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Abstract

Global Navigation Satellite Systems (GNSS), such as the American Global Positioning
System (GPS), European Galileo, Russian GLONASS, and Chinese BeiDou, are crucial
for applications that demand very accurate positioning. Time-delay estimation tensor-based
methods, such as Canonical Polyadic Decomposition by Generalized Eigenvalue Decom-
position (CPD-GEVD), Direction of Arrival Khatri-Rao Factorization (DoA/KRF), and Ca-
nonical Polyadic Decomposition via simultaneous matrix diagonalization (SECSI), can be
combined with the third-generation GPS (GPS3) L1C Civil (L1C) signal in order to signifi-
cantly mitigate the positioning degradation caused by multipath components. However, these
schemes assume that the number of multipath components is constant and known, although,
in practice, the amount of multipath components is time-varying, requiring the incorporation
of a suitable model order selection (MOS) scheme. In this paper, we propose a complete fra-
mework including the following steps: estimation of the number of multipath components,
separation of the source signals via a tensor-based approach, and estimation of the time-delay
of the estimated line of sight (LOS) component. To estimate the model order, we consider the
discriminant function based method (DFBM), which is suitable for colored noise scenarios.
To estimate the model order in dynamic scenarios, we consider the Exponential Fitting Test
(EFT). Moreover, we significantly mitigate the effect of multipath components by incorpora-
ting the pre-processing step called Tensor-based Multiple Denoising (MuDe) approach in our
proposed framework. Finally, the proposed framework in dynamic scenarios groups the epo-
chs with the same model orders forming sub-tensors with constant model order. Therefore,
such grouping allows for increased accuracy.
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Resumo

Os Sistemas Globais de Navegação por Satélite (GNSS), como o Sistema de Posiciona-
mento Global (GPS), o Galileo, o GLONASS e o BeiDou, são cruciais para aplicações que
exigem um posicionamento muito preciso. Métodos baseados em tensores de estimativa de
atraso de tempo, como Canonical Polyadic Decomposition by Generalized Eigenvalue De-
composition (CPD-GEVD), Direction of Arrival Khatri-Rao Factorization (DoA/KRF) e Ca-
nonical Polyadic Decomposition via simultaneous matrix diagonalization (SECSI), podem
ser combinado com o sinal L1C Civil (L1C) do GPS de terceira geração (GPS3) para mitigar
significativamente a degradação de posicionamento causada por componentes de multicami-
nho. No entanto, esses métodos assumem que o número de componentes de multicaminho
é constante e conhecido, embora, na prática, a quantidade de componentes de multicaminho
seja variável no tempo, exigindo a incorporação de um esquema de seleção de ordem de mo-
delo (MOS) adequado. Neste artigo, propomos uma estrutura completa incluindo as seguin-
tes etapas: estimativa do número de componentes de multicaminho, separação dos sinais de
origem por meio de uma abordagem baseada em tensores e estimativa do atraso de tempo da
linha de visão (LOS) componente. Para estimar a ordem do modelo, consideramos o método
baseado em função discriminante (DFBM), que é adequado para cenários de ruído colo-
rido. Para estimar a ordem do modelo em cenários dinâmicos, consideramos o TExponential
Fitting Test (EFT). Além disso, mitigamos significativamente o efeito de componentes de
multicaminho incorporando a etapa de pré-processamento Tensor-based Multiple Denoising
(MuDe) na estrutura proposta. Por fim, o framework proposto em cenários dinâmicos agrupa
as épocas com as mesmas ordens de modelo formando subtensores com ordem de modelo
estimadas. Portanto, tal agrupamento permite maior precisão.
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Chapter 1

Introduction

As Global Navigation Satellite Systems (GNSS), such as GPS, Galileo, GLONASS, and
Beidou, become more ubiquitous, this technology shows to be essential to applications such
as civilian aviation, autonomous driving, defense, and timing and synchronization of critical
networks. The GNSS receivers require the line of sight (LOS) signals from at least four satel-
lites to estimate their position on the Earth’s surface. Additionally to the LOS component,
non-LOS (NLOS) mutipath components occur due to the reflections on trees, poles, lamp
and buildings. The superposition of the LOS and NLOS multipath components degrades the
time-delay estimation and, consequently, the positioning estimation.

Thus, state-of-the-art GNSS receivers equipped with a single antenna are extremely sen-
sitive to the effect of multipath components [1, 2, 3]. Therefore, tensor-based multipath mit-
igation methods combined with antenna arrays have been proposed to significantly mitigate
the effect of the multipath components in comparison with the single antenna matrix-based
counterpart techniques. In [4], the authors propose the Tensor-based Eigenfilter using Higher
Order Singular Vector Decomposition (HOSVD) combined with Forward-Backward Aver-
aging (FBA) [5], Spatial Smoothing (SPS) [6, 7], and a compressed signal bank in order to
mitigate multipath and to improve the time-delay estimation. In [8] a three step approach
based on the direction of arrival (DoA) estimation, the Khatri-Rao factorization (KRF) and
the selection with a compressed signal bank is proposed in order to mitigate multipath in
the time-delay estimation (TDE). In [9], the Canonical Polyadic Decomposition by a Gen-
eralized Eigenvalue Decomposition (CPD-GEVD) is proposed due to its robustness against
multipath components and array imperfections. In [10], the state-of-the-art tensor-based
methods [4, 8, 9] are extended to third-generation GPS (GPS3), since GPS3 is robust against
multipath components in comparison with the second generation GPS (GPS2) due to its
Time Multiplexed Binary Offset Carrier (TMBOC) modulation [11, 12, 13]. Moreover, im-
proved signals based on the Time Multiplexed Binary Offset Carrier (TMBOC) modulation
are proposed in the new GPS L1 civilian signal (L1C) for the (GPS3) [11, 12, 13]. Fur-
thermore, in [10] the state-of-the-art tensor-based methods [4, 8, 9] are extended to GPS3
in a straightforward manner, and tensor-based GPS3 methods outperform the tensor-based
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GPS2 method. Still in [10], the L1C pilot signal is combined with the algorithms derived in
[4], which include the Tensor-based Eigenfilter with Forward-Backward Averaging (FBA)
[14, 5] and Expanded Spatial Smoothing (ESPS) [6, 7]. Furthermore, in [10] the L1C pilot
signal is combined with the CPD-GEVD based time-delay estimation with the L1C pilot
signal. Moreover, in [15], the authors indicate that the SECSI method can be applied to
GPS2 and GPS3 signals in a straightforward manner, and antenna array based receivers us-
ing GPS3 and SECSI outperform antenna array receivers using GPS2 and SECSI. Finally,
in [16] the authors propose a complete tensor-based framework to estimate the tensor model
order by rearranging the main tensor into sub-tensors and use the estimated model order to
computed the time-delay. In [17], the authors proposed the (Lr, Lr, 1)-GEVD approach to
perform multi-linear rank-(Lr, Lr, 1) decomposition by clustering NLOS components and
obtaining the LOS component. Meanwhile, in [18, 19], the authors proposed a tensor-based
subspace tracking framework to keep track and update the tensor signal subspace. However,
similarly to previous tensor-based methods, [17] and [18, 19] assume that the model order
is constant between data epochs. Additionally, [20] combines an Extended Kalman Filter
(EFK) with an antenna array and tensor-based GNSS receivers to improve performance of
vehicle localization estimation.

In contrast to the state-of-the-art solutions for antenna array based GNSS receivers that
assume a known amount of multipath components, also known as model order, in this thesis,
we propose a complete framework including the following steps: estimation of the number
of multipath components, mitigation of the multipath effect, separation of the source signals
via a tensor-based approach and estimation of the time delay of the estimated line of sight
(LOS) component. To estimate the model order in static scenarios, we consider the discrim-
inant function based method (DFBM) [21], which is suitable for colored noise scenarios.
To estimate the model order in dynamic scenarios, we consider the Exponential Fitting Test
(EFT) [22]. Additionally, we further mitigate the effect of multipath components by in-
corporating the pre-processing step called Tensor-based Multiple Denoising (MuDe) [23]
approach in our proposed framework. Finally, the proposed framework groups the epochs
with same model order by forming sub-tensors with constant model order. Therefore, such
grouping allows for increased accuracy. Moreover, we explore other tensor modes by rotat-
ing the received signal tensor. Therefore, we propose to utilize the Mode 1 HOSVD SECSI
with left-hand matrix (Mode 1 HOSVD SECSI) method [24, 25, 26] to perform factor ma-
trix estimation since the Mode 1 HOSVD SECSI provided better factor matrices estimates
in dynamic scenarios.

The matrix based Model Order Selection (MOS) literature is quite extensive including
the following state-of-the-art approaches: 1-D Akaike’s Information Criterion (1-D AIC)
[27], 1-D Minimum Description Length (1-D MDL) [27], EFT [22], Modified EFT (M-EFT)
[27], RADOI [28], and the subspaced-based ESTER [29]. In addition, tensor-based MOS
are also present in the literature, such as R-D AIC [30], R-D MDL [30], and R-D EFT [27].
Therefore, we evaluate the most suitable MOS for time-delay estimation for antenna array
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based GNSS receivers. Finally, the proposed framework is suitable for both GPS2 and GPS3.

Moreover, we show that we can utilize the matrix-based MOS and the R-D EFT methods
in a scenario with a varying model order. Firstly, we describe that matrix-based MOS meth-
ods can be used to estimate the model order of each collected epoch. Then, we can use the
estimated model orders to group tensor slices and to form sub-tensors with the same model
order. Afterward, we employ the tensor-based TDE methods to decompose the sub-tensors.
However, in some cases we cannot group the tensor slices; therefore, we have to decompose
a single matrix. Thus, we propose a Matrix-based Eigenfilter utilizing the Singular Value
Decomposition (SVD) approach to compute the time-delay. Subsequently, we show that we
can use the maximum and the minimum estimated model order of each epoch to perform the
tensor decomposition. Consequently, by using the maximum and the minimum model order,
we no longer have to split the original tensor into several sub-tensors. Hence, we improve the
TDE by assuming the tensor model order is constant. Finally, when we have a varying model
order, we show that the R-D AIC and R-D MDL methods cannot estimate the tensor model
order while the R-D EFT successfully estimates it. Finally, to perform matrix decomposition
in an dynamic environment we utilized two variants of the SECSI method. We utilize the
SECSI variants that utilize the right-hand side and left-hand side matrix of the first mode, as
described in [24, 25, 26].

This thesis is divided into five chapters, including this introduction. Chapter 2 introduces
the data model for the antenna array-based GNSS assuming multipath components used
throughout this thesis. Moreover, the author introduces the static scenario as an environment
where the model order is constant across the collected epochs. Also, Chapter 2 presents
the MOS and TDE methods combination and simulation results. In addition, Chapter 3
introduces a dynamic scenario as an environment where the model order may vary across the
collected epochs. Also, the authors present the MOS methods along with the proposed TDE
method used in dynamic scenarios and the simulation results. Furthermore, in Appendix A,
the author introduces the Notation and the Matrix and Tensor calculus used in this thesis.

1.1 Author’s Publications

M. R. Zanatta, J. P. C. L. Da Costa, F. Antreich, M. Haardt, G. Elger, F. L. Lopes De Men-
donça, and R. T. De Sousa, “Tensor-based framework with model order selection and high
accuracy factor decomposition for time-delay estimation in dynamic multipath scenarios,”
IEEE Access, vol. 8, pp. 174 931–174 942, 2020.

D. V. de Lima, M. R. Zanatta, J. P. C. L. da Costa, R. T. de Sousa Jr, and M. Haardt, “Robust
tensor-based techniques for antenna array-based GNSS receivers in scenarios with highly
correlated multipath components,” Digital Signal Processing, p. 102715, Mar 2020.

G. A. Santos, J. P. C. L. da Costa, D. V. de Lima, M. R. Zanatta, B. J. G. Praciano, G. P. M.
Pinheiro, F. L. L. de Mendonça, and R. T. de Sousa, “Improved localization framework for
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Chapter 2

Time-Delay Estimation for Static
Scenarios

In this chapter we firstly introduce the tensor data model in Section 2.1. Moreover, in Sec-
tion 2.2 we propose to use the RADOI method as a viable solution for model order selection
in static scenarios. Furthermore, three tensor-based time-delay solutions, the state-of-the-art
tensor-based time-delay estimation HOSVD, DoA/KRF, and CPD-GEVD from [4] and [9]
are overviewed along with the HOSVD SECSI [15] in Section 2.3. In Subsection 2.3.5 we
present the LOS selection method while in Subsection 2.5 we present the computational
complexity of the state-of-the-art and proposed methods. Finally, in Subsection 2.4 we dis-
play the TDE simulation results after combining the RADOI method with the state-of-the-art
factorization matrices.

2.1 Data Model

This section firstly introduces the scenario considered in this paper in Subsection 2.1.1.
Subsection 2.1.2 describes how the signal tensor is constructed. Finally, in Subsection 2.1.3,
the post-correlation data model is defined using both the GPS C/A code and the L1C pilot
signal [11].

2.1.1 Scenario

We consider a GNSS receiver equipped with an antenna array with M elements. We
assume that for the received signals of d = 1, . . . , D satellites, the LOS signal of the dth
satellite is superimposed with (Ld(k)−1) NLOS multipath components. The observations are
collected during K periods (or epochs) each with N samples, where k = 1, . . . , K and n =

1, . . . , N . Moreover, the total number of received signal components is L(k) =
∑D

d=1 Ld(k) ,
where ℓ(k) = 1, . . . , L(k) and ℓd(k) = 1, . . . , Ld(k) are the ℓth and ℓdth component at the kth
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epoch. Furthermore, we assume that τ (d)1 is the time-delay of the LOS component of the
dth satellite, while τ

(d)
2 , . . . , τ

(d)
Ld(k)

are the time-delays of the (Ld(k) − 1) NLOS components.
Each satellite broadcasts the L1C pilot signal with carrier frequency fc = 1575.42 MHz. The
received signals are down-converted to baseband and sampled at a sampling rate of fs = 2B,
where B is the one-sided signal bandwidth. As illustrated in Figure 2.1(b), we assume that
τ
(d)
1 is the time-delay of the LOS component of the dth satellite, while τ

(d)
2 , . . . , τ

(d)
Ld(k)

are
the time-delays of the (Ld(k) − 1) NLOS components. Each satellite broadcasts the L1C
pilot signal with carrier frequency fc = 1575.42. The received signals are down-converted
to baseband and sampled at a sampling rate fs = 2B, where B is the one-sided signal
bandwidth.

1

2
d

D

...
(a) D satellites transmitting the LOS component
impinging onto a GNSS receiver.

d

...τ
(d)
1

τ
(d)
Ld(k)

(b) dth satellite transmitting the LOS component
and the NLOS interference generated by a reflec-
tion on a building.

Figure 2.1: Multipath scenario for an antenna array based GNSS receiver.

2.1.2 Pre-Correlation Data Model

As shown in [9], the received complex basedband signal at the output of the M antennas
of the antenna array can be expressed by a tensor model K ×N ×M

X = I3,L ×1 Γ̃
T ×2 C̃

T ×3 Ã+N (2.1)

where I3,L ∈ RL×L×L is the identity tensor

Γ̃T = [γ1, . . . ,γL(k)
] ∈ CK×L(k) (2.2)

collects the complex amplitudes related to each signal component during K epochs with

γℓ ∈ CK×1 = [γ1, . . . , γK ] (2.3)

gathering the complex amplitudes related to each epoch. The matrix
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C̃ =
[
c1[τ

(1)
1 ], . . . , c1[τ

(1)
ℓ1(k)

], . . . ,

cD[τ
(d)
ℓd(k)

], . . . , cD[τ
(d)
Ld(k)

]
]
∈ RN×L(k)

(2.4)

comprises the sampled L1C pilot code sequence with cd[τ
(d)
ℓd(k)

] ∈ CN×1 collecting the pe-

riodically repeated pseudo random binary sequences (PRS) with time-delay τ
(d)
ℓd(k)

for each
satellite and the respective multipath components. Then, the matrix

Ã = [a(ϕ1), . . . , a(ϕL(k)
)] ∈ CM×L(k) (2.5)

collects the array responses with a(ϕℓ(k)) ∈ CM×1 being the steering vector of an antenna
array with azimuth angle ϕℓ(k) with ℓ(k) components at the kth epoch. Moreover, N is a
white Gaussian noise tensor.

The tensor in (2.1) is composed of three dimensions, the first dimensions of size K is
related to each epoch, the second dimension of size N is associated to the collected samples
in each epoch, and the third dimension of size M corresponds to the spatial diversity of the
receive antenna array.

2.1.3 Post-Correlation Data Model

To separate the Ld(k) LOS signal and NLOS multipath components from the dth satel-
lite, the GNSS receiver utilizes a correlator bank related to each satellite. Thus, the GNSS
receiver applies D correlator banks on the received signal, obtaining D output signals. The
D correlator banks enable the code division multiple access (CDMA) scheme and, there-
fore, make it possible to estimate synchronization parameters such as time-delay and carrier
phase of each satellite in parallel. Furthermore, the correlator bank compresses the signal
while it preserves all the relevant information required to estimate the time-delay of the LOS
and NLOS components. Moreover, to enable signal tracking with a correlator bank, coarse
knowledge of the time-delay of each satellite is necessary, which can be achieved by standard
acquisition as performed in any GNSS receiver as an initial step before parameter estimation
and tracking. We define the dth correlator bank with Q “taps” as

Qd =
[
cd[τ1], . . . , cd[τQ]

]
∈ CN×Q, (2.6)

with τ1 < . . . < τQ and the qth delayed reference sequence cd[τq] corresponding to the qth
tap. The left-hand singular value of the thin SVD of Qd with

Qd = Q(d)
ω ΣVH (2.7)
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and provides the correlator bank

Q(d)
ω = Qd(ΣVH)−1 (2.8)

which performs cross-correlation (compression) preserving the noise statistics [31] at the
output of the correlator bank; however, the output, with respect to the signal, is changed.
When comparing Q

(d)
ω to the correlator bank Qd, we observe that Qd provide a sampled

cross-correlation function of the correlator bank with the received LOS component. Thus,
according to [4], the received signal tensor X ∈ CK×N×M can be correlated with Q

(d)
ω to

separate the dth satellite from all other received satellites and we obtain

Y = X ×2 (Q
(d)
ω )T

= I3,Ld(k)
×1 Γ

T ×2 (CQ(d)
ω )T ×3 A+N ×2 (Q

(d)
ω )T +M

= I3,Ld(k)
×1 Γ

T ×2 (CQ(d)
ω )T ×3 A+N ω +M

≈ I3,Ld(k)
×1 Γ

T ×2 (CQ(d)
ω )T ×3 A+N ω,

(2.9)

where I3,Ld(k)
∈ RLd(k)

×Ld(k)
×Ld(k) is the identity tensor, ΓT ∈ CK×Ld(k) collects the complex

amplitudes of the Ld(k) signal components of satellite d obtained from matrix Γ̃T, (CQ(d)
ω )T ∈

RQ×Ld(k) , and A ∈ CM×Ld(k) comprizes the Ld(k) array responses of the signals of satellite d
from Ã, therefore, A does not vary throughout the time since the changes of Ld(k) is related
to the changes in the environment. Moreover, N ω ∈ CK×Q×M is the white Gaussian noise
tensor after correlation. The tensor M is the multiple access interference (cross-correlation)
of the other satellites and their respective multipath components. Moreover, M is neglegible
in comparison to other terms, since signals are decorrelated.

