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APRESENTAÇÃO 

 

O carste carbonático (convencional) é uma paisagem complexa, em que a erosão 

química causada pelas águas das chuvas incide sobre rochas suscetíveis à ação hídrica. 

Ao longo do tempo geológico, essa interação permite que a paisagem cárstica exiba 

morfologias diversas, positivas e negativas, no exocarste e no endocarste, propiciando o 

aparecimento de diversas formas e processos típicos desse sistema. 

As depressões, como as dolinas, estão entre as feições mais características do 

carste, podendo apresentar formas arredondadas ou angulares e de diversos tamanhos. 

São formadas a partir do colapso ou subsidência de terrenos sujeitos à dissolução e erosão 

pela ação química das águas. No Grupo Bambuí, particularmente na região meio-oeste da 

Bahia, as dolinas se encontram espalhadas na paisagem, com padrões de distribuição e 

densidade que indicam áreas potencialmente sensíveis aos impactos causados pelas 

atividades humanas. 

No sentido de detectar as depressões cársticas da área de estudo, inserida no Grupo 

Bambuí, meio-oeste da Bahia, a pesquisa buscou identificar essas feições a partir de 

ferramentas de sensoriamento remoto, com método de aprendizado profundo (deep 

learning), que está no contexto da inteligência artificial, sem que houvesse, 

necessariamente, deslocamento para estudo de campo. 

Primeiramente, foram obtidos dados de Modelos Digitais de Elevação (MDEs) 

das últimas versões dos sensores GLO-30, AW3D30, SRTM, NASADEM e ASTER 

GDEM, com resolução espacial de 30 metros, disponíveis gratuitamente. Aos MDEs, 

foram adicionadas variáveis que subdividiram os MDEs em dois tipos: MDE + MDE 

sink-depth (2 variáveis), e MDE + MDE sink-depth + 9 morfometrias - declividade, 

aspecto, perfil de convexidade, plano de convexidade, convexidade longitudinal, 

convexidade transversal, mínima curvatura, máxima curvatura e raiz quadrada média - 

(11 variáveis). 

Para a interpretação visual das feições (depressões cársticas), foram obtidas 

imagens ópticas de dados Sentinel-2 e OLI-Landsat 8. Os vetores foram criados, editados 

e manipulados, gerando um arquivo vetorial mostrando a verdade do terreno. 

Em seguida, foram aplicados métodos de aprendizado profundo (deep learning), 

em que foram utilizadas cinco arquiteturas de segmentação semântica (FPN, LinkNet, 

Unet, Unet ++ e DLV3+) e uma de segmentação de instâncias (Mask-RCNN). Na 

segmentação semântica, foi feita a análise de acurácia por pixel (Overall Accuracy, 
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Precision, Recall, F-Score e IoU), e na segmentação de instâncias foi feita a análise de 

acurácia por Average Precision (AP, AP50 e AP75). 

Além disso, houve reconstrução da imagem de segmentação semântica (GLO-30 

com 11 variáveis e arquitetura FPN), com janelas deslizantes em amostras de 128x128 

pixels; reconstrução da imagem de segmentação de instâncias, com cinco limites 

(Threshold Values) considerando a acurácia por polígono (70%, 75%, 80%, 85% e 90%); 

e conversão semântica-instância. 

Nos resultados, a segmentação semântica, com utilização da arquitetura FPN e do 

MDE GLO-30 (11 variáveis) obteve o melhor resultado (IoU = 71.77), e a conversão 

semântica-instâncias teve alto desempenho, em razão da ausência de sobreposição ou 

interação entre as feições. A pesquisa gerou uma base de dados numerosa de detecção das 

depressões cársticas da área de estudo, dado que a classificação com métodos de deep 

learning requer volume numeroso de dados, e com indicação dos resultados de 

classificação mais bem posicionados. 

A discussão da pesquisa trata dos obstáculos encontrados na definição dos limites 

das dolinas, da comparação entre os cinco MDEs utilizados, da comparação entre as cinco 

arquiteturas de segmentação semântica, da segmentação de instâncias, da conversão 

semântica-instâncias, e das implicações do mapeamento de dolinas na análise ambiental 

da área de estudo. 

A pesquisa buscou inovar ao aplicar métodos de deep learning na detecção de 

depressões cársticas por meio da utilização de MDEs de 30 m disponíveis gratuitamente, 

em área do Grupo Bambuí que apresenta relevância ambiental e está sujeita aos impactos 

de atividades humanas. Pesquisas futuras de aplicação de métodos semelhantes no carste 

do Grupo Bambuí, ou em outras paisagens cársticas, poderão ser realizadas, a partir de 

dados espaciais óticos, radar ou LiDAR. 

A dissertação de Mestrado foi escrita na forma de artigo científico, que foi 

submetido à Revista Geomorphology. 
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ABSTRACT 

This research aims to investigate the use of deep segmentation in detecting and 

quantifying natural karst depressions developed in the carbonate rocks of the 

Neoproterozoic Bambuí Group in Western Bahia, Brazil. The karst landscape of the study 

area has dolines and the formation of lakes enclosed in limestone. The study analyzes 

different approaches to detecting karst depressions. First, a comparison of five different 

Global Digital Terrain Models (DEM) with 30 meters resolution: Copernicus 30m Global 

DEM (GLO-30), ALOS World 3D (AW3D30), Shuttle Radar Topography Mission 

(SRTM), National Aeronautics and Space Administration DEM (NASADEM), and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer - Global DEM 

(ASTER-GDEM). Second, comparing five semantic segmentation architectures with 

EfficientNet-B7 backbone (Feature Pyramid Network - FPN, LinkNet, Unet, Unet++, and 

DVL3+) and one instance segmentation (Mask-RCNN). Third, evaluation of 

segmentation elaboration using two variables (DEM and DEM-based sink depth) or 

eleven variables (DEM, DEM-based sink depth, and nine terrain attributes). The research 

did not evaluate the use of DEM in isolation due to its very low accuracy in previous 

analyses. The methodology had the following steps: (a) acquisition of DEMs and 

generation of geomorphometric attributes; (b) sample labeling by manual interpretation 

of karst depressions from Sentinel-2 and OLI-Landsat 8 images; (c) selection of samples 

for training (1600 samples), validation (400 samples) and testing (400 samples) with 

dimensions 128x128 considering two channels (DEM and depth of sinking based on 

DEM) and eleven channels (the two previous ones added by nine morphometric 

attributes); (e) elaboration of semantic and instance segmentations; (f) accuracy analysis; 

(g) image reconstruction using sliding window; and (f) conversion from semantic 

segmentation to instance using GIS tools. The results show that the GLO-30 data showed 

the highest accuracy values, followed by the AW3D30. In contrast, the ASTER GDEM 

obtained the worst results. Among the models using semantic segmentation, the FPN 

presented the most significant accuracy results, while the DVL3+ presented the worst. 

Considering the same architectures and DEM, the models that used 11 channels obtained 

better results than those that used only two channels. Converting data from semantic 

segmentation to instance segmentation using a GIS tool proved to be very easy since the 

features did not interact. 
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1. INTRODUCTION 

Karst is a landscape produced by the chemical dissolution of water over soluble 

carbonate rocks such as limestone, dolomites, or gypsum, where chemical erosion 

processes overcome mechanical ones and lead to a distinct morphological and 

hydrological pattern. The carbonate rocks on which the karst model develops (outside 

glaciated areas) represent 15.2% of the continental land surface (Goldscheider et al., 

2020). In South America, karsts cover 2% (370,809 km2) of the continental surface, where 

most are in the Brazilian territory (containing 5-7% of the territory) spread across 

different phytogeographic domains (Bystriakova et al., 2019). Water is the main shaping 

agent of karst forms, leading to the disintegration and discontinuity of the rocky body 

subdivided into (a) exokarst, which involves positive surface morphologies (massifs, 

towers, and mogotes) and negative (sinkholes, gorges, and poljes); and (b) endokarst, 

consisting of underground features formed by water flow ducts, underground rivers, and 

caves. 

Karst environments have various ecosystem services (Beynen, 2011; Fleury, 

2009) and host a variety of ecological niches for animals and plants, including several 

endemic species (Bystriakova et al., 2019). Developing a specialized flora comes from 

environmental characteristics with high Ca, Mg, and K concentrations, absence of surface 

water, and low soil formation rates. These environments are fragile and susceptible to 

environmental risks from human activities, such as irrigation, pipe leaks, excavations, 

deforestation, artificial vibration, and heavy vehicle traffic (Gutiérrez et al., 2014). In 

addition, karst hydrological systems are highly vulnerable to polluting agents due to the 

rapid transfer of water flow between surface drainage and subsurface recharge areas (De 

Waele et al., 2011; Parise et al., 2015). 

