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Abstract

Background and purpose

In comparison to conventional medical imaging diagnostic modalities, the aim of this over-

view article is to analyze the accuracy of the application of Artificial Intelligence (AI) tech-

niques in the identification and diagnosis of malignant tumors in adult patients.

Data sources

The acronym PIRDs was used and a comprehensive literature search was conducted on

PubMed, Cochrane, Scopus, Web of Science, LILACS, Embase, Scielo, EBSCOhost, and

grey literature through Proquest, Google Scholar, and JSTOR for systematic reviews of AI

as a diagnostic model and/or detection tool for any cancer type in adult patients, compared

to the traditional diagnostic radiographic imaging model. There were no limits on publishing

status, publication time, or language. For study selection and risk of bias evaluation, pairs of

reviewers worked separately.

Results

In total, 382 records were retrieved in the databases, 364 after removing duplicates, 32 sat-

isfied the full-text reading criterion, and 09 papers were considered for qualitative synthesis.

Although there was heterogeneity in terms of methodological aspects, patient differences,

and techniques used, the studies found that several AI approaches are promising in terms

of specificity, sensitivity, and diagnostic accuracy in the detection and diagnosis of malig-

nant tumors. When compared to other machine learning algorithms, the Super Vector

Machine method performed better in cancer detection and diagnosis. Computer-assisted

detection (CAD) has shown promising in terms of aiding cancer detection, when compared

to the traditional method of diagnosis.
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Conclusions

The detection and diagnosis of malignant tumors with the help of AI seems to be feasible

and accurate with the use of different technologies, such as CAD systems, deep and

machine learning algorithms and radiomic analysis when compared with the traditional

model, although these technologies are not capable of to replace the professional radiologist

in the analysis of medical images. Although there are limitations regarding the generalization

for all types of cancer, these AI tools might aid professionals, serving as an auxiliary and

teaching tool, especially for less trained professionals. Therefore, further longitudinal stud-

ies with a longer follow-up duration are required for a better understanding of the clinical

application of these artificial intelligence systems.

Trial registration

Systematic review registration. Prospero registration number: CRD42022307403.

Introduction

Since early diagnosis of cancer is associated with better treatment outcomes for the patient,

there is substantial interest in using artificial intelligence (AI) technology in cancer screening

and detection through image recognition, in the hope of reducing diagnosis times and increas-

ing diagnostic accuracy [1]. AI has made significant advances in fields including medicine,

biomedicine, and cancer research. To forecast cancer behavior and prognosis, AI employs

mathematical approaches that aid in decision-making or action based on logical and autono-

mous thinking and effective adaptability [2–4].

AI has the potential to dramatically affect nearly all aspects of oncology–from enhancing

diagnosis to personalizing treatment and discovering novel anticancer drugs. Thus, it is impor-

tant to review the recent enormous progress in the application of AI and its potential in daily

clinical practice, and also to highlight limitations and pitfalls for such purpose [1,2]. Several

studies have attested to the potential of AI-based techniques to predict diagnosis, prognosis

and response to treatment in some malignant tumors, including colorectal, breast, skin, and

lung cancer [5–8].

Machine learning (ML), a branch of AI, has been shown to minimize intercurrences in dys-

plasia and cancer categorization, assuring uniformity and validity, and influencing treatment

decisions [9]. Progress in Deep Learning (DL) approaches has shown gains in image-based

diagnosis and illness detection in the study of cancer and oncology [10,11]. DL configurations

are non-linear layered artificial neural networks that are hierarchically coupled. A range of DL

architectures based on input data types have been developed during the last few years. Simulta-

neously, the model’s performance was evaluated, and it was discovered that the use of DL in

cancer prediction is superior than the standard procedures employed in ML [12].

In this context, these systems offer a lot of potential to support and enhance diagnostic

methods, such as overcoming the limitations of human memory and attention, improving the

effectiveness of computations and interpreting data, and preventing biases and prejudices

from influencing judgments. However, radiologists find it challenging to assimilate and evalu-

ate a significant volume of data to perform diagnosis and therapy because of the enormous vol-

ume and complexity of the picture data. The diagnosis takes longer, there is a higher risk of

mistakes, and radiologists are prone to become fatigued. Automation in the field of radiologi-

cal imaging can help to solve a number of issues, including a) improving the accuracy and
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precision of picture analysis [13]; b) reducing interobserver variability [14]; and c) increasing

the speed of image analysis and reports [15,16]. Thus, medical analysis demands the evolution

of automated decision-making systems, with the aid of the use of computational intelligence

for fast, accurate and efficient diagnosis [17], prognosis and treatment of diseases, such as

brain tumors [18].

AI models, such as artificial neural networks (ANNs), have been popular in diagnostic and

predictive decision-making procedures when clinical situations are complicated, such as liver

cancer [19], malignant melanoma and breast cancer [20,21], and colon cancer [22]. Image pro-

cessing, pattern recognition, artificial intelligence, and medical pictures are all combined in

Computer-Aided Diagnosis (CADs) systems. Several computer-based solutions, such as Com-

puter Aided Diagnosis (CADx) or Computer-Aided Detection (CADe), have been suggested

to aid the radiologist in the process of interpreting computed tomography (CT) scans. CADe

systems may detect and label suspicious regions as lesions in an image, while CADx systems

not only highlight suspicious areas, but also point out the nature of the detected lesion as

malignant or benign [23,24]. Therefore, CAD systems might potentially decrease the workload

of radiologists, leading to fast and accurate diagnoses.

The terms computer-aided detection (CADe) and computer-aided diagnosis (CADx) are

frequently used to describe CAD in the literature. By calling radiologists’ attention to question-

able areas in an image, CADe schemes aim to eliminate observational oversight. On the other

hand, CADx strategies aim to classify a worrisome area and characterize it. CAD schemes and

ML-based prediction models for medical images, such as breast imaging, for example, have

limited therapeutic relevance despite significant research efforts and the availability of mar-

keted CAD solutions [25]. Radiomics, on the other hand, is a discipline that has emerged as a

result of the recent quick breakthroughs in bioinformatics and the introduction of high-per-

formance computers. Radiomics includes calculating numerical image-based features that can

be mined and applied to forecast clinical outcomes [26]. To measure and define the size,

shape, density, heterogeneity, and texture of the targeted tumors in medical imaging, radiomic

techniques are utilized to extract a large number of features from a series of medical images

[27]. Segmenting the tumor region and extracting features from there is one way to guarantee

that the derived features have some clinical value. As a result, manual or partially automated

tumor segmentation is used in several radiomics-based systems. New methods for creating

CAD schemes are also being investigated and described in the literature due to the increasing

enthusiasm for deep learning-based artificial intelligence (AI) technology [28]. Numerous

research have contrasted CAD schemes employing deep learning techniques and traditional

radiomics to examine their benefits and drawbacks [29,30].

Since deep learning models can directly extract characteristics from medical images, DL-

based CAD schemes are appealing [31]. However, despite the difficulty in achieving high sci-

entific rigor when creating AI-based deep learning models [32], using AI technology to create

CAD schemes has emerged as the research standard. Aside from cancer detection and diagno-

sis, new AI-based models are being broadened to incorporate extensive clinical applications

such short-term cancer risk and prognosis prediction and clinical outcome.

Currently, despite systematic reviews on the subject, there is still no overview in the litera-

ture that brings together the knowledge of published systematic reviews regarding the use of

artificial intelligence in cancer detection in a single publication.

Considering the current potentialities of the aforementioned AI-driven systems for the

oncologic field, the capability of these systems to detect malignant tumors based on different

imaging modalities should be investigated. Therefore, this overview article aims to answer the

following question: When compared to standard imaging diagnosis, how accurate are artificial

intelligence applications for cancer detection in adult patients?
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Materials and methods

Protocol registration

The protocol of this study was registered on the International Prospective Register of System-

atic Reviews—PROSPERO (www.crd.york.ac.uk/PROSPERO/) under number

CRD42022307403. This overview was conducted according to the Preferred Reporting Items

for Systematic Reviews and Meta-analyses, following the PRISMA checklist (http://www.

prisma-statement.org/) and was developed according to the JBI Manual for Evidence Synthesis

(https://synthesismanual.jbi.global) and the Cochrane Handbook for Systematic Reviews

(www.training.cochrane.org/handbook).

The definition of systematic reviews considered was that established by the Cochrane Col-

laboration. A study was considered a systematic review when reporting or including:

i. research question;

ii. sources that were searched, with a reproducible search strategy (naming of databases, nam-

ing of search platforms/engines, search date and complete search strategy);

iii. inclusion and exclusion criteria;

iv. selection (screening) methods;

v. critically appraises and reports the quality/risk of bias of the included studies;

vi. information about data analysis and synthesis that allows the reproducibility of the results;

[33,34]

Search strategy

On January 21th, 2022, a broad search of articles without language or time limits was per-

formed in the following databases: PubMed, Cochrane Central Register of Controlled Studies

(Cochrane), SciVerse Scopus (Scopus), Web of Science, Latin American and Caribbean Health

Sciences (LILACS), Excerpta Medical Database (Embase), Scientific Electronic Library Online

(Scielo), Business Source Complete (EBSCOhost) and grey literature through Proquest, Google

Scholar and JSTOR. The following Medical Subject Headings (MeSH) terms "Cancer Early

Diagnosis," "Artificial Intelligence," "remote technology," "neoplasm" and synonyms were used

to develop the search strategy and acquire the main strategy in PubMed. When words with dif-

ferent spelling appeared, synonyms that were in the MeSH terms were used. This strategy was

adapted for the other databases. The search strategy used is in S1 Table. Manual searches of

reference lists of relevant articles were also performed.

Immediately after literature search, the references were exported to reference manager

online Rayyan QCRI (https://rayyan.qcri.org/welcome) and duplicated references were

removed.

Inclusion and exclusion criteria

PIRDs (Participants, Index test, Reference Test, Diagnosis of Interest and Studies) acronym

was used to define inclusion and exclusion criteria. As inclusion criteria, diagnostic models

and/or detection tool of any type of cancer in adult patients (P) in systematic reviews using AI

(I) compared to the traditional model of diagnostic radiographic imaging (R) were evaluated.

For the diagnoses of interest (D), the following accuracy metrics for detecting and diagnosing

cancer were considered: sensitivity, specificity, Receiver Operating Characteristic (ROC)

curve, and Area Under the Curve (AUC).
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Exclusion criteria comprised: 1—Studies evaluating diagnosis of areas other than medicine

and dentistry (Physiotherapist, Nutritionist, Nursing, Caregivers etc.); 2 –Patients with a con-

firmed diagnosis of cancer; 3—Systematic Reviews on AI, ML, DL and CNN not evaluating the

diagnostic accuracy of the systems; 4—Systematic Reviews with AI use for other diseases diag-

nosis (Diabetes, Hypertension, etc); 5—Systematic reviews in which AI was not compared to a

reference test; 6—Systematic reviews evaluating other technologies for detection or cancer diag-

nosis (spectrometry, biomarkers, autofluorescence, Multispectral widefield optical imaging,

optical instruments, robotic equipment etc.); 7—literature reviews, integrative reviews, narrative

reviews, overviews; 8—Editorials∕Letters; 9—Conferences, Summaries, abstracts and posters; 10

—In vitro studies; 11—Studies of animal models; 12—Book chapters; 13—Pipelines, guidelines

and research protocols; 14—Review papers that, despite self-styled systematic reviews, do not

fulfill the criteria for the definition of Systematic Reviews; 15—Primary studies of any type.

