
Received 8 August 2023, accepted 12 September 2023, date of publication 9 October 2023, date of current version 16 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322936

FaaS-Oriented Node.js Applications in an RPC
Approach Using the Node2FaaS Framework
LEONARDO REBOUÇAS DE CARVALHO AND ALETÉIA PATRICIA FAVACHO DE ARAÚJO
Department of Computer Science, University of Brasília, Brasília 70910-900, Brazil

Corresponding author: Leonardo Rebouças de Carvalho (leouesb@gmail.com)

ABSTRACT The Function-as-a-Service (FaaS) servicemodel has aroused great interest since its introduction
in the context of cloud computing. Although FaaS can be used to perform isolated tasks, it is in the
composition of applications that this service model can promote significant performance improvements.
This work presents an evolution in the Node2FaaS framework, whose objective is to assist in the
conversion of originally monolithic node.js applications to work with FaaS in the Remote Procedure Call
(RPC) communication mechanism. The new implementations in the Node2FaaS framework allowed new
experiments to be conducted. Those showed significant gains in runtime for applications with CPU-bound,
memory-bound, I/O-bound characteristics, especially for a Bioinformatics application that aims to align
genetic sequences.

INDEX TERMS Code transformer, FaaS, function-as-a-service, node.js, Node2FaaS, serverless.

I. INTRODUCTION
With the aim of significantly reducing costs and time for
providing infrastructure, cloud computing has gained an
important place in today’s society. Before this goal became
a reality, a considerable investment in datacenters was
essential to support the processing and storage necessary
for the start and continuity of projects that demanded
computational resources. Service models that encapsulate
both the infrastructure and the development platform itself
have gained ground. These models give the developer an
interface for including source code, written in the most com-
mon programming languages. One of the models promotes
event-triggered stateless execution with high parallelism.
This service model is called Function-as-a-Service (FaaS)
[1], but it can also be referred to as a serverless model, since
the user has the impression that there is no server to worry
about.

Despite the benefits that the FaaS offers, it is necessary to
adjust the development processes to suit this new model. In
addition, certain computational problems may suffer from an
increase in execution time when replacing their technology
stacks with a FaaS-oriented approach, since this technology

The associate editor coordinating the review of this manuscript and

approving it for publication was Somchart Fugkeaw .

increases the total number of layers of the original solution.
Moreover, each provider may have a particular way of
offering interaction with their services, and the developer
will need to become familiar with these interfaces. In this
context, ‘‘FaaSification’’ is the process of converting a code
structure into a format which is executable on a Function-
as-a-Service platform [2]. Some proposals are available
to perform FaaSification, such as: Zappa [3], PyWren [4],
Lithops [5], ToLambda [6], DaF [7], M2FaaS [8], however
none of them has the characteristics that Node2FaaS does,
in particular the adoption of a multiclod orchestrator, among
other characteristics, as will be presented in Section V.

This work presents advances in the Node2FaaS framework
that allowed its use on a real application and a deeper
evaluation of the benefits of the framework approach,
including a cost analysis.

In the preliminary version [9], a RPC approach was
introduced with the aim of incorporating the benefits of FaaS,
such as elasticity and underlying infrastructure managed by
the provider and cost-efficiency. By transferring responsi-
bility for scaling as well as infrastructure management to
the provider, developers can stay focused on addressing
the software’s core purpose. Furthermore, as charging is
based on activations, the cost is adjusted to real demand.
Even in the initial version, use cases were developed to

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 112027

https://orcid.org/0000-0001-7459-281X
https://orcid.org/0000-0003-4645-6700
https://orcid.org/0000-0001-7156-184X

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

stress certain aspects, such as CPU, memory and I/O.
In the subsequent version [10], the concept of multi-cloud
was introduced through the adoption of the Terraform [11]
cloud orchestrator. In this work, the Node2FaaS framework
was used to convert an application for genetic sequence
alignment. Both applications were then submitted to batteries
of tests with different levels of concurrency and the results
of this experiment complemented the results obtained in the
experiments carried out previously, plus the respective cost
analysis of each experiment.

There are a few initiatives similar to Node2FaaS such as
Lambada [2] and Podilizer [12]. Therefore, the authors of
these projects launched a portal to publicize FaaSification
[2] initiatives and ensure a better comparison between the
different approaches and implementations. This portal is
available at http://www.faasification.com and is open to
receive suggestions and new projects. The idea is to bring
together the initiatives and encourage the development of this
area.

This article is divided into 7 sections, the first being
introductory. Section II provides the fundamental conceptual
basis for this work, while Section III presents the proposal
for this paper. In Section IV, the results of the experiments
carried out are presented. Section V addresses the related
works, Section VI presents a discussion on the topic and,
in Section VII, final considerations are presented and future
work is discussed.

II. BACKGROUND
In the traditional model of computing, resources such as
processor, memory, disk and connection to the network
are physically handled [13]. The maintenance and scale
processes in this type of approach, besides being expensive,
are laborious and slow. As computing has evolved, and
a considerable amount of computing power has become
available on just one machine, there has been a need to
improve the internal management of these resources. In this
scenario, resource virtualization was the solution found and
this created the opportunity to commercialize the excess idle
computing capacity existing in the datacenters and so cloud
computing emerged.

A. CLOUD COMPUTING
In the early days of cloud computing, National Insti-
tute of Standards and Technology (NIST) defined only
three service delivery models: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS) [14]. These three models are able to define
any type of computational resource available for hire on the
Internet, be it the most basic such as a disk, CPU, network,
memory or any other resource of the IaaS model. It might
also be a development platform configured and managed by
the provider, as in PaaS model services, or fully functional
software, available for use by the end user without any effort
to configure the infrastructure on the part of the customer,
such as SaaS models.

The market for cloud providers has become more and
more competitive over time. Currently, there is a profusion of
service offerings at different providers. Many of them offer
similar products but using different approaches. In this sce-
nario, a multicloud approach has grown within organizations,
in which resources offered by different providers make up the
technological support framework of these organizations. This
approach has been called multicloud [15].

Multicloud [15] can be defined as a level above cloud
computing, since its resources are dynamically provisioned
at different providers and can also be found under the
denominations of sky computing [16], intercloud [17], and
cross-cloud [18]. Although each of these concepts has its
own particularities, in this paper they will be treated as
synonymous with multicloud.

In order to manage the huge pool of resources that this
concept can reach, and considering the different forms of
consumption, the need arose to develop a mechanism capable
of systematically managing these computational resources,
such as xAFCL [19], as well as enabling the quick and
efficient execution of provisioning of environments across
multiple services from different providers. This phenomenon
causes difficulties in migrating from one provider to another,
and even between different services from the same provider.
In this context, considering the need to manage environments
made up of resources spread over several providers, and given
that each provider has a particular way of offering its services,
a specific segment of Infrastructure-as-a-Code (IaC) tools has
grown, the multicloud orchestrators.

B. MULTICLOUD ORCHESTRATORS
Cloud orchestrators can be defined as platforms on which
the developer creates an infrastructure descriptor that the
orchestrator follows to implement autonomously, without any
interaction with the user [20]. In other words, cloud orches-
trators are deployment technologies that can automatically
deploy software components based on deployment models
(including their orchestration).This concept ensures that an
updated and tested infrastructure descriptor is available for
developers to begin the infrastructure deployment process,
simply providing the orchestrator with the infrastructure
descriptive code.

Orchestrators that can be found in the literature have
certain characteristics, such as: year of appearance, license,
strategy used, providers with which it has integration and the
project URL presented in Table 1. In the Purpose column of
Table 1, the solutions were classified as ‘‘Crossplane’’ when
their projects indicated the intention of using them for proof
of concept and/or academic purposes. On the other hand,
solutions whose objective was considered more comprehen-
sive, including potential for use in real environments, were
classified as ‘‘General’’.

To act as a multicloud cloud orchestrator together with
Node2FaaS, among those orchestrators mentioned, those
with the greatest compatibility with Node2FaaS were

112028 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

TABLE 1. Cloud orchestrators.

