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Seismic safety assessment of “Palácio do Itamaraty” at Brasília 
reliability-based

P.Q. Rodrigues & J.C. Pantoja
University of Brasilia, Brasilia, Federal District, Brazil

P.S.T. Miranda
Federal Institute of Education, Science and Technology of Ceará - IFCE, Ceará, Brazil

ABSTRACT: In Brasilia (Brazil) heritage buildings have been designed without considering 
seismic loads. The aim of the paper is to assess seismic behavior of reinforced concrete struc-
ture of “Palácio do Itamaraty”. In this study, Monte Carlo simulation technique is imple-
mented in Hirosawa method to examine structural level of safety. Reliability indexes for each 
floor are estimated and comparisons to target reliability indexes are made. The sensitivity of 
different input variables is also studied. Seismic indexes of structure for each floor remained 
greater than seismic demand indexes in all Brazilian seismic zones through Hirosawa method. 
Despite of, inadequate reliability indexes is noticed in all floor, which implies that structure is 
not enough to guarantee an adequate performance. Sensitivity analysis shows the influence of 
irregularity of structure in seismic response. The results highlight the importance of 
a probabilistic approach by Hirosawa Method to assertive decisions of conservation and 
rehabilitation of architectural heritage subject to seismic hazards.

1 INTRODUCTION

The “Palácio do Itamaraty” in Brasilia is a symbol of modern architecture designed by the archi-
tect Oscar Niemeyer. The headquarter of Ministry of Foreign Affairs of Brazil was opened in 
1970 and from a structural point of view the building is carried by a sequence of reinforced con-
crete frames with floors and the span of the slab is quite large. Once this historic heritage owns 
architectural and historic relevance it must be preserved and conserved (ICCOMOS, 2013).

Due to low seismicity in Brazil, “Palácio do Itamaraty” was not designed to withstand seis-
mic loads and few researchers have evaluated seismic vulnerability of Brazilian buildings. 
Nevertheless, increasing of seismic hazard in localized areas have been recorded (Petersen 
et al. 2018). Miranda (2021) developed an exhausted study of structures from Brazilian city 
with high seismicity. In this context, the purpose of the present work is to evaluate the seismic 
performance of “Palácio do Itamaraty” in a probabilistic approach. Assessment is carried out 
by Hirosawa method adopted by Japan Building Disaster Prevention Association (JBDPA) 
and adapted to Brazilian reality (Miranda, 2013). The uncertainties involved in the problem 
are taken into account by Monte Carlo simulation implemented in Hirosawa Method.

Japanese Seismic Index Method or Hirosawa Method has been used to evaluate seismic per-
formance of existing reinforced concrete buildings with less than six stories (Calvi et al, 2009). 
Pan American Health Organization adjusted this methodology and have implemented in 
Latin America, mainly in Chile, Peru, Mexico and Ecuador (PAHO, 2000). Ozdemir et at 
(2005) proposed an adaptation and calibration to Turkish buildings using nonlinear static 
analyses of 12 buildings. Letelier & Parodi (2021) analyzed a sample of 116 buildings in Chile 
comparing their real behavior during the 2010 earthquake with seismic performance specified 
by Hirosawa method.
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2 SEISMIC ASSESSMENT

In first level of procedure, Hirosawa method seeks to evaluate the strength of a story on the 
basis of average stresses and the cross-sectional area of columns without demanding for duc-
tility (Hiroyuki, 1981). The seismic index IS for the total earthquake resisting capacity of 
a story is defined by the product of three indices (1): basic seismic index E0, irregularity index 
SD and time index TD.

and E0:

where n = number of stories of a building, i = number of the story for evaluation, W = total 
weight, Ac = total cross-sectional area of columns in the story studied, τc = average shear 
stress at the ultimate state of columns, which may be taken as 7 kgf/cm² and Fc = ductility 
index of columns which may be taken as 1.0, a1 = effective strength factor of the columns and 
should be taken as 1.0. The influence of the deterioration is taken into account in the index 
TD varying from 0.7 to 0.8 according to inspection of the building (Hirosawa, 1992). For 
more advanced model see Biondini & Bianchi (2019). The methodology also estimates another 
index: seismic demand index of structure IS0 and should be calculated by eq. 3 regardless of 
the story building.

where ES = basic seismic demand index of structure, Z = zone index namely factor accounting 
for the seismic activities in the region of the site, G = ground index and considers the effects 
of the amplification of the surface soil and geological conditions and usage index (U) contem-
plates the use of the building. Seismic safety of structure shall be judged by IS > IS0. If this 
inequation is satisfied the building possess the seismic capacity required against the considered 
earthquake motions (JBDPA, 2001).

