
the load is purely resistive then PF g1 = 1 because Ys

1 = Gs1 and Y c = YP
1 G

s
1 leading to Yτ = 0 and PF g1 = 1.

Summarizing, when the source or the load are balanced, then PF g1 depends exclusively on the load’s
admittances. When both the voltages and the load are unbalanced, it was shown that PF g1 is a non-linear
function of the VUF and the load’s admittances.

6.1.4 Fundamental Positive-Sequence Power Factor

The fundamental positive-sequence complex power is given by

S+
1 = 3V+

1 (I+1 )∗. (6.71)

Considering that

I+1 = Ys
1V

+
1 + Y+−

1 V−1 , (6.72)

the complex power can be rewritten as

S+
1 = 3

[
|V+

1 |
2(Ys

1)∗ + V+
1 (V−1 Y

+−
1 )∗

]
(6.73)

and the fundamental positive-sequence active power, given by the real part of S+, is

P+
1 = 3

[
|V+

1 |
2Gs1 + V+

1 V
−
1 |Y

+−
1 | cos(θ−1 + ϕ+−

1 )
]
. (6.74)

The fundamental positive-sequence apparent power is given by the non-linear equation (6.75). So, the PF+
1

can be computed as (6.76).

S+
1 = 3|V+

1 |
2
√[
|Ys

1|2 + 2VUF|Ys
1Y

+−
1 | cos(θ−1 + ϕ+−

1 − θs1) + VUF2|Y+−
1 |2

]
(6.75)

PF+
1 =

Gs1 + VUF|Y+−
1 | cos(θ−1 + ϕ+−

1 ).√[
|Ys

1|2 + 2VUF|Ys
1Y

+−
1 | cos(θ−1 + ϕ+−

1 − θs1) + VUF2|Y+−
1 |2

] (6.76)

When the source is balanced, the VUF is zero. In this case, the fundamental positive-sequence active
power, given by (6.74) simplifies to

P+
1 = 3|V+

1 |
2Gs1 (6.77)

and it depends only on the equivalent conductance Gs1 and on the fundamental positive-sequence voltage V +
1 .

The fundamental positive-sequence apparent power simplifies to

S+
1 = |S+

1 | = 3|V+
1 |

2|Ys
1|. (6.78)

These simplifications lead to

PF+
1 =

Gs1
|Ys

1|
(6.79)
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which is valid for both balanced and unbalanced loads and it depends solely on the load’s admittance and not
on the voltages.

When the source is unbalanced and the load is balanced, then V − 6= 0, yh,ab = yh,bc = yh,ca, Y+−
h =

Y−+h = 0, and y+
h,a = y−h,a = y+

h,b = y−h,b = y+
h,c = y−h,c = Ys

h. Under these constraints, (6.74) simplifies
to (6.77) and the fundamental positive-sequence apparent power simplifies to (6.78) and the fundamental
positive-sequence PF simplifies to (6.79) from which it is clear that only the load’s parameters affects the value
of PF+

1 .

At last, equation (6.76) can be linearized for small VUF as mentioned before. So, the non-linear formula
for PF+

1 can be linearized using the first two coefficients of its Taylor series, resulting in

PF+
1 ≈

Gs1
|Ys

1|
+

∣∣∣∣Yp
1

Ys
1

∣∣∣∣ cos(θ−1 + θp1)VUF (6.80)

where

Yp
1 = Y+−

1 (1− Gs1
Ys

1

).

Based on the this linearized equation (6.80), it can be observed a sinusoidal dependence with respect to the
negative-sequence angle, having the VUF multiplying the sine amplitude. However, if the load is purely
resistive then Ys

h = Gsh and Yp
1 = 0 leading to PF g1 ≈ 1. It is noteworthy that this approximation is valid

only for small VUF values unlike the PF g1 which is always equal to one if the load is purely resistive.

Summarizing, when the source or the load are balanced, then PF+
1 depends exclusively on the load’s

admittances. Additionally, (6.56) explains the results observed in Section 4.1.

6.1.5 Effective Power Factor

The effective PF is given by the ratio of the active power and the effective apparent power, both encom-
passing all frequency components. First, let us analyze the effective PF considering only sinusoidal voltages
and currents.

The fundamental active power is rewritten as a function of the voltage and the load’s admittances in the
sequence domain in (6.38). According to the cosine law, the effective apparent power (2.73) considering only
the fundamental component can be rewritten as

Se1 = 3
√
|V+

1 |2 + |V−1 |2
√
|Ys

1V
+
1 + Y+−

1 V−1 |2 + |Ys
1V
−
1 + Y−+1 V+

1 |2. (6.81)

Considering the trigonometric identity 1 (shown in appendix I), equation (6.81) can be further simplified
into

Se1 = 3|V+
1 |

2
√

1 + VUF2
√

(|Ys
1|2 + |Y−+1 |2) + 2VUF|Yu| cos(θ−1 + ϕu1) + VUF2(|Ys

1|2 + |Y+−
1 |2) (6.82)

where Yu = (Ys
1)∗Y+−

1 + Ys
1(Y−+1 )∗ = |Yu| ϕu1 . Dividing the active power (6.38) by the effective apparent

power (6.82), the effective power factor is given by

PF e =
Gs1(1 + VUF2) + VUF|YP

1 | cos(θ−1 + ϕP1 )√
1 + VUF2

√
(|Ys

1|2 + |Y−+1 |2) + 2VUF|Y u
1 | cos(θ−1 + ϕu1) + VUF2(|Ys

1|2 + |Y+−
1 |2)

. (6.83)
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It can be observed that P and Se are functions of V+
1 and V−1 . PF

e, on the other hand, is a function of the
VUF, θ−1 and Ys

1, Y
+−
1 , and Y−+1 .