Data extraction

The studies selection was performed in two phases. On phase 1, two independent reviewers

(HECS and GNMS) evaluated titles and abstracts of all records, according to the eligibility cri-

teria. On phase 2, both reviewers (HECS and GNMS) independently read the full texts accord-

ing to the inclusion and exclusion criteria. In case of disagreements, both reviewers discussed

and, if consensus was not reached, a third reviewer (AFL) was consulted to reach a final deci-

sion. At phase 2, the articles were excluded if they did not fulfill the key characteristics of sys-

tematic reviews according to the following criteria [33,34]:

1. Those carried out by a single reviewer

2. Those who do not propose a specific research question (e.g., using PICOS or another

appropriate acronym);

3. Those who do not determine pre-specified eligibility criteria;

4. Those who do not use a pre-specified search strategy;

5. Those who do not apply the search strategy to at least two databases

6. Those that do not provide a clear description of the study selection process (methods used

to include and exclude research at each level);

7. Those who do not use any method (qualitative/narrative or quantitative using instruments)

to assess the methodological quality of included studies.

Study selection

Data extraction was also performed by two independent reviewers (HECS and GNMS) and

crosschecked. Extracted data comprised: Author, year, country; Design of included studies; N

of included Studies/ N of select studies; Type of cancer; Index test; Reference test; True positives

/ N of images; True Negatives /N of images; Sensitivity and Specificity/ odds ratio Mean±SD, p-
value; Diagnostic accuracy; and main conclusions of each paper. When necessary, request for

additional information, via email, was made to the authors of the selected articles. Three authors

did not provide consolidated data in the form of quantitative analysis. Despite contact via email

and social networks, there were no responses from any of the three authors [35–37].

Assessing the methodological quality of included studies

The Critical Appraisal checklist for Systematic Reviews (Joanna Briggs Institute, 2014) was

used to assess the methodological quality of the studies independently by two reviewers
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(HECS and GNMS) [38]. It should be noted that critical appraisal/risk of bias tools classically

indicated for systematic reviews, such as AMSTAR 2 and ROBIS, were designed for systematic

reviews of intervention, while the articles included were systematic reviews of diagnostic accu-

racy. We opted for performing the methodological assessment, not the risk of bias in the

selected studies.

Studies were characterized according to the scoring decisions agreed by reviewers previ-

ously. Systematic Reviews were considered of “low” methodological quality when only 1 to 4

tool items received “yes” answers; “moderate” quality with 5 to 8 “yes” answers; and “high”

quality with 9 to 11 “yes” answers.

Considered outcomes

The indexes and reference tests were compared concerning to cancer detection and diagnosis

(sensitivity, specificity, ROC, AUC). Despite previously planned on the protocol, meta-analysis

of the data was unfeasible due to studies’ high methodological heterogeneity.

Results

Description of included studies

The electronic search of five databases and grey literature retrieved 382 records. Removal of 18

duplicated studies resulted in 364 records. Titles and abstracts from these studies were read

and those not fulfilling the eligibility criteria were excluded. In addition, 40 records retrieved

from grey literature were considered. At the end of phase 1, 32 papers remained for full text

reading (phase 2). Manual search of reference lists did not provide additional studies. Full text

reading resulted in 09 eligible studies for qualitative analysis. S2 Table presents excluded arti-

cles and reasons for exclusion. A flowchart of the complete process inclusion is shown in Fig 1.

Included studies were conducted in EUA [28], Netherlands [36], Italy [40], Sweden [35],

China [41,42], Indonesia [43], United Kingdom [44] and Denmark [37]. All included studies

were published in English. One SR included descriptive studies [39], three RS included diag-

nostic accuracy studies [40,43,44], four SR included prospective or retrospective studies

[35,36,41,42] and one SR included clinical trial studies [37]. The accuracy of AI for detecting

cancer in adult patients was evaluated by sensitivity, specificity, ROC, and AUC.

Table 1 summarizes study details regarding participants, index test, reference test, outcomes

(true positive, true negative, sensitivity, specificity and diagnostic accuracy) and conclusions.

Methodological quality within studies

None of the studies fulfilled all methodological quality criteria. However, five studies [39–

42,44] were considered of “high” methodological quality, three studies [35,37,43] were of

“moderate” methodological quality and only one study [36] was considered of “low” methodo-

logical quality.

In two studies [36,44], the review question was not considered clearly and explicitly stated.

The inclusion criteria was not appropriate for the review question in one study [36], the

sources and resources used to search for studies was not adequate in one study [39], the likeli-

hood of publication bias was not assessed in four studies [35–37,39], the recommendations for

policies and/or practices supported by the reported data were unclear for a study [37], and the

specific directives for new research were inconclusive for three studies [36,37,41]. In all of

studies the search strategy and the criteria for appraising studies were appropriate.

More information about the methodological quality assessment of included studies can be

find in Table 2 (summarized assessment).
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Results of individual studies

The systematic review conducted by the Department of Radiology at the University Medical

Center Groningen in the Netherlands, looked at computer-assisted detection (CAD) in breast

MRI and evaluated radiologists’ accuracy in distinguishing benign from malignant breast

lesions. Of the 587 papers assessed by the study authors, the 10 studies selected by eligibility

criteria included a total of 895 patients with a total of 1264 breast lesions. Sensitivity and speci-

ficity were used to compare the performance accuracy of radiologists with and without CAD.

Radiologists with experience attained a non-CAD sensitivity of 89% and a CAD sensitivity of

89%, respectively. On the other hand, the specificity was 86% without CAD and 82% specificity

with CAD, respectively. Residents’ sensitivity rose from 72% to 89% with CAD, while the dif-

ference was not statistically significant. In terms of specificity, the findings without CAD 79%

and with CAD 78% were identical. The CAD in breast MRI has little bearing on the sensitivity

and specificity of competent doctors. [39].

The reviewers from Universitas Gadjah Mada in Indonesia conducted a systematic review

to establish the diagnostic accuracy of various ML algorithms for calculating breast cancer

risk. There were 1,879 publications assessed in total, with 11 being included in systematic

review and meta-analysis. Super Vector Machine (SVM), Artificial Neural Networks (ANN),

Decision Tree (DT), Naive Bayes (NB), and K-Nearest Neighbor were identified as five types

of ML algorithms used to detect breast cancer risk (KNN). The AUC of the Summary Receiver

Operating Characteristic (SROC) for the SVM method was > 90%, demonstrating the greatest

performance among the algorithms studied in terms of calculating the risk of breast cancer,

and thus having the best precision value compared to other machine learning algorithms [43].

Fig 1. Flow diagram of the literature search and selection criteria.

https://doi.org/10.1371/journal.pone.0292063.g001
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Table 1. Summary of descriptive characteristics of included articles (n = 09).

Author,

year, country

and

design studies

Included

Studies

Type of

cancer

Index test Reference test True

positives /

N of images

True

Negatives

/N of

images

Sensitivity and

Specificity/ odds ratio, Mean

±SD, p’ value

Diagnostic accuracy (%),

Mean±SD, p’ value
Conclusions

Dorrius et al,

2011 [39],

Netherlands,

Descriptives

studies

10 Breast

Cancer

Computer-

aided-detection

(CADe)

Magnetic

Resonance

Imaging (MRI)

- - Sensitivity

Radiologist no CAD, general

82% (95% CI: 72%–90%)

Radiologist with CAD, general

89% (95% CI: 83%–93%)

Specificity

Radiologist no CAD, general

81% (95% CI: 74%–87%)

Radiologist with CAD, general

81% (95% CI: 76%–85%)

- MR images CAD has

little influence on the

sensitivity and specificity

of the performance of

radiologists experienced

in breast MRI diagnosis.

Breast MRI

interpretation by

radiologists remains

essential. Radiologists

with less experience

seem to benefit from a

CAD system when

performing breast MRI

evaluation.

Henriksen EL

et al, (2018)

[37],

Denmark

Clinical trials

13 Breast cancer CAD system.;

Single Reading

(SR)

SR vs SR

+ CAD;

Double Reading

(DR)

DR vs SR þ
CAD;

MM - - - - In conclusion, all but

two studies found that

SR CAD improves

mammography

screening RRs,

sensitivity, and CDR

when compared to SR

alone. No statistically

significant variations in

sensitivity or CDR were

seen when compared to

DR. More research is

needed to assess the

impact of CAD in a

population-based

screening program with

high-volume readers.

Longer follow-up studies

are required for a

thorough assessment of

cancer rates. And studies

based on digital

mammography are

required to assess the

efficacy of CAD in the

current standard of care

technology.

Nindrea et al,

2018 [43],

Indonesia,

Diagnostic

Accuracy

studies

11 Breast cancer Machine

Learning

Algorithms

Super Vector

Machine

(SVM);

Artificial Neural

Networks

(ANN);

Decision Tree

(DT);

Naive Bayes

(NB);

K-Nearest

Neighbor

(KNN)

Mammography

(MM)

SVM

40,37%/

3532;

ANN

1,30%/

63325

DT

33,19%/738

NB

35,32%/

1039

KNN

41%/1568

SVM

46,40%/

3532

ANN

97,88%/

63325

DT

61,38%/738

NB

54,66%/

1039

KNN

44,89%/

1568

Sensitivity

SVM:

0.67–0.99 (95% CI: ([0.41–0.87]-

[0.95–1.00]);

ANN:

0.84–0.97 (95% CI: ([0.60–0.97]-

[0.95–98]);

DT:

0.90–0.92 (95% CI: ([0.68–0.99]-

[0.88–.95]);

NB:

0.76–0.91 (95% CI: ([0.68–0.83]-

[0.87–.95]);

KNN:

0.56–0.95 (95% CI: ([0.48–0.64]-

[0.92–0.97]);

Specificity

SVM:

0.60–0.98 (95% CI: ([0.36–0.81]-

[0.96–1.00]);

ANN:

0.71–0.99 (95% CI: ([0.48–0.89]-

[0.99–0.99]);

DT:

0.79–0.97 (95% CI: ([0.54–0.94]-

[0.9–0.98]);

NB:

0.78–0.99 (95% CI: ([0.52–0.94]-

[0.9–1.00]);

KNN:

0.53–0.99 (95% CI: ([0.44–0.61]-

[0.93–0.97);

SVM: 99.51%;

ANN: 97.3%;

DT: 95.13%;

NB: 95.99%;

KNM: 95.27%;

Therefore, the early

diagnosis of breast

cancer will be more

effective, and the

mortality rate of breast

cancer will decrease.

Additionally, if the

present method is

designed in the form of a

web-based or

smartphone application,

women who want to

know their own risk of

breast cancer will be able

to access this

information easily in

daily life.

(Continued)
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Table 1. (Continued)

Author,

year, country

and

design studies

Included

Studies

Type of

cancer

Index test Reference test True

positives /

N of images

True

Negatives

/N of

images

Sensitivity and

Specificity/ odds ratio, Mean

±SD, p’ value

Diagnostic accuracy (%),

Mean±SD, p’ value
Conclusions

Azavedo et al,

2012 [35],

Sweden,

Prospective or

Retrospective

studies

4 Breast cancer Computer-

aided-detection

(CAD)

MM - - - - The scientific evidence is

insufficient to determine

whether CAD + single

reading by one breast

radiologist would yield

results that are at least

equivalent to those

obtained in standard

practice, i.e. double

reading where two breast

radiologists

independently read the

mammographic images.

Eadie et al,

2012 [44],

United

Kingdom,

Diagnostic

Accuracy

studies

48 Breast

cancer,

lung cancer,

liver cancer,

prostate

cancer, bone

cancer,

bowel

cancer,

skin cancer,

neck cancer.

