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Abstract

The encapsulation of drugs in micro and nanocarriers has helped to resolve mechanisms of

cellular resistance and decrease drug side effects as well. In this study, poly(D,L-lactide-co-

glycolide) (PLGA) was used to encapsulate the Euphol active substance-containing latex

from Euphorbia tirucalli (E-latex). The nanoparticles (NP) were prepared using the solvent

evaporation method and the physical and chemical properties were evaluated using spec-

trophotometric techniques. FTIR was used to prove the formation of the ester bond between

the E-latex and PLGA-NP. The UV-Vis spectroscopic technique was used to show that

more than 75% of the latex was encapsulated; the same technique was used to determine

the release profile of the compound at different pH values, as well as determining the speed

with which the process occurs through kinetic models, and it was observed that the best

adjustments occurred for the Korsmeyer-Peppas model and the Higuchi model. The DLS

technique was used to determine the diameter of the particles produced as well as their zeta

potential (ZP). The sizes of the particles varied from 497 to 764 nm, and it was observed

that the increase in E-latex concentration causes a reduction in the diameter of the NP and

an increase in the ZP (-1.44 to -22.7 mV), due to more functional groups from latex film

being adsorbed to the NPs surfaces. The thermogravimetric experiments exhibit the glass

transition temperatures (Tg) that is appropriate for the use of formulated NPs as a stable

drug delivery device before use. The in vivo activity of E-NPs (30 and 100 mg/Kg/p.o.) was

tested against carrageenan-induced mechanical hypernociception. The data demonstrated

a significantly antinociceptive effect for E-NPs, suggesting that E-latex nanoencapsulation

preserved its desired properties.

Introduction

Several uses of Euphorbia latex (E-latex) include as an antitumor [1], immunodulator [2], anti-

microbial [3], antitumoral [4], as well as molluscic activity [5] and a potential source of biofuel
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[6]. The plant produces milk sap containing euphol, phorbol diterpene esters, tiglians, dapha-

nanas, aromatic and ingenuous daphans. organic substances are also present [7]. In Euphorbia

sap and latex, tetracyclene alcohol is present; it has anti-inflammatory, contraceptive, and anti-

fertility properties [8, 9]. The latex is investigated in high dilutions for cancer and AIDS show-

ing that it modifies glycolytic viability and non-tumor melanocytes; breast cancer cells showed

an efficient reduction in tumor growth in rats [10]. However, the greatest downside to treating

cancer is the long-term side effects on both healthy cells and cancerous cells [11]. Another side

effect of cancer treatment is pain. Pain is a frequent symptom at diagnosis and during cancer

treatment [12, 13]. It could be related to disease or its management. There are distinct cancer-

related pains [13]. It is often disabling, causing significant impairments in a patient’s quality of

life and its treatment remains challenging.

Nanocarriers used for medical applications must be biocompatible, able to integrate with a

biological system without eliciting an immune response or any negative effects and they must

be nontoxic (harmless to a given biological system) [14–18]. In this work, PLGA nanoparticles

(NPs) were produced containing E-latex; this biodegradable copolymer undergoes hydrolysis

in the body, producing biodegradable metabolite monomers, such as lactic acid and glycolic

acid, resulting subsequently in CO2 and H2O via the Krebs cycle [19–23]. Thus, in this study

we characterized PLGA NPs loaded with E-latex (E-NP) and evaluated its antinociceptive

action in an animal model [24].

Materials and methods

Materials

Poly(D,L-lactide-co-glycolide) (lactide:glycolide 50:50, mol wt. 30,000–60,000), poly(vinyl

alcohol) (87–90% hydrolyzed, average mol wt. 30,000–70,000), dichloromethane (analytical

standard), methyl alcohol anhydrous (99.8%), ethyl alcohol (99.5%), dimethyl sulfoxide anhy-

drous (99.9%), carrageenan and phosphate buffered saline (PBS) were obtained from Sigma-

Aldrich1 (St Louis, MO, USA). Distilled water of Milli-Q quality was used. The Euphorbia Tir-
ucalli latex was extracted in our laboratory.