The primary morphological representation in the karst is the dolines, characterized 

by closed depressions, which vary in size (from a few to hundreds of meters) and with 

internal drainage. Dolines formation includes mechanisms of dissolution, collapse, 

suffusion, and regional subsidence (Ford and Williams, 2007). While the subsidence 

occurs slowly, the collapse happens suddenly, both induced by the physical-chemical 

erosion of the underground rock that sinks the overlying materials (Lee et al., 2016). The 

junction of two or more dolines forms uvulas, larger depressions with an irregular shape. 

Dolines generation is a natural process, but anthropic activities can induce their 

development due to changes in land use, urban growth, and implementation of 
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engineering projects that result in hydrological alteration of the karst (De Waele et al., 

2011; Parise et al., 2015). 

Mapping areas of karst depressions is a priority step due to the complexity and 

fragility of karst systems when exposed to anthropic modifications (Masilela and 

Beckedahl, 2022; Parise et al., 2015). Therefore, knowledge of the distribution of karst 

depressions is essential for planning land occupation, environmental protection, and 

management of sensitive and highly relevant areas (Hofierka et al., 2018). In addition, 

the delimitation of sinks helps to prevent fatalities in human lives and damage to 

properties (Lee et al., 2016). The unexpected presence of sinkholes, mainly in mineral 

extraction, human settlements, water discharges, and agriculture, increases the need to 

detect these features continuously. Fieldwork can provide accurate mappings, but they 

are expensive and time-consuming. Therefore, different methods have been proposed for 

the automated detection of karst depressions from Digital Elevation Models (DEM) and 

active and passive remote sensing images, which can be subdivided into traditional 

methods and methods based on Deep Learning (DL). Among the traditional methods, the 

following procedures stand out: (a) DEM-based sink depth (Antonić et al., 2001; 

Guimarães et al., 2005); (b) Topographic Position Index using a moving window 

operation that calculates the relative position between the elevation at each pixel in the 

DEM and the average elevation of the surrounding neighborhood (Doctor and Young, 

2013; Kobal et al., 2015; Obu and Podobnikar, 2013; Weishampel et al., 2011); (c) 

delineation of depressions based on the Outermost Closed Contour (OCC) line using 

vector-based contour representation (Angel et al., 2004; Seale et al., 2008) and its 

variations (de Castro Tayer and Rodrigues, 2021; Wu et al., 2016, 2015); (d) delimitation 

of sinks based on hydrographic basins; (e) object-based image analysis (OBIA) (Dou et 

al., 2015); and (f) logistic regression (Kim et al., 2019). 

The DEM-based sink depth is the most used, considering the difference between 

the DEM without depression (after filling the sinks) and the original DEM, where the 

areas with negative elevation mark relief depressions (Guimarães et al., 2005). However, 

the simple application of the difference generates many polygons, including other features 

unrelated to the karst depressions, such as stream channels, road drainage, or other 

anthropic structures, which must be filtered. In this context, different studies have 

included processing steps to differentiate polygons, considering: (a) digital processing of 

remote sensing images (Siart et al., 2009); and (b) morphometric analysis of the polygon 

(area, circularity, and shape indices, eccentricity, elongation rate, among others) (de 
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Carvalho et al., 2013; Miao et al., 2013). Several studies compared the use of this method 

with different Global DEMs (de Carvalho et al., 2013; Kakavas et al., 2018; Theilen-

Willige, 2018), such as Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007), 

Advanced Spaceborne Thermal Emission and Reflection Radiometer - Global DEM 

(ASTER-GDEM) (Tachikawa et al., 2011), Advanced Land Observing Satellite - Global 

Digital Surface Model (ALOS-GDSM) (Tadono et al., 2015), and Digital Surface Model 

using Synthetic Aperture Radar (DSM-S1) However, in areas with dense forest cover, 

high-density laser aerial scanning offers an alternative to overcome vegetation 

obstruction, allowing the underlying soil topography to be exposed. Thus, many studies 

have combined the DEM-based sink depth method with high-density aerial laser scanning 

data to obtain high-resolution topographic profiles of bare soil (Ciglič et al., 2022; 

Moreno-Gómez et al., 2019; Parise et al., 2020; Telbisz et al., 2016; Wall et al., 2017; 

Zhu et al., 2014; Zumpano et al., 2019). Nevertheless, Light Detection and Ranging 

(LiDAR) has the following limitations: high cost, the method not readily available, and 

slower due to the needs of field campaigns (Pasquetti et al., 2019). 

DL-based segmentation techniques have three subdivisions: (a) semantic 

segmentation (class-aware labels), (b) instance segmentation (instance-aware labels), and 

(c) panoptic segmentation. Semantic segmentation identifies and groups pixels that are 

semantically together, allowing the integration of all parts of the object to form a whole, 

considering variations in colors, textures, shapes, and location (Garcia-Garcia et al., 2018; 

Guo et al., 2018). Several reviews on semantic segmentation highlight deep network 

architectures, data pre-processing, augmentation, algorithm taxonomy, applications, and 

challenges (Garcia-Garcia et al., 2018; Geng et al., 2018; Guo et al., 2018; Lateef and 

Ruichek, 2019; Yu et al., 2018). A limitation of semantic segmentation is the inability to 

distinguish different instances within the same category, not allowing to separate objects 

individually. Instance segmentation overcomes this limitation, discerning different labels 

for objects of the same category and favoring counting the number of objects and 

identification in conditions of occlusion or contact. Therefore, instance segmentation 

establishes two labels for each pixel: the object's category label and the label for each 

instance. Different instance segmentation models have been proposed: Fully 

Convolutional Instance-Aware Semantic Segmentation (FCIS) (Li et al., 2017), Mask-

Region-based Convolutional Neural Network (Mask R-CNN) (He et al., 2020), Cascade 

Mask R-CNN (Cai and Vasconcelos, 2018; Chen et al., 2019), Mask Scoring R-CNN 

(Huang et al., 2019), and High-Quality Instance Segmentation Network (HQ-ISNet) 
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(based on Cascade Mask R-CNN) (Su et al., 2020). Reviews on instance segmentation 

describe the specificities and advances in this area of knowledge (Gu et al., 2022; Hafiz 

and Bhat, 2020; Tian et al., 2021). Using instance segmentation in satellite image 

processing requires some specificities due to the image size and the number of spectral 

bands (Carvalho et al., 2021). Finally, panoptic segmentation is a combination of 

semantic and instance segmentation, subdividing the target types into "things," well-

defined and countable objects (such as houses, cars, and buildings), and "stuff," 

amorphous features of the background landscape (such as paths, lawns, and lakes). This 

segmentation performs in the entire scene, allowing its complete understanding (Li and 

Chen, 2022). In remote sensing, only some studies still use this approach (de Carvalho et 

al., 2022a, 2022b). 

The extraordinary progress of DL using Convolutional Neural Networks (CNN) 

has repercussions in several studies of geomorphological pattern identification using 

satellite imagery, DEM, or a combination of these data: (a) aeolian landforms (Du et al., 

2022; Gao et al., 2021; Shumack et al., 2020), (b) loess landforms (Li et al., 2020; Na et 

al., 2020), (c) landslide features (Catani, 2021), (d) permafrost landforms (Bhuiyan et al., 

2020; Huang et al., 2022), (e) thermokarst landforms (Huang et al., 2018), (e) artificial 

landforms (terraces) (Zhao et al., 2021), (f) Martian landforms (planetary sciences) (Jiang 

et al., 2021; Palafox et al., 2017; Wright et al., 2022), and (g) geomorphological maps 

(Buscombe and Ritchie, 2018; Du et al., 2019; Li and Hsu, 2020; Meij et al., 2022; Xu et 

al., 2022). In mapping karst areas, few studies use deep-learning methods, and among 

these, all used semantic segmentation with different types of input data. These studies had 

specific objectives and different types of images, such as: (a) identifying early sinkholes 

using thermal camera images captured by drones (Lee et al., 2016); (b) detecting 

paleokarst collapses using 3-D seismic images (Wu et al., 2020); (c) identifying and 

tracking sinkholes via thermal camera video streaming (Vu et al., 2020); (d) detecting 

sinkholes from LiDAR-derived DEMs (Rafique et al., 2022); and (e) mapping of karst 

cones (positive features) from Landsat and DEM images (Fu et al., 2021). Therefore, 

applying deep-learning methods to sinkhole detection is still an active area of research, 

and to our knowledge, no study has used instance segmentation.  

This research aims to evaluate the detection of karst depressions using the 

semantic and instance segmentation in the Central Brazil region constituted by carbonate 

rocks of the Bambuí Group. The secondary objectives are fourfold: (1) DEM evaluation 

for detection of karst depression considering SRTM, ASTER-GDEM, ALOS World 3D 
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(AW3D30), National Aeronautics and Space Administration DEM (NASADEM), and 

Copernicus 30m global DEM (GLO-30); (2) evaluation of different CNN architectures 

for semantic segmentation (U-Net, U-Net++, DeepLabV3+, LinkNet, and Feature 

Pyramid Network - FPN) and instance segmentation (Mask-CNN); (3) evaluation of box-

free instance segmentation approach from semantic segmentation; (4) assessment the use 

of geomorphometric attributes in detection considering two approaches: (a) DEM and 

DEM-based sink depth; and (b) DEM, DEM-based sink depth, and nine geomorphometric 

attributes; and (5) elaboration of a new karst depression dataset with a significant amount 

of data for semantic and instance segmentations. 