When the source is balanced, the VUF is equal to zero. In this case, the active power, given by (6.51)
depends only on the equivalent conductance Gs1 and on the positive-sequence voltage V +. The effective
apparent power simplifies to

Se = 3|V+
1 |

2
√
|Ys

1|2 + |Y−+1 |2, if VUF = 0. (6.84)

These simplifications lead to

PF e =
Gsh√

|Ys
1|2 + |Y+−

1 |2
, if VUF = 0 (6.85)

which is valid for both balanced and unbalanced loads and it depends solely on the load’s admittance and not
on the voltages.

When the source is unbalanced and the load is balanced, then V − 6= 0, yh,ab = yh,bc = yh,ca, Y+−
h =

Y−+h = 0, and y+
h,a = y−h,a = y+

h,b = y−h,b = y+
h,c = y−h,c = Ys

h. Under these constraints, (6.38) simplifies to
(6.53) and the effective apparent power simplifies to

Se = 3
[
|V+

1 |
2 + |V−1 |

2
]
|Ys

1|, if yh,ab = yh,bc = yh,ca (6.86)

and the effective PF simplifies to

PF e =
Gsh
|Ys

1|
, if yh,ab = yh,bc = yh,ca (6.87)

from which it is clear that only the load’s parameters affects the value of PF e.

At last, equation (6.83) can be linearized for small VUF as mentioned before. So, the non-linear formula
for PF e can be linearized using the first two coefficients of its Taylor series, resulting in

PF e ≈
Gsh√

|Ys
1|2 + |Y−+1 |2

+
|Yf | cos(θ−1 + θf )√
|Ys

1|2 + |Y−+1 |2
VUF (6.88)

where

Yf = YP
h −

GshY
u

|Ys
1|2 + |Y−+1 |2

It can be observed that this linearized equation (6.88) is composed of a constant term, with respect to the
VUF, that is equal to the PF value under balanced voltages and one term that is composed of a cosine function
with amplitude proportional to the product of an admittance factor (

∣∣Yf
∣∣ /√|Ys|2 + |Y−+|2) with the VUF.

The argument of the cosine is a function of the negative-sequence angle and the angle of Yf . This function
(6.88), therefore, indicates that PF e grows or decreases with the VUF depending on the sign of cos(θ−+ϕf ).
For any fixed value for voltage unbalance, equation (6.88) presents sinusoidal behavior with respect to θ−,
which is consistent with the experimental result obtained in Section 5.1, more specifically in Figure 5.4.

Let us now consider the effect of harmonic components. The total active power is

P =
∑
h∈H

Ph (6.89)
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where

Ph = 3

{[
|V+

h |
2 + |V−h |

2
]
Gsh + |V+

hV
−
h ||Y

P
h | cos(θ−h − θ

+
h + ϕPh )

}
, (6.90)

is the active power component at each frequency order h, YP
h = |YP

h | ϕPh = Ys
h + Y−+h

∗, Y+−
h and Y−+h are

the components from the admittance matrix in the sequence domain at the harmonic order h. The effective
apparent power given by (2.73) can be rewritten as

Se = 3

√∑
h∈H

(V +
h )2 + (V −h )2

√∑
h∈H

(I+h )2 + (I−h )2. (6.91)

Considering the modified effective voltage and current at the harmonic order h,

V e
h =

√
(V +
h )2 + (V −h )2 (6.92)

Ieh =
√

(I+h )2 + (I−h )2. (6.93)

The effective power can be rewritten as

Se = 3

√∑
h∈H

(V e
h )2
√∑
h∈H

(Ieh)2. (6.94)

According to Cauchy–Schwarz inequality, it can be shown that

Se ≥
∑
h∈H

V e
h I

e
h, (6.95)

which implies that

PF e ≤
∑

h∈H Ph∑
h∈H 3V e

h I
e
h

≤ P1

3V e
1 I

e
1

, (6.96)

where the second inequality holds if ∑
h∈H\{1} Ph∑

h∈H\{1} 3V e
h I

e
h

≤ P1

3V e
1 I

e
1

. (6.97)

The first bound in (6.96) indicates that when harmonics are present, they contribute to both the total active
power and the effective apparent power. Their contribution to the total active power is in terms of adding
each harmonic active power component. For the effective apparent power, however, the contribution of the
harmonics result in a higher effective apparent power than the simply addition of each frequency component.
Therefore, accounting for the harmonic components will actually lead to a lower effective PF in most practical
cases where the active power of the fundamental is predominant over the active power of the higher harmonics.

6.2 Interpretation of the PF expressions

Table 6.1 shows the findings of the analytical investigation. Each row represents a given PF definition
and each column represents a condition of the load and the voltages. A comparison across columns allows to
compare a given definition under different conditions, whereas a comparison across rows allows to compare
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Table 6.1: Analytical expressions for PF definitions under different voltage and load conditions for a delta-
connected constant impedance load.

Balanced Load Unbalanced Load
Balanced Unbalanced Balanced Unbalanced
Voltages Voltages Voltages Voltages

PF1,a
Ge

|Y e|
Ge

|Y e|
g+

|y+| (6.42)

PF a1
Ge

|Y e|
Ge

|Y e|
3Ge

|y+|+|y+b |+|y
+
c |

(6.49)

PF g1
Ge

|Y e|
Ge

|Y e|
Ge

|Y e| (6.65)

PF+
1

Ge

|Y e|
Ge

|Y e|
Ge

|Y e| (6.76)

PF e Ge

|Y e|
Ge

|Y e|
Ge√

|Y e|2+|Y −+|2
(6.83)

different definitions for a given condition. For conciseness, we refer to the first column as the first with
mathematical expressions and likewise to the rows.