TABLE 2. Results of tests carried out between Cloudify and
Terraform [37].

submitted to an extensive assessment in [37]. Considering
the general characteristics, only Cloudify [31] and Terraform
[11] would be eligible for adoption by the framework.
After several batteries of tests (results in Table 2), the most
suitable tool to meet the needs of Node2FaaS proved to be
Terraform. As can be seen in Table 2, Terraform obtained
better results in average provisioning and deprovisioning time
in all providers, except GCP, where the average provisioning
process took less time with Cloudify, but a difference of
only 0.3 seconds. The complete analysis of this result can be
seen in the article Performance Comparison of Terraform and
Cloudify as Multicloud Orchestrators [37].

C. FUNCTION-AS-A-SERVICE
The traditional infrastructure management model needs to
invest heavily in installation and configuration tasks, thus
enabling an environment to receive source code and execute it
properly. To rationalize this effort, cloud computing defined
the service model PaaS [14], whose delivery consists of
a platform completely configured and ready to receive the

source code. However, this type of service still exposes some
details of the infrastructure to the developer who, eventually,
still needs to guarantee, among other aspects, the elasticity
of the environment. In addition, it is necessary to maintain
the provisioned environment during the development period,
and this increases the final cost of the project. In this context,
providers started offering a service model that delivers a
completely encapsulated platform for software development
and charges only for the processing actually performed by
the platform. This type of service, known as FaaS [38] has
been very interested recently, since its approach meets the
architectural model that has become very widespread, the
microservices [39] paradigm.

In FaaS [38] the customers contract the execution of a
predefined function, load the code they want to execute, and
can receive an address to access the service or simply check
the expected result, for example, in database. Applications
that use this type of cloud service have been called
‘‘serverless’’ applications, since there is no guarantee that at
the time of the request there will be a server provisioned to
meet the request and therefore these requests are handled by
the provider in order to guarantee the existence of instances
able to meet the request, including promoting auto-scaling in
case of excessive demand.

Figure 1 shows the schema of Function-as-a-Service. This
schema shows how the interaction between the developer
and the FaaS service model takes place, whether it is
actually loading code, and can use the Software Development
Kits (SDKs) of the provider or simply interacts with the
provider’s console or CLI. The client can configure triggers
for invocation of the service or make it on demand by
requesting an API, for example. In addition, Figure 1 also

VOLUME 11, 2023 112029

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

FIGURE 1. FaaS schema.

shows the elasticity of the service and its on-demand payment
model (pay-as-you-go).

On the other hand, making use of the FaaS service
model can be complicated, as it requires the developer to
know the interface of consumption that each provider offers.
In addition, it is necessary that the developer build the
applications considering the use of this model, or invest
considerable time adjusting applications already developed
to work with FaaS.

Thus, to use the FaaS approach over an existing monolith
application it is necessary that the developer knows the details
of the APIs of each provider, as well as how to segment
the functions of the application and convert them into calls
appropriate to the structure of the service. This process can
become tedious, and discourage developers from adopting
a FaaS-based approach. With this, many professionals can
lose the benefits that a microservice cloud-based architecture
can offer, such as: high availability, resilience, cost reduction,
among others. Furthermore, the programming language
chosen to consume this computing paradigm can be decisive
for the success or failure of this journey.

In this context, one can see that the JavaScript [40]
language has gained a lot of importance for the success
of web applications. Currently, this language has become a
standard for including interactivity on Internet pages, and
several frameworks have used it to increase the behavior
of applications on the client side [41]. Thus, Node.js [42]
emerged as an alternative for executing JavaScript code on
the server side, and consequently its market as expanded.
The wide adoption of JavaScript has offered Node.js a
favorable scenario for its adoption, since the learning curve
can be greatly mitigated by taking advantage of JavaScript
knowledge. Even so, the constant evolution of software
development models, as well as the adoption of new
computing paradigms, such as the cloud, requires that the
improvement processes of programming languages maintain
a constant flow.

Since FaaS services do not always keep active instances
able to process a request, it is common that in the first
request or after some time without activations, a FaaS service

presents a longer response time, this effect is known as
‘‘coldstart’’ [43]. As the focus of this work is not to deepen the
understanding of this phenomenon, it was disregarded in the
experiments through heating requests to the services before
the batteries of tests.

Another feature that can impact the performance of FaaS
functions is known as the ‘‘Spawn Effect’’ [44]. In this
case, only a certain level of concurrency is maintained by
the service, while subsequent requests have to wait for a
slot to be released for processing. This characteristic can
lead to degradation in the execution time, as well as in the
triggering of timeouts culminating in failures. In this work,
the experiments used concurrent requests, that is, a certain
number of requests for the service were opened in sequence,
making the processing occur according to the simultaneity
supported by the provider.

Table 3 presents the characteristics of the main FaaS
providers, such as supported programming languages, sup-
ported platforms, virtualization system used by the provider
to deliver the service, time limits, memory and temporary
storage, billing method, ways of activating the service and the
middleware that supports the operation of the service. It is
important to note that this is a very diversified market and
providers offer similar solutions, but with many differences,
which is why it is important to have mechanisms for
onboarding these services in a less costly way and avoid
vendor lock-in, that is characterized by expensive and time-
consuming migration of application and data to alternative
providers [45].

One of the important characteristics of FaaS services
is to offer a runtime ready for execution, and this task
involves delivering environments containing all the libraries
that the application will need. Providers deliver some pre-
installed libraries, as can be seen in Table 4, which shows
the pre-installed libraries of Node.js, since this is the object
language of this work. However, it is common for real
applications to require libraries that are not part of this list.
For these situations, some providers allow the user to declare
a list of libraries that must be downloaded from the central
repository, while others only allow these libraries to be part
of the published package along with the function. In any case,
it is essential to have a tool like Node2FaaS to manage and
abstract (as far as possible) this complexity.

Considering the need for improvements in the software
processing model in Node.js, this work brings improvements
to the Node2FaaS framework. This is a tool for automatic
and fruitful conversion of monolithic applications, written
in Node.js, into FaaS-oriented applications, and will be
described in more detail in the next section.

III. Node2FaaS FRAMEWORK
The Node2FaaS framework [9], [10] processes the original
source code of a Node.js application offered as an input for its
execution, and converts it to an application whose functions
are executed in a FaaS service model. The internal code of the
functions is converted into deploys created automatically at

112030 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

TABLE 3. Characteristics of the main FaaS services. T = Time in minutes, M = Memory in gigabytes, and S = Temporary storage in gigabytes.

TABLE 4. Node.js libraries pre-installed on FaaS providers.

the provider. Calls to the API of the FaaS, which correspond
to the original code of the functions, are replaced by their
original definitions. The product of this processing is a new
application, based on the original, whose effective execution
of its functions does not occur in the environment in which
the application is being executed, but in an external FaaS.
Therefore, the framework has the following characteristics:

• Ease of operation: the installation process for the
framework configures all the tooling necessary for its
use. The user must configure only the information of
the providers and Node2FaaS also assists in this task,

collecting the credentials and creating the respective
configuration files. This ease of adoption of framework
aims to shorten the distance between users and the best
results that the proposed model can deliver;

• Automatic conversion: the conversion process is com-
pletely automatic and does not require any interaction
from the user. Once the target application is pointed
out, Node2FaaS simply fulfils its mission, and in the
end delivers a version of the original application, whose
functions, if they are adherent, are executed in FaaS.
The framework promotes an offloading for developers
interested in FaaS consumption;

• Function analysis: for some types of algorithms there
is no advantage in being executed in FaaS. Node2FaaS
performs an analysis of the internal source code of
each function, in order to define the best approach,
either transferring the execution to an FaaS provider or
maintaining the local execution;

• Optimized execution: the execution of the converted
application must be the same or faster than the original.
To guarantee this, the framework mixes different forms
of treatment of the functions in order to obtain the
best result in each one, optimizing the execution of the
application in a generalized way;

• Flexibility: eventually the developer can deal with
business requirements that require a change in the
default behavior of the framework, from avoiding
publishing some function in FaaS to guaranteeing its

VOLUME 11, 2023 112031

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

publication. This flexible feature of Node2FaaS adds a
larger set of applications to the list of candidates to use
the framework;

• Multiple providers: considering that the concept of Sky
computing is a rapidly growing approach, Node2FaaS
allows publishing to multiple providers through the use
of an integrated multicloud orchestrator;

• Effectively usable: Node2FaaS consists of a techno-
logical solution that can be effectively used in Node.js
application development processes, serving both cross-
plane and professional purposes;

• Automatic dependency management: the conversion
process embeds the necessary dependencies in the
package that will be published to the provider;

• Open source tool: the use license allows usage and
modification of the software.