2.2 Model Order Selection for Static Environments

To decompose the tensor Y into factor matrices for the time delay estimation, first the
number of multipath components of the dth satellite, Ld(k) , should be estimated. Moreover, in
realistic scenarios, several satellites are transmitting from earth orbit. Therefore, even though
signals are decorrelated, the signals from other satellites may interfere with the LOS com-
ponent. Consequently, colored noise deteriorates the LOS component. Hence, the RADOI
method provides a reliable model order selection under colored noise conditions. Thus, to
perform the Model Order Selection using the tensor data model, RADOI utilizes the co-
variance matrix R̂yy obtained from the third-mode unfolding of tensor [Y ](3) from (2.9) to
compute the Eigenvalue Decomposition (EVD)
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R̂yy =
1

KQ
[Y ](3)[Y ](3)]

H (2.10)

= UΛUH +Rqq, (2.11)

where Ryy ∈ CM×M is a Hermitian matrix, U = [u1 u2 . . . uM ] ∈ CM×M is a unitary
matrix containing the eigenvectors, Λ = diag{λ1, . . . , λM} ∈ CM×M is a diagonal matrix
holding the the sorted eigenvalues λi, such that λ1 > λ2 > · · · > λM , and the correlator
bank covariance matrix Rqq ∈ CM×M . Moreover, we define U(s) = [u1 u2 . . . uP ] ∈
CM×P as the truncated matrix composed of P eigenvectors of U corresponding to the P

largest eigenvalues of Λ. Therefore, in case that P = Ld(k) , the dominant eigenvectors
U(s) ∈ CM×Ld(k) and column space of the steering matrix A have the same subspace.

Since estimating L̂d(k) is a decisive step, the RADOI algorithm solves the following op-
timization problem

L̂d(k) = argmin
P

RADOI(P ) where (2.12)

RADOI(P ) = λP+1

(
M∑
i=2

λi

)−1

− ξP

(
M−1∑
i=1

ξi

)−1

, (2.13)

with

ξP = 1− αR(λP − σ̂2
P )

σ̂2
P

(2.14)

σ̂2
P =

1

M − P

M∑
i=P+1

λi (2.15)

and αR is defined as

αR =

[
argmax

P

(λP − σ̂2
P )

σ̂2
P

]−1

, (2.16)

where αR is the inverse of the index P corresponding to the greatest normalize difference
between λP and σ̂2

P , as illustrated in Figure 2.2.
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Y

EVD
R̂yy = UΛUH +Rqq

σ̂2
P = 1

M−P

∑M
i=P+1 λi

αR =

[
argmaxP

(λP−σ̂2
P )

σ̂2
P

]−1

ξP = 1− αR(λP−σ̂2
P )

σ̂2
P

RADOI(P ) = λP+1

(∑M
i=2 λi

)−1

− ξP

(∑M−1
i=1 ξi

)−1

RADOI Cost Function
L̂d(k) = argminP RADOI(P )

Factor Matrices
Estimation (2)

[Y ](3)

σ̂2
P

σ̂2
P

αR

ξP

RADOI(P )

L̂d(k)

Figure 2.2: Block diagram for the RADOI model order selection method.

2.2.1 Simulation Results for Probability of Detection for Static Scenar-
ios

Following [10], we consider a static scenario that consists of a left centro-hermitian ULA
with M = 8 elements and half-wavelength ∆ = λ/2 spacing. The L1C pilot channel is trans-
mitted by the satellites with PRS = 3, 4, 17 with a carrier frequency fs = 1575.42 MHz.
The simulations use the modulated L1C pilot channel with a total period t3rd = 10 ms and
with a bandwidth B = 12.276 MHz. The L1C pilot code samples are collected every kth
epoch during K = 30 epochs with each epoch having a duration of 10 ms [10]. There-
fore, N = 245520 samples were collected for the L1C pilot code per epoch. The carrier-
to-noise ratio is C/N0 = 48 dB-Hz, resulting in a pre-correlation signal-to-noise ratio
SNRpre = C/N0 − 10 log10(2B) ≈ −25.10 dB for GPS3. Given the processing gain
G = 10 log10(Bt) ≈ 50.9 dB for GPS3. Hence, the post-correlation signal-to-noise ratio
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SNRpost = SNRpre+G ≈ 25 dB. Moreover, the signal-to-multipath ratio SMR1 = 5 dB for
Ld = 2. In case Ld = 3 the SMR1 = 5 dB for the first NLOS signal, and a SMR2 = 10 dB
for the second NLOS signal. Besides the Probability of Detection (PoD) simulation using a
perfect array, we added errors in the antenna array geometry to distort the antennas’ x and y

positions according to a normal distribution ∼ N (0, σ2). The standard deviation is computed
in terms of the probability p = P(e > λ/2) that the the error exceeds a half wavelength. We
fix the relative delay ∆τ at 0.5Tc while varying the error probability p from 10−6 to 10−1.
Additionally, we executed simulations using the matrix- and the tensor-based MOS tech-
niques to perform model order estimation. Therefore, we use a Probability of False Alarm
Pfa = 10−6.

In this section, we present the Probability of Detection (PoD) as the probability of the
estimated model order is equal to the actual model order. The PoD is computed during
simulations when considering a perfectly aligned array of antennas. We compute the PoD at
relative delay ∆τ at 0.5Tc.

(a) Probability of Detection for MOS meth-
ods simulation with M = 8 antennas and
D = 1 and Ld = 2 impinging signal. In both
cases, code samples are collected during K = 30
epochs, and have N = 245520 samples.

(b) Probability of Detection for MOS meth-
ods simulation with M = 8 antennas and
D = 1 and Ld = 3 impinging signal. In both
cases, code samples are collected during K = 30
epochs, and have N = 245520 samples.

(c) Probability of Detection for MOS meth-
ods simulation with M = 8 antennas and
D = 2 and Ld = 2 impinging signal. In both
cases, code samples are collected during K = 30
epochs, and have N = 245520 samples.

(d) Probability of Detection for MOS meth-
ods simulation with M = 8 antennas and
D = 2 and Ld = 3 impinging signal. In both
cases, code samples are collected during K = 30
epochs, and have N = 245520 samples.

Figure 2.3: PoD results for an Static Scenario.
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(e) Probability of Detection for MOS meth-
ods simulation with M = 8 antennas and
D = 3 and Ld = 2 impinging signal. In both
cases, code samples are collected during K = 30
epochs, and have N = 245520 samples.

(f) Probability of Detection for MOS meth-
ods simulation with M = 8 antennas and
D = 3 and Ld = 3 impinging signal. In both
cases, code samples are collected during K = 30
epochs, and have N = 245520 samples.

Figure 2.3: PoD results for an Static Scenario.

In Figure 2.3 we show the results of PoD for MOS methos. Note that each subfigure
varies the number of satellites and the actual model order. Moreover, when D = 1, all MOS
methods are capable of correctly estimating the model order since, in this scenario, there are
no coloured noise. Finally, observe that as we add more satellites to the simulations, EFT,
AIC, and MDL-based methods do not correctly estimate the model order. However, note that
both RADOI and ESTER methods have a consistent performance achieving the same PoD
for all simulations, as consolidated in Table 2.1.

PoD d = 1 and Ld = 3 PoD d = 3 and Ld = 3
EFT 99% 0%
M-EFT 99% 0%
MDL 99% 0%
AIC 85% 0%
R-D AIC 99% 0%
R-D MDL 99% 0%
R-D EFT 99% 1%
RADOI 100% 99%
ESTER 100% 99%

Table 2.1: Probability of Detection for MOS with M = 8 antennas. In both cases code
samples are collected during K = 30 epochs, and N = 245520.

2.2.2 Probability of Detection Utilizing an Array with Errors Consid-
ering an Static Scenario

In this section we suppose an antenna array with errors with D = 1 and Ld = 2 and
D = 1 and Ld = 3 impinging signals and a fixed relative delay ∆τ = 0.5Tc.

In Figure 2.4 we show the PoD for the MOS methods used in the simulation for
D = 1 and Ld = 2. Therefore, note that when we have an imperfect array of antennas,
the eigenvalue-based methods EFT, M-EFT, MDL, R-D AIC, R-D MDL, R-D EFET, and
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RADOI are insensitive to array positioning errors. However, since the ESTER method as-
sumes the matrix A has a Vandermonde structure, variations errors in the array reflects in
the matrix A structure. Therefore, the subspace-based MOS ESTER shows to be sensitive
to array imperfections. Moreover, we show that RADOI is the most accurate MOS method
for GPS3.

(a) Probability of Detection for MOS methods sim-
ulation with an imperfect array with M = 8 an-
tennas and D = 1 and Ld = 3 impinging signal.
In both cases, code samples are collected during
K = 30 epochs, and have N = 245520 samples.

(b) Probability of Detection for MOS methods
simulation with an imperfect array with M = 8
antennas and D = 1 and Ld = 3 impinging signal.
In both cases, code samples are collected during
K = 30 epochs, and have N = 245520 samples.

Figure 2.4: Probability of Detection for MOS methods simulation with an imperfect array.

2.3 State-Of-The-Art Tensor-Based Time-Delay Estima-
tion For Third Generation GPS

In this section we overview the state-of-the-art tensor-based time-delay estimation ap-
proaches. Firstly, in Subsection 2.3.1 we introduce an HOSVD based eigenfilter with For-
ward Backward Averaging (FBA) and Expanded Spatial Smoothing (ESPS). Then, in Sub-
section 2.3.2 we describe the Direction of Arrival (DoA) estimation and Khatri-Rao factor-
ization approach. Next, in Subsection 2.3.3 we present the Canonical Polyadic Decomposi-
tion by Generalized Eigenvalue Decomposition (CPD-GEVD). Finally, in Subsection 2.3.4
we describe the Semi-algebraic Framework for Approximate Canonical Polyadic Decompo-
sition via Simultaneous Matrix Diagonalization (SECSI)

2.3.1 HOSVD based Time-Delay Estimation

As shown in Figure 2.5, in order to perform the Higher-Order Eigenfilter decomposi-
tion [4], first the incoming signal Y is pre-processed to incorporate the Forward-Backward
Averaging (FBA) [14], [5] and Expanded Spatial Smoothing (ESPS) [6], [7].

Similarly to [14], the tensor-based FBA uses flipped identity matrices in order to dupli-
cate the number of samples. Thus, the left-hand identity matrix ΠM ∈ RM×M is of size M

flipped along its vertical axis. Moreover, the right-hand identity matrix ΠKQ ∈ RKQ×KQ
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is of size KQ flipped along its vertical axis. Then, the identity matrices are applied to the
third-mode unfolding of the received signal tensor:

Z =
[
[Y ]3 ΠM [Y ]∗3ΠKQ

]
∈ CM×2KQ. (2.17)

Then, similarly to [6], the tensor-based ESPS uses selection matrices that separate the
antenna array into LS subarrays with MS = M −LS +1 elements. Therefore, we define the
selection matrices as follows:

JℓS =
[
0MS×ℓS−1 IMS

0MS×LS−1

]
∈ RMS×M , (2.18)

where ℓS = 1, . . . , LS . Thus, we use the selection matrices to apply the spatial smoothing to
the FBA unfolding of the received signal tensor from (2.17)

W =
[
J1Z · · · JLS

Z
]
∈ CMS×2LSKQ, (2.19)

where W is folded back using the third-mode unfolding thus resulting in a forward-backward
averaged spatially-smoothed fourth-order tensor ZESPS ∈ C2K×Q×MS×LS .

Next, the resulting tensor ZESPS is used to perform the HOSVD rank-one approximation
on the space and epoch dimensions.

ZESPS = R×1 U1 ×2 U2 ×3 U3 ×4 U4, (2.20)

where R ∈ C2K×Q×MS×LS is the core tensor, U1 ∈ C2K×2K ,U2 ∈ CQ×Q,U3 ∈ CMS×MS ,
and U4 ∈ CLS×LS are unitary matrices collecting singular vectors of each mode’s unfolding
[32] from (2.9).

Afterwards, once we assume the LOS component has the greatest power, the dominant
singular vectors are multiplied by ZESPS . Then, the resulting vector is multiplied by the
ΣVH from the thin SVD of Q. Thus, resulting in the qESPS vector.

qESPS =
[
ZESPS ×1 (u

(1)
1 )H ×3 (u

(3)
1 )H ×4 (u

(4)
1 )H

]
ΣVH, (2.21)

where qESPS contains the multi-dimensionally filtered cross-correlation values at each tap
of the correlator bank. The resulting vector in the correlator dimension is then interpolated
using a cubic spline so that higher accuracy can be achieved.
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Y FBA and ESPS
Preprocessing

HOSVD-based
eigenfilter
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×4×ΣVH

Time-delay
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[Y](3) ZESPS ∈ C2K×Q×MS×LS

(
u
(1)
1

)H

(
u
(3)
1

)H

(
u
(4)
1

)H

qESPS

Figure 2.5: HOSVD Time-Delay Estimation block diagram.

2.3.2 DoA/KRF based Time-Delay Estimation

A three step approach based on direction of arrival (DoA) estimation, the Khatri-Rao
factorization (KRF), and the selection of the estimated LOS component was proposed by [8].
In order to perform DoA estimation, as illustrated in Figure 2.6, firstly the received signal
tensor is pre-processed using FBA and ESPS, thus we use the forward-backward averaged
spatially smoothed signal matrix W from (2.19). As shown in Figure 2.6 the Estimation
of Signal Parameter via Rotational Invariance Technique (ESPRIT) [33] is applied to W in
order to estimate Â.

Firstly we rewrite (2.9) to obtain the following equation

[Y ](3) = A
[
ΓT ⋄ (CQω)

T
]T

∈ CM×KQ. (2.22)

Once matrix Â is estimated by the ESPRIT technique, its pseudo-inverse can be applied
to (2.22) such that

Â+[Y ]3 = Â+A
[
ΓT ⋄ (CQω)

T
]T

≈
[
ΓT ⋄ (CQω)

T
]T

∈ CLd(k)
×KQ

,
(2.23)

where the factor matrices Γ and (CQω) can be estimated by Least Square Khatri-Rao fac-
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torization (LSKRF) [34, 35].

Once (ΓT ⋄ (CQω)
T)T is given in (2.23), and considering that it’s ℓd(k)-th column can be

computed as the Khatri-Rao product of the ℓd(k)-th column of ΓT and (CQω)
T, then

[
ΓT ⋄ (CQω)

T
]
(:, ℓd(k)) = (ΓT)(:, ℓd(k)) ⋄ (CQω)(:, ℓd(k)), (2.24)

where each column (ΓT ⋄ (CQω)
T)(:, ℓd(k)) ∈ CKQ. Thus, in order to solve the estimates of

Γ and CQω, we reshape (2.24) into a matrix of size Q×K as

unvec
Q×K

{[
ΓT ⋄ (CQω)

T
]
(:, ℓd(k))

}
= (CQω)

T(:, ℓd(k))(Γ
T)T(:, ℓd(k)). (2.25)

Once (2.25) is a rank-one matrix, we can perform the SVD-based rank-one approxima-
tion

unvec
Q×K

{[
ΓT ⋄ (CQω)

T
]
(:, ℓd(k))

}
= Uℓd(k)

Σℓd(k)
Vℓd(k)

. (2.26)

Therefore, the estimates for (ΓT)(:, ℓd(k)) and ((CQω)
T)(:, ℓd(k)) are√σℓd(k) ,1

v∗
ℓd(k) ,1

and√
σℓd(k) ,1

uℓd(k) ,1
, respectively, where σℓd(k) ,1

is the dominant singular value of Σℓd(k)
, v∗

ℓd(k) ,1

is the conjugate of the dominant right singular vector of Vℓd(k)
, and uℓd(k) ,1

is the dominant
left singular vector of Uℓd(k)

. This is repeated for ℓd(k) = 1, . . . , Ld(k) .
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T
◦ ˆ̄A·,ℓd(k)

G·,ℓd(k)
= vec{Gℓd(k)

}

Compute Amplitudes
γ = G+ vec{Y}

argmax q =
[
( ˆ̄CQω)·, sLOS

T
ΣVH

]T

Time-delay
estimation

τ̂LOS

[Y ](3)

Â+

ÂÂ+[Y ](3)

(ĈQω)

γ
sLOS

q

Figure 2.6: DoA/KRF Time-delay estimation block

2.3.3 CPD-GEVD based Time-Delay Estimation

A more accurate tensor-based scheme has been proposed for time delay estimation was
proposed in [36]. This method computes the Canonical Polyadic Decomposition, also known
as Candecomp and PARAFAC, by Generalized Eigenvalue Decomposition. In Figure 2.7 we
present a more accurate block diagram yet equivalent to the one presented in [9]. As illus-
trated in Figure 2.7, the CPD-GEVD firstly computes the HOSVD low-rank approximation
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of the incoming signal Y .

Y ≈ Sg ×1 U
g
1 ×1 U

g
2 ×3 U

g
3, (2.27)

where Ug
1 ∈ CK×Ld(k) , Ug

2 ∈ CQ×Ld(k) , and Ug
3 ∈ CM×Ld(k) , and Sg ∈ CLd(k)

×Ld(k)
×Ld(k) is

the core tensor and can be expressed as a PARAFAC decomposition:

Sg = I3,L ×1 T
g
1 ×2 T

g
2 ×3 T

g
3, (2.28)

where the first two frontal slices of Sg can be expressed as:

(Sg)·,·,1 = Tg
1 diag{(T

g
3)·,1}(T

g
2)

T

(Sg)·,·,2 = Tg
1 diag{(T

g
3)·,2}(T

g
2)

T.
(2.29)

As shown in (2.30), the CPD-GEVD uses the eigenvectors, E, from the GEVD of the
matrix pencil formed by (Sg)·,·,1 and (Sg)·,·,2:

(Sg)T
·,·,1E = (Sg)T

·,·,2ED, (2.30)

where D the eigenvalues in its diagonal. Note that (2.30) is equivalent to

(Sg)−T
·,·,2(Sg)T

·,·,1 = EDE−1

= (Tg
1)

−T diag{(Tg
3)·,2}−1 diag{(Tg

3)·,1}T
g
1.

