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O thou in whom hopes are placed,
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RESUMO ESTENDIDO

Título: CONTROLE DE DINÂMICA DE OPINIÃO COMO UM PROBLEMA DE CON-
SENSO DE SISTEMAS MULTI-AGENTES: UMA ABORDAGEM LMI
Autor: Daniel Rostami Alkhorshid
Orientador: Prof. Dr. Eduardo Stockler Tognetti, ENE/UnB
Programa de Pós-Graduação em Engenharia Elétrica
Brasília, 27 de maio de 2022

Enquanto que um acordo em sistemas multi-agentes (MAS) pode ser assegurado im-
pondo algumas propriedades de conectividade entre os agentes, o consenso resultante de-
pende das condições iniciais e da topologia da rede. Nesse contexto, nosso principal objetivo
nesta dissertação é influenciar o valor do consenso de sistemas multi-agentes em direção a
um valor desejado. A estabilidade assintótica e a maximização do domínio de atração para
o modelo bilinear representando a dinâmica de opinião na presença de limitação na ampli-
tude e na energia da ação de controle para uma rede fixa e conectada está sendo investigada.
Usando a teoria dos grafos algébricos e desigualdades matriciais lineares (LMI), fornece-
mos condições suficientes para garantir a convergência dos agentes em direção ao consenso
desejado. Além disso, exemplos numéricos mostram a eficiência do método proposto.

Palavras-chave: Sistemas multi-agentes, Dinâmica de opinião, Desigualdades matricias li-
neares, Sistemas bilineares.



ABSTRACT

Title: Opinion dynamics control as a consensus problem of multi-agent systems: an LMI
approach
Author: Daniel Rostami Alkhorshid
Supervisor: Prof. Dr. Eduardo Stockler Tognetti, ENE/UnB
Graduate Program in Electrical Engineering
Brasília, May 27th, 2022

While reaching an agreement in multi-agent systems (MAS) can be ensured by enforcing
some connectivity properties between agents, the resulted consensus depends on their initial
conditions and the network topology. In this context, our main objective in this manuscript is
to sway the consensus value of multi-agent systems towards a desired value. The asymptotic
stability and maximization of the domain of attraction for the bilinear model representing
the opinion dynamics in the presence of limited control action for a fixed and connected
network is being investigated. By using algebraic graph theory and linear matrix inequality
(LMI), we provide sufficient conditions guaranteeing the convergence of agents toward the
desired consensus. Furthermore, examples are being driven to display the effectiveness of
the proposed method.

Keywords: Multi-agent systems, Opinion dynamics, Linear matrix inequality, Bilinear sys-
tems.
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INTRODUCTION

Multi-agent systems (MASs) are composed of multiple autonomous agents that work
toward reaching a specific goal. Due to their applicability in many research fields such
as biology, robotic teams, power grids, opinion dynamics etc., they have recently received
tremendous attention. The flexibility that MASs offer has made them instrumental in several
engineering fields like artificial intelligence and control engineering.

Since the main focus of this manuscript is on the opinion dynamics, it is essential to
introduce the basic parts of a MAS for such application. To address the workspace in which
a MAS operate, it is vital to mention the following definitions [1].

• Agent: An entity on the network capable of collecting information and making deci-
sions toward a specific goal.

• Network: The environment in which the agents communicate and take action. The
network could have continuous or discrete characteristics as well as fixed or time-
varying topology.

• Parameters: The presented information in the network that could be collected by the
agents.

• Action: an operation performed by an agent or an external entity appearing as changes
in some of the network and agent characteristics.

It is noteworthy that in MASs, every agent has a limited view of the network characterized
by its connections with neighboring agents and local collected parameters. From this point of
view, one can decompose a complex task (that can not be addressed by a single system) into
divided simpler ones, and use agents to fulfill each divided task in order to reach a desired
solution.

The applications of MASs is not limited to engineering problems. The agent-based mod-
els and their local rules are widely used to produce the collective behavior in different species
as they could be easily implemented by numerical simulations [2]. To name a few, in herds
of mammals, individuals use the information of their neighbors to remain in the herd for
its certain advantages [3], small birds like pigeons fly in coordinated flocks with impressive
synchronization in directional movements and landing [4], and fish schools organize them-
selves in large groups and manage their movement with respect to the nearest neighbors [5].
The real world behavior of the mentioned species is displayed in Fig. 1.1.

1
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(a) Swarm of birds. (b) School of fish.

(c) Mammal herds.

Figure 1.1 – Different species with collective behavior in nature. (Google Images)

Thus, it could be concluded that cooperative behaviors exist in nature due to the certain
advantages that it creates in the process of achieving a common and certain goal. In this
manuscript, we are interested in the concept of opinion dynamics. Opinion dynamics is the
study of how opinions progress and the evolution during the interactions between agents in
a social group [6]. The collective behavior of different species could be interpreted in terms
of opinion dynamics. Moreover, this concept appears in different fields such as finance and
business and multiple engineering fields. Since in MASs, we usually aim to reach a particular
outcome or a common goal (consensus), it is reasonable to employ the concept of opinion
dynamics in MASs as it creates a framework in which, opinions evolution of a group of
agents belonging to a MAS could be studied. Hence, this combination of characteristics
and dynamics could study and manipulate a particular consensus in MASs. In the view of
opinion dynamics, consensus is defined as an accepted opinion that a group of agents tend to
agree on. Such concept in practice appears when a particular social group of agents tend to
reach a common ground through their interactions. For instance, imagine a group of travelers
that want to decide on the duration of their trip. As every individual in the group may have
a different and unique opinion about it, they would discuss it through their interaction to
finally agree on a unanimous decision (consensus) at the end. Such concept has a great
appeal in some of the engineering fields and marketing business. For instance, a producer
might be interested in swaying a group of potential customers into buying a certain product.
Opinion dynamics could be useful in this regard, as it can create a framework to study how a
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considered budget for such operation should be spent and in what way, to be able to persuade
the average opinions of potential customers into buying the product of interest in an optimal
way. In other words, opinion dynamics could also be used to manipulate the final common
ground or goal of a network of agents and in this regard, it could be useful in some of control
problems of the fields related to MASs. As we would observe in later sections, an external
control input (for instance, a campaign) through opinion dynamics framework has the ability
to modify the average opinion of a group of agents through its influence defined by the
dynamics of agents’ opinions evolution.

1.1 LITERATURE REVIEW

1.1.1 Consensus in multi-agent systems

The concept of consensus in MASs could be interpreted as an agreement by autonomous
agents on a distinct value [7, 8, 9, 10], through their operations and interactions with a num-
ber of nearest neighbors present in the network. A great review exist on the consensus
algorithms in networks of MASs which gives an extensive view of consensus in a variety
of networks with different characteristics [11]. Such problems often arise in distributed sys-
tems subject to control or coordination challenges. The consensus problem mainly divides
to two categories, the leader-follower consensus in which the follower agents aim to reach to
the leader coordinates and the the leaderless consensus in which all the autonomous agents
should agree on a common state [12]. These types of problems could be linked to their sim-
ilar projection in the nature. As depicted in Fig 1.1b and 1.1a, their network is quite similar
to the leaderless consensus while all the individuals converge toward a certain consensus
(like flying or swimming in a certain direction), while in Fig 1.1c, the herd usually follows a
leader toward reaching certain coordinates.

There are multiple literature concerned by the design of consensus algorithms for agents
with linear dynamics. With respect to this topic, there are works on fixed and time-variant
network properties [13, 14], directed and undirected graphs [11, 15], synchronous and asyn-
chronous interactions [16, 17], transmission of information with and without delay [8, 9],
etc. Moreover, there are many works related to the consensus problem in the presence of
input saturation [18, 19] and the control effort constraints [18, 20, 21].

By using the great review of [22], we are able to discuss the literature of consensus prob-
lem in MASs. the starting point of consensus problem goes back to "Parimutuel" linear
method for agreement on a consensus of individual distributions for subjective probabil-
ity distribution [23]. Likewise, DeGroot in [24] presented a solution to address the linear
consensus problem using stochastic matrix by the DeGroot model. Afterwards, the linear
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adaptive control of Markov chain was presented in [25]. Also in 1981, Berger enhanced the
DeGroot model in [26], and proved that reaching to a consensus depends on the initial values
of opinions in DeGroot model. Some years later, in [27] and [28] an agreement-based pro-
tocol by the form of a linear algorithm for asynchronous problem in parallel computing was
proposed. Moreover, Lynch in [29] proposed a generalization concept of distributed linear
algorithm for the networks with fixed topology. Later, Olfati-Saber and Murray presented
nonlinear and linear consensus protocol for distributed systems using undirected graph the-
ory [30].

Saturation in control signal is a well-known problem associated with consensus problem
in MASs. The saturation effect makes the closed-loop system behavior nonlinear. It may
lead to instability or prevention in reaching the consensus. Generally, there are two main
techniques to deal with saturation in linear systems [31]. The first approach is to take into
account the saturation effect in obtaining the performance related conditions which creates
a trade-off performance [32, 33]. The second approach is to obtain the performance related
conditions without taking saturation into account and then, introduce some mechanisms or
modifications to minimize the saturation impact on the system [34].

Another concept that is related to consensus in MASs is state constraint. Some existing
researches on consensus consider the assumption that no state constraint exist, and it can
simplify the design conditions and convergence analysis. However, in engineering problems
state constraints exist as an interpretation of physical constraint and power limitations [35].
Consensus was studied in [36] while agents should stay in their own conex sets. An extension
of [36] for unballanced graphs with communication delays was considered in [37]. More-
over, for a continuous-time system case in [38], a gradient based consensus algorithm was
proposed for undirected graphs and additional input based on logarithmic barrier function
were employed to prevent violation in the constraints [35]. Additionally, in [39] the authors
consider consensus control of MAS where the states of the agents lie within individually-
defined constraints.

Consensus of positive MASs is another important topic. A system is considered positive
if for non-negative initial conditions, all of its states remain in non-negative orthant [40].
To name a few practical examples for positive MASs, we can mention the coordination of
multiple vehicle system [41], and wireless sensor network for physical variables monitoring
[42, 43]. To achieve sufficient conditions for guaranteeing positivity, some researches have
been done to solve consensus problem of positive MASs [44, 45, 46, 47]. In [44], using a
static output feedback, a positive consensus problem is solved for positive agents. Moreover,
in [45, 46, 47], the authors solved the consensus problem of positive nature by state feedback
control law. Also, in [48], the positive consensus problem is solved using state feedback and
observer based framework.

In power engineering field, as it is discussed in [49], MASs are applied for some large
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scale applications such as Simulation of power system and modeling [50], smart grid oper-
ation [51], management od power network [52], planning of power systems [53], substation
automation [54] and electricity market [55], diagnostic and monitoring [56], protection [57]
and control of power system [58]. To name some works about MASs in the other fields of
engineering, in [59] the author has applied MASs alongside artificial neural network. There
are also some work on Fuzzy logic using MASs [60, 61]. Moreover, there is a work on
particle swarm optimization (a type of evolutionary algorithm) based MAS by [62]. Addi-
tionally, in [63] a new technique called MAPSO is designed based on MASs using particle
swarm optimization. To name an application of MAS in another fields, a Markov decision
process based MAS is applied to overcome obstacles of conventional maintenance policy
optimization of aeroengines in [64].

1.1.2 Opinion Dynamics

As the social studies revealed, opinions tend to converge toward each other when the
interaction exist. Thus, it is the reason why the consensus problem received attention in
opinion dynamics related works such as [65, 66]. It is notable that while some models natu-
rally converge toward consensus [24, 67], others might lead to clustering [10, 68, 69]. There
are some recent studies about using consensus in social networks by controlling a few agents
[70, 71]. Additionally, in [18], the authors have considered a discrete time implementation
of the external control effort to alter the consensus value toward a desired one. In [72], the
control of network opinion dynamics by a single selfish agent is discussed and in [73], the
modeling and control of opinion dynamics over a time evolving network is presented.