2. STUDY AREA 

The study area is located in the region of Western Bahia (Figure 1), composed in 

its west of a plateau developed on the Urucuia group sandstones and in the east of a 

topographically lower terrain composed of pelitic-carbonatic rocks of the Bambuí Group. 

The climate is tropical, with average annual precipitations varying significantly from 

1800 mm in the western part (plateau regions) to 800 mm in the eastern part (karst 

regions). 

Considering the Brazilian speleological provinces, regions with geological 

formations susceptible to developing karst actions, the area belongs to the Bambuí 

Province (Carvalho Júnior et al., 2008; Karmann and Sánchez, 1979). This speleological 

province consists of Neoproterozoic sedimentary rocks of the Bambuí Group, constituted 

by a thick marine pelite-carbonate succession. The Bambuí Group's depositional 

environment was an epicontinental basin, possibly a foreland basin, positioned on the 

west side of the São Francisco Craton during the Brasília Belt orogeny (Coelho et al., 

2008; Martins-Neto et al., 2001; Martins-Neto, 2009; Santos et al., 2000), dated at 630 

Ma (Pimentel et al., 2011). Some evidence also suggests a contribution from sediments 

from the Araçuaí Orogeny in the Bambuí Basin. This contribution can be interpreted as 

restricted to the highest units of the Bambuí Group (Martins-Neto et al., 2001) or 

represent a longer period of involvement, as evidenced by the Três Marias Formation 

with sandstones zircons as young as 580 Ma (Kuchenbecker et al., 2015); and Sete Lagoas 

Formation with the presence of zircons of 550 Ma (Paula-Santos et al., 2015) and the 

Ediacaran guide fossil Cloudina sp. (Warren et al., 2014). The Bambuí stratigraphy 

describes three regressive cycles, each starting with a sudden, widespread influx of 

seawater (marine transgression) resulting from basin subsidence evidenced by deep 
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pelitic marine facies, followed by the shallow-platform and tidal facies and culminating 

in the formation of supratidal facies (Sial et al., 2009). A high density of karst depression 

is associated with carbonate rocks. The karst depressions form lakes that, without water, 

present grassland cover. The low vegetation cover has little interference in the elaboration 

of the DEM from different types of sensors, contrary to forest areas. 

 

 

Figure 1. The study area (A) location in Brazilian territory, (B) region used in the survey, 

and (C) zoom of karst depressions. 

 

This region is in the ecological transition zone between the Savanna and Caatinga 

ecosystems, containing Dry Forest vegetation composed of deciduous species. This 

vegetation has two distinct extracts: (a) the forest, with its upper canopy around 15 to 18 

meters in height, regularly dense; and (b) the shrubs and young arboreal individuals, 

forming a dense tangle with a predominance of thorny species (Ribeiro and Walter, 2002). 
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Besides, the West Bahia region presents an explicit environmental and 

geomorphological control in the production system (Gurgel et al., 2013). The portion in 

the plateau areas formed by sandstones of the Urucuia Group shows an intense expansion 

of mechanized agriculture and landscape fragmentation (de Oliveira et al., 2017a, 2017b). 

In contrast, the karst regions have more preservation due to the undulation relief, soil poor 

in nutrients, and greater water scarcity, which inhibits agricultural occupation and favors 

extensive livestock. 

 

3. MATERIAL AND METHODS 

The methodology had the following steps: (a) acquisition for the study area of the 

following DEMs: SRTM, ASTER-GDEM, AW3D30, NASADEM, and GLO-30; (b) 

extraction of the DEM-based sink depth and its geomorphometric attributes (Slope, 

Aspect, Profile Convexity, Plan Convexity, Longitudinal Convexity, Cross-Sectional 

Convexity, Minimum Curvature, Maximum Curvature, and Root Mean Square - RMS) 

for each acquired DEM; (c) manual interpretation of karst depressions from Sentinel-2 

and Operational Terra Imager (OLI)-Landsat 8 images; (d) elaboration of the Karst 

Depression Dataset considering training, validation, and testing samples with dimensions 

128x128 considering two channels (DEM and sink depth based on DEM) and eleven 

channels (the two previous ones and nine morphometric attributes); (e) semantic and 

instance segmentation; (f) per-pixel accuracy analysis; (g) large-image reconstruction 

using a sliding window for semantic and instance segmentation, (h) elaboration of the 

instance segmentation models from semantic segmentation and GIS, and (g) per-polygon 

accuracy analysis. Figure 2 presents a flowchart containing the data and the 

methodological steps and comparisons performed. 
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Figure 2. Methodological flowchart. 

 

This study comprehensively compared global DEMs and semantic and instance 

segmentation techniques for detecting karst depressions. Semantic segmentation focuses 
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on classifying each pixel in an image into predetermined categories, allowing the 

identification of karst depressions as a distinct class. On the other hand, instance 

segmentation not only assigns pixels to classes but also differentiates individual instances 

of the same class, providing a more granular understanding of the distribution of karst 

depressions. By examining several state-of-the-art DL models, we investigate the 

performance and applicability of these segmentation methods to detect karst depressions. 

This comparative analysis identifies the strengths and limitations of each approach and 

guides the selection of the most appropriate procedure for detecting karst depressions. 

For both methods, the study compares different image compositions using the same field 

data to assess which performs better. 

 

3.1 Digital Elevation Models and Terrain Attributes 

DEMs are of fundamental importance in geomorphology for acquiring detailed 

information about the terrain, with applications in identifying and analyzing landforms, 

calculating topographic indices, identifying earth surface changes over time, and 

landform process modeling (Xiong et al., 2021). Different sensors provided elevation data 

on an almost global scale, revolutionizing the knowledge of the Earth’s topography. 

The SRTM mission data developed cooperatively by NASA, the National 

Geospatial-Intelligence Agency (NGA), the German Space Agency (DLR), and the 

Italian Space Agency (ASI) generated DEM from the C/X-Band Synthetic Image (SIR-

C/X-SAR) with two antennas aboard the Space Shuttle Endeavor (Farr et al., 2007). Data 

acquisition covered the continental areas between 60 degrees North and 56 degrees South 

over 11 days in February 2000 (Rabus et al., 2003). The first version of the SRTM consists 

of the original data. The second version of the SRTM, developed by cooperation between 

NASA's Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence 

Agency (NGA), removed artifacts (peaks and pits) and improved the definition of water 

bodies and coastlines; but some of the voids remain (Slater et al., 2006). The data 

resolution was three arc-seconds (about 90 meters) for global coverage and one arc-

seconds (about 30 meters) for the United States. The third version of SRTM (SRTM v3.0) 

filled gaps with data from ASTER GDEM, United States Geological Survey (USGS) 

Global Multi-resolution Terrain Elevation Data (GMTED2010), and the USGS National 

Elevation Dataset (NED). Finally, a spin-off product of SRTM v3.0 was the Global 1-arc 

second (SRTMGL1) with high resolution (~30 m) for 80% of Earth's mass with 
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worldwide distribution in 2015. Complementarily, other research institutions 

independently propose other versions of the SRTM seeking additional improvements, 

such as CGIAR Consortium for Spatial Information SRTM (CGIAR-CSI SRTM v4.1) 

(Reuter et al., 2007), Africa Soil Information Service: Hydrologically Corrected/Adjusted 

SRTM DEM (AfrHySRTM) (Vagen, 2010), Elevation Corrected for Altimetry (ACE2) 

(Berry et al., 2010), EarthEnv-DEM90 (Robinson et al., 2014), Jonathan de Ferranti´s 

SRTM (Ferranti, 2021), and Multi-Error-Removed Improved-Terrain (MERIT) 

(Yamazaki et al., 2017). 

The ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) is a joint project sponsored by METI (Japan's Ministry of Economy, Trade, 

and Industry) and NASA (U.S. National Aeronautics and Space Administration). The 

sensor was launched onboard Terra Satellite and began to collect Earth's data in 

December 1999, creating data by photogrammetric processing near-infrared (NIR), 

wavelength (0.78–0.86 µm) with 15-m resolution (Florinsky et al., 2018; Grohmann, 

2018). The ASTER GDEM is the only DEM that covers approximately 99% of Earth's 

surface, ranging from 83o N – 83o S, with its data generated from optical images collected 

between 2000-2008 and 1.2 million stereo scenes (Abrams et al., 2020; Florinsky et al., 

2018; Tachikawa et al., 2011; Yue et al., 2017). Versions V1, V2, and V3 of ASTER 

GDEM became available in 2009, 2011, and 2019, respectively, with the latest version 

having a decrease in elevation void area (Abrams et al., 2020; Carrera-Hernández, 2021).  

