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Abstract: Wind energy is one of Brazil’s most promising energy sources, and the rapid growth of 

wind plants has increased the need for accurate and efficient inspection methods. The current onsite 

visits, which are laborious and costly, have become unsustainable due to the sheer scale of wind 

plants across the country. This study proposes a novel data-centric approach integrating semantic 

segmentation and GIS to obtain instance-level predictions of wind plants by using free orbital 

satellite images. Additionally, we introduce a new annotation pattern, which includes wind turbines 

and their shadows, leading to a larger object size. The elaboration of data collection used the 

panchromatic band of the China–Brazil Earth Resources Satellite (CBERS) 4A, with a 2-m spatial 

resolution, comprising 21 CBERS 4A scenes and more than 5000 wind plants annotated manually. 

This database has 5021 patches, each with 128 × 128 spatial dimensions. The deep learning model 

comparison involved evaluating six architectures and three backbones, totaling 15 models. The 

sliding windows approach allowed us to classify large areas, considering different pass values to 

obtain a balance between performance and computational time. The main results from this study 

include: (1) the LinkNet architecture with the Efficient-Net-B7 backbone was the best model, 

achieving an intersection over union score of 71%; (2) the use of smaller stride values improves the 

recognition process of large areas but increases computational power, and (3) the conversion of 

raster to polygon in GIS platforms leads to highly accurate instance-level predictions. This entire 

pipeline can be easily applied for mapping wind plants in Brazil and be expanded to other regions 

worldwide. With this approach, we aim to provide a cost-effective and efficient solution for 

inspecting and monitoring wind plants, contributing to the sustainability of the wind energy sector 

in Brazil and beyond. 

Keywords: deep learning; instance segmentation; semantic segmentation; renewable energy; small 

object; GIS; Brazil 

 

1. Introduction 

The great challenge for the Brazilian energy sector is to expand its production 

capacity while maintaining a high share of renewable sources in the energy mix. One of 

the most critical factors is to guarantee its commitment to reduce greenhouse gas 

emissions (GHGs), established by the Intended Nationally Determined Contributions 
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(INDC) [1] and in line with the Paris agreement ratified by Brazil in September 2016 [2]. 

Hydroelectricity has been the primary source of Brazilian energy and the main 

geopolitical energy strategy since the 1960s. Brazil has a notable advantage in having a 

hydroenergy base, a renewable, storable, and fundamental source for stability in meeting 

the country’s energy demand, especially because large plants are beneficial for regulating 

the demands at a reasonable time when the energy loads fluctuate. This development 

model made Brazil the nation most dependent on hydroelectric energy globally. 

However, most potential hydropower sites have already been explored for energy 

generation, and new large-scale projects are predominantly in the Amazon region. This 

region imposes massive restrictions on constructing new hydropower plants in the 

country due to significant socioeconomic and environmental impacts, compromising 

fragile ecosystems and entailing high costs in the long term [3,4]. Recently, the Belo Monte 

project, with an installed capacity of 11.23 GW, illustrates the challenges of installing 

hydroelectric dams in the Amazon region. The project had a budget of US $13.1 billion 

and flooded an area greater than 7000 km2, presenting challenges for environmental [5–8] 

and socioeconomic mitigation [9,10] and demanding efforts in terms of population 

resettlement. 

Therefore, ensuring energy security in the face of the country’s economic growth and 

maintaining a portfolio of renewable sources leads to a redirection of investments, efforts, 

and priorities for the decentralization of renewable technologies with an increase in the 

reliability of the supply of the electrical system and risk reduction. In this scenario, solar 

and wind energy acquire prominence in this reduction in hydroelectric participation and 

sustain a mostly renewable share in the mix as it is currently [11]. The hydroelectric source 

represented 83% of installed capacity at the beginning of the century, and the expectation 

is to reduce it to 46% by 2031, according to the Brazilian government’s Ten-Year Energy 

Plan (PDE-2031) [12]. Thus, the contribution of hydroelectricity in the last decade has 

gradually decreased for these new alternatives that have reached the gigawatt scale [13]. 

Moreover, relying on a single natural energy source brings security issues because these 

renewable energies are susceptible to climatic variations, with a possible need to activate 

thermoelectric plants to meet domestic demands [14,15]. Several studies point out this 

problem and analyze moments of the recent energy crisis in the country [13,16–18]. 

In addition, wind and solar energy allow a decentralized production closer to the 

consumer. Technological advances promote the constant reduction of generation costs, 

overcoming technical barriers and making these sources increasingly competitive due to 

economic gains and efficiency. Among the advantages of wind and solar energy systems 

are carbon-free energy sources with low environmental impact, the potential to mitigate 

greenhouse gas emissions, low operating and maintenance costs, high availability, the 

ability to strengthen the ends of the network, reduction of energy transmission losses, and 

increased overall efficiency of the electrical system [19]. Future projections of climate 

change show that in the 2030s and 2080s, there will be a decrease in rainfall for most of 

the Brazilian territory and an increase in solar irradiation, temperature, and wind speed 

compared to the previous century [20]. In this context, potential hydroelectric decreases,  

solar energy potential shows a slight increase, and wind energy shows a significant 

increase, reaching in some locations an increase in wind energy generation of more than 

40% [20]. 

According to the Brazilian National Electricity Agency (ANEEL) data from the 

beginning of 2022, the number of wind power plants in operation was 809, with a granted 

power of 21.5 GW and supervised power of 21.4 GW, which represents 11.77% of the 

Brazilian energy mix. The number reaches 1190 units with a granted power of 34.9 GW 

from the wind farms under construction and construction not started. In Brazil, the 

Northeast region is the most promising and favorable for wind energy conversion due to 

adequate conditions, with high average wind speeds (>8.5 m/s) and a low level of 

turbulence throughout the year with a Weibull k factor greater than three [21]. Eight units 

are in the Northeast region, among the 10 states with the highest power granted in 
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operation. The first three states are Bahia (6.5 GW), Rio Grande do Norte (5.9 GW), and 

Piauí (2.5 GW). Therefore, there has recently been a significant increase in wind energy 

exploration ventures. 

Consequently, inspecting wind plant constructions is fundamental for the 

effectiveness and control of public policies. In Brazil, ANEEL is responsible for regulating 

the expansion of installed capacity and monitoring the progress of plant construction [22]. 

However, inspection occurs directly onsite by displacing qualified professionals at high 

costs. The expectation of wind energy growth tends to have many projects with low 

energy production, increasing the number of processes to be evaluated and urgently 

requiring process automation.  

Thus, this research seeks to overcome three problems in the development of a system 

that helps the growing inspection process with significant savings and increased agility: 

(1) minimize the need for inspectors to travel to the construction sites by using remotely 

sensed data, (2) increase the accuracy of automatic mapping of wind farms employing 

segmentation techniques based on deep learning, and (3) wind power plants consist of 

small nonuniform objects in remote sensing images due to different blade positions and 

projected shadows, which establishes a high complexity in image-recognition results. The 

shades from wind power stations allow for increased detection area. 

In a continental-sized country, periodic satellite images are a promising and low-cost 

tool for monitoring works in the electricity sector. Remote sensing studies for detecting 

infrastructure in the electricity sector have recently expanded, considering different 

energy sources. The use of remotely sensed data in solar energy mapping has shown a 

significant increase, such as urban photovoltaic solar panels [23–27], water photovoltaic 

[28] and photovoltaic solar plants [29–31], solar energy estimations [32–34], solar power 

plant site selection [35–40], and photovoltaic potential on building rooftops [41–44]. 

Remote sensing has also been widely used in analyzing the environmental changes in 

hydroelectric plants in their reservoirs and downstream of dams [3,45–48] and in 

maintenance of power line corridors [49–53]. On the other hand, wind farm detection 

studies are scarce, as they are small objects and require high-resolution images.  