As social phenomena became more and more popular in different fields of science, opin-
ion dynamics as the process of opinions evolution became appealing to many researchers
[74]. This manuscript is in accordance with opinion dynamics in viral marketing that is
about sale strategies using word-of-mouth advertisement targeting potential buyers. The ef-
fectiveness of this method is well established by economists and social scientists [75, 76].
The work [77] presents the basic model of opinion dynamics at first. Years later, different
models of opinion dynamics were presented with different opinion development rules that
can be divided into continuous and discrete opinion form. For the continuous form, we can
mention the FJ model [67], DeGroot model [24], HK model [10] and the CODA model [78]
in which we have continuous opinions and discrete actions. On another hand, for the discrete
form of opinions we can mention the voter model [79], majority rule model [80] and sznajd
model [81].

Opinion dynamics is a powerful tool that could be used not only for the administration
of opinions, but also for influence and guidance toward them in order to form a specific con-
sensus point. In [82], the authors presented a management method of consensus through a
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number of interactions based on leadership. Moreover, [83] describes and compares opinion
control algorithm for reaching a consensus in MASs subject to bounded opinion updates.
The work [84] studies opinion consensus in a network with stubborn individuals and [85] es-
tablishes some efficient criteria for finite-time consensus of opinion dynamics for distributed
optimization over digraph. Additionally, in [18] authors address the problem of opinion dy-
namics in a social network where opinions are influenced by the agents neighbors and an
external influential entity.

1.2 OBJECTIVES AND CONTRIBUTIONS

Through this manuscript we aim to solve the consensus problem in multi-agent systems.
Our main objectives in this study is to apply different control laws and obtain an estimation
of the domain of attraction of the system to provide asymptotic stability of agents’ trajec-
tories toward the origin. To express it in details, our general objective is to use different
control laws such as state feedback and take advantage of the Lyapunov stability concept to
drive the equations. Furthermore, we aim to replace the bilinear product present in the sys-
tem dynamics with different approaches and try to obtain a feedback gain such that all the
trajectories converge to the desired consensus (the origin). The remainder of this manuscript
is structured as follows.

• Chapter 2: This chapter define and discuss the instrumental preliminary concepts that
play a crucial role in the development of the next chapter. From the characteristics
provided by the definition of Laplacian matrix [30] to different saturation models in
[86, 87] and positive system characteristics and the properties dictated by it in [40, 88]
are proposed in this chapter in order to provide a general perspective to the reader.

• Chapter 3: This chapter is dedicated to the main contributions of our work that
primarily focus on consensus control of networks of MASs. The first part is about
defining the main problem we aim to solve and its formulation. Furthermore, sev-
eral approaches are expressed in the form of multiple theorems to sufficiently solve
the mentioned problem. To be precise, after expressing the main problem, we aim to
exploit the characteristics of positive systems defined in [40] and replace the bilinear
products of the system dynamics by different approaches alongside using the satura-
tion models from [86] and [87]. The presented approaches are closely related to [18].
However, in contrast with the discrete-time case presented in [18], our work is focused
on continuous-time case.

• Chapter 4: This chapter is dedicated to the numerical examples displaying the ef-
fectiveness of the proposed results. It consists of case studies represented by directed
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and undirected graphs in different orders that exploit the results of the mentioned ap-
proaches in solving similar problems in different networks.

The main contributions of this manuscript are presented in the following.

• To propose new models to represent bilinear dynamics in multi-agent systems. The
main advantage of the proposed approach, based on norm-bounded uncertainties, is
the applicability to large networks.

• To propose new approaches for the estimation of the domain of attraction of the closed-
loop system subject to state constraints, bilinear product and amplitude saturation of
the control signal. The first approach is based on invariant ellipsoids taking advantage
of properties of positive systems. The second approach is based on invariant polyhe-
drals.

• To propose new methods to take into account the energy limitation of the control law.
The first approach is based on state-feedback control law and the estimation of the
region where the initial conditions can reach the origin. The second technique is based
on constant control signal that linearizes the bilinear dynamics and minimize a cost
function related to the performance of the states’ trajectories.
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PRELIMINARIES

In this chapter, we are going to explore the concepts of graph theory which are related to our
work. This benefits us by creating a transparent image of the properties we would discuss
further. Afterwards, we formulate the main problem that we aim to solve and discuss the
saturation model and bilinear terms in the system dynamics. We conclude this chapter by
expressing some important lemmas that are essential to further developments in the next
chapters.

2.1 GRAPH THEORY

As we know, MASs are defined as the systems including a number of agents and their
unique internal interaction links with each other that work cooperatively in achieving a cer-
tain common goal. To process such networks mathematically, it is vital to properly model
their behavior using mathematical concepts. To this end, the MASs could be interpreted as
graphs with every node representing each agent and every edge embodying a communication
line between them.

There are two types of communication in literature concerning MASs represented with
graphs. In the first case, the information exchanged between the agents can flow in both
directions, that is, each agent can send and receive information with its neighbors. The graph
with this characteristic is denoted undirected. The second case is the situation in which, each
agent only send or receive information to-or-from other agents. This property is manifested
using directed graphs.

In Figure 2.1, different types of graphs are displayed. The part (a) displays an exam-
ple for a network of agents presented with an undirected graph, and the part (b) displays
the same agents with different connections. Each node in these manifestations represent an
agent, and every edge of the respected graphs represent a connection between each particular
pair of agents. In part (b) of Figure 2.1, the point of each arrow indicate the flow of informa-
tion between their respective pair of agents. The next subsection is going to talk about the
mathematical justifications and properties of these graphs.

2.1.1 Algebraic Interpretation of Graph Theory

A directed graph could be represented by G(V , ξ), where V = {v1, · · · , vN} is the set of
graph nodes and ξ ⊆ V × V is the set of edges associated with this graph. If a pair (vi, vj)
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(a) Undirected Graph. (b) Directed Graph.

Figure 2.1 – Graphs representing different network characteristics.

belongs to the the set ξ, It manifests a directed communication line from agent i to the agent
j. The adjacency matrix of such graph is defined through matrix A = [aij], for aij > 0

a weighted gain for its respective edge (vi, vj) and aij = 0 for the case where there is no
connection. The Laplacian matrix associated with graph G(V , ξ) is defined by

L = [lij] =

{
lii =

∑N
j=1 aij, ∀i = 1, . . . , N

lij = −aij, i ̸= j
(2.1)

It is evident that the diagonal entries of Laplacian matrix reflects the degree of each node that
is equal to the sum of outgoing edges. The neighboring agent of every agent vi is described
by the set Ni = {vj ∈ V : (vi, vj) ∈ ξ}, that is, vj is a neighbor of vi if aij > 0. In a directed
graph case, since the Laplacian matrix L is not symmetric, imaginary eigenvalues are always
expected. Although, in an undirected topology the Laplacian matrix becomes a symmetric
matrix with real entries and thus, all of its eigenvalues are real.

As it is shown in Figure 2.2, every connection of the graph could be customized using
gains associated with the Adjacency matrix. In this network topology, agent v1 only sends
information to agent v3 and do not receive any information from it (directed connection),
while agents v2 and v5 send and receive information toward each other (undirected connec-
tion). Under assumption that all the non-zero gains of the Adjacency matrix are equal to 1,
we could obtain the following Adjacency and Laplacian matrix for the graph represented in
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Figure 2.2 – A graph with weighted undirected and directed connections.

Figure 2.2 as

A =


0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

0 0 0 0 1

0 1 0 0 0

 , L =


1 0 −1 0 0

0 2 0 −1 −1

0 0 1 0 −1

0 0 0 1 −1

0 −1 0 0 1



2.1.2 Subgraphs

In this part we talk about a useful concept associated with graph theory. As it is shown, a
graph G(V , ξ) contains a number of vertices along with some defined edges involving them.
The graph Gs(Vs, ξs) is a subgraph of G(V , ξ) if the following conditions are met

Vs ⊆ V
ξs ⊆ ξ

That is, it is possible to obtain a subgraph by eliminating some of the nodes and edges of the
original graph. In figure 2.3 it is obvious that the sets of nodes and edges of the graph in (b)
are a subset of the nodes and edges of graph in (a). The following subsection talks about the
connectivity of a graph and its related concepts.

10



(a) Original Graph. (b) Subgraph.

Figure 2.3 – An undirected graph and its subgraph.

Figure 2.4 – Illustration of path and cycle in a graph.

2.1.3 Connectivity

There are some essential concept to define before discussing the connectivity of a graph.
In a graph, a path is defined as the trajectory that connect a number of distinct vertices using a
sequence of edges. A cycle is defined as a path where it return to its initial vertex by crossing
some other vertices. Consider the illustration in Figure 2.4.

In the illustration, a path of the graph is shown in blue color. Additionally, a cycle of the
graph is displayed with black color. As it is shown, one can start from v5 and go through v4
and then v2 and finally return to v5. It is obvious that a cycle contains multiple paths.

A connected graph is defined as a graph that all its vertices are linked with at least one
path (for instance the graph in Figure 2.3a is connected). Moreover, a tree is a graph which
every vertex of it is connected by only one path, and a forest is a graph with every vertex con-
nected with a maximum of one path, that is, a set of unconnected uniting trees as illustrated
in Figure 2.5.
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(a) A tree. (b) A forest.

Figure 2.5 – An illustration of a tree and a forest.

Now we can introduce a useful definition of graph theory that is essential in studying
consensus problem in MASs. A spanning tree of a graph is a tree that contains all of its ver-
tices. It is an essential concept to be considered as a network of agents should be connected
to achieve consensus [13].

2.1.4 Consensus Problem and linear consensus protocol

Consensus by its original meaning is the agreement of a set of agents on a common
goal. A certain rule that governs the convergence process is called the consensus protocol.
the consensus protocol is normally based on the interaction of an agent with its neighbors.
Let us introduce some important concepts in this regard. Let xi denote a scalar real value
assigned to the node vi ∈ V . Then, x = (x1, . . . , xN)

T denotes the state of the graph G.

LEMMA 2.1 ([30]) The Laplacian potential of a graph G, defined as ΨG(x) = 0.5 xTLx,
is positive semi-definite such that

xTLx =
∑
i,j∈ξ

(xi − xj)
2

Additionally, by considering graph G as connected, ΨG(x) = 0 if and only if xi =

xj, ∀i, j.

proof.
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We have L = CCT where C is the incidence matrix. Considering

xTLx = xTCCTx = ||CTx||2

xTLx is positive semi-definite. Additionally,
∑

i,j∈ξ(xi−xj)2 = 0 means that xj−xi = 0

for all the edges of graph G. If the graph G is connected, then all the nodes values must
be equal. The opposite statement is trivial, that is, if xj − xi = 0, ∀(i, j) ∈ ξ, then
ΨG(x) = 0 [30]. ■

DEFINITION 2.1 (Consensus) Let xi denote the value of node vi for all i = 1, . . . , N .
We say all the nodes of the graph have reached consensus if and only if

lim
t→∞

||xi(t)− xj(t)|| = 0, i, j = 1, . . . , N.

A simple consensus algorithm to reach an agreement regarding the state of n integrator
agents with dynamics ẋi(t) = ui(t) is given by the following result.

Theorem 2.1 [30]

Consider G as a connected graph and let the following linear protocol be applied to
each of nodes of the graph G

ui(t) =
∑
j∈ξ

(xj(t)− xi(t))

then, the vector of nodes x value is the solution to a gradient system related to the
Laplacian potential ΨG(x), that is

ẋ = −Lx = −∇ΨG(x), x(0) ∈ R

Moreover, all the graph nodes globally asymptotically reach to an average consensus,

that is, if x∗ = lim
t→∞

x(t), then x∗j = x∗i =
1

N

∑
j∈ξ xj(0), ∀i, j, i ̸= j.

proof.

Consider x∗ as an equilibrium point of the system ẋ = −Lx. Hence, Lx∗ = 0,that is,
x∗ is the eigenvector of L associated with zero eigenvalue of L (λ1 = 0). Additionally,
we have ΨG(x) = 0 and from G connectivity, we have x∗j − x∗i = a, ∀i, j, that is,
x∗ = (a, · · · , a)T , a ∈ R. Notice also that

∑N
i=1 ui = 0. Therefore, x̄ = Average(x),

where the operator Average(x) is defined as the average value of the elements of x,
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is an invariant quantity, that is, x̄ = 0. This means Average(x∗) = Average(x(0)).
Since Average(x∗) = a, we have x∗i = Average(x(0)), ∀i ∈ 1, · · · , N . Note that all
eigenvalues of L are negative but λ1 = 0. Thus, any system solution asymptotically
converge to a point x∗ in the eigenspace associated with λ1 = 0. This means that an
average consensus is globally asymptotically achieved by all nodes [30]. ■

REMARK 2.1 In other words, the properties of the Laplacian matrix dictated by consid-
ering graph G as connected ensure global asymptotic convergence of network consensus
toward the average of initial states.