NASADEM is not a sensor launched onboard a satellite, but NASA’s near-global 

digital elevation model derived from the reprocessing SRTM raw radar data merged with 

ASTER GDEM elevations, ICESat (Ice, Cloud, and Land Elevation Satellite) and GLAS 

(Geoscience Laser Altimeter System) data (Crippen et al., 2016). The main objective of 

NASADEM, released in November 2020, was to eliminate voids and other 

inconsistencies in the SRTM dataset, providing a more accurate product. Vertical 

accuracy analysis in the Mexico region demonstrated that NASADEM improved over 

SRTM V3, mainly in flat areas (Carrera-Hernández, 2021). However, another study in 

four countries (Estonia, China, New Zealand, and Norway) verified that NASADEM 

showed a slight improvement compared to SRTM (Uuemaa et al., 2020). 

ALOS is a satellite launched by JAXA (Japan Aerospace Exploration Agency) in 

January 2006 and operated for five years, producing 6,5 million images covering the 

entire planet. The ALOS AW3D30 generation used optical stereo images from 

Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM) sensor carried 
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by ALOS with 2,5 m resolution at nadir (NDR), forward (FWD), and backward (BWD) 

(Tadono et al., 2015; Takaku et al., 2018). 

GLO-30 and GLO-90 data are Copernicus DEMs (COP-DEMs) with 30-m and 

90-m resolutions derived from TerraSAR-X add-on for Digital Elevation Measurement 

(TanDEM-X) data collected between 2011 and 2015 (ESA, 2023) and freely available on 

the ESA website. These data have been considered accurate cutting-edge global DEMs 

(Hawker et al., 2022). According to Guth and Geoffroy (2021), the GLO-30 demonstrates 

superiority compared to other global 1ʺ (second of arc) DEMs (ALOS, ASTER, NASA, 

and SRTM) evaluated with LiDAR and ICESat-2 data. In geomorphology studies, 

Copernicus DEM detected halo-karst development on the shoreline of the Dead Sea 

(Closson et al., 2023) and flood-prone areas (Cuellar et al., 2022). 

Besides the DEM, this research evaluated the insertion of terrain attributes as 

additional channels to highlight features and better segmentation of karst depressions. 

Therefore, the analysis included the DEM-based sink depth generated by each model due 

to its importance and wide use in previous studies of karst depression detection (Antonić 

et al., 2001; Guimarães et al., 2005). Complementarily, the study also extracted the 

geomorphometric attributes from the DEM-based sink depth for the enhancement of karst 

depressions: (a) slope; (b) aspect; (c) profile convexity; (d) plane of convexity; (e) 

longitudinal convexity, (f) cross-sectional convexity, (g) minimum curvature, (h) 

maximum curvature, and (i) root mean square (RMS) (Wood, 1996). Figure 3 

exemplifies the geomorphological attributes used in detecting karst depressions for a 

small part of the study area. This example uses the GLO-30 image's terrain attributes 

(Figures 3A to 3K). Figure 3L represents the visual interpretation of the karst 

depressions used as field truth data in the deep segmentation processing. 
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Figure 3. Exemplification of terrain attribu tes used in the detection  of karst depressions.  

Figure 3. Exemplification of terrain attributes used in the detection of karst depressions 

at a zoom of 800 x 800 pixels contained in the study área: : (A) GLO-30, (B) DEM-based 

sink depth, (C) slope; (D) aspect; (E) profile convexity; (F) plane of convexity; (G) 

longitudinal convexity, (H) cross-sectional convexity, (I) minimum curvature, (J) 

maximum curvature, (K) root mean square (RMS), and (L) ground truth based on visual 

interpretation. In the present example, the elaboration of all-terrain attributes used the 

GLO-30 image.   
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Therefore, the study compared two data sets for each of the evaluated DEMs: (a) 

DEM and DEM-based sink depth (2 channels), and (b) DEM, DEM-based sink depth, 

and nine terrain attributes (11 channels). An essential issue is that previous tests using 

only the DEM (without including terrain attributes) presented very discrepant errors not 

being considered in the analysis. 

 

3.2. Karst Depression Dataset 

There is a close relationship between the advancement of DL tasks and the 

provision of large datasets for testing. However, few geomorphological datasets are 

available for DL processing due to its recent introduction in this field of science. 

Therefore, elaborating geomorphological datasets is crucial in encouraging other 

researchers to develop new methods with greater precision and drive the progress of 

geomorphological mapping. In this context, the present study developed a database of 

karst depressions to meet both semantic and instance segmentation. 

Establishing criteria for delimiting karst depressions is a significant challenge to 

creating a good dataset. In the present study, field truth annotation of karst depressions 

used visual interpretation from the Sentinel-2 and OLI-Landsat 8 images. Therefore, karst 

depression annotations present additional difficulties for visual interpretation, 

considering the following factors: (a) amorphous shapes; (b) size variation; (c) difficulty 

in demarcating the exact limit in places with tenuous changes; (d) the limit may show 

variations; and (e) similarities with other geomorphological features such as river 

features. The on-screen visual interpretation of the images used the Quantum Geographic 

Information System (QGIS) program, which has numerous tools for drawing, 

manipulating, and editing the polygons referring to the karst depressions.  

The elaboration of the training, validation, and test samples considered the ground 

truth image obtained by visual interpretation and morphometric attributes composed of 2 

and 11 channels for each of the five DEMs evaluated. Consequently, we developed ten 

types of sample sets considering combinations of five DEMs and two types of 

morphometric attribute sets. The preparation of the samples used the module developed 

within the free Abilius software that converts the input data to JSON files in the COCO 

annotation format with wide use in DL (https://github.com/abilius-app/Panoptic-

Generator) (de Carvalho et al., 2022b). In an end-to-end approach, this tool can generate 

annotations for the three segmentation types (semantic, instance, and panoptic) and 

https://github.com/abilius-app/Panoptic-Generator
https://github.com/abilius-app/Panoptic-Generator
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consider multichannel without restricting the input data to the three bands (Reed, Green, 

and Blue - RGB). The tiles' spatial dimension was 128 x 128 pixels, cropped in a 

quadrangular window positioned from central vector points chosen in the study area, 

considering depression features, flat areas, and similar features such as oxbow lakes that 

generate depressions as its water evaporates. Most karst depressions have isolated circular 

or elliptical shapes. The dataset division to evaluate the performance of segmentation 

models considered 1600 samples for training, 400 samples for validation, and 400 

samples for testing.  

 

3.3. Semantic Segmentation Models 

The semantic segmentation analysis compared five architectures: U-net 

(Ronneberger et al., 2015), U-net++ (Zhou et al., 2018), DeepLabV3+ (Ronneberger et 

al., 2015), LinkNet (Chaurasia and Culurciello, 2017), and Feature Pyramid Network 

(FPN) (Lin et al., 2017). The U-net architecture is a convolutional network initially 

designed for the segmentation of biomedical images and which currently has a wide 

diffusion. This architecture features a symmetric encoder-decoder structure that captures 

high-level semantic information and low-level spatial details (Ronneberger et al., 2015). 

U-net++ is a modified version of the original architecture that introduces nested skip 

pathways and dense connectivity to improve gradient flow and enhance feature reuse 

(Zhou et al., 2018). The DeepLabV3+ architecture combines an atrous spatial pyramid 

pooling (ASPP) module with an encoder-decoder structure to capture multi-scale 

contextual information and achieve precise segmentation (Chen et al., 2018). The 

LinkNet architecture is a lightweight, real-time semantic segmentation network that 

employs skip connections between encoder and decoder layers to facilitate feature fusion 

and maintain spatial resolution (Chaurasia and Culurciello, 2017). Lastly, the FPN 

architecture employs a top-down pathway to construct high-level semantic feature maps 

at various scales, enhancing multi-scale feature learning and prediction. The backbone 

used in all architectures was Efficient-net-b7 (Tan and Le, 2019), which balances 

computational efficiency and model capacity, resulting in greater accuracy. 

To maintain consistency among the semantic segmentation models, we used the 

same hyperparameters during the training procedure: (1) a learning rate of 0.001, (2) the 

number of epochs of 150, (3) a batch size of 25, (4) Adam optimizer, (5) sigmoid 

activation function in the last layer. Besides, the training of all models used 128x128-
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sized images, and the number of channels depended on the images, which could be 2 or 

11. To avoid overfitting, we saved the model with the lowest binary cross-entropy loss 

within the validation set. 

 

3.4. Instance Segmentation Models 

The instance segmentation analysis utilized the Mask-RCNN architecture that 

combines region proposal networks (RPN) and Fast-RCNN to differentiate and segment 

individual objects within an image (He et al., 2020). For this stage, we incorporated the 

ResNeXt-101 backbone, an advanced variant of the ResNet architecture that leverages 

cardinality and split-transform-merge operations to enhance representational capacity and 

promote training efficiency. The instance segmentation models present different 

parameters in the architecture, which affects the training procedure. Mask-RCNN model 

training considered the following configuration: 15,000 iterations (with a thousand warm-

up iterations), a learning rate of 0.0001, gamma of 0.1, 500 ROIs per image, anchor sizes 

of [8,16,32,64,128], and one image per batch. The evaluation of the validation set 

occurred after 3,000 iterations, considering the saved model had the lowest total loss. 