CADe;

Diagnostic

CAD (CADx)

MM;

Breast

ultrasound

(BUS);

BUS

+ mammogram;

Lung

Conputered

Tomography

(LCT);

Dermatologic;

- - Sensitivity (SD)

CADe overall

Radiologist alone: 80.41±1.46

With CAD: 84.02±1.30

CADx overall

Radiologist alone: 2.79±6.12

With CAD: 90.66±4.07

Specificity (SD)

CADe overall

Radiologist alone: 90.10±1.97

With CAD: 87.08±2.75

CADx overall

Radiologist alone: 83.00±14.46)

With CAD: 88.04±15.03

Diagnostic odds ratio

(DOR) (SD)

CADe overallRadiologist

alone3.63±0.16With

CAD:3.58±0.20CADx

overallRadiologist

alone3.44±0.79With

CAD: 4.75±0.91

Certain types of CAD

did offer diagnostic

benefit compared with

radiologists diagnosing

alone: significantly better

ln DOR scores were seen

with CADx systems used

with mammography and

breast ultrasound.

Applications such as

lung CT and

dermatologic imaging do

not seem to benefit

overall from the addition

of CAD. These findings

therefore offer

suggestions about how

CAD can be best applied

in the diagnosis of

cancer using imaging.

Zhao et al,

2019 [42],

China,

Prospective or

Retrospective

studies

5 Thyroid

(nodules)

cancer

CADx system US positive

likelihood

ratio

CADx

system

4.1 (95% CI

2.5–6.9);

CADx by

Samsung

4.9 (95% CI

3.4–7.0);

radiologists

11.1 (95%

CI 5.6–

21.9);

negative

likelihood

ratio

CADx

sistem

0.17 (95%

CI 0.09–

0.32);

CADx by

Samsung

0.22 (95%

CI 0.12–

0.38);

radiologists

0.13 (95%

CI 0.08–

0.21);

Sensitivity

CADx system

0.87 (95% CI: 0.73–0.94; I2 =

93.53%);

CADx by Samsung

0.82 (95% CI: 0.69–0.91; I2 =

79.62%);

radiologists

0.88 (95% CI: 0.80–0.93; I2 =

81.66%);

Specificity

CADx system

0.79 (95% CI: 0.63–0.89; I2 =

89.67%);

CADx by Samsung

0.83 (95% CI: 0.76–0.89; I2 =

27.52%);

radiologists

0.92 (95% CI: 0.84–0.96; I2 =

84.25%);

DOR

CADx system25 (95% CI:

15–42; I2 = 15.5%,

p = 0.315);CADx by

Samsung23 (95% CI: 11–

46; I2 = 35.9%, p = 0

.197);radiologists86 (95%

CI: 47–158; I2 = 41.1%,

p = 0.147)

The sensitivity of the

CAD system in thyroid

nodules was similar to

that of experienced

radiologists. However,

the CAD system had

lower specificity and

DOR than the

experienced radiologist.

The CAD system may

play the potential role as

a decision-making

assistant alongside

radiologists in the

thyroid nodules’

diagnosis.

Cuocolo et al,

2020 [40], Italy,

Diagnostic

Accuracy

studies

12 PCa Machine

learning (ML)

ANN;

SVM;

LDA;

NB;

Linear

regression

(LIR);

Random forest

(RF);

Logistic

regression

(LOR);

Convolutional

neural network

(CNN);

Deep transfer

learning (DTL);

MRI - -

ML in PCa identification–overall

(95%CI: 0.81–0.91; I2 = 92%, p
<0.0001);

Biopsy group

(95%CI: 0.79–0.91; I2 = 87%, p
<0.0001);

Radical prostatectomy group

(95%CI: 0.76–0.99; I2 = 93%, p
<0.0001);

Deep learning

(95%CI: 0.69–0.86; I2 = 86%,

p = 0.0001);

Non-deep learning

(95%CI: 0.85–0.94; I2 = 89%, p
<0.0001);

AUC overall

AUC = 0.86Biopsy

groupAUC = 0.85;

Rradical prostatectomy

groupAUC = 0.88;Deep

learningAUC = 0.78;

Non-deep

learningAUC = 0.90;

The findings show

promising results for

quantitative ML-based

identification of csPCa.

The results suggest that

the overall accuracy of

ML approached might

be comparable with that

reported for traditional

Prostate Imaging

Reporting and Data

System scoring.

Nevertheless, these

techniques have the

potential to improve

csPCa detection

accuracy and

reproducibility in

clinical practice.

(Continued)
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The systematic review carried out by researchers from the University College London,

United Kingdom, searched the literature for evidence of the effectiveness of a CAD systems in

cancer imaging to assess their influence in the detection and diagnosis of cancer lesions by

radiologists. A total of 9,199 articles were reviewed, of which 16 papers with radiologists using

CAD to detect lesions (CADe) and 32 papers with radiologists using CAD to classify or diag-

nose lesions (CADx) were included for analysis. CADx was observed to significantly improve

diagnosis in mammography, with a diagnostic odds ratio (DOR) value of 4.99 (0.53), with an

average increase of 8 and 7% between without and with CADx for sensitivity and specificity,

respectively; and for the breast ultrasound DOR was 4.45 (1.40), with a mean increase of 4 and

8% for sensitivity and specificity, respectively. In cases where CADx were applied to

Table 1. (Continued)

Author,

year, country

and

design studies

Included

Studies

Type of

cancer

Index test Reference test True

positives /

N of images

True

Negatives

/N of

images

Sensitivity and

Specificity/ odds ratio, Mean

±SD, p’ value

Diagnostic accuracy (%),

Mean±SD, p’ value
Conclusions

Tabatabaei et al,

2021 [36], USA

Retrospectives

studies

18 Glioma DT;

KNN;

SVM;

RF;

LOR;

LDA;

LIR;

Least Absolute

Shrinkage and

Selection

Operator (LAS/

SO);

Elastic Net

(EN);

Gradient

Descent

Algorithm

(GDA);

Deep Neural

Network

(DNN)

MRI - - - - The results appear

promising for grade

prediction from MR

images using the

radiomics techniques.

However, there is no

agreement about the

radiomics pipeline, the

number of extracted

features, MR sequences,

and machine learning

technique. Before the

clinical implementation

of glioma grading by

radiomics, more

standardized research is

needed.

Xing et al, 2021

[41], China,

Retrospective

studies

15 prostate

cancer

(PCa);

Peripheral

zone (PZ);

Transitional

zone (TZ);

Central

gland (CG);

CAD system.;

ANN;

SVM;

Linear

Discriminant

Analysis (LDA);

Radiomic

Machine

Learning

(RML);

Non—specific

classifier

(NSC);

MRI SVM

42,76%/

608;

ANN

34,55%/

301;

RML

34,78%/

738;

NSC

19,41%/

1586;

PZ

51,95%/

256;

TZ

59,67%/

186;

CG

32,39%/71;

SVM

41,94%/

608;

ANN

37,54%/

301;

RML

32,60%/

738;

NPC

65,15%/

1586;

PZ

32,81%/

256;

TZ

26,34%/

186;

CG

46,47%/71;

Sensitivity: 0.47 to 1.00

0.87(95% CI: 0.76–0.94; I2 =

90.3%, p = 0.00)

ANN: 0.66 to 0.77

SVM: 0.87 to 0.92

LDA: NR

RML: 0.96

Prostate zones

PZ: 0.66 to 1.00

TZ: 0.89 to 1.00

CG: 0.66

Specificity: 0.47 to 0.89

0.76(95% CI: 0.62–0.85; I2 =
95.8%, p = 0.00)

ANN: 0.64 to 0.92

SVM: 0.47 to 0.95

LDA: NR

RML: 0.51

Prostate zones

PZ: 0.48 to 0.89;

TZ:0.38 to 0.85;

CG:0.92

AUC

0.89 (95% CI:

0.86–0.91)

The study indicated that

the use of CAD systems

to interpret the results of

MRI had high sensitivity

and specificity in

diagnosing PCa. We

believe that SVM should

be recommended as the

best classifier for the

CAD system.

Subtitles: CADe = Computer-aided-detection; MRI = Magnetic Resonance Imaging; SVM = Super Vector Machine; ANN = Artificial Neural Networks; DT = Decision

Tree; NB = Naive Bayes; KNN = K-Nearest Neighbor; MM = Mammography; CADx = Diagnostic CAD; BUS = Breast ultrasound; DOR = Diagnostic odds ratio;

LCT = Lung Conputered Tomography; CDR = CAD on cancer detection rate (CDR); DR = double reading; RR = Recall Rate; Pca = Prostate cancer; PZ = Peripheral

zone; TZ = Transitional zone; CG = Central gland; LDA = Linear Discriminant Analysis; RML = Radiomic Machine Learning; NSC = Non—specific classifier;

ML = Machine learningA; LIR = Linear regression; RF = Random forest; LOR = Logistic regression; CNN = Convolutional neural network; DTL = Deep transfer

learning; LAS/SO = Least Absolute Shrinkage and Selection Operator; EN = Elastic Net; GDA = Gradient Descent Algorithm; DNN = Deep Neural Network;

SR = Single Reading; DR = Double Reading.

https://doi.org/10.1371/journal.pone.0292063.t001
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pulmonary CT, DOR was 2.79 (1.45) and to dermatological images DOR was 3.41 (1.00). It

was found diagnostic contradictions with a mean decrease in specificity on pulmonary CT of

7% and on dermatological images of 17%. There was no evidence of benefit from using CADe.

The review showed that CADx may offer some benefit to radiologists in specific imaging appli-

cations for breast cancer diagnosis although there is no evidence that it can be used in a gener-

alized way, suggesting its application in some types of cancer diagnosis [44].

Based on a study of the current literature, reviewers from Sichuan University in Sichuan,

China, conducted a meta-analysis to determine the accuracy of CAD for thyroid nodule diag-

nosis. A total of 1,206 publications were screened, with 5 of them being chosen for systematic

review and meta-analysis in a set of 536 patients and 723 thyroid nodules. The CAD system’s

sensitivity in diagnosing thyroid nodules was 0.87, which was comparable to expert radiolo-

gists’ 0.88. However, the CAD system had lower specificity of 0.79 and DOR of 25 when com-

pared to specificity of 0.92 and DOR of 86 of experienced radiologists. The CAD system has

potential as an auxiliary tool in decision making, being a possible ally of radiologists in the

diagnosis of thyroid nodules [42].

The accuracy and recall rates (RR) of single reading (SR) vs SR + CAD and double reading

(DR) vs SR + CAD were examined in a systematic study undertaken by authors from Metro-

politan University College in Copenhagen, Denmark. They looked at 1,522 papers of which

1,491 were excluded by abstract. Of the remaining 31 articles, 18 were excluded after full text

reading, and therefore 13 matched the review’s inclusion criteria. Except for two publications

in the SR vs. SR + CAD comparison, adding CAD increased sensitivity and/or cancer detection

rate (CDR). There were no significant variations in sensitivity or CDR between the DR group

and the SR + CAD group. In all but one research, adding CAD to SR raised RR and lowered

specificity. Only one study found a significant difference between the DR and SR+CAD

groups. To assess the efficacy of CAD, more research is needed based on coordinated popula-

tion-based screening programs with extended follow-up times, high-volume readers, and digi-

tal mammography [37].

Table 2. Evaluation of methodological quality of included systematic reviews (n = 9).

Study Methodological quality items assessed Overall qualitya

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Dorrius (2011) [39] N Y Y N Y Y Y Y Y Y Y High

Nindrea (2018) [43] N Y Y Y Y Y Y U N Y N Moderate

Eadie (2012) [44] N Y Y Y Y N Y Y Y Y Y High

Zhao (2019) [42] N Y Y Y Y N Y Y Y Y Y High

Henriksen (2019) [37] Y Y Y Y Y N Y Y N U U Moderate

Azavedo (2012) [35] N Y Y Y Y Y U N N Y Y Moderate

Cuocolo (2020) [40] N Y Y Y Y Y Y Y Y Y Y High

Xing (2021) [41] N Y Y Y Y Y Y Y Y Y U High

Tabatabaei (2021) [36] N U Y Y Y U U U N Y U Low

Note: JBI Critical Appraisal Tool for Systematic Reviews—Q1. Is the review question clearly and explicitly stated? Q2. Were the inclusion criteria appropriate for the

review question? Q3. Was the search strategy appropriate? Q4. Were the sources and resources used to search for studies adequate? Q5. Were the criteria for appraising

studies appropriate? Q6. Was critical appraisal conducted by two or more reviewers independently? Q7. Were there methods to minimize errors in data extraction? Q8.