Latex of Euphorbia tirucalli

The latex of Euphorbia tirucalli (E-latex) was collected at 15.8314˚ S and 48.1142˚ W at 1170 m

altitude (Brası́lia-DF, Brazil). To mitigate component degradation, the latex was immediately

transferred to vials and frozen. To improve the quantification and accuracy of the results, the

frozen latex was powdered; 12 mL of latex was collected and solubilized in 38 mL of methanol,

left to stir for 3 days to obtain the powder and stored in the absence of light [25].

Calibration curve

The analytical curve was made by dissolving 1.0, 2.0, 3.0, 4.0, and 5.0 mg of latex powder in 10

mL of methanol. All solutions (n = 5) had their absorbance values measured spectrophotomet-

rically at a wavelength of 205 nm (Lambda 25 Perkin Elmer spectrophotometer). The obtained

results led to the construction of the line equation obtained through linear regression and the

analytical curve.

E-loaded PLGA nanoparticles (E-NPs)

A method for solvent evaporation was chosen, and blank NPs and E-NPs were prepared with

the Euphorbia tirucalli latex powder. Two solutions were used in the preparation of NPs, the

first solution being polyvinyl alcohol (PVA) 2.0%. The second solution was prepared by
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dissolving 60 mL of dichloromethane (CH2Cl2) in 0.05 g of PLGA [26, 27]. The aqueous solu-

tion of 2.0% PVA was carried to a mechanical homogenizer and the organic solution of PLGA

was slowly dripped. The solution was then stirred (magnetic stirring) for 4 hours to allow the

dichloromethane to evaporate. This substance was centrifuged for 5 min at 15000 rpm, then

the PVA-containing the supernatant was extracted to check the percentage of the encapsulated

compound in the spectrophotometer [28]. Precipitated particles were rinsed, with 1.0 mL of

sterile water three times. The samples were refrigerated at 2.0˚C for storage and then freeze-

dried. Fig 1 illustrates the production of the E-NPs.

Encapsulation efficiency (EE%)

The amount of E-latex in the E-NP was calculated using the indirect process, which included

separating the supernatants of all preparations, diluting by 100 times, and quantifying using a

previously validated calibration curve. The percentage ratio of the amount of drug associated

with the nanoparticles to the initial amount of drug used to produce the particles in triplicates

was defined as the efficiency of encapsulation using the values obtained from Eq 1.

EE %ð Þ ¼
amount of encapsulated drug

initial amount of drug
� 100 ð1Þ

Size distribution and zeta potential

A Zetasizer Nano ZS was used to determine the nanoparticles, size distribution and zeta poten-

tials (Malvern Instruments Ltd., Worcestershire, United Kingdom). The dynamic light scatter-

ing mode (DLS) was used to measure the sizes of 100 times diluted E-NPs and blank-NPs. The

dispersant used in the study was phosphate-buffered saline (PBS 10 mM). For size analysis,

each sample was measured three times with ten runs each time. The Laser Doppler electropho-

resis mode was used to determine the zeta potential of each sample, with at least 10 runs at a

constant temperature (25˚C). Three independent tests yielded size average and zeta potential.

Fig 1. Steps of the preparation of blank NPs and E-NPs using the solvent evaporation method.

https://doi.org/10.1371/journal.pone.0274432.g001
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Unless otherwise mentioned, all DLS sizes, PdI, and zeta potentials were calculated after dilu-

tion [29].

Fourier Transform Infrared analysis

A Fourier Transform Infrared (FTIR) spectrophotometer, model IR Prestige 21 (Shimadzu1)

was used to obtain spectra for E-latex, blank-NPs, and E-NPs. For the FTIR assay, each sample

was first combined with potassium bromide (KBr) at a ratio of 1:10 mg and compressed into a

tablet. The detection wavelength was between 400 and 4000 cm-1, and there were 40 scans at a

resolution of 4.0 cm-1 [30].

Differential Scanning Calorimetry (DSC)

The physical state of the E-latex inside the NPs was characterized by the analysis of the DSC

curves. The curves were obtained in a DSC cell (Shimadzu1model DSC-60A) using alumi-

num crucibles with about 3.0 mg of samples, which were subsequently sealed with a press. The

analyses were performed under a dynamic nitrogen atmosphere at 20 mL×min-1 and heating

rate of 5.0˚C×min-1, in the temperature range of 35 to 400˚C. The DSC equipment was pre-

calibrated with metal indium (purity above 99.99%, melting temperature = 156.4˚C). The data

obtained from the thermal events of the samples were identified in the curves obtained by the

software TA-60WS1.