Based on the first three columns, it can be observed that if either the load or the voltages are balanced,
then all investigated definitions can be rewritten solely in terms of the load’s parameters. If both the load and
the voltages are unbalanced (see the last column), then the expressions obtained are (non-linear, in case of the
general expression) functions of the i) load’s admittances, ii) VUF and iii) negative-sequence voltage angle.
An exception occurs if the unbalanced load is purely resistive. In this case, PF g1 is constant and equal to one
and PF+

1 is approximately equal to one.

Comparison of the first column with the third allows to verify what happens when the load becomes
unbalanced under balanced voltage supply. It can be observed that the expressions for PF1,a, PF a1 , and PF e

are affected by the load unbalance since their formulas change between the two compared columns. As for
PF g1 and for PF+

1 , it can be observed that their expressions in the third column are equal to those in the first
one (remember when the load is balanced Y = Y s).

It is worth mentioning that, in the third column (“Unbalanced Load, Balanced Voltages”), the expressions
for PF1,a, PF a1 , and PF e account for the load unbalance by the presence of the terms |Y+

a |, |Y+
a |+|Y+

b |+|Y
+
c |,

and |Y−+|, respectively. It can be shown that |Y−+| is zero when the load is balanced, thus being an indicator
of the load unbalance. Although the other two terms are not necessarily zero when the load is balanced,
they can be rewritten in order to clearly display their relation to the unbalance. Considering for example Y+

a

defined by (6.11), adding the null term Ycaβββ(1− 1) and considering that βββ + βββ∗ = 3 leads to

Y+
a = 3Yca + (Yab −Yca)βββ (6.98)

in which it is clear that (Yab − Yca) is always zero when the load is balanced, thus fulfilling the role of
accounting (at least partially) for the load unbalance. The same approach can be applied for |Y+

b |, |Y
+
c |, and

then for |Y+
a |+ |Y+

b |+ |Y
+
c |.

When the voltages are unbalanced, it is possible to evaluate the effects of the load unbalance in the PF
definitions by comparing the second and fourth columns. For example, the effective PF expression changes
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from the second to the fourth column, meaning that the effective PF is affected by the load unbalance when
the voltages are unbalanced. This can also be confirmed in the last column (“Unbalanced Load, Unbalanced
Voltages”) since the terms Y−+ and Y +− in (6.83) reflect the load unbalance (i.e. they are zero for balanced
loads). It is noteworthy that when reduced to balanced voltage conditions, our results related to the effective
PF are in agreement with previous results of the literature (see, e.g., [95]). For the general situation of a
system with unbalanced voltages, our analysis shows the necessity of considering the extra parameter Y +−,
which relates the effect of the negative-sequence voltage in the positive-sequence current.

Still comparing the second and fourth columns, it is possible to verify that the equations in the fourth
column for each definition (with the exception of PF g1 for purely resistive loads) are not the same as in the
second column. So, introducing the load unbalance when the voltages are already unbalanced changes the PF
expressions computed with each of these five definitions, which is equivalent to say that they account in a
way for the load unbalance. This can also be observed in the fourth column (“Unbalanced Load, Unbalanced
Voltages”) by the presence of the terms yu

a , Yau, Yτ , Yps, and Yf related specifically to the load unbalance
(as they are zero when the load is balanced).

At last, it should be noted that the voltage unbalance is accounted for by the presence of the VUF in
the equations of the column “Unbalanced Load, Unbalanced Voltages”. All power factor definitions in this
column show that the load unbalance and the VUF are intrinsically combined within each PF definition. As a
consequence, an increase of the load unbalance or of the VUF may increase or lower the PF value depending
on the negative-sequence voltage angle. Consider, for example, the linearized effective PF (6.88). The term
|Yf |/

√
|Ys|2 + |Y−+|2 increases with the load unbalance. If the sign of cos(φ− + ϕf ) is negative, then an

increase of the load unbalance or the VUF will reduce the effective PF. On the other hand, if cos(φ− + ϕf )

is positive, then an increase of the load unbalance or the VUF will increase the effective PF, contrary to the
common sense of an expected decrease of its value.

Furthermore, the presence of the cosine (which is a function of the negative-sequence angle and an angle
due to the load unbalance) term multiplying the VUF in the linearized expressions indicates that the influence
of the voltage and load unbalance on the PF value cannot be separated in general even for small values of
VUF. In fact, if the VUF and the load unbalance terms appeared in two separate terms adding each other,
then it would be possible to segregate and isolate the influence of each component. As this is not the case,
the VUF and the load unbalance contributions get inseparably mixed. Considering that the VUF is under the
responsibility of the source supplier and that the customer is responsible for the unbalance in the load, one
can conclude that none of the investigated definitions allows a clear assignment of the responsibilities for an
eventual low PF value when unbalances are present on both the voltages and the load.

Considering the physical meaning of the effective PF as the ratio of the actual power to the maximum power
that could be transmitted while keeping the line power loss and the load voltage constant [31, 33, 44, 45, 97],
the second term of the linearized equation (6.88) indicates the shared contribution between the customer and
the source supplier regarding the increase of transmission losses due to unbalances in the load and voltages.
Nonetheless, the individual contributions cannot be easily separated using the effective PF.
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6.2.1 Modified PF definitions

Based on the preceding discussion, it can be concluded that any proposition for billing purposes should
correctly assign responsibilities, which is not the case with the evaluated definitions. In this sense, we propose
that corrected/modified PF definitions should be equal to the first terms of the linearized expressions (6.46),
(6.56), (6.69), (6.80), and (6.88). In other words, they should be equal to the following admittance factor (AF)
definitions (valid for delta-connected loads).