(2.31)

Equation (2.31) is a diagonalization problem in which E provides an estimate of (Tg
1)

−T.
Therefore, by combining (Tg

1)
−T from (2.31) and U∗

1 from (2.27) the factor matrix Γ
-T can

be computed as

Γ̂+T = (Ug
1)

∗(Tg
1)

−T = (Ug
1)

∗E. (2.32)

Next, since in the noiseless case, according to (2.9),

[Y ]T(1) =
[
(CQω) ⋄A

]
ΓT, (2.33)

and since Γ̂
-T is given in (2.32), we define Fg(2,3) as
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Fg(2,3) = [Y ]T(1)(U
g
1)

∗E =
[
(CQω)

T ⋄A
]
ΓΓ̂+

≈
[
(CQω)

T ⋄A
]
∈ CQM×L.

(2.34)

Then by performing the Least Squares Khatri-Rao Factorization (LSKRF)[34, 35], we
can estimate the factor matrices (ĈQω)

T and Â. Furthermore, we use the estimated factor
matrices to perform the time-delay estimation technique described in Subsection 2.3.6
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Â ⋄ (ĈQω)

T
]+T

Γ̂ = [Y ]T(1)
[
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Figure 2.7: CPD-GEVD Time-Delay Estimation block diagram
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2.3.4 HOSVD SECSI Based Time-Delay Estimation

In this section, we propose to utilize the Semi-algebraic framework for approximate
Canonical Polyadic Decomposition via simultaneous matrix diagonalization (SECSI) from
[24, 25, 26] to transforming our factor estimation problem into several redundant simultane-
ous matrix diagonalization problems. Therefore, we propose a SECSI based framework for
time-delay estimation. Thus, firstly, as illustrated in Figure 2.8, the SECSI approach com-
putes the Higher Order Singular Value Decomposition (HOSVD) low-rank approximation,
which computes the thin-SVD of the incoming signal Y from Equation (2.9) is:

Y = Sc ×1 U
c
1 ×2 U

c
2 ×3 U

c
3, (2.35)

where Sc ∈ CLd×Ld×Ld is the compressed core tensor, and Uc
1 ∈ CK×Ld , Uc

2 ∈ CQ×Ld ,
Uc

3 ∈ CM×Ld are the singular matrices. Thus, we can represent the tensor S as follows

Sc = I ×1 T
c
1 ×2 T

c
2 ×3 T

c
3, (2.36)

where Tc
1 ∈ CLd×Ld , Tc

2 ∈ CLd×Ld , and Tc
3 ∈ CLd×Ld . Thus

Uc
1T

c
1 = ΓT, (2.37)

Uc
2T

c
2 = (CQω)

T, (2.38)

Uc
3T

c
3 = AT. (2.39)

Once we perform joint matrix diagonalization on our tensor Sc, we have several diago-
nalization problems to be solved. Because we have a third-order tensor, we can have six dif-
ferent estimates which means we have two estimates for each dimension of tensor Sc. Thus,
in order to compute the joint matrix diagonalization we firstly compute the first-, second-,
and third-mode slice of the ith slice of tensor Sc. Thus, we have the third-mode slice of Sc

represented as

Sc
3,i =

[(
Sc ×3 U

c
3

)
×3 e

T
i

]
= Tc

1 diag{AH(:, i)}(Tc
2)

T,
(2.40)

second-mode slice of Sc as

Sc
2,i =

[(
Sc ×2 U

c
2

)
×2 e

T
i

]
= Tc

1 diag{(CQω)
H(:, i)}(Tc

3)
T,

(2.41)
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and, finally, we have the first-mode slice

Sc
1,i =

[(
Sc ×1 U

c
1

)
×1 e

T
i

]
= Tc

2 diag{ΓH(:, i)}(Tc
3)

T,
(2.42)

then

Sc
3,p = Tc

1 diag{AH(:, p)}(Tc
2)

T, (2.43)

Sc
2,p = Tc

1 diag{(CQω)
H(:, p)}(Tc

3)
T, (2.44)

Sc
1,p = Tc

2 diag{ΓH(:, p)}(Tc
3)

T, (2.45)

where eT
i is vector with zeros in all positions except in the ith position, and p is an arbitrary

index between one and the nth mode slice to be diagonalized:

p = argmin
i

cond{Sc
n,i}, (2.46)

where cond{·} computes the condition number of a matrix. The smaller the condition num-
ber, the more stable is the matrix inversion. Therefore, we select the matrix with the smallest
condition number.

Therefore, with each mode slice defined, we can compute the right-hand and left-hand
matrices of each mode slice. Note that the right-hand matrix simultaneous diagonalization
for the third-mode slice is similar to the state-of-the-art CPD-GEVD described in Subsec-
tion 2.3.3. Since p is fixed, we can vary all possible values of i, thus obtaining N − 1

equations for each mode slice, since i ̸= p.

Thus, firstly, we define the right-hand matrix for the third-mode slice in the following
fashion:

Sc,rhs
3,i = Sc

3,i(S
c
3,p)

−1

= Tc
1 diag{AH(:, i)AH(:, p)}(Tc

1)
−1

= Tc
1A

H(Tc
1)

−1,

(2.47)

then, we define the left-hand matrix for the third-mode slice as follows:

Sc,lhs
3,i = ((Sc

3,p)
−1Sc

3,i)
T = (Sc

3,i)
T(Sc

3,p)
−T

= Tc
1 diag{AH(:, i)AH(:, p)}(Tc

2)
−1

= Tc
2A

H(Tc
2)

−1.

(2.48)
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This way, we transformed the third-mode slice onto two joint matrix diagonalization
problems. Thus, we can obtain an estimate of A from the joint matrix diagonalization of
Sc,rhs
3,i . Additionally, we can obtain an estimate of A from the joint diagonalization of Sc,lhs

3,i .
Furthermore, the matrices that diagonalize Sc,rhs

3,i and Sc,lhs
3,i outputs estimates for Tc

1, and Tc
2.

Thus, we can obtain the estimates for Uc
1T

c
1 = Γ̂T, and Uc

2T
c
2 = (ĈQω)

T.

Similarly, for the second-mode slice, we compute the right-hand matrix in the following
fashion:

Sc,rhs
2,i = Sc

2,i(S
c
2,p)

−1

= Tc
1 diag{(CQω)

H(:, i)(CQω)
H(:, p)}(Tc

1)
−1

= Tc
1(CQω)

H(Tc
1)

−1,

(2.49)

then we define left-hand matrix of the second-mode slice

Sc,lhs
2,i = ((Sc

2,p)
−1Sc

2,i)
T = (Sc

2,i)
T(Sc

2,p)
−T

= Tc
3 diag{(CQω)

H(:, i)(CQω)
H(:, p)}(Tc

3)
−1

= Tc
3(CQω)

H(Tc
3)

−1.

(2.50)

Again, we created two joint matrix diagonalization problems for the second-mode slice.
Therefore, we can acquire two estimates of (CQω) from the joint diagonalization of Sc,rhs

2,i

and Sc,lhs
2,i . Additionally, these joint diagonalization yield estimates for Tc

1 and Tc
3. Therefore,

we can estimate the factor matrices Uc
1T

c
1 = Γ̂T, and Uc

3T
c
3 = ÂT.

Finally, we have to define the right-hand and left-hand matrices for the first-mode slice.
Again, we firstly define the right-hand matrix in the following fashion:

Sc,rhs
1,i = Sc

1,i(S
c
1,p)

−1

= Tc
2 diag{ΓH(:, i)ΓH(:, p)}(Tc

2)
−1

= Tc
2Γ

H(Tc
2)

−1,

(2.51)

then we define the left-hand matrix

Sc,lhs
1,i = ((Sc

1,p)
−1Sc

1,i)
T = (Sc

1,i)
T(Sc

1,p)
−T

= Tc
3 diag{ΓH(:, i)ΓH(:, p)}(Tc

3)
−1

= Tc
3Γ

H(Tc
3)

−1.

(2.52)
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Thus, the joint diagonalization problems Sc,rhs
1,i and Sc,lhs

1,i for the first-mode slice yield two
estimates for Γ. Furthermore, the joint diagonalization results in estimates for Tc

2 and Tc
3.

Thus, we can estimate the factor matrices Uc
2T

c
2 = (ĈQω)

T, and Uc
3T

c
3 = ÂT.

Through performing various simulations using all mode slices previously described, we
discovered that the right-hand matrices and left-hand matrices of each mode slice yielded
similar time-delay estimation to the state-of-the-art CPD-GEVD method for a scenario with
one LOS and one NLOS. However, we too discovered that when we have one impinging LOS
and two NLOS the right-hand matrix of the third-mode slice have the best performance.
Thus, we propose to only use the estimate provided by the joint diagonalization of Sc,rhs

3,i .
Therefore, our goal is to find T̂c

1 that simultaneously diagonalizes the N − 1 equations for
the right-hand matrix of the second-mode slice. We refer here to the techniques in [37] and
[38]. Then, we use Uc

1 from (2.35) to estimate Γ̂T

Uc
1T̂

c
1 = Γ̂T, (2.53)

Next, since the noiseless case, according to (2.9) the first-mode unfolding of Y can be
described as

[Y ]T(1) =
[
(CQω) ⋄A

]
Γ, (2.54)

and once Γ̂T is given in (2.53), we define Fc(2,3) as

Fc(2,3) = [Y ]T(1)Γ̂
+T =

[
(CQω)

T ⋄A
]
ΓΓ̂+T

≈
[
(CQω)

T ⋄A
]
∈ CQM×Ld .

(2.55)
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Figure 2.8: Proposed SECSI based time-delay estimation block diagram using the right-hand
matrix from the second dimension of Sc
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The factor matrices (ĈQω)
T and Â can be estimated from (2.55) by applying the Least

Squares Khatri-Rao Factorization (LSKRF) [34, 35]. Furthermore, we use the estimated
factor matrices to perform the time-delay estimation technique described in Subsection 2.3.6
Then, this solution uses the pseudo-inverse of ((ĈQω)

T ⋄A) to estimate Γ̂.

2.3.5 LOS Selection

Subsequently to estimating all the parameters of the received signal, we need to separate
the LOS and NLOS signal parameters. In this Subsection we describe the third element
of the framework. This element performs the LOS selection utilizing the estimated factor
matrices. Therefore, as described in [15], to perform the LOS selection the estimated factor
To perform the time-delay estimation the resulting estimated factor matrices (ĈQ

(d)
ω ))(t)

T ,
Â(t), and Γ̂(t) are normalized to unit norm for the ℓ

(t)
d th component

( ˆ̄CQ(d)
ω )

(t)T

·,ℓ(t)d

= (ĈQ(d)
ω )

(t)T

·,ℓ(t)d

/||(ĈQ(d)
ω )

(t)T

·,ℓ(t)d

||F (2.56)

ˆ̄A
(t)

·,ℓ(t)d

= Â
(t)

·,ℓ(t)d

/||Â(t)

·,ℓ(t)d

||F (2.57)

ˆ̄Γ
(t)

·,ℓ(t)d

= Γ̂
(t)

·,ℓ(t)d

/||Γ̂(t)

·,ℓ(t)d

||F . (2.58)

Next, with the normalized factor matrices, we construct the tensor G(t)

ℓ
(t)
d

for the ℓ
(t)
d th nor-

malized component of the estimated factor matrices. using (2.56), (2.57) and (2.58) and we
obtain

G(t)

ℓ
(t)
d

= ˆ̄Γ
(t)

·,ℓ(t)d

◦ ( ˆ̄CQ(d)
ω )

(t)T

·,ℓ(t)d

◦ ˆ̄A
(t)

·,ℓ(t)d

, (2.59)

where G(t)

ℓ
(t)
d

∈ CK×Q×M . Then, we store the tensor G(t)

ℓ
(t)
d

corresponding to the ℓ
(t)
d th compo-

nent in a matrix
G

(t)

·,ℓ(t)d

= vec{G(t)

ℓ
(t)
d

}, (2.60)

where G(t) ∈ CKQM×Ld , and vec{G(t)

ℓ
(t)
d

} vectorize the tensor G(t)

ℓ
(t)
d

. Thus, we can compute

the tensor amplitudes by multiplying the pseudoinverse of G(t) by the vec{Ỹ (t)} and we
obtain

γ(t) = G(t)+ vec{Ỹ (t)} (2.61)

Assuming that the received signal component with the largest power corresponds to the LOS
signal, we select the respective column of the estimated ( ˆ̄CQ

(d)
ω )(t)

T with

ℓ̂d
(t)

= arg max
ℓ
(t)
d =1,...,L

(t)
d

|γ(t)

ℓ
(t)
d ,.

|2. (2.62)
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2.3.6 Time-Delay Estimation

Since we have selected the LOS component, in this Subsection we describe the fourth
element of the framework by describing the Time-Delay Estimation process. Therefore,
we use the sLOS from the third element to select the LOS component from the estimated
( ˆ̄CQω)

(t)T and multiply it by ΣVH from the thin SVD of Qd

q =
[
( ˆ̄CQω)

(t)T

·,sLOS
ΣVH

]T
. (2.63)

where q contains the cross-correlation values at each tap of the correlator bank. The use
of the correlator bank Q

(d)
ω does preserve the noise statistics but, the output with respect to

the signal, changes compared to the correlator bank Qd which produces a sampled cross-
correlation function with the received LOS signal. Thus, vector q is computed by spa-
tial filtering (along M -dimension) of each tap in the compressed time domain preceded
by temporal filtering over the taken snapshots (along K-dimension). Then, as shown in
[4, 8, 9, 39, 40, 15], the resulting vector q is interpolated using a simple cubic spline interpo-
lation. Therefore, by using the resulting interpolated vector, we can derive the cost function
F (κ) which is the cross-correlation function with the received LOS signal. Finally, we use
the cost function to estimate the time-delay of the LOS signal by solving

τ̂
(t)
LOS = argκ maxF (κ). (2.64)

2.4 Simulation Results for Time-Delay Estimation Simula-
tions for Static Scenarios

In this section, we present simulation results of the various methods for GPS3 L1C sig-
nal. We assess the cases Ld = 1, Ld = 2and Ld = 3. Additionally, preceding the time-delay
estimation, we apply the state-of-the-art AIC, MDL, EFT, M-EFT, R-D AIC, R-D MDL, R-D
EFT, RADOI, and ESTER MOS methods. Moreover, we present simulations comparing the
state-of-the-art MOS methods to the case with a known model order. Moreover, since [15]
shows that the simulations potentially have outliers when signals are strongly correlated,
we, therefore, performed 1000 iteration Monte Carlo (MC) simulation to compare all ap-
proaches in terms of the Root Median-Squared Error (RMDSE) of the time-delay estimation
of the LOS components considering the state-of-the-art CPD-GEVD [9] based approaches,
the ideal case; i.e. filtering assuming known Γ̃, and A, and known model order. We uti-
lize the median because this method is more precise to provide a good measure of central
tendency in the presence of outliers than the mean.

In Figure 2.9 the MOS methods are compared using state-of-the-art CPD-GEVD method
for d = 1 and Ld = 2. Note that even when AIC fails to properly estimate the model order,
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the CPD-GEVD is capable to perform time-delay estimation. Since the NLOS components
power is lower than the actual LOS signal, the CPD-GEVD can properly estimate the time-
delay even in scenarios with the wrong model order.

Figure 2.9: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas and d = 1 and Ld = 2 impinging signal. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 2.10 the MOS methods are compared using state-of-the-art CPD-GEVD
method for d = 1 and Ld = 3.

Figure 2.10: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas and d = 1 and Ld = 3 impinging signal. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 2.11 the MOS methods are compared using state-of-the-art CPD-GEVD
method for d = 2 and Ld = 2. Note that the CPD-GEVD can successfully computes
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the time-delay estimation even when the MOS methods fail to estimate the model order.
Since the NLOS components power is lower than the actual LOS signal, the CPD-GEVD
can properly estimate the time-delay even in scenarios with the wrong model order.

Figure 2.11: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas and d = 2 and Ld = 2 impinging signal. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 2.12 the MOS methods are compared using state-of-the-art CPD-GEVD
method for d = 2 and Ld = 3.

Figure 2.12: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas and d = 2 and Ld = 3 impinging signal. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 2.13 the MOS methods are compared using state-of-the-art CPD-GEVD
method for d = 3 and Ld = 2.
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Figure 2.13: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas and d = 3 and Ld = 2 impinging signal. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 2.14 the MOS methods are compared using state-of-the-art CPD-GEVD
method for d = 3 and Ld = 3.

Figure 2.14: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas and d = 3 and Ld = 3 impinging signal. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

Furthermore, even though the EFT-based, AIC-based, MDL-based MOS methods failed
to perform model order estimation, the CPD-GEVD successfully performed the time-delay
estimation. The model order error for the EFT-based, AIC-based, MDL-based MOS meth-
ods varied between L̂d − 2 and L̂d + 2. Therefore, we show that even though the MOS is
crucial on factor matrices estimation, the CPD-GEVD tolerates small errors and successfully
decomposes the factor matrices.
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2.5 Computational Complexity

In this section, the state-of-the-art HOSVD+FBA+ESPS, DoA/KRF, and CPD-GEVD as
well as the proposed HOSVD SECSI method computational complexity are discussed.

The computational complexity is computed in term of FLoating point OPeration (flop)
counts. For instance, the computational complexity of a matrix multiplication between two
complex matrices, A ∈ CM×N and B ∈ CN×L is denoted as O(AB) = 2MNL [41]. Since
unfolding, inverse-unfolding are functions about data representation, we are not considering
this operations in the computational complexity. In Subsection 2.5.1 we show the com-
putational complexity of the state-of-the-art HOSVD+FBA+ESPS. Subsection 2.5.2 show
the computational complexity of the state-of-the-art DoA/KRF method. Subsection 2.5.3
show the computational complexity of the state-of-the-art CPD-GEVD method. In Subsec-
tion 2.5.4 we show the computational complexity of the proposed HOSVD SECSI.

2.5.1 Complexity of HOSVD+FBA+ESPS

Since we want to compute qESPS ∈ CQ×1, firstly we compute the FBA of the received
tensor Y . The FBA pre-processing step results in the following complexity:

O(FBA) = 2M2KQ+ 2(KQ)2M, (2.65)

then, after computing the FBA we compute the ESPS, which yields the following complexity:

O(ESPS) =
[
2M(2KQ)

]
Ls, (2.66)

afterwards we use the resulting tensor ZESPS to perform the HOSVD rank-one operation.
Therefore, the HOSVD complexity is given by:

O(HOSVD) =
[
4K3 + IK(8K

2 + 10K)
]
+
[
4Q3 + IQ(8Q

2 + 10Q)
]

+
[
4L3

S + ILS
(8L2

S + 10LS)
]
+
[
4M3

S + IMS
(8M2

S + 10MS)
]
,

(2.67)

where IK is the number of SVD power operations performed when using the first-mode
unfolding of tensor ZESPS, IQ is the number of SVD power operations performed when
using the second-mode unfolding, IMS

is the number of SVD power operations performed
when using the third-mode unfolding, ILS

is the number of SVD power operations performed
when using the fourth-mode unfolding.