Simultaneous TG-DTA

The thermal stability of the samples was verified by simultaneous TG and DTA, using a Shi-

madzu DTG-60A1, using aluminum crucibles with about 3.0 mg of samples, a dynamic nitro-

gen atmosphere of 50 mL×min-1 and a heating rate of 5.0˚C×min-1 in the temperature range

of 30 to 400˚C.

In vitro drug release and kinetic analysis

At 37˚C the 10 mg of E-NPs was dispersed in 3.0 mL PBS (pH 1.0, 7.4 and 8.5) and UV-Vis

absorption values at 205 nm were measured at predetermined time intervals until the release

plateau was reached (t = 6 hours). For the kinetic experiments, KinetDS 3.0 software was used;

the equations were chosen from the most popular mechanistic and empirical models applied

to the drug release curve such as: zero-, first-, second- and third-order, the kinetic models of

Higuchi, Korsmeyer-Peppas, Weibull, Hixson-Crowell and the Hill equation [31, 32].

Zero-order model: Qt ¼ Q0 þ k0 � t ð2Þ

First-order model: logQt ¼ logQ0 þ
k� t
2:303

ð3Þ

Pseudo-first-order: ln Qe � Qtð Þ ¼ lnQe � k1 � t ð4Þ

Second-order model:
1

Qt
¼

1

Q0

� k2 � t ð5Þ
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Pseudo-second-order model type Ið Þ:
t
Qt
¼

1

k2Q2
e

þ
t
Qe

ð6Þ

Pseudo-second-order model type IIð Þ:
t
Qt
¼

1

k2Q2
e

� �
1

t
þ

t
Qe

ð7Þ

Pseudo-second-order model type IIIð Þ: Qt ¼ Qe �
1

k2Qe

� �
Qt

t
ð8Þ

Pseudo-second-order model type IVð Þ:
Qt

t
¼ k2Q

2

e � k2QeQt ð9Þ

Third-order model:
1

Qt
¼

1

Q2
0

� k3 � t ð10Þ

Higuchi model: Qt ¼ kH �
ffiffi
t
p

ð11Þ

Korsmeyer-Peppas model: Qt ¼ kKP � tn ð12Þ

Weibull model: Qt ¼ 1 � exp
� ðt � TiÞ

b

a

 !

ð13Þ

Hixson-Crowell model:
ffiffiffiffiffiffi
Q0

3
p

�
ffiffiffiffiffi
Qt

3
p

¼ kHC � t ð14Þ

where t is the time, Qt is the amount of drug released at time t, Q0 is the initial amount of the

drug in the nanoparticles, k0 is the zero-order rate constant, Qe is the amount of the drug at

equilibrium, k1 is the first-order rate constant, k2 is the second-order rate constant, k3 is third-

order rate constant, kH is the Higuchi constant reflecting the design variables of the system,

kHC is the rate constant for the Hixson-Crowell rate equation, kKP is the rate constant in Kors-

meyer-Peppas model equation and n is the release exponent, indicative of the drug release

mechanism. The accuracy of these models was compared by calculation of squared correlation

coefficient (r2). In addition, the Korsmeyer-Peppas model is employed to characterize drug

release mechanisms: Fickian release (diffusion-controlled release), non-Fickian release (anom-

alous transport) and case-II transport (relaxation-controlled release). When n�0.43, it is

Fickian release. An n value between 0.43 and 0.85 is defined as non-Fickian release. When

n� 0.85, it is case-II transport [33]. In the Weibull model, Ti is the lag time between the initial

of measurement and the release of the drug (in most cases Ti = 0), a is the time scale of the pro-

cess and b is the shape parameter (the shape of the release curve is exponential if b = 1, parab-

ola if b< 1 or sigmoid if b> 1) [34].

In vivo hypernociception assay

The experiments were performed on male Wistar rats (150–300 g) housed in standard clear

plastic cages (four per cage) with free access to food and water. All behavioral testing was per-

formed between 9:00 am and 5:00 pm in a temperature-controlled room. Animal care and

handling procedures were in accordance with the International Association for Study of Pain

(IASP) Guidelines [35], the Guide for the Care and Use of Laboratory Animals of the National
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Council for the Control of Animal Experimentation (CONCEA, Brazil) and the Guide for the

Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research [36]. All

efforts were made to minimize the number of animals used and their suffering. The study was

approved by the Animal Research Ethics Committee of the University of Brası́lia (Protocol 58/

2019) and the registry in the National System for Genetic Heritage and Associated Traditional

Knowledge Management (SisGen)-A906C8F.