AF1,a =
G+
a

|Y+
a |

(6.99)

AF a
1 =

3Gs

|Y+
a |+ |Y+

b |+ |Y
+
c |

(6.100)

AF g
1 = AF+

1 =
Gs

|Ys|
(6.101)

AF e =
Gs√

|Ys|2 + |Y−+|2
(6.102)

These AFs depend solely on the load’s admittances and not on the voltages, thus eliminating the influence of
the source quality over the customer’s AF. It is worth mentioning that AF g

1 and AF+
1 account only for the

effects of the load’s susceptance on the transmission of power, whereas AF e accounts also for the effects of the
load unbalance.

Considering that the loads change over time, one can meter these AFs with the aid of impedance estimation
algorithms, such as those proposed in [139,140]. So, the proposed definitions can be measured and they allow
to charge customers based on their sole responsibility.

6.3 Graphical Analysis and Comparison with the Simulation and Experi-
mental Results

We also implemented the obtained general and linearized PF expressions in a computational program to
compare the results with those obtained with the simulation and experimental data.

6.3.1 Balanced Constant Impedance Loads

In Section 4.1, after running the computational simulations of 35280 voltage conditions for the balanced
constant impedance load, it was observed that all definitions have the same reference value of 1 and they are
not affected by the voltage unbalance, that is PF1,a = PF g

1 = PF e
1 = PF a

1 = PF+
1 = PFref = 1. Using the

expressions obtained from the analytical investigation in Section 6.1, the equivalent admittance is equal to
Y s = Gs = 0.0556. Substituting these values in the expression, all PF definitions yield the same value of 1.
So, the results of the analytical investigation are in agreement with the results from Section 4.1.
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6.3.2 Unbalanced Constant Impedance Loads

For the unbalanced load employed in this work, the following admittance values were obtained

Y+
a = (Y+

b )∗ = 0.0268 + j0.0155,

Ys = 0.0179,

Y−+ = (Y+−)∗ = 0.0089 + j0.0155.

Employing these admittance values, the PF values obtained with the linearized expression of each definition
are shown in Table 6.2. As discussed in the analytical development, the variations of the PF when both the
load and the source are unbalanced are due to the negative-sequence voltage angle and magnitude. Since the
PF definitions are shown to be a function of the VUF and of the cosine of the negative-sequence voltage angle,
they have a periodic behavior.

Table 6.2: Summary of the simulation results.

Balanced Load Unbalanced Load
Balanced Unbalanced Balanced Unbalanced
Voltages Voltages Voltages Voltages

PF1,a 1 1 0.8660 [0.8510, 0.8810]

PF a
1 1 1 0.8660 [0.8530, 0.8790]

PF g
1 1 1 1 1

PF+
1 1 1 1 1

PF e 1 1 0.7071 [0.6859, 0.7283]

Also using the linearized expressions, it possible to plot the effective PF as function of the negative-sequence
voltage magnitude and angle as shown in Figure 6.1. Comparing Figure 6.1 with Figures 6.1 and 5.4, it can
be concluded that the linearized equation matches the observed sinusoidal behavior of the simulations and
the experimental tests. Additionally, the same behavior is observed for the remaining PF definitions with the
exception of PF g

1 and PF+
1 when the load is purely resistive.

The linearized equations are also compared with the results obtained from the experimental tests. The
mean squared error obtained for the effective PF is approximately 7.64× 10−7.

In order to verify the effects of the harmonics on the effective PF, the signed error with respect to the ex-
pression 2.72 is computed considering the same unbalanced voltage conditions with and without the harmonics.
Figure 6.2 shows the obtained results as a function of the VUF side-by-side. It was observed that without
harmonics in the voltage signal, the error is zero when the VUF is zero. As the VUF increases, the signed error
decreases, meaning that the actual effective PF is lower than that obtained with the linearized expression.
For a VUF equal to 3%, the signed error is close to −3.3 × 10−4. It is worth mentioning that in many PF
billing policies [9, 11, 94] the PF thresholds are defined using only two decimals. So, an error in the order of
10−4 should not be very significantly for PF billing purposes. Considering now the case with harmonics, it
can be observed that the signed error is worse than it was without harmonics. This means that the harmonics
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(a) (b) (c)

Figure 6.1: PF e of the unbalanced resistive load computed by the linearized equation (6.88). (a) 2D plot of
PF e as a function of VUF with the θ− as the colorbar. (b) 2D plot of PF e as a function of θ− with the VUF
as the colorbar. (c) 3D plot of PF e as a function of VUF and θ− with PF e as the colorbar.

(a) Without harmonics in the voltage signal
(THD= 0).

(b) With harmonics in the voltage signal (THD≈
3.74%).

Figure 6.2: Signed errors of the Taylor series approximation for the effective PF as a function of the VUF.

contribute to lowering the actual effective PF, as the major power flow occurs at the fundamental frequency
thus leading to the upper bound shown in (6.96). When the VUF is zero, a signed error of −0.7 × 10−4 is
shown. When the VUF is 3%, the signed error is close to −4.5 × 10−4. Comparing the errors for VUFs of
0% and 3% with and without harmonics, it can also be observed that the harmonics contribute more to the
reduction of the signed error when the VUF increases. Nonetheless, the errors are still within the order of
10−4.

Figure 6.3 shows the approximation errors obtained using the linearized equations for all definitions. Com-
paring the linearized expressions with the general expressions using data from the simulations, it was observed
that the highest error (approximately 8 × 10−4) occurred for PF1,a with the VUF equal to 3%. The second
highest error occurred for PF+

1 and PF e, followed by PF a
1 . The error for PF g

1 was zero since the load is
purely resistive. In this condition, the complete and the linearized expressions are both constant and equal to
one.
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(a) Absolute error. (b) Signed error.

Figure 6.3: Errors of the Taylor series approximation for each PF definition as a function of the VUF, with
THD ≈ 3.74%.