Then, in order to compute the vector qESPS, we have the following complexity:

31



O(qESPS) = 4KQLSMS + 4LSKQMS + 4LSKQMS + 4LSKQMS. (2.68)

Moreover, we can define the total computational complexity of the state-of-the-art
HOSVD+FBA+ESPS methods as:

O(HOSVD+FBA+ESPS = O(FBA) +O(ESPS) +O(HOSVD) +O(qESPS). (2.69)

2.5.2 Complexity of DoA/KRF

Additionally, we compute the computational complexity of the state-of-the-art
DoA/KRF. Therefore, once the first step performs the ESPRIT operation, we define the ES-
PRIT computational complexity as follows:

O(ESPRIT) = 2KQM2 + 2KQ2M + I(4KQ2 + 5KQ+ 4M2 + 5M)

+ 2
[
2(M − 1)L2

d

]
+

5

3
(M − 1)3 + L3

d

, (2.70)

where I is the number of SVD power operations. Afterwards, the Khatri-Rao Factorization
computational complexity can be described as:

O(KRF) = 2LdKQ2 + 2LdK
2Q+ LdI(4K

2 + 5K + 4Q2 + 5Q). (2.71)

Then, the DoA/KRF method normalizes the estimated factor matrices, and computes
the amplitudes. Therefore, the normalization and amplitude estimation has a computational
complexity:

O(NORM+AMP) = Ld(KQ+KQM) + 2L2
dKQM +

5

3
L3
d + 2L2

dKQM. (2.72)

Furthermore, we can define the total computational complexity by summing the com-
puted complexities with other minor operations used in the the DoA/KRF method:

O(DoA/KRF) = O(ESPRIT) +O(KRF) +O(NORM+AMP)

+ 2L2
dM +

5

3
L3
d + 2L2

dM + 2LdMQ+ 2Q+ L3
d.

(2.73)
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2.5.3 Complexity of CPD-GEVD

Similarly to the HOSVD+FBA+ESPS, the state-of-the-art CPD-GEVD show the same
computational complexity as (2.67) when performing the HOSVD step. Furthermore, we
compute the LSKRF computational complexity as follows:

O(LSKRF) = 2LdMQ2 + 2LdM
2Q+ LdI(4M

2 + 5M + 4Q2 + 5Q). (2.74)

Then, we can define the final computational complexity by summing the computed com-
plexities with the steps that compute the GEVD, factor matrix Γ̂, factor matrix F(2,3), and
least square as follows:

O(CPD-GEVD) = O(HOSVD) +O(LSKRF) +O(NORM+AMP)

+ L3
d + 2KL2

d + 2QMKLd + 2LdKQ+ 4KMQ.
(2.75)

2.5.4 Complexity of HOSVD SECSI

Since we decided to use only the right-hand matrix of the third-mode unfolding to per-
form time-delay estimation, we only calculated the computational complexity of HOSVD
SECSI for the first factor estimate. Similarly to the state-of-the-art CPD-GEVD, the HOSVD
low-rank approximation step of proposed HOSVD SECSI shows the same computational
complexity as Equation (2.67). Moreover, after HOSVD low-rank approximation we com-
pute the computational complexity of constructing the third-mode slice as:

O(3-MODE) = ML3
d. (2.76)

Then, we define the complexity of the conditional operation as:

O(COND) = 4L3
d + I(8L2

d + 10Ld), (2.77)

where I is the number of SVD power operations. Then, we define the computational com-
plexity of computing the right-hand matrix as:

O(RIGHT-HAND) = NL3
d, (2.78)

where N is the number of slices. Furthermore, we define the joint diagonalization computa-
tion complexity as:
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O(JOINTDIAG) = J(4L2
d + 16L2

d +
10

3
Ld), (2.79)

where J is the number of iterations. Moreover, the LSKRF has the same computational
complexity as (2.74). Finally, we compute the total computational complexity by combin-
ing the computed complexities with inverse, pseudo-inverse, and factor matrices estimation
computational complexities as follows:

O(SECSI) = O(HOSVD) +O(3-MODE) +O(LSKRF) +O(COND)

+O(RIGHT-HAND) +O(JOINTDIAG) +O(NORM+AMP)

+
10

3
L3
d + 6KL2

d + 2LdKQ

(2.80)

In Table 2.2 a numerical example is shown in which we consider the simulation scenar-
ios considered in this work. The dimensions of post-correlation signal Y ∈ CK×Q×M are
K = 30 epochs, Q = 11 taps of the correlator bank, and M = 8 antenna array elements.
Performing the ESPS step, we divide the antenna array into LS = 5 subarrays with MS = 4

elements each. Moreover, we consider the scenario with Ld = 2 impinging signals, one
LOS and one NLOS signal. The computational time, in seconds, of each approach is given
in the last column of Table 2.2 for a single MC run and considering a noiseless case. We
can observe that the proposed HOSVD SECSI-based approach has the highest complexity
and computational time. However, the difference in computational complexity and compu-
tational time is rather small while the HOSVD SECSI-based approach provides the best per-
formance of all assessed methods, especially in the case of highly correlated signals which
is essential for safety-critical applications using GNSS.

Method Complexity Time
HOSVD+FBA+ESPS 2057120 + 7500IK + 250ILs + 168IMs + 1078IQ 0.0087 s

DoA/KRF 25044I +
611545

3
0.0084 s

CPD-GEVD 258346 + 7500IK + 592IM + 1078IQ + 2505I 0.0044 s
HOSVD SECSI 233413 + 7500IK + 592IM + 1078IQ + 2607I + 190J + 27N 0.0092 s

Table 2.2: Numerical example of the computational complexity
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Chapter 3

Time-Delay Estimation for Dynamic
Scenarios

In this chapter, in Section 3.1 we propose the EFT method as a feasible solution
for model order selection in dynamic scenarios. Moreover, in Section 3.2 we describe
the proposed variation od the HOSVD SECSI for dynamic scenarios. This approach is
based on [24, 25, 26] which uses a Semi-algebraic solution for the Canonical Polyadic (CP)
model by performing several joint matrix diagonalizations. Thus, this solution simultane-
ously estimates the complex amplitude factor matrix. Then, we use the Least Square Khatri-
Rao Factorization (LSKRF) to estimate the steering and code factor matrices. Finally in
Section in 3.3 we display the TDE simulation results after combining the EFT method with
the MuDe method, the proposed factorization method and the state-of-the-art factorization
matrices in dynamic scenarios.

3.1 Model Order Selection for Dynamic Environments

To decompose the tensor Y into factor matrices for the time-delay estimation, we esti-
mate the Ld(k) multipath components of the dth satellite. Therefore, to perform the Model
Order Selection of each epoch of tensor Y , we can utilize the Eigenvalue Fitting Test (EFT)
[22]. Moreover, to compute the model order using each epoch of the tensor data model, we
utilize the covariance matrix ˆR[k] obtained from each epoch of tensor Ỹ (t)

from (2.9). Thus,
we firstly compute the EVD

R̂[k] =
1

Q
Y [k]Y [k]H (3.1)

= UΛUH +Rqq[k], (3.2)

where R[k] ∈ CM×M is a Hermitian matrix, U = [u1 u2 . . . uM ] ∈ CM×M is a unitary
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matrix containing the eigenvectors, Λ = diag{λ1, . . . , λM} ∈ CM×M is a diagonal matrix
holding the the sorted eigenvalues λi, such that λ1 > λ2 > · · · > λM , and the correlator
bank covariance matrix Rqq ∈ CM×M . Moreover, we define U(s) = [u1 u2 . . . uP ] ∈
CM×P as the truncated matrix composed of P eigenvectors of U corresponding to the P

largest eigenvalues of Λ. Therefore, in case that P = Ld(k), the dominant eigenvectors
U(s) ∈ CM×Ld(k) and column space of the steering matrix A have the same subspace.

Moreover, the EFT utilize an exponential profile do approximate the Wishart profile of
the noise eigenvalues, thus, enabling the prediction of the noise eigenvalues. The EFT esti-
mates the model order by computing the distance from λM−P , calculated from the measure-
ments to the predicted eigenvalue λ̂M−P , where P is a possible number of noise eigenvalues.
Furthermore, the EFT method computes the threshold coefficients ηP , then, estimate the
model order. Since M , Q, and the probability of false alarm Pfa do not vary, the ηP can be
previously computed and stored.

Then, the EFT can be computed by utilizing the following correction equations [42]

λ̂M−P = (P − 1)
1− q(P + 1, Q)

1− q(P + 1, Q)P+1
σ̂2 (3.3)

σ̂2 =
1

P + 1

P∑
i=0

λM−i, (3.4)

where the rate of the exponential profile q(M,Q) is defined as

q(M,Q) =

exp

−

√√√√√√√√
30

M2 + 2

−

√
900

(M2 + 2)2
− 720M

Q(M4 +M2 − 2)

.
(3.5)

Observe that since λM−P from (3.4) is utilized in (3.3) to estimate λ̂M−P , the (3.3) is a
correction equation rather than a prediction equation. To estimate the threshold coefficients
ηP , we consider Qℓ(k) realizations of a white Gaussian noise matrix N ∈ CM×Q. Thus, to
obtain the Pfa as a function of ηP , we presume the following hypotheses:

HP+1 : λM+P is a noise EV,
λM−P − λ̂M−P

λ̂M−P

≤ ηP

HP+1 : λM+P is a signal EV,
λM−P − λ̂M−P

λ̂M−P

> ηP ,

(3.6)
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where EV stands for eigenvalue. Then, we define the Qfa as the number of times that HP+1

is observed for all Qℓ(k) noise realizations. Thus, Pfa = Qfa
Qℓ(k)

, and for each value of the
predefined range of ηP , a certain value of Pfa is calculated. Finally, once we have all ηP the
model order can be estimated by the following cost function

L̂d(k) = M −min(P) where

P ∈ P , if
λM−P − λ̂M−P

λ̂M−P

> ηP ,
(3.7)

where P is the set of all values of P , such that the relative distance λM−P−λ̂M−P

λ̂M−P
is greater

than ηP .

Then, once we have the estimated model order L̂d(k) for each epoch, we group the epochs
with the same estimated model order. Moreover, we create a vector L̂d(k)

(t)
that contains the

grouped model order with respect to the epochs, with t = 1, . . . , T sub-tensors. Therefore,
we create Ỹ (t)

sub-tensors utilized to perform the time-delay estimation. For instance, if we
estimate three different model orders L̂d1(k) = 2 and L̂d2(k) = 3 we concatenate the epochs
with the same model order to create a new tensor, as illustrated in Figure 3.1(a) and 3.1(b).

(a) K = 5, ˆLd1(k) = 2 (b) K = 4, ˆLd2(k) = 3 (c) K = 1, ˆLd3(k) = 4

Figure 3.1: Sub-tensors obtained after grouping the epochs with same estimated model order

Therefore, by creating sub-tensors, we attempt to create static scenarios. Thus, we can
utilize the sub-tensors to perform the time-delay estimation method, as illustrate in Figure 3.2
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3.1.1 Simulation Results for Probability of Detection Considering Dy-
namic Scenarios

In this section we present the PoD computed during simulations when considering
a dynamic scenario, a perfectly aligned array of antennas, and utilizing one satellites
with PRS = 17. Since in the dynamic scenario we are varying the number of LOS and
NLOS components within the tensor Y , when utilizing matrix-based MOS methods we per-
formed the MOS at each epoch and individually computed the PoD. Therefore, we define
a DoA difference between epochs of 2◦ and established that half of the tensor has Ld = 2

while the other half has Ld = 3. Moreover, we compute the PoD by taking the maximum
and minimum model order estimated by the MOS methods. To compute the maximum and
minimum model order we utilize the max · and min · operators to select the maximum and
minimum estimated model order. Additionally, we utilized tensor-based MOS methods to
compute the tensor model order then compared the estimated model order to the maximum
and minimum model order, i.e. the minimum model order in Y is Ld = 2 while the max-
imum model order is Ld = 3. Hence, we use the maximum and minimum model order to
compute the PoD for the tensor-based MOS methods. Moreover, in the dynamic scenario we
utilize the pre-processing methods FBA, SPS, and their combinations to attempt to improve
the MOS accuracy.

In Figure 3.3 we show the PoD for the AIC method at ∆τ = 0.1 and K = 8. Note that
the PoD is computed for each epoch, the epochs 1 through 5 have an Ld = 2, and epochs 6
through 10 have and Ld = 3. Observe that when applying the pre-processing methods we
improved the AIC accuracy. Overall, the AIC method combined with FBA shows the best
results with and PoD of about 50%.

39



Figure 3.3: Probability of Detection at ∆τ = 0.1 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.4 we show the PoD for the AIC method at ∆τ = 0.1 and K = 15. Again,
the PoD is computed for each epoch, the epochs 1 through 7 have an Ld = 2, and epochs 6
through 10 have and Ld = 3. Observe that when applying the pre-processing methods we
improved the AIC accuracy. Overall, the AIC method combined with FBA shows the best
results with and PoD of about 50%.
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Figure 3.4: Probability of Detection at ∆τ = 0.1 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.5 we show the PoD for the AIC method at ∆τ = 0.1 and K = 30. Again,
the PoD is computed for each epoch, the epochs 1 through 7 have an Ld = 2, and epochs 6
through 10 have and Ld = 3. Observe that when applying the pre-processing methods we
improved the AIC accuracy. Overall, the AIC method combined with FBA shows the best
results with and PoD of about 50%. Therefore, we see that since we are performing MOS to
each slice of the tensor Y , we do not benefit from the increase in the amount of epochs.
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Figure 3.5: Probability of Detection at ∆τ = 0.1 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.6 we show the PoD for the AIC method at ∆τ = 0.5, since above it the PoD
remains stable, and K = 8. Note that the AIC method shows a better performance when
signal components are less correlated. Moreover, observe that the AIC combined with SPS
presents the best performance throughout all epochs.

Figure 3.6: Probability of Detection at ∆τ = 0.5 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.
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In Figure 3.7 we show the PoD for the AIC method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 15. Note that the AIC method shows a better performance
when signal components are less correlated. Moreover, note that the AIC combined with
SPS keeps the best performance throughout all epochs.

Figure 3.7: Probability of Detection at ∆τ = 0.5 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.8 we show the PoD for the AIC method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 30. Note that the AIC method shows a better performance
when signal components are less correlated. Moreover, note that the AIC does not take any
advantage from the higher amount of epochs. Therefore, the AIC combined with SPS keeps
the best performance throughout all epochs.
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Figure 3.8: Probability of Detection at ∆τ = 0.5 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.9 we show the PoD for the AIC+FBA method at ∆τ = 0.1 compared to the
minimum and maximum model order defined for each epoch. Note that the AIC combined
with FBA tends to understimate the model order since that we have a PoD above 90% when
comparing the estimated model order with the minimum model order within the received
tensor Y .

Figure 3.9: Probability of Detection at ∆τ = 0.1 for AIC method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 10
epochs, and have N = 245520 samples.
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In Figure 3.10 we show the PoD for the ESTER method at ∆τ = 0.1 and K = 8.
Observe that the ESTER method fails to estimate the model order when signals are strongly
correlated. However, we can improve ESTER performance by combining it with the pre-
processing techniques. Note that although the ESTER+FBA+SPS shows the best results, it
has a poor performance when Ld = 3.

Figure 3.10: Probability of Detection at ∆τ = 0.1 for ESTER method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.11 we show the PoD for the ESTER method at ∆τ = 0.1 and K = 15.
Observe that the ESTER method fails to estimate the model order when signals are strongly
correlated. Moreover, note that the ESTER methods does not take any advantage of the
higher amount of epochs.
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Figure 3.11: Probability of Detection at ∆τ = 0.1 for ESTER method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.12 we show the PoD for the ESTER method at ∆τ = 0.1 and K = 30.
Observe that the ESTER method fails to estimate the model order when signals are strongly
correlated. Moreover, note that the ESTER methods does not take any advantage of the
higher amount of epochs.

Figure 3.12: Probability of Detection at ∆τ = 0.1 for ESTER method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.
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In Figure 3.13 we show the PoD for the ESTER method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 8. Note that the ESTER method shows a better performance
when signal components are less correlated. Again, observe that the ESTER combined with
FBA and SPS presents the best performance however it has a poor performance when Ld = 3.

Figure 3.13: Probability of Detection at ∆τ = 0.5 for ESTER method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.14 we show the PoD for the ESTER method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 15. Again, observe that the ESTER combined with FBA and
SPS presents the best performance however it has a poor performance when Ld = 3.
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Figure 3.14: Probability of Detection at ∆τ = 0.5 for ESTER method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.15 we show the PoD for the ESTER method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 30. Once more, observe that the ESTER combined with FBA
and SPS presents the best performance however it has a poor performance when Ld = 3.

Figure 3.15: Probability of Detection at ∆τ = 0.5 for ESTER method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.
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In Figure 3.16 we show the PoD for the ESTER+FBA+SPS method at ∆τ = 0.1 com-
pared to the minimum and maximum model order defined for each epoch. Note that the
ESTER combined with FBA and SPS tends to overestimate the model order since that we
have a PoD above 40% when comparing the estimated model order to the maximum model
order within the received tensor Y .

Figure 3.16: Probability of Detection at ∆τ = 0.1 for ESTER+FBA+SPS method in a
Dynamic scenario with an perfect array with M = 8 antennas. Code samples are collected
during K = 10 epochs, and have N = 245520 samples.

In Figure 3.17 we show the PoD for the RADOI method at ∆τ = 0.1 and K = 8.
Note that the RADOI method fails to estimate the model order however by applying the
pre-processing FBA and SPS techniques RADOI shows a PoD above 95%.
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Figure 3.17: Probability of Detection at ∆τ = 0.1 for RADOI method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.18 we show the PoD for the RADOI method at ∆τ = 0.1 and K = 15.
Note that the RADOI method fails to estimate the model order however by applying the
pre-processing FBA and SPS techniques RADOI shows a PoD above 95%.