Nociceptive mechanical test

Mechanical hypernociception was evaluated in rats using Dynamic Plantar Aesthesiometer

(Ugo Basile) [37]. This pressure transducer is coupled to a digital force detector that measures

the applied force in grams. Prior to starting the experiment, rats were placed in acrylic cages

with wire grid floors for 15–30 minutes, which enabled the rats to begin environmental adapta-

tion. The test employs a filament-containing universal tip, which applies upward pressure on

the rat’s hind paw, to evoke a hind paw flexion reflex. Once the paw was pulled away, the rat

immediately flinched. Via paw removal, the registered force was automatically displayed. The

findings are expressed as hypernociception strength (in grams), which is determined by sub-

tracting the force measured after treatment from the basal value (O force).

Drug preparation, administration, and experimental protocols

Carrageenan was administered locally (hind paw, intraplantar—i.pl.) at a volume of 100 μL per

paw; E-latex or E-NPs were delivered orally (p.o.). The E-latex or E-NP pre-treatment effects

(60 min before) were tested against carrageenan-induced mechanical sensitization. The doses

of E-latex (3 and 30 mg×Kg-1), E-NP (3, 30 and 100 mg×Kg-1) and carrageenan (100 μg) were

derived from previous studies [37] and pilot experiments. E-latex was diluted in ethanol;

E-NPs were diluted in water and carrageenan in saline, immediately before use. The mechani-

cal sensitizing effect of carrageenan was evaluated 3 hours after its administration (Fig 2) [3,

24].

Statistical analysis

The results are expressed as standard error of the mean (SEM) of measurements made on 5

animals in each group and represent the intensity of mechanical hypernociception. Compari-

sons across three or more treatments were made using one-way ANOVA with post hoc

Tukey t-tests (Prism 8.0, GraphPad, San Diego, USA). p< 0.05 was considered statistically

significant.

Results and discussion

Physicochemical properties of the nanoparticles

E-NP was prepared using the solvent evaporation process because this method is most efficient

with drugs which are either insoluble or poorly soluble in the aqueous medium which com-

prises the continuous phase. The basic characteristics of the NPs prepared for this technique

are presented in Table 1.

NPs applications are predominantly governed by their properties whereby particle size and

size distribution are crucial as the size can easily influence the drug loading, release, toxicity, in
vivo distribution, particle stability, etc. In our study, the NPs displayed a mean diameter of

between 497 and 764 nm. When administered intravenously, the NPs may have major limita-

tions due to clearance by the reticuloendothelial system (RES). When the particle size exceeds
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100 nm, the pharmacokinetic and biodistribution properties greatly change and they are

detected in blood and organs like the spleen, lungs, liver, and kidney [33].

Typically, optimal release profiles are achieved by using microspheres with diameters in the

range 10–200 μm. For particle diameters < 10 μm, there is a risk that microspheres will be

phagocytosed by immune cells. On the other hand, microspheres >200 μm may cause an

immune response and inflammation [38].

In addition to intravenous administration, there are other routes of administration that

include oral administration, inhalation, intravenous injection, subcutaneous injection, intra-

muscular injection or in situ humoral injection, to deliver drug-loaded particles to target

lesions, thus improving treatment and prognosis [39]. Thus, in the specific case of this work,

the particles produced have adequate dimensions for oral administration.

The polydispersity index (PdI), which is a ratio that gives information about the homogene-

ity of the particle distribution in each system, reflects the quality dispersion within the range of

0.0–1.0. PdI values� 0.1 indicate the highest quality of dispersion. Most researchers recognize

Fig 2. Illustration of the steps for in vivo hypernociception assay.

https://doi.org/10.1371/journal.pone.0274432.g002

Table 1. Characterization data: Mean diameter, polydispersity index (PdI), zeta potential (ZP) and efficiency encapsulation (EE).