In digital image processing, a challenge is to achieve a highly accurate detection 

minimizing human activity, such as visual inspection and onsite visits. In this context, 

deep learning methods are the current state-of-the-art for image classification, especially 

with advances in convolutional neural networks (CNN), which allow the detection of 

small, medium, and high-level features [54,55]. In the electricity sector, pattern-

recognition methodologies for solar panels have shown high efficiency, including studies 

by ANEEL [29]. 

Few studies used deep-learning strategies to map wind plants by using terrestrial-

monitoring images [56–59]. Han et al. [59] detected wind power plants by using high-

resolution Gaofen-2 fused images (with a spatial resolution of 0.8 m) and a CNN based on 

U-Net architecture, reaching an F1-score of 0.97. Manso–Callejo et al. [57] used aerial 

images and compared the U-Net and LinkNet architectures with various backbones 

(EfficientNet-b0, EfficientNet-b1, EfficientNet-b2, EfficientNet-b3, and SEResNeXt50), 

getting better results with the LinkNet-EfficientNet-b3 combination. An improvement of 

this research for the entire Spanish peninsular territory is presented by Manso–Callejo et 

al. [56], in which another multiclass recognition network classified turbines by their power 

capacity. In both studies developed by Manso–Callejo et al. [56,57], only the base is 

labeled, with no wind farm segmentation. Finally, Schulz et al. [58] used a Mask R-CNN 

on aerial photography images to detect decentralized renewable energies, including wind 

power plants. Unlike the approach of aerial or satellite images with top view, some other 

studies use lateral images of drones and deep learning methods for inspection analysis of 

imminent damage related to wind turbine blades [60,61]. In the cited studies, only one 

research [58] used a deep-learning segmentation method from aerial images to delineate 

all wind power plant features. The other studies used a single point to label each object, 
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not configuring a segmentation task, which represents a significant gap in the use of 

segmentation strategies with orbital satellite images. 

In addition, unlike other deep learning-based studies, this investigation focused on 

finding a cost-effective solution for ANEEL to conduct periodic surveys of the Brazilian 

territory (continental area) using free images. The solution to this problem was using 

China–Brazil Earth Resources Satellite (CBERS) 4A images with a resolution of 2 m, 

significantly worse than the aerial photographs (centimetric resolution) used in previous 

studies. In this context, the challenge for detection is the complexity of wind power plants 

combined with the reduced number of pixels representing them, belonging to the small 

object category (size < 32 × 32 pixels) [62,63]. Nowadays, advances and novelties in deep-

learning studies either refer to data-centric or model-centric approaches. Due to the 

characteristics of previous studies, the most significant scientific gap is not the inaccuracy 

of the deep learning models but the creation of mechanisms of consistent labeling. The 

data-centric approach seeks to improve datasets to increase model performance, 

considering different strategies not limited to simply increasing the size of the datasets, 

such as including label reliability or incorporating detailed training data. For example, the 

representation of wind power plants considering only one point (a single pixel) is very 

difficult to maintain consistency from images with lower spatial resolution. Therefore, the 

solution to this small-object detection problem considered an alternative based on the 

data-centric approach, including the wind plant shadows to increase the mapped area and 

facilitate target detection. This alternative has already been used in other studies without 

deep semantic segmentation. Shen et al. [64] considered the shadow in monitoring wind 

plant constructions by using Chinese satellite GF-2 HD images and a Normalized 

Difference Vegetation Index (NDVI)-based method, including mask generation and 

interactive interpretation. Mandroux et al. [65] used dark shadows and bright hubs from 

wind plants for their detection in Sentinel-2 images by using adaptive thresholding. 

This study aims to develop a low-cost system by using deep learning and free remote 

sensing images to monitor wind plants, reducing technical visits, and providing quick and 

accurate inspection information. The main contributions are as follows. 

1. A novel data-centric approach is introduced, consisting of a new strategy of 

annotating wind plants (including the shadows and turbines), which increases the 

size of the objects, facilitating the recognition. In addition, this strategy allows the use 

of 2-m resolution images for small-object detection. Wind plants have a low 

representation in nadir images, but they present an extensive shadow due to their 

height, which facilitates indirect detection by deep learning methods. 

2. A novel semantic segmentation dataset is introduced, the first considering CBERS-

4A images covering the entire Brazilian territory. CBERS-4A presents the advantages 

of being free of charge and having a 2-m resolution for the panchromatic band. Thus, 

the inference procedure is much faster by only considering one band. 

3. A novel semantic to instance segmentation conversion using geographic information 

system (GIS) software. The spatial distribution of wind farms, appearing sparsely 

without contacts between them, makes the polygonization of the semantic features 

create a specific identifier per instance, in addition to favoring the removal of noisy 

features based on the size of the objects. 

2. Materials and Methods 

The present research had the following methodological steps (Figure 1): (Section 2.1) 

data, (Section 2.2) deep learning approach, (Section 2.3) sliding windows using the best 

model, and (Section 2.4) semantic to instance conversion using GIS. 
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Figure 1. Methodological flowchart. The numbering corresponds to the subtopics of the section. 

2.1. Data 

2.1.1. Study Area Selection and Image Acquisition 

The study areas include the main concentrations of wind farms across the Brazilian 

territory (Figure 2). In this context, this study covered a wide variety of landscapes, from 

coastal areas with the presence of dunes up to inland regions with different land cover. 

This research used the panchromatic images of the China–Brazil Earth Resources Satellite 

CBERS 4A sensor (2-m resolution), the sixth CBERS family satellite developed by the 

space technical cooperation between Brazil and China [66]. These images combine the 

advantages of free distribution (significant cost reduction) and high resolution from the 

panchromatic wide scan camera. 
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Figure 2. Location of all 21 CBERS 4A scenes used in this study. 

Other possibilities for high-resolution images, such as aerial surveys or using orbital 

satellites (GeoEye-1 (41 cm), WordView-2 (46 cm), WordView-3 (31 cm), WordView-4 (31 

cm), Planet Labs (50 cm), QuickBird (61 cm), and IKONOS-2 (1 m)), would represent a 

significant increase in the cost of monitoring for a country with a continental extension. In 

addition, other sensors with free data (such as Sentinel-2 or Landsat-8) have difficulties 

detecting wind farms due to the low resolution. For example, Sentinel-2 images (10 m 

resolution) have limitations compared to the CBERS-4A image (Figure 3). This study used 

21 CBERS 4A scenes throughout the Brazilian territory, incorporating various 

environments with wind plants. The CBERS 4A provides images with a periodicity of 31 

days, bringing monthly updates to each region. 
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Figure 3. Example of the shadows produced by the wind plants considering Sentinel (a–c) and 

CBERS 4A images (a1,b1,c1). 

2.1.2. Annotations 

The mapping of all wind plants used on-screen visual interpretation by using the 

CBERS 4A images as reference. Our proposed annotation approach considered the visual 

interpretation of the wind plant installation considered the following features: (1) 

foundation concrete, a circular base with a diameter of approximately 20 m; (2) wind 

turbines and blades that rotate the rotor with the force of the wind; and (3) the shadow 

areas. One of the most significant difficulties in the computer vision community is dealing 

with small objects, defined as elements with less than 322 pixels [67,68]. Although wind 

plants are a prominent object in height, they are not notable in remote sensing orbital 

images with a nadir view due to their reduced width. We provide an innovative approach 

by using the shadow features of the wind plants to facilitate its detection [64], which are 

usually undesirable in most detection problems as they hide the intended objects [69]. 

2.1.3. Deep Learning Samples 

Orbital remote sensing images have extensive dimensions, requiring a subdivision 

into small patches. This study considered patches with 128 × 128 pixels, suitable for 

including the wind plant, its shadow, and a good portion of background elements. Each 

wind plant had at least one 128 × 128 sample, adding at least 20 samples with background-

only information. Among the 21 CBERS-4A scenes, 14 were for training, three for 

validation, three for testing, and one for evaluating the sliding window procedure (Table 

1). The final dataset included 4544, 257, and 220 patches for training, validation, and 

testing, respectively. 
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Table 1. Dataset information considering the state, location (latitude and longitude), number of 

wind plants, number of patches, and the set (train, validation, test, or sliding windows (SW)). The 

dataset considered the following Brazilian states: Bahia (BA), Ceará (CE), Piauí (PI), Rio Grande do 

Norte (RN), Rio Grande do Sul (RS), and Rio de Janeiro (RJ). 