Now consider the collective dynamics of the group of agents

ẋ(t) = −Lx(t).

To demonstrate the meaning of consensus in a network of agents, we provided an example.
Consider the following network of 3 individuals illustrated in Fig 2.6.

Figure 2.6 – The illustration of a network of 3 individuals planning for a short trip.

The set of 3 individuals displayed in Fig 2.6 want to decide on the amount of time they
would spent in nature, during a short trip at the weekend. The individual on the right side
(agent 1) opinion is to spent 24 hours in the nature, while the individual on the left side (agent
2) thinks it should be 11 hours and the one on the center (agent 3) believes that 5 hours would
suffice. Consequently, we can express the initial states of this network by x(0) = (24, 11, 5).
Another properties that is of importance is the interactions between these individuals. It is
observable that all the connections in this network carry the same gain. The agents 2 and 3

clearly have a mutual interaction as a23 = a32 = 1, meaning that these agents can talk and
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listen to each other. Moreover, the agent 1 can only listen to agent 3 as a31 = 1 and a13 = 0,
and it can only speak to agent 2 as a12 = 1 and a21 = 0. By considering these properties of
the defined network and the consensus protocol defined earlier, a simulation is taken place
to demonstrate the agents’ opinions evolution in reaching a common consensus.
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Figure 2.7 – The evolution of agents’ opinion through their interactions to reach consensus.

From Fig. 2.7, reaching a common value (consensus) by the agents is evident. Moreover,
the value of the consensus could be extracted from it and it is equal to 12.75 which represents
a unanimous decision on spending 12 hours and 45 minutes in the nature during their short
trip, that is, lim

t→∞
xi(t) ≈ 12.75. The concept of consensus in a network of agents appealed

many works in different fields of study as it is able to model different kind of problems such
as communication networks, power grids and opinion dynamics.

2.2 INPUT SATURATION

The saturation effect in systems comes from the concept of saturation effect in physical
real-world systems and it happens when a feedback control input reaches its physical limits.
These limits could occur in many form such as a spring that can not be compressed anymore
as it is compressed to its maximum level or an operational amplifier that its output voltage
is physically limited by its supply voltage. The problem of this effect is elements that reach
saturation can not be linearized and thus, the operational points of any system subject to
feedback control should be placed in regions that the saturation would not occur [89]. In
other words, even when a system has a linear open-loop system, when the saturation occurs
the closed-loop system becomes nonlinear and might have an impact on the system stability
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or performance. Hence, a bound could be defined for the control input. When this bound
exist, it affects the set of admissible initial states as when this bound exist, one can not
guarantee that all the valid initial conditions belonging to the invariant region of the closed-
loop system would converge successfully to the origin. Moreover, as it may occur to the
reader as a simple setting, it can make the treatment of inequalities extracted from Lyapunov
function difficult. Consequently, it is recommended to follow certain models representing
this effect and take them into account in the stabilization conditions. To express this effect
in terms of algebraic conditions, we can consider the following general model

ẋ(t) = Ax(t) +Bu(t) (2.2)

where x(t) ∈ RN and u(t) ∈ RN are the state vector and control input1, respectively.
We assume that the pair (A,B) is stabilizable in (2.2), then one may define the following
condition to express a region where the saturation conditions are met

S(ū) = {u ∈ RN : −ū ≤ ui ≤ ū, ∀i = 1, · · · , N}

where 0 < ū ∈ R is the component defining the bounds on the control input [87]. In the
following, we express the saturation in two different forms that are practical in developing
adequate conditions for stability. For the first case, let us incorporate u(t) = sat(v(t)) using
the standard decentralized saturation function sat(vi) = sign(vi)min(|vi|, ū), i = 1, · · · , N
where v is the unbounded control signal. Then, we can express (2.2) with

ẋ(t) = Ax(t) +Bsat(v(t)) → ẋ(t) = Ax(t) +Bv(t)−BΨ(v(t)) (2.3)

where the elements of Ψ(v) = [Ψ(v1), · · · ,Ψ(vN)]
T are defined by

ψ(vi) =


vi − ū, if vi > ū

0 if − ū ≤ vi ≤ ū

vi + ū if vi < −ū

The following lemma provide sufficient conditions to apply this model of saturation.

LEMMA 2.2 ([86]) By considering a matrix G ∈ RN×N related to the region

Π =
{
x ∈ RN : |vi −Gix| ≼ ū, i = 1, . . . , N

}
. (2.4)

1For ease of reference for the next chapter, we consider the input signal of the same dimension as the state
vector but without loss of generality.
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If x ⊆ Π, the following expression holds

ψ(v)TT (ψ(v)−Gx) ≤ 0 (2.5)

for a positive definite and diagonal matrix T ∈ RN×N .

Now let us consider the system (2.3) such that v(t) = Kx(t), we have

ẋ(t) = (A+BK)︸ ︷︷ ︸
Ac

x(t)−BΨ(Kx(t)) (2.6)

If we consider the candidate Lyapunov matrix as V (x) = xTPx for a P matrix symmetric
and positive definite, we could express the following theorem.

Theorem 2.2 [86]

If there exist a symmetric positive definite matrixW ∈ RN×N , a diagonal positive def-
inite matrix S ∈ RN×N and a matrix Y ∈ RN×N such that the following inequalities
hold [

WAT
c + AcW ⋆

SBT − Y −2S

]
< 0

[
W ⋆

K(i)W − Y(i) ū2

]
≥ 0, i = 1, · · · , N

Then the ellipsoid S = {x ∈ RN : xTPx ≤ 1} with P = W−1 is an asymptotic
stability domain of (2.6).

Another approach is to express the saturation as a polytopic model following [87]:

sat(Kx) = Γ(γ)Kx, Γ(γ) =
2N∑
i=1

γi(x)Γi(ν), ∀x ∈ H, γ(x) ∈ U , (2.7)

where H = {x ∈ RN : −ūν ≼ Kx ≼ ūν , ūν = [ūν1, . . . , ū
ν
N ]

T , ūνi = ū/νi, i = 1, . . . , N},
0 < νi ≤ 1 scalars to be find, and Γi(ν) ∈ RN×N diagonal matrices constituted from all
the combinations formed with 1, νi, i = 1, . . . , N and γ(x) belonging to the unit simplex
defined by

U = {γ ∈ R2N :
2N∑
i=1

γi = 1, γi ≥ 0, i = 1, . . . , 2N}

By this definition, one can extract 2N diagonal matrices to ensure x ∈ H. As an example,
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for the case N = 2, we would have

Γ1(ν) =

[
ν1 0

0 ν2

]
, Γ2(ν) =

[
ν1 0

0 1

]

Γ3(ν) =

[
1 0

0 ν2

]
, Γ4(ν) =

[
1 0

0 1

]
Thus, ∀x ∈ H we can obtain the value of sat(Kx) computed as the convex combination of
Γi(γ)Kx, i = 1, . . . , N .

2.3 POSITIVE SYSTEMS

In the last years, positive systems attracted a great deal of attention from researchers
around the world (see for instance [90] and [91]). The following descriptions are in accor-
dance with this concept.

DEFINITION 2.2 ([92]) A linear system is positive if for every non-negative initial state,
its state remain non-negative. Moreover, a matrix A ∈ RN×N is called Metzler if and
only if all of its diagonal elements are non-negative (i.e., ∀i ̸= j : A(ij) ≥ 0).

In literature, the term "positive system" applies to the class of systems where the states
carry only non-negative values if the initial states would be non-negative as well. Consider
a system ẋ(t) = Ax(t), x ∈ RN , then, based on Lemma 2.3, this system is positive if the
matrix A is a Metzler matrix. If we consider A as a Metzler matrix, it means that for some
positive initial states, the evolution of the system states would never include negative values.
Such property has its own advantages in control theory. In our own case study as we would
observe in later sections, this property could help through its specification to achieve a larger
domain of attraction in some cases. Moreover, In [88] authors have shown that the feedback
gain of a positive system reveals a diagonal structure of quadratic function for a feasible
answer. Moreover, for the asymptotical stability of a positive system, we can express the
following theorem from (Theorem 15,[40]) as Lyapunov theorem for positive systems.

Theorem 2.3 [40]

A continuous positive system is asymptotically stable if and only if for a strictly
positive diagonal matrix P ∈ RN×N the following inequality holds

ATP + PA < 0.
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It could be concluded that the advantages offered by the properties of positive systems
bring out impressive benefits in control theory [93]. In the following, we express an essential
lemma that provide the sufficient conditions for the realization of positive systems.

LEMMA 2.3 ([40]) The positivity of the system ẋ(t) = Ax(t) + Bu(t) is verified if and
only if B ≥ 0 and A appears as a Metzler matrix (i.e., ∀i ̸= j : A(ij) ≥ 0).

2.4 INVARIANT POLYHEDRAL SETS

A locally stable time invariant dynamical system have a domain in the state-space such
that the states included in it can not escape from it. This domain is denoted as invariant set
of the system. For a controllable system, one can try to stabilize it such that the states belong
and remain in an established invariant region. Through this definition, it is also possible to
convert the constraint on the control input to an equivalent projected region in the state-space.
Consider the following continuous system

ẋ = Ax, x ∈ RN (2.8)

We express the following definition with respect to (2.8).

DEFINITION 2.3 ([94]) A non-empty set Φ is an invariant set of (2.8) if and only if for
any x0 ∈ Φ, the complete trajectory of the state vector remains in Φ, that is, eAtΦ ∈ Φ, ∀t.

The invariant set may be of ellipsoidal, polyhedral or cone subspace. In this part we
are interested to the polyhedral invariant sets. Let us define the general structure of convex
polyhedral sets.

DEFINITION 2.4 ([94]) A non-empty convex polyhedron of RN could be established by
a matrix Q ∈ Rg×N and a vector ρ ∈ Rg such that

R[Q, ρ] = {x ∈ RN : Qx ≼ ρ} (2.9)

With respect to Definitions 2.3 and 2.4 and by considering the characteristics of positive
systems, we propose the positive invariant polyhedron sets.
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DEFINITION 2.5 Considering Definition 2.2, a positive invariant polyhedron could be
characterized by the following definition

X =
{
x ∈ RN

+ : Ωx ≼ 1

}
, (2.10)

where Ω ∈ Rg×N .

In the following, with respect to Definition 2.5, we propose sufficient conditions to es-
tablish polyhedral invariant region for the system (2.8).

LEMMA 2.4 ([95]) With respect to the system (2.8), the set in (2.10) is considered
positively invariant in regard of this system if and only if there exist a Metzler matrix
H ∈ Rg×g such that

ΩA = HΩ

H1 ≼ 0.

2.5 AUXILIARY RESULTS

Here we express some Auxiliary lemmas and definitions that play an important role in
further discussions.

LEMMA 2.5 (Petersen’s Lemma [96]) Let G = GT ∈ Rn×n, M ∈ Rn×p, and N ∈ Rq×n

be pre-defined matrices. For all ∆(t) ∈ Rp×q confirming ∆(t)T∆(t) ≤ I , the inequality

G+M∆(t)N +NT∆(t)TMT ≤ 0

holds if and only if there exists a scalar λ > 0 such that

G+ λMMT +
1

λ
NTN ≤ 0.

LEMMA 2.6 ([97]) Consider w ∈ Rn,M ∈ Rn×n, B ∈ Rm×n with rank(B) < n and
B⊥ a basis of B nullspace (BB⊥ = 0). The following statements are equivalent:
1. wTMw < 0, ∀w ̸= 0, Bw = 0.
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2. BT
⊥MB⊥ < 0.

3. ∃N ∈ Rn×m :M +NB +BTNT < 0.
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MAIN CONTRIBUTIONS

In this chapter, we discuss the main problem we are dealing with alongside the proposed
approaches to solve the problem effectively.