A. FaaS ADHERENCE ANALYZER
The processing of functions in FaaS inevitably impacts on
the application’s execution time, since a network must be
crossed to request execution and obtain the result, be it a
local network, as in services within the same zone within a
provider, or much more distant, necessitating the crossing of
the Internet. For this burden to be offset, the function to be
performed must be sufficiently expensive to the point that it
is more advantageous to transfer the execution to the provider
and enjoy intense parallelism than to maintain the execution
locally and impact the execution time due to the eventual
queuing that can occur when there is a high number of
competing requests.

In this work, a phase of checking the adherence of the
functions to the FaaS paradigm is included in the conversion
process. For this, two checks are carried out on the code:

• Function source code size: the framework checks if the
function’s source code size exceeds a threshold, before
promoting it to FaaS;

• Parameters usage inside loops: if the framework notes
the use of parameters within loops, there is a possibility
they receive a high value and with that a high load will
occur in the execution. In this case, the framework will
decide to forward this processing to FaaS, since the
function load will be affected by the value informed and
potentially its execution time will be increased.

Both implementations could be verified in the framework’s
GitHub.1 Although simple, this verification phase promotes
an important filtering in the conversion process, avoiding
very simple functions, whose execution time is low, their
execution is impacted by the need to cross the Internet to
obtain the result. However, this phase can be improved to
verify other aspects of the function such as: complexity of
the algorithm, behavior of the execution time in simulations
using hypothetical values for the parameters, among other
aspects. In addition, it would be appropriate to equalize the
analysis process to the limitations of the destination provider

1github.com/node2faas/framework/tree/0.2.14/lib/analyzer.js

FIGURE 2. Node2FaaS architecture [10].

FIGURE 3. Node2FaaS composition [10].

for the execution time, size of the request, amount of memory
required, etc.

B. Node2FaaS ARCHITECTURE
The solution architecture proposed by the Node2FaaS
framework is based on the Remote Procedure Call (Remote
Process Call, RPC) paradigm, which is a useful paradigm for
providing communication over a network between programs
written in high-level languages. Figure 2 presents the solution
proposed by the framework in which it is possible to observe
that in each module of an application there may be functions.
Within each function there is code that performs some useful
operation for the software. Once submitted to Node2FaaS,
this code will be published in a cloud provider and, in its
place, in the converted application, a URI call will appear
pointing to the REST API provided by the provider as a result
of publication. In short, the original code of the functions
is transferred to the FaaS in the cloud and then consumed
through requests using the HTTP protocol.

To carry out its mission, Node2FaaS is internally seg-
mented into modules that fulfil specific tasks and integrate
with each other. Thus, working in a coordinated manner,
these modules receive inputs and return results that enable
the processing of applications, and the generation of a new
application using the proposed approach. Figure 3 shows the

112032 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

internal structure of the framework, and it is possible to verify
the existence of a main module, named index, whose role
consists of coordinating the other modules. In addition to
the main module, Node2FaaS is composed of the following
modules:

• Functions: concentrate a set of utilities that are in
common use among the other modules;

• Preparation: ensures that the requirements for the
proper execution of the framework are met, and relies
on the following sub-modules:

– Output structure: responsible for creating the
target application directory;

– Accreditation: responsible for obtaining and stor-
ing credential information of providers;

– Interface with provider: responsible for commu-
nicatingwith the providers’ services and abstracting
their complexities to the other modules. It has an
internal segmentation to deal with the specifics of
each supported provider.

• Converter: coordinates the conversion process and has
the help of the following sub-modules:

– Code extraction: responsible for extracting the
internal source code of the functions;

– Normalization: responsible for making the source
code executable in the service of FaaS;

– Assembly: responsible for assembling the new
definition of functions after publication in the
provider;

– Compression: some services require that the code
be compressed before publication, this module is
responsible for performing this task;

– Publication: responsible for requesting the publi-
cation from the interface module with the provider
and handling their return.

C. Node2FaaS INTEGRATION WITH CLOUD
Once Terraform was elected as an orchestrator that would
bridge the gap between Node2FaaS and the providers, the
construction of the artifacts was carried out in order to
build IaCs to define the architectural model (blueprints)
of Terraform integration with each provider. Considering
the Gartner magic quadrant [46], which indicates the cloud
market leaders, the following were selected: AWS, GCP and
Azure.

The Blueprint snippet 1 shows the AWSLambda definition
for Terraform. Other resource definitions such as API
gateway, function source code deployment, and permissions
can be verified on GitHub,2 as well as the full blueprint
definition for GCP and Azure.

Analyzing the blueprints for both providers, it is noticeable
that the definition made for CGP is the one that needs the
least explicit amount of terraform resources. On the other
hand, the definition made for Azure is considerably greater

2github.com/node2faas/framework/tree/0.2.14/terraform/modules

Blueprint snippet 1. Terraform source code for AWS Lambda.

than that made for AWS and, consequently, for GCP as well.
This shows the existence of different degrees of complexity in
the configuration of these resources and even in an eventual
process like this involving human interaction, it would be
highly prone to errors.

Despite the need to build blueprints for each provider
and thereby add a new layer to the Node2FaaS solution,
this decision is justified by the fact that, if an integration
were built using each provider’s native API, it would be
necessary to unveil the specifics of each one. In addition,
this work could be highly unstable, since version changes
to the APIs could destroy the entire integration. However,
although it may still be so, the difference is that now there is
an orchestrator supported by the community. Therefore, if this
occurs, it is expected that a new version of the orchestrator
will be released soon, correcting the problem.

D. Node2FaaS WORKFLOW
Once available in the local environment (after installation),
the Node2FaaS flow is started from the execution of the
‘‘node2faas’’ application. If the framework was installed
via Node Package Manager (NPM), this application will
be registered in the path of the machine and can be run
directly from the command ‘‘node2faas –target [path to the
application to be converted]’’. Otherwise, it will be necessary
to access the directorywhere the frameworkwas downloaded,
grant permission to execute it, only then to run Node2FaaS.
If the user does not know the options of the tool, he can
enter the parameter - help (or -h). Therefore, the Node2FaaS
framework offers the following functionality through its CLI:

• help: display of tool options;
• clean: removes local provider-related information as
well as credentials. Thus, it will be necessary to fill this
information again in a new execution of the framework;

• destroy: access the provider and promote the destruc-
tion of the functions that have been created;

• verbose: displays in detail the step-by-step processing
of the framework;

• provider: allows the current default provider to be
changed;

• region: allows the default region for the current provider
to be changed.

Given the above, having an active account with a provider
to perform the function is essential, since initially the frame-
work seeks credentials to access the cloud. If the credentials
file is not found, the application prompts the user to provide
credential information for accessing cloud services. After
that, the system will create the credentials file and will no
longer request its completion for future executions, unless the
user provides a parameter stating his intention.

VOLUME 11, 2023 112033

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

FIGURE 4. Node2FaaS application conversion workflow [10].

Once the credential is obtained and an application for
conversion is offered by Node2FaaS, it is submitted to a
conversion process that will analyze the application code
looking for function definitions to perform the conversion,
as shown in Figure 4. During the process, if a file include
command (include) is found, then the target file is also
searched for candidate for conversion, and this process is
repeated recursively, until no file for inclusion is found.

This way, when the application finds a function, it checks
if it is eligible for submission to the cloud. If so, preparation
is made in the function code in order to normalize it to
the functioning of the respective cloud, and then the code
is delivered to the orchestrator. The orchestrator, in turn,
provides access to the cloud to create a new FaaS. After
receiving confirmation of the FaaS creation, the application
obtains the associated URI to access the service, and creates
the request within the definition of the original function.
In this way, the function call remains unchanged and its
operation on the cloud platform is done in a totally transparent
manner.