Nanoparticles Diameter (nm) PdI ZP (mV) EE(%)

Blank-NP 764 ± 39 0.470 -1.8 ± 0.09 -

E-NP (1.0 mg) 683± 22 0.132 -13.0 ± 1.00 78

E-NP (5.0 mg) 497 ± 6 0.145 -22.0 ± 6.00 75

https://doi.org/10.1371/journal.pone.0274432.t001
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PdI values�0.3 as optimum values; however, values�0.5 are also acceptable [40]. According

to the literature, the NPs produced have a suitable PdI with most of the population monodis-

perse profile.

Zeta potential (ZP) is a physicochemical parameter that expresses the stability of a nanoma-

terial. Extremely positive or negative ZP values cause large repulsive forces, whereas repulsion

between particles with similar electric charge prevents aggregation, and accordingly ensures

easy redispersion [29, 41]. Different materials will have a different stability threshold; in the

case of a polymer lattice, a minimum ZP of ± 20.0 mV is desirable. The results presented in

Table 1 indicate that the increase in latex concentration causes a reduction in the diameter of

the NP and an increase in the ZP. Since more quantity of functional groups from latex film

being adsorbed to the NP surfaces, thus lowering the electrophoretic mobility, and increasing

the stability compared to blank NPs. As a result, the NPs produced with 5.0 mg of E-latex

reached the minimum ZP indicated for polymeric particles.

E-latex was entrapment with meaningful statistical significance as E-latex increased from

75 to 78%. Similar results were observed by Khaira et al. [42] in a study evaluating the use of

nanoparticles for the delivery of the gemcitabine hydrochloride drug, where it was observed

that the increase in the polymer:drug ratio resulted in an increase in the %EE in low propor-

tions. After that, increasing the concentration of gemcitabine, the %EE decreased; this effect

was attributed by the authors to the polymer’s ability to separate. Song et al. [43] sought to

enhance the incorporation of vincristine sulfate (VCR) and quercetin (QC) into PLGA nano-

particles; it was observed that the mean entrapment efficiencies of these two drugs decreased

dramatically with the increase of W/O volume ratio. This phenomenon was attributed to the

different interaction between drug-polymer–solvent. According to the authors, this occurred

due to the number of drugs partitioned into the organic phase which reduced during emulsifi-

cation; meanwhile, the drug loss increased during solvent evaporation when the W/O volume

ratio increased. Moreover, when the W/O volume ratio increased, the amount of QC dissolved

in the aqueous phase, resulting in less QC retention in the internal phase to interact with

PLGA molecules and then lower the entrapment efficiency of QC [44].

FTIR analysis

FTIR is an important spectroscopic technique for chemical analysis of surface-modified NPs,

revealing possible surface interactions. Our knowledge of Euphol presented in latex indicates

that it belongs to the class of organic compounds known as triterpenoids, containing six iso-

prene units [45] and that PLGA is characterized by free carboxyl terminal groups; a covalent

conjugation of Euphol with PLGA was carried out through the formation of an ester bond,

which was confirmed by the observation of a strong band at 1753 cm-1, absence of hydroxyl

(υOH) stretching vibrations of Euphol latex, which distinguishes it from the PLGA molecule.

The FTIR spectra generated by E-latex, PLGA and E-NPs are represented in Fig 3.

Fig 3 display the FTIR spectra of blank PLGA nanoparticles (Blank-NP), Euphol latex (E-

latex) and PLGA-Euphol conjugate (E-NP). The peaks at 3394 and 1753 cm−1 represent the

presence of–OH and–COOH groups of PLGA. The peaks at 3121, 3004, 2964, 2878 and 2816

cm−1 correspond to–C-H stretching vibrations. The peak at 1753 cm−1 indicates the existence

of C = O stretch (Ester), the two peaks at 1636 and 1657 cm-1 are from the Euphol latex which

can be attributed to stretching -C = C- and C-C, the signals are slightly shifted to 1623 and

1654 cm-1, after the encapsulation process. The peaks between 1500 and 1250 cm-1 indicate

symmetric angular deformation of the CH3 and CH2 functional groups. Between 1500 and

1250 cm-1 CH3 and CH2 symmetric angular deformation predominates, between 1350 and

1150 cm-1 asymmetric angular deformations are present from the CH2 and CH groups.
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Differential Scanning Calorimetry (DSC)

DSC is a powerful tool for the analysis of polymer-drug interactions and has previously been

used to show that the drug and polymer are molecularly dispersed [41]. PLGA polymer exhib-

its glass transition temperatures (Tg) from 30–60˚C according to literature, which is above the

physiological temperature, and these provides it a sufficient strength to be used in drug deliv-

ery device [44–46]. In addition, the Tg data from PLGA 50:50 is the lowest (35.7˚C) value

when compared with other PLGA polymers ratios [46]. When considering properties of sub-

stances at a nanoscale level, it is expected that the properties will be different from those of the

bulk material, often because of the greater surface-to-volume ratio the nano substances [46].

