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ABSTRACT

Let G be a group, define an equivalence relation ~ as below:

∀ g, h ∈ G, g  ∼ h ⇐⇒|g| = |h|

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G 
and denoted by α(G). And G is said a αn-group if |α(G)| = n. Let π(G) be the set of prime divisors of the order 
of G. A simple group of G is called a simple Kn-group if |π(G)| = n. We give a new characterization of simple 
K3-groups using same-order type. Indeed we prove that a nonabelian simple group G has same-order type {r, 
m, n, k, l} if and only if G ≅ PSL(2,q), with q = 7, 8 or 9. This result generalizes the main results in (4), (6) and (8). 
Moreover based on the main result in (8) we have the natural question: Let S be a nonabelian simple αn-group 
and G a αn-group such that |S| = |G|. Then S ≅ G. In this paper with a counterexample we give a negative 
answer to this question.
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RESUMO

Seja G um grupo, definimos como uma relação de equivalência ~:

∀ g, h ∈ G, g  ∼ h ⇐⇒|g| = |h|

O tamanho do conjunto de classes de equivalência dado por essa relação é chamado de mesmo tipo de 
ordem de G e denotado por α(G). E G é chamado de um αn-group se |α(G)| = n. Seja π(G) o conjunto dos 
divisores primos da ordem de G. Um grupo simples de ordem G é chamado de Kn- grupos simples se 
|π(G)| = n. Caracterizamos esses K3- grupos simples usando outros de mesma ordem. Na verdade nós 
provamos que um grupo não abeliano G tem o mesmo tipo de ordem {r, m, n, k, l}, se e somente se, G 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-0346-2716
https://orcid.org/0000-0003-4294-8871


Ci. e Nat., Santa Maria, v. 45, e23, 2023

| A new characterization of simple K3-groups using same-order type2

≅  PSL(2,q), com q = 7, 8 ou 9. Este é um resultado generalizado e os principais resultados em (4), (6) e 
(8). Além disso, com base no resultado principal em (8) nós temos uma questionamento natural: Seja S 
um grupo simples não abeliano αn-grupo e G a αn-grupo de tal modo que |S| = |G|. Então S ≅ G. Neste 
artigo, com um contra-exemplo, damos uma resposta negativa a essa pergunta.

Palavras-chave: Ordem dos elementos; Mesmo tipo de ordem; Caracterização; Grupo simples; 
Kn-grupos simples

 1 INTRODUCTION

In this paper all the groups we consider are finite.

Let G a group and πe(G) be the set of element orders of G. Let t ∈ πe(G) and st 

be the number of elements of order t in G. Let nse(G) = {st| t ∈ πe(G)} the set of sizes of 

elements with the same order in G. Some authors have studied the influence of nse(G) 

on the structure of G (see (1), (5), (8) and (9)). For instance R. Shen in (6) proved that A4 

≅ PSL(2, 3), A5 ≅ PSL(2, 4) ≅ PSL(2, 5) and A6 ≅ PSL(2, 9) are uniquely determined by nse(G). 

As a continuation in (4) was proved that if G is a group such that nse(G) = nse(PSL(2, q)), 

where q ∈ {7, 8, 11, 13}, then G ≅ PSL(2, q). In (7) and (8) new characterizations of A5 were 

given using nse(A5). The authors in (7) proved that A5 is the only group such that nse(A5) 

= {1, 15,20,24} and the authors in (8) generalized that a nonabelian simple group G has 

same-order type {r, m, n, k} if and only if G ≅ A5 (see Th. 1.1 (8)).

Let G be a group, in (8) was defined an equivalence relation ~ as below:

∀ g, h ∈ G, g  ∼ h ⇐⇒|g| = |h|

the set of sizes of equivalence classes with respect to this relation is called the same-

order type of G and denoted by α(G). And G is said a αn-group if |α(G)| = n. Note that α(G) 

is equal to the set of sizes of elements with the same order in G, hence |nse(G)| = |α(G)|.

We give a new characterization of PSL(2,7), PSL(2,8) and PSL(2,9) using same-

order type. 

THEOREM 1.1. Let G be a simple K3-group with same-order type {r, m, n, k, l}. Then 

G ≅ PSL(2,7), PSL(2,8) or PSL(2,9).

This result generalizes the main results in (4), (6) and (8). Combination the main 
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results in (4) and (6) with Theorem 1.1 we have the following result

COROLLARY 1.2. A simple K3-group G has same-order type {r, m, n, k, l} if and only 

if G ≅ PSL(2,7), PSL(2,8) or  PSL(2,9).