In the end, Node2FaaS will have generated all the files that
should make up the initial application, but with the original
code of the functions replaced by HTTP requests to the FaaS
of the cloud provider. The converted applicationmaintains the
same signature as the original functions, allowing its use to
remain unchanged for the processes requesting the functions.
This prevents the need tomake adjustments to the application.
The entire source code of the Node2FaaS framework and its
hot page3 link is available on GitHub4 as well as in Zenodo
FAIR repository.5

A preliminary version of the Node2FaaS framework was
presented at [9] containing its main functionalities, such as
the conversion process of node.js applications and automatic

3node2faas.faasification.com
4github.com/node2faas/framework
5doi.org/10.5281/zenodo.7668232

publication of functions in the AWS provider using the API
of the provider itself. A multicloud approach was introduced
to Node2FaaS through the incorporation of the Terraform
cloud orchestrator and integration with FaaS solutions from
AWS, Google and Azure [10]. Although the framework
was able to prove that its RPC-oriented approach was
able to considerably reduce the execution time of certain
applications, these were specific to the experiments with
the framework. In order to expand Node2FaaS’s scope of
action so that it could be applied to real problems, some
improvements in the framework were necessary, such as:

• AWS CloudWatch automatic integration;
• Update runtime from nodejs10.x (deprecated) to
nodejs14.x;

• FaaS zip file generated with dependencies (node_
modules);

• Replacing package Request (deprecated) by Axios;
• Automatically add Axios in generated app package.json;
• Parameters passed via POST;
• New annotation feature to force or skip publication on
FaaS.

Considering the possibilities from the new functionalities
of Node2FaaS, an experiment was elaborated with a real use
case in which an application performs alignments of genetic
sequences in parallel, with different levels of concurrency.
The results of this real experiment complement the results
already obtained previously, and both will be detailed in
Section IV, as well as their respective cost analyses, which
corroborate the approach proposed by Node2FaaS, both for
specific applications for the tests and for real applications.

IV. RESULTS
In order to explore the potential of a Node.js application
converted to FaaS, using the Node2FaaS framework,
some experiments were conducted. The purpose of these
experiments is to evaluate the behavior of an application
whose processing is being forwarded to a cloud provider,

112034 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

FIGURE 5. Architectures of the experiments.

as defined by the solution proposed by Node2FaaS and to
ascertain if the framework is converting the applications
properly.

A. METHODOLOGY
For the experiments, four functions were developed and used
with one real application as test cases. The test cases are
described below:

• Math: performs a simple sum operation;
• CPU overload: explores the server’s processing power,
stressing the CPU;

• RAMmemory overload: explores the server’s process-
ing capacity, stressing RAMmemory resources, through
successive vector-filled loops;

• Stress on disks: exploits the server’s processing capac-
ity, stressing the input and output channel, through
successive loops with creating and removing files;

• Genetic sequence alignment: this is a very common
use case in Bioinformatics, for this work we used the
BioSeq6 library that implements the Smith Waterman
[47] algorithm. This library was encapsulated by a
node.js7 application that acts as a REST API. Upon
receiving an alignment request and two strings as
parameter, the application triggers BioSeq to perform
the alignment and then generate the respective result.

Once these test cases were encapsulated in a single appli-
cation, three experiments were conducted. In all experiments,
the application containing the test cases was submitted to the
Node2FaaS framework in order to generate a new application
using the Node2FaaS approach. Then, the initial application
was run in a local environment and went through testing
batteries. Likewise, the converted application also went
through testing batteries and had its runtime performance
measured in each round.

Figure 5a shows the architecture used in the 1st and 2nd

experiments. This figure illustrates how the experiments were
conducted. A shell script was used to execute the flow of
the experiments and to command the various cycles of the
test cases (stress), as well as to collect and store the data

6https://www.npmjs.com/package/bioseq
7https://github.com/node2faas/alignment

obtained for further analysis. In addition, it may be seen
in the figure that while in the execution of the original
application everything happens in the local environment,
in the converted application there is an integration with the
cloud provider to execute the operations in their respective
FaaS. Figure 4b shows the architecture of the 3rd experiment
in which two virtual machines were provisioned at each
provider. The original sequence alignment application was
installed on one of them while the application resulting from
the conversion process of the original application by the
Node2FaaS framework was installed on the other machine.
As in the 1st and 2nd experiments, a shell script conducted
the execution of the workloads referring to the concurrence
tests, stressing the applications and collecting the results.

In the 1st experiment, the Node2FaaS conversion process
did not have a cloud orchestrator and therefore only the AWS
provider could be evaluated, as it was the only integration
available. In the 2nd experiment, with the assistance of
Terraform, it was possible to evaluate the behavior of the
Node2FaaS approach in other providers, such as GCP and
Azure, in addition to AWS. Furthermore, the method of
application of concurrence between experiments has also
been changed. While in the 1st experiment the concurrence
varied continuously starting at 0 and ending at 100, in the
2nd experiment the values were fixed at 10, 50 and
120 concurrent requests. In the 3rd experiment, the genetic
sequence alignments were requested in parallel in blocks
of 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 simultaneous
requests as can be seen in Table 5 which shows in detail
the parameters used in each test case. In the 3rd experiment
on-demand t3a.xlarge EC2 instances were used in AWS,
in GCP on-demand e2-standard-4 compute engine instances
were used, and in Azure on-demand standard_D4s_v3 virtual
machines. These machine flavors in both providers have the
equivalent amount of resources, such as memory and vCPU.
Both machines were provisioned in near regions in order to
avoid too much latency interference.

The test cases of the 1st and 2nd experiments were repeated
10 times, and the test case of the 3rd experiment was repeated
30 times to allow an average to be calculated. After carrying
out the experiments, the resulting data were collected and
consolidated so that they could be analyzed. An analysis of
these results will be presented in the next sections.

Another interesting way to analyze the results is to evaluate
the costs related to the test cases. Considering that the 3rd

experiment adopted an experimental approach closer to real
applications, a comparative analysis of the costs determined
at each level of concurrence was carried out for the scenarios
with and without the FaaS approach proposed by Node2FaaS
in both providers. In the Table 6 are defined the parameters
that are used to calculate the cost of the experiments,
expressed in Equations 1 and 2 for the experiment without
FaaS and with FaaS, respectively.

Ewithoutfaas = T ∗ Cvm (1)

Ewithoutfaas = (T ∗ Cvm) + (T ∗ Cfaas) + (S ∗ Crequest) (2)

VOLUME 11, 2023 112035

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

TABLE 5. Parameters of the experiments.

TABLE 6. Cost analysis variables.

In Table 6 T represents the time spent on each experiment,
which is understood from the beginning of the execution of
the genetic sequence alignment to the receipt of the response
by the client. S represents the different concurrency levels
of the 3rd experiment, from 1 to 512. Cvm represents the
amount charged by the provider for the use of the virtual
machine used in the experiment for a certain time. Cfaas
represents the amount charged by the provider for a period
of time of execution of its FaaS function. This value varies
according to the amount ofmemory available for the function,
in the case of the 3rd experiment all FaaS functions were
created with 128MB of memory allocated. Crequest requires
the fixed amount charged per request to the provider’s FaaS
service. Ewithoutfaas and Ewithfaas consist of the experiment
cost calculations without FaaS and with FaaS, respectively,
whose actual calculations are described in Equations 1 and
2. Table 7 presents the costs of provisioning services for
virtual machines used in the 3rd experiment at each provider,
as well as the respective values for using FaaS services
configured for 128MB of RAM memory. In Table 7 use is
expressed in minutes and the MacBook cost was estimated
based on a five years of obsolescence in a cost of $1499. It is
worth mentioning that the values expressed in Table 7 do not
consider any free tiers offered by providers. The results of
this cost analysis will be analyzed in Section IV-D. The scripts
used in the experiments, as well as the raw data and tabulation
files are available at:

• 1st Experiment - https://doi.org/10.5281/zenodo.
7668258;

• 2nd Experiment - https://doi.org/10.5281/zenodo.
7668266; and

• 3rd Experiment - https://doi.org/10.5281/zenodo.
7668286.

B. ANALYSIS OF THE 1ST EXPERIMENT RESULTS
The results of the math workload in the 1st experiment test
case are shown in Figure 6a. In this figure, it is possible
to note that for most requests, the application performing
local processing obtained better results when considering

the execution time. While the average request execution
time for the application without FaaS was 0.46 seconds, the
application average with FaaS was 1.45 seconds, as can be
seen in Table 8. This represents a difference of 215%. Thus,
it is clear that for simple algorithms, the adoption of FaaS
through the Node2FaaS approach, does not represent a gain in
the execution time, since processing the overhead generated
by the passage through the network is not offset by the FaaS
execution time.