Figure 3.18: Probability of Detection at ∆τ = 0.1 for RADOI method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.
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In Figure 3.19 we show the PoD for the RADOI method at ∆τ = 0.1 and K = 30.
Note that the RADOI method fails to estimate the model order however by applying the pre-
processing FBA and SPS techniques RADOI shows a PoD above 95%. Note that even after
increasing the amount of epochs, the RADOI methods presents a poor performance when
Ld = 3

Figure 3.19: Probability of Detection at ∆τ = 0.1 for RADOI method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.20 we show the PoD for the RADOI method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 15. Note that even though the RADOI method show a much
better performance when signals are weakly correlated, the method has a poor performance
when we have an Ld = 3.
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Figure 3.20: Probability of Detection at ∆τ = 0.5 for RADOI method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.21 we show the PoD for the RADOI method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 30. Note that even though the RADOI method show a much
better performance when signals are weakly correlated, the method has a poor performance
when we have an Ld = 3.

Figure 3.21: Probability of Detection at ∆τ = 0.5 for RADOI method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.
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In Figure 3.22 we show the PoD for the RADOI+FBA method at ∆τ = 0.1 compared
to the minimum and maximum model order defined for each epoch. Note that the RADOI
combined with FBA tends to understimate the model order since that we have a PoD of 100%
when comparing the estimated model order to the maximum model order within the received
tensor Y .

Figure 3.22: Probability of Detection at ∆τ = 0.1 for RADOI+FBA method in a Dynamic
scenario with an perfect array with M = 8 antennas. Code samples are collected during
K = 10 epochs, and have N = 245520 samples.

In Figure 3.23 we show the PoD for the MDL method at ∆τ = 0.1 and K = 8. Note that
the MDL method fails to estimate the model order however by applying the pre-processing
FBA and SPS techniques MDL shows a PoD above 95% when Ld = 2 and above 70% when
Ld = 3.
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Figure 3.23: Probability of Detection at ∆τ = 0.1 for MDL method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.24 we show the PoD for the MDL method at ∆τ = 0.1 and K = 15.
Note that even though the MDL method performs better than AIC, RADOI and ESTER, the
MDL method does not benefit of the higher amount of epochs. Therefore, the MDL method
combined with FBA and SPS shows a PoD above 95% when Ld = 2 and above 70% when
Ld = 3.
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Figure 3.24: Probability of Detection at ∆τ = 0.1 for MDL method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.25 we show the PoD for the MDL method at ∆τ = 0.1 and K = 30.
Note that even though the MDL method performs better than AIC, RADOI and ESTER, the
MDL method does not benefit of the higher amount of epochs. Therefore, the MDL method
combined with FBA and SPS shows a PoD above 95% when Ld = 2 and above 70% when
Ld = 3.
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Figure 3.25: Probability of Detection at ∆τ = 0.1 for MDL method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.26 we show the PoD for the MDL method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 8. Note that the MDL method shows an improved performance
when signals are weakly correlated. Moreover, when applying the pre-processing techniques
FBA and SPS we obtain a PoD of approximately 95% for both Ld = 2 and Ld = 3

Figure 3.26: Probability of Detection at ∆τ = 0.5 for MDL method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.
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In Figure 3.27 we show the PoD for the MDL method at ∆τ = 0.5, since above it the PoD
remains stable, and K = 15. Again, note that when applying the pre-processing techniques
FBA and SPS we obtain a PoD of approximately 95% for both Ld = 2 and Ld = 3

Figure 3.27: Probability of Detection at ∆τ = 0.5 for MDL method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.28 we show the PoD for the MDL method at ∆τ = 0.5, since above it the PoD
remains stable, and K = 30. Again, note that when applying the pre-processing techniques
FBA and SPS we obtain a PoD of approximately 95% for both Ld = 2 and Ld = 3

57



Figure 3.28: Probability of Detection at ∆τ = 0.5 for MDL method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.29 we show the PoD for the MDL+FBA+SPS method at ∆τ = 0.1 compared
to the minimum and maximum model order defined for each epoch. Note that the MDL
combined with FBA and SPS tends to understimate the model order since that we have a
PoD of 100% when comparing the estimated model order to the maximum model order
within the received tensor Y .

Figure 3.29: Probability of Detection at ∆τ = 0.1 for MDL+FBA+SPS method in a Dy-
namic scenario with an perfect array with M = 8 antennas. Code samples are collected
during K = 10 epochs, and have N = 245520 samples.
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In Figure 3.30 we show the PoD for the EFT method at ∆τ = 0.1 and K = 8. Note that
the EFT method fails to estimate the model order however by applying the pre-processing
FBA and SPS techniques EFT shows a PoD above 95% when Ld = 2 and above 65% when
Ld = 3. Therefore, the EFT combined with FBA and SPS presents similar performance to
the MDL+FBA+SPS method.

Figure 3.30: Probability of Detection at ∆τ = 0.1 for EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.31 we show the PoD for the EFT method at ∆τ = 0.1 and K = 15. Note that
the EFT method fails to estimate the model order however by applying the pre-processing
FBA and SPS techniques EFT shows a PoD above 95% when Ld = 2 and above 65% when
Ld = 3. Therefore, the EFT combined with FBA and SPS presents similar performance to
the MDL+FBA+SPS method.
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Figure 3.31: Probability of Detection at ∆τ = 0.1 for EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.32 we show the PoD for the EFT method at ∆τ = 0.1 and K = 30. Note that
the EFT method fails to estimate the model order however by applying the pre-processing
FBA and SPS techniques EFT shows a PoD above 95% when Ld = 2 and above 65% when
Ld = 3. Therefore, the EFT combined with FBA and SPS presents similar performance to
the MDL+FBA+SPS method.
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Figure 3.32: Probability of Detection at ∆τ = 0.1 for EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.33 we show the PoD for the EFT method at ∆τ = 0.5, since above it the
PoD remains stable, and K = 8. Note that even though the EFT method shows an improved
performance when signals are weakly correlated, by applying the pre-processing techniques
FBA and SPS we obtain a PoD above 95% for both Ld = 2 and Ld = 3

Figure 3.33: Probability of Detection at ∆τ = 0.5 for EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.
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In Figure 3.34 we show the PoD for the EFT method at ∆τ = 0.5, since above it the PoD
remains stable, and K = 15. Note that even though the EFT method shows an improved
performance when signals are weakly correlated, by applying the pre-processing techniques
FBA and SPS we obtain a PoD above 95% for both Ld = 2 and Ld = 3

Figure 3.34: Probability of Detection at ∆τ = 0.5 for EFT method in a Dynamic scenario
with an perfect array with M = 15 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.35 we show the PoD for the EFT method at ∆τ = 0.5, since above it the PoD
remains stable, and K = 30. Note that even though the EFT method shows an improved
performance when signals are weakly correlated, by applying the pre-processing techniques
FBA and SPS we obtain a PoD above 95% for both Ld = 2 and Ld = 3
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Figure 3.35: Probability of Detection at ∆τ = 0.5 for EFT method in a Dynamic scenario
with an perfect array with M = 30 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.36 we show the PoD for the EFT+FBA method at ∆τ = 0.1 and we com-
pare the minimum and maximum model order defined for each epoch. Note that, the EFT
combined with FBA and SPS equaly estimate the minimum and maximum model order.

Figure 3.36: Probability of Detection at ∆τ = 0.1 for EFT+FBA method in a Dynamic
scenario with an perfect array with M = 8 antennas. Code samples are collected during
K = 10 epochs, and have N = 245520 samples.

In Figure 3.37 we show the PoD for the M-EFT method at ∆τ = 0.1 and K = 8. Note
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that the M-EFT method presents similar performance to the EFT method. Therefore, the
M-EFT method combined with FBA and SPS shows a PoD above 95% when Ld = 2 and
above 65% when Ld = 3

Figure 3.37: Probability of Detection at ∆τ = 0.1 for M-EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.38 we show the PoD for the M-EFT method at ∆τ = 0.1 and K = 15. Note
that the M-EFT method presents similar performance to the EFT method. Therefore, the
M-EFT method combined with FBA and SPS shows a PoD above 95% when Ld = 2 and
above 65% when Ld = 3
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Figure 3.38: Probability of Detection at ∆τ = 0.1 for M-EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.39 we show the PoD for the M-EFT method at ∆τ = 0.1 and K = 30. Note
that the M-EFT method presents similar performance to the EFT method. Therefore, the
M-EFT method combined with FBA and SPS shows a PoD above 95% when Ld = 2 and
above 65% when Ld = 3

Figure 3.39: Probability of Detection at ∆τ = 0.1 for M-EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.
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In Figure 3.40 we show the PoD for the M-EFT method at ∆τ = 0.5 and K = 8

since above it the PoD remains stable. Note that even though the M-EFT method shows an
improved performance when signals are weakly correlated, by applying the pre-processing
techniques FBA and SPS we obtain a PoD of above 98% for both Ld = 2 and Ld = 3.
Observe that, the M-EFT method shows an increased performance when signals are less
correlated.

Figure 3.40: Probability of Detection at ∆τ = 0.5 for M-EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.41 we show the PoD for the M-EFT method at ∆τ = 0.5 and K = 15

since above it the PoD remains stable. Note that even though the M-EFT method shows an
improved performance when signals are weakly correlated, by applying the pre-processing
techniques FBA and SPS we obtain a PoD of above 98% for both Ld = 2 and Ld = 3.
Observe that, the M-EFT method shows an increased performance when signals are less
correlated.
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Figure 3.41: Probability of Detection at ∆τ = 0.5 for M-EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.42 we show the PoD for the M-EFT method at ∆τ = 0.5 and K = 30

since above it the PoD remains stable. Note that even though the M-EFT method shows an
improved performance when signals are weakly correlated, by applying the pre-processing
techniques FBA and SPS we obtain a PoD of above 98% for both Ld = 2 and Ld = 3.
Observe that, the M-EFT method shows an increased performance when signals are less
correlated.
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Figure 3.42: Probability of Detection at ∆τ = 0.5 for M-EFT method in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.43 we show the PoD for the M-EFT+FBA+SPS method at ∆τ = 0.1 and we
compare the minimum and maximum model order defined for each epoch. Note that, difer-
ently from previous methods, the M-EFT combined with FBA and SPS tends to correctly
select the model order.

Figure 3.43: Probability of Detection at ∆τ = 0.1 for M-EFT+FBA method in a Dynamic
scenario with an perfect array with M = 8 antennas. Code samples are collected during
K = 10 epochs, and have N = 245520 samples.
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In Figure 3.44 we show the PoD for the R-D AIC, R-D MDL and R-D EFT methods at
∆τ = 0.1 and K = 8. We compared the estimate model orde to the minimum model order.
Note that, both the R-D AIC, R-D MDL and R-D EFT have a PoD of 0% therefore the R-D
methods failed to detect the tensor model order. Moreover, the pre-processing methods did
not help to improve the model order estimation. Furthermore, when verifying the simula-
tion results individually we observed that the R-D methods overestimated the model order.
Frequently, the R-D methods estimate a model order above 3.

(a) R-D AIC (b) R-D MDL

(c) R-D EFT

Figure 3.44: Probability of Detection at ∆τ = 0.1 for R-D methods in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.45 we show the PoD for the R-D AIC, R-D MDL and R-D EFT methods
at ∆τ = 0.1 and K = 15. We compared the estimate model order to the minimum model
order. Note that, the R-D methods have a PoD of 0% therefore the R-D methods failed to
detect the tensor model order. Moreover, the pre-processing methods did not help to improve
the model order estimation. Furthermore, when verifying the simulation results individually
we observed that the methods overestimated the model order. Frequently, the R-D methods
estimate a model order above 3.
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(a) R-D AIC (b) R-D MDL

(c) R-D EFT

Figure 3.45: Probability of Detection at ∆τ = 0.1 for R-D methods in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.46 we show the PoD for the R-D AIC, R-D MDL and R-D EFT methods
at ∆τ = 0.1 and K = 30. We compared the estimate model ordes to the minimum model
order. Note that, the R-D methods have a PoD of 0% therefore these methods failed to detect
the tensor model order. Moreover, the pre-processing methods did not help to improve the
model order estimation. Furthermore, when verifying the simulation results individually
we observed that the R-D methods overestimated the model order. Frequently, estimating a
model order above 3.
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(a) R-D AIC (b) R-D MDL

(c) R-D EFT

Figure 3.46: Probability of Detection at ∆τ = 0.1 for R-D methods in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

In Figure 3.47 we show the PoD for the R-D AIC, R-D MDL and R-D EFT methods at
∆τ = 0.1 and K = 8. We compared the estimate model orde to the maximum model order.
Note that, the R-D methods without pre-processing have a PoD of about 0.5% therefore these
failed to detect the tensor model order. When applying the pre-processing techniques we
have a worst performance with a PoD of 0%. Moreover, when verifying the simulation results
individually we observed that the R-D methods overestimated the model order, frequently,
above 3.
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(a) R-D AIC (b) R-D MDL

(c) R-D EFT

Figure 3.47: Probability of Detection at ∆τ = 0.1 for R-D methods in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 8
epochs, and have N = 245520 samples.

In Figure 3.48 we show the PoD for the R-D AIC, R-D MDL and R-D EFT methods at
∆τ = 0.1 and K = 15. We compared the estimate model order to the maximum model
order. Note that, these methods have a PoD of about 0.02% therefore the methods failed to
detect the tensor model order. When applying the pre-processing techniques we have a worst
performance with a PoD of 0%. Moreover, when verifying the simulation results individually
we observed that the R-D methods overestimated the model order by 1.

72



(a) R-D AIC (b) R-D MDL

(c) R-D EFT

Figure 3.48: Probability of Detection at ∆τ = 0.1 for R-D methods in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 15
epochs, and have N = 245520 samples.

In Figure 3.49a we show the PoD for the R-D AIC, R-D MDL and R-D EFT methods at
∆τ = 0.1 and K = 30. We compared the estimate model order to the maximum model order.
Note that, these shown a PoD of 0% therefore the R-D methods failed to detect the tensor
model order. When applying the pre-processing techniques we have a worst performance
with a PoD of 0%. Moreover, when verifying the simulation results individually we observed
that the R-D methods overestimated the model order. Frequently, the R-D methods estimate
a model order above 3.
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(a) R-D AIC (b) R-D MDL

(c) R-D EFT

Figure 3.49: Probability of Detection at ∆τ = 0.1 for R-D methods in a Dynamic scenario
with an perfect array with M = 8 antennas. Code samples are collected during K = 30
epochs, and have N = 245520 samples.

Therefore, the AIC, ESTER and RADOI methods are not suitable to perform model order
selection on GPS3 signals. Moreover, the MDL, EFT, and M-EFT also show poor perfor-
mance. However, when applying the pre-processing methods FBA and SPS we improve the
model order selection performance. Mainly, we acquire better result when combining these
pre-processing methods with the MDL, EFT and M-EFT methods. Furthermore, note that
the MOS methods have a higher PoD when performing model order selection on epochs
with Ld = 2. The worst performance when Ld = 3 is due to the low power of the sec-
ond NLOS component thus the second NLOS is identified as noise when performing MOS.
Additionally, observe that when increasing the time-delay difference ∆τ all matrix-based
MOS methods presented better performance. Moreover, the tensor-based R-D AIC, R-D
MDL, and R-D EFT show poor performance since these methods do not correctly estimate
the tensor model order. Moreover, applying pre-processing methods to R-D methods did not
improve the model order selection. Finally, we show that the R-D methods are not suitable
to dynamic scenarios where we have varying model order.

3.2 Proposed Tensor-based Factor Matrices Estimation

In this subsection, we present the proposed Canonical Polyadic method utilized to esti-
mate the factor matrices in the second element of the framework. In [15] the authors show
that the state-of-the-art DoA/Krf, CPD-GEVD, and HOSVD SECSI methods present ex-
cellent performance when we have a perfectly aligned array of antennas. Moreover, [15]
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show that when we have imperfections in the antenna array alignment the performance of
the DoA/Krf methods is severely deteriorated while the CPD-GEVD and HOSVD SECSI
methods have similar performance to the case with a correctly aligned array of antennas.
Moreover, [15] shows that the HOSVD SECSI method presents a higher complexity than the
CPD-GEVD method without showing significant overall improvement. Despite the HOSVD
higher complexity, this method presents a better performance in scenarios with strongly cor-
related signals. Consequently, the HOSVD SECSI method is more reliable in highly de-
manding scenarios. However, throughout simulations, we show that, by utilizing different
tensor modes, we can have yet greater performance in dynamic scenarios. Therefore, we
decided to implement the Mode 1 HOSVD SECSI with left-hand matrix (Mode 1 HOSVD
SECSI) method to perform the factor matrix estimation.

The Mode 1 HOSVD SECSI method was originally proposed in [26] to provide a more
accurate tensor-based scheme. The Mode 1 HOSVD SECSI performs Canonical Polyadic
Decomposition (CPD), also known as Candecomp and PARAFAC, by rearranging the tensor
factor estimation problem into several redundant simultaneous matrix diagonalization prob-
lems. As illustrated in Figure 3.50 the Mode 1 HOSVD SECSI method first computes the
HOSVD low rank approximation of the sub-tensors Y (t) obtained from grouping the tensor
Y epochs according to their model order.

Y (t) ≈ S(t) ×1 U
(t)
1 ×1 U

(t)
2 ×3 U

(t)
3 , (3.8)

where the superscript (t) indicates the tth sub-tensor, U(t)
1 ∈ CK×Ld(k), U(t)

2 ∈ CQ×Ld(k), and
U

(t)
3 ∈ CM×Ld(k), are the truncated singular matrices related to the tth sub-tensor. Moreover,

to compute the singular matrices and the core tensor, the SVD is applied to the unfolding of
the tensor for each dimension. Thus, we construct the following equations

[Y ]
(t)
(1) = U

(t)
1 S

(t)
1 V

H(t)
1 , (3.9)

[Y ]
(t)
(2) = U

(t)
2 S

(t)
2 V

H(t)
2 , (3.10)

[Y ]
(t)
(3) = U

(t)
3 S

(t)
3 V

H(t)
3 , (3.11)

where U
(t)
i , S(t)

i , and V
H(t)
i stand for the left singular vector matrix, singular value matrix

and right singular vector matrix for the ith dimension, respectively. Consider that the left
singular vector matrices can be be sequentially computed as follows:
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[Y ]
(t)
(1) = U

(t)
1 S

(t)
1 VH(t)

1 , (3.12)[
Y (t) ×1 U

H(t)
1

]
(2)

= U
(t)
2 S

(t)
2 VH(t)

2 , (3.13)[
Y (t) ×1 U

H(t)
1 ×2 U

H(t)
2

]
(3)

= U
(t)
3 S

(t)
3 V

H(t)
3 . (3.14)

Next, let us consider the third-mode unfolding of Y and use the representation in (2.9)
and (3.8), then, we obtain

U
(t)
1 [S]

(t)
(1)(U

(t)
2 ⊗U

(t)
3 )T = ΓT(t)[I3,L]

(t)
(1)((CQ(d)(t)

ω )T ⊗A(t))T. (3.15)

Hence, the subspace spanned by the columns of U
(t)
1 , U

(t)
2 , and U

(t)
3 and the sub-

space spanned by the columns of Γ(t)T, (CQ(d)(t)
ω )T, and A(t) are respectively identical.