3.1 PROBLEM FORMULATION

Consider a network represented by a directed graph G in which each agent corresponds to
a vertex belonging the set V = {1, . . . , N} associated with N agents. For every agent i ∈ V
we assign a time varying opinion xi(t) described by a scalar value normalized between 0

and 1, i.e., xi(t) ∈ [0, 1]. There are two factors that affect the agent’s opinion, the internal
influence of neighbors opinions and the action of an external control effort (temptation/per-
suasion), that sway the agents’ opinions toward a desired opinion. The progression of the
agents’ states (opinions) is characterized by the following dynamic model:

ẋi(t) =
N∑
j=1

aij(xi(t)− xj(t)) + (xi(t)− d)ui(t), ∀i ∈ {1, . . . , N}, (3.1)

where xi(t) ∈ [0, 1] are the states, ui(t) ∈ [−ū, ū], ū ∈ (0, 1), is a bounded external control
action with limited amount of energy, and d ∈ {0, 1} is the desired opinion.

REMARK 3.1 We can observe from (3.1) that in the presence of interactions between
agents (aij ̸= 0), the changes in an agent’s opinion rely on the opinion difference with
its neighbors. Moreover, we also note the effect of external influence that affects the
agent’s opinion regarding the desired opinion d. Consequently, the agents converge to the
desired opinion and toward each other, which explains the convergence of agents toward
the desired opinion in a network.

In this work, we mainly focus on binary values of d representing a two-fold decision
making process (agree/disagree, do/not to do, etc.) in which most problems could be cat-
egorized in. On the other hand, the case d ∈ (0, 1) embodies the median decision making
procedure (medium consumption, for instance) presented in the end of this chapter. The af-
forded budget is represented by a energy constraint in the external control action. In practice,
budget limitation may avoid the agents to converge to the desired opinion [18].

Consider x(t) = (x1(t), . . . , xN(t))
T and u(t) = (u1(t), . . . , uN(t))

T the vectors collect-
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ing the individual states and controllers, respectively. The collective dynamics of the system
(3.1) is given by

ẋ(t) = −Lx(t) +B(x(t)− 1d)u(t) (3.2)

where B(·) : RN → RN×N is a function described by B(x) = diag(x1, x2, . . . , xN). As it
will become clear later, let us define the unit hypercube in RN ([0, 1]N ) as

X =
{
x ∈ RN

+ : Ωx ≼ 1

}
, (3.3)

where 1 ∈ RN and Ω = IN ⊗

[
1

−1

]
∈ R2N×N .

Consider the definition xdi(t) = xi(t) − d (xd(t) = x(t) − 1d). With respect to
Lemma 3.1, the system described by (3.2) is rewritten as

ẋd(t) = −Lxd(t) +B(xd(t))u(t), (3.4)

where xdi(t) ∈ [−d, 1 − d], i = 1, . . . , N . Hereafter, we present a solution for d = 0

since d = 1 is a symmetric case. Thus, without losing the generality, we adopt d = 0 and
consequently, xd = x unless stated otherwise. The following problem is tackled in this paper.

Problem 1. To design the control component ui subjected to the following optimization prob-

lem:

min
u(t)

Jx =

∫ ∞

0

x(t)TRx(t) dt (3.5)

subjected to

x(t) ∈ X (3.6)

|ui(t)| ≤ ū (3.7)

Ju =

∫ ∞

0

u(t)TQu(t) dt < µ (3.8)

where ū and µ are given positive scalar from the problem specification; Jx is the global cost

used as performance criterion; Ju is the total budget; and R and Q are positive definite

matrices that balance the agents’ convergence and the budget required for synchronization,

respectively. The conditions (3.7)–(3.8) embody the bounded amplitude and the limited en-

ergy of external control action, respectively.

REMARK 3.2 To put it simply, a campaign (a marketing campaign, for instance) that
aims to persuade a social network (customers) toward a desired opinion (buying a cer-
tain product) tries to sway the original consensus of the network as close as possible to
the desired opinion minimizing (3.5) through a limited budget in the form of a bounded
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external control effort (3.7)–(3.8). This can be explained as follows. If an entity is aim-
ing at convincing or persuading a network of interest into a certain choice or habit, it
tries to alter the asymptotic consensus value such that it gets as close as possible to the
desired value and consequently minimize Jx. For a different case like an election that a
campaign tries to get the opinions as close as possible to the desired one (d) through a
limited amount of time (T ), we aim to minimize Jx(T ) =

∫ T

0
(x(t)− d)TR(x(t)− d)dt.

Thus, without additional campaigns the opinions asymptotically converge to a certain lo-
cal or global agreement through their interactions. It is noteworthy that in the absence of
campaigns, the system dynamics become ẋ(t) = −Lx(t) which has a global exponential
stable attractor. Also, we know that the limitation in (3.8) might avoid the asymptotic
consensus (resulting to a consensus different than d). Thus, in the absence of campaigns
or when the external control action is active, for an adequately large time (T ), xi(T ) is a
good approximation of lim

t→∞
xi(t).

The afforded budget µ in (3.8) embodies how much we are willing to invest in swaying
the average consensus of our network of interest toward the desired opinion. It is noteworthy
that the functions Jx and Ju could be expressed as

∫∞
0
z(t)T z(t) dt and

∫∞
0
y(t)Ty(t) dt,

respectively, with
z(t) = R

1
2x(t)

y(t) = Q
1
2u(t).

(3.9)

Consider the following assumption for the network.

ASSUMPTION 3.1 We assume that the graph G representing the social network is weakly
connected, i.e., it contains at least one directed spanning tree.

LEMMA 3.1 Considering Assumption 3.1, the Laplacian matrix L has a simple eigen-
value equal to 0 associated with the right eigenvector 1 ∈ RN , meaning L1 = 0. The
other N − 1 eigenvalues of matrix L have positive real parts.
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3.2 REPRESENTATION OF THE BILINEAR TERMS AND SATURA-
TION MODEL

The restriction in (3.7) could be expressed in the system dynamics by u(t) = sat(v(t))
considering the decentralized saturation function sat(v(ℓ)) = sign(v(ℓ))min(|v(ℓ)|, ū), ℓ =

1, . . . , N , where v is the unlimited control action that we aim to establish. Consequently, we
have

ẋ(t) = −Lx(t) +B(x(t))sat(v(t)). (3.10)

The system described in (3.10) could be interpreted by involving the decentralized dead-
zone nonlinearity ψ(v) = v − sat(v)

ẋ(t) = −Lx(t) +B(x(t))v(t)−B(x(t))ψ(v(t)). (3.11)

The bilinear product in (3.11) for x ∈ X is handled by the norm-bounded uncertainty
representation:

B(x) = B0 +B1∆(t), (3.12)

where B0 = B(0.51), B1 = 0.5I , and ∆(t) = diag(δ1(t), . . . , δN(t)) ∈ RN×N , where δi(t)
is a bounded Lebesgue measurable uncertainty associated to the set D = {δ ∈ R : δT δ ≤ 1}.

In this part, we propose the state feedback control law

v(t) = Kx(t), K = diag(k1, . . . , kN) ∈ RN×N , (3.13)

where ki, i = 1, . . . , N , are gains to be designed. The diagonal characteristic of the gain
matrix K yields a control action vi depending only on its respected opinion xi. The closed-
loop system with respect to (3.9), (3.11) and (3.13) is given by

ẋ(t) = (−L+ (B0 +B1∆(t))K)x(t)− (B0 +B1∆(t))ψ(Kx(t)) (3.14a)

z(t) = R
1
2x(t) (3.14b)

y(t) = Q
1
2Kx(t) +Q

1
2ψ(Kx(t)). (3.14c)

REMARK 3.3 Observe that the controllability matrix of the pair (−L,B(x)) loses rank
for x = 0. Therefore, the closed-loop system (3.14) is not controllable for all ∆(t) ∈ D
with B0 = B(0.51), B1 = 0.5I . To circumvent this issue, matrix B0 is redefined as
B0 = B((0.5 + ε)1) such that (3.12) models B(x) for the interval xi ∈ [ε, 1], where
ε > 0 is arbitrarily small.
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3.3 CONSENSUS CONDITIONS BASED ON NORM-BOUNDED AP-
PROACH

In this section, we aim to propose conditions to establish a state feedback control law
to solve Problem 1. These conditions should guarantee that all the trajectories remain in
X ∩ Π with respect to the constraint (2.5). In other words, an invariant region S should be
established such that if for all x(0) ∈ S, then x(t) ∈ X ∩ Π for all t ≥ 0. The candidate set
S is defined as

S :=
{
x ∈ RN

+ : xTW−1x ≤ 1, W = W T > 0
}
, (3.15)

where W is a positive definite matrix to be determined.

Generally, conditions verifying S ⊂ X are not easily obtainable and in general, the set
S is not an invariant region with V (t) = xTW−1x a candidate Lyapunov function. Thus, we
define the following level curve

Sa :=
{
x ∈ RN : xTW−1x ≤ 1, W = W T > 0

}
(3.16)

associated to the quadratic Lyapunov function V (x) = x(t)TW−1x(t). Let us also define the
augmented polyhedral region

Xa =
{
x ∈ RN : Ωx ≼ 1

}
, (3.17)

with Ω as in (3.3), representing the region xi ∈ [−1, 1].

The approach adopted in this work to guarantee S ⊂ X ∩ Π, with S an estimate of the
domain of attraction of the origin of (3.14), is first to propose conditions for Sa ⊂ Xa ∩ Π,
and then to show that S = Sa ∩ RN

+ is an invariant region. Observe that −L is a Metzler
matrix and B(x) ≥ 0 for all x ∈ X , then the proposed approach relies on the property that
the closed-loop system (3.14) remains positive (see Definition 2.2) for the state feedback
control law (3.13). This establishes the set S as an invariant region. Figure 3.1 depicts the
sets X , Xa, S , Sa and a trajectory of x(t).

The control energy limitation (3.8) may prevent the agents’ trajectories belonging to
S from reaching the origin. In practice, the limitation in the budget investment leads the
opinions to a neighbor value of d, that is, the convergence of opinions to the exact desired
consensus could be expensive and overpriced. As a result, we present a method to establish
an invariant region Su ⊆ S to ensure the convergence of opinions to the origin for x(0) ∈ Su

by guaranteeing the availability of enough budget Ju < µ for such procedure. Moreover, we
also propose a method to limit budget investment (u = 0) for initial conditions in S \ Su

when the investment constraint µ is reached.

One can rewrite Problem 1 as:
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Figure 3.1 – Sets Xa (black dashed box), X (red box), S (gray region), Sa (blue curve), and
trajectory x(t) (bold blue line).

Problem 2. To design the state feedback gain K such that the closed-loop system (3.14) is

asymptotically stable and to find

(I) an estimation for the domain of attraction S ⊂ (X ∩ Π) such that for all initial states

x(0) ∈ S , the trajectories of (3.14) converge asymptotically to the origin with respect

to guaranteed cost function Jx for all δi(t) ∈ D and |ui(t)| ≤ ū;

(II) an estimation of an invariant region Su such that for all initial states x(0) ∈ Su ∩ S ,

the trajectories of (3.14) converge asymptotically toward the origin with guaranteed

cost function Ju < µ for all δi(t) ∈ D and |ui(t)| ≤ ū;

(III) a mechanism to restrict the investment (u = 0) for all of initial states belonging to

S \ Su when the investment limitation Ju = µ is reached.

Methodologically, inspiring from ideas proposed in [18, Proposition 4.1], we first present
a solution for Problem 2 (I) using the investment as soon as possible to minimize Jx subjected
to constraints (3.6)-(3.7). In the sequence, we present conditions to estimate the set Su

solving Problems 2 (II) and (III).