6.4 Chapter Remarks

This chapter has evaluated different PF definitions applied to constant impedance loads (balanced and
unbalanced) under several unbalanced nonsinusoidal voltage conditions by means of digital simulations and
experimental tests. It also presented analytical expressions for each PF definition as a function of the load’s
admittances and the VUF.

The simulations and experimental tests revealed that, when applied to a balanced constant impedance
load, none of the investigated PF definitions are affected by the voltage unbalance. On the other hand, when
the load is unbalanced, the fundamental per-phase PF, the fundamental arithmetic PF and the effective PF
are significantly affected by the unbalances present in the voltage supply. Only the fundamental geometric and
the fundamental positive-sequence PFs were independent of the VUF for the unbalanced resistive load.

The analytical development revealed that actually all investigated PF definitions are non-linear functions
of the VUF, the negative-sequence voltage angle (θ−), and the load’s admittances. An exception occurs when
the load is purely resistive. In this case the fundamental geometric PF is constant and equal to 1 and the
fundamental positive-sequence PF is approximately equal to 1. The non-linear functions were also linearized
considering the first two terms of their Taylor’s Series. The linearization errors were lower than 8× 10−4. The
second term of each PF definition approximation also revealed that the contributions of the unbalances in the
voltages and loads are intricately connected. They may increase or lower the reference PF (measured under
balanced sinusoidal nominal voltages) based on a combination of the negative-sequence voltage angle and the
load’s parameters. Lastly, we indicated that PF definitions for billing purposes should depend solely on the
customer’s load, and for this reason we proposed admittance factors that can be employed for billing purposes
in substitution to the actual PF definitions.



CHAPTER 7

Conclusions

This work evaluates several PF definitions and their applicable measurement algorithms under several
unbalanced and nonsinusoidal voltage conditions, considering the fairness perspective for billing purposes
employing computational simulations, experimental tests and analytical developments. Here, the fairness
notion is in the sense that the meter (built based on a particular definition and measurement method) under a
nonideal supply should lead to very close values as if it was submitted to an ideal balanced sinusoidal nominal
supply.

The simulations were performed with Matlab, and they consisted of applying unbalanced nonsinusoidal
voltages at the point of connection of the loads represented by their electrical models. This work has evaluated
a balanced constant impedance load, an unbalanced constant impedance load, a three-phase induction motor,
and an unbalanced non-linear load consisting of a set of light-emitting diode (LED) lamps. The resulting current
was applied in the calculation of different PF definitions. Then, a time-domain simulation was performed to
assess the accuracy of the PF measurement methods with noiseless and noisy voltage and current signals. Also,
experimental tests were executed with a controlled voltage source, a adjustable constant impedance load, a
three-phase induction motor, a mechanical load (DC generator and a variable resistor), a computer, and a
speed sensor.

Simulations with the balanced constant impedance load showed that all investigated PF definitions (per
phase and three-phase) and measurement algorithms yielded fair PF values. On the other hand, simulations
with the unbalanced constant impedance load, the induction motor, and the unbalanced non-linear load showed
that the values of the per phase and some three-phase PF definitions are significantly affected by unbalanced
nonsinusoidal voltages. Therefore, the behavior of each PF definition with respect to voltage variations also
depends on the evaluated load.

For the unbalanced constant impedance load, simulations revealed that the fundamental per-phase PF, the
fundamental arithmetic PF (PF a1 ), and the effective PF (PF e) were sensitive to voltage unbalance. Depending
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on the negative-sequence voltage angle, the values of the fundamental per-phase PF, PF a1 , and PF e were higher
or lower than their respective reference values, leading to unfair situations for the utility or the customer,
respectively. Additionally, the PF e was also affected by the voltage harmonic distortion. It was shown that
only the fundamental geometric PF (PF g1 ) and the fundamental positive-sequence PF (PF+

1 ) had constant
values regardless of the voltages and they have the property of being accurately measurable even with simple
methods and considering an approximately 14 dB of SNR in the voltage and current signals.

For the motor, at least one of the phases had the fundamental per phase PF lower than the commonly
accepted value of 0.92 when the VUF was equal to or greater than 1.5%. It is worth recalling that the European
Standard EN 51060 establishes 2% as the upper limit for the VUF. So, if a fundamental per phase PF charging
is applied and the VUF is between 1.5% and 2%, customers may be penalized while the utility has no obligation
to improve the supply quality. The PF a1 and the PF e were also sensitive to voltage unbalance, decreasing with
respect to their reference values as the VUF increased. This leads to unfair charges for the customer when the
VUF was greater than 2.5%. Only the PF g1 and the PF+

1 had stable values for the motor supplied by poor
quality voltages and they have the property of being accurately measurable even with simple methods and
considering an approximately 14 dB of SNR in the voltage and current signals. It is noteworthy that, since
the motor was balanced, linear, and kept constant throughout the simulations, the customer is not responsible
for the voltage unbalance and harmonic distortion. In fact, the application of the fundamental per phase PF,
or PF a1 or PF e for billing purposes can penalize the customer in addition to the issues already caused to the
motor by the presence of the voltage unbalance and harmonic distortion.

It was observed that, for the LED lamps, all investigated definitions were affected by V z, V +, and V −

in the simulations. Voltage levels (V +) higher or lower than the nominal may increase or reduce their values
with respect to their references. The sensitivity to V z also implies that they are affected by the choice of the
measurement point. It was also shown that the fundamental per-phase PF was the most sensitive, whereas
the fundamental geometric and fundamental arithmetic PFs were the least. Nonetheless, none of them are
recommended for billing purposes as they may lead to unfair billing scenarios for the utility and the customer.