Were the methods used to combine studies appropriate? Q9. Was the likelihood of publication bias assessed? Q10. Were recommendations for policy and/or practice

supported by the reported data? Q11. Were the specific directives for new research appropriate?
aLow quality: 1 to 5 “yes” answers; Moderate quality: 6 to 10 “yes” answers; High quality: 11 to 13 “yes” answers

Abbreviations: N, no; U, unclear; Y, yes.

https://doi.org/10.1371/journal.pone.0292063.t002
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Researchers from Lund University, Skne University Hospital Malmö, Sweden, conducted a

systematic review to verify whether readings of mammographic images by a single breast radi-

ologist plus CAD were at least as accurate as readings by two breast radiologists. The authors

looked over 1,049 papers of which 996 were excluded. 53 full-text articles were assessed for eli-

gibility and only four met the inclusion criteria, with a population of 271,917 women being

investigated. The findings suggested that there was inadequate scientific evidence to establish

whether a single mammography reading by a breast radiologist plus CAD is as accurate as the

present method of double reading by two breast radiologists. Similarly, the scientific evidence

in the literature was insufficient to investigate cost-effectiveness, and the study’s quality was

deemed low [35].

Authors from the Italian University of Naples "Federico II" conducted a systematic evalua-

tion to assess the diagnostic accuracy of ML systems for diagnosing prostate cancer (csPCa)

using magnetic resonance imaging. After the final editing, a total of 3,224 articles were evalu-

ated, of which 3,164 were excluded. Thus, 60 full-text articles were blindly evaluated by each

investigator for eligibility, with 12 articles included, with a total of 1979 imaging screenings

evaluated. As in the general analysis, statistical heterogeneity was considerable in all sub-

groups. In the identification of csPCa, the overall AUC for ML was 0.86. The AUC for the

biopsy subgroup was 0.85. The AUC for the radical prostatectomy subgroup was 0.88 and

Deep learning had an AUC of 0.78. The systematic review presents promising results for the

quantitative identification of csPCa based on ML, with the potential to generate improvements

in the detection of csPCa in terms of accuracy and reproducibility in clinical practice [40].

The diagnosis accuracy of CAD systems based on magnetic resonance imaging for PCa was

investigated in a systematic review conducted by Gansu University of Traditional Chinese

Medicine in China. A total of 3107 articles were examined. Of these, 3070 were excluded and

of the remaining 37 articles, 15 were included for analysis with a total of 1945 patients. The

overall sensitivity of the CAD system varied from 0.47 to 1.00, with specificity ranging from

0.47 to 0.89, according to the meta-analysis. The CAD system’s sensitivity was 0.87, specificity

was 0.76 and AUC was 0.89. Among the CAD systems, the SVM exhibited the best AUC, with

sensitivity ranging from 0.87 to 0.92 and specificity ranging from 0.47 to 0.95. In terms of pros-

tate zones, the CAD system exhibited the highest AUC in the transitional zone, with sensitivity

ranging from 0 to 1. The review points out the advantage of using CAD systems for prostate

cancer detection due to its high sensitivity and specificity, and the best performance of SVM

algorithm for the aforementioned detection purpose [41].

The authors of a systematic review undertaken by the University of Alabama at Birming-

ham (UAB), Birmingham, AL, USA, analyzed the most current studies in the classification of

gliomas by radiomics based on machine learning, evaluating the clinical utility and technical

flaws. At the end of the screening phase, a total of 2858 patients were analyzed, from 18 articles

that were chosen from 1177 publications, with 1159 papers excluded in the selection process

according to the eligibility criteria adopted. The results were promising for predicting the qual-

ity of MRI images using radiomics approaches. However, there was no consensus on the radio-

mics pipeline, considering that the selected articles have employed a wide range of software,

large amount of extracted features, different sequences and machine learning techniques. As a

result, the authors urge that more standardized research should be done before radiomic gli-

oma categorization is used in clinical practice [36].

Certainty of the evidence in the systematic review’s included

Only two articles [35,41] used the Grading of Recommendations Assessment, Development,

and Evaluation (GRADE) method to assess the evidence, which examines five factors: risk of
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bias, indirectness, inconsistency, imprecision, and publication. Due to the risk of bias and

inconsistency, one paper [41] discovered low quality evidence for the following outcomes: true

positives (patients with prostate cancer), true negatives (patients without prostate cancer), false

negatives (patients incorrectly classified as not having prostate cancer), and false positives

(patients incorrectly classified as having prostate cancer).

The second systematic review [35] evaluated only one study regarding the certainty of evi-

dence for the following outcomes: Cancer detection rate and Recall rate, and the quality of the

evidence found was very low due to the risk of bias and Indirectness.

Overlapping

Within the RS reviews, included in this overview, a total of 136 primary studies were found.

Approximately 3.67% of these main studies were included in multiple SRs. Only five studies

were mentioned more than once. S3 Table provides more details on the overlap and features

of the primary studies.

Discussion

To the best of the authors’ knowledge, this is the first overview article that critically appraise

the scientific evidence of AI use for detecting and diagnosing malignant tumors on different

imaging modalities. As this is a current and relatively novel topic, nine recent published SRs

were retrieved in the literature search. These SRs found high accuracy metric results for the

aforementioned diagnostic purpose, demonstrating the potential of AI tools for the oncologic

field. The selected studies demonstrated the use of computer-assisted detection (CAD)

[35,37,39,41,42,44], machine learning algorithms [40,41,43]and radiomic analysis [36] for

detection and diagnosis of malignant tumors based on radiological images.

AI-driven methods for detecting and diagnosing cancer were analyzed by accuracy metrics,

such as sensitivity, specificity, AUC, and ROC. The SVM algorithm showed better perfor-

mance in the detection and diagnosis of prostate cancer and breast cancer when compared to

other machine learning algorithms [41,43]. In four studies, CAD systems demonstrated some

benefit in helping to detect cancer [39,41,42,44]. Nevertheless, the use of this tool did not pres-

ent evidence that it can be used in a generalized way, with better indication for some types of

cancer, such as breast cancer [44]. In addition, two studies found promising evidence on the

use of ML and radiomic analysis in prostate cancer detection and glioma classification, with

potential applicability in clinical practice [36,40].

Two questions that were often addressed in the selected articles were which professional

can benefit most from the use of AI systems and how these tools should be used. The CAD sys-

tems demonstrated high values of sensitivity and sensitivity for diagnosing prostate cancer and

this performance may be related to the location of the tumor in the prostate, for example, cen-

tral gland, peripheral zone and transition zone. It was observed that the sensitivity and specific-

ity in the transition zone was higher than in the peripheral zone and in the central gland [41].

Some papers corroborate the findings that radiologists benefit most from the use of CAD sys-

tems in the detection of prostate cancer lesions [45–48].

However, in other study, less experienced radiologists benefited more from the use of artifi-

cial intelligence than experienced professionals [39]. Residents or radiologists with little or no

experience had greater sensitivity when accompanied by a CAD system for discriminating

between breast lesions on MRI. On the other hand, the performance of experienced radiolo-

gists showed a non-significant decrease in specificity from 86% (95% CI: 79–91%) without

CAD to 82% (95% CI: 76–87%) with CAD. This observation is due to the fact that CAD sys-

tems are based only on the dynamics of enhancement, without considering the morphology of
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the lesion, which suggests that experienced radiologists may be misled by the enhancement

pattern of CAD, resulting in decreased specificity [39]. The literature agrees with the findings

that less experienced radiology professionals and residents benefit most from the use of CAD

systems in the detection of lesions. [49–52]. Another study demonstrated that when evaluating

thyroid nodules for malignancy using ultrasound imaging, a CAD system had similar sensitiv-

ity and negative likelihood ratios compared to experienced radiologists [42].

Two studies [35,37] found no significant evidence regarding sensitivity, specificity, and

diagnostic accuracy, between single-reading or double-reading mammography compared with

single-reading plus CAD or double-reading plus CAD. The use of CADe to detect lesions on

images added less value to radiologists than CADx, used to diagnose lesions, with a small

increase in weighted mean sensitivity but a decrease in mean specificity However, CADx did

not improve diagnosis in combined mammography and breast ultrasound systems. Thus,

CADx can be help radiologists that are looking for breast cancer in mammograms or ultra-

sounds, but it cannot be assumed that its use may be generalized, with applications in other

types of cancer [44].

The literature is still controversial regarding the issue of single reading with the presence of

CAD and double reading. A previous study found equivalent performance of CAD systems

when a single reading was compared to double reading in the detection of cancer lesions [53].

However, for detecting pulmonary nodules, the performance of a CAD system was comparable

to a second opinion reading [54]. However, there are works that demonstrate that the single

reading of a reader with the help of the CAD as a second reader produces a significantly higher

sensitivity than the single reading and the simulated conventional double reading, being a

valuable tool for the detection of pulmonary nodules and can be used as a second opinion

reading [54]. As there are also works that attest that the independent double reading produces

a better detection performance, the presence and probability of CAD mass markers can

improve the interpretation of mammography [55,56].

On the other hand, a recent study stated that the quality and amount of the evidence on the

use of AI systems in breast cancer screening is still far from what is needed for its incorpo-

ration into clinical practice. In screening programs, AI systems are not sufficiently specialized

to take the position of radiologist double reading. Larger research do not confirm promising

outcomes from smaller ones [57].

Support vector machines (SVM) exhibited the best AUC among the CAD system classifiers

for the detection of prostate cancer (CaP) in magnetic resonance imaging, with a range of 0.47

to 1.00 and specificity of 0.47 to 0.89, with an AUC of 0.89 (0.86–0.91). The AUC curve dem-

onstrated stronger sensitivity and specificity in the transition zone than in the peripheral zone

and the core gland of the organ, according to the location of the tumor in the prostate. As a

result, the sensitivity of different regions of the human body to screening methods may be

explained. Other screening methods, with the exception of CAD-assisted MRI, may not detect

it due to limited sensitivity [41].

In another study, SVM was compared to four additional classification algorithms: artificial

neural network (ANN), decision tree (DT), naive bayes (NB), and K-Nearest Neighbor

(KNN). In the breast cancer risk calculation, SVM was shown to generate the best area under

the curve (AUC), with AUC > 90%. The SVM has a 97.13% accuracy rate, demonstrating its

effectiveness in predicting and detecting breast cancer and having the greatest accuracy and

low error rate. In this approach, the SVM algorithm can predict breast cancer risk and outper-

forms other algorithms in terms of accuracy. Different machine learning algorithms, on the

other hand, can aid in the diagnosis of breast cancer. They serve to decrease the risk of errors

caused by weariness or inexperienced professionals, and they allow medical data to be analyzed

in less time and with more precision [43].
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With a combined AUC of 0.86, machine learning paired with radiomics demonstrated

excellent results in the characterization of prostate cancer (csPCa). Deep learning analyses, on

the other hand, were less accurate than artisanal radiomics and non-deep ML techniques, with

AUCs of 0.78 and 0.90, respectively. While deep learning excels with big datasets with hun-

dreds or even millions of examples, this is rarely the case in medical image analytics. In this

case, the datasets are often made up of hundreds of patients at most, and the artisan technique

outperforms deep learning in this scenario. As deep learning is also computationally more

expensive and less understandable, it should be used with caution in medical image analysis

and only when it significantly outperforms alternative approaches [40].