REMARK 3.4 Observe that for K diagonal the closed-loop system is positive. If we
express the input saturation as (2.7), the closed-loop system is given by ẋ(t) = (−L +

B(x)Γ(γ)Kx)x(t) and matrix −L + B(x)Γ(γ)Kx is Metzler since −L is Metzler and
B(x)Γ(γ)K is diagonal.
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Theorem 3.1

If there exist diagonal positive definite matrices W ∈ RN×N and S ∈ RN×N , a matrix
Y ∈ RN×N , a diagonal matrix Z ∈ RN×N , and a scalar λ > 0, such that the further
inequalities are satisfied

He{−LW +B0Z}+ λI ⋆ ⋆ ⋆

SBT
0 + Y −2S ⋆ ⋆

W 0 −R−1 ⋆

Z S 0 −4λI

 < 0 (3.18)

[
W ⋆

Ω(i)W 1

]
≥ 0, ∀i = 1, . . . , 2N (3.19)

[
W ⋆

Z(i) − Y(i) ū2

]
≥ 0, ∀i = 1, . . . , N, (3.20)

then the state feedback gain K = ZW−1 ensures exponential stability of the closed-
loop system (3.14a) with respect to S ⊆ X ∩Π as estimation of the domain of attrac-
tion of origin considering the guaranteed cost Jx ≤ x(0)TW−1x(0) .

proof.

Consider the Lyapunov function V (t) = x(t)TW−1x(t) and the closed-loop system
(3.14). It is evident that the integral from 0 to ∞ of

V̇ (t) + z(t)T z(t) < 0, ∀x ∈ X , (3.21)

confirms Jx < V (0). The inequality V̇ (t) < −cx(t)Tx(t) is the equivalent expression
of (3.21), where c denotes the maximum eigenvalue of matrix R. Consequently, the
exponential stability of the origin is verified.

Using Lemma 2.2, if V̇ (t) + z(t)T z(t)− 2ψ(v(t))TTψ(v(t)) + 2ψ(v(t))TTGx(t) <

0, the inequality (3.21) is met, and by taking (3.12) and (3.14) into account, the last
inequality could be expressed as[

x

ψ(v)

]T [
He{−W−1L+W−1B(x)K}+R ⋆

B(x)TW−1 + TG −2T

][
x

ψ(v)

]
< 0,

then, with pre- and post-multiplying it by diag(W,T−1), we have[
He{−LW +B(x)Z}+W TRW ⋆

SB(x)T + Y −2S

]
< 0,
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where Y = GW , S = T−1, and Z = KW . The utilization of Schur complement lemma
leads to He{−LW +B(x)Z} ⋆ ⋆

SB(x)T + Y −2S ⋆

W 0 −R−1

 < 0,

replacing B(x) in the previous inequality by (3.12) for all x ∈ X yieldsHe{−LW +B0Z} ⋆ ⋆

SBT
0 + Y −2S ⋆

W 0 −R−1

 + He{

∆0
0

 0.5
[
Z S 0

]
} < 0.

exploiting Lemma 2.5 for ∆(t) = diag(δ1(t), . . . , δN(t)), δi(t) ∈ D, and the Schur
Complement lemma, we obtain (3.18).

By pre- and post-multiplying (3.19) with diag(W−1, I), we have[
W−1 ⋆

Ω(i) 1

]
≥ 0

that verifies Sa ⊆ Xa [97].

As the last part, by pre-and-post multiplying inequality (3.20) by diag(W−1, I), one
has [

W−1 ⋆

K(i) −G(i) ū2

]
≥ 0

considering the set Π in Lemma 2.2 and Sa in (3.16), the above inequality guarantees
Sa ⊆ Π [86] and, consequently, S ⊆ Π. Considering the closed-loop system (3.14) pos-
itive (Remark 3.4) and Sa an invariant region, one has that S is invariant and contractive
[98]. ■

Theorem 3.1 provides adequate criteria to ensure exponential stability of the closed-
loop system (3.14) while the energy constraint of (3.8) for the control action is considered.
It is noteworthy that the obtained W by Theorem 3.1 for the Lyapunov function V (t) =

x(t)TW−1x(t) would not provide the conditions of guaranteeing Ju < µ for all x ∈ S and
the invariant region Su. Thus, a method is presented in the following to estimate the level
curves related to the control energy cost function Ju and deal with Problems 2 (II) and (III).

Theorem 3.2

Suppose that there exist diagonal positive definite matrices P ∈ RN×N and S ∈
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RN×N , a matrix Y ∈ RN×N , and a scalar λ > 0, such that the further inequality holds
He{−LP +B0KP}+ λI ⋆ ⋆ ⋆

SBT
0 + Y −2S ⋆ ⋆

KP S −Q−1 ⋆

KP S 0 −4λI

 < 0, (3.22)

Henceforth, the closed-loop system (3.14a) achieves the guaranteed cost Ju ≤
x(0)TP−1x(0).

proof.

The proof follows the same line of Theorem 3.1 considering the Lyapunov function
V (t) = x(t)TP−1x(t). ■

REMARK 3.5 Theorem 3.1 assures that the opinions (xi, i = 1, . . . , N ) subjected to a
convenient external bounded influence (u) converge to the desired value (d = 0) with
exponential rate if the initial opinion belongs to S. Theorem 3.2 provides a way to take
into account the fact that the energy of the external control is limited, which avoids,
in general, the opinions to reach exactly the desired opinion, as is usually the case in
practice.

The following section presents a systematic way to optimize the domain of attraction of
the origin and a mechanism to respect the bound on the control input energy.

3.4 ESTIMATION OF DOMAIN OF ATTRACTION

In this subsection, first we state a number of remarks that aim to enhance the perspective
that Theorems 3.1 and 3.2 offer. Afterwards, the polyhedral approach is discussed to max-
imize the domain of attraction in order to verify all possible initial states as valid (i.e., to
recognize a maximal admissible set of all possible initial conditions).

REMARK 3.6 The assessment of the region of all initial states with respect to Ju ≤ µ

is expressed by Su = {x ∈ RN
+ : xTP−1x ≤ µ}. For all x(0) ∈ S \ Su, the following
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control mechanism guarantees Ju < µ

u(t) =

sat(Kx), x(t)TP−1x(t) > x(0)TP−1x(0)− µ

0, otherwise.
(3.23)

The control mechanism (3.23) drives the trajectories of x(0) ∈ S \ Su to approach the
boundary of the region {x ∈ S : x(t)TP−1x(t) ≤ x(0)TP−1x(0) − µ}. Note that
cutting off the control action (u = 0) alters the dynamics of system to become ẋ(t) =

−Lx(t) that has a uniform globally exponentially stable attractor specified by consensus
manifold. Observe that since S and Su are invariant sets, S \ Su is also invariant.

REMARK 3.7 To indirectly minimize Jx and maximize the set S in (3.15) simultane-
ously, one can maximize the trace of W (see [97]). Accordingly, the maximization of the
estimation of the domain of attraction alongside (3.5) and (3.7) are achievable through
solving the optimization problem

max Trace(W) (3.24)

subjected to (3.18)–(3.20).
to achieve a more accurate estimation of upper bound for cost function Ju in Theorem 3.2,
one can solve the optimization problem

max Trace(P) (3.25)

subjected to (3.22).

REMARK 3.8 If the initial conditions x(0) are known, one can minimize Jx solving the
optimization problem

min τ (3.26)

subjected to (3.18)–(3.20) and [
τ ⋆

x(0) W

]
> 0.
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REMARK 3.9 In order to directly maximize the set S in (3.15), one can use matrix
decomposition such that W−1

0 = V DV ′ when W = W0 + W1 and W1 is a variable
matrix. By considering D = diag(λ1, · · · , λN) and V = [e1, · · · , eN ], where λi entries
represent the eigenvalues ofW−1

0 and columns of V (ei) are their respective eigenvectors,
it is possible to maximize the set S by customizing the entries of matrices D and V .
Consequently, a maximized estimation of the domain of attraction could be obtained by
solving the following optimization problem:

max Trace(W) (3.27)

subjected to (3.18)–(3.20)
W0 > 0

min
ρ

:

[
ρI ⋆

W1 I

]
≥ 0

(3.28)

REMARK 3.10 With respect to ε > 0 inB0 = B((0.5+ε)1), (3.21) holds for x ∈ X \Bε,
where Bε = {x ∈ S : xTx ≤ ε}. It clarifies that only the trajectories convergence to
the Bε is assured. Observe that for an adequately small ε any practical consequence is
avoided as the limitation (3.8) generally prohibits xi(t) from reaching d.

3.4.1 Estimation of Domain of Attraction using polyhedral invariant sets

In this section, we consider an approach to verify if X is a domain of attraction for the
closed-loop system instead of considering the level curves of the Lyapunov function inside
X as an estimation of domain of attraction.

In the following, we discuss the problem of designing a state feedback gain K for the
polytopic approach. We use the concept presented in Lemma 2.3 to ensure the internal
positivity of the closed-loop system (3.29) that is defined in the following. Moreover, we
define a maximized domain of attraction over the polytope set Xa to ensure exponential
stability for initial conditions belonging to the invariant ellipsoid such that the trajectories do
not leave the boundaries of Xa.

We present a solution to the Problem 1 using polyhedral invariant set along with a
quadratic Lyapunov function. For the polytopic approach, we describe the bilinear prod-
uct in (3.11) using a polytopic interpretation.
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The set (3.17) can also be represented in terms of its 2n vertices obtained from Ω by

X = co
{
h1, h2, . . . , h2N

}
Hence, the polyhedral set Xa induces the following matrix valued polytope

P = co{B(hi), i = 1, . . . , 2N}

and for any x ∈ Xa, one has

B(x) =
2N∑
i=1

αi(x)hi =: B(α)

with α(x) belonging to the unit simplex

U = {α ∈ R2N :
2N∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , 2N}

for all t ≥ 0.

With respect to (2.7), the closed-loop system in this case is obtained as

ẋ(t) = (−L+B(α)Γ(γ)K)x(t) (3.29)

Based on these properties, we propose a theorem based on polytopic approach to extend
the domain of attraction in a way that all the possible states are covered by it, that is, to
achieve a maximal admissible set of initial states for the agents.

Theorem 3.3

Let K ∈ RN×N be a given matrix such that the closed-loop system (3.10)–(3.13) is
asymptotically stable, if there exist scalars νi, ∀i = 1, · · · , N and a Metzler matrix
H ∈ Rg×g such that the following inequalities hold

Θ(−L+B(hi)Γj(ν)K)−HΘ ≪ 0, i = 1, . . . , 2N , j = 1, . . . , 2N , (3.30)

H1 ≼ 0 (3.31)

0 < νi ≤ 1, i = 1, . . . , N, (3.32)[
ΘT

(ℓ)Θ(ℓ) ⋆

νℓK(ℓ) ū2

]
≥ 0, ℓ = 1, . . . , N, (3.33)
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where Θ = IN ⊗

[
1

−ϵ−1

]
∈ Rg×N , 0 < ϵ≪ 1, then X is an estimation of the domain

of attraction of (3.29).

proof.

For the (3.30)–(3.31), with respect to the set K =
{
x ∈ RN : −Ix ≼ 0

}
and Xϵ ={

x ∈ RN : Θx ≼ 1

}
, we have

X+ = Xϵ ∩ K =

{
x ∈ RN :

[
Θ

−I

]
x ≼

[
1

0

]}

With respect to Lemma 2.4, the set X+ is a positive polyhedron invariant set for the
closed-loop system of the form ẋ(t) = Aclx(t), with Acl = −L + B(α)Γ(γ)K, from
(3.29) if and only if there exist two Metzler matrices H1 ∈ Rg×g and H4 ∈ RN×N , and
two non-negative matrices H2 ∈ Rg×N and H3 ∈ RN×g, such that[

Θ

−I

]
Acl =

[
H1 H2

H3 H4

][
Θ

−I

]
,

[
H1 H2

H3 H4

][
1

0

]
≼ 0

without loss of generality, it is possible to replace H3 = 0 and H4 = Acl, resulting in{
ΘAcl = H1Θ−H2

H11 ≼ 0
⇒

{
ΘAcl −H1Θ ≪ 0

H11 ≼ 0
(3.34)

from (3.34), we recover (3.30) and (3.31) for H1 being Metzler [99].