After analyzing the three different types of loads (constant impedance, three-phase induction motor and
LED lamps), the simulations indicate that none of the PF definitions were totally independent of the voltages
for all loads. Although the fundamental geometric PF presented the least sensitivity to the voltages in all
cases, it does not represent the load unbalance. The fundamental per-phase PF, the fundamental arithmetic
and effective PFs accounted for the load unbalance. However, their application to the unbalanced constant
impedance load or the unbalanced set of LED lamps may lead to unfair billing scenarios for both the utility
and the customer, while their application to the TIM may lead to unfair billing scenarios for the customer.

The experimental results obtained in this work ratified the simulations’ results. They showed that the
voltage unbalance can reduce the customer’s PF1,a, PF a1 , and PF e to values below the acceptable limits.
Therefore, the PF e definition is not adequate for the scenarios investigated in this work even though it is
recommended by IEEE Standard 1459-2010.

At last, Chapter 6 provided, for the delta-connected constant impedance load, the analytical expressions
for each PF definition as a function of the load’s admittances and the VUF. The obtained equations revealed
that actually all investigated PF definitions are non-linear functions of the VUF, the negative-sequence voltage
angle (θ−), and the load’s admittances. An exception occurs when the load is purely resistive. In this case
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the PF g1 is constant and equal to 1 and the PF+
1 is approximately equal to 1. The non-linear functions were

also linearized considering the first two terms of their Taylor’s Series, resulting in linearization errors were
lower than 8 × 10−4. The first term of each PF approximation is the reference value (also named as the
admittance factor) of that definition, depending solely on the load’s admittances. The second term revealed
that the contributions of the unbalances in the voltages and loads are intricately connected since the factors
representing the unbalances appear multiplying each other. If these factors appeared in two separate terms
adding up to the PF value, it would be possible to quantify the additive contributions from the load and the
source to the variations of that PF. They may increase or lower the reference PF based on a combination of
the negative-sequence voltage angle and the load’s parameters. As a result, their usage may lead to unfair
billing scenarios for both the utility and the customer. Lastly, it is indicated that PF definitions for billing
purposes should depend solely on the customer’s load, and for this reason it is proposed admittance factors
that can be employed for billing purposes in substitution to the actual PF definitions.

This work demonstrated that the behavior of each PF definition depends on the evaluated load. For
the delta-connected constant impedance, it was proved that, in general, none of the actual PF definitions
are independent of the voltages. The application of these definitions for billing under unbalanced voltage
conditions may result in unpredictable and potentially unfair situations for utilities or customers. It is also
emphasized that, considering the actual levels and the expected worsening of voltage unbalance and harmonic
distortion, there is a pressing need for regulatory agencies to thoroughly investigate and discuss PF definitions
and measurement methods. In this sense, it is the author’s opinion that the actual use of current PF definitions
for billing purposes should be reviewed. The use of the proposed admittance factors (AF) represents a step
towards finding the fairest billing index; however, it does not represent a final solution as other types of loads
and the effects of the harmonics still require further studies. Given the impracticality of extensively evaluating
all the possible loads or considering all different combinations of harmonics, we believe that the study of PF
definitions for billing purposes should also be accompanied by the identification of the main loads subjected
to PF billing and the most common harmonics presently at the grid.

7.1 Future works

We have discussed the PF billing of a balanced constant impedance load, an unbalanced constant im-
pedance load, an induction motor, and an unbalanced set of light-emitting diode (LED) lamps supplied by
unbalanced nonsinusoidal voltages. Simulation and in-laboratory experiments showed that the voltage supply
could significantly impact the values of the measured PF depending on the definition used, even if the load
remains constant. Additionally, this work presented evidence that a PF definition that leads to fair billing for
a given type of load may not provide fair billing for other types. This work did not quantify the customer’s
influence on the VUF but instead identified the impact of the VUF on PF definitions. It is shown that PF
definitions mix the contributions of the customer and the source to the total unbalance without being able to
correctly assign responsibilities. For this reason, they are not recommended for studies aiming to pinpoint the
customer’s influence on the VUF.

A natural continuation of the work is to extend the analytical findings considering other topologies and
considering the special case of the TIM with constant speed. The application of the proposed admittance
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factors with a method for estimating the load’s admittances is also suggested for future works with the TIM,
the LED, and other types of loads. The evaluation of PF measurements to systems with different unbalanced
nonlinear loads supplied by unbalanced nonsinusoidal voltages is also a possible continuation of this work.
Some nonlinear loads, such as the LED, have electric models available in the literature. However, there are
some loads which may not have electric models available at the time of evaluation. In this case, it is necessary
to conduct experimental tests in order to evaluate the application of PF definitions under different supply
conditions.
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I.0. TRIGONOMETRIC IDENTITIES

Identity 1 [Sum of cosines]
Consider the following complex numbers

a = |a| α

b = |b| β

c = a + b = |c| χ.

It can be shown that

|a| cos(x+ α) + |b| cos(x+ β) = |c| cos(x+ χ) (I.1)

where x is any given angle. It can also be shown that if

d = a + b∗ = |d| δ

then

|a| cos(x+ α) + |b| cos(x− β) = |d| cos(x+ δ).

Identity 2 [Sum of sines]
Consider the following complex numbers

a = |a| α

b = |b| β

c = a + b = |c| χ.