Consequently, there exist a set of non-singular transform matrices T
(t)
1 ∈ CLd(k)×Ld(k),

T
(t)
2 ∈ CLd(k)×Ld(k), and T

(t)
3 ∈ CLd(k)×Ld(k) which represent the loading matrices of the

CPD of the core tensor of the HOSVD from (3.8). Thus, the tensor S can be represented as

S(t) = I(t)
3,Ld(k)

×1 T
(t)
1 ×2 T

(t)
2 ×3 T

(t)
3 . (3.16)

The transform matrices T(t)
1 ∈ CLd(k)×Ld(k), T(t)

2 ∈ CLd(k)×Ld(k), and T
(t)
3 ∈ CLd(k)×Ld(k)

represent the loading matrices of the CPD of the core tensor S(t) ∈ CLd(k)×Ld(k)×Ld(k) in
(3.16). In theory, the CPD can be directly applied to Y in order to extract the factor matrices.
However, as demonstrated in [4], by directly computing the factor matrices using Alternating
Least Squares (ALS), there are convergence problems, resulting into poor performance in
terms of time-delay estimation. Therefore, to perform the CPD, it is sufficient to compute
the loading matrices T(t)

1 , T(t)
2 , and T

(t)
3 , to obtain the factor matrices

U
(t)
1 T

(t)
1 = Γ(t)T

, (3.17)

U
(t)
2 T

(t)
2 =

(
CQ(d)(t)

ω

)T
, (3.18)

U
(t)
3 T

(t)
3 = A(t). (3.19)

As a consequence of the symmetry of the SECSI problem, we can build six Simultaneous
Matrix Diagonalization (SMD) problems for a three-way model [26]. However, as shown by
[15], without loss of generality we can only use one mode of the compressed core tensor S(t)

to compute the right-hand and left-hand matrices utilized in the SMD step described in [26].
In [15] the authors shows that the right-hand matrix of the third-mode a given compressed
core tensor yields the best estimation in static scenarios. However, after performing several
numerical simulations, we select the left-hand matrix of the first mode of the compressed core
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tensor S(t). Therefore, the ith slice of the first-mode of tensor S(t) is selected to compute the
left-hand matrix

S
(t)
1,i =

[(
S(t) ×1 U

(t)
1

)
×1 e

T
i

]
= T

(t)
2 diag{Γ(t)H

·,i}T
(t)
3

T
,

(3.20)

where eT
i is a vector with all zeros except in the ith position. Next, we select the slice of

tensor S(t) with the smallest condition number

S
(t)
1,p = T

(t)
2 diag{Γ(t)H

·,p}(T
(t)
3 )T, (3.21)

where p is an arbitrary index between one and the total number of slices to be diagonalized
and defines the slice of tensor St with the smallest condition number

p = argmin
i

cond{S(t)
1,i}, (3.22)

where cond{·} computes the condition number of a matrix. The smaller the condition num-
ber of a matrix, the more stable is its inversion. Furthermore, we obtain the left-hand matrices
S
(t),lhs
1,i by multiplying S1,i by S1,p on the left-hand side

S
(t),lhs
1,i =

(
S
(t)
1,p

−1
S
(t)
1,i

)T

= T
(t)
3 diag{ΓH

·,iΓ
(t)H}·,pT(t)

3

−1

= T
(t)
3 Γ(t)H

T
(t)
3

−1
.

(3.23)

Since p is fixed, we can vary all possible values of i in (3.23) obtaining N − 1 equations,
since i ̸= p. Our goal is to find T̂(t)

3 that simultaneously diagonalizes the N − 1 equations.
We refer here to the techniques in [37] and [38].

Since in the noiseless case, according to (2.9), the third-mode unfolding exposes the
factor matrix A(t), we can write

[Y (t)]T(3) =
[
Γ(t) ⋄

(
CQ(d)

ω

)(t)]
A(t). (3.24)

Using U
(t)
3 from (3.8) and T̂

(t)
3 from the diagonalization step we obtain

U
(t)
3 T̂

(t)
3 = Â(t). (3.25)
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Afterwards, we multiply (3.24) by the pseudo-inverse of the estimated Â(t) from the
left-hand side to obtain

F(t) = [Y (t)]T(3)(Â
(t))+T =

[
Γ(t) ⋄

(
CQ(d)

ω

)(t)]
A(t)(Â(t))+T

≈
[
Γ(t) ⋄

(
CQ(d)

ω

)(t)] ∈ CKM×Ld(k).
(3.26)

Then, factor matrices (CQ
(d)
ω

(t)
)T and Γ(t) can be estimated from (3.26) by applying the

Least Squares Khatri-Rao Factorization (LSKRF) [35].

Y (t)
HOSVD low-rank approx.

Y (t) ≈ S(t) ×1 U
(t)
1 ×1 U
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2 ×3 U
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Left-hand side
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(t),lhs
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S
(t)
1,p

−1
S
(t)
1,i

)T

i = 1, . . . , N such that i ̸= p

Joint matrix diagonalizations [37, 38]

U
(t)
3 T̂

(t)
3 = Â(t)

×[Y (t)]T(3)

LSKRF

LOS
Selection (4)
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T̂
(t)
3

(Â(t))+T

(Â(t))TF(t) = [Y (t)]T(3)(Â
(t))+T

(ĈQ
(d)
ω )(t)

T Γ̂(t)

Figure 3.50: Mode 1 HOSVD SECSI Time-Delay Estimation block diagram
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3.3 Simulation Results for Time-Delay Estimation Simula-
tions for Dynamic Scenario

In this section we present the TDE computed during simulations when considering a
dynamic scenario and a perfectly aligned array of antennas. Since in the dynamic scenario we
are varying the number of LOS and NLOS components within the tensor Y , when utilizing
matrix-based MOS methods we grouped the epochs with the same estimated model order.

Moreover, similarly to computing the PoD, we utilize the maximum and minimum esti-
mated model order, obtained from the matrix-based MOS methods, to perform matrix sepa-
ration and compute the LOS time-delay. Since the matrix-based AIC, ESTER and RADOI
methods showed poor performance, we only utilized the matrix-based MDL+FBA+SPS,
EFT+FBA+SPS and EFT+FBA+SPS methods. Additionally, we performed simulations con-
sidering we know the model order of each epoch. Thus, we could divide the main tensor into
new tensors and them compute the TDE. Furthermore, we utilize the tensor-based R-D EFT
MOS method to simultaneously compute the model order and provide an estimate to perform
matrix-separation and time-delay estimation. We did not perform simulation using R-D AIC
and R-D MDL since these methods extrapolate the estimated model order. Additionally, we
present results for the Tensor-based Eigenfilter. Differently from the CPD-based methods,
the Tensor-based Eigenfilter does not require any estimate of the model order to perform
matrix separation. Therefore, the Tensor-based Eigenfilter might be a suitable alternative
in a dynamic scenario. Moreover, the state-of-the-art CPD-GEVD and the state-of-the-art
HOSVD SECSI are not suitable to be combined with the approach where we create sub-
tensors to perform the TDE. Since both methods utilize the dimension of epochs, e.g. di-
mension K, of the tensors to perform the factor matrix estimation and in some scenarios
L̂d > K the matrix decomposition becomes impossible. Finally, we present simulation
results for scenarios with different epochs, e.g. K = 8, K = 15, and K = 30 epochs

In Figure 3.51 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the minimum estimated model order considering we have gathered K = 8 epochs.
Note that the state-of-the-art CPD-GEVD method has improved performance when we select
the minimum estimated model order. Furthermore, this method outperforms the Tensor-
based Eigenfilter and Known Model Order methods. Therefore, when utilizing the minimum
model order, we no longer need to split the tensor into various sub-tensors thus we can jointly
estimate the time-delay. Moreover, by underestimating the model order, we assume that the
second NLOS component is considered a noise component. Then, since the second NLOS
component is extremely weak when compared to LOS signals, it has a low impact in the
time-delay measurement.
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Figure 3.51: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

In Figure 3.52 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the minimum estimated model order with K = 15. Note that when gathering more
epochs, the time-delay estimation error slightly increased when compared to Figure 3.51.
Therefore, since we increase the amount of epochs, we also increased the number of slices
with different estimated model orders. Then, the state-of-the-art CPD-GEVD presents higher
error rate.

Figure 3.52: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 15 epochs, and have
N = 245520 samples.
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In Figure 3.52 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the minimum estimated model order with K = 30. Note that with K = 30, the
time-delay estimation error slightly increased when compared to Figure 3.51. However, the
time-delay estimation error stayed similar to Figure 3.53. Then, we show that the error rate
kept approximately constante as we increase the number of epochs.

Figure 3.53: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.

In Figure 3.54 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the maximum estimated model order when K = 8. Note that the matrix-based MOS
methods have improved performance when we select the maximum estimated model order.
Furthermore, these methods outperform the Tensor-based Eigenfilter and Known Model Or-
der methods. Therefore, when utilizing the maximum model order, we no longer need to split
the tensor into various sub-tensors thus we can jointly estimate the time-delay. Moreover,
selecting the maximum estimated model order does not necessarily mean we have a model
order L̂d = 3 as shown in Figures 3.29, 3.36, 3.43. Therefore, by selecting the maximum es-
timated model order we may model noise components as signals. Additionally, we indicate
that an underestimated model order, as in Figure 3.51, is a more suitable solution. Therefore,
notice that the second NLOS effect on matrix-separation and TDE might be negligible when
using the state-of-the-art CPD-GEVD.
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Figure 3.54: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

In Figure 3.55 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the maximum estimated model order when K = 15. Note that the matrix-based
MOS methods have improved performance when we select the maximum estimated model
order. However, observe that when using the maximum estimated model order obtained from
the MDL+FBA+SPS method we have a higher time-delay estimation error. The higher er-
ror is due to the lowest PoD presented by the MDL+FBA+SPS method when estimating the
model order in slices with Ld = 3. Therefore, when utilizing the MDL+FBA+SPS method
we have a higher amount of noise components being modeled as signal. Additionally, we
reinforce that an underestimated model order, as in Figure 3.52, is a more suitable solu-
tion. Therefore, notice that the second NLOS effect on matrix-separation and TDE might be
negligible when using the state-of-the-art CPD-GEVD.
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Figure 3.55: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 15 epochs, and have
N = 245520 samples.

In Figure 3.56 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the maximum estimated model order when K = 30. We reinforce the trend in
higher error rate when utilizing the maximum estimated model order obtained from the
MDL+FBA+SPS method. Moreover, we show that when we have K = 30 epochs the max-
imum estimated model order obtained from EFT+FBA+SPS and M-EFT+FBA+SPS have
similar performance to the minimum estimated model order obtained from the same meth-
ods.
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Figure 3.56: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.

Since the state-of-the-art CPD-GEVD method is not suitable to the sub-tensor approach,
we exploited the possible tensor rotations that could be utilized to perform matrix factoriza-
tion. Therefore, we utilize the first mode CPD-GEVD method. Opposingly to the state-of-
the-art CPD-GEVD, the first mode CPD-GEVD rotates the tensor Y and places the antenna
dimension, e.g. tensor Y third dimension, as the first dimension. Thus, the first mode
CPD-GEVD method utilizes the antenna dimension to perform matrix factorization. In Fig-
ure 3.57 we performed simulation combining the sub-tensor approach with the first mode
CPD-GEVD method. Hence, we show that this CPD-GEVD variant is suitable to perform
matrix factorization and TDE when utilizing the sub-tensor approach. Note that, the first
mode CPD-GEVD combined with sub-tensors has similar perfomance to the state-of-the-art
CPD-GEVD combined with minimum estimated model order, Figure 3.51.
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Figure 3.57: MOS techniques and state-of-the-art first mode CPD-GEVD method simulation
with M = 8 antennas. In both cases code samples are collected during K = 8 epochs, and
have N = 245520 samples.

In Figure 3.58 we performed simulation combining the sub-tensor approach with the first
mode CPD-GEVD method. Hence, we show that this CPD-GEVD variant is suitable to
perform matrix factorization and TDE when utilizing the sub-tensor approach. Note that, the
first mode CPD-GEVD combined with sub-tensors has similar perfomance to the state-of-
the-art CPD-GEVD combined with minimum estimated model order, Figure 3.52.

Figure 3.58: MOS techniques and state-of-the-art first mode CPD-GEVD method simulation
with M = 8 antennas. In both cases code samples are collected during K = 15 epochs, and
have N = 245520 samples.

In Figure 3.59 we performed simulation combining the sub-tensor approach with the first
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mode CPD-GEVD method. Hence, we show that this CPD-GEVD variant is suitable to
perform matrix factorization and TDE when utilizing the sub-tensor approach. Note that, the
first mode CPD-GEVD combined with sub-tensors has similar perfomance to the state-of-
the-art CPD-GEVD combined with minimum estimated model order, Figure 3.53.

Figure 3.59: MOS techniques and state-of-the-art first mode CPD-GEVD method simulation
with M = 8 antennas. In both cases code samples are collected during K = 30 epochs, and
have N = 245520 samples.

Additionally to performing simulations with first mode CPD-GEVD method combined
with the sub-tensors approach. Therefore, in in Figure 3.60 we show the results of simu-
lations combining the TDE method with the minimum estimated model order. Note that
even though the first mode CPD-GEVD method is slightly better when signals are strongly
correlated, e.g. ∆τ < 0.3 than the method shown in Figure 3.57, the first mode CPD-
GEVD method combined with the sub-tensors presents a better performance when signals
are weakly correlated, e.g. ∆τ ≥ 0.3. The improved performance is due to the more accu-
rate MOS performed by the MOS methods when ∆τ ≥ 0.3. Therefore, we can accuratly
construct sub-tensors that can better approximate an static scenario. Consequently, we have
a lower time-delay error.
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Figure 3.60: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

Moreover, in Figure 3.61 we show the results of simulations combining the TDE method
with the minimum estimated model order when K = 15. Observe that the first mode CPD-
GEVD method is slightly better when signals are strongly correlated, e.g. ∆τ < 0.3 than
the method shown in Figure 3.58. However, the first mode CPD-GEVD method combined
with the sub-tensors presented a better performance when signals are weakly correlated, e.g.
∆τ ≥ 0.3. The improved performance is due to the more accurate MOS performed by the
MOS methods when ∆τ ≥ 0.3. Thus, we can accuratly construct sub-tensors that can better
approximate an static scenario. Therefore, we have a lower time-delay error.
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Figure 3.61: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 15 epochs, and have
N = 245520 samples.

In Figure 3.62 we show the results of simulations combining the TDE method with the
minimum estimated model order when K = 30. Observe that the first mode CPD-GEVD
method is slightly better when signals are strongly correlated, e.g. ∆τ < 0.3 than the method
shown in Figure 3.59. However, the first mode CPD-GEVD method combined with the sub-
tensors presented a better performance when signals are weakly correlated, e.g. ∆τ ≥ 0.3.
The improved performance is due to the more accurate MOS performed by the MOS methods
when ∆τ ≥ 0.3. Thus, we can accuratly construct sub-tensors that can better approximate
an static scenario. Therefore, we have a lower time-delay error.

88



Figure 3.62: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.

As previously described, combining matrix factorization with the minimun model order
estimation may be a suitable option to successfully perform TDE in dynamic scenarios.
Thus, in addition to performing simulations with first mode CPD-GEVD method combined
with the sub-tensors and minimum estimated model order approach, in Figure 3.63 we show
the results of simulations combining the TDE method with the maximum estimated model
order. Note that even though the first mode CPD-GEVD method is slightly better when
signals are strongly correlated, e.g. ∆τ < 0.3 than the method shown in Figure 3.57, the first
mode CPD-GEVD method combined with the sub-tensors presents a similar performance
when signals are weakly correlated, e.g. ∆τ ≥ 0.3. The comparable performance is due to
the more accurate MOS performed by the MOS methods when ∆τ ≥ 0.3. Therefore, we can
accuratly construct sub-tensors that can better approximate an static scenario. Consequently,
we have a lower time-delay error.
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Figure 3.63: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

In Figure 3.64 we show the results of simulations combining the TDE method with the
maximum estimated model order. Note that the first mode CPD-GEVD method is slightly
better when signals are strongly correlated, e.g. ∆τ < 0.3 than the method shown in Fig-
ure 3.58. However, the first mode CPD-GEVD method combined with the sub-tensors
presents a similar performance when signals are weakly correlated, e.g. ∆τ ≥ 0.3. The
comparable performance is due to the more accurate MOS performed by the MOS methods
when ∆τ ≥ 0.3. Therefore, we can accuratly construct sub-tensors that can better approxi-
mate an static scenario. Consequently, we have a lower time-delay error.
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Figure 3.64: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 15 epochs, and have
N = 245520 samples.

In Figure 3.65 we show the results of simulations combining the TDE method with the
maximum estimated model order. Note that the first mode CPD-GEVD method is slightly
better when signals are strongly correlated, e.g. ∆τ < 0.3 than the method shown in Fig-
ure 3.58. However, the first mode CPD-GEVD method combined with the sub-tensors
presents a similar performance when signals are weakly correlated, e.g. ∆τ ≥ 0.3. The
comparable performance is due to the more accurate MOS performed by the MOS methods
when ∆τ ≥ 0.3. Therefore, we can accuratly construct sub-tensors that can better approxi-
mate an static scenario. Consequently, we have a lower time-delay error.
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Figure 3.65: MOS techniques and state-of-the-art CPD-GEVD method simulation with M =
8 antennas. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.

Similarly to the state-of-the-art CPD-GEVD method, the HOSVD SECSI method utilizes
the dimension of epochs to perform matrix factorization therefore this method cannot be
combined with the sub-tensor approach. Since, the sub-tensor approach may create sub-
tensors with K < L̂

(k)
d therefore the state-of-the-art HOSVD SECSI method may not to

be able to perform factor matrix estimation. Consequently, in Figure 3.66 we show the
simulation results for the state-of-the-art HOSVD SECSI method utilizing the minimum
estimated model order with K = 8. Note that even with an underestimated model order, the
state-of-the-art HOSVD SECSI method shows improved performance when compared to the
CPD-GEVD methods. Furthermore, observe that this TDE method is reliable when signals
are strongly correlated, e.g. ∆τ < 0.3
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Figure 3.66: MOS techniques and state-of-the-art HOSVD SECSI method simulation with
M = 8 antennas. In both cases code samples are collected during K = 8 epochs, and have
N = 245520 samples.