The radiomic study of gliomas using radiomic feature extraction in conjunction with vari-

ous forms of machine learning has yielded encouraging findings with high sensitivity, specific-

ity, accuracy, and AUC. Radiomics systems that used an external dataset had AUCs of 94%

and 72%, respectively, indicating a more realistic performance [35]. The ability to translate DL

models into real-world applications, in order to improve acceptance and the performance of

DL clinically applied by physicians through the generalization of its applications, the interpret-

ability of its algorithms, access to data, and medical ethics, is one of the challenges for the

future of AI use in the medical field, particularly oncology, regarding the diagnosis and detec-

tion of cancer. The process of application generalization involves building a multimodal

model using information other than the evaluated image itself, such as sample size, age, sex,

ethnicity, incomplete data collection and a lack of a standard clinical protocol, clinical mani-

festations, laboratory tests, image data, and epidemiological histories. Due to the complexity of

neural networks and the use of these unrepresentative datasets, overfit models that do not gen-

eralize to other populations and biased algorithms are produced [58].

The capacity of algorithms to do activities that call for intelligence is referred to as artificial

intelligence. Machine learning is a subset of AI, and it refers to algorithms that learn from data

in order to perform better. There are two ways that data given into an ML program may be

represented: as features or as raw data. Lesion length is an example of a feature, which is a vari-

able in data that may be measured. Digital mammography (DM), ultrasound (US), and mag-

netic resonance imaging (MRI) scans are examples of raw data in cancer imaging [59].

Learning features poses a challenge for these algorithms even though they often outperform

handcrafted features in terms of performance. The subset of ML methods known as DL can be

used to overcome this issue. The ability to recognize complicated patterns is the strength of

machine learning and deep learning based approaches. Through feature engineering or feature

learning, more detailed picture attributes, such as texture, form, border, location, etc., may be

acquired. Higher accuracy can be achieved by segmentation based on detailed picture proper-

ties. By categorizing picture blocks of a particular size using a sliding window, typical machine

learning based algorithms (such as RBFNN, SVM, etc.) get the whole segmentation image.

This leads to unnecessary computation, misclassification, and jagged segmentation borders.

On the other hand, deep learning-based approaches (such 3D U-Net CNN) outperform con-

ventional machine learning-based methods in terms of performance and segmentation. Deep

learning-based methods have greater discriminating abilities in pixel categorization because

they can learn more useful picture attributes. However, many machine learning-based

approaches require a large amount of labelled training data [59–61].

Features are represented in terms of other, more basic features in DL. Since DL algorithms

are made up of many (deep) layers of linked neurons, they are sometimes referred to as deep

neural networks (DNNs). CNNs are a specific kind of DNN. CNNs are frequently employed in

cancer image analysis since they were created particularly to detect important characteristics

in pictures [62,63]. Different criteria are employed for various activities in order to compare

the performance of DL networks with human standards. The metrics used in categorization
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are founded on receiver operating characteristic analysis. AUC, accuracy, sensitivity, and spec-

ificity all have a significant impact in this situation. Thus, accuracy represents the proportion

of correctly classified samples, sensitivity represents the likelihood that the model or radiolo-

gist will output a positive (and thus malignant) result if the sample is malignant, specificity rep-

resents the probability that the model or radiologist will output a negative (and thus benign)

result if the sample is benign, and AUC represents the average sensitivity for all possible speci-

ficity values [60,61].

Oncologists find it challenging to comprehend how DL models assess data and make judg-

ments since the sheer number of parameters involved make it challenging for professionals to

interpret algorithms. Data access and quality are frequently negatively impacted by a deficient

data sharing network, as well as competition between different institutions. Building an open

data-sharing platform with the participation of numerous institutes is the first step in over-

coming these challenges. Governments and businesses must create a formal structure in the

future to enable secure data sharing. Examples include privacy-preserving distributed DL

(DDL), which offers a way to protect privacy and enables several participants to train jointly

using a deep model without explicitly sharing local datasets. Additionally, the Cancer Imaging

Archive, which compiles clinical images from many hospitals and institutes, is another excel-

lent illustration of data sharing and can support radiomic studies [58,64,65].

Due to the need to preserve patient information, which can lead to overfitting, it is challeng-

ing to get the data in sufficient quantities to have credibility in training and validation in DL.

Companies handling this data must adhere to current data protection and privacy laws in both

their home countries and the countries of residence of the data subjects. Before exploiting deli-

cate data, such as genetic data, informed agreement from patients must be sought. Patients

must be informed about the potential uses of their data, and it must be made sure that every-

one would benefit from them. Furthermore, thorough monitoring and validation procedures

must be implemented in order to evaluate AI performance across various applications [58,64].

Before DL techniques are used in therapeutic settings, there are significant ethical issues

that need to be resolved. The level of supervision needed for doctors must first be decided. Sec-

ond, the party accountable for DL tools’ inaccurate judgments must be identified. Before AI is

implemented in real-world settings, it is also necessary to outline legal obligations in the event

of a malfunction. In addition, the majority of high-end AI software works in a "black box" test-

ing environment, meaning that users are unaware of the software’s fundamental workings.

The tester just knows the input/output; the reasoning behind coming to a particular conclu-

sion is still a mystery. Clinicians frequently confront moral conundrums when making predic-

tions without a thorough grasp of the processes underlying them, hence it is imperative to

offer greater transparency in AI models by creating techniques that let users examine the

details of the input data that affected the result. closer to the truth [58–65].

The main databases used in training ML and DL technologies vary according to the type of

cancer. The most used ones are: Breast Cancer dataset (WBCD); Wisconsin Diagnostic Breast

Cancer (WDBC); Wisconsin Prognostic Breast Cancer (WPBC) [66]; Digital Database for

Screening Mammography (DDSM) [67]; The Mammographic Image Analysis Society (MIAS)

[68]; Breast Cancer Digital Repository (BCDR) [69]; The Cancer Imaging Archive (TCIA)

Public Access [70] and Lung Image Database Consortium–the LIDC [71]. Breast cancer data-

bases and other databases have been reported up to date for studying cancer, but the informa-

tion contained in these databases frequently presents some unfavorable issues: a) some are

lacking in terms of available features (image-based descriptors, clinical data, etc.); b) others

have a limited number of annotated patient cases; c) and/or the database is private and cannot

be used as a reference, which makes it difficult to explore and compare performance [69]; the
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lack of larger datasets with manual malignancy annotations and diagnostic cancer labels con-

stitutes the main limitation [72].

Other limitations of the databases that can be listed are: the availability of patient-based

pathologic diagnoses for only a subset of cases, the inability to perform reader studies because

the files do not maintain radiologists identities or a consistent ordering of radiologists marks,

the interpretation of CT scans using only transaxial images, the somewhat artificial nature of

the lesion categories relative to clinical practice, the interpretation of every case is not per-

formed by the same radiologists, and the design of the manual QA process that focus mostly

on the visual identification of objective lesion annotation errors and did not analyzes inconsis-

tencies in the subjectives lesions characteristic ratings, although the benefit of this quality

assurance process to the integrity of the Database should not be understated [73].

The critical analysis of meta-analyses that presented complete data

Of the studies selected in this overview, only three studies presented meta-analyses regarding

the sensitivity, specificity and diagnostic accuracy of the use of medical radiological images in

the detection of cancer lesions, based on artificial intelligence tools [39,42,44].

Critical analysis of the meta-analysis for diagnosing thyroid nodules based on ultrasound

imaging through CAD [42] showed that the CAD system had similar sensitivity and negative

likelihood ratio compared to experienced radiologists. However, specificity, positive likelihood

ratio and DOR were relatively low. These results indicated that there was a clear gap between

the CAD system and the radiologist experienced in making the diagnosis of thyroid nodules.

Furthermore, successful nodule segmentations were important and influenced the nodule rec-

ognition accuracy. Nodule malsegmentation occurred more frequently with benign nodules

(n = 11, 18.6%) than with malignant nodules (n = 2, 4.7%) and the difference was statistically

significant (P = 0.04). Among nodules with poor segmentation, 54.6% of benign nodules (6/

11) were also diagnosed as malignant, while all malignant nodules were diagnosed as malig-

nant. As a result, it is clear that a CAD system’s subpar segmentation can raise the false positive

rate while having no impact on the false negative rate. The CAD system’s sensitivity to thyroid

nodules was comparable to that of skilled radiologists. However, compared to an expert radiol-

ogist, the CAD system showed worse specificity and DOR. [42].

Meta-analysis for the evaluation of breast lesions with MRI showed that the combined sen-

sitivity and specificity of the experienced radiologist remain comparable with the implementa-

tion of CAD. Less experienced residents or radiologists seemed to achieve greater sensitivity

with CAD implantation, although not statistically significant. Residents or radiologists with lit-

tle or no experience obtained greater sensitivity when accompanied by a CAD system for dis-

crimination of breast lesions on MRI. The change in sensitivity after using the CAD was not

statistically significant. However, a considerable increase could be observed (72% sensitivity;

95% CI: 62–81% to 89%; 95% CI: 80–94%). This rise could be attributable to the fact that CAD

alerts radiologist trainees or less skilled radiologists to more enhanced lesions, which may be

helpful when assessing breast lesions with MRI [39].

The performance of experienced radiologists showed a non-significant decrease in specific-

ity from 86% (95% CI: 79–91%) without CAD to 82% (95% CI: 76–87%) with CAD. A clarifi-

cation for this observation may be that CAD systems are based only on the dynamics of

enhancement, without taking into account the morphology of the lesion. As a consequence,

the use of CAD could lead to a greater number of enhanced lesions, part of which could be

classified as benign based on morphology [39].

In another study using mammograms and breast ultrasound imaging in the evaluation of

CAD systems, certain types of CAD offered diagnostic benefits compared to radiologists
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diagnosing alone: significantly better ln DOR scores were seen with CADx systems used with

mammography and breast ultrasound. This fact can be observed, since the use of CADx tends

to increase sensitivity and specificity in mammography (mean increase of 8 and 7% between

without and with CADx for sensitivity and specificity, respectively) and breast ultrasound

(mean increase of 4 and 8% for sensitivity and specificity, respectively), but adversely affects

specificity in lung CT (mean reduction 7%), combined breast ultrasound and mammography

systems (mean reduction 12%) and dermatologic imaging (mean reduction 17%). According

to evidence, using CADe systems results in a tiny net overall drop in ln DOR as well as a simi-

lar-sized gain in sensitivity and loss in specificity [44].

It is also noticed that the use of CADx improved the diagnosis. However, the overlapping of

the 95% confidence interval (CI) curves suggests that the difference is not significant. The

AUC is 0.88 (SD: 0.03) for radiologists alone and 0.92 (SD: 0.03) for the same radiologists

using CADx and 0.85 (SD: 0.19) for radiologists alone in studies of detection and 0.84 (SD:

0.19) for those radiologists using CADe [44].

The examined meta-analyses did, however, have several drawbacks. First, all displayed sig-

nificant variation among trials in terms of sensitivity and specificity. This variability is proba-

bly due to both the fundamental variations in the patients who were included in the studies’

methodologies. Second, the included studies’ sample sizes were somewhat modest [39,42,44].

When conducting the meta-analyses, the authors took into account the possibility of selection

[39,42,44], measurement [42], and publication [42,44] bias.

The role of explainable artificial intelligence in DL and ML models

Recent advances in ML have sparked a new wave of applications for AI that provide significant

advantages to a variety of fields. Many of these algorithms, however, are unable to articulate to

human users why they made certain decisions and took certain actions. Explanations are nec-

essary for users to comprehend, have faith in, and manage these new artificially intelligent

partners in the crucial knowledge domains of defense, medical, finance, and law for exemplo

[74–76].