 

3.5. Image Reconstruction using Sliding Window Approach 

Semantic segmentation models generate predictions for a specific patch size, 

typically with 2n square dimensions (e.g., 16, 32, 64, and 128), in our case, 128x128 

pixels. Remote sensing orbital satellite images are usually huge, and a sliding window 

approach is necessary to classify more significant regions effectively. The concept is to 

classify smaller frames, one at a time, and move the window along the x and y-axis. This 

window can move at a smaller or larger rate, defined by the stride value, which is the 

number of pixels the window moves from one prediction to another. When the stride 

value is smaller than the window size, there is an overlap in the predictions, and a pixel 

assumes different values. Therefore, establishing the threshold value of positive 

predictions to perform the segmentation is another critical analysis. 

Previous studies reported that the smaller the stride, the better the metrics, mainly 

due to the improved classification of the center of each frame than the boulders, creating 

discontinuities attenuated by averaging overlapping pixels (de Albuquerque et al., 2020). 

Typically, targets sectioned at the edges of frames have higher errors due to not containing 
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the entire feature of interest, which are corrected by shifting the sliding window to the 

center in subsequent frames. However, a higher number of frames increases the 

computational demands, requiring adjustments that align the sliding window stride value 

with the available computational resources and the specific requirements of the problem. 

Many studies establish, as the number of positive predictive values in the window 

sequence, a threshold value corresponding to the mean of the accumulated data. The 

present study evaluates, from the best training model, the following parameters for the 

reconstruction of large images: (a) stride value for the moving window comparing 2n sizes 

(4, 8, 16, 32, and 128) and (b) threshold value for the resulting probabilistic image of the 

different stride values. 

The methodology for the instance segmentation model is different from semantic 

segmentation since the predictions have unique values. The overlapping pixels would 

have different values, meaning the average would be ineffective. Besides, the instance 

segmentation models use bounding boxes, which introduces another complexity. We used 

the mosaicking approach to solve this problem developed by Carvalho et al. (2021). This 

methodology consists of classifying objects in the border of each frame using an 

intermediate window. Then, we apply a non-maximum suppression algorithm to maintain 

the larger objects representing the complete predictions, eliminating partial predictions 

for the same object. 

 

3.6. Elaboration of Semantic-to-Instance Segmentation Conversion using GIS  

In addition to employing instance segmentation methods using the Mask-RCNN, 

the present research used another approach to obtain box-free instance-level information 

from semantic segmentation data and the Geographic Information System (GIS). 

Therefore, semantic-to-instance segmentation conversion is a computer vision task that 

involves transforming a semantic segmentation map into an instance segmentation map. 

This approach is an evolving research area with different possible algorithms depending 

on the specific requirements and constraints of the problem. This conversion can be done 

considering two different situations: (a) targets in contacts, which explored an edge to 

isolate the interior of objects using multitasking learning (Mou and Zhu, 2018) or 

multiclass learning (de Carvalho et al., 2022c) procedures to avoid agglutination, and (b) 

targets that are not in contact, where the polygonization of semantic features creates a 

specific identifier per instance (de Carvalho et al., 2023). The karst depressions insert on 
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the approach where there is no interaction of the features, facilitating the conversion of 

semantic resources into instances. This free bounding box instance segmentation 

approach has some advantages over the traditional instance segmentation method (de 

Carvalho et al., 2023): (a) it does not require data with such structured information; (b) 

fewer parameters for detecting objects (i.e., anchor boxes) and procedures (i.e., controlled 

ROI); (c) the image reconstruction process by sliding windows is more straightforward, 

for example, using only the average value between the overlapping windows; and (d) 

better per-pixel accuracy metrics, especially for small objects. 

 

3.7 Accuracy Metrics 

The accuracy analysis adopted per-pixel accuracy metrics obtained by the 

confusion matrix. The primary per-pixel metrics for semantic segmentation are Overall 

Accuracy, Precision, Recall, F-Score, and Intersection over Union (IoU) (Table 1). 

Overall Accuracy is the ratio of correctly classified pixels to the total number of pixels. 

Precision is the fraction of correctly predicted positive instances over the total number of 

predicted positive instances. Recall, also known as sensitivity, is the ratio of correctly 

predicted positive instances over the total number of true positive instances. F-score is 

the harmonic mean of precision and recall, providing a balanced performance measure. 

Intersection over Union (IoU) calculates the overlap between the predicted and ground 

truth segmentation, consisting of the ratio of the intersection area to the union area of the 

predicted and ground truth segmentations. These metrics enable us to assess the 

segmentation performance comprehensively, allowing for a thorough analysis of the 

proposed method's effectiveness in various scenarios. 

The research also evaluates the instance segmentation performance using the 

COCO metrics based on Average Precision (AP) and its variants, AP50 and AP75. These 

metrics are widely adopted in the computer vision community to assess the quality of 

instance segmentation models. AP is the mean precision value calculated at different 

Intersection over Union (IoU) thresholds (ranging from 0.5 to 0.95 with a step of 0.05). 

AP offers an overall assessment of the model's performance by considering both 

localization accuracy and classification performance across a range of IoU thresholds 

(Table 1). AP50 and AP75 are two specialized variants of the AP metric, calculated at 

fixed IoU thresholds of 0.5 and 0.75, respectively. These metrics provide insights into the 
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model's performance at different levels of segmentation precision, ranging from AP50 to 

AP75, from least to most stringent. 

 

Table 1. Accuracy metrics equations, where “TP” is true positive, “TN” is true negative, 

“FP” is false positive, “FN” is false negative, “IoU” is Intersection over Union, “N” is the 

number of IoU thresholds, and “t” is a specific IoU threshold. 
Table 1. Accuracy metrics equations  

Metric 
Equation 

Overall accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-score 
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

IoU 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

AP 
1

𝑁
∑(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐼𝑜𝑈_𝑡) 

 

Complementarily, we evaluated the reconstructed images of the semantic and 

instance segmentations from the Receiver Operating Characteristic (ROC) and Precision-

Recall (PR) curves and their respective Area Under Curve (AUC) scores. ROC curve 

summarizes the binary model's performance, produced by the graph between the Rate of 

False Positives (or Sensitivity, Recall) arranged along the x-axis versus the Rate of True 

Positives (or Specificity) on the y-axis, described by TN/ (TN+ FP). Therefore, 

considering different classification threshold values, the ROC curve provides information 

about the probabilistic model output of the sliding window method. The ideal 

performance scenario is when the Sensitivity is 1 (at the top of the graph), and the 

Specificity is 0 (at the left).  

The Precision-Recall (PR) curve is also a graph used to evaluate classification 

models' performance, mainly regarding class imbalance, such as the current study where 

there are significantly more extensive areas without karst depressions than with karst 

depression. Given this pronounced class imbalance in the binary classification of dolines 

using probability images generated through moving windows, PR curves are better suited 

for analysis than ROC curves. The PR curve plots Precision (on the y-axis) versus Recall 

(on the x-axis), focusing on the model's ability to identify the positive class accurately. 

The area under the curve (AUC) in both plots provides a single value of all threshold 
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values, making comparing two or more doline probability images easy. The F-score 

determined the optimal threshold value for karst depression detection for each sliding 

window stride value. 

4. RESULTS 

4.1. Semantic Segmentation Results 

This study compared the performance of semantic segmentation considering the 

following factors: (a) five architectures with the EfficientNet-B7 backbone, (b) five 

different DEMs, and (c) two sets of attributes with two channels (DEM and DEM-based 

sink depth) and eleven channels (DEM, DEM-based sink, and nine geomorphometric 

metrics). Figure 4 exemplifies the different semantic segmentation procedures for a 

frame with 128x128 pixels considering the different DEMs and architectures. The 

different tests used the same ground truth mask with sample collection at the exact 

location, where the model's configurations were consistent throughout all the 

experiments. 

Table 2 comprehensively summarizes the results for each image composition, 

different DEMs, and architectures. The highest precision value within each precision 

metric for each semantic segmentation architecture is bold, italicized, and underlined in 

Table 2, while the lowest value is bold only. The black squares are the highest values of 

an accuracy metric within the entire evaluated set, and the gray squares are the lowest. 