State Location # of Wind Plants # of Patches Train/Val/Test 

BA 42°40’48.852”W 14°4’17.174”S 407 656 Train  

BA 41°27’37.008”W 11°51’22.643”S 113 290 Train 

BA 41°15’58.126”W 11°2’6.711”S 250 228 Train 

BA 42°35’57.95”W 14°24’38.101”S 303 377 Train 

BA 41°23’53.288”W 10°31’20.718”S 225 251 Train 

BA 40°42’49.748”W 7°40’6.644”S 270 288 Train 

CE 39°42’39.391”W 3°4’52.63”S 174 250 Train 

CE 39°19’57.904”W 3°16’45.851”S 233 315 Train 

PI 41°32’16.008”W 8°39’0.225”S 309 323 Train 

RJ 41°4’37.302”W 21°34’28.83”S 18 45 Train 

RN 36°26’53.947”W 5°14’40.991”S 203 285 Train 

RN 35°55’58.156”W 5°20’52.179”S 818 836 Train 

RS 53°19’10.675”W 33°35’48.462”S 305 340 Train 

RS 49°35’52.656”W 28°27’51.075”S 60 60 Train 

BA 40°58’22.055”W 10°5’0.823”S 113 124 Validation  

PB 36°43’49.184”W 6°58’1.276”S 59 101 Validation 

RS 52°13’4.441”W 32°13’40.063”S 32 32 Validation 

PI 40°37’23.185”W 7°59’46.973”S 98 118 Test  

RN 36°12’37.606”W 5°44’52.836”S 53 62 Test 

RS 52°21’33.646”W 32°25’18.929”S 40 40 Test 

RN 37°2’11.031”W 5°7’59.359”S 382 - SW test 

2.2. Deep Learning Approach 

Instance segmentation models such as the Mask-RCNN [70] are the primary 

approach for recognizing individual objects at a pixel level. However, instance 

segmentation models for orbital remote sensing may present additional difficulties 

regarding semantic segmentation: (1) more structured information data requirement (e.g., 

COCO [68]); (2) increasing object detection parameters (e.g., anchor boxes) and 

procedures (e.g., ROI alignment); (3) image reconstruction by sliding windows becomes 

challenging; and (4) worse pixel metrics, especially for small objects. Because the wind 

farms and their shadows do not touch each other, it is simple to convert semantic features 

to instance features by using post segmentation methods [71,72]. We used semantic 

segmentation models to classify all input image pixels [73,74]. The models usually present 

a structure with contraction (extracting meaningful features) and extension (restoring the 

image dimension) paths. This study compared five state-of-the-art semantic segmentation 

architectures: U-Net [75], DeepLabv3+ [76], Feature Pyramid Network (FPN) [77], and U-

Net++ [78]. Furthermore, the model evaluation considered three backbones: Efficient-net-

B7 [79], ResNeXt-101 [80], and ResNet-101 [81]. The hyperparameters for all models were 

a learning rate of 0.0001, batch size of 20, and 100 epochs. Moreover, we used random 

horizontal and vertical flip for avoiding overfitting problems. The image processing used 

a computer equipped with an NVIDIA RTX 3090 and i9 processor for all experiments. 

2.3. Sliding Windows Approach for Classifying Large Areas 

The sliding window (SW) approach is commonly used in large-scale image 

segmentation. This approach involves dividing an image into smaller segments that are 

equivalent in size to the training samples, with an overlap area defined by the stride value. 

The stride value is the distance between the centers of the windows and determines the 
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degree of overlap between them. During the classification process, the SW approach 

classifies the image in sequential frames, starting from the top left corner and moving 

toward the bottom right corner. The stride value is crucial in semantic segmentation, as it 

determines the accuracy of the result. A smaller stride value leads to a greater overlap 

area and better results, as it minimizes errors by averaging overlapping pixels [82,83]. 

However, it also increases the computational cost. This tradeoff between performance and 

computational cost is a common challenge when using SW approaches. This study 

evaluated four stride values (16, 32, 64, and 128) in an independent scene with a high 

concentration of wind power stations. This investigation helped us determine the optimal 

stride value that balances accuracy and computational efficiency. 

2.4. Semantic to Instance Conversion by Using GIS 

This study presents a novel approach to converting semantic to instance 

segmentation for wind farm monitoring. Our approach leverages the natural distance 

between wind farms to separate grouped objects, eliminating the need for traditional 

methods, such as those described in studies [71,72,84], which insert borders to isolate 

grouped objects. This results in faster and more accurate object counting and reduces the 

potential for individual recognition errors. Converting to GIS platforms (such as ArcGIS) 

provides a simple and effective way to handle the data and eliminate noisy predictions by 

limiting the polygon size, further increasing the accuracy of the results. By considering 

the shadows and turbines in our annotation strategy and utilizing the 2-m resolution 

images from the CBERS-4A satellite, the study provides a low-cost solution for monitoring 

wind plants, reducing the need for technical visits and providing quick and accurate 

inspection information. To remove noisy predictions, we eliminated polygons with areas 

below 350 m2 because the wind plants have an average of more than 800 m2. 

2.5. Deep Learning Metrics 

Most of the accuracy metrics of semantic segmentation models come from the 

confusion matrix. Because our problem is binary (background or wind plant), there are 

four possibilities: true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). In this regard, we assessed five metrics (overall accuracy, precision, recall, 

F-score, and intersection over union) from the confusion matrix to evaluate the quality of 

the deep learning models (Table 2).  

Table 2. Accuracy metrics used in this study, in which TP, TN, FP, and FN represent true positives, 

true negatives, false positives, and false negatives, respectively. 

Metric Equation 

Overall accuracy 
TP + TN

TP + TN + FP + FN
 

Precision 
TP

TP + FP
 

Recall 
TP

TP + FN
 

F-score 
2 x (Precision x Recall)

(Precision + Recall)
 

Intersection over union (IoU) 
TP

TP + FP + FN
 

Even though overall accuracy is a straightforward metric, in our scenario, it tends to 

be less informative because the objects represent a small portion of each image tile, 

showing a high percentage of true negatives. Precision and recall bring an interesting 

analysis of the results. However, both are not too informative alone, e.g., if the deep 

learning model predicts only one pixel as being a wind plant and this pixel is correct, the 

precision will be 100% and if the model predicts that all pixels are wind plants, the recall 
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will be 100%. The F-score is the harmonic mean between precision and recall, which is 

much more informative. Finally, the IoU is the primary metric in most competitions 

because it considers both types of errors (FP and FN) while ignoring the TN. For all 

metrics, we used a threshold value of 0.5.  

To evaluate the sliding windows approach, the ranking metrics that evaluate 

classifiers over variable thresholds are adequate, so we used precision area-recall under 

the curve (PR-AUC) and the receiver operating area under the curve (ROC AUC). Finally, 

we evaluated per-object metrics on the testing image, in which an object with an IoU 

greater than 0.5 was considered a TP. 

3. Results 

3.1. Model Evaluation and Comparison 

Table 3 lists the results considering the different architectures and backbones. The 

IoU and F-score are usually the most appropriate in choosing the best model because they 

consider FP and FN errors. For both IoU and F-score, the best model used the LinkNet 

architecture with the Eff-B7 backbone, but the U-Net and U-Net++ models presented 

similar scores. DLv3+ and FPN presented more than a 3% difference in the best models 

from the other three. Interestingly, only three of the 15 models presented a recall score 

higher than the precision score. The accuracy analysis proves to be very misleading 

because most of the pixels are background, and most models presented very high scores 

near 100%.  