The Tg data range from DSC curves analyzed in both PLGA nanoparticles (Blank and E-latex

loaded) were in accordance with reported literature range as displayed in Fig 4 [46]. Also, the

thermal decomposition of both PLGA nanoparticles start at 227˚C and ends at 360˚C, which is

lower than that of the PLGA polymer alone (320˚C) [46]. This behavior can be attributed to

the fact that the NPs are more exposed to thermal degradation because their sub-micrometric

size makes the superficial area larger. As the nanoparticles have a larger surface region, they

degrade more easily in comparison to the polymer [44]. However, the melting behavior of

PLGA NP changes when it is in Blank, or E-latex loaded (Tm = 321.7˚C and Tm = 288.4˚C)

Fig 3. FTIR spectra of E-Latex (red line), Blank-NP (green line) and E-NPs (blue line).

https://doi.org/10.1371/journal.pone.0274432.g003
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respectively. Thus, the E-latex incorporated into the NPs, can be in an amorphous or disor-

dered-crystalline phase of molecular dispersion in the polymer matrix. Similar results with

other hydrophobic drugs encapsulated in the PLGA matrix were obtained by other authors

[26, 46–50]. TGA was used to determine the weight loss of all samples as the temperature

increases gradually to 400 ˚C in the presence of Nitrogen gas and E-NP lose about 89.5% of

their weight at temperatures below 300 ˚C owing to the loss of water at the nanoparticle’s sur-

face and water bound inside the E-NPs.

In vitro drug release profile and kinetic analysis

The calculation of the theoretical release profile is important to assess the formulation against

release rates and to confirm that it releases the test compound in a predetermined manner

according to the theoretical release pattern [31, 32]. The in vitro drug release study was carried

out for a period of 6.0 h at pH 1.0, 7.4 and 8.5, until the concentration of the E-latex released in

the solution reached saturation (Fig 5A–5C). These pH values were chosen due to oral admin-

istration of drug-loaded NPs exposes them to different pH environments in the gastrointesti-

nal tract, ranging from highly acidic (pH 1.6–3.2 in the stomach) to alkaline (pH 7.5–8.0 in the

small intestine) [44]. To investigate the mode by which the E-latex molecules gradually diffuse

from the matrix, the release data were analyzed with the following drug release kinetic

Fig 4. DSC analysis of PLGA NPs: Blank NP (blue line) and E-NPs (red line).

https://doi.org/10.1371/journal.pone.0274432.g004
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Fig 5. Experimental release profile of E-NP: A) pH 1.0 (dark blue dot), (B) pH 7.4 (green dot) and C) pH 8.5

(black dot), red curve indicate the best fitting curve. Insert: kinetic model graph.

https://doi.org/10.1371/journal.pone.0274432.g005
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approaches such as zero-, first-, second- and third-order, the kinetic models of Higuchi, Kors-

meyer-Peppas, Weibull, Hixson-Crowell, Michaelis-Menten, and the Hill equation [31, 32].

These mathematical models consider various physical processes such as dissolution, diffusion,

partitioning, osmosis, swelling, and erosion [33]. In this work, the accurate adjust plots of

kinetic models are shown in Fig 5A–5C(Insert).

In the studies performed at acidic medium at pH 1.0, it was observed the release profile of

Euphol latex from PLGA nanoparticles follows an exponential behavior (blue dots), as shown

in Fig 5A. The theoretical curve that best fits the experimental points is shown in Eq 15 with a

correlation coefficient of 0.9903.

Qt ¼ 97:79 � 51:49ð Þ � e � 0:02835�tð Þ
� �

ð15Þ

At highly acidic conditions, it was observed that approximately 91% of the compound was

released after 45 minutes; after this time E-latex reach out the polymer matrix slowly and sus-

tainably, plateauing after 130 minutes.