We see easily that the only α1-groups are 1 and a cyclic group of order 2. In (6) 

R. Shen characterized α2-group as nilpotent groups and α3-group as solvable groups. 

Moreover Taghvasani-Zarrin (see Th. 1.1 in (8)) showed that the only nonabelian 

simple α4-group is the A5. As noted in (4) and (8) finite groups G cannot be determined 

by nse(G). Indeed in 1987 Thompson gave a first example as follows: Let G1 = (C2 × C2 × 

C2 × C2) ⋊ A7 and G2 = PSL(3,4) ⋊ C2 be the maximal subgroups of Mathieu group M23. 

Then nse(G1) = nse(G2), but G1 ≇ G2.

Motived by the main result in (8) about a new characterization of A5 using same-

order type, we have the natural question. 

QUESTION 1.3. Let S be a nonabelian simple αn-group and G a αn-group such that 

|S| = |G|. Then S ≅ G.

We give a negative answer to this question in the last section.

 2 PROOF OF THEOREM 1.1

We need of one preliminary result to prove the main Theorem. The following 

result is a property very interesting of simple groups (see Lemma 2.7 in (8)).

LEMMA 2.1. Let G be a nonabelian simple group. Then there exist two odd prime 

divisors p and q of the order of G such that sp ≠ sq.

In fact if G is a nonabelian simple group then there exist two odd prime divisors 

p and q of the order of G such that {1, s2, sp, sq} ⊆ α(G) (see Corollary 2.8 in (8)).

We are now ready to conclude the proof of main Theorem.

Proof of Theorem 1.1: As G is a nonabelian simple group, it follows that s2 > 

1, w.l.g. r = 1 and s2 = m. From Lemma there exist odd prime divisors p and q of the 

order of G such that n = sp ≠ sq = k, hence π(G) = {2,p,q} because G is a simple K3-group. 

Therefore {1, s2, sp, sq} ⊆ α(G) = {r, m, n, k, l}. So there exist a divisor t ∉ π(G) of order of G 
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such that st = l. It’s well known that the only nonabelian simple groups of order divisible 

by exactly three primes are the following eight groups: PSL(2,q), where q ∈ {5, 7, 8, 9, 

17}, PSL(3,3), PSU (3,3) and PSU (4,2), see Th. 1 and Th. 2 in (3). Now we arguing as in 

the proof of Th. 1.1 in (8) and a GAP check yields that |α(PSL(2,7))| = 5, |α(PSL(2,8))| = 5, 

|α(PSL(2,9))| = 5 and all others groups are αn-group with n ≥ 6 (except A5 since |α(A5)| = 4). 

The result is follows.

3 A COUNTEREXAMPLE TO A QUESTION 1.3

Now we give a counterexample to the Question 1.3. Firstly we observed that 

by the main Theorem in (6), we have that α(PSL(2,7)) is uniquely determined and we 

have that α(PSL(2,7)) = {1,21,56,42,48} hence PSL(2,7) is a α5-group. Let G = Q8 × (C7 ⋊ C3), 

where Q8 is the quaternion group of order 8. As |G| = 168 and G is a soluble group then 

is sufficient to prove that |α(G)| = 5. Indeed the only 2-Sylow subgroup Q8 is a normal 

subgroup of G and using Sylow’s Theorem it follows that s2 = 8. Note that a 7-Sylow 

subgroup of G is isomorphic to C7 and is a normal subgroup of Q8 · C7 and C7 ⋊ C3, hence 

the normalizer N of C7 has same order of G. Again from Sylow’s Theorem we have that 

C7 is a normal subgroup of G and s7 = 56.

As the number of 3-Sylow subgroup of  G is 7, then s3 = 14. The number of 

elements of G of order 2, 4 are respectively 1 and 6, hence s2 = 1, s4 = 6 and consequently 

s6 = 14, s12 = 84, s14 = 6 and s28 = 36 (because of direct product in the structure of G). 

Therefore α(G) = {1,1,14,6,14,6,84,6,36} and G is a α5-group. Clearly |PSL(2,7)| = 168 = |G| 

but PSL(2,7) ≇ G. 

We can obtain others groups  G with the computational group theory system GAP 

(2): G = C7 × (Q8 ⋊ C3) or G = C2 × ((C14 × C2) ⋊ C3). These groups are also counterexamples 

to the Question 1.3.
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4 CONCLUSION

We give the new characterization of some simple groups using the same-order 

type. Also we give a negative answer for a natural question. Our main result generalizes 

some known results. There is a natural interest in this theme. This result depends on 

classification of finite simple groups (CFSG).
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