Table 3. Accuracy, precision, recall, F-score, and intersection over union (IoU) metrics for the 

DeepLabv3+ (DLv3+), U-Net, LinkNet, Feature Pyramid Network (FPN), and U-Net++ architectures 

and Efficient-net-B7 (Eff-B7), ResNeXt-101 (X-101), and ResNet-101 (R-101) backbones. 

Architecture Backbone Accuracy Precision Recall F-score IoU 

DLv3+ Eff-B7 99.58 79.61 79.77 79.69 66.24 

 X-101 99.57 78.01 79.96 78.97 65.25 

 R-101 99.56 79.01 78.11 78.56 64.69 

U-Net Eff-B7 99.63 83.13 80.31 81.69 69.05 

 X-101 99.63 85.17 77.60 81.21 68.36 

 R-101 99.61 81.99 78.94 80.44 67.28 

LinkNet Eff-B7 99.66 84.30 82.55 83.41 71.55 

 X-101 99.62 82.99 79.04 80.97 68.02 

 R-101 99.62 82.39 79.74 81.04 68.13 

FPN Eff-B7 99.59 80.28 79.20 79.73 66.30 

 X-101 99.58 79.11 79.39 79.25 65.63 

 R-101 99.58 80.41 78.46 79.42 65.87 

U-Net++ Eff-B7 99.64 83.86 80.74 82.27 69.88 

 X-101 99.63 85.17 77.60 81.21 68.36 

 R-101 99.61 81.99 78.94 80.44 67.28 

Figure 4 shows examples from the test set for the best model (LinkNet with the Eff-

B7 backbone). The results demonstrate that the models could understand distinct shadow 

representations, which is very accurate for mapping wind plants. Nonetheless, there are 

some spots in which the algorithm may present some errors. Figure 5 shows three 

examples of possible errors that may occur. The first row shows lookalike features, 

erroneously detecting a wind plant shadow. The second and third examples show 

discontinuity errors with relevance in the raster to polygon conversion due to the 

possibility of giving misleading results.  
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Figure 4. Image patches from the test set considering the original CBERS 4A image, ground truth, 

and deep learning prediction. 
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Figure 5. Image patches from the test set considering the original CBERS 4A image, ground truth, 

and deep learning prediction. The spots in red are highlighted areas that show in more detail the 

areas with errors. 

Table 4 lists the training period for each model and the inference time on a single 128 

× 128 frame. For DeepLabv3+, U-Net, FPN, and LinkNet, the training period for a single 

epoch presented a similar behavior among the three backbones, in which Eff-B7 > X-101 > 

R-101. The U-Net++ had a higher training period for X-101 than the rest. Note that the 

overall behavior tends to be preserved, but changing the computer configurations may 

vary the results. 
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Table 4. Training period (in seconds), and inference time (in milliseconds) considering a computer 

equipped with an NVIDIA RTX 3090 (24 GB RAM) with an i9 processor for the DeepLabv3+ 

(DLv3+), U-Net, LinkNet, Feature Pyramid Newtork (FPN), and U-Net++ architectures and the 

Efficient-net-B7 (Eff-B7), ResNeXt-101 (X-101), and ResNet-101 (R-101) backbones. 

Architecture Backbone Training Period (s) Inference Time (ms) 

DLv3+ Eff-B7 65 42.98 

 X-101 40 21.58 

 R-101 23 14.50 

U-Net Eff-B7 58 48.17 

 X-101 40 23.16 

 R-101 28 16.44 

LinkNet Eff-B7 62 44.44 

 X-101 38 22.82 

 R-101 29 16.98 

FPN Eff-B7 60 44.77 

 X-101 37 23.27 

 R-101 27 16.81 

U-Net++ Eff-B7 64 43.30 

 X-101 65 21.81 

 R-101 48 16.62 

3.2. Sliding Window Results 

Table 5 lists the results considering different stride values for the ROC AUC and PR-

AUC scores. The scene presented 19,968 × 19,968-pixel dimensions, and varying the 

dimensions would directly affect the mapping time because the number of necessary 

iterations would change. This scene used a 128-pixel stride, which corresponds to no 

overlapping pixels, takes nearly 22 min to complete. The required time quickly escalates 

when reducing the stride. The time nearly quadruplicated when reducing the stride by 

two. Within those tests, the metrics keep climbing when reducing the strides. However, 

the improvement tends to get lower each time. Figure 6 shows some differences in 

predictions with distinct strides. The quality of the data segmentation improves by 

decreasing the stride, but the main information is knowing where the wind farms are. 

Thus, the stride choice for practical applications will depend on the types of errors present 

(such as continuity errors) and the computational resources. 

Table 5. Receiver operation characteristic (ROC AUC), precision-recall area under the curve (PR 

AUC), intersection over union (IoU), and mapping time using different stride values. 

 Stride 16 Stride 32 Stride 64 Stride 128 

ROC AUC 98.23 97.96 95.94 94.03 

PR AUC 87.22 85.41 82.27 71.68 

IoU 69.38 68.95 66.28 60.78 

Mapping time 

(hr:min:sec) 
22:01:21 5:30:20 01:22:32 00:21:58 
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Figure 6. Differences in the results from the sliding windows approach using different stride 

values, in which A, B, and C are three CBERS-4A images, A1, B1, and C1 are the predictions using 

a stride of 128, and A2, B2, and C2 are the predictions using a stride of 16. 

3.3. Final GIS Representation 

Figure 7 shows the final representation with the targets in shapefile format after the 

raster to polygon operation. Noisy representations are prevalent errors that, in this 

situation, would bring misleading results because we can estimate the number of wind 

power plants as the number of polygons. Noisy polygons are predominantly much 

smaller than those in wind farms. Wind farms average more than 900 m2, and errors are 

generally less than 350 m2. Thus, elimination using a size threshold value is a viable 

solution to avoid this type of error. To prove this case, Table 6 lists the per-object results, 

in which the accuracy is over 90%, showing the efficiency of the overall method. The 

elimination procedure significantly impacts this kind of analysis because the total number 

of eliminated noisy features was 1092, which would lower the presented metrics 

considerably and provide misleading results for inspection and decision-making. Another 

interesting result is the absence of false negatives, meaning that the deep learning 

algorithm detected all wind plants. The main errors were the false positives from similar 

features, including shadows and white objects. Figure 8 shows four examples of false 

positive errors, in which Figure 8A is an equivalent tower structure, and Figure 8B–D are 

preliminary constructions in the location of wind plants, which present similar designs 

and shadows. Some of the errors are difficult even for humans to identify. 
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Figure 7. Results using GIS software, and three zoomed areas (A, B, and C), in which the different 

colored objects represent different instances from wind plants. 

Table 6. Per-object metrics considering the true positives, false positives, false negatives, and overall 

accuracy. 

Metric Result 

True Positives 369 

False Positives 37 

False Negatives 0 

Accuracy 90.88 
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Figure 8. Four error examples (A, B, C, and D) in the final classification. 

4. Discussion 

The discussion is subdivided into the main topics of novelties presented in this study: 

(Section 4.1) the importance of the application, (Section 4.2) the significance of the 

proposed data-centric approach, and (Section 4.3) the interpretation and comparison of 

the deep-learning results. 

4.1. Importance of the Application and Dataset 

The diversification of the Brazilian energy mix with renewable sources and the 

establishment of alternatives to hydroelectric plants are fundamental strategies to be in 

line with the commitment to reduce carbon emissions of the 2030 agenda and minimize 

the dependence on hydropower, which could bring energy security concerns in case of 

long periods of drought. In this sense, the expansion of energy production needed to meet 

future demands will rely on more decentralized and intermittent sources such as wind 

and solar. The construction of wind farms has increased significantly due to the vast 

resource of this natural source in the Brazilian territory and government actions to reduce 

the risk that allows a high power-generation capacity at competitive costs [85,86].  