It can be shown that

|a| sin(x+ α) + |b| sin(x+ β) = |c| sin(x+ χ) (I.2)

where x is any given angle.
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II.0. DESCRIPTION OF SOME POWER THEORIES

II.1 Fryze’s Definitions

Seeking to define power components under nonsinusoidal conditions, Fryze proposed in [69] that the current
drawn from the load can be decomposed as

i(t) = iA(t) + iN (t) (II.1)

where
iA(t) = Gv(t) (II.2)

is the active current, G is a conductance and

iN (t) = i(t)− iA(t) (II.3)

is the nonactive or wattless current (or Blindstrom, in German, hence the usage of the subscript “b” in some
papers). Notice that iA(t) is parallel to the voltage v(t). The term parallel here regards the function space.
In this sense, it means the current is equal to the voltage multiplied by a scaling factor. Since iN (t) is
the compliment of iA(t), it is orthogonal to the voltage and does not contribute to the active power. The
orthogonality of iN (t) and v(t) implies that their inner product

< iN (t), v(t) >=

∫
iN (t)v(t)dt (II.4)

is equal to zero. So, the active power can be simply computed by

P =
1

kT

∫ τ+kT

τ
iA(t)v(t)dt (II.5)

or, in terms of RMS values,
P = V IA. (II.6)

Fryze noticed that since the active and nonactive currents are orthogonal to each other, the current RMS
value can be rewritten as

I2 = I2A + I2N (II.7)

where IA is the RMS value of the active current and IN is the RMS value of the nonactive current.

In order to define the reactive power, Fryze employed the apparent power (SN ) given by

SN = V I. (II.8)

Applying (II.7) in (II.8) and taking the squared values yields

S2
N = P 2 +Q2

N (II.9)
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in which P is the active power, and
QN = V IN (II.10)

is Fryze’s reactive power, which sometimes can be called nonactive power (N). It is noteworthy that this
generalization of the reactive power does not account only for the phase shift between voltage and current but
also for all phenomena that increase V or I without increasing P . As a result, Qn does not provide much
information about which phenomena are at play, hindering the job of compensating Qn.

It is important to notice that Fryze’s works focused on defining active and reactive powers, while the PF
was not directly addressed. As a result, the term “Fryze’s power factor” is not very common in literature.
Nevertheless, this definition is found on commercial meters [19]. Fryze’s power factor PFR is given by

PFR =
P

SN
. (II.11)

II.2 Budeanu’s Power Theory

Budeanu’s power theory also adopts the same definition for apparent power as Fryze, but tries to decompose
SN into components associated with distinct phenomena aiming to facilitate the compensation of SN . Here,
the set H is restricted to ν integers that represent the fundamental and the harmonic components of voltage
and current. Taking into account the trigonometric identity cos (α)2 + sin (α)2 = 1, the squared RMS value of
the current ih(t) can be rewritten as

I2h = [Ih cos (θh)]2 + [Ih sin (θh)]2 (II.12)

in which θh is the current and voltage phase shift in the hth order. Applying (II.12) in (2.10), the squared
RMS current can be rewritten as

I2 =
ν∑
h=1

[Ih cos (θh)]2 + [Ih sin (θh)]2 . (II.13)

The squared apparent power is given by

S2
N =

ν∑
h=1

V 2
h

{
ν∑
h=1

[Ih cos (θh)]2 + [Ih sin (θh)]2
}
, (II.14)

and can be regrouped as

S2
N =

ν∑
h=1

V 2
h

ν∑
h=1

[Ih cos (θh)]2 +
ν∑
h=1

V 2
h

ν∑
h=1

[Ih sin (θh)]2 . (II.15)

Considering Lagrange’s identity
ν∑
h=1

A2
h

ν∑
h=1

B2
h =

(
ν∑
h=1

AhBh

)2

+

ν−1∑
m=1

ν∑
n=m+1

(AmBn −AnBm)2 , (II.16)

the apparent power results in

S2
N =

[
ν∑
h=1

VhIh cos (θh)

]2
+

[
ν∑
h=1

VhIh sin (θh)

]2

+
ν−1∑
m=1

ν∑
n=m+1

{
[VmIn cos (θn)− VnIm cos (θm)]2 + [VmIn sin (θn)− VnIm sin (θm)]2

}
. (II.17)
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Figure II.1: Budeanu’s PT parallelepiped

The last term can be further simplified using the following trigonometric identities

[VmIn cos (θn)]2 + [VmIn sin (θn)]2 = (VmIn)2 (II.18)

VmVnImIn [cos (θn) cos (θm) + sin (θn) sin (θm)] = VmVnImIn cos (θm − θn) . (II.19)

Therefore, the final expression for the squared apparent power is

S2
N = P 2 +Q2

B +D2
B, (II.20)

in which P is the active power,

QB =
ν∑
h=1

VhIh sin (θh) (II.21)

is Budeanu’s reactive power, and

DB =

ν−1∑
m=1

ν∑
n=m+1

[
(VmIn)2 + (VnIm)2 − 2VmVnImIn cos (θm − θn)

]
(II.22)

is Budeanu’s distortion power.

It is noteworthy that P , QB, and DB are orthogonal, allowing the construction of a parallelepiped to
represent the components of Budeanu’s power theory (PT), as shown in Figure II.1.

Similarly to the works of Fryze, Budeanu focused on defining active and reactive powers, while the PF was
not directly addressed. However, it is possible to define the PF based on Budeanu’s power theory as

PFB =
P√

P 2 +Q2
B

. (II.23)

Although the term ‘Budeanu’s power factor” is not very common in literature, some commercial meters employ
PFB [19].