The results of the test case for overloading the CPU are
shown in Figure 5b. It is possible to observe that the converted
applicationmaintained stability in the execution time, varying
between 1.12 seconds and 2.61 seconds, while the other
application presented degradation, starting at 0.30 seconds
and ending at 2.87 seconds, as shown in Table 8. This
demonstrates that even in relation to the consumption of CPU,
after a certain point, an application using FaaS presents higher
runtime times than the application running locally.

The performance degradation that occurs in the application
locally is due to concurrence, because the more simultaneous
requests arrive for treatment by the server, the greater the
amount of resources that the machine needs to allocate for
this treatment. These resources tend to run out, since a
local instance is a limited machine, and with that the server
can even stop responding, removing an application from
operation. This behavior can be seen in Figure 5b at around
82 simultaneous requests, in which there is a sudden jump in
the execution time in comparisonwith the applicationwithout
FaaS. It is likely that at that point the server reached the
limit of its processing capacity and started to queue requests,
increasing the time for handling processes. This increase
lasted until around request 93, when the queuing overhead
started to interfere less in the execution time.

A similar behavior can be observed for application with
FaaS at around 57 simultaneous requests, that is, well
before the same occurrence in the application without FaaS.
This anticipation is explained by the fact that the instance
provided by the provider has less processing capacity than
an instance destined for the execution of the application
without FaaS and, therefore, saturated earlier. Despite this,
using the services of FaaS in theNode2FaaSway, the provider
guarantees automatic elasticity, the service can potentially
need a much higher amount of concurrence compared to the
approach without FaaS, as new entrants are automatically
available to meet this increase in processing and ensure its
execution.

The test case with memory overload, shown in Figure 5c,
obtained a result similar to the overhead test of CPU. While
the variation in the execution time of the application using

112036 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

TABLE 7. Instances and FaaS costs in dollar ($).

TABLE 8. 1st experiment execution times (without the Terraform as cloud
orchestrator).

FIGURE 6. Results of the 1st experiment (without the Terraform as cloud
orchestrator).

FaaS remained stable, the curve of the application without
FaaS pointed upwards. However, the crossing of the curves
occurred faster compared to the test with CPU. This shows
that high memory consumption degrades the execution time
more significantly than the consumption of CPU, in this case.

In the test case with I/O overload, shown in Figure 5d,
the same scenario of the tests involving CPU and memory
is verified. In the first requests, the application without FaaS

alternates between times above and below those registered
by the application with FaaS. But as of the thirty-third
simultaneous request, the execution time of the application
without FaaS starts registering values continuously higher
than the results of the application with FaaS, an demonstrates
a gradual upward trend. Table 8 shows that the worst results
observed with FaaS and without FaaS were 20.43 seconds
and 55.64 seconds, respectively. This shows that, in the I/O
overload test, there was a difference of 172% in the worst
case. This can be explained by the fact that there is a greater
parallelism in processing using FaaS, while local execution is
penalized by queuing in high concurrence situations.

Table 8 shows the consolidated comparison of the results
obtained in each type of test. Thus, it is possible to observe
that the tests with simple load and CPU obtained lower
average execution times on the server without FaaS. On the
other hand, execution with memory overload and I/O were,
on average, faster on servers using FaaS. This is explained
by the fact that the provider of FaaS is delivering automatic
elasticity for the consumption of resources, while on the
server without FaaS the task of managing this concurrence
is on the server itself, and this causes queuing, which blocks
processing and delays execution.

C. ANALYSIS OF THE 2ND EXPERIMENT RESULTS
Table 9 shows the consolidation of the data obtained from
the execution of the test cases in the 2nd Experiment. These
data reveal information about the average execution time of
the workload in each provider, as well as the accounting
of unsuccessful executions and the reliability rate calculated
in each workload. It was also possible to calculate the
shortest and longest execution times in order to calculate
the amplitude of the waiting time for the execution of the
workloads.

The results showed a marked difference in the time
of execution of the local tests in relation to the times
registered by the applications adopting the RPC (FaaS-based)
Node2FaaS approach. As can be seen in Figure 7, which
shows the consolidated average times for the CPU test cases,
while in local execution the average was around 283 seconds,
FaaS services fared much better, reaching 9.8 seconds, in the
case of AWS. Even the provider with the worst result, Azure,
still improved upon the result from local processing.

Figure 7 shows an even more discrepant result between
local execution times and Node2FaaS approach execution

VOLUME 11, 2023 112037

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

TABLE 9. Consolidated results of the 2nd experiment (with the Terraform as cloud orchestrator).

FIGURE 7. Results of the 2nd experiment (with the Terraform as cloud
orchestrator).

times, in this case, for tests with high memory consumption.
AWS andGCP recorded average times of 2.5 and 6.7 seconds,
respectively. The Azure provider recorded a higher result,
with an average time of 64.04 seconds, but still much lower
than the 288 seconds recorded as the average test processing
on the local machine.

The test case that aimed to stress disk activity produced an
intriguing result.While theAWS andGCP providers recorded
averages of 2 and 4.9 seconds of execution time and local
tests resulted in an average of 415 seconds, as can be seen in
Figure 7, the Azure provider was unable to end any test cases.
Considering that the test cases varied between 10, 50 and
120 simultaneous requests, and that for a single request the
Azure provider was able to successfully fulfil the request,
it is possible to infer that unfortunately the Azure FaaS
cannot satisfactorily handle situations involving concurrently
recording and deleting files.

Other occurrences of failures during the test runs were
observed in AWS and GCP. However, unlike Azure which
simply drops the connection, they return an errormessage that
allows some treatment of the problem, such as:

• AWS: {‘‘message’’:‘‘Internal server error’’}
• AWS: {‘‘errno’’ : ‘‘ENOTFOUND’’, ‘‘code’’ : ‘‘ENOT-
FOUND’’, ‘‘syscall’’ : ‘‘getaddrinfo’’, ‘‘hostname’’:
‘‘5xyg1589i5.execute-api.us-east-1.amazonaws.com’’}

• AWS: {‘‘errno’’ : ‘‘ETIMEDOUT’’, ‘‘code’’ :
‘‘ETIMED-OUT’’, ‘‘syscall’’ : ‘‘connect’’, ‘‘address’’ :
‘‘99.84.27.18’’, ‘‘port’’ : 443}

TABLE 10. Reduction in execution times in 2nd experiment (with the
Terraform as cloud orchestrator).

• GCP: Error: Server Error. The server encountered an
error and could not complete your request. Please try
again in 30 seconds.

• GCP: {‘‘errno’’ : ‘‘ENOTFOUND’’, ‘‘code’’ : ‘‘ENOT-
FOUND’’, ‘‘syscall’’ : ‘‘getaddrinfo’’, ‘‘hostname’’ :
‘‘us-central1-node2faas-248113. cloudfunctions.net’’}

Table 10 shows the reduction percentages obtained in each
provider and, it is possible to observe that for the memory
test, a gain of 99% was obtained using the AWS provider
processing. As mentioned earlier, from the comparison
between the number of executions for each workload and the
number of successful executions, as shown in Table 9, it was
possible to calculate the respective reliability rates. Figure 8a
shows these rates graphically. In this figure it is possible to
see the valley that is created when the bars refer to the Azure
provider indicating a noticeably lower reliability rate than the
others. However, for the memory-related workload a drop in
reliability is also noted in both other providers. Only local
execution maintained its reliability rate fixed at 100% for all
workloads.

The results of the reliability rates of the application
whose execution took place in a local environment, that is,
without the adoption of the Node2FaaS approach using FaaS
are excellent, the application completed 100% of the tasks
sent to them. However, as can be seen in Figure 7b, the
waiting time for this execution to take place can be quite
high. Figure 7b shows two curves, with the minimum and
maximum execution times for each workload. It shows that
the curves related to FaaS providers are very close together,
almost overlapping, while for the local environment there
is a huge gap between them. This trade-off related to the
waiting time for executing a process versus the possibility of
failure is an aspect that needs to be considered when adopting
FaaS.

112038 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

FIGURE 8. Qualitative analysis of results in the 2nd experiment (with the
Terraform as cloud orchestrator).

FIGURE 9. Execution time results in the 3rd experiment (with the
Terraform as cloud orchestrator and real application).