In Figure 3.67 we show the simulation results for the state-of-the-art HOSVD SECSI
method utilizing the minimum estimated model order with K = 15. Again, the state-of-
the-art HOSVD SECSI method provides a better TDE than the previously described CPD-
GEVD methods. However, note that by adding more epochs we decreased the state-of-the-art
HOSVD SECSI method. The worsen performance is due to modeling the NLOS componts
as noise, therefore, presenting a higher time-delay error.
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Figure 3.67: MOS techniques and state-of-the-art HOSVD SECSI method simulation with
M = 8 antennas. In both cases code samples are collected during K = 15 epochs, and have
N = 245520 samples.

In Figure 3.68 we show the simulation results for the state-of-the-art HOSVD SECSI
method utilizing the minimum estimated model order with K = 30. Observe that the state-
of-the-art HOSVD SECSI method provides a better TDE than the previously described CPD-
GEVD methods. However, note that by adding more epochs we decreased the state-of-the-art
HOSVD SECSI method. The worsen performance is due to modeling the NLOS componts
as noise, therefore, presenting a higher time-delay error.
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Figure 3.68: MOS techniques and state-of-the-art HOSVD SECSI method simulation with
M = 8 antennas. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.

In addition to the minimum estimated model order, we performed simulations combining
the state-of-the-art HOSVD SECSI combined with the maximum estimated model order. In
Figure 3.69 we show the simulation results for the state-of-the-art HOSVD SECSI method
utilizing the maximum estimated model order with K = 8. Note that the maximum estimated
model order presents a similar performance to the minimum estimated model order. This is
possible since the NLOS components have a much lower SNR than the LOS component.
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Figure 3.69: MOS techniques and state-of-the-art HOSVD SECSI method simulation with
M = 8 antennas. In both cases code samples are collected during K = 8 epochs, and have
N = 245520 samples.

In Figure 3.70 we show the simulation results for the state-of-the-art HOSVD SECSI
method utilizing the maximum estimated model order with K = 15. Similarly to the min-
imum estimated model order, the maximum estimated model order presents worsen perfor-
mance after adding more epochs to the main tensor. This is due to modeling noise componts
as signals components by overestimating the model order. However, observe that the maxi-
mum estimated model order presents lower time-delay error when compared to Figure 3.67.
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Figure 3.70: MOS techniques and state-of-the-art HOSVD SECSI method simulation with
M = 8 antennas. In both cases code samples are collected during K = 15 epochs, and have
N = 245520 samples.

In Figure 3.70 we show the simulation results for the state-of-the-art HOSVD SECSI
method utilizing the maximum estimated model order with K = 30. Again, we have a
worsen performance after adding more epochs to the main tensor. This is due to modeling
noise componts as signals components by overestimating the model order. However, observe
that the maximum estimated model order presents lower time-delay error when compared to
Figure 3.67.
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Figure 3.71: MOS techniques and state-of-the-art HOSVD SECSI method simulation with
M = 8 antennas. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.

Since the state-of-the-art HOSVD SECSI method is not suitable to the sub-tensor ap-
proach, we exploit the tensor dimensions that could be utilized to perform matrix factoriza-
tion. Thus, we utilize the first mode Mode 1 HOSVD SECSI with left hand-hand matrix
method. In contrast to the state-of-the-art HOSVD SECSI, the Mode 1 HOSVD SECSI with
left hand-hand matrix method utilizes the antenna dimension, e.g. tensor Y third dimen-
sion, to perform matrix factorization. In Figure 3.72 we show the simulation results for the
state-of-the-art Mode 1 HOSVD SECSI with left-hand matrix method with K = 8. As pre-
viously described, we utilize the matrix-based MOS methods to estimate the model order of
each epoch then we group the epochs with same model order and create sub-tensors. There-
fore, since the sub-tensor approach is a solution that aims to create static scenarios, we show
that the HOSVD SECSI variant is suitable to perform matrix factorization and TDE when
utilizing the sub-tensor approach. Note that the MDL+FBA+SPS has a better performance
than the Tensor-based Eigenfilter, the M-EFT+FBA+SPS and EFT-FBA+SPS show similar
performance to the Known Model Order.
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Figure 3.72: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 8 epochs, and have N = 245520 samples.

In Figure 3.73 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method with K = 15. Note that since we have more epochs,
we can construct more accurate sub-tensors. Therefore, the Mode 1 HOSVD SECSI shows
similar performance to the state-of-the-art HOSVD SECSI.

Figure 3.73: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 15 epochs, and have N = 245520 samples.

In Figure 3.74 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method with K = 30. Observe that since we have more epochs,
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we can construct more accurate sub-tensors. Therefore, the Mode 1 HOSVD SECSI shows
similar performance to the state-of-the-art HOSVD SECSI.

Figure 3.74: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 3.75 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method utilizing the minimum estimated model order with K =

8. Note that the matrix-based MOS methods have improved performance when we select the
minimum estimated model order. Furthermore, these methods outperform the Tensor-based
Eigenfilter and Known Model Order methods. Again, when utilizing the minimum model
order, we no longer need to split the tensor into various sub-tensors thus we can jointly
estimate the time-delay. Moreover, by underestimating the model order, we assume that
the second NLOS component is considered a noise component. Since the second NLOS
component is extremely weak when compared to LOS signals, it has a low impact in the
time-delay measurement.
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Figure 3.75: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 8 epochs, and have N = 245520 samples.

In Figure 3.76 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method utilizing the minimum estimated model order with
K = 15. Observe that the increase in the amount of epochs did not affect the time-delay
estimation since we obtain similar performance to Figure 3.75.

Figure 3.76: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 15 epochs, and have N = 245520 samples.

In Figure 3.77 we show the simulation results for the state-of-the-art Mode 1 HOSVD
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SECSI with left-hand matrix method utilizing the minimum estimated model order with
K = 30. Note that the time-delay error remains the same even after increasing further the
amount of collected epochs. Therefore, we see that the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method is insensitive to the amount of epochs.

Figure 3.77: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 3.78 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method utilizing the maximum estimated model order with
K = 8. Note that the matrix-based methods have improved performance when we select the
maximum estimated model order. Furthermore, these methods outperform the Tensor-based
Eigenfilter and Known Model Order methods. Thus, by utilizing the maximum model order,
we no longer need to split the tensor into various sub-tensors. Therefore, we can jointly
estimate the time-delay. Moreover, selecting the maximum estimated model order does not
necessarily mean we have a model order L̂d = 3 as shown in Figures 3.29, 3.36, 3.43.
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Figure 3.78: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 8 epochs, and have N = 245520 samples.

In Figure 3.79 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method utilizing the maximum estimated model order with
K = 15. Note that when utilizing the maximum estimated model order we have an increase
in the time-delay estimation error. This is due to modeling noise components as signals.
Therefore, we have a degraded MOS and consequently a worsen TDE. However, observe
that the maximum estimated model order combined with the Mode 1 HOSVD SECSI pro-
vides improved performance when compared to the minimum estimated model order in Fig-
ure 3.76.
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Figure 3.79: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 15 epochs, and have N = 245520 samples.

In Figure 3.80 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method utilizing the maximum estimated model order with
K = 30. Again, note that when utilizing the maximum estimated model order we have
an increase in the time-delay estimation error. Therefore, we have a degraded MOS and
consequently a worsen TDE. However, observe that the maximum estimated model order
combined with the Mode 1 HOSVD SECSI provides improved performance when compared
to the minimum estimated model order in Figure 3.77. In addition, even though the Mode
1 HOSVD SECSI is more suitable to be combined with the sut-tensors approach, note that
the Mode 1 HOSVD SECSI combined with the maximum estimated model order method
performs displayed better perfomance with a low amount of epochs.
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Figure 3.80: MOS techniques and state-of-the-art Mode 1 HOSVD SECSI with left-hand
matrix method simulation with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 3.81 we show the simulation results for the state-of-the-art DoA/KRF method
with K = 8. As previously described, we utilize the matrix-based MOS methods to estimate
the model order of each epoch then we group the epochs with same model order and create
new tensors. Note the MDL+FBA+SPS, EFT+FBA+SPS, M-EFT+FBA+SPS, and Known
Model Order show worse performance than the Tensor-based Eigenfilter. Since the DoA of
the signal is changing over the epochs and each sub-tensor has fewer information than the
original tensor, the DoA/KRF shows the worst performance among the tensor-based matrix
factorization methods.
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Figure 3.81: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

In Figure 3.82 we show the simulation results for the state-of-the-art DoA/KRF method
with K = 15. We show that when collecting more epochs and, consequently, having more
variance on DoA, the DoA/KRF method combined with the matrix-based MOS methods
increases the time-delay error.

Figure 3.82: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 15 epochs, and have N =
245520 samples.

In Figure 3.83 we show the simulation results for the state-of-the-art DoA/KRF method
with K = 30. When increasasing further the amount of collected epochs, we show that the
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DoA/KRF is not suitable to the method applied: we utilize the matrix-based MOS methods
to estimate the model order of each epoch then we group the epochs with same model order
and create new tensors.

Figure 3.83: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 30 epochs, and have N =
245520 samples.

In Figure 3.84 we show the simulation results for the state-of-the-art DoA/KRF method
utilizing the minimum estimated model order with K = 8. Note that the time-delay estima-
tion error decreases when we select the minimum estimated model order. Moreover, notice
that by spliting the tensor Y into smaller sub-tensors we degrade the the time-delay measure-
ment. This degradation is due to smaller amount of information combined with the varying
LOS DoA within the tensor.
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Figure 3.84: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

In Figure 3.85 we show the simulation results for the state-of-the-art DoA/KRF method
utilizing the minimum estimated model order with K = 15. Notice that now, when utilizing
minimum estimated model order, even though we increased the amount of collected epochs,
the DoA/KRF overcomes its limitation and have similar time-delay estimaition error to Fig-
ure 3.84. However, the DoA/KRF combined with the minimum estimated model order does
not show a significant improvement on time-delay estimation error.
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Figure 3.85: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 15 epochs, and have N =
245520 samples.

In Figure 3.86 we show the simulation results for the state-of-the-art DoA/KRF method
utilizing the minimum estimated model order with K = 30. We reinforce that the DoA/KRF
works properly when we utilize the estimated minimum model order. However, we perceive
that the increase in the amount of epochs does not reflect a lower time-delay estimation.

Figure 3.86: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 30 epochs, and have N =
245520 samples.

In Figure 3.87 we show the simulation results for the state-of-the-art DoA/KRF method
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utilizing the maximum estimated model order with K = 8. Note that the matrix-based MOS
methods have improved performance when we select the maximum estimated model order.
Moreover, these methods outperform the Tensor-based Eigenfilter and Known Model Order
methods. Thus, by utilizing the maximum model order, we no longer need to split the tensor
into various sub-tensors thus we can jointly estimate the time-delay. Furthermore, select-
ing the maximum estimated model order does not necessarily mean we have a model order
L̂d = 3 as shown in Figures 3.29, 3.36, 3.43. Though, observe that the maximum estimated
model order drawn from the MDL+FBA+SPS, M-EFT+FBA+SPS, and EFT+FBA+SPS out-
performs the scenario where we utlize the minimum estimate model order, Figure 3.84.

Figure 3.87: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 8 epochs, and have N =
245520 samples.

In Figure 3.88 we show the simulation results for the state-of-the-art DoA/KRF method
utilizing the maximum estimated model order with K = 15. Observe that when utilizing the
maximum estimated model order in a scenario with higher amount of epochs the DoA/KRF
shows a worse performance than using only K = 8 epochs.
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Figure 3.88: MOS techniques and tate-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 15 epochs, and have N =
245520 samples.

In Figure 3.89 we show the simulation results for the state-of-the-art DoA/KRF method
utilizing the maximum estimated model order with K = 30. We reinforce that the increase
in the amount of collected epochs has negative influence on time-delay estimation whe com-
bining the DoA/KRF with the maximum estimated model order. Moreover, we show that the
DoA/KRF has better performance with a low amount of signal samples.

Figure 3.89: MOS techniques and state-of-the-art DoA/KRF method simulation with M = 8
antennas. In both cases code samples are collected during K = 30 epochs, and have N =
245520 samples.
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Chapter 4

Time-Delay Estimation for Dynamic
Scenario with MuDe

In this chapter, we present the denoising method utilized to denoise the sub-tensor Y (t).
We included a denoising step since the time-delay estimation performance is sensitive to
signal-to-noise ratio (SNR) and degraded in noisy scenarios. Therefore, we propose to use
the MuDe approach, which consists of a pre-processing technique to denoise tensor-like data.
MuDe combines the Spatial Smoothing (SPS) idea [6] with successive SVD-based low-rank
approximations in the output signals for sub-arrays of varying size in each spatial dimension
of the obtained signal tensor and, then, rebuilding the sub-arrays into a tensor.

4.1 Tensor-based Multiple Denoising

Hence, we firstly briefly review the SPS pre-processing scheme. Thus, consider the 3rd
mode of tensor [Y (t)](3) from (2.9), with M rows is divided into Lr = 4 sub-arrays of size
M (sub) = M − Lr + 1. When applying the SPS pre-processing method independently in the
unfolding matrix, we define the 3rd mode spatially smoothed matrix Y

(t)(Lr)

SPS,3 ∈ CM(sub)×KQ

to collect the output signal of the Lr sub-arrays as follows [43]

Y
(t)(Lr)

SPS,3 =
[
[Y (t)]

(1)
(3), Y ]

(t)(2)

(3) ,Y ]
(t)(3)

(3) , Y ]
(t)(4)

(3)

]
=
[
J
(Mr)
1 [Y (t)](3), J

(Mr)
2 [Y (t)](3),

J
(Mr)
3 [Y (t)](3), J

(Mr)
4 [Y (t)](3)

]
,

(4.1)

where
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[Y (t)]
(1)
(3) = J

(Mr)
1 [Y (t)](3) (4.2)

[Y (t)]
(2)
(3) = J

(Mr)
2 [Y (t)](3) (4.3)

[Y (t)]
(3)
(3) = J

(Mr)
3 [Y (t)](3) (4.4)

[Y (t)]
(4)
(3) = J

(Mr)
4 [Y (t)](3) (4.5)

are the output signal of the ℓrth sub-array in the 3rd dimension. The selection matrices J(Mr)
ℓr

is defined as

J
(Mr)
ℓr

=
[
0
M

(sub)
r ×(ℓr−1)

I
M

(sub)
r

0
M

(sub)
r ×(Lr−ℓr)

]
. (4.6)

Afterward, the received tensor can be denoised by successively applying low-rank ap-
proximations to the set of spatially smoothed unfolding matrices Y

(t)(1)

SPS,3, . . . ,Y
(t)(Lr)

SPS,3 de-
fined in (4.1). Therefore, after performing MOS and obtaining the estimated model order
Ld(k)

(t) of a given sub-tensor, we compute the low-rank approximation as following

Ỹ
(t)(ℓr)

SPS,3 =
[
[Ỹ (t)

]
(1)
(3) · · · Ỹ (t)

]
(ℓr)
(3)

]
, (4.7)

where

Ỹ
(t)(ℓr)

SPS,3 = U(t)
s Σ(t)

s V(t)H

s (4.8)

is obtained by applying the thin SVD to Y
(t)(ℓr)

SPS,3. Note that the M
(sub)
r ≥ L(k)(t).

Then, the denoised tensor Ỹ ∈ CK×Q×M can be rebuilt from the low-rank approximation
of the sub-arrays Ỹ(t)(Lr)

SPS,3 from (4.7). By applying SPS, we produce overlapping sub-arrays
that share sensors in the spatial dimension. Therefore, we obtain a multiple denoised unfold-
ing matrix associated with the 3rd dimension as follows

˜[Y
(t)
](3) =


˜[Y

(t)
](3)1,·

˜[Y
(t)
](3)2,·
...

˜[Y
(t)
](3)Mr,·

 ∈ CM×KQ, (4.9)

which can be rebuilt from each sub-array utilizing a mean-based method. Thus, the mth row
of the denoised unfolding matrix ˜[Y

(t)
](3) is defined as

(4.10)
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where ℓ′ is the number of times ˜[Y
(t)
]i(3)m−i+1,·

is valid output in the ℓrth sub-array. Finally,

the denoised tensor Ỹ (t)
is obtained by rearranging (4.9) in a tensor fashion. Afterward, we

can utilize the pre-processed tensor Ỹ (t)
to perform matrix factorization instead of the raw

tensor Y (t) as illustrated in Figure 4.1.

Y (t)

SPS

Y
(t)(Lr)

SPS,3 =
[
J
(Mr)
1 [Y (t)](3), J

(Mr)
2 [Y (t)](3), J

(Mr)
3 [Y (t)](3), J

(Mr)
4 [Y (t)](3)

]

Thin SVD

Ỹ
(t)(ℓr)

SPS,3 =
[
[Ỹ (t)

]
(1)
(3) · · · Ỹ (t)

]
(ℓr)
(3)

]
Ỹ

(t)(ℓr)

SPS,3 = U
(t)
s Σ

(t)
s V

(t)H

s

Multiple denoised unfolding matrix

˜[Y
(t)
](3) =


˜[Y

(t)
](3)1,·

˜[Y
(t)
](3)2,·
...

˜[Y
(t)
](3)Mr,·



Denoised unfolding matrix
˜[Y

(t)
](3)m,· =

1
ℓ′
∑ℓr

i=1
˜[Y

(t)
]i(3)m−i+1,·

Inverse Unfolding

Factor Matrices
Estimation (4)

Y
(t)(Lr)

SPS,3

Ỹ
(t)(Lr)

SPS,3

˜[Y
(t)
](3)

˜[Y
(t)
](3)

Ỹ (t) Ld(k)
(t)

Figure 4.1: Block diagram for the MuDe method.

4.1.1 Time-Delay Estimation Simulations Considering Dynamic Sce-
narios with MuDe

In this section we present the TDE computed during simulations when considering a
dynamic scenario, a perfectly aligned array of antennas, and the MuDe technique. Since in
the dynamic scenario we are varying the number of LOS and NLOS components within the
tensor Y , when utilizing matrix-based MOS methods we grouped the epochs with the same
estimated model order. Furthermore, since MuDe shows better performance when the DoA
difference between LOS and NLOS is small, we define ∆ϕ = 1◦.
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Moreover, we could not utilize all MOS techniques previously described. During simu-
lations with ∆ϕ = 1◦ most MOS techniques failed to correctly estimate the L̂d

(t)
by either

overestimating or not being capable of determining the model order. Similarly, we could
not use the maximum estimated model order. However, when ∆ϕ = 1◦ we could estimate
L̂d

(t)
utilizing the EFT+FBA, EFT+SPS, and M-EFT+SPS methods. Additionally, we could

utilize the minumum estimated model order obtained after performing the EFT+FBA+SPS,
M-EFT+FBA+SPS, and MDL+FBA+SPS techniques.Furthermore, we performed simula-
tions considering we know the model order of each epoch. Furthermore, we compare the
results obtained from the Tensor-based Eigenfilter approach. Finally, we present simulation
results for a K = 30 epochs.