Notice that Fryze’s power factor, given in (II.11), can also be rewritten in terms of QB and DB as

PFR =
P√

P 2 +Q2
B +D2

B

. (II.24)
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II.3 Shepherd Power Theory

reference [68] proposes a new decomposition of the apparent power in which

SR =

√∑
n∈N

E2
n

∑
n∈N

I2n cos2 φn 6= P 2 (II.25)

is the active apparent power,

SX =

√∑
n∈N

E2
n

∑
n∈N

I2n sin2 φn (II.26)

is the true reactive apparent power, and

SD =

√√√√√∑
n∈N

E2
n

∑
p∈P

I2p +
∑
m∈M

E2
m

∑
n∈N

I2n +
∑
p∈P

I2p

 (II.27)

is the distortion power. N , M , and P are the sets of frequency components present in both the current and
voltage signals, in the voltage signal only, and in the current signal only, respectively. In other words, the
voltage and current can be rewritten as

e(t) =
∑
n∈N

√
2En sin (nωt+ αn) +

∑
m∈M

√
2Em sin (mωt+ αm) (II.28)

i(t) =
∑
n∈N

√
2In sin (nωt+ αn + φn) +

∑
p∈P

√
2Ip sin (pωt+ αp + φp) . (II.29)

The authors also discuss the components of apparent power drawn by the loads, whether SX can be completely
compensated with passive elements, the maximum power factor for the minimum SX realizable with passive
elements and the power theoretical value if SX is zero. The discussion accounts for all possible combinations
of sinusoidal and nonsinusoidal voltage supply with linear and nonlinear loads.

It is worth mentioning that publication of [68] was followed by three discussion papers criticizing that SR,
SX , and SD are mathematical quantities without any physical meaning [64,66,67]. Additionally, reference [67]
points out that minimization of SX leads to the maximum power factor realizable if the compensation is done
with only passive linear energy-storage devices. According to [67], compensation of the power factor to unit is
possible with nonlinear and/or active circuits. Reference [66] emphasizes the importance of correctly measuring
the proposed quantities, which in that time was not possible. The practical importance of power definitions
is subject to the creation of accurate measurement methods, according to [66]. Shepherd and Zakikhani in
response to Micu [66] stated that “In particular, if a customer has a lagging-power-factor load and distorted
supply voltage, the calculation of tariff based on the arbitrary value Q” [Budeanu’s reactive power] “results
in that customer receiving a free portion of his reactive-power consumption”. At last, in [64] it is highlighted
that [68] is restricted to balanced (or single-phase) systems, lacking a generalization to unbalanced three-phase
systems.

II.4 Sharon Power Theory

In 1973, Sharon examined the “true reactive apparent power” (SX) as defined by [68]. He showed that
capacitor compensation may lead to an increase of SX instead of reducing it because the harmonics that were
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originally restricted to the voltage signal (belonging to the set M) now appear in the current signal as a result
of their flow through the shunt impedance (belonging now to the set N). To address the impacts of new
harmonics, reference [65] proposed

SQ = VRMS

√∑
n∈N

I2n sin2 φn (II.30)

as the definition for reactive power, accounting for all voltage harmonics (sets N and M) instead of only those
present in both voltage and current signals (set N). The authors also propose a “complimentary reactive power”
(SC) that accounts for the cross-frequency reactive effects of the in-phase components of the harmonic currents
in the N group, and the harmonic currents in the P group. It is shown that shunt compensation leads to the
minimization of SQ while not affecting the active power P and SC ; leading therefore to a better power factor.
At last, the authors comment that defining reactive power is not indispensable for power factor improvement,
since the value of the capacitor (C) for shunt compensation can be obtained through the minimization of
the apparent power with respect to C. It is worth mentioning that the paper is restricted to balanced (or
single-phase) systems.

II.5 Kusters and Moore Power Theory

In [61], the authors present a measurement instrument and claim that the proposed definitions “provide
the operator with a direct indication of whether the reactive power can be reduced, by what means, and by
how much.” These definitions are based on the decomposition of the current into four likewise components,
having the source voltage as a reference. The inductive/capacitive reactive current (IQL/IQC) component
is an equivalent current that would flow through an inductor/capacitor submitted to the reference voltage.
The residual inductive/capacitive reactive current (IQLr/IQCr) is the component that remains of the current
after the active current and IQL/IQC components have been extracted. The paper also proposes an inductive
frequency ωL and a capacitive frequency ωC . These fictitious frequencies allow representing the system by
means of the equivalent impedances Zeq,L = ωLL or Zeq,C = 1/ωCC. The proposed definitions are employed
in three examples to identify whether the current RMS value can be reduced, by what means, and by how
much. In the first, an inductor is supplied by nonsinusoidal voltages. The second and third examples consider
a semi-conductor switched (thyristor-based) resistive load. Sinusoidal voltages are considered in the second
examples, whereas nonsinusoidal voltages are considered in the third example Considering that in weak grids
(with source impedance not equal to zero), nonlinear loads produce nonsinusoidal currents which in turn
cause nonsinusoidal voltages in the system, the choice of the nonsinusoidal voltage as a reference to propose
decompositions may not be the best choice. Whether the fundamental voltage is a better choice remains to be
investigated. The effects of the source impedance should also be addressed.

II.6 Czarnecki’s Current Physical Components (CPC) Power Theory

Reference [59] examines existing power definitions, such as those proposed in [61, 62, 68]. The author
proposes the scattering power (DS) and the Czanercki’s reactive power (QZ) to decompose the apparent
power. Additionally, the author shows that Ds establishes a link between the proposed definitions and those
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proposed by Fryze [69] and Shepherd [68]. Mathematically,

DS =

√∑
n∈N

V 2
n

√∑
n∈N

(Gn −Ge)2 V 2
n , (II.31)

QZ =

√∑
n∈N

V 2
n

√∑
n∈N

B2
nV

2
n , (II.32)

where Vn, Gn, and Bn are the voltage RMS value, the load conductance and the load susceptance at frequency
order n, respectively. Ge is the load “equivalent” conductance. In the proposed decomposition, the scatter-
ing power refers to the part of the apparent power caused by the difference between the load’s “equivalent”
conductance (Ge) and the actual harmonic conductance (Gn) at the harmonic order n. This power cannot be
compensated by passive devices. Czarnecki’s reactive power on the other hand, refers to the apparent power
component caused by the phase shift between voltage and current at each harmonic order. This component
can be compensated by passive devices.
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