D. ANALYSIS OF THE 3RD EXPERIMENT RESULTS
Figures 9 and 10a present the results obtained in the 3rd

Experiment. The results obtained from applications running
on AWS are represented in bluish colors, while the results
from GCP are represented in green, and from Azure in red.
The solid lines represent the original applications, that is,
without the use of FaaS in the RPC model. The dashed lines
represent the applications that were converted by Node2FaaS
to use the respective providers’ FaaS services.

In Figure 9 each line represents the average execution
time of the alignment set of genetic sequences executed in
parallel according to the level of concurrence, from 1 to 512.
In Figure 10a only the levels of concurrence that presented
failures are represented, that is, from 128 simultaneous
alignment requests up to 512.

Analyzing Figure 9, it is possible to observe that both
applications without FaaS present the same behavior in
which they present low execution times in the face of low
concurrence and as concurrence increases, the execution time
increases proportionally. On the other hand, applications
converted to FaaS by the Node2FaaS framework behave
differently. Those running on GCP and Azure have higher
runtimes than those recorded by applications without FaaS in
the face of low concurrence, however, this runtime changes
little as the level of concurrence increases. This is due to

FIGURE 10. Failure rates in the 3rd experiment (with the Terraform as
cloud orchestrator and real application).

the elastic characteristic of FaaS services in which more
resources are added as demand increases. The application
converted to FaaS executed by AWS presented a different
behavior from its equivalent, presenting execution times
much higher than the other services, as well as an oscillation
of the average execution times as the competition increases.
This is due to the scaling strategy adopted by the provider at
the time of testing.

In Figure 10a it is possible to identify the applications run-
ning on AWS as the ones with the highest failure rates, both
in the application without FaaS and mainly in the application
with FaaS. This result differs considerably from the results
obtained in the first two experiments where the maximum
levels of concurrence were 100 and 128. This demonstrates
that the AWS provider presented less satisfactory results
in terms of reliability from 128 simultaneous requests. The
other providers also recorded a certain failure rate starting at
concurrence level 128, but below the rates recorded by AWS.

Figure 9b shows the distribution of failures regardless of
the level of concurrence. In this analysis, it is possible to
see that AWS and Azure appear practically tied in number of
failures, givingGCP, in this experiment, the highest reliability
rate.

E. COST ANALYSIS
The analysis of the average execution times shows (Sections
IV-B, IV-C, and IV-D) that applications using FaaS through
the Node2FaaS approach present superior results as the level
of concurrence rises. However, it is necessary to analyze
the associated costs, since the charging models are quite
different. Thus, Figures 11, 12, and 13 presents a comparative
analysis of the costs calculated according to Section IV-A.

In the 1st Experiment, as can be seen in Figure 11, the
total cost of the simplest use case, which is a mathematical
calculator, was predominantly composed of the approach
using FaaS, which accounted for 85% of the cost. This
occurred due to the simplicity of the function, which, when
migrated to FaaS, only received the network overhead, which
was reflected in the cost. Similarly, use cases that stress
CPU and memory also registered a higher cost for the FaaS
approach, since the developed functions were not complex

VOLUME 11, 2023 112039

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

FIGURE 11. Costs distribution in the 1st experiment (without the Terraform as cloud orchestrator).

FIGURE 12. Costs in the 2nd experiment (with the Terraform as cloud
orchestrator).

enough to retain processing in the local environment to the
point that it is worth migrating to FaaS. On the other hand,
the use case that stresses I/O achieved financial success by
migrating to FaaS, as only 40% of the cost of this use case
referred to the approach with FaaS, while the other 60%
was due to the approach without FaaS. This is explained by
the characteristic of the use case, which, when creating and
reading a file, triggers blocks in the processing that burden
the execution time.

Figure 12 presents the costs registered in the 2nd Exper-
iment. It is possible to notice a drastic drop in the costs of
the use cases executed exclusively in the local environment
and comparison with the use cases that used a FaaS approach
after the conversion made by Node2FaaS. This was due to
the greater degree of complexity of the functions in the
2nd experiment compared to the 1st, so that the execution
time calculated locally was so much greater than those using
the FaaS approach that it suppressed the additional cost of
executing the functions remotely, in FaaS. In this analysis,
the Azure I/O use case could not be calculated due to the lack
of execution times that make up the calculation, since in this
scenario the Azure provider reported error in all executions.

Figure 13 presents the costs registered in the 3rd Experi-
ment. It is possible to observe that except for the application
converted to FaaS running on AWS, the cost curves show an
upward trend. This is an expected result, since the base of
the calculation is the time in use of the virtual machines in
which the applications are installed. Although applications
converted to FaaS also have a cost of operating time on the
virtual machines on which they are installed, and in addition

FIGURE 13. Costs in the 3rd experiment (with the Terraform as cloud
orchestrator and real application).

to FaaS costs, given the decrease in the total application
execution time, a reduction in the intensity of the curve
growth of the applications converted to FaaS from GCP and
Azure was noticed. This behavior was not observed in the
application converted to FaaS running on AWS due to its high
failure rate.

V. RELATED WORKS
The work [2] brings an approach for converting applications
written in Python to perform deployments in multiple
providers. The application built by Spillner, called Lambada,
processes an application in Python and converts it to the
appropriate code to be instantiated in the cloud.

Spillner and Dorodko [12] apply the same approach
adopted in Lambada, but for applications developed in Java.
In this work, the authors question the economic feasibility of
running a Java application entirely using FaaS, and whether
it could be possible to automate the application conversion
process.

Zappa [3] is a command line tool that converts Flask to
run on AWS Lambda. It is a framework that packages and
deploys Python applications compatible with WSGI in an
AWS Lambda function and in the AWS API gateway.

PyWren [4] exposes a Python continuous primitive map
over AWS Lambda. Although AWS Lambda was designed to
run microservices controlled by events at scale, dynamically
extracting S3 code (storage service from AWS), it makes
each call to AWS Lambda perform a different function.
PyWren serializes a Python function, capturing all relevant

112040 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

TABLE 11. Comparative of FaaS-oriented solutions. (a) Languages: P = Python; J = Java; and N = Node.js. (b) Applicability: G = General and C =

Crossplane.

information, as well as most modules that are not present at
the server’s runtime.

Lithops [5] is a Python multi-cloud serverless computing
framework. It allows unmodified local python code to be run
at massive scale in the main serverless computing platforms.
Lithops delivers the user’s code into the cloud without
requiring knowledge of how it is deployed and run. More-
over, its multicloud-agnostic architecture ensures portability
across cloud providers, overcoming vendor lock-in. Lithops
provides great value for data-intensive applications like Big
Data analytics and embarrassingly parallel jobs.

ToLambda [6] is a generic automation and transformation
tool. It takes a zip file with Java monolith application
source code and generates Node.js AWS Lambda functions.
These methods can be deployed into AWS manually or
through SAM Cloud Formation templates. Decomposition
and dependency search is done completely automatically.
The code generated is self-sufficient and contains all the
referenced methods.

Dependency-Aware FaaSifier (DAF) [7] is a code trans-
former that works to resolve both code and package
dependencies of each faasified method of a Node.js monolith
from annotations made directly in the code. Afterwards the
annotation DAF automatically builds equivalent serverless
functions and replaces the monolith method code with an API
call.

M2FaaS [8], is a FaaSifier for monolithic Node.js appli-
cations that automatizes FaaSification of arbitrary code
blocks using simple annotation constructs that do not change
the semantics of the monolith. The authors claim that the
work is the first FaaSifier that introduces FaaSification to
extract a code block as a serverless function considering not
only all package and code dependencies, but also the data
dependency.

Table 11 presents a comparative of the solutions mentioned
in which it is possible to see that although an adherence

analysis phase is fundamental to characterize if the essence
of the function fits the FaaS paradigm, none of them has
a FaaS adherence analyzer, unlike what happens with the
Node2FaaS framework. Furthermore, the mentioned works
do not integrate a multicloud orchestrator and do not
guarantee the publication of functions in the three main FaaS
providers. On the other hand, the Node2FaaS framework
uses Terraform and defined blueprints to integrate with AWS,
GCP and Azure. The set of applications that the Node2FaaS
framework was evaluated on ranges from simple functions to
applications for real use, while the other works have a lower
set of evaluations.