The recent prospect of accelerated growth in wind generation capacity makes it 

imperative that regulatory agencies invest in technological innovations that quickly 

satisfy regulatory demands. Technological improvement to obtain continuous inspection 

of works in progress or under concession is a crucial factor in increasing efficiency and 

effectiveness given the increasing number of processes, lack of ANEEL employees 

(particularly for inspection in rural areas), and the high degree of irregularities [22,87]. 

Therefore, the government and market players must be able to monitor the progress of 

the construction of new wind farms to guarantee investments and prospection of areas. 

Developing a technological system based on remote sensing images and deep learning 
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establishes a vital tool and database capable of continuous monitoring that can improve 

inspection with reduced human work and promote other innovations in spatial analysis. 

In addition, ongoing surveillance based on free remote sensing data encourages investors 

to adhere and comply with the regulatory process and allows special attention to be given 

to disclosing information on investments in wind energy production. Spatial information, 

constantly updated and available for public consultation, allows the temporal evaluation 

of investments in infrastructure, favoring investors, community, and public agencies in 

planning significant decisions in the electricity sector. Therefore, this research establishes 

an automated pipeline solution for monitoring the construction of wind farms by using 

remote sensing and deep learning methods, achieving low costs, high frequency, and 

coverage of large areas. 

4.2. Significance of the Data-Centric Approach 

This study presented a novel data-centric approach to mapping wind plants by using 

deep learning. Unlike previous studies that rely solely on points for identifying wind 

turbines [56,57], our approach leverages semantic segmentation to achieve a more 

comprehensive target representation. Our approach offers several advantages over 

traditional point-based methods, as follows. 

• Detailed Object Assessment: By using semantic segmentation to delineate the 

features of wind turbines, we can gather more information about the object, allowing 

for a broader range of future studies, such as the proper identification of different 

stages of wind plant construction. 

• Consistent Annotation Pattern: Our approach ensures a more consistent pattern in 

the annotations, leading to more accurate results. Point-based approaches can be 

unpredictable and reduce the model’s ability to generalize. 

• Easy Conversion to Points: Our pipeline includes transforming predictions into 

vectors, making it easy to convert the segmentation results into points. However, the 

reverse application is not possible. For example, we have created a point shapefile 

for each target by using GIS software (Figure 9). 

• Robust Dataset: Our annotation pattern is more understandable for other researchers 

and helps increase the robustness of the dataset. Point-based methods can be prone 

to error, but our approach avoids this problem by considering the entire object. 

• Leveraging Shadows: Our approach leverages the shadow cast by wind turbines, 

which is often an undesired feature, as one of the main features for our annotations. 

By doing so, we reduce the possibility of predicting noisy features and improve the 

accuracy of the results. 

Moreover, our approach stands out by integrating semantic segmentation and GIS to 

obtain instance segmentation results, offering a significant advantage over traditional 

methods. Creating instance segmentation datasets has always been challenging due to the 

complex annotation format and the demanding sliding window mechanism, which 

requires precise bounding boxes and instance-level predictions. The proposed method 

simplifies the process, allowing for a decrease in the stride value to obtain more accurate 

results but with increased processing time. Additionally, the GIS environment enables 

noisy feature removal based on the polygon size. In the present case, the elimination of 

polygons with areas below 350 m2 achieved an accuracy per object of 90%. This noise 

removal highlights our solution’s efficiency and customization capabilities, making it an 

effective alternative to traditional methods. Moreover, GIS facilitates the analysis and 

interpretation of results in polygon and georeferenced format, presenting a more robust 

ability to understand them on an interactive display. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 23 
 

 

 

Figure 9. Mapping of the wind plants with three zoomed areas (A, B, and C) considering point 

shapefile representation. 

4.3. Interpretation and Comparison of the Deep Learning Results 

This remote sensing application uses deep-learning architectures to detect wind 

farms by establishing an extensive database containing a wide distribution in tropical 

scenarios for semantic segmentation. There is great importance in elaborating a new 

dataset, and this study proposes the first deep-learning dataset for wind energy in the 

Brazilian territory to be publicly available. Unlike the wind turbine dataset developed by 

Manso–Callejo et al. [56], which considered high-resolution aerial photography images, 

the present study developed the first database with orbital images with continuous labels. 

This study does not propose any novelties in deep learning architectures. However, 

we thoroughly analyzed state-of-the-art methods to verify the differences in performance 



Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

and choose the best model that suits our data. The results of the different CNN models 

reached a high accuracy, in which the best model was the LinkNet architecture with Eff-

B7 backbone. However, the U-Net and U-Net++ models using the Eff-B7 backbone 

obtained close accuracy metrics. These results show that the choice of the deep learning 

architecture and backbone is less important than assuring the data quality. In agreement 

with our results, Han et al. [59] also presented better results for the LinkNet architecture. 

Our findings differ from Manso-Callejo et al. [57], in which the best result was using the 

LinkNet with the Eff-B3 backbone, and Manso-Callejo et al. [56], in which the best result 

was using the LinkNet with the Eff-B2 backbone. It is worth mentioning that none of those 

studies tested the Efficient-net-B7 backbone. A possible reason is the additional 

computational resources needed because the Efficient-net-B7 has around 63 million 

parameters, Efficient-net-B3 has 10 million, and Efficient-net-B0 has four million, showing 

that some state-of-the-art models require robust computational resources, and their 

training may not be possible. 

5. Conclusions 

This research aimed to create a comprehensive pipeline to detect and monitor the 

construction of wind power plants in the Brazilian territory by using deep learning, 

remote sensing images with free distribution (CBERS-4A), and GIS technologies. 

Formulating a low-cost and efficient solution for continuously monitoring the execution 

of the works is a significant advance for ANEEL, avoiding the survey in the field. The 

database covered the entire Brazilian territory, offering an extensive resource with several 

intraregional characteristics applicable to training new models or detecting wind farms in 

other regions through transfer learning. In addition, the study proposes the following 

contributions: (a) a new data-centric approach, (b) the use of semantic segmentation and 

GIS to obtain instance-level predictions, and (c) a new easy-to-replicate annotation 

pattern. The LinkNet architecture with EfficientNet-B7 backbone obtained the best results 

among 15 evaluated models. Elaborating large images from deep learning frames (128 × 

128 pixels) used the sliding window method with different stride values (16, 32, 64, and 

128 pixels) to assess the tradeoff between performance accuracy and computational time. 

The conversion of semantic segmentation to instance segmentation based on the 

polygonization of the segments and treatment in a GIS environment allowed a simple 

identification and counting of the wind power plants and filtering of eventual noises by 

the polygon size. For future studies, exploring other deep learning architectures and 

backbones would be beneficial to improve the model’s performance further and consider 

incorporating other mechanisms, such as incrementing the dataset with more images from 

different places. Additionally, it would be interesting to examine the scalability of the 

proposed pipeline in different countries with varying landscapes and wind plant 

configurations. 

Author Contributions: Conceptualization, O.L.F.d.C., O.A.d.C.J., A.G.O., and I.H.; methodology, 

O.L.F.d.C.; software, O.L.F.d.C.; validation, A.O.d.A.; formal analysis, O.L.F.d.C. and O.A.d.C.J.; 

investigation, O.L.F.d.C. and A.O.d.A.; resources, O.A.d.C.J., R.A.T.G., A.G.O., and I.H.; data 

curation, O.L.F.d.C. and A.O.d.A.; writing—original draft preparation, O.L.F.d.C. and O.A.d.C.J.; 

writing—review and editing, R.F.G., R.A.T.G., D.L.B., and I.H.; visualization, O.L.F.d.C. and 

A.O.d.A.; supervision, O.A.d.C.J., R.A.T.G., R.F.G., and D.L.B.; project administration, O.L.F.d.C., 

O.A.d.C.J., A.G.O., and I.H.; funding acquisition, O.A.d.C.J., R.A.T.G., and R.F.G. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This research was funded by the following institutions: National Council for Scientific and 

Technological Development (434838/2018-7 and 312608/2021-7) and Coordination for the 

Improvement of Higher Education Personnel (Finance Code 001). 