3 RELIABILITY ANALYSIS

3.1  Probability of failure and reliability index

According to Holicý & Vruouwenvelder (2005) one of the most important term in the theory 
of structural reliability is the probability of failure pf Structural behavior may be defined as 
the set of basic variables X ¼ X1; X2; � � � ; Xn½ � and limit state is given by the limit state func-
tion and It is defined as g(X) = 0. In general, probability of failure pf (4) remains below 
a given target probability. The failure is defined when a limit state is reached i.e. solicitation 
S exceeds resistance R. Probability of violation of limit state may be expressed as:

where fX(x) is the probability density function for the randomic variable X. Commonly reli-
ability is quantified in terms of index of reliability:
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where �� 1 �ð Þ = inverse normal distribution. For system in series involving multiples mode of 
failure, Equation 6 demonstrates failure probability of system composed of m members and 
then probability of survivor in Equation 7:

where D : F1 \ F2 \ F3 \ � � � \ Fm is the region or mode of survivor. A numerical approach 
is required and reliability analysis can be performed by Monte Carlo simulation (Melchers. 
2001) where repeated analyses are carried out with random outcomes of the basic variables 
X generated in accordance to their marginal density function fXi xið Þ; i ¼ 1; . . . ; n.

3.2  Target reliability level

The Probabilistic Model Code (2001) suggests target reliabilities for the ultimate limit state 
considering several consequence classes and cost of safety measures (Table 1).

4 SENSITIVITY ANALYSIS

In order to determine the most contributing input variable to an output behavior in Hirosawa 
Method or even ascertain some interactions effects within the model Sensitivity Analysis are 
need (Ioss & Lemaitre, 2015). SA allows to verify how the model responses varies when the 
input parameters of the model vary (Marelli et al, 2017). Also, how the uncertainty in the input 
of a model can be apportioned to different sources of uncertainty in the model input (Saltelli 
et al. 2000). There are several methods to evaluate sensitivity, the most complete and most 
costly is Morris Method that consists in discretizing input space for each variable and then per-
forming a giving number of one at a time design allowing to classifying inputs in groups of 
having negligible effects, inputs having large linear effects without interactions and. Morris 
method offers two sensitivity measures for each factor (8, 9): μ estimates the overall effect of the 
factor on the output and σ that measures nonlinearity and interaction effects of the input factor.

5 APPLICATION

5.1  Structural model

The building is characterized by a squared plan with sides measuring about 84 m (Figure 1). 
The overall building height is about 14 meters. The three-story RC structure is composed of 

Table 1. Target reliabilities considering one year reference period 
according to JCSS (2001).

Relative cost of safety measure

Consequences of failure

Minor Moderate Large

Large β = 3.1 β = 3.3 β = 3.7
Normal β = 3.7 β = 4.2 β = 4.4
Small β = 4.2 β = 4.4 Β = 4.7
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beam span of 6.0 m, 18.0 m and 36.0 m. The nominal material strength is fc = 40MPa for 
concrete in compression. Beams depth varies depending on the floor between 40 cm to 120 cm 
and width also varies between 8 cm to 400 cm. The free interstory height differs in each story. 
For first floor height is 2.88 m, the second one is 3.50 m and the last one is 4.82 m. The geom-
etry of cross-section varies in both shapes: trapezoid and rectangular. The structural model-
ling of “Palácio do Itamaraty” is exhibited in Figure 2.

5.2  Deterministic assessment

Analysis of the seismic behavior of the structure were developed first in a deterministic approach 
of Hirosawa Method. The period of the structure is about 0.4765 second. Seismic index of each 
floor was estimated and a summary of information are presented in Table 2 and Table 3.

Note that seismic indices of first, second and fourth are increasing owing to basic seismic 
index E0. This index takes in account cross sectional area of column and as the weight of the 
building upper the story decreases, the index E0 increases. As presented in Table 3 cross sec-
tional area reduces in third floor and impacts in index E0. The lower value of seismic index IS 

= 0.6215 is applied to all structure. Even though detailed inspection indicated the time index 
T = 0.8 due to the fact the age of building is upper to 30 years, it was considered the minimum 

Figure 1.  The external view of the “Palácio do Itamaraty”.

Figure 2.  Structural model of the “Palácio do Itamaraty”.

Table 2. Summary of input variables related to the floor 1 and 2 of “Palácio do Itamaraty”.

Floor 1 Floor 2

Level of floor +0.00 +3.60
Weight of the building upper the story (W) in kgf 18298435.02 14646983.91
Floor area in m² 5774.30 4424.28
Sum of cross-sectional area of column (Ac) in cm² 380800.00 418200.00
Fundamental Period (Ta) in seconds 0.4765 0.4765
Basic seismic index of structure E0 0.6474 0.7448
Irregularity Index SD 1.2 1.14
Time Index TD 0.7 0.7
Seismic index of Structure IS 0.6215 0.6792
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value in method T = 0.7. A class E soil is considered in this study. The seismic demand index 
of “Palácio do Itamaraty” concerning seismic activities in the Brasilia is estimated about IS0 = 
0.08. Regarding the region with moderate seismic activity in Brazil (State of Ceará) the seismic 
demand index IS0 = 0.3922 still satisfies inequation IS > IS0. To describe the seismic index IS 

for every floor, surfaces of seismic response are developed. Figure 3 presents seismic index IS 

versus Irregularity Index SD and Time Index TD related to first floor.