Moreover, the (3.33) ensures Xϵ ⊆ H where H is the set associated with saturation
definition in (2.7), that is, to ensure Xϵ ⊆ H and with respect to the definition of each set
and ℓ = 1, · · · , N ,we have

ΘT
(ℓ)Θ(ℓ) ≥ (νℓK(ℓ))

T ū−2(νℓK(ℓ))

by using Schur complement lemma, one can recover (3.33). ■

The advantage of this method is the independence of estimation of the domain of attrac-
tion X from the obtained gain K which results in larger estimation of domain of attraction.
Moreover, a maximal admissible set is established covering all the possible system initial
values resulting in guaranteed asymptotic stability for ∀x(0) ∈ X . In opposite, the main
disadvantage of this method is its incapability to deal with large networks due to the limits
caused by polytopic representation in bigger networks. Thus, to address a large network, one
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may prefer a norm-bounded uncertainty model. Since Theorem 3.3 demands the polytopic
representation of B(x), one can adapt the conditions of Theorem 3.1 to obtain a feedback
gain K to be used in Theorem 3.3 as described in the following theorem.

Theorem 3.4

If there exist diagonal positive definite matrices W ∈ RN×N and S ∈ RN×N , a matrix
Y ∈ RN×N , a diagonal matrix Z ∈ RN×N such that inequality (3.20) andHe{−LW +B(hi)Z} ⋆ ⋆

SB(hi)
T + Y −2S ⋆

W 0 −R−1

 < 0, i = 1, . . . , 2N , (3.35)

are satisfied, then the designed state feedback gain K = ZW−1 ensures exponential
stability of the closed-loop system (3.10)–(3.13) considering the guaranteed cost Jx ≤
x(0)TW−1x(0) .

Moreover, in this case, to obtain the level curves associated with the cost Ju we consider
the following theorem.

Theorem 3.5

Suppose that there exist diagonal positive definite matrices P ∈ RN×N and S ∈
RN×N , a matrix Y ∈ RN×N such that the further inequality holdsHe{−LP +B(hi)KP} ⋆ ⋆

SB(hi)
T + Y −2S ⋆

KP S −Q−1

 < 0, i = 1, · · · , 2N (3.36)

Henceforth, the closed-loop system (3.10)–(3.13) achieves the guaranteed cost Ju ≤
x(0)TP−1x(0).

3.5 CONSENSUS CONDITIONS BASED ON ON-OFF CONTROL LAW

We propose the following on-off control approach based on on-off control law

ui(t) =

{
ki, t ≤ T

0, t > T
(3.37)
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where |ki| < ū, i = 1, ..., N , are gains to be determined, and T is given by the energy
constraint (3.8) as following

Ju =

∫ T

0

1TKQK1dt = 1TKQK1T < µ (3.38)

with K = diag(k1, ..., kN) ∈ RN×N . Thus, T = µ/1TKQK1 yields the maximum use of
the budget. The closed loop system with respect to (3.37) is obtained as

ẋ(t) =

{
−Lx(t) +B(x(t))K1 = (−L+K)x(t), t ≤ T

−Lx(t), t > T
(3.39)

Observe that, in the simple control law (3.37), there is no bilinear term and the saturation
in the control input can be treated straightforward independent of initial conditions. The
following conditions design (3.37) and solves Problem 1.

Theorem 3.6

If there exist diagonal positive definite matrix W ∈ RN×N and a diagonal matrix
Z ∈ RN×N such that the following inequalities are satisfied[

He{−LW + Z} ⋆

W −R−1

]
< 0 (3.40)

[
W ⋆

Ω(i)W 1

]
≥ 0, ∀i = 1, · · · , N (3.41)

[
W(ii) ⋆

Z(ii) ū2W(ii)

]
≥ 0, ∀i = 1, · · · , N, (3.42)

then the control law (3.37) with gain K = ZW−1 ensures lim
t→∞

xi(t) =
1

N
1Tx(T ),

with x(T ) = exp((−L+K)T )x(0), T = µ/(1TKQK1), for the closed-loop system
(3.39), for all x(0) ∈ S ⊆ X , with guaranteed cost Ju ≤ µ.

proof.

From V̇ + x′Rx < 0, one has

He{−LW +KW}+WRW < 0

Using Schur complement lemma and by considering Z = KW ,we obtain (3.40) that
assures asymptotic stability of (3.39).

The proof of inequalities (3.41) and (3.42) follows the same reasoning as (3.19)-

36



(3.20), that is, if we pre-and-post multiply (3.41) with diag(W−1, I), we could obtain
an inequality that assures Sa ⊆ Xa. Moreover, by pre-and-post multiplying (3.42) with
diag(W−1

(ii), I), we obtain [
W−1

(ii) ⋆

ki ū2W(ii)

]
≥ 0

where K = ZW−1. This is equivalent to ||ki|| ≤ ū.

Finally, observe that the system is under control action until t = T . After that, the
MAS is governed by the open-loop dynamics ẋ(t) = −Lx(t), as given by (3.39), and
with initial condition x(T ), where x(T ) = exp((−L+K)T )x(0). By Theorem 2.1, one

has lim
t→∞

xi(t) =
1

N
1Tx(T ). From (3.38), T = µ/(1TKQK1) assures Ju ≤ µ. ■

The Theorem 3.6 establishes the domain of attraction using matrix W , that is, it obtains
an ellipsoidal invariant region which in larger networks carries its disadvantage (the limits
in valid initial conditions for the agents). Hence, we propose the next result to address this
issue by establishing a polyhedral invariant region such that all the possible initial values of
states are valid. In other words, the Theorem 3.7 address the same problem as Theorem 3.6
with an extended domain of attraction of the origin.

Theorem 3.7

If there exist diagonal positive definite matrix W ∈ RN×N , a Metzler matrix H ∈
Rg×g, a positive scalar ξ and a diagonal matrix K ∈ RN×N such that the following
inequalities hold He{−LW −W} ⋆ ⋆

ξW +K + I −2ξI ⋆

W 0 −R−1

 < 0 (3.43)

Θ(−L+K)−HΘ ≪ 0 (3.44a)

H1 ≼ 0 (3.44b)

[
1 ⋆

ki ū2

]
≥ 0, ∀i = 1, · · · , N (3.45)

The designed state feedback gain K ensures lim
t→∞

xi(t) =
1

N
1Tx(T ), with x(T ) =

exp((−L+K)T )x(0), T = µ/(1TKQK1), for the closed-loop system (3.39), for all
x(0) ∈ X , with guaranteed cost Ju ≤ µ.

proof.

37



For the proof of (3.43), from (3.40) we have

[
He{−LW + Z} ⋆

W −R−1

]
=

 I 0

W 0

0 I


T

︸ ︷︷ ︸
BT

⊥

He−LW ⋆ ⋆

KT 0 ⋆

W 0 −R−1


︸ ︷︷ ︸

M

 I 0

W 0

0 I


︸ ︷︷ ︸

B⊥

< 0

Now, with respect to the equivalence of case 2 and case 3 in Lemma 2.6, for the following
choice of B and M we have BB⊥ = 0

B =
[
W −I 0

]
, N =

−IξI
0


Thus we have

M +NB +BTNT =

He{−LW −W} ⋆ ⋆

ξW +K + I −2ξI ⋆

W 0 −R−1

 < 0

The proof of (3.44) follows the same line as the proof of (3.30)–(3.31).

Moreover, the (3.45) is equivalent to ||ki|| ≤ ū.

■

The Theorem 3.7 provides a clear advantage. It provides perfect conditions for dealing
with large networks by avoiding the conservatism, limitations and computational burdens
that the other approaches carry. To optimize this method, we propose the next remark with
emphasis on minimizing the cost Jx.

REMARK 3.11 If the initial conditions x(0) are known, one can minimize Jx solving the
optimization problem

min ατ1 + (1− α)τ2 (3.46)

for a given parameter α ∈ [0, 1] subjected to (3.43)-(3.45) and[
τ1 ⋆

x(0) W

]
> 0 (3.47a)[

τ2 ⋆

K1 Q−1

]
> 0 (3.47b)
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Observe that

Jx =

∫ ∞

0

x(t)TRx(t) dt =

∫ T

0

x(t)TRx(t) dt︸ ︷︷ ︸
Jx1

+ lim
Tf→∞

(Tf − µ/(1TKQK1))x̄TRx̄︸ ︷︷ ︸
Jx2

With x̄ = x(T ) = exp
(
µ(−L+K)

1TKQK1

)
x(0). The minimization of τ2 yields the min-

imization of Jx2 , that is, V (T ) ≈ 0 with T = µ/1TKQK1. The minimization of τ1
yields the minimization of Jx1 , that means Jx1 ≤ x(0)TW−1x(0) according to (3.43).

3.6 POLYTOPIC APPROACH FOR INTERMEDIATE CONSENSUS

In this section that should be considered as an extension separate from the other ap-
proaches, we deal with the problem of intermediate consensus in MASs. This approach
deals with cases where d ∈ (0, 1) using polytopic approach along with quadratic Lyapunov
function for obtaining ellipsoidal level curves that estimate the invariant region in this case.
Let us define xdi(t) = xi(t) − d (xd(t) = x(t) − 1d) and the closed-loop system (3.2) is
rewritten as

ẋd(t) = −Lxd(t) +B(xd(t))u(t) (3.48)

Where xdi ∈ [−d, 1 − d], i = 1, . . . , N . Observe that the functionals Jx and Ju can be
rewritten as

∫∞
0
z(t)T z(t) dt and

∫∞
0
y(t)Ty(t) dt, respectively, where

z(t) = R
1
2xd(t)

y(t) = Q
1
2u(t).

(3.49)

The constraint (3.7) can be incorporated in the dynamics as u(t) = sat(v(t)) using the
standard decentralized saturation function sat(v(ℓ)) = sign(v(ℓ))min(|v(ℓ)|, ū), ℓ = 1, . . . , N ,
where v is an unbounded control signal to be designed. The, one has

ẋd(t) = −Lxd(t) +B(xd(t))sat(v(t)). (3.50)

The system (3.50) can be rewritten using the decentralized deadzone nonlinearity ψ(v) =
v − sat(v)

ẋd(t) = −Lxd(t) +B(xd(t))v(t)−B(xd(t))ψ(v(t)). (3.51)

We describe the bilinear product in (3.51) using a polytopic approach. In this approach,
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we define a polyhedral set to which all the initial conditions belong. The polyhedral set of
interest in this work representing xdi ∈ [−d, 1− d], i = 1, . . . , N , is given by

χd =
{
xd ∈ RN : Ωxd ≼ 1

}
(3.52)

where Ω = IN ⊗

[
−1/d

1/(1− d)

]
∈ R2N×N , 1 ∈ RN , and 0 ∈ χd.

The set (3.52) can also be represented in terms of its 2n vertices obtained from Ω by

χd = co
{
h1, h2, . . . , h2N

}
Hence, the polyhedral set χd induces the following matrix valued polytope

P = co{B(hi), i = 1, . . . , 2N}

and for any xd ∈ χd, one has

B(xd) =
2N∑
i=1

αi(t)hi =: B(α(t))

with α(t) belonging to the unit simplex

U = {α ∈ R2N :
2N∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , 2N}

for all t ≥ 0.

For the case d ∈ (0, 1), observe that if we consider the control law v(t) = Kxd(t),
K ∈ RN×N , the closed-loop system ẋd(t) = (−L + B(α(t))K)xd(t)− B(α(t))ψ(Kxd(t))
loses controllability for 0 ∈ χd and it is not possible to exclude it for the case d ∈ (0, 1). To
circumvent the lack the controllability in P , we propose the following control law

v(t) = B(xd)Kxd(t), K = diag(k1, . . . , kN) ∈ RN×N (3.53)

where ki ∈ R are state feedback gains to be designed. Note that, B(xd)B(xd) = B(x̂d),
x̂d = diag(x2d1 , . . . , x

2
dN
). Let us consider the following interval for x2di

x2di ∈ [ε,max(d2, (1− d)2)] (3.54)

where ε a positive scalar arbitrarily small. This means that we are excluding 0 from the
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interval of xd. Therefore, one can write B(x̂d) as

B(x̂d) =
2N∑
i=1

γ(t)ϑi = B(γ(t)) (3.55)

with γ(t) ∈ U and ϑi vertices obtained from (3.54).

The closed-loop system is given by

ẋd(t) = (−L+ B(γ(t))K)xd(t)−B(α(t))ψ(B(α(t))Kxd(t)) (3.56a)

z(t) = R
1
2xd(t) (3.56b)

y(t) = Q
1
2B(α(t))Kxd(t) +Q

1
2ψ(B(α(t))Kxd(t)). (3.56c)

Note that the price paid to obtain a controllable linear part in (3.56a) is to introduce an extra
polytope in the closed-loop system.