Data Availability Statement: The data that support the findings of this study are available from the 

corresponding author, upon reasonable request. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 23 
 

 

Acknowledgments: The authors are grateful for financial support from the CNPq fellowship 

(Osmar Abílio de Carvalho Júnior, Roberto Arnaldo Trancoso Gomes, and Renato Fontes 

Guimarães). Special thanks are given to the Laboratory of Spatial Information System research 

group of the University of Brasilia for technical support. The authors also thank the Brazilian 

National Electrical Agency (ANEEL), who provided technical support and disposed of crucial data 

and researchers that helped conduct this project. Finally, the authors acknowledge the contribution 

of anonymous reviewers. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lima, M.A.; Mendes, L.F.R.; Mothé, G.A.; Linhares, F.G.; de Castro, M.P.P.; da Silva, M.G.; Sthel, M.S. Renewable energy in 

reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environ. Dev. 2020, 33, 100504. 

https://doi.org/10.1016/j.envdev.2020.100504. 

2. Tollefson, J. Brazil ratification pushes Paris climate deal one step closer. Nature 2020, 1–2. 

https://doi.org/10.1038/nature.2016.20588. 

3. Jiang, X.; Lu, D.; Moran, E.; Calvi, M.F.; Dutra, L.V.; Li, G. Examining impacts of the Belo Monte hydroelectric dam construction 

on land-cover changes using multitemporal Landsat imagery. Appl. Geogr. 2018, 97, 35–47. 

https://doi.org/10.1016/j.apgeog.2018.05.019. 

4. Mayer, A.; Castro-Diaz, L.; Lopez, M.C.; Leturcq, G.; Moran, E.F. Is hydropower worth it? Exploring amazonian resettlement, 

human development and environmental costs with the Belo Monte project in Brazil. Energy Res. Soc. Sci. 2021, 78, 102129. 

https://doi.org/10.1016/j.erss.2021.102129. 

5. Gauthier, C.; Lin, Z.; Peter, B.G.; Moran, E.F. Hydroelectric Infrastructure and Potential Groundwater Contamination in the 

Brazilian Amazon: Altamira and the Belo Monte Dam. Prof. Geogr. 2019, 71, 292–300. 

https://doi.org/10.1080/00330124.2018.1518721. 

6. Gauthier, C.; Moran, E.F. Public policy implementation and basic sanitation issues associated with hydroelectric projects in the 

Brazilian Amazon: Altamira and the Belo Monte dam. Geoforum 2018, 97, 10–21. https://doi.org/10.1016/j.geoforum.2018.10.001. 

7. Castro-Diaz, L.; Lopez, M.C.; Moran, E. Gender-Differentiated Impacts of the Belo Monte Hydroelectric Dam on Downstream 

Fishers in the Brazilian Amazon. Hum. Ecol. 2018, 46, 411–422. https://doi.org/10.1007/s10745-018-9992-z. 

8. Runde, A.; Hallwass, G.; Silvano, R.A.M. Fishers’ Knowledge Indicates Extensive Socioecological Impacts Downstream of 

Proposed Dams in a Tropical River. One Earth 2020, 2, 255–268. https://doi.org/10.1016/j.oneear.2020.02.012. 

9. Bro, A.S.; Moran, E.; Calvi, M.F. Market participation in the age of big dams: The Belo Monte hydroelectric dam and its impact 

on rural Agrarian households. Sustainability 2018, 10, 1592. https://doi.org/10.3390/su10051592. 

10. Calvi, M.F.; Moran, E.F.; da Silva, R.F.B.; Batistella, M. The construction of the Belo Monte dam in the Brazilian Amazon and its 

consequences on regional rural labor. Land Use Policy 2020, 90, 104327. https://doi.org/10.1016/j.landusepol.2019.104327. 

11. Ferraz de Andrade Santos, J.A.; de Jong, P.; Alves da Costa, C.; Torres, E.A. Combining wind and solar energy sources: Potential 

for hybrid power generation in Brazil. Util. Policy 2020, 67, 101084. https://doi.org/10.1016/j.jup.2020.101084. 

12. Ministério de Minas e Energia; Empresa de Pesquisa Energética. Plano Decenal de Expansão de Energia 2031; MME/EPE: Brasilia, 

Brazil, 2022. 

13. Mendes, L.F.R.; Sthel, M.S. Analysis of the hydrological cycle and its impacts on the sustainability of the electric matrix in the 

state of Rio de Janeiro/Brazil. Energy Strateg. Rev. 2018, 22, 119–126. https://doi.org/10.1016/j.esr.2018.08.015. 

14. Hunt., J.D.; Stilpen, D.; de Freitas, M.A.V. A review of the causes, impacts and solutions for electricity supply crises in Brazil. 

Renew. Sustain. Energy Rev. 2018, 88, 208–222. https://doi.org/10.1016/j.rser.2018.02.030. 

15. Corrêa Da Silva, R.; De Marchi Neto, I.; Silva Seifert, S. Electricity supply security and the future role of renewable energy 

sources in Brazil. Renew. Sustain. Energy Rev. 2016, 59, 328–341. https://doi.org/10.1016/j.rser.2016.01.001. 

16. Mendes, L.F.R.; Sthel, M.S. Thermoelectric Power Plant for Compensation of Hydrological Cycle Change: Environmental 

Impacts in Brazil. Case Stud. Environ. 2017, 1, 1–7. https://doi.org/10.1525/cse.2017.000471. 

17. Melo, L.B.; Estanislau, F.B.G.L.; Costa, A.L.; Fortini, Â . Impacts of the hydrological potential change on the energy matrix of the 

Brazilian State of Minas Gerais: A case study. Renew. Sustain. Energy Rev. 2019, 110, 415–422. 

https://doi.org/10.1016/j.rser.2019.05.018. 

18. Reichert, B.; Souza, A.M. Interrelationship simulations among Brazilian electric matrix sources. Electr. Power Syst. Res. 2021, 193, 

107019. https://doi.org/10.1016/j.epsr.2020.107019. 

19. Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–

601. https://doi.org/10.1016/j.rser.2017.02.081. 

20. de Jong, P.; Barreto, T.B.; Tanajura, C.A.S.; Kouloukoui, D.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Torres, E.A. Estimating the 

impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renew. Energy 

2019, 141, 390–401. https://doi.org/10.1016/j.renene.2019.03.086. 

21. Filgueiras, A.; Thelma Maria, T.M. V. Wind energy in Brazil—Present and future. Renew. Sustain. Energy Rev. 2003, 7, 439–451. 

https://doi.org/10.1016/S1364-0321(03)00068-6. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 23 
 

 

22. Orlandi, A.G.; Farias, R.A.N.; de Carvalho Junior, O.A.; Guimarães, R.F.; Gomes, R.A.T. Controle gerencial na administração 

pública e transformação digital: Sensoriamento remoto. Cad. Gestão Pública Cid. 2021, 26, 1–24. 

https://doi.org/10.12660/cgpc.v26n83.80456. 

23. Bradbury, K.; Saboo, R.; Johnson, T.L.; Malof, J.M.; Devarajan, A.; Zhang, W.; Collins, L.M.; Newell, R.G. Distributed solar 

photovoltaic array location and extent dataset for remote sensing object identification. Sci. Data 2016, 3, 1–9. 

https://doi.org/10.1038/sdata.2016.106. 

24. Jie, Y.; Ji, X.; Yue, A.; Chen, J.; Deng, Y.; Chen, J.; Zhang, Y. Combined Multi-Layer Feature Fusion and Edge Detection Method 

for Distributed Photovoltaic Power Station Identification. Energies 2020, 13, 6742. https://doi.org/10.3390/en13246742. 

25. Zhuang, L.; Zhang, Z.; Wang, L. The automatic segmentation of residential solar panels based on satellite images: A cross 

learning driven U-Net method. Appl. Soft Comput. J. 2020, 92, 106283. https://doi.org/10.1016/j.asoc.2020.106283. 

26. Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Djerriri, K.; Briottet, X.; Houet, T.; Le Bris, A.; Weber, C. Partial linear NMF-based 

unmixing methods for detection and area estimation of photovoltaic panels in urban hyperspectral remote sensing data. Remote 

Sens. 2019, 11, 2164. https://doi.org/10.3390/rs11182164. 

27. Malof, J.M.; Bradbury, K.; Collins, L.M.; Newell, R.G. Automatic detection of solar photovoltaic arrays in high resolution aerial 

imagery. Appl. Energy 2016, 183, 229–240. https://doi.org/10.1016/j.apenergy.2016.08.191. 

28. Xia, Z.; Li, Y.; Guo, X.; Chen, R. High-resolution mapping of water photovoltaic development in China through satellite imagery. 

Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102707. https://doi.org/10.1016/j.jag.2022.102707. 

29. da Costa, M.V.C.V.; de Carvalho, O.L.F.; Orlandi, A.G.; Hirata, I.; de Albuquerque, A.O.; de Silva, F.V.; Guimarães, R.F.; Gomes, 

R.A.T.; de Carvalho Júnior, O.A. Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic 

Segmentation. Energies 2021, 14, 2960. https://doi.org/10.3390/en14102960. 

30. Zhang, X.; Zeraatpisheh, M.; Rahman, M.M.; Wang, S.; Xu, M. Texture is important in improving the accuracy of mapping 

photovoltaic power plants: A case study of ningxia autonomous region, china. Remote Sens. 2021, 13, 3909. 

https://doi.org/10.3390/rs13193909. 

31. Plakman, V.; Rosier, J.; van Vliet, J. Solar park detection from publicly available satellite imagery. GIScience Remote Sens. 2022, 

59, 461–480. https://doi.org/10.1080/15481603.2022.2036056. 

32. Masoom, A.; Kosmopoulos, P.; Bansal, A.; Kazadzis, S. Solar energy estimations in india using remote sensing technologies and 

validation with sun photometers in urban areas. Remote Sens. 2020, 12, 254. https://doi.org/10.3390/rs12020254. 

33. Kausika, B.; van Sark, W. Calibration and Validation of ArcGIS Solar Radiation Tool for Photovoltaic Potential Determination 

in the Netherlands. Energies 2021, 14, 1865. https://doi.org/10.3390/en14071865. 

34. Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.C.; Coimbra, C.F.M. History and trends in solar irradiance and PV power 

forecasting: A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. 

https://doi.org/10.1016/j.solener.2017.11.023. 

35. Al Garni, H.Z.; Awasthi, A. Solar PV Power Plants Site Selection. In Advances in Renewable Energies and Power Technologies; 

Yahyaoui, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 57–75, ISBN 9780128132173. 

36. Gherboudj, I.; Ghedira, H. Assessment of solar energy potential over the United Arab Emirates using remote sensing and 

weather forecast data. Renew. Sustain. Energy Rev. 2016, 55, 1210–1224. https://doi.org/10.1016/j.rser.2015.03.099. 

37. Mahtta, R.; Joshi, P.K.; Jindal, A.K. Solar power potential mapping in India using remote sensing inputs and environmental 

parameters. Renew. Energy 2014, 71, 255–262. https://doi.org/10.1016/j.renene.2014.05.037. 

38. Polo, J.; Bernardos, A.; Navarro, A.A.; Fernandez-Peruchena, C.M.; Ramírez, L.; Guisado, M.V.; Martínez, S. Solar resources and 

power potential mapping in Vietnam using satellite-derived and GIS-based information. Energy Convers. Manag. 2015, 98, 348–

358. https://doi.org/10.1016/j.enconman.2015.04.016. 

39. Wang, S.; Zhang, L.; Fu, D.; Lu, X.; Wu, T.; Tong, Q. Selecting photovoltaic generation sites in Tibet using remote sensing and 

geographic analysis. Sol. Energy 2016, 133, 85–93. https://doi.org/10.1016/j.solener.2016.03.069. 

40. Spyridonidou, S.; Sismani, G.; Loukogeorgaki, E.; Vagiona, D.G.; Ulanovsky, H.; Madar, D. Sustainable Spatial Energy Planning 

of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach. Energies 2021, 14, 551. 

https://doi.org/10.3390/en14030551. 

41. Sánchez-Aparicio, M.; Del Pozo, S.; Martín-Jiménez, J.A.; González-González, E.; Andrés-Anaya, P.; Lagüela, S. Influence of 

lidar point cloud density in the geometric characterization of rooftops for solar photovoltaic studies in cities. Remote Sens. 2020, 

12, 3726. https://doi.org/10.3390/rs12223726. 

42. Tiwari, A.; Meir, I.A.; Karnieli, A. Object-based image procedures for assessing the solar energy photovoltaic potential of 

heterogeneous rooftops using airborne LiDAR and orthophoto. Remote Sens. 2020, 12, 223. https://doi.org/10.3390/rs12020223. 

43. Prieto, I.; Izkara, J.L.; Usobiaga, E. The application of LiDAR data for the solar potential analysis based on urban 3D model. 

Remote Sens. 2019, 11, 2348. https://doi.org/10.3390/rs11202348. 

44. Li, Y.; Liu, C. Estimating solar energy potentials on pitched roofs. Energy Build. 2017, 139, 101–107. 

https://doi.org/10.1016/j.enbuild.2016.12.070. 

45. Bauni, V.; Schivo, F.; Capmourteres, V.; Homberg, M. Ecosystem loss assessment following hydroelectric dam flooding: The 

case of Yacyretá, Argentina. Remote Sens. Appl. Soc. Environ. 2015, 1, 50–60. https://doi.org/10.1016/j.rsase.2015.06.003. 

46. Chen, G.; Powers, R.P.; de Carvalho, L.M.T.; Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation 

in response to the operation of the Tucuruí hydroelectricdam in the Amazon basin. Appl. Geogr. 2015, 63, 1–8. 

https://doi.org/10.1016/j.apgeog.2015.06.001. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 23 
 

 

47. Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dramatic inundation changes of China’s two largest freshwater lakes linked to the Three 

Gorges Dam. Environ. Sci. Technol. 2013, 47, 9628–9634. https://doi.org/10.1021/es4009618. 

48. Manyari, W.V.; de Carvalho, O.A. Environmental considerations in energy planning for the Amazon region: Downstream 

effects of dams. Energy Policy 2007, 35, 6526–6534. https://doi.org/10.1016/j.enpol.2007.07.031. 

49. Deng, C.; Wang, S.; Huang, Z.; Tan, Z.; Liu, J. Unmanned aerial vehicles for power line inspection: A cooperative way in 

platforms and communications. J. Commun. 2014, 9, 687–692. https://doi.org/10.12720/jcm.9.9.687-692. 

50. Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T. Remote sensing 

methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119, 10–31. 

https://doi.org/10.1016/j.isprsjprs.2016.04.011. 

51. Ahmad, J.; Malik, A.S.; Xia, L.; Ashikin, N. Vegetation encroachment monitoring for transmission lines right-of-ways: A survey. 

Electr. Power Syst. Res. 2013, 95, 339–352. https://doi.org/10.1016/j.epsr.2012.07.015. 

52. Zhang, R.; Yang, B.; Xiao, W.; Liang, F.; Liu, Y.; Wang, Z. Automatic Extraction of High-Voltage Power Transmission Objects 

from UAV Lidar Point Clouds. Remote Sens. 2019, 11, 2600. https://doi.org/10.3390/rs11222600. 

53. Awrangjeb, M. Extraction of Power Line Pylons and Wires Using Airborne LiDAR Data at Different Height Levels. Remote Sens. 

2019, 11, 1798. https://doi.org/10.3390/rs11151798. 

54. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. https://doi.org/10.1038/nature14539. 

55. Nogueira, K.; Penatti, O.A.B.; dos Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing 

scene classification. Pattern Recognit. 2017, 61, 539–556. https://doi.org/10.1016/j.patcog.2016.07.001. 