New ML methods including SVMs, random forests, probabilistic graphical models, rein-

forcement learning (RL), and DL neural networks are significantly responsible for the current

strong performance of AI. These models exhibit good performance, but they are difficult to

understand. In many cases, the most performing methods (such as decision trees) are the least

explainable, and the most explainable methods (such as DL) are the least accurate. Explana-

tions might be complete or incomplete. Full explanations are provided by fully interpretable

models in a transparent manner. Partially interpretable models shed light on key aspects of

their thought process. Contrary to black box or unconstrained models, interpretable models

adhere to "interpretability restrictions" that are established according to the domain [77].

Although there may be many different types of users, frequently at various times in the

development and use of the system, the Explainable Artificial Intelligence (XAI) assumes that

an explanation is provided to an end user who depends on the decisions, recommendations,

or actions produced by an AI system. For instance, an intelligence analyst, a judge, an opera-

tor, developers or test operators, or policy makers. Each user group could have a particular

explanation style that they find to be the most successful in conveying information [77,78].

The effectiveness of an explanation has been evaluated and measured in a number of ways,

but there is presently no accepted method of determining if a XAI system is more user-intelli-

gible than a non-XAI system. Task performance may be a more objective indicator of an expla-

nation’s efficacy than other of these indicators, such as user satisfaction. It remains an
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outstanding research question how to accurately and consistently measure the impact of expla-

nations [79,80].

Before explainability can be achieved in DL models, there are still several open problems

and obstacles at the intersection of ML and explanation. First, there is a lack of consensus over

the terminology and many definitions used in relation to XAI. Since XAI is still a relatively

new field, there isn’t yet a set of accepted terms in use [81].

Second, there is a trade-off between accuracy and interpretability [82], i.e., between the

thoroughness of this description and the simplicity of the information provided by the system

regarding its internal functioning. This is one of the reasons why developing objective mea-

surements for what makes a good explanation is difficult with XAI.

Utilizing findings from experiments in human psychology, sociology, or cognitive sciences

to develop objectively compelling explanations is one way to lessen this subjectivity. This would

allow programmers to design software for their target audience rather than for themselves, with

the evaluation of these models being more concerned with people than with technology [83,84].

A promising approach to solving this problem is to combine the connectionist and symbolic

paradigms [85–89]. Connectionist approaches are more exact but opaque on the one hand.

Symbolic approaches, on the other hand, are more easily understood while being generally seen

as less effective. Additionally, it has been demonstrated that the introduction of counterfactual

explanations might aid the user in comprehending a model’s conclusion [90–92].

Third, XAI approaches for DL must address the issue of delivering explanations that are

understandable to society, decision-makers, and the legal system as a whole. In order to

address ambiguities and establish the social right to the (not yet existing) right to explanation

under the General Data Protection Regulation of all countries in general, it will be especially

important to communicate explanations that require non-technical competence [93].

It is obvious that incorporating this work into explainable AI is not an easy process. These

models will need to be improved and expanded from a social science perspective in order to

produce good explanatory agents, necessitating strong collaboration between explainable AI

researchers and those in philosophy, psychology, cognitive science, and human-computer

interaction [83].

The use of uncertainty quantification approaches in medical imaging

In addition to using uncertainty quantification (UQ) approaches for medical image analysis,

XAI is also used in decision-making in DL methods. Tools have been created to quantify the

predicted uncertainty of a specific DL model (Abdar et al., 2021a). The implementation of a

deep learning algorithm for uncertainty quantification in oncology can aid in improving per-

formance while analyzing medical images. As a result, for exemplo, the outcomes of prostate

cancer segmentation from ultrasound pictures are enhanced by the addition of uncertainty

quantification [94].

Numerous advantages result from improving the application of the uncertainty quantifica-

tion metric. In a medical setting, it becomes essential to identify questionable samples that

require human evaluation in order to avoid silent errors that could result in incorrect diagnosis

or treatments. Second, UQ makes it possible to spot the model’s flaws, such as uncertain fore-

casts, which may point to a deficient training set. Inconsistencies in the incoming data might

also be shown by a high level of UQ, which is crucial for quality control (QC). Overall, UQ

strengthens user confidence in the algorithm and makes it easier for the algorithm and user to

communicate. Additionally, UQ is supported by solid theoretical underpinnings and has

developed as a clinically expected characteristic of an applied AI system [95]. In this situation,

the model’s predicted performance alone is insufficient to achieve a high level of acceptability.
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In order to encourage human-machine collaboration and eliminate the black-box effect, UQ is

essential.

In this context, the collaboration between researchers in medicine and artificial intelligence

is one future study area that might be taken into consideration. As a result, the suggested

machine learning and deep learning methods can do a better job of forecasting various diseases

and cancers. This can be very beneficial for resolving uncertainties [94].

The collecting of medical data to the greatest extent possible is one of the gaps for enhanc-

ing the uncertainty metric in choices. The accuracy of the findings generated from medical

picture segmentation depends heavily on the use of ground truth data. The sending of inaccu-

rately projected facts to experts also plays a significant part in coping with uncertainty. There-

fore, in the field of medical picture segmentation, there is a need for strong cooperation

between researchers in medicine and computer science [94].

Big medical data collection may be a significant future direction. More data can signifi-

cantly enhance the performance of several deep learning techniques. Transfer learning

approaches, however, can be a good alternative if huge datasets are not available for training

[94]. The majority of the UQ approaches that have been put into practice (81.15%) are based

on a sampling protocol and try to produce several predictions for the same query input. The

potential of deterministic UQ approaches that only require one step to compute uncertainty

should be thoroughly investigated [96].

And finally, while being critical in real-world medical circumstances, the detection of Out-

of-distribution (OOD) predictions using uncertainty is a subject of relatively few investiga-

tions. In an automated medical picture pipeline, input samples may show a variety of anoma-

lies and artifacts that could interfere with the NN’s performance and lead to severely

inaccurate predictions. This inspires the creation of feature-based techniques designed specifi-

cally for OOD detection. Noting that OOD detection is a very active research area that is not

exclusive to the UQ sector, it should be noted that OOD detection is currently not often used

for medical picture analysis [96,97].

Limitations of the included systematic reviews and the overview

Regarding the limitations presented in the systematic reviews included in this overview, it was

observed: short follow-up time, which leads to an overestimated sensitivity [35] or a loss in the

calculation of diagnostic accuracy measures [37]; relatively low number of studies [40]; high het-

erogeneity can be partly explained by the diversity of methodological aspects, difference between

patients, or diversity of techniques used [35,40,42]; presence of selection bias by choice of articles

reporting sensitivity and specificity results [44], by use of retrospective studies, vaguely reported

sample of patients [35], by use of studies with relatively small samples [41,42]; possible presence

of publication bias due to lack of studies with unfavorable data [44]; use of digitized analog radio-

graphs to the detriment of digital images [35,37]; behavior of radiologists in terms of training,

conducting clinical tests and surveillance in the analysis [35,44]; relatively small and old technol-

ogy dataset number[35,39]; presence of measurement bias due to the large difference between the

groups studied and the small number of outcomes observed in the included studies.

This overview presented as limitations: there are still few studies that use artificial intelli-

gence, in its various approaches, in the detection of cancer, being limited to some more favor-

able types of cancer, such as breast cancer, prostate cancer and thyroid cancer. There is

considerable heterogeneity in the methodologies of the studies, which makes it difficult to

standardize the artificial intelligence technologies used. Finally, the limitation of the type and

quality of images makes it difficult or impossible to use artificial intelligence in the detection of

certain types of cancer, such as in the case of skin or lung cancer.
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Mains research gaps and future ML/DL research directions

The fact that deep learning algorithms demand a lot of data, sophisticated imaging technology,

top-tier statisticians, and research funding to produce is one of their key gaps. First of all,

because of the research’s existing variances in sample size, research design, data source, and

imaging collecting criteria, it is challenging to quantify, integrate, and extrapolate the findings

in a way that was applicable to all situations. Additionally, researchs might exhibit a significant

degree of publication bias, especially when they lack external validity [98].

Furthermore, Most AI models also disregard social and cultural risk variables, and the

majority of those that have been developed were built using data from the entire population.

To increase the accuracy of current models’ predictions and modify these tools to the unique

characteristics of the population being examined, combining critical risk factors, including

imaging, pathology, demographics, clinical data, smoking status, tumor histology and new and

ancient technology is advised [98,99]. Researchers can create predictive models by combining

several features [100,101]. The concept of multi-omics [102,103] or "Medomics" [104] is intro-

duced as a result. Therefore, it will be worthwhile to continue to pursue the merger of various

domain expertise and multidisciplinary integration.

The need for additional large-scale multicenter prospective researchs is highlighted by the

fact that this type of research necessitates big datasets. Future research should concentrate on

creating deep learning models from decentralized, nonparametric data [105,106]. When com-

pared to conventional models, these methods directly process the raw data, which reduces var-

iability while enhancing model performance [98].

However, Large datasets on the order of (tens of) thousands of patients from various medi-

cal centers are now available for research using digital mammography (DM) and digital breast

tomosynthesis (DBT). Rarely does MRI research involve more than 500 individuals, and it

often comes from a single center. This certainly benefits AI performance in DM and DBT

research, as larger datasets and data from various sources typically result in DL models that

perform better and have better generalization. Although there are currently a number of siz-

able retrospective and multi-reader studies for the evaluation of DL CAD systems for DM and

DBT, there are less of them for ultrasound (US) and none that that are known for MRI. Thus,

DL research in US and MRI needs to invest in generating larger and more diverse datasets to

move from proof-of-concept models to systems ready for large multi-case studies with multi-

ple readers, as is now the case with DM/ DBT. However, this does not mean that all DM/DBT

models are sufficiently tested for implementation in clinical practice [59,106].

In this way, sharing data between medicals center is a simple way to prevent small datasets

from becoming obsolete and large ones from expanding quickly. Regulated data exchange is

unfortunately a major barrier for researchers [105]. Swarm learning, where all participants

contribute to both case collection and algorithm development [107,108], or even federated

learning, where the data stays local but the algorithm travels [105,109,110], are positioned to

solve this issue. Such methods haven’t, however, been widely used up until now. The challenge

of validating the precise results of DL research in cancer pictures, which is typically not achiev-

able since the (training) data are not can be shared, is solved by the construction of checklists,

showing the basic requirements for the transparent reporting AI clinical investigations. Future

studies on AI will be able to be more thorough and consistent thanks to these lists, which is

necessary before they are applied broadly [59,106].

And Finally, it is crucial to address the related ethical, medicolegal, and regulatory chal-

lenges as more AI technologies are developed that have the potential for clinical translation.

There are a lot of unsolved questions on the ethical front. What situations must doctors tell

their patients they’re using AI techniques in their clinical workup? It might be crucial in
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scenarios where AI functions as a "black box," in which clinicians act on the output of an AI

tool without knowing how the algorithm came to its conclusion. When an AI technology

misses a cancer, who is responsible? How much should be under human control? an the DL

CAD systems make final decisions? Who is responsible for bad DL decisions? Will radiologists

be biased as a result of AI assistance? What are people’s perceptions of DL decision tools? Can

DL CAD algorithms correctly describe their thought process? Before DL models can be widely

used in actual clinical settings, it is evident that there must be discussion of these algorithmic

biases, which also raise ethical issues [59,106].

Conclusion

This overview gathered evidence from systematic reviews that evaluated the use of AI tools in

the detection and diagnosis of malignant tumors based on radiographic images. The detection

and diagnosis of malignant tumors with the help of AI seems to be feasible and accurate with

the use of different technologies, such as CAD systems, machine learning algorithms and

radiomic analysis when compared with the traditional model. ML algorithms performed better

when compared to DL methods. However, these systems yielded better performance in some

specific types of tumors such as cancer breast cancer, prostate cancer and thyroid nodules.