The objective is To design the state feedback gain K and to determine a region Sd ⊆
χd ∩ Π, as large as possible, such that the trajectories of the closed-loop system (3.56a)
starting from any initial condition xd(0) ∈ Sd converge exponentially toward the origin of
(3.56a) for d ∈ (0, 1). To deal with the state constraints we adopted an ellipsoid invariant
method with the following level curve of the Lyapunov function V (t) = xd(t)

TW−1xd(t)

Sd :=
{
xd ∈ RN : xTdW

−1xd ≤ 1
}
. (3.57)

The solution of this part is stated in the form of a theorem that is expressed in the follow-
ing.

Theorem 3.8

If there exist a symmetric positive definite matrix W ∈ RN×N , a diagonal positive
definite matrix S ∈ RN×N , diagonal matrices F ∈ RN×N and Z ∈ RN×N , a matrix
Y ∈ RN×N , and a given scalar ε > 0 such that the following inequalities hold for all
(α(t), γ(t)) ∈ U × U

He{−LF + B(γ(t))Z} ⋆ ⋆ ⋆ ⋆

W − F + ε(−LF + B(γ(t))Z)T −ε(F + F T ) ⋆ ⋆ ⋆

SB(α(t))T + Y 0 −2S ⋆ ⋆

B(α(t))Z 0 S −Q−1 ⋆

W 0 0 0 −R−1

 < 0

(3.58)[
−W + F + F T ⋆

Ω(i)F 1

]
≥ 0, ∀i = 1, . . . , 2N (3.59)
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[
−W + F + F T ⋆

(B(α(t))Z)(i) − Y(i) ū2

]
≥ 0, ∀i = 1, . . . , N (3.60)

Then, the closed-loop system (3.56a) with K = ZF−1 is asymptotically stable with
Sd ⊆ χd ∩ Π as an estimation of the domain of attraction of the origin, and Jx ≤
xd(0)

TW−1xd(0). Moreover, if the initial condition x(0) satisfies[
W x(0)− d1

⋆ µ

]
> 0 (3.61)

then Ju < µ.

proof.

Proof of (3.58) and (3.61):

First, consider the closed-loop system (3.56a) and the Lyapunov function V (t) =

xd(t)
TW−1xd(t). The integral from 0 to ∞ of

V̇ (t) + y(t)Ty(t) + z(t)T z(t) < 0 (3.62)

implies Jx < V (0) and Ju < V (0). Therefore, if we apply the Schur complement in
(3.61), we obtain xd(0)TW−1xd(0 < µ and assure (3.8). The conservatism of Ju < V (0)

can be relaxed by imposing R < γQ with 0 < γ ≪ 1.

Using Lemma 2.2, the inequality (3.62) holds if V̇ + yTy + zT z − 2ψ(v)TTψ(v) +

2ψ(v)TTGxd < 0, and, considering (3.56), the last inequality is rewritten as

[
xd

ψ(v)

]T [
He{−W−1L+B(xd)(B(xd)K)}+ (B(xd)K)TQ(B(xd)K) +R ∗

B(xd)
TW−1 +Q(B(xd)K) + TG Q− 2T

]
[
xd

ψ(v)

]
< 0 (3.63)

By pre- and post-multiplying the above inequality by diag(W,T−1), one has[
He{−LW +B(xd)(B(xd)Z)}+ (B(xd)Z)

TQ(B(xd)Z) +W TRW ⋆

SB(xd)
T + SQ(B(xd)Z) + Y SQS − 2S

]
< 0,

where Z = KW , S = T−1, and Y = GW . Using the Schur complement lemma, one
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has 
He{−LW +B(xd)B(xd)Z} ⋆ ⋆ ⋆

SB(xd)
T + Y −2S ⋆ ⋆

B(xd)Z S −Q−1 ⋆

W 0 0 −R−1

 < 0

In this LMI, there is a multiplication of Lyapunov matrix W and B(xd)K that limits the
choice of a proper W to a class of diagonal matrices. In order to overcome this limit, we
use Lemma 2.6 and derive the LMI such that

He{−LF +B(x̂d)Z} ⋆ ⋆ ⋆ ⋆

W − F + ε(−LF +B(x̂d)Z)
T −ε(F + F T ) ⋆ ⋆ ⋆

SB(xd)
T + Y 0 −2S ⋆ ⋆

B(xd)Z 0 S −Q−1 ⋆

W 0 0 0 −R−1

 < 0.

Finally, the above condition holds for all xd ∈ χd − {0} if (3.58) is verified.

Proof of (3.59):
Using the inequality

(F −W )TW−1(F −W ) ≥ 0 ⇒ F TW−1F ≥ −W + F + F T , (3.64)

one has that (3.59) implies [
F TW−1F ⋆

Ω(i)F 1

]
≥ 0

and, by pre-and-post multiplying the above inequality by diag(F−1, I), one has[
W−1 ⋆

Ω(i) 1

]
≥ 0

that verifies Sd ⊆ χd [97].

Proof of (3.60):

Consider the set Π in Lemma 2.2 and S in (3.57). By using (3.64), (3.60) implies[
F TW−1F ⋆

(B(α(t))Z)(i) − Y(i) ū2

]
≥ 0
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Then, by pre-and-post multiplying the above inequality by diag(F−1, I), we have[
W−1 ⋆

(B(α(t))K)(i) −G(i) ū2

]
≥ 0

Where K = B(α(t))ZF−1 and G = Y F−1. This verifies Sd ⊆ Π [86].

■

This approach makes it possible to achieve an intermediate consensus in a network of
MASs. However, it carries a certain disadvantage. In this method, the estimation of the
domain of attraction is made using quadratic Lyapunov function that results in ellipsoidal
invariant region. The quadratic Lyapunov function is of symmetric nature and consequently,
the value of the desired consensus d could limit the size of domain of attraction. To phrase
it clearly, as the value of the desired intermediate consensus moves toward its edges (0 and
1), the obtainable domain of attraction gets smaller. With respect to this fact, this approach
works adequately for consensus values away from its edges.

3.7 NUMERICAL COMPLEXITY

In this part, we express the numerical complexity of each theorem with respect to the
network size. The goal is to clarify the computational burden of each theorem and verify the
ability of the proposed methods in dealing with networks with a large number of agents.

The algorithms are implemented employing YALMIP [100] and SeDuMi [101]. The
comparison of the numerical complexity of the proposed LMIs is verified by the number of
LMI rows and scalar variables presented in the following table.

Scalar variables LMI rows
Theorem 3.1 N2 + 3N + 1 3N2 + 7N
Theorem 3.2 N2 + 2N + 1 4N
Theorem 3.3 4N2 +N N2 +N(4 + 22N+1)
Theorem 3.4 N2 + 3N 3N × 2N

Theorem 3.5 N2 + 2N 3N × 2N

Theorem 3.6 2N N2 + 5N
Theorem 3.7 4N2 + 2N 9N
Theorem 3.8 2N2 + 3N + 1 3N2 +N(4 + (5× 22N)) + 1

Table 3.1 – Numerical complexities of different approaches.

In the following table, we provide numerical values for the computational complexity for
different network sizes N .

44



N = 3 N = 5 N = 20 N = 100

Theorem 3.1
Scalar variables 19 41 461 10301

LMI rows 48 110 1340 30700

Theorem 3.2
Scalar variables 16 36 441 10201

LMI rows 12 20 80 400

Theorem 3.3
Scalar variables 39 105 1620 40100

LMI rows 405 10285 480 + (20× 241) 10400 + (100× 2201)

Theorem 3.4
Scalar variables 18 40 460 10300

LMI rows 72 480 60× 220 300× 2100

Theorem 3.5
Scalar variables 15 35 440 10200

LMI rows 72 480 60× 220 300× 2100

Theorem 3.6
Scalar variables 6 10 40 200

LMI rows 24 50 500 10500

Theorem 3.7
Scalar variables 42 110 1640 40200

LMI rows 27 45 180 900

Theorem 3.8
Scalar variables 28 66 861 20301

LMI rows 1000 25696 1281 + (100× 240) 30401 + (500× 2200)

Table 3.2 – Numerical complexity of different approaches for several network sizes N .

As we can observe in Tables 3.1 and 3.2, Theorems 3.3–3.5 and Theorem 3.8 are not
suitable for higher order networks. On the other hand, Theorems 3.2 and 3.6 carry the
lowest computational burden. Moreover, Theorems 3.1 and 3.7 maintain an intermediate
computational cost in comparison with other approaches. Therefore, Theorems 3.1–3.2 and
Theorems 3.6–3.7 are the most suitable approaches for dealing with large networks, although
the computational effort is high for very large networks.
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NUMERICAL EXAMPLES

This section is dedicated to presenting a number of numerical examples to indicate the ef-
fectiveness of the presented results.

4.1 EXAMPLE 1

For this example, we use a network from [20] in the form of a connected undirected
graph G with N = 3 agents where the Laplacian matrix is expressed by

L =

 3 −1 −2

−1 3 −2

−2 −2 4

 .

Case d = 0 (state feedback control law)

In this case we consider Q = 10−1I , R = 10−1I , µ = 0.675, and ū = 0.9 for Prob-
lem 1. The state-feedback control law is designed using Theorems 3.1 and 3.2, where B0 =

B((0.5 + ε)1), with ε = 0.1. Theorem 3.1 yields K = diag(−1.4143,−1.4143,−1.3886)

and the control mechanism (3.23) is implemented using P obtained from Theorem 3.2.
From Theorems 3.1 and 3.2 and by taking advantage of Remark 3.7, we have Jx ≤ 1 and
Ju ≤ 0.7019 as the guaranteed costs. The real costs using (3.5) and (3.8), obtained from the
trajectories of Figure 4.3, are Jx = 0.0988 and Ju = 0.1777. One can see that the real costs
are upper bounded by the values obtained by the theorems, although the presence of some
conservatism causes the control signal to be cut off before Ju reaches µ.

Figure 4.1 confirms that the estimation of the domain of attraction S encloses most of
the region χ. In this figure, the domain of attraction for a positive system is obtained as
the intersection of the ellipsoidal region Sa and the positive polyhedral set χ. Different
illustrations in this figure aim to give an adequate perspective in the three dimensional space
about the domain of attraction.
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Figure 4.1 – Top: invariant region Sa (blue) contained in χa (red); bottom left: illustration of
Sa (blue) and χa (red) in the 2-D plane ; bottom right: estimation of domain of attraction S
(blue) enclosed in χ (green).

Figure 4.2 demonstrates the inclusion of Su in S, confirming the limitation caused by
(3.8) in preventing agents’ opinions from reaching the origin. In other words, not all agents
in the domain of attraction have the adequate amount of energy to reach the origin with
respect to defined budget limitations. Note that only the initial conditions inside the green
region can reach the origin.

Figure 4.2 – Ellipsoidal regions Sa (blue, left figure) and S (blue, right figure) covering Su

(green).
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Figure 4.3 shows the trajectories of agents’ opinions (states) for the initial states

x(0) = (0.2673, 0.5345, 0.8018) ∈ ∂S.

It can be seen that all trajectories converge towards the origin but without reaching it due to
the energy limitation (3.8). One can observe that u3 is saturated in the initial instant and the
control signal is zero around t = 5s when afforded budget is finished according Remark 3.4.
It should be noted that the final consensus value of agents’ states is (0.1130) in this case.
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u1
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Figure 4.3 – Trajectories of agents’ opinions for x(0) = (0.2673, 0.5345, 0.8018) and their
respective control actions for norm-bounded approach.

Remark 3.9 is employed to maximize the domain of attraction, as shown in Figure 4.4.
The volume of the ellipsoid representing the estimation of the domain of attraction with Re-
mark 3.7 (red ellipsoid) is approximately equal to 0.5175 while the one with Remark 3.9
(green ellipsoid) achieves a volume of approximately 0.7048, showing the efficiency of tech-
nique proposed in Remark 3.9. To be more explicit, while Remark 3.7 provide the necessary
condition for maximizing the domain of attraction in a general way, Remark 3.9 provide
specifications to achieve the maximization for a selected part of state-space (positive orthant,
for instance).
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Figure 4.4 – The figure shows the original domain of attraction of Example 4.1 (red) and the
maximized domain of attraction of the same example with Remark 3.9 (green).