56. Manso-Callejo, M.-A.; Cira, C.-I.; Garrido, R.P.A.; Matesanz, F.J.G. First Dataset of Wind Turbine Data Created at National Level 

With Deep Learning Techniques From Aerial Orthophotographs With a Spatial Resolution of 0.5 M/Pixel. IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens. 2021, 14, 7968–7980. https://doi.org/10.1109/JSTARS.2021.3101934. 

57. Manso-Callejo, M.-Á .; Cira, C.-I.; Alcarria, R.; Arranz-Justel, J.-J. Optimizing the Recognition and Feature Extraction of Wind 

Turbines through Hybrid Semantic Segmentation Architectures. Remote Sens. 2020, 12, 3743. https://doi.org/10.3390/rs12223743. 

58. Schulz, M.; Boughattas, B.; Wendel, F. DetEEktor: Mask R-CNN based neural network for energy plant identification on aerial 

photographs. Energy AI 2021, 5, 100069. https://doi.org/10.1016/j.egyai.2021.100069. 

59. Han, M.; Wang, H.; Wang, G.; Liu, Y. Targets Mask U-Net for wind turbines detection in remote sensing images. Int. Arch. 

Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–3, 475–480. https://doi.org/10.5194/isprs-archives-XLII-3-475-2018. 

60. Abedini, F.; Bahaghighat, M.; S’hoyan, M. Wind turbine tower detection using feature descriptors and deep learning. Facta 

Univ.—Ser. Electron. Energ. 2020, 33, 133–153. https://doi.org/10.2298/FUEE2001133A. 

61. Shihavuddin, A.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.; Bjorholm Dahl, A.; 

Reinhold Paulsen, R. Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis. Energies 

2019, 12, 676. https://doi.org/10.3390/en12040676. 

62. de Carvalho, O.L.F.; dos Santos de Moura, R.; de Albuquerque, A.O.; de Bem, P.P.; Pereira, R.d.C.; Weigang, L.; Borges, D.L.; 

Guimarães, R.F.; Gomes, R.A.T.; de Carvalho Júnior, O.A. Instance segmentation for governmental inspection of small touristic 

infrastructure in beach zones using multispectral high-resolution worldview-3 imagery. ISPRS Int. J. Geo-Information 2021, 10, 

813. https://doi.org/10.3390/ijgi10120813. 

63. Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object 

detection. Expert Syst. Appl. 2021, 172, 114602. https://doi.org/10.1016/j.eswa.2021.114602. 

64. Shen, G.; Xu, B.; Jin, Y.; Chen, S.; Zhang, W.; Guo, J.; Liu, H.; Zhang, Y.; Yang, X. Monitoring wind farms occupying grasslands 

based on remote-sensing data from China’s GF-2 HD satellite—A case study of Jiuquan city, Gansu province, China. Resour. 

Conserv. Recycl. 2017, 121, 128–136. https://doi.org/10.1016/j.resconrec.2016.06.026. 

65. Mandroux, N.; Dagobert, T.; Drouyer, S.; Von Gioi, R.G. Wind Turbine Detection on Sentinel-2 Images. In Proceedings of the 

2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4888–

4891. 

66. Vrabel, J.C.; Stensaas, G.L.; Anderson, C.; Christopherson, J.; Kim, M.; Park, S.; Cantrell, S. System characterization report on 

the China-Brazil Earth Resources Satellite-4A (CBERS-4A). In System Characterization of Earth Observation Sensors; Ramaseri 

Chandra, S.N., Ed.; U.S. Geological Survey Open-File Report 2021-1030; U.S. Geological Survey: Reston, VA, USA, 2021; p. 35. 

67. Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 2020, 

97, 103910. https://doi.org/10.1016/j.imavis.2020.103910. 

68. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects 

in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Tomas, 

P., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8693, pp. 

740–755, ISBN 978-3-319-10601-4. 

69. de Carvalho, O.L.F.; de Carvalho Júnior, O.A.; de Silva, C.R.; de Albuquerque, A.O.; Santana, N.C.; Borges, D.L.; Gomes, R.A.T.; 

Guimarães, R.F. Panoptic Segmentation Meets Remote Sensing. Remote Sens. 2022, 14, 965. https://doi.org/10.3390/rs14040965. 

70. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. 

https://doi.org/10.1109/TPAMI.2018.2844175. 

71. de Carvalho, O.L.F.; Junior, O.A.d.C.; de Albuquerque, A.O.; Santana, N.C.; Guimaraes, R.F.; Gomes, R.A.T.; Borges, D.L. 

Bounding Box-Free Instance Segmentation Using Semi-Supervised Iterative Learning for Vehicle Detection. IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens. 2022, 15, 3403–3420. https://doi.org/10.1109/JSTARS.2022.3169128. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 23 
 

 

72. Mou, L.; Zhu, X.X. Vehicle Instance Segmentation From Aerial Image and Video Using a Multitask Learning Residual Fully 

Convolutional Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6699–6711. https://doi.org/10.1109/TGRS.2018.2841808. 

73. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning 

Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. 

74. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 

2016, 187, 27–48. https://doi.org/10.1016/j.neucom.2015.09.116. 

75. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Navab, N., 

Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015; Volme 9351, pp. 234–241, ISBN 9783319245737. 

76. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic 

Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, 

V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; 

Volume 11211, pp. 833–851. 

77. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In 

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 

2017; pp. 936–944. 

78. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image 

Segmentation. In Miccai; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., 

Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, 

Switzerland, 2018; Volume 11045, pp. 3–11, ISBN 978-3-030-00888-8. 

79. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th 

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. 

80. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings 

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 

5987–5995. 

81. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 45, pp. 770–778. 

82. da Costa, L.B.; de Carvalho, O.L.F.; de Albuquerque, A.O.; Gomes, R.A.T.; Guimarães, R.F.; de Carvalho Júnior, O.A. Deep 

semantic segmentation for detecting eucalyptus planted forests in the Brazilian territory using Sentinel-2 imagery. Geocarto Int. 

2021, 37, 6538–6550. https://doi.org/10.1080/10106049.2021.1943009. 

83. de Albuquerque, A.O.; de Carvalho Júnior, O.A.; de Carvalho, O.L.F.; de Bem, P.P.; Ferreira, P.H.G.; de Moura, R. dos S.; Silva, 

C.R.; Trancoso Gomes, R.A.; Fontes Guimarães, R. Deep Semantic Segmentation of Center Pivot Irrigation Systems from 

Remotely Sensed Data. Remote Sens. 2020, 12, 2159. https://doi.org/10.3390/rs12132159. 

84. de Carvalho, O.L.F.; de Carvalho Junior, O.A.; de Albuquerque, A.O.; Santana, N.C.; Borges, D.L. Rethinking Panoptic 

Segmentation in Remote Sensing: A Hybrid Approach Using Semantic Segmentation and Non-Learning Methods. IEEE Geosci. 

Remote Sens. Lett. 2022, 19, 3512105. https://doi.org/10.1109/LGRS.2022.3172207. 

85. Simas, M.; Pacca, S. Assessing employment in renewable energy technologies: A case study for wind power in Brazil. Renew. 

Sustain. Energy Rev. 2014, 31, 83–90. https://doi.org/10.1016/j.rser.2013.11.046. 

86. Rego, E.E.; de Oliveira Ribeiro, C. Successful Brazilian experience for promoting wind energy generation. Electr. J. 2018, 31, 13–

17. https://doi.org/10.1016/j.tej.2018.02.003. 

87. Orlandi, A.G.; De Carvalho Junior, O.A.; Mendonça, R.C.N.; Guimarães, R.F.; Gomes, R.A.T. Regional management and 

development with free multi-temporal images: The case of hydroelectric power inspection. Rev. Bras. Gestão Desenvolv. Reg. 2022, 

18. https://doi.org/10.54399/rbgdr.v18i2.6430. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