VI. DISCUSSION
The bibliographic survey carried out on the use of FaaS
with the purpose of making the processing of applications
executable under the RPC paradigm showed that this is
an area that is still little explored. There are some works
that propose an approach similar to this work, however for
other programming languages, like Python and Java, such
as Lambada [2] and Podilizer [12]. There are platforms,
such as Serverless [48] and Vercel (formerly known as Zeit)
[49], which promote the management of code deployments
in FaaS services, in this case acting as an abstraction layer
above the providers. Claudia.js [50], Zappa [3] and PyWren
[4] are part of a class of tools that handle deployments in
FaaS services without the commitment of transforming code
already written in something executable over FaaS, but it only
helps in the development of applications whose approach is
natively oriented to FaaS.

In addition, the work [2], for example, was designed to
use Lambada to convert applications with a unique function.
In production environment applications, it is common to com-
pose multiple functions for the execution of an application.
The Node2FaaS framework, on the other hand, allows a

VOLUME 11, 2023 112041

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

better use in real scenarios, not being focused experimental
environments.

The analysis of the results allows us to infer that,
in general, for few requests, the response time of the
application running without FaaS tends to be better. For
applications that require a lot of CPU resources, if there
is little concurrence, applications without FaaS show better
results, however, from a threshold, which in experiments was
around 80 simultaneous requests, both approaches perform
similarly, as can be seen in Figure 5b.

For applications with high memory consumption and I/O,
the benefits of using FaaS are evident, even from low levels
of concurrence. This is because in monolithic applications the
consumption of this type of resource causes many blockages
in processing. On the other hand, in applications oriented to
FaaS, there is a high parallelism in the consumption of these
resources, reducing the blocking effect. Thus, applications
with this type of characteristic are strong candidates for
adopting the FaaS model, using the approach proposed by
Node2FaaS.

The results of the tests presented (without and with the
orchestrator) clearly demonstrate that the approach proposed
by the Node2faaS framework provides a significant reduction
in the execution time of resource-intensive applications such
as CPU, memory and disk activity (I/O). The necessary
adjustments to make the internal functions of a traditional
Node.js application executable in FaaS services can be
a tedious process and is highly error-prone if performed
manually by a developer. On the other hand, the use
of the Node2FaaS framework delivers the uniformity and
consistency that an application needs for this type of
operation and also provides great agility for the developer due
to the automations that the framework performs. In addition,
the use of an orchestrator supported by the community gives
this process greater flexibility, since there is no need to
transfer the processing from one provider to another, just
activate Node2FaaS again pointing to the provider and then
this movement will be left to the framework and its coupled
orchestrator. Everything is very simple and fast.

With the adoption of Terraform, it was possible to execute
a broader experiment using the three main providers in the
market today: AWS, GCP and Azure. The results showed
gains of up to 92% for applications with intensive use of CPU,
96% for applicationswith intensive use of reading andwriting
on disk, and up to 99% for applications with intensive use of
memory.

Considering the characteristics of the framework: ease of
operation, automatic conversion, function analysis, optimized
execution, flexibility, multiple providers, effectively usable,
and open source tool mentioned in Section III, the ease of
use is observable since with only one command in the CLI
of the framework it is possible, automatically and selectively
(thanks to the adhesion analyzer and the possibility of
defining a specific behavior for certain functions), to generate
an application whose architecture is RPC-oriented and can be
used to solve real-world problems in an optimized way using

FaaS in multiple providers. In addition, once the code of the
tool is published and the access being open, it is possible to
perform changes in its implementation.

VII. CONCLUSION
The Node2FaaS framework proved efficient in the task of
converting monolithic Node.js applications to work with
FaaS. The experiments showed that after the conversionmade
by Node2FaaS there were significant gains in the execution
time of applications with intensive use of CPU, memory
and disk usage. The Node2FaaS, Terraform and FaaS triad
consists of a platform for amplifying the performance of
applications that demand intensive use of computational
resources.

The Node2FaaS framework delivers to the applications
that are submitted to it the advantages of being verified as
to the adherence of their functions to the FaaS paradigm.
In addition, the entire automated deployment process intro-
duces uniformity to the process making it less prone to human
error.

However, even though the framework has a layer to analyze
and decide on sending functions to FaaS services, this layer
can be improved to make a deeper semantic analysis in the
source code so that the decision is made using metrics related
to aspects of application behavior. In future works would be
possible to improve this, including features such as: a list
of not adherent functions check, implementations according
to node.js version, and an event machine learning process to
make the decision.

In addition, although the framework is prepared to work
with leading providers, its cloud orchestrator, Terraform,
supports other providers. Therefore, in future works this
support can be extended in order to offer a greater range of
options to users of the framework.

REFERENCES
[1] G. McGrath and P. R. Brenner, ‘‘Serverless computing: Design, implemen-

tation, and performance,’’ in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. Workshops (ICDCSW), Jun. 2017, pp. 405–410.

[2] J. Spillner, ‘‘Transformation of Python applications into function-as-a-
service deployments,’’ 2017, arXiv:1705.08169.

[3] R. Jones, ‘‘Zappa—Serverless Python,’’ Tech. Rep., 2020. [Online].
Available: https://github.com/zappa/Zappa

[4] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, ‘‘Occupy the
cloud: Distributed computing for the 99%,’’ inProc. Symp. Cloud Comput.,
Sep. 2017, pp. 445–451.

[5] What is Lithops? T. L. Team, 2023. [Online]. Available: https://lithops-
cloud.github.io/docs/

[6] A. Kaplunovich, ‘‘ToLambda-automatic path to serverless architectures,’’
in Proc. IEEE/ACM 3rd Int. Workshop Refactoring (IWoR), May 2019,
pp. 1–8.

[7] S. Ristov, S. Pedratscher, J. Wallnoefer, and T. Fahringer, ‘‘DAF:
Dependency-aware FaaSifier for Node.Js monolithic applications,’’ IEEE
Softw., vol. 38, no. 1, pp. 48–53, Jan. 2021.

[8] S. Pedratscher, S. Ristov, and T. Fahringer, ‘‘M2FaaS: Transparent and
fault tolerant FaaSification of Node.Js monolith code blocks,’’ Future
Gener. Comput. Syst., vol. 135, pp. 57–71, Oct. 2022.

[9] L. R. de Carvalho and A. F. de Araújo, ‘‘Framework Node2FaaS:
Automatic NodeJS application converter for function as a service,’’ inProc.
9th Int. Conf. Cloud Comput. Services Sci., 2019, pp. 271–278.

[10] L. R. de Carvalho and A. F. de Araujo, ‘‘Remote procedure call approach
using the Node2FaaS framework with terraform for function as a service,’’
in Proc. 10th Int. Conf. Cloud Comput. Services Sci., 2020, pp. 312–319.

112042 VOLUME 11, 2023

L. R. de Carvalho, A. P. F. de Araújo: FaaS-Oriented Node.js Applications in an RPC Approach Using the Node2FaaS Framework

[11] Y. Brikman, Terraform: Up and Running: Writing Infrastructure as Code.
Sebastopol, CA, USA: O’Reilly Media, 2017.

[12] J. Spillner and S. Dorodko, ‘‘Java code analysis and transformation into
AWS lambda functions,’’ 2017, arXiv:1702.05510.

[13] A. E. Youssef, ‘‘Exploring cloud computing services and applications,’’
J. Emerg. Trends Comput. Inf. Sci., vol. 3, no. 6, pp. 838–847, 2012.

[14] P. Mell and T. Grance, ‘‘The NIST definition of cloud
computing,’’ Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Tech. Rep. 2011, Sep. 2011.

[15] K. Kritikos and D. Plexousakis, ‘‘Multi-cloud application design through
cloud service composition,’’ in Proc. IEEE 8th Int. Conf. Cloud Comput.,
Jun. 2015, pp. 686–693.

[16] A. Monteiro, J. S. Pinto, C. Teixeira, and T. Batista, ‘‘Sky computing,’’ in
Proc. 6th Iberian Conf. Inf. Syst. Technol. (CISTI), Jun. 2011, pp. 1–4.

[17] N. Grozev and R. Buyya, ‘‘Inter-cloud architectures and application
brokering: Taxonomy and survey,’’ Softw., Pract. Exper., vol. 44, no. 3,
pp. 369–390, Mar. 2014.