Comparing the semantic segmentation architectures, the FPN showed a clear 

predominance of the best accuracy metrics within the same DEM and set of variables 

(Table 2 – Best Models). The FPN architecture obtained the best F-Score and IoU metrics 

considering each DEM evaluated with 2 or 11 channels. In addition, FPN had the best 

Overall Accuracy metrics, except for ASTER GDEM (2 variables), which presented as 

the best result the DLV3+. Within all the tests performed, the FPN with the GLO-30 (11 

variables) obtained the highest Accuracy Overall, F-Score, and IoU, and with the 

Aw3D30 (2 variables) the highest Precision metric, losing only in the Recall metric for 

LinkNet with GLO-30 (11 variables). Among the tests performed, the DLV3+ 

architecture had the highest number of worst results for Overall Accuracy, F-Score, and 

IoU. 
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Figure 4. Exemplification of karst depression prediction using five different semantic 

segmentation methods and five digital terrain models.  
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Table 2. Semantic segmentation results considering the Overall Accuracy (OA), 

Precision (P), Recall (R), F-Score (FS), and Intersection Over Union (IoU) metrics for 10 

distinct image compositions: (1) ASTER GDEM (2 variables), (2) ASTER GDEM (11 

variables), (3) Aw3D30 (2 variables), (4) Aw3D30 (11 variables), (5) GLO-30 (2 

variables), (6) GLO-30 (11 variables), (7) NASADEM (2 variables), (8) NASADEM (11 

variables), (9) SRTM (2 variables), and (10) SRTM (11 variables). 

 U-Net FPN 

 OA P R F-S IoU OA P R F-S IoU 

1 97.36 71.30 61.48 66.03 49.28 97.47 74.05 60.65 66.69 50.02 

2 97.33 69.72 63.53 66.48 49.79 97.47 73.19 62.22 67.26 50.67 

3 98.40 81.47 79.95 80.70 67.65 98.52 87.27 75.53 80.97 68.03 

4 98.52 82.84 81.61 82.22 69.81 98.57 83.68 81.73 82.69 70.49 

5 98.41 80.12 82.35 81.22 68.38 98.53 85.73 77.85 81.6 68.92 

6 98.60 84.22 81.96 83.07 71.05 98.65 84.83 82.34 83.57 71.77 

7 97.73 72.34 74.14 73.23 57.76 98.13 79.2 75.08 77.09 62.72 

8 98.20 79.07 77.47 78.26 64.29 98.27 82.0 75.11 78.41 64.48 

9 98.31 81.68 76.71 79.12 65.45 98.39 81.49 79.28 80.37 67.18 

10 98.36 80.90 79.36 80.12 66.83 98.38 81.93 78.48 80.17 66.91 

 DLV3+ U-Net++ 

 OA P R F-S IoU OA P R F-S IoU 

1 97.48 74.90 59.53 66.34 49.63 97.44 73.97 59.77 66.12 49.38 

2 97.45 74.09 60.03 66.32 49.62 97.51 75.54 59.51 66.58 49.90 

3 98.30 78.94 80.90 79.91 66.54 98.44 86.32 74.37 79.9 66.53 

4 98.46 83.56 78.57 80.99 68.05 98.54 83.46 81.07 82.25 69.85 

5 98.25 78.00 80.81 79.38 65.81 98.39 80.64 81.02 80.83 67.83 

6 98.61 85.49 80.32 82.83 70.69 98.58 83.24 82.65 82.94 70.85 

7 97.88 74.45 74.95 74.7 59.62 97.78 77.68 65.84 71.27 55.37 

8 98.12 78.36 75.99 77.16 62.81 98.16 77.45 79.1 78.27 64.3 

9 98.37 84.73 74.15 79.09 65.41 98.32 82.14 76.23 79.08 65.39 

10 98.26 78.82 79.50 79.16 65.51 98.33 80.31 79.5 79.9 66.53 

 Linknet Best models 

 OA P R F-S IoU OA P R F-S IoU 

1 97.26 69.82 60.60 64.89 48.02 DLV3+ DLV3+ U-Net FPN FPN 

2 97.35 70.94 62.07 66.21 49.49 FPN U-Net++ U-Net FPN FPN 

3 98.38 81.97 78.63 80.27 67.04 FPN FPN DLV3+ FPN FPN 

4 98.51 83.21 80.66 81.92 69.37 FPN FPN FPN FPN FPN 

5 98.45 82.67 79.48 81.04 68.13 FPN FPN U-Net FPN FPN 

6 98.51 80.81 84.44 82.59 70.34 FPN DLV3+ Linknet FPN FPN 

7 97.80 74.90 71.21 73.01 57.49 FPN FPN FPN FPN FPN 

8 98.20 80.40 75.24 77.73 63.58 FPN FPN U-Net FPN FPN 

9 98.36 82.51 77.02 79.67 66.22 FPN DLV3+ FPN FPN FPN 

10 98.38 83.66 75.96 79.62 66.15 FPN Linknet DLV3+ FPN FPN 

 

Comparing the DEMs, the GLO-30 achieved supremacy of the best accuracy 

metrics in the five tested architectures. Therefore, the best DEM for OA, F1, and IoU 

metrics in all architectures was GLO-30 with 11 variables, followed by Aw3D30 with 11 

variables. In the third and fourth positions appear these DEMs containing two variables. 

Although there are variations in the Precision and Recall metrics, GLO-30 and Aw3D30 

with 2 and 11 variables predominate in the first four best models in different architectures. 

SRTM and NASADEM models with 11 and 2 variables appear with intermediate 

precision results. Finally, ASTER GDEM consistently presents the worst accuracy values 

for all tested metrics and architectures. 
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By analyzing the attributes used in karst depression segmentation, the models that 

used only the DEM attribute obtained gross errors and were disregarded in the analysis. 

The combination of DEM, DEM-based sink, and terrain attributes showed higher 

accuracy than the simple combination of DEM and DEM-based sink (Table 3). Among 

the 125 comparisons tested in the semantic segmentation between two and eleven 

variables (considering the five-accuracy metrics, five deep-learning architectures, and the 

six DEMs), only 24 comparisons showed superior values of the models of two variables 

to those of eleven variables. Therefore, 80% of the metrics using eleven variables were 

more accurate than those with two. Precision and Recall were the metrics that 

concentrated superiority with two variables. 

 

Table 3. Comparison of semantic segmentation accuracy metrics of models with two or 

eleven variables. Areas marked in grey boxes represent greater accuracy of semantic 

segmentation with 11 variables over those with 2 variables, and the white areas are the 

opposite. The five digital terrain models used are: (1) ASTER GDEM, (2) Aw3D30, (3) 

GLO-30, (4) NASADEM, and (5) SRTM. 

Table 2. Comparison of semantic segmentation accuracy metrics of models w ith two or eleven variables.  

 U-Net FPN LinkNet DVL3+ U-Net++ 

  OA P R F-S IoU OA P R F-S IoU OA P R F-S IoU OA P R F-S IoU OA P R F-S IoU 

1                          

2                          

3                          

4                          

5                          

 

4.2. Results of the Semantic Segmentation Image Reconstruction 

The construction of the semantic segmentation models used training samples of 

128x128 pixels, with application to large remote sensing images through sliding 

windows. Image reconstruction considered only the FPN model using the GLO-30 DEM 

with 11 variables, which obtained the best results compared to the other tested models. 

The analysis of the reconstructed image involved the comparison of various stride values 

for the sliding window (4, 8, 16, 32, 64, and 128). Each stride value resulted in a 

probability image, where pixel values ranged from 0 to 1, with 1 indicating the highest 

likelihood of the target object's presence. The ROC AUC and PR AUC values allow a 

performance comparison between reconstructed images with different stride values.  
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Table 4 lists the AUC ROC and AUC PR values of the images resulting from the 

use of the sliding window method with the FPN model and the DEM GLO-30 with 11 

variables, considering the 2n stride values from 4-pixel stride to 128-pixel stride. The 

AUC values gradually improved with decreased stride values from 128 to 8. Therefore, 

smaller strides favor the sliding window to obtain better coverage of the object and less 

risk of losing information, resulting in better predictions. Larger or complexly shaped 

objects can be better captured with smaller increment windows, ensuring that objects are 

not only partially captured. Thus, the sliding window ensures obtaining the context 

around each pixel, incorporating more contextual cues into the segmentation process, and 

eliminating ambiguities. In contrast, when the stride is too large, the pixels at the edges 

of the windows may not contribute to the final segmentation or may only partially 

influence the predictions. Regarding the threshold values, the best results in the different 

strides were close to 0.4. At the optimal threshold point, F-score values between 4 and 

32-pixel stride are equivalent, obtaining a value of 0.76. 

 

Table 4. Accuracy metrics for semantic segmentation image reconstruction models, 

considering sliding window method with six lengths of strides. The accuracy metrics used 

were Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) and 

Precision-Recall (PR) AUC. The highest values are italics and bold numbers. 

Stride value ROC AUC PR AUC Optimal 

threshold 

value 

F-score 

128-pixel stride 92.13 68.92 0.17 0.73 

64-pixel stride 95.13 76.39 0.50 0.75 

32-pixel stride 96.58 79.4 0.39 0.76 

16-pixel stride 97.23 80.58 0.40 0.76 

8-pixel stride 97.81 81.52 0.40 0.76 

4-pixel stride 98.18 82.32 0.41 0.76 

 

Figure 5 exemplifies image reconstruction results using sliding windows with 

different strides and the threshold value of 0.5 considering good and bad fit scenarios. 