This is attributed to the process of erosion of the matrix and subsequent release of the drug.

PLGA degradation occurs through a process of autocatalytic hydrolysis of the ester bonds in

the polymer chains due to protonation of its carboxylic acid group (pKa = 3.85) [51, 52]. Each

hydrolyzed ester linkage forms one hydroxyl and one carboxylic acid group, which leads to the

production of acidic oligomers that catalyze the further degradation of the parent polymer.

These acidic oligomers are finally hydrolyzed to lactic and glycolic acids [53, 54]. Similar

results were obtained by Jain [55] for biomedical applications of biodegradable polyesters and

Wan [53] for resveratrol-loaded PLGA nanoparticles.

As may be observed through Fig 5A (Insert) at pH = 1.0 the Euphol latex release follows the

Pseudo-second order kinetic model, which is mathematically fitted with Eq 16, with a correla-

tion coefficient equal to 0.9995.

t
Qt
¼ 0:009942� t þ 0:06161 ð16Þ

In the studies performed at physiological pH 7.4 (green dots) profile it was observed that

the best mathematical fit (red line) to the release profile was the two-phase model which

can be seen in Fig 5B and evidenced by Eq 17, which showed a correlation coefficient of

0.9994.

Y ¼ � 0:0180þ
109:0 � t0:77

t0:77 þ 43:0

� �

þ
27:4� t8:22

t8:22 þ 7:2

� �

ð17Þ

At pH 7.4, a quick release is observed in the first 80 minutes, which is attributed to release

of E-latex adhering release to the surface of the NPs. The initial burst is followed by a plateau

in a short time of between 85 and 105 minutes, then the release of E-latex follows zero-order

kinetics up to 335 minutes when 98.4% of the compound has been released; in the last 25

minutes of monitoring, a plateau is observed. The in vitro release study revealed that at alka-

line conditions, 62% of the E-latex is released in the first 105 minutes. In the time interval

between 105 and 175 minutes, no significant variation, with approximately 3.0% release, is

observed, which can be characterized as a plateau; in the sequence, a sustained release with a

few experimental oscillations was observed because of its slow diffusion. After 1.0 h, the

amount of E-latex released from the NPs was significantly higher at pH 1.0 than at pH 7.4

and pH 8.5. The amount of E-latex released from the matrix at 1.0 h was estimated to be

92.5% at pH 1.0, 37.7% at pH 7.4, and 39.6% at pH 8.5, indicating that E-NPs followed pH-

dependent release kinetics [56, 57]. In the insert of Fig 5B, the kinetic modeling data at pH
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7.4 the Korsmeyer-Peppas model (Eq 8) showed better linear fit regression coefficient value

of r2 = 0.9922 and a value of n = 0.6294 ± 0.0069 this result and the value of n were deter-

mined by plotting log (fractional release of drug) versus log t [33].

logQt ¼ 0:3912þ 1:015� n logt ð18Þ

This model is generally used to analyze the release of pharmaceutical polymeric dosage

forms when the release mechanism is not well-known or when more than one type of release

phenomenon could be involved [58]. It is important to note that depending on the value of n
that better adjusts to the release profile of an active agent in a matrix system, it is possible to

establish a classification, according to the type of observed behavior. Peppas et al. used this n
value to characterize different release mechanisms: Fickian diffusion (n = 0.43), Anomalous

transport (0.43 < n< 0.85), Case I transport (n = 0.85), Super Case II transport (n> 0.85) [33,

58]. In the case of pH 1.0 and pH 7.4, the n values were above 0.43 (spherical shape) namely,

0.6294 ± 0.0069, suggesting a coupling of diffusion and erosion mechanisms, anomalous diffu-

sion, and possibly indicating that Euphol latex release from E-NPs was controlled by more

than one process. The results obtained are consistent with those described in the literature [26,

27, 32, 59], where it is observed that during the early phases, the entrapped therapeutic agent is

released primarily through diffusion within the polymer matrix, whereas during the later

phases, the compound is released via both diffusion and degradation of the polymer matrix.