[18] Y. Elkhatib, ‘‘Defining cross-cloud systems,’’ 2016, arXiv:1602.02698.
[19] S. Ristov, S. Pedratscher, and T. Fahringer, ‘‘XAFCL: Run scalable

function choreographies across multiple FaaS systems,’’ in Proc. IEEE
World Congr. Services, Jul. 2022, p. 32.

[20] J. Kovács and P. Kacsuk, ‘‘Occopus: A multi-cloud orchestrator to deploy
and manage complex scientific infrastructures,’’ J. Grid Comput., vol. 16,
no. 1, pp. 19–37, Mar. 2018.

[21] L. M. Pham, A. Tchana, D. Donsez, N. de Palma, V. Zurczak, and
P.-Y. Gibello, ‘‘Roboconf: A hybrid cloud orchestrator to deploy complex
applications,’’ in Proc. IEEE 8th Int. Conf. Cloud Comput., Jun. 2015,
pp. 41–48.

[22] J. Carrasco, F. Durán, and E. Pimentel, ‘‘Trans-cloud: CAMP/TOSCA-
based bidimensional cross-cloud,’’ Comput. Standards Interface, vol. 58,
pp. 167–179, May 2018.

[23] Topology and Orchestration Specification for Cloud Applications Ver-
sion 1.0, Oasis, Burlington, MA, USA, 2019. [Online]. Available:
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

[24] X. Wang, Z. Liu, Y. Qi, and J. Li, ‘‘LiveCloud: A lucid orchestrator for
cloud datacenters,’’ in Proc. 4th IEEE Int. Conf. Cloud Comput. Technol.
Sci., Dec. 2012, pp. 341–348.

[25] D.-H. Le, H.-L. Truong, G. Copil, S. Nastic, and S. Dustdar, ‘‘SALSA:
A framework for dynamic configuration of cloud services,’’ in Proc. IEEE
6th Int. Conf. Cloud Comput. Technol. Sci., Dec. 2014, pp. 146–153.

[26] M. Caballer, D. Segrelles, G. Moltó, and I. Blanquer, ‘‘A platform
to deploy customized scientific virtual infrastructures on the cloud,’’
Concurrency Comput., Pract. Exper., vol. 27, no. 16, pp. 4318–4329,
Nov. 2015.

[27] M. E. Walter, M. Holanda, G. Vergara, M. Rosa, A. Araújo, and
B. Moura, ‘‘BioNimbuZ: A federated cloud platform for bioinformatics
applications,’’ Int. J. Data Mining Bioinf., vol. 18, no. 2, p. 144, 2017.

[28] N. Loulloudes, ‘‘The celar project,’’ EUCELAR Project, Tech. Rep., 2019.
[Online]. Available: https://github.com/CELAR/c-Eclipse

[29] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S.Wagner, ‘‘OpenTOSCA—A runtime for TOSCA-based cloud appli-
cations,’’ in Service-Oriented Computing. Cham, Switzerland: Springer,
2013, pp. 692–695.

[30] Open Tosca, Open Tosca, Univ. Stuttgart, Stuttgart, Germany, 2019.
[Online]. Available: https://www.opentosca.org/

[31] Getting Started, Cloudify, New York, NY, USA, 2019. [Online]. Available:
https://cloudify.co

[32] Hot Guide, OpenStack, Austin TX, USA, 2019. [Online]. Available:
https://www.openstack.org

[33] Apache Aria Tosca Orchestration Engine, Apache, 2019. [Online].
Available: https://incubator.apache.org/projects/ariatosca.html

[34] AWS Cloudformation, AWS, Seattle, WA, USA, 2019. [Online]. Available:
https://aws.amazon.com/pt/cloudformation

[35] T. Borovsak, ‘‘xOpera orchestrator,’’ XLAB, Liubliana, Eslovénia,
Tech. Rep., 2019. [Online]. Available: https://xlab-si.github.io/xopera-
docs/

[36] Introducing VMWare Cloud Assembly, VMWare Code Stream and VMWare
Service Broker, VMWare, Palo Alto, CA, USA, 2019. [Online]. Available:
https://docs.vmware.com/en/vRealize-Automation/8.11/Getting-
Started-Cloud-Assembly/GUID-D50B687A-1236-4E2E-8C79-
995D1762EB85.html

[37] L. R. de Carvalho and A. P. F. de Araujo, ‘‘Performance comparison
of terraform and cloudify as multicloud orchestrators,’’ in Proc. 20th
IEEE/ACM Int. Symp. Cluster, Cloud Internet Comput. (CCGRID),
May 2020, pp. 380–389.

[38] C. Spoiala, ‘‘Pros and cons of serverless computing,’’ ASSIST Software
SRL, Suceava, Romania, Tech. Rep., 2017. [Online]. Available:
https://assist-software.net/blog/pros-and-cons-serverless-computing-
faas-comparison-aws-lambda-vs-azure-functions-vs-google

[39] O. Zimmermann, ‘‘Microservices tenets: Agile approach to service
development and deployment,’’ Comput. Sci.-Res. Develop., vol. 32,
nos. 3–4, pp. 301–310, Jul. 2017.

[40] D. Flanagan, JavaScript: O Guia Definitivo. Porto Alegre, Brazil:
Bookman Editora, 2011.

[41] B. Frankston, ‘‘The Javascript ecosystem,’’ IEEE Consum. Electron. Mag.,
vol. 9, no. 6, pp. 84–89, Nov. 2020.

[42] H. Shah and T. Soomro, ‘‘Node.js challenges in implementation,’’ Global
J. Comput. Sci. Technol., Netw., Web Secur., vol. 17, pp. 1–22, Jun. 2017.

[43] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
‘‘What serverless computing is and should become: The next phase of
cloud computing,’’ Commun. ACM, vol. 64, no. 5, pp. 76–84, Apr. 2021.

[44] S. Ristov, C. Hollaus, and M. Hautz, ‘‘Colder than the warm start and
warmer than the cold start! Experience the spawn start in FaaS providers,’’
in Proc. Workshop Adv. tools, Program. Lang., PLatforms Implementing
Evaluating Algorithms Distrib. Syst., Jul. 2022, pp. 35–39.

[45] J. Opara-Martins, R. Sahandi, and F. Tian, ‘‘Critical review of vendor lock-
in and its impact on adoption of cloud computing,’’ in Proc. Int. Conf. Inf.
Soc., Nov. 2014, pp. 92–97.

[46] Magic Quadrant for Cloud Infrastructure as a Service, Worldwide,
GARTNER, EUA, Stamford, Connecticut, Jul. 2019. [Online]. Available:
https://www.gartner.com/en/documents/3947472

[47] T. F. Smith and M. S. Waterman, ‘‘Identification of common molecular
subsequences,’’ J. Mol. Biol., vol. 147, no. 1, pp. 195–197, Mar. 1981.

[48] Serverless: Build AppsWith Radically Less Overhead andCost, Serverless,
San Francisco, CA, USA, 2019. [Online]. Available: https://serverless.com

[49] Develop. Preview. Ship., Vercel, São Francisco, Califórnia, USA, 2020.
[Online]. Available: https://vercel.com

[50] Claudia.js: Serverless Javascript, the Easy Way, Claudia.js, 2019.
[Online]. Available: https://claudiajs.com

LEONARDO REBOUÇAS DE CARVALHO
received the M.S. degree in computer science
from the University of Brasília, Brazil, in 2020,
where he is currently pursuing the Ph.D. degree.
He is also a Cloud Automation Manager with
a Brazilian government agency. His research
interests include Hiper performance computing
and cloud computing. He also has experience in
computing science with emphasis on software
engineering, artificial intelligence, business intel-

ligence, project management, and automatic configuration management.
He conducts scientific research and applied innovation concepts in these
areas.

ALETÉIA PATRICIA FAVACHO DE ARAÚJO
received the master’s degree in computer sci-
ence and computational mathematics from the
University of São Paulo, Brazil, and the Ph.D.
degree in computer science from the Pontifical
Catholic University of Rio de Janeiro, Brazil.
She is currently an Associate Professor with the
Department of Computer Science, University of
Brasília, Brazil. She has experience in computer
science with emphasis on parallel processing,

distributed systems, working mainly on computational cloud, fog, parallel
and distributed algorithms, and serverless computing. She has published
several research papers in international journals and conferences.

VOLUME 11, 2023 112043