5.3  Numerical simulation and reliability assessment

The assessment of seismic performance is based on probabilistic model assuming W, dead 
load, as normally distributed random variable (Ellingwood et al. 1982) and concrete compres-
sive strength fc is considered lognormal distributed random variable (Table 4). The time index 
(TD) and irregularity index (SD) is taken as random variable uniformly distributed between 
the values λmin = 0.7 and λmax = 1.0 and values λmin = 0.4 and λmax = 1.2, respectively.

Figure 4 exhibits reliability indices β ¼ � �� 1ðpf Þ for each floor (SC 00 – Scenario 00). It is 
worth noting that lower probability of failure is detected in fourth floor PF ≈ 0:0133 and the 
elevated failure probability is found in first floor. The relation between dead load of structure 
and cross-sectional area of floor influences in reliability index. The number of simulation (n = 
300.000) has been properly chosen in order to detect probability of failure. Comparing every 
single floor reliability index theses values are lower than the recommended limits provided by 
JCSS (Table 5). Even regarding three different scenarios (SC 01, SC 02 and SC 03) where time 
index TD was set constant for each floor (Table 6) structure of “Palacio do Itamaraty” depicts 

Table 3. Summary of input variables related to the floor 3 and 4 of “Palácio do 
Itamaraty”.

Floor 1 Floor 2

Level of floor +7.82 +13.24
Weight of the building upper the story (W) in kgf 11002432.15 773435.97
Floor area in m² 5342.28 6649
Sum of cross-sectional area of column (Ac) in cm² 401200.00 326200.00
Fundamental Period (Ta) in seconds 0.4765 0.4765
Basic seismic index of structure E0 0.8154 0.8254
Irregularity Index SD 1.14 1.14
Time Index TD 0.7 0.7
Seismic index of Structure IS 0.7436 0.7527

Figure 3.  Surface of seismic index IS.
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inadequate probability of failure. For the scenario 01, β decreased when TD was reduced to 
the minimum.

The sensitivity of seismic behavior obtained from the model with respect to the uncertain 
input variables are presented in Figure 5. It can be seen that the most influential basic variable 
in this analysis is the irregularity index (SD) that quantifies the effect of the shape, complexity 
and the stiffness unbalance distribution and also followed by the concrete strength (fc), 

Table 4. Probability distribution and their parameters (mean value μ and standard 
deviation σ).

Random variables Distribution type μ σ

Concrete Strength fc Lognormal 6.0998 0.0998
Dead Load W Normal 1.05W 0.10 μ
Cross-Sectional Area Ac Normal 381600 39972.99

Figure 4.  β versus floor of building.

Table 5. Reliability indices for each floor.

β Floor Probability of Failure

1.6955 1st 0.0450
1.9885 2nd 0.0234
2.1596 3rd 0.0154
2.2179 4th 0.0133

Table 6. Reliability indices with TD for each floor set constant.

Scenario 01 Scenario 02 Scenario 03

Floor Time index TD β Time index TD β Time index TD β

1st 0.95 1.9784 0.85 1.7474 0.7 1.3590
2nd 0.7 1.6167 1.0 2.4035 0.8 1.8874
3rd 0.8 2.1072 0.7 1.7886 1.0 2.7075
4th 0.75 1.9834 0.95 2.5814 1.0 2.7370

1890



cross-sectional area (Ac), weight (dead load W), Time Index (TD). It is also observed that 
model linearly depends on the inputs and there is no input interaction once σj � μ�j 8j.

6 CONCLUSIONS

A probability-based approach to qualitative assessment of seismic behavior of existing build-
ing has been presented. This approach considering uncertainties related to the materials and 
load was implemented in Hirosawa Method. Furthermore, the sensitivity of seismic behavior 
of structure regarding the basic variables was studied. It has been showed that “Palácio do 
Itamaraty” do not possess the seismic capacity required against the considered earthquake 
motions once seismic index of structure is lower to seismic demand index.

The unacceptable failure probability is noticed in all floor, which implies that the structure 
is not enough to guarantee an adequate performance. Moreover, Sensitivity analysis showed 
the influence of irregularity of building in the seismic response of structure by Hirosawa 
Method followed by cross-sectional area, deterioration, total weight of structure and concrete 
strength.

The results showed that small contraction in total cross section area columns of third floor 
did not affect reliability index. In contrast constant time index modified directly probability of 
failure and since the level of deterioration was low, the reliability expanded but still remained 
below JCSS target reliabilities. Though Hirosawa Method structure of “Palácio do Itamaraty” 
has acceptable performance against seismic load because was established the lower importance 
factor and risk category of building (category I) referring to buildings that represent a low risk 
to human life in the event of failure. Thereby if it alters category of risk the seismic demand 
index will be upper than seismic index of structure and meet the reliability indices.
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