At alkaline pH 8.5 the release profile of Euphol latex also showed a biphasic behavior (black

dots) as shown in Fig 5C. Eq 19 describes this behavior with a correlation coefficient equal to

0.9961.

Y ¼ 0:3614þ
65:28� t2:484

t2:484 þ 19254:18

� �

þ
34:86� t9:623

t9:623 þ 1:33E23

� �

ð19Þ

Under neutral or alkaline conditions, PLGA can undergo several terminal modifications,

such as favoring the conversion of the free carboxylic acid terminal group to an ester terminus,

which considerably affects the final physicochemical characteristics. It is reported in the litera-

ture that the mucoadhesive properties of PLGA increase the residence time of the drug-laden

delivery system, improving its oral absorption [44]. A delay in degradation time of 4 to 6

weeks has been found in vivo for an ester end-capped PLGA in comparison with a more

hydrophilic acid-terminated PLGA of a similar molecular weight and co-polymer composition

[55]. As shown in Fig 5C-insert, in the experiments performed at pH = 8.5 it was observed that

the best mathematical fit follows the Pseudo-second order Type 2 model (Eq 20), which

showed a correlation coefficient r2 = 0.9877.

t
Qt
¼ 1:782

1

t

� �

þ 0:00168 ð20Þ

In vivo hypernociceptive assay of E-latex and E-NPs

As described before, isolated Euphol latex showed an antinociceptive effect on mice after oral

administration [17, 60, 61]. The encapsulation of E-latex in PLGA NPs aims to preserve the

antinociceptive effect as compared to its free E-latex form and preserve the compounds

from the degradation process. The pre-treatment with E-NPs (30 or 100 mg/Kg) p.o. (%O

11.150 ± 1.622, n = 5; %O 11.068 ± 2.701, n = 5, respectively) or E-latex (30 mg/Kg) p.o. (%O

-0.178 ± 1.513, n = 5) significantly inhibited the carrageenan-induced mechanical hypernoci-

ception. It was the first time that antinociceptive effects for E-NP were described and it was in

accordance with data from the E-latex control as well as similar data from the literature [62].
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The comparison between both E-latex and E-NP intensity of effects were shown to be sig-

nificantly different. Once administered, drug release is an important parameter, to know how

the system will maintain the concentration of the compound in the target tissues at a desired

value as long as possible, exerting a control on the drug release rate and duration. The effect of

pH on the release profile was observed, mimicking the release in gastrointestinal fluid (pH

1.0), in the small intestine and blood (pH 7.4) and in the colon (pH 8.5). The results indicate

that the E-NPs followed pH-dependent release kinetics with a quick exit of the compound

under acidic conditions. Pharmacokinetic as well pharmacodynamic properties conferred by

nanoencapsulation of E-latex can be explored in future studies. The data demonstrate the anti-

nociceptive effect for E-NP, suggesting that E-latex nanoencapsulation preserved its desired

properties Fig 6.

Fig 6. Carrageenan-induced hypernociception in rats is inhibited by the free or encapsulated compound.

https://doi.org/10.1371/journal.pone.0274432.g006
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The Fig 6 shows the hypernociception induced by a single i.pl. injection of carrageenan

(100 μg/paw) and the effect of pre-treatment with the free (3 and 30 mg/Kg/p.o.) or encapsu-

lated compound (3, 30 and 100 mg/Kg/p.o.) or water. The data are expressed as mean SEM;

n = 5. ����p< 0.0001 compared to water plus the carrageenan group; �p< 0.05 compared to

E-latex plus the carrageenan group; one-way ANOVA with Tukey’s comparison.

Conclusion

The results of this study revealed that E-NPs were prepared successfully using the solvent evap-

oration method with an encapsulation efficiency of�75%. FTIR demonstrated the polymer

and Euphol latex interaction. The physicochemical characteristics of this release system such

as hydrodynamic diameter, zeta potential and physical stability up to 37˚C, as well as the

biocompatibility and biodegradability of the polymer indicate that E-NPs are suitable for oral

delivery due to versatile biodegradation in distinct pH. Animal assays with E-NPs or E-latex

significantly inhibited the mechanical hypernociceptive induced by carrageenan, suggesting

that the nanoencapsulation process of Euphol latex is impaired during the entrapment and

administration process. Further studies are needed to explore the use of nanotechnology for

the possible antinociceptive effect induced by E-latex.
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