Figure 5A demonstrates in the 128-pixel stride frame (no overlapping) a polygon 

sectioned in the middle referring to the edge effect, which does not correspond to the truth 

ground image. Because of the occlusion, elements on the window edges have continuity 

errors. Using smaller stride values gradually corrects, merging the two segments into one. 

Figure 5B demonstrates the window border effect with a 128-pixel stride vertically and 



34 
 

horizontally, which does not provide a good fit. Assuming smaller strides eliminates the 

small isolated fragments of the 128 and 64-pixel strides but erroneously generates two 

polygons. Furthermore, Figure 5 demonstrates a polygon elimination in the different 

predictions. 

 

128 64 32

16 8 4 2

ground truth

128 64 32

16 8 4 2

ground truth

 
Figure 5. Exemplification of image reconstruction resul ts us ing the slid ing window with different stride values over areas with edge effect. 

Figure 5. Exemplification of image reconstruction results using the sliding window with 

different stride values over areas with edge effect, considering two situations with good 

(a) and reasonable (b) prediction. The model considered the FPN semantic segmentation 

method, GLO-30, and the threshold value of 50%. 
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4.3. Instance Segmentation Results 

The instance segmentation results using the Mask-RCNN architecture with the 

ResNeXt-101 backbone agree with the semantic segmentation results (Table 5). The 

GLO-30 DEM with 11 variables obtained the best AP50, reaching 83.85%, while the 

ASTER GDEM had the worst result.  

 

Table 3. Common Objects in Context (COCO) metrics for the 11 image compositions, 

considering the Average Precision (AP), AP50, and AP75 for bounding box and 

segmentation mask for 10 distinct image compositions. 

 Box Mask 

Image Composition AP AP50 AP75 AP AP50 AP75 
ASTER GDEM (2 

variables) 

15.804 46.320 5.518 13.571 44.356 3.010 

ASTER GDEM (11 
variables) 

16.327 46.458 7.306 14.812 44.160 5.808 

Aw3D30 (2 variables) 30.726 78.440 13.773 31.781 79.096 16.505 

Aw3D30 (11 variables) 35.679 80.854 22.727 31.616 77.985 16.181 

GLO-30 (2 variables) 33.219 82.539 17.666 36.265 83.451 25.555 

GLO-30 (11 variables) 37.947 83.356 26.716 36.557 81.517 24.186 

SRTM (2 variables), 27.625 74.349 11.635 24.908 71.692 8.768 

SRTM (11 variables). 27.284 73.567 12.242 25.879 70.983 10.817 

 

Even though the AP metric is very relevant for competitions, for practical 

applications is much more straightforward to use static IoU thresholds. Since the karst 

depressions are very difficult to delineate the borders, stricter metrics may not be as 

suitable for this target, and less strict metrics can be more interesting. Another issue with 

using 30-m resolution DEM is that all karst depressions acquire the categorization of 

small objects (an area smaller than 32x32 pixels) according to Common Objects in 

Context (COCO) (Lin et al., 2014). Despite the importance of the subject, the detection 

of small objects has a little amount of research. (Tong et al., 2020).  

 

4.4. Results of Instance Segmentation Image Reconstruction 

The technique for reconstructing large images using instance segmentation 

employs a sliding window mechanism distinct from semantic segmentation models that 

rely on overlapping pixels. In the case of Mask-RCNN, which provides outputs such as 

bounding boxes, classification, and segmentation masks, the sliding windows 

implementation incorporates a non-maximum suppression step sorted by area to remove 

redundant detections and merge overlapping instances (Carvalho et al., 2021). The 

classification threshold is the primary parameter for tuning the information in the sliding 
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windows in this process. Adjusting the classification threshold has implications for the 

performance of the instance segmentation. Employing a stricter threshold increases the 

likelihood of false negatives, where objects may be missed or improperly classified. 

Conversely, adopting a less strict threshold tends to increase the occurrence of false 

positives, where objects are wrongly identified or segmented. It is crucial to balance these 

two types of errors to achieve the most accurate instance segmentation results. Therefore, 

we compared five thresholds considering accuracy metrics: 70%, 75%, 80%, 85%, and 

90% (Table 6). In our evaluation, the threshold value of 90% emerged as the best 

compromise between false negatives and false positives, achieving the highest value of 

F-Score. Figure 6 demonstrates the result of the instance segmentation containing the 

masks and bounding boxes of the karst depressions. The segmentation result ignores river 

features (such as abandoned meanders, oxbow lakes, or river channel networks). 

 

Table 4. F-score metrics for instance segmentation models, considering six percentage 

thresholds. 

Threshold values F-score 

70% 0.64 

75% 0.65 

80% 0.65 

85% 0.65 

90% 0.66 

95% 0.58 
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Figure 6. Exemplification of the instance segmentation result after image reconstruction 

for a subregion of the study area, using Mask-RCNN and a threshold value of 85%. 

 

 

 



38 
 

4.5. Results of Semantic-to-Instance Segmentation Conversion 

Semantic-to-instance segmentation conversion allowed generating of instance 

information from semantic segmentation data. Instance segmentation goes a step further 

than semantic segmentation, not only assigning class labels but also separating each 

instance of an object and distinguishing them through unique masks that perform more 

detailed analysis (object counting, tracking, or instance-specific measurements).  

 

 
Figure 7. Example of semantic segmentat ion conversion for instance.  

Figure 7. Example of semantic segmentation conversion for instance (A) GLO-30 image; 

(B) semantic segmentation prediction using FPN of the 11 channels; (C) semantic 

segmentation-to-instance conversion image, where all karst depressions are given a 

distinct identifier. 

 

In the conversion process of the studied karst depressions, a crucial factor for the 

excellent performance was the lack of overlapping or interaction of the instances, 

representing a more significant challenge in separating individual objects. Therefore, this 

procedure does not require extensive instance-level annotations and obtains more 

accurate data using semantic segmentation, especially for small objects, as demonstrated 

by the accuracy metrics. Semantic segmentation for the best match achieves an F-Score 

of 0.76 much higher than the 0.66 using Mask-RCNN. 

 

5. DISCUSSION 

5.1. Where is the boundary of the karst depressions? 

An essential factor to consider in analyzing geomorphological features from deep 

segmentation methods is the imprecision in defining its limits in labeling reference 
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samples. The main obstacles in the doline delineation are their irregular geometry, 

different shapes and sizes, and confusion with other depressions from drainage or river 

features, forming a more intricate system for detection (Šegina et al., 2018). Therefore, 

the polygon boundary imprecision that represents the truth is the cause of the accuracy 

metrics do not reach values as high as other objects with a precise boundary, such as cars 

and ships. For example, the highest IoU value in semantic segmentation for karst 

depression was 71.77, considered a low value for other targets with well-defined 

boundaries. Usually, the delimitation criteria for sinkhole boundaries use algorithms 

based on a given Digital Terrain Model (Telbisz et al., 2009), such as (a) outermost closed 

contour line; (b) filling up the doline to the level at which the water overflows from the 

depression; and (c) polygonal watershed boundaries using interdoline ridges. However, 

these methods generate different results, where the polygonal watershed boundaries have 

much larger areas than the other two methods. Besides, these procedures vary 

significantly with the DEM; using either in deep segmentation would provide a bias in 

favor of the DEM used. The present study used the visual interpretation of optical images 

to delimit karst depressions, not favoring any specific DEM. 

 

5.2. Importance of the Karst Depression Dataset 

Effective mapping and extracting geomorphological features are fundamental for 

land management, urban planning, ecological protection, prevention of geological 

disasters, and management of natural and tourist assets. Feature detection becomes even 

more relevant in karst areas, where complex topography and ecology make the task more 

challenging. In this context, DL advances have enabled a new perspective on the ability 

to classify images, increasing accuracy within a learning process with hierarchical 

features (from low to high level) directly from the input data. However, mapping 

geomorphological features from these new techniques needs databases for training, 

constituting a great challenge and gap in the recognition of complex landscapes. Although 

there are DL studies in geomorphology, most applications are for mapping landscapes 

(Buscombe and Goldstein, 2022; Buscombe and Ritchie, 2018; Farmakis-Serebryakova 

et al., 2022) or geomorphological units (Du et al., 2019; Meij et al., 2022), corresponding 

to a class of "stuff" formed by amorphous features. Even the study that aims to map the 

karst cone (Fu et al., 2021) effectively mapped geomorphological units without 

individualizing the features. Therefore, few studies with DL seek the individualization of 
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well-defined and countable features, such as karst depressions, which correspond to a 

class of "things," an instance. Among the mapping of specific features, the detection of 

yardangs stands out (Farmakis-Serebryakova et al., 2022). Therefore, the growth of DL 

methods depends on the development of vast training data, and a significant contribution 

of the present study was the elaboration of a karst depression database. 