Case d = 0 (on-off control law)

We keep the same parameters (Q = 10−1I , µ = 0.675 and ū = 0.9), also we adapt
R = I in Theorem 3.6 to design the control law (3.37). The difference in the parameter
Q compared to the previous example is to augment the result for this particular case, that
is, we modify parameter Q in each example to obtain a better performance. In this case
The objective is to compare this approach with the state feedback control law designed by
Theorem 3.1. Theorem 3.6 yields K = diag(−0.6017,−0.6039,−0.6212) and T = 6.05s
by exploiting the manimization criteria presented in Remark 3.11.

Figure 4.5 shows the domain of attraction and the agents’s trajectories, with the same
initial conditions as before. The agents start their trajectories at the edge of the domain of
attraction and converge to the origin. Figure 4.6 illustrates the time simulation of the agents’
trajectories. At the time t = T the control input becomes zero as the switching mechanism
gets activated. As we can see, the final value of the agents (0.01337) are closer to the origin
compared with the state feedback control law illustrated in Figure 4.3.
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Figure 4.5 – Invariant region Sa obtained by Theorem 3.6 (green ellipsoid) and agents’ tra-
jectory (blue line) for the initial condindition x(0) = (0.2673, 0.5345, 0.8018).
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Figure 4.6 – Time simulation of agents’ states and their control input using Theorem 3.6.
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Additionally, we apply the same conditions (R = I ,Q = 10−1I , µ = 0.675 and ū =

0.9) to Theorem 3.7 for making further comparison between different approaches in this
case. By employing Remark 3.11 as the cost minimization criteria, Theorem 3.7 yields
K = diag(−0.7216,−0.7277,−0.7339) with T = 4.24. The time simulation of agents’
trajectories is illustrated in Figure 4.7.

Figure 4.7 – Time simulation of agents states and their respective control input using Theo-
rem 3.7.

From Theorem 3.7 and by using Remark 3.11, we have Jx ≤ 0.8449 and Ju ≤ 0.675

as guaranteed costs for the closed-loop system. Considering the time simulation of agents’
trajectories in Figure 4.7, one has Jx = 0.6090 and Ju = 0.6737. We can observe that
Theorem 3.7 with Remark 3.11 provides tight bounds on the costs and a precise mechanism
to cut off the control signal to assure Ju ≤ µ. It is evident that the agents are successfully
swayed to the desired consensus and the control action is deactivated at t = T , resulting in
a final consensus value of (0.02445). Moreover, we have chosen different initial conditions
on the border of the polyhedral estimation of domain of attraction to illustrate that all the
points belonging to it would converge asymptotically toward the origin. We have depicted
this illustration in Figure 4.8.
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Figure 4.8 – Evolution of agents’ trajectories considering different initial conditions on the
border of the polyhedral estimation of domain of attraction.

As it could be observed, all the trajectories converge asymtotically to the origin. To pro-
vide a comparison between the performance of Theorem 3.6 and Theorem 3.7, it is evident
that the final consensus value is slightly smaller by using Theorem 3.6. However, Theo-
rem 3.7 provides a faster convergence instead. Thus, each of these two approaches carry
their own advantages with respect to this particular example.

Finally, by comparing the results of the same case with different properties (with state-
feedback and on-off control law), one can conclude that Theorems 3.6 and 3.7 have solved
the same problem more effectively than Theorem 3.1 as the final consensus value is con-
siderably closer to the origin alongside a higher convergence rate. Moreover, by the on-off
control law, we avoid creating bilinear products in the system dynamics which makes it eas-
ier to apply. It is noteworthy that the estimation of domain of attraction in Theorem 3.6 and
Theorem 3.1 reveal identical results.

Case d = 0.5

In this case, Theorem 3.8 is implemented with Q = 10−6I , R = 10−6I , µ = 2, ū = 0.99

and ε = 10−6. The estimation of the domain of attraction is depicted in Figures 4.9 and 4.10.
As it could be observed in Figure 4.9, the estimation of the domain of attraction Sd is con-
tained in χd. For the case d = 0.5, we observe that the estimation of the domain of attraction
is the optimal one that can be obtained by an ellipsoidal region inside the polyhedral set. Fig-
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ure 4.10 shows that all points of the domain of attractions are covered by the region where
the energy constraint Ju < µ is satisfied. In other words, due to the specification of µ, all
points belonging to the domain of attraction have enough energy to reach the origin.

Figure 4.9 – Estimation of the domain of attraction Sd for the case d = 0.5 using Theorem 3.8
(red ellipsoid) contained in the polyhedral set χd (black box) with respect to the value of d.

Figure 4.10 – Domain of attraction (red region) inside the space of initial conditions satisfing
the energy constraint Ju < µ (cyan space).

The time simulation of agents’ trajectories is illustrated in Figure 4.11 for the initial
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condition x(0) = (0.05, 0.95, 0.3). We can observe that the trajectories converge to the
desired consensus over time.

Figure 4.11 – The time simulations of agents’ trajectories. Simulation placed on the left side
considers t ∈ [0, 5] and the simulations placed on the right side considers t ∈ [0, 500] as their
time-span.

4.2 EXAMPLE 2

This example deals with a social network of N = 20 agents represented by a connected
directed graph displayed in Figure 4.12. Using Theorem 3.1 with Remark 3.8, the state
feedback gain K is obtained to solve Problem 1 with Q = 10−1I , R = 10−1I , µ = 21,
ū = 0.9, and ε = 0.02. As it is visualized in Figure 4.13, all the trajectories converge
successfully toward the origin. Implementing (3.23) using P designed by Theorem 3.2, at
t = 2.3 the available investment is spent (Ju = µ) and, from this point on, the trajectories
converge towards the consensus (open-loop) manifold. We note that the control signal related
with the agent 1 with higher initial condition (x1(0) = 0.8) saturates in the initial instant
(u1 = −0.9), showing that the algorithm is able to deliver the highest control action to the
to the agent furthest from the desired consensus value. Finally, due to the budget constraint,
agents are prevented from reaching the exact consensus value at d = 0.
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Figure 4.12 – The visualization of targeted network in the form of a connected directed graph
with 20 agents.
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Figure 4.13 – Trajectories of the agents for some initial condition x(0) ∈ ∂S and control
signal for Example 4.2.

4.3 EXAMPLE 3

This example deals with a network of N = 5 agents formed by the graph depicted in
Figure 4.14. Theorem 3.3 is applied to achieve maximization of domain of attraction for the
feedback gain K obtained with respect to Theorem 3.4 and Q = R = 10−1I , ū = 0.9, ϵ =
0.01 and µ = 32. Figure 4.15 shows the trajectories of the agents. By using Theorem 3.5, at
t = 4.69, when the guaranteed budget µ is reached, the external control action is deactivated
and the exact desired consensus d = 0 is not achieved.

It could be concluded that by realizing a polyhedral invariant region instead of an ellip-
soidal equivalent, we have extended the domain of attraction in a way that we are authorized
to select any possible valid state as an initial state. Thus, despite the computional cost of this
method, in smaller networks the polyhedral invariant region provides better results in terms
of maximization of domain of attraction in comparison with ellipsoidal invariant regions.
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Figure 4.14 – Topology of the connected directed graph with 5 agents.
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Figure 4.15 – Trajectories of the agents for initial values belonging to X and the control
actions for Example 3.

4.4 EXAMPLE 4

In this example, we ilustrate the advantage of Theorem 3.7 on a large network of 100
agents. The goal of considering such large network is to assess the capability of Theorem 3.7
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in dealing with large networks. The network topology is depicted in Figure 4.16.

Considering R = I , Q = 10−1I , µ = 18, ū = 0.9, ξ = 1 and ϵ = 10−3, the control
law (3.37) is designed by Theorem 3.7. The time simulation of agents opinions is shown in
Figure 4.17. The upper-bound of the agents’ opinion value at the end of the simulation is
equal to 0.0273. The initial conditions of the states are distributed in a uniform manner from
0.01 to 1. The switching mechanism becomes activated around t = 4 imposing no control
action from this period. It is evident that all the agents’ opinions converge successfully
toward the desired consensus d = 0.

Figure 4.16 – Topology of the directed graph with 100 agents.
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Figure 4.17 – The time simulation of 100 agents case using Theorem 3.7. It is evident that
all the trajectories successfully converge to the desired consensus d = 0.

A very interesting capability of this method is its ability to deal with large networks,
while the previous methods, based on the state feedback or on-off control law, are not able to
provide a solution. Moreover, the performance of this method is quite adequate as illustrated
in Figure 4.17. Therefore, this example shows the efficiency of the on-off control law (as it
eliminate the bilinear product) for large networks.
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CONCLUSION

This manuscript provided multiple LMI-based conditions to address consensus problem in
MASs represented by connected graphs. Multiple Theorems are developed to deal with
different conditions with respect to the desired consensus. Afterwards, the numerical exam-
ples took place to demonstrate the performance of each method and to make comparisons
between them. The approaches are expressed considering practical conditions like budget
constraint and limited influence. The bilinear product for the case of state feedback control
law caused extra challenges in obtaining a stabilizing feedback gain.

Through this work we have proposed new sufficient conditions for the consensus control
of multi-agent systems via state feedback and on-off control laws and by replacing bilinear
product of systems dynamic with norm-bounded uncertainty and polyhedral model. More-
over, a number of remarks has been stated to complete and justify different aspects of the
proposed method. It is evident that there exist a trade-off between the obtained gain and the
size of the domain of attraction for the norm-bounded method which creates some levels of
conservativeness. Hence, it could be a limit toward network convergence rate as higher gains
lead to faster convergence of agents’ trajectories. Moreover, in norm-bounded method as the
number of agents grow, it becomes harder to evaluate valid initial condition away from the
origin that are a part of the established and estimated domain of attraction. In other words,
for larger networks the valid initial states become closer to the origin. The mentioned issues
associated with the norm-bound method are addressed using polyhedral approach and on-off
control law to augment the results. While the polyhedral approach provide the maximization
of domain of attraction, it still carry a high computational cost that makes it suitable only
for smaller networks. On the other hand, the on-off control law is capable of maximizing
the domain of attraction while it has a considerably lower computational cost which makes
it suitable for larger networks. Moreover, it provides faster convergence speed toward the
origin in comparison with the state feedback control law. Additionally, we have explored
the case of intermediate decision making using polyhedral approach. While it provide the
consensus control through time, it still carries major drawbacks such as slow convergence
speed created by the trade-off between the size of domain of attraction and the limits in es-
tablishing the ellipsoidal domain of attraction for different cases. In other words, because of
the symmetric nature of ellipsoidal invariant region, the domain of attraction could get very
small, which is not adequate as an answer to our problem. A possibility to overcome these
challenges might be in exploring different choices for establishing the domain of attraction
or using a different control law. Hence, this approach is subject to further developments in
the future.
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5.1 FUTURE WORKS

In this part, we propose some topics that could be the subject of our research in the future.

• To extend the design procedure for the intermediate decision (d ∈ (0, 1)) to large
networks and to improve the estimation of the domain of attraction;

• To include the convergence rate of the trajectories as a performance criterion and to
consider the attenuation of exogenous (disturbances) inputs using the indices H2 or
H∞.

• To deal with MASs subject to uncertainties (robust consensus) or with time-varying
topologies;

• To consider the consensus problem of MASs in the presence of communication delay
in the flow of information between the agents;

• To use hybrid models that employ discrete control actions in continuous-time dynam-
ics.

5.2 LIST OF PUBLICATIONS

Publication in process or published during the elaboration of this thesis:

• Alkhorshid, D. R., Tognetti, E. S., Morarescu, I. C. (2022). A bilinear systems ap-
proach with input saturation to control the agreement value of multi-agent systems. In
European Control Conference (ECC22). (Accepted for publication.)
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[19] V. S. Varma, I.-C. Morărescu, and M. S. Lasaulce, Samson, “Marketing resource allo-
cation in duopolies over social networks,” IEEE control systems letters, vol. 2, no. 4,
pp. 593–598, 2018.
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