Although there are limitations regarding the generalization for all types of cancer, these AI

tools might aid professionals, serving as an auxiliary and teaching tool, especially for less

trained professionals. Therefore, further standardized and longitudinal studies should be per-

formed by using AI algorithms for detecting malignant lesions on different imaging modali-

ties, by using larger datasets. These future perspectives will enable a better understanding of AI

use in clinical oncologic practice.
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Formal analysis: André Ferreira Leite, Carla Ruffeil Moreira Mesquita, Paulo Tadeu de Souza

Figueiredo.
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13. Hayward RM, Patronas N, Baker EH, Vézina G, Albert PS, Warren KE. Inter-observer variability in the

measurement of diffuse intrinsic pontine gliomas. J Neurooncol. 2008; 90(1): 57–61. https://doi.org/

10.1007/s11060-008-9631-4 PMID: 18587536

14. Chlebus G, Meine H, Thoduka S, Abolmaali N, van Ginneken B, Hahn HK, et al. Reducing interob-

server variability and interaction time of MR liver volumetry by combining automatic CNN-based liver

segmentation and manual corrections. PLoS ONE. 2019; 14(5): e0217228. https://doi.org/10.1371/

journal.pone.0217228 PMID: 31107915

15. Miller DD, Brown EW. Artificial Intelligence in Medical Practice: The Question to the Answer? Am J

Med. 2018; 131(2): 129–133. https://doi.org/10.1016/j.amjmed.2017.10.035 PMID: 29126825

16. Matheson R. Faster analysis of medical images. MIT News. 2018. Available from: http://news.mit.edu/

2018/faster-analysis-of-medical-images-0618.

17. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep Learning in Neuroradiology. AJNR

Am J Neuroradiol. 2018; 39(10): 1776–1784. https://doi.org/10.3174/ajnr.A5543 PMID: 29419402

18. Siuly S, Zhang Y. Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis.

Data Sci Eng. 2016; 1(2): 54–64. https://doi.org/10.1007/s41019-016-0011-3

19. Cucchetti A, Vivarelli M, Heaton ND, Phillips S, Piscaglia F, Bolondi L, et al. Artificial neural network is

superior to MELD in predicting mortality of patients with end-stage liver disease. Gut. 2007; 56(2):

253–258. https://doi.org/10.1136/gut.2005.084434 PMID: 16809421

20. Carrara M, Bono A, Bartoli C, Colombo A, Lualdi M, Moglia D, et al. Multispectral imaging and artificial

neural network: mimicking the management decision of the clinician facing pigmented skin lesions.

Phys Med Biol. 2007; 52(9): 2599–2613. https://doi.org/10.1088/0031-9155/52/9/018 PMID:

17440255

21. Papadopoulos A, Fotiadis DI, Likas A. Characterization of clustered microcalcifications in digitized

mammograms using neural networks and support vector machines. Artif Intellig Med. 2005; 34(2):

141–150. https://doi.org/10.1016/j.artmed.2004.10.001 PMID: 15894178

22. Selaru FM, Xu Y, Yin J, Zou T, Liu TC, Mori Y, et al. Artificial neural networks distinguish among sub-

types of neoplastic colorectal lesions. Gastroenterology 2002; 122(3): 606–613. https://doi.org/10.

1053/gast.2002.31904 PMID: 11874992

23. Castellino RA. Computer aided detection (CAD): an overview. Cancer Imaging. 2005; 5(1):17–19.

https://doi.org/10.1102/1470-7330.2005.0018 PMID: 16154813

24. Nishikawa RM. Computer-aided Detection and Diagnosis In: Bick U, Diekmann F Editors. Digital Mam-

mography. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. pp. 85–106. https://doi.org/10.1007/

978-3-540-78450-0

25. Nishikawa RM, Gur D. CADe for early detection of breast cancer-current status and why we need to

continue to explore new approaches. Acad Radiol. 2014; 21(10): 1320–1321. https://doi.org/10.1016/

j.acra.2014.05.018 PMID: 25086951

26. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the

challenges of image analysis. Eur Radiol Exp. 2018; 2(1): 1–8. https://doi.org/10.1186/s41747-018-

0068-z PMID: 30426318

27. Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al. Radiomics: the

bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14(12): 749–

762. https://doi.org/10.1038/nrclinonc.2017.141 PMID: 28975929

28. Chan H-P, Samala RK, Hadjiiski LM. CAD And AI for breast cancer–recent development and chal-

lenges. Br J Radiol 2019; 93(1108): 20190580. https://doi.org/10.1259/bjr.20190580 PMID:

31742424.

29. Jones MA, Faiz R, Qiu Y, Zheng B. Improving mammography lesion classification by optimal fusion of

handcrafted and deep transfer learning features. Phys Med Biol 2022; 67(5): 054001. https://doi.org/

10.1088/1361-6560/ac5297 PMID: 35130517

30. Danala G, Maryada SK, Islam W, Faiz R, Jones M, Qiu Y, et al. Comparison of computer-aided diag-

nosis schemes optimized using radiomics and deep transfer learning methods. Bioengineering (Basel)

2022; 9(6): 256. https://doi.org/10.3390/bioengineering9060256

PLOS ONE Artificial intelligence tools in cancer detection compared to diagnostic imaging methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0292063 October 5, 2023 24 / 29

https://doi.org/10.1038/s41591-018-0316-z
http://www.ncbi.nlm.nih.gov/pubmed/30617335
https://doi.org/10.1093/bib/bbx044
http://www.ncbi.nlm.nih.gov/pubmed/28481991
https://doi.org/10.1007/s11060-008-9631-4
https://doi.org/10.1007/s11060-008-9631-4
http://www.ncbi.nlm.nih.gov/pubmed/18587536
https://doi.org/10.1371/journal.pone.0217228
https://doi.org/10.1371/journal.pone.0217228
http://www.ncbi.nlm.nih.gov/pubmed/31107915
https://doi.org/10.1016/j.amjmed.2017.10.035
http://www.ncbi.nlm.nih.gov/pubmed/29126825
http://news.mit.edu/2018/faster-analysis-of-medical-images-0618
http://news.mit.edu/2018/faster-analysis-of-medical-images-0618
https://doi.org/10.3174/ajnr.A5543
http://www.ncbi.nlm.nih.gov/pubmed/29419402
https://doi.org/10.1007/s41019-016-0011-3
https://doi.org/10.1136/gut.2005.084434
http://www.ncbi.nlm.nih.gov/pubmed/16809421
https://doi.org/10.1088/0031-9155/52/9/018
http://www.ncbi.nlm.nih.gov/pubmed/17440255
https://doi.org/10.1016/j.artmed.2004.10.001
http://www.ncbi.nlm.nih.gov/pubmed/15894178
https://doi.org/10.1053/gast.2002.31904
https://doi.org/10.1053/gast.2002.31904
http://www.ncbi.nlm.nih.gov/pubmed/11874992
https://doi.org/10.1102/1470-7330.2005.0018
http://www.ncbi.nlm.nih.gov/pubmed/16154813
https://doi.org/10.1007/978-3-540-78450-0
https://doi.org/10.1007/978-3-540-78450-0
https://doi.org/10.1016/j.acra.2014.05.018
https://doi.org/10.1016/j.acra.2014.05.018
http://www.ncbi.nlm.nih.gov/pubmed/25086951
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.1186/s41747-018-0068-z
http://www.ncbi.nlm.nih.gov/pubmed/30426318
https://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
https://doi.org/10.1259/bjr.20190580
http://www.ncbi.nlm.nih.gov/pubmed/31742424
https://doi.org/10.1088/1361-6560/ac5297
https://doi.org/10.1088/1361-6560/ac5297
http://www.ncbi.nlm.nih.gov/pubmed/35130517
https://doi.org/10.3390/bioengineering9060256
https://doi.org/10.1371/journal.pone.0292063


31. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer

diagnosis, prognosis and treatment selection. Genome Med 2021; 13(1): 152. https://doi.org/10.1186/

s13073-021-00968-x PMID: 34579788

32. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recom-

mendations for using machine learning to detect and prognosticate for COVID-19 using chest radio-

graphs and CT scans. Nat Mach Intelligence 2021; 3(3): 199–217. https://doi.org/10.1038/s42256-

021-00307-0

33. Krnic Martinic M, Pieper D, Glatt A, Puljak L. Definition of a systematic review used in overviews of sys-

tematic reviews, meta-epidemiological studies and textbooks. BMC Med Res Methodol. 2019; 19(1):

203. https://doi.org/10.1186/s12874-019-0855-0 PMID: 31684874

34. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version

5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.

cochrane.org.

35. Azavedo E, Zackrisson S, Mejàre I, Heibert Arnlind M. Is single reading with computer-aided detection

(CAD) as good as double reading in mammography screening? A systematic review. BMC Med Imag-

ing. 2012; 12(1): 22. https://doi.org/10.1186/1471-2342-12-22 PMID: 22827803

36. Tabatabaei M, Razaei A, Sarrami AH, Saadatpour Z, Singhal A, Sotoudeh H. Current Status and Qual-

ity of Machine Learning-Based Radiomics Studies for Glioma Grading: A Systematic Review. Oncol-

ogy. 2021; 99(7): 433–443. https://doi.org/10.1159/000515597 PMID: 33849021

37. Henriksen EL, Carlsen JF, Vejborg IM, Nielsen MB, Lauridsen CA. The efficacy of using computer-

aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review.

Acta Radiol. 2019; 60(1): 13–18. https://doi.org/10.1177/0284185118770917 PMID: 29665706

38. Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L (2020). Chapter 3: Systematic reviews of

effectiveness. In: Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis. JBI. Available

from: https://synthesismanual.jbi.global.

39. Dorrius MD, Jansen-van der Weide MC, van Ooijen PM, Pijnappel RM, Oudkerk M. Computer-aided

detection in breast MRI: a systematic review and meta-analysis. Eur Radiol. 2011; 21(8): 1600–1608.

https://doi.org/10.1007/s00330-011-2091-9 PMID: 21404134

40. Cuocolo R, Cipullo MB, Stanzione A, Romeo V, Green R, Cantoni V, et al. Machine learning for the

identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. 2020; 30

(12): 6877–6887. https://doi.org/10.1007/s00330-020-07027-w PMID: 32607629

41. Xing X, Zhao X, Wei H, Li Y. Diagnostic accuracy of different computer-aided diagnostic systems for

prostate cancer based on magnetic resonance imaging: A systematic review with diagnostic meta-

analysis. Medicine (Baltimore). 2021; 100(3): e23817. https://doi.org/10.1097/MD.

0000000000023817 PMID: 33545946

42. Zhao WJ, Fu LR, Huang ZM, Zhu JQ, Ma BY. Effectiveness evaluation of computer-aided diagnosis

system for the diagnosis of thyroid nodules on ultrasound: A systematic review and meta-analysis.

Medicine (Baltimore). 2019; 98(32): e16379. https://doi.org/10.1097/MD.0000000000016379 PMID:

31393347

43. Nindrea RD, Aryandono T, Lazuardi L, Dwiprahasto I. Diagnostic Accuracy of Different Machine

Learning Algorithms for Breast Cancer Risk Calculation: a Meta-Analysis. Asian Pac J Cancer Prev.