 

5.3. Comparison between Digital Elevation Models for detecting karst depressions 

The DEM accuracy results in detecting karst depressions are consistent with 

comparative studies on the vertical accuracy of different global DEMs with a resolution 

of 30 meters. Table 5 lists comparative studies that order the DEMs from highest to 

lowest accuracy value; in red are marked models not used in this research. Although the 

GLO-30 has few comparative studies because it is newly available, the investigation that 

uses it proved to be the best result (Guth and Geoffroy, 2021). Like our research, the 

AW3D30 presents the best result in the absence of GLO-30 and when ignoring other 

DEMs not used in the present study (LIDAR and TanDEM-X with 12m). In all studies, 

the worst accuracy results came from the ASTER GDEM.  

 

Table 7. Comparing and ranking the vertical accuracy of Digital Elevation Models based 

on scientific studies. DEMs not included in the present study are marked in italics: 

Cartosat-I DEM (CartoDEM), MERIT, LIDAR, Continuous Elevation data for Mexico 

(CEM), TanDEM-X with 12 m and 90 m resolution. 
 

Table 5. Comparing and rank ing the vertical accuracy of Digital Elevation Models based on scientific stud ies.  

Ordering DEMs by precision Study 

AW3D30 > SRTM > CartoDEM > ASTER GDEM V2 (Jain et al., 2018) 

AW3D30 > SRTM > ASTER GDEM  (Florinsky et al., 2018) 

TanDEM-X (12 m) > AW3D30 ~ NASADEM ~ MERIT (90m) > 

SRTM > ASTERDEM 

(Gesch, 2018) 

AW3D30 ~SRTM > ASTER GDEM  (Yap et al., 2019) 

AW3D30 > NASADEM ~ SRTM > TanDEM-X (90 m) > MERIT (90 

m) > ASTER GDEM  

(Uuemaa et al., 2020). 

LIDAR > AW3D30 V3 ~ AW3D30 V2 > NASADEM > SRTM > 

CEM >ASTER GDEM V3 > ASTER GDEM V2  

(Carrera-Hernández, 2021) 

GLO-30 > AW3D30 ~ SRTM V3~ NASADEM > ASTER GDEM (Guth and Geoffroy, 2021) 

TanDEM-X (12m) > SRTM > ASTER GDEM (Han et al., 2021) 

 

Few studies performed MED comparisons for the detection of sinkholes. These 

studies using the DEM-based sink depth technique mostly corroborate the results 

described: (a) SRTM > AW3D30 > ASTER GDEM (de Carvalho et al., 2013); (b) SRTM 

~ASTER GDEM > ALOS PASAR DEM (12.5 meters) (Theilen-Willige, 2018); and (c) 
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DEM from topographic maps > SRTM > ASTER GDEM > DSM from Sentinel-1 > 

AW3D30 > DEM from the Greek Cadastral (Kakavas et al., 2018). The last study 

described presents the most significant difference with the DEM vertical accuracy studies. 

 

5.4. Comparison between semantic segmentation architeture for detecting Karst 

depressions 

The superior performance of the FPN compared to other semantic segmentation 

models for karst depression detection may be due to its ability to capture multi-scale 

features by combining high-resolution features from different CNN levels, effectively 

dealing with variations in size, shape, and context of karst depressions. Therefore, the 

FPN generates rich intermediary feature maps that capture fine-grained details and high-

level semantic information, incorporating feature pyramids and lateral connections, 

suitable for applications in complex environments such as geomorphic features that often 

exhibit intricate spatial structures and scale variations. Hence, the effectiveness of CNN 

architectures in karst relief detection differs from that of clearly defined features like wind 

farms, which present worse performance for the FPN architecture and better performance 

for LinkNet, followed by Unet and Unet++. (de Carvalho et al., 2023). 

 

5.5. Analysis of instance segmentation and semantic-to-instance segmentation 

conversion 

Studies show that the use of conversion techniques from semantic segmentation 

to instance segmentation using GIS software can be a good solution considering the 

following aspects: (a) creating semantic segmentation datasets is much simpler and less 

labor intensive than instance segmentation, and (b) instance segmentation methods 

present inferior performance in the delimitation of small objects as in the present case (de 

Carvalho et al., 2022c). Besides, the conversion is more straightforward when the objects 

are naturally isolated, as occurs in karst depressions, not requiring techniques such as 

inserting edges around the object to ensure isolation between targets that appear in 

contacts such as vehicles. The simple conversion of raster results into vectors allows 

discriminating a label for each polygon and its individualization as an instance. 
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5.6. Implications of mapping karst depressions in environmental analysis 

To protect vulnerable karst characteristics, natural resources, and underground 

water and to prevent economic losses due to subsidence and collapse, the difference in 

density and distribution of dolines might indicate priority areas for strict conservation and 

environmental management of human activities developed in areas with karst depressions 

in Bambuí Group, especially agriculture, urbanization, and infrastructure. Some studies 

through different techniques using remote sensing data have identified karst depressions 

in areas of the Bambuí Group (de Carvalho et al., 2013; Ferreira et al., 2022; Guimarães 

et al., 2005). The spatial distribution of karst depressions indicates that some areas of the 

Bambuí Group in Bahia are more prone to dissolution due to the high density of dolines, 

contrasting with other areas with fewer karst depressions. The density of dolines in the 

Bambuí Group of Bahia was neither indicated in previous studies nor in conservation and 

environmental management policies. Ferreira et al. (2022) indicate the existence of 

density patterns of medium to large-size dolines of the Bambuí Group in three identified 

groups, but the study using semi-automatic GIS-based with DEM data investigated the 

Corrente river basin, state of Goiás, Brazil. It indicates that the different density 

distribution of dolines is a primary characteristic of the Bambuí Group karst system. 

The study region has a single and reduced protection area in the National Register 

of Conservation Units, the Environmental Protection Area of Rio Preto (APA Rio Preto), 

created in 2006 by the state government. This protection category allows private 

ownership of land and different activities and economic uses, trying to associate 

production and sustainability, being the most permissive category of protected areas 

according to Brazilian environmental legislation. The outline of the APA Rio Preto 

indicates that its creation was to protect the river system and the surrounding native 

vegetation, disregarding the dolines and the karst system's complexity as fundamental 

conservation elements. Typically, environmental policies prioritize protecting areas with 

rich and vulnerable biotic attributes but leave abiotic attributes in the background (Crofts, 

2019; Gray, 2019). Therefore, a systemic biotic-abiotic approach is needed (Crofts, 2019) 

due to the importance of elements and processes of geodiversity for maintaining 

biodiversity and providing essential services for human societies (Gray, 2019; Tukiainen 

et al., 2023). 

Therefore, the development of environmental policies aimed at the Bambuí Group 

and the distribution of karst depressions in the landscape is fundamental due to its 
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environmental fragility. Studies on the Bambuí karst make it possible to identify 

environmentally sensitive areas and implement different categories of protected areas, 

from Environmental Protection Areas to more restrictive areas such as National Parks, 

Biological Reserves, and Ecological Stations. 

 

6. CONCLUSION 

In Bambuí Group karst environment, the depressions are the most prevalent 

topographic features, and the description of their spatial distribution is critical for 

studying karst aquifers and mitigating damage. The present article innovated in detecting 

karst depressions using semantic and instance segmentations from deep learning 

architectures. Instance segmentation has yet to be explored in analyzing the 

geomorphological targets, allowing the individualization of its occurrences. In addition 

to using instance segmentation with the Mask-RCNN architecture, we use the sematic-

to-instance conversion approach using GIS tools. The research developed a new dataset 

composed of different DEMs with their geomorphometric attributes and labeled data of 

karst depressions from the visual interpretation of satellite images (Sentinel-2 and OLI-

Landsat 8). Given the resolution of the tested DEMs at 30 meters, the karst depressions 

are primarily categorized as small objects with dimensions smaller than 32x32 pixels. 

The results of deep segmentation demonstrated the potential of deep segmentation in the 

delimitation of karst geomorphological features. FPN architecture using the EfficientNet-

B7 backbone obtained the best results among the semantic segmentation architectures, 

probably due to its capacity to capture multiscale features by integrating high-resolution 

features from different levels of a CNN. This multiscale feature fusion enables the FPN 

to effectively handle variations in karst depressions' size, shape, and context. The results 

with semantic segmentation were superior to the instance segmentation, justifying the 

implementation of the semantic-to-instance segmentation conversion, which also 

facilitates the dataset elaboration. Comparing the five DEMs, the GLO-30 obtained the 

best accuracy results considering the different architectures evaluated, followed by the 

AW3D30. The worst results were from ASTER GDEM. These results are consistent with 

other studies on DEMs' vertical accuracy. Therefore, the evaluated methods demonstrate 

the high detection capacity of these geomorphic features formed in different contexts with 

high variability of shapes and sizes. 
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Future studies can apply deep learning segmentation using optical, radar, or 

LiDAR remote sensing images with high spatial resolution, besides the digital terrain 

models and their terrain attributes used in this research. Another relevant test would be 

testing digital terrain models with a higher spatial resolution, like the 12-meter TanDEM-

X. The studies can be expanded to other places of karst relief, increasing the available 

database in Brazil and worldwide. 
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