2018; 19(7): 1747–1752. https://doi.org/10.22034/APJCP.2018.19.7.1747 PMID: 30049182

44. Eadie LH, Taylor P, Gibson AP. A systematic review of computer-assisted diagnosis in diagnostic can-

cer imaging. Eur J Radiol. 2012; 81(1): e70–76. https://doi.org/10.1016/j.ejrad.2011.01.098 PMID:

21345631

45. Winkel DJ, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst JA, et al. A Novel Deep Learning

Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in

Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multi-

case Study. Invest Radiol. 2021; 56(10): 605–613. https://doi.org/10.1097/RLI.0000000000000780

PMID: 33787537

46. Fei B. Computer-aided diagnosis of prostate cancer with MRI. Curr Opin Biomed Eng. 2017; 3: 20–

27. https://doi.org/10.1016/j.cobme.2017.09.009 PMID: 29732440

47. Hussain L, Ahmed A, Saeed S, Rathore S, Awan IA, Shah SA, et al. Prostate cancer detection using

machine learning techniques by employing combination of features extracting strategies. Cancer Bio-

mark. 2018; 21(2): 393–413. https://doi.org/10.3233/CBM-170643 PMID: 29226857

48. Gaur S, Lay N, Harmon SA, Doddakashi S, Mehralivand S, Argun B, et al (2018) Can computer-aided

diagnosis assist in the identification of prostate cancer on prostate MRI? a multi-center, multi-reader

investigation. Oncotarget. 2018; 9(73): 33804–33817. https://doi.org/10.18632/oncotarget.26100

PMID: 30333911

PLOS ONE Artificial intelligence tools in cancer detection compared to diagnostic imaging methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0292063 October 5, 2023 25 / 29

https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
http://www.ncbi.nlm.nih.gov/pubmed/34579788
https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.1186/s12874-019-0855-0
http://www.ncbi.nlm.nih.gov/pubmed/31684874
http://www.handbook.cochrane.org
http://www.handbook.cochrane.org
https://doi.org/10.1186/1471-2342-12-22
http://www.ncbi.nlm.nih.gov/pubmed/22827803
https://doi.org/10.1159/000515597
http://www.ncbi.nlm.nih.gov/pubmed/33849021
https://doi.org/10.1177/0284185118770917
http://www.ncbi.nlm.nih.gov/pubmed/29665706
https://synthesismanual.jbi.global
https://doi.org/10.1007/s00330-011-2091-9
http://www.ncbi.nlm.nih.gov/pubmed/21404134
https://doi.org/10.1007/s00330-020-07027-w
http://www.ncbi.nlm.nih.gov/pubmed/32607629
https://doi.org/10.1097/MD.0000000000023817
https://doi.org/10.1097/MD.0000000000023817
http://www.ncbi.nlm.nih.gov/pubmed/33545946
https://doi.org/10.1097/MD.0000000000016379
http://www.ncbi.nlm.nih.gov/pubmed/31393347
https://doi.org/10.22034/APJCP.2018.19.7.1747
http://www.ncbi.nlm.nih.gov/pubmed/30049182
https://doi.org/10.1016/j.ejrad.2011.01.098
http://www.ncbi.nlm.nih.gov/pubmed/21345631
https://doi.org/10.1097/RLI.0000000000000780
http://www.ncbi.nlm.nih.gov/pubmed/33787537
https://doi.org/10.1016/j.cobme.2017.09.009
http://www.ncbi.nlm.nih.gov/pubmed/29732440
https://doi.org/10.3233/CBM-170643
http://www.ncbi.nlm.nih.gov/pubmed/29226857
https://doi.org/10.18632/oncotarget.26100
http://www.ncbi.nlm.nih.gov/pubmed/30333911
https://doi.org/10.1371/journal.pone.0292063


49. Singh S, Maxwell J, Baker JA, Nicholas JL, Lo JY. Computer-aided classification of breast masses:

performance and interobserver variability of expert radiologists versus residents. Radiology. 2011;

258(1): 73–80. https://doi.org/10.1148/radiol.10081308 PMID: 20971779

50. Peters AA, Decasper A, Munz J, Klaus J, Loebelenz LI, Hoffner MKM, et al. Performance of an AI

based CAD system in solid lung nodule detection on chest phantom radiographs compared to radiol-

ogy residents and fellow radiologists. J Thorac Dis.2021; 13(5): 2728–2737. https://doi.org/10.21037/

jtd-20-3522 PMID: 34164165

51. Watanabe Y, Tanaka T, Nishida A, Takahashi H, Fujiwara M, Fujiwara T, et al. Improvement of the

diagnostic accuracy for intracranial haemorrhage using deep learning-based computer-assisted

detection. Neuroradiology. 2021; 63(5): 713–720. https://doi.org/10.1007/s00234-020-02566-x PMID:

33025044

52. Giannini V, Mazzetti S, Cappello G, Doronzio VM, Vassallo L, Russo F, et al. Computer-Aided Diagno-

sis Improves the Detection of Clinically Significant Prostate Cancer on Multiparametric-MRI: A Multi-

Observer Performance Study Involving Inexperienced Readers. Diagnostics (Basel) 2021; 11(6):

973. https://doi.org/10.3390/diagnostics11060973 PMID: 34071215

53. Gilbert FJ, Astley SM, McGee MA, Gillan MG, Boggis CR, Griffiths PM, et al. Single reading with com-

puter-aided detection and double reading of screening mammograms in the United Kingdom National

Breast Screening Program. Radiology. 2006; 241(1): 47–53. https://doi.org/10.1148/radiol.

2411051092 PMID: 16990670

54. Wormanns D, Beyer F, Diederich S, Ludwig K, Heindel W. Diagnostic performance of a commercially

available computer-aided diagnosis system for automatic detection of pulmonary nodules: comparison

with single and double reading. Rofo. 2004; 176(7): 953–958. https://doi.org/10.1055/s-2004-813251

PMID: 15237336

55. Karssemeijer N, Otten JD, Verbeek AL, Groenewoud JH, de Koning HJ, Hendriks JH, et al. Computer-

aided detection versus independent double reading of masses on mammograms. Radiology. 2003;

227(1): 192–200. https://doi.org/10.1148/radiol.2271011962 PMID: 12616008

56. Ciatto S, Ambrogetti D, Bonardi R, Brancato B, Catarzi S, Risso G, et al. Comparison of two commer-

cial systems for computer-assisted detection (CAD) as an aid to interpreting screening mammograms.

Radiol Med. 2004; 107(5–6): 480–488. PMID: 15195010

57. Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for

image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ.

2021; 374: n1872. https://doi.org/10.1136/bmj.n1872 PMID: 34470740

58. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and

treatment in the era of precision medicine. Cancer Commun (Lond). 2021; 41(11): 1100–1115. https://

doi.org/10.1002/cac2.12215 PMID: 34613667

59. Balkenende L, Teuwen J, Mann RM. Application of Deep Learning in Breast Cancer Imaging. Semin

Nucl Med. 2022; 52(5): 584–596. https://doi.org/10.1053/j.semnuclmed.2022.02.003 PMID:

35339259

60. Chen J, You H, Li K. A review of thyroid gland segmentation and thyroid nodule segmentation methods

for medical ultrasound images. Comput Methods Programs Biomed. 2020; 185: 105329. https://doi.

org/10.1016/j.cmpb.2020.105329 PMID: 31955006

61. Din NMU, Dar RA, Rasool M, Assad A. Breast cancer detection using deep learning: Datasets, meth-

ods, and challenges ahead. Comput Biol Med. 2022; 149: 106073. https://doi.org/10.1016/j.

compbiomed.2022.106073 PMID: 36103745

62. Grieve P. Deep Learning vs. Machine Learning: What’s the Difference? 2020. Avaliable in: https://

www.zendesk.com/blog/machine-learning-and-deep-learning.

63. MathWorks. What Is Deep Learning? Avaliable in: https://www.mathworks.com/discovery/deep-

learning.html.

64. Majumder A, Sen D. Artificial intelligence in cancer diagnostics and therapy: current perspectives.

Indian J Cancer. 2021; 58(4): 481–492. https://doi.org/10.4103/ijc.IJC_399_20 PMID: 34975094

65. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020; 111(5): 1452–1460.

https://doi.org/10.1111/cas.14377 PMID: 32133724

66. Ibrahim S, Nazir S, Velastin SA. Feature Selection Using Correlation Analysis and Principal Compo-

nent Analysis for Accurate Breast Cancer Diagnosis. J Imaging. 2021; 7(11): 225. https://doi.org/10.

3390/jimaging7110225 PMID: 34821856

67. University of South Florida. Digital Mammography. DDSM: Digital Database for Screening Mammog-

raphy. Avaliable in: http://www.eng.usf.edu/cvprg/mammography/database.html.

68. Mammographic Image Analysis Homepage. Databases. Avaliable in: https://www.mammoimage.org/

databases/.

PLOS ONE Artificial intelligence tools in cancer detection compared to diagnostic imaging methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0292063 October 5, 2023 26 / 29

https://doi.org/10.1148/radiol.10081308
http://www.ncbi.nlm.nih.gov/pubmed/20971779
https://doi.org/10.21037/jtd-20-3522
https://doi.org/10.21037/jtd-20-3522
http://www.ncbi.nlm.nih.gov/pubmed/34164165
https://doi.org/10.1007/s00234-020-02566-x
http://www.ncbi.nlm.nih.gov/pubmed/33025044
https://doi.org/10.3390/diagnostics11060973
http://www.ncbi.nlm.nih.gov/pubmed/34071215
https://doi.org/10.1148/radiol.2411051092
https://doi.org/10.1148/radiol.2411051092
http://www.ncbi.nlm.nih.gov/pubmed/16990670
https://doi.org/10.1055/s-2004-813251
http://www.ncbi.nlm.nih.gov/pubmed/15237336
https://doi.org/10.1148/radiol.2271011962
http://www.ncbi.nlm.nih.gov/pubmed/12616008
http://www.ncbi.nlm.nih.gov/pubmed/15195010
https://doi.org/10.1136/bmj.n1872
http://www.ncbi.nlm.nih.gov/pubmed/34470740
https://doi.org/10.1002/cac2.12215
https://doi.org/10.1002/cac2.12215
http://www.ncbi.nlm.nih.gov/pubmed/34613667
https://doi.org/10.1053/j.semnuclmed.2022.02.003
http://www.ncbi.nlm.nih.gov/pubmed/35339259
https://doi.org/10.1016/j.cmpb.2020.105329
https://doi.org/10.1016/j.cmpb.2020.105329
http://www.ncbi.nlm.nih.gov/pubmed/31955006
https://doi.org/10.1016/j.compbiomed.2022.106073
https://doi.org/10.1016/j.compbiomed.2022.106073
http://www.ncbi.nlm.nih.gov/pubmed/36103745
https://www.zendesk.com/blog/machine-learning-and-deep-learning
https://www.zendesk.com/blog/machine-learning-and-deep-learning
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://doi.org/10.4103/ijc.IJC%5F399%5F20
http://www.ncbi.nlm.nih.gov/pubmed/34975094
https://doi.org/10.1111/cas.14377
http://www.ncbi.nlm.nih.gov/pubmed/32133724
https://doi.org/10.3390/jimaging7110225
https://doi.org/10.3390/jimaging7110225
http://www.ncbi.nlm.nih.gov/pubmed/34821856
http://www.eng.usf.edu/cvprg/mammography/database.html
https://www.mammoimage.org/databases/
https://www.mammoimage.org/databases/
https://doi.org/10.1371/journal.pone.0292063


69. Breast Cancer Digital Repository (BCDR). Avaliable in: https://bcdr.eu/information/about.

70. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA):

maintaining and operating a public information repository. J Digit Imaging. 2013; 26(6): 1045–1057.

https://doi.org/10.1007/s10278-013-9622-7 PMID: 23884657

71. McNitt-Gray MF, Armato SG 3rd, Meyer CR, Reeves AP, McLennan G, Pais RC, et al. The Lung

Image Database Consortium (LIDC) data collection process for nodule detection and annotation.

Acad Radiol. 2007; 14(12): 1464–1474. https://doi.org/10.1016/j.acra.2007.07.021 PMID: 18035276

72. Bonavita I, Rafael-Palou X, Ceresa M, Piella G, Ribas V, González Ballester MA. Integration of convo-
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