Figure 4.2: MuDe method, MOS techniques and state-of-the-art first mode CPD-GEVD
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 8 epochs, and have N = 245520 samples.
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Figure 4.3: MuDe method, MOS techniques and state-of-the-art first mode CPD-GEVD
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 15 epochs, and have N = 245520 samples.

Figure 4.4: MuDe method, MOS techniques and state-of-the-art first mode CPD-GEVD
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 30 epochs, and have N = 245520 samples.

In Figure 4.5 we show the simulation results for the state-of-the-art CPD-GEVD method
utilizing the MuDe method with K = 30 and minimum estimated model order. Observe that
the ideal case with known A and Γ is a reference to the smallest error in noisy scenarios.
However, in practice, the A and Γ must be estimated. Observe that, by examining the ideal
cases with and without MuDe, if the tensor had higher and bigger dimensions, then the gain
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would be even greater.

Figure 4.5: MuDe method, minimum estimated model order and state-of-the-art CPD-GEVD
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 30 epochs, and have N = 245520 samples.

Figure 4.6: MuDe method, minimum estimated model order and state-of-the-art CPD-GEVD
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 8 epochs, and have N = 245520 samples.
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Figure 4.7: MuDe method, minimum estimated model order and state-of-the-art CPD-GEVD
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 15 epochs, and have N = 245520 samples.

Figure 4.8: MuDe method, maximum estimated model order and state-of-the-art CPD-
GEVD method simulation with M = 8 antennas. In both cases code samples are collected
during K = 8 epochs, and have N = 245520 samples.
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Figure 4.9: MuDe method, maximum estimated model order and state-of-the-art CPD-
GEVD method simulation with M = 8 antennas. In both cases code samples are collected
during K = 15 epochs, and have N = 245520 samples.

Figure 4.10: MuDe method, maximum estimated model order and state-of-the-art CPD-
GEVD method simulation with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.
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Figure 4.11: MuDe method, minimum estimated model order and state-of-the-art first mode
CPD-GEVD method simulation with M = 8 antennas. In both cases code samples are
collected during K = 8 epochs, and have N = 245520 samples.

Figure 4.12: MuDe method, minimum estimated model order and state-of-the-art first mode
CPD-GEVD method simulation with M = 8 antennas. In both cases code samples are
collected during K = 15 epochs, and have N = 245520 samples.
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Figure 4.13: MuDe method, minimum estimated model order and state-of-the-art first mode
CPD-GEVD method simulation with M = 8 antennas. In both cases code samples are
collected during K = 30 epochs, and have N = 245520 samples.

Figure 4.14: MuDe method, maximum estimated model order and state-of-the-art first mode
CPD-GEVD method simulation with M = 8 antennas. In both cases code samples are
collected during K = 8 epochs, and have N = 245520 samples.
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Figure 4.15: MuDe method, maximum estimated model order and state-of-the-art first mode
CPD-GEVD method simulation with M = 8 antennas. In both cases code samples are
collected during K = 15 epochs, and have N = 245520 samples.

Figure 4.16: MuDe method, maximum estimated model order and state-of-the-art first mode
CPD-GEVD method simulation with M = 8 antennas. In both cases code samples are
collected during K = 30 epochs, and have N = 245520 samples.

In Figure 4.17 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix approach utilizing the MuDe method with K = 30. Note that
the ideal case with known A and Γ is a reference to the smallest error in noisy scenarios.
However, in practice, the A and Γ must be estimated. Observe that, by inspecting the ideal
cases with and without MuDe, if the tensor had higher and bigger dimensions, then the
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gain would be even higher. Moreover, when we assume a known model order, the MuDe
contributes to reduce the time-delay estimation error. Furthermore, it is perceptible the gain,
when applying MuDe to the sub-tensors, since the MOS methods EFT+FBA, EFT+SPS, and
M-EFT+SPS curves show a lower error when combined with MuDe, which is the outcome
of the denoise capability offered by MuDe.

Figure 4.17: MuDe method, MOS techniques and state-of-the-art state-of-the-art Mode 1
HOSVD SECSI with left-hand matrix method simulation with M = 8 antennas. In both
cases code samples are collected during K = 30 epochs, and have N = 245520 samples.

In Figure 4.18 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with left-hand matrix method utilizing the MuDe method with K = 30 and minimum
estimated model order. Observe that the ideal case with known A and Γ is a reference to
the smallest error in noisy scenarios. However, in practice, the A and Γ must be estimated.
Observe that, by examining the ideal cases with and without MuDe, if the tensor had higher
and bigger dimensions, then the gain would be even greater. Moreover, note that when utiliz-
ing the minimum estimated model order, we obtain a slightly smaller time-delay estimation
error than in Figure 4.17. However, observe that the EFT+FBA from Figure 4.17 provides
a better estimate than the minimum estimated model order, which is due to a more accurate
model order to perform the MuDe denoising.
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Figure 4.18: MuDe method, minimum estimated model order and state-of-the-art Mode 1
HOSVD SECSI with left-hand matrix method simulation with M = 8 antennas. In both
cases code samples are collected during K = 30 epochs, and have N = 245520 samples.

In Figure 4.19 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with right-hand matrix approach utilizing the MuDe method with K = 30. Observa
that the ideal case with known A and Γ is a reference to the smallest error in noisy scenarios.
However, in practice, the A and Γ must be estimated. Note that, by inspecting the ideal cases
with and without MuDe, if the tensor had higher and bigger dimensions, then the gain would
be even higher. Moreover, when we assume a known model order, the MuDe contributes to
reduce the time-delay estimation error. Furthermore, it is perceptible the gain, when applying
MuDe to the sub-tensors, since the MOS methods EFT+FBA, EFT+SPS, and M-EFT+SPS
curves show a lower error when combined with MuDe. Aforementioned is the outcome of
the denoise capability added by MuDe.
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Figure 4.19: MuDe method, MOS techniques and state-of-the-art state-of-the-art Mode 1
HOSVD SECSI with right-hand matrix method simulation with M = 8 antennas. In both
cases code samples are collected during K = 30 epochs, and have N = 245520 samples.

In Figure 4.20 we show the simulation results for the state-of-the-art Mode 1 HOSVD
SECSI with right-hand matrix method utilizing the MuDe method with K = 30 and mini-
mum estimated model order. Observe that the ideal case with known A and Γ is utilized as
reference to the smallest error in noisy scenarios. However, in practice, the A and Γ must
be estimated. Note that, by inspecting the ideal cases with and without MuDe, if the ten-
sor had higher and bigger dimensions, then the gain would be even greater. Furthermore,
note that when utilizing the minimum estimated model order, we obtain a slightly smaller
time-delay estimation error than in Figure 4.19. However, observe that the EFT+FBA from
Figure 4.19 provides a better estimate than the minimum estimated model order, which is
due to providing a more accurate model order to the MuDe denoising step.
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Figure 4.20: MuDe method, minimum estimated model order and state-of-the-art Mode 1
HOSVD SECSI with right-hand matrix method simulation with M = 8 antennas. In both
cases code samples are collected during K = 30 epochs, and have N = 245520 samples.

Figure 4.21: MuDe method, minimum estimated model order and state-of-the-art HOSVD
SECSI method simulation with M = 8 antennas. In both cases code samples are collected
during K = 8 epochs, and have N = 245520 samples.
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Figure 4.22: MuDe method, minimum estimated model order and state-of-the-art HOSVD
SECSI method simulation with M = 8 antennas. In both cases code samples are collected
during K = 15 epochs, and have N = 245520 samples.

Figure 4.23: MuDe method, minimum estimated model order and state-of-the-art HOSVD
SECSI method simulation with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.
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Figure 4.24: MuDe method, maximum estimated model order and state-of-the-art HOSVD
SECSI method simulation with M = 8 antennas. In both cases code samples are collected
during K = 8 epochs, and have N = 245520 samples.

Figure 4.25: MuDe method, maximum estimated model order and state-of-the-art HOSVD
SECSI method simulation with M = 8 antennas. In both cases code samples are collected
during K = 15 epochs, and have N = 245520 samples.
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Figure 4.26: MuDe method, maximum estimated model order and state-of-the-art HOSVD
SECSI method simulation with M = 8 antennas. In both cases code samples are collected
during K = 30 epochs, and have N = 245520 samples.

In Figure 4.27 we show the simulation results for the state-of-the-art DoA/KRF approach
utilizing the MuDe method with K = 30. Observa that the ideal case with known A and
Γ is a reference to the smallest error in noisy scenarios. However, in a real-world scenario,
the A and Γ must be estimated. Note that, by inspecting the ideal cases with and without
MuDe, if the tensor had higher and bigger dimensions, then the gain would be even higher.
Moreover, when we assume a known model order, the MuDe contributes to reduce the time-
delay estimation error. Furthermore, it is perceptible the gain, when applying MuDe to the
sub-tensors, since the MOS methods EFT+FBA, EFT+SPS, and M-EFT+SPS curves show
a lower error when combined with MuDe. Aforementioned is the outcome of the denoise
capability included by MuDe.
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Figure 4.27: MuDe method, MOS techniques and state-of-the-art state-of-the-art DoA/KRF
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 30 epochs, and have N = 245520 samples.

In Figure 4.28 we show the simulation results for the state-of-the-art DoA/KRF method
utilizing the MuDe method with K = 30 and minimum estimated model order. Observe
that the ideal case with known A and Γ is utilized as reference to the smallest error in noisy
scenarios. However, in practice, the A and Γ must be estimated. Note that, by inspecting the
ideal cases with and without MuDe, if the tensor had higher and bigger dimensions, then the
gain would be even greater. Furthermore, note that when utilizing the minimum estimated
model order, we obtain a slightly smaller time-delay estimation error than in Figure 4.27.
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Figure 4.28: MuDe method, minimum estimated model order and state-of-the-art DoA/KRF
method simulation with M = 8 antennas. In both cases code samples are collected during
K = 30 epochs, and have N = 245520 samples.
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Chapter 5

Conclusion

Firstly, we propose to utilize the RADOI method to perform the Model Order Selec-
tion (MOS) in static scenarios. The RADOI method presented the highest PoD, even when
we simulated employing an array with errors in static scenarios. In addition to the RADOI
method, we showed that the EFT+FBA+SPS method is suitable for dynamic scenarios. Af-
terward, we show that we can utilize the EFT+FBA+SPS method to create sub-tensors from
tensor Y .

We demonstrate that when we have d = 1 satellite, only AIC fails to perform model order
estimation. Moreover, when we performed simulations considering d = 2 and d = 3 the
EFT, AIC, and MDL-based methods failed to propoerly estimate the model order. In static
scenarios, the RADOI and ESTER methods showed the best performance when considering
d = 2 and d = 3 satellites. However, when assuming an imperfect array of antennas, the
ESTER method showed the worst perfomance since it is a subspace-based method.

Furthermore, we simulated a dynamic scenario by varying the DoA of the LOS and
NLOS components throughout each epoch and by manipulating the model order of each
epoch. Overall, among the matrix-based MOS methods, we show that the EFT+FBA+SPSm
M-EFT+FBA+SPS, and MDL+FBA+SPS the highest PoD. Therefore, we selected these
three methods to perform TDE. When analysing the PoD, we noticed that even in a dynamic
scenario, we can produce reliable measurements when negleting the model order variation.

Next, we defined the Factor Matrices Estimation method. We opted for the Mode 1
HOSVD SECSI method since it is accurate and reliable under demanding scenarios. Then,
we remarked that the MuDe successfully denoise the created sub-tensors. Moreover, if we
increase the number of dimensions and the size of those dimensions, we would obtain a
higher gain. Finally, the proposed framework applied to dynamic scenarios demonstrated
similar performance to static scenarios simulations.
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Appendix A

Tensor Calculus

A.1 Notation

Scalar are represented by italic letters (a, b, A, B), vector by lowercase bold letters (a,
b), matrices by uppercase bold letters (A, B), and tensors by uppercase bold calligraphic
letters (A, B).

The superscripts T, ∗, H, −1, and + denote the transpose, conjugate, conjugate transpose
(Hermitian), inverse of a matrix, and pseudo-inverse of a matrix, respectively.

For a matrix A ∈ CM×N , the element in the m-th row and n-th column is denoted by
am,n, its m-th row is denoted by (A)m,·, and its n-th column is denoted by (A)·,n. The
2-norm of a matrix A is denoted by ||A||2.

For a matrix A ∈ CM×N with M < N , the diag{·} operator extracts the diagonal:

diag{A} ≜


a1,1

a2,2
...

aM,M

 (A.1)

The n-th mode unfolding of tensor A is denoted as [A](n). The n-mode product between
tensor A and a matrix B is represented as A ×n B. The N -th order identity tensor of size
L× · · · × L is denoted by IN,L.

For two N -th order tensor A and B, both of size I1 × I2 × · · · × IN , composed of
individual scalar elementes ai1,i2,...,iN and bi1,i2,...,iN , respectively, its inner product is denoted
by ⟨A,B⟩, and is defined as
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⟨A,B⟩ ≜
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

ai1,i2,...,iN bi1,i2,...,iN . (A.2)

The norm of a tensor A, denoted by ||A||F , is the Frobenius norm described as

||A||F ≜
√

⟨A,A⟩ (A.3)

A.2 Matrix Calculus

A.2.1 Kronecker product

Given two matrices A ∈ CI×J and B ∈ CK×L their Kronecker product, denote by ⊗, is
denote as:

A⊗B ≜

a1,1B · · · a1,JB
... . . . ...

aI,1B · · · aI,JB

 ∈ CIK×JL. (A.4)

A.2.2 Khatri-Rao product

Given two matrices A ∈ CI×R and B ∈ CK×R their Khatri-Rao product, denote by ⋄, is
denote as:

A ⋄B ≜
[
(A)·,1 ⊗ (B)·,1 · · · (A)·,R ⊗ (B)·,R

]
∈ CIJ×R. (A.5)

A.2.3 Outer product

The outer product is a special case of the Kronecker product where the outer product of
two vectors a ∈ CI and b ∈ CJ results in a matrix C ∈ CI×J

a ◦ b = abT =

a1...
aI

[b1 · · · bJ

]

=

a1b1 · · · a1bJ
... . . . ...

aIb1 · · · aIbJ

 = C ∈ CI×J ,

(A.6)
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thus the elements of C satisfy cij = aibj, i ∈ 1, . . . , I, j ∈ 1, . . . , J .

Once the outer product can be extended into other dimensions, an outer product of three
vectors a ∈ CI , b ∈ CJ , and c ∈ CK results in a third-order tensor X ∈ CI×J×K

a ◦ b ◦ c = X , (A.7)

and xijk = aibjck, i ∈ 1, . . . , I, j ∈ 1, . . . , J, k ∈ 1, . . . , K.

A.2.4 The vec{·} operator

The vec{·} operator reshapes a matrix into a vector in such a manner that its vectors are
stacked. For instance, for a matrix A ∈ CM×N

vec{A} = vec{[A1 · · · AN ]}

=

A1

...
AN

 ∈ CMN .
(A.8)

An importante property of vec{·} operator is that for X = ABC with A ∈ CI×J , a
diagonal matrix B ∈ CJ×J , and C ∈ CJ×K

vec{X} = vec{ABC}
= (CT ⋄A) diag{B} ∈ CIK .

(A.9)

A.2.5 The unvec {·} operator

The unvec · operator reshapes a vector into a matrix of determined size. Thus, for a
vector a = [aT

1 , . . . , a
T
N ] ∈ CMN

unvec
M×N

{a} = unvec
M×N


 a1

...
aN ]




=
[
a1 · · · aN

] (A.10)
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A.3 Tensor Calculus

A.3.1 Tensors

Vectors are generalizations of scalars, and matrices are generalizations of vectors, tensors
are generalizations of matrices. However, matrices are limited to two dimensions while
tensors can have any number of dimensions. Therefore, we apply the terms scalar, vector
and matrix to 0-, 1-, and 2-dimensional structures. Thus, we reserve the term tensor to
structures with 3 or more dimensions.

In (A.11) we examplify a scalar I ∈ C, a vector i ∈ C3, and an identity matrix I ∈ C3×3

I = 1, i =

10
1

 , I =

1 0 1

0 1 0

1 0 1

 , (A.11)

while in (A.12) a third order tensor I3,3 ∈ C3×3×3

0 0 0

0 0 0

0 0 1

0 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 0 0


=I3,3

(A.12)

Once higher-order tensors can be created, visualization becomes difficult. A N -
dimensional tensor A ∈ CI1×I2×···×IN can be seen in "slices" by maintaining its first two
indexes fixed while varying the remaining N − 2 indexes. For instance, by changing the
third index of the third-order identity tensor from (A.12) while fixing the first and second
indexes we have

(I3,3)·,·,1 =

1 0 0

0 0 0

0 0 0

 , (I3,3)·,·,2 =

0 0 0

0 1 0

0 0 0

 , (I3,3)·,·,3 =

0 0 0

0 0 0

0 0 1

 . (A.13)
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A.3.2 n-mode unfolding

Once tensor representation can be complex to understand, the n-mode unfolding provides
a way to represent a tensor as a matrix. This is done by fixing the n-th index while varying
the other indexes in reverse order, concatenating these vectors along the n+1-th dimension,
then permuting the order of the dimensions from the n-th to the n − 1-th dimensions. For
instance, for a third-order tensor A ∈ C2×2××2 we can write

[
5 6

7 8

]
[
1 2

3 4

]=A

(A.14)

then A has the following unfoldings:

[A](1) =

[
1 5 2 6

3 7 4 8

]
, (A.15)

[A](2) =

[
1 3 5 7

2 4 6 8

]
, (A.16)

[A](3) =

[
1 2 3 4

5 6 7 8

]
. (A.17)

For a N -dimensional tensor, A ∈ CI1×···×IN , its n-mode unfolding, [A](n), will be of
size In × Πr ̸=nIr.

A.3.3 n-mode product

The n-mode product permits the calculation of the product of a matrix and a ten-
sor by utilizing the n-mode unfolding. For instance, for an N -dimensional tensor A ∈
CI1×···×In×···×IN and a matrix B ∈ CM×In , the n-mode product is then denoted as A ×n B.
Therefore, we have the matrix product B · [A](n) folded back into a tensor of size
I1 × · · · ×M × · · · × IN .

A.3.4 PARAFAC model

The PARAFAC model assumes that a given N -dimensional tensor X ∈ CI1×···×In×···×IN

can be decomposed into a summation of a minimum number of rank-one tensors X (i), i =

1, . . . , L.
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X =
L∑

ℓ=1

X (ℓ) =
L∑

ℓ=1

a
(1)
ℓ ◦ · · · ◦ a(N)

ℓ , (A.18)

where L is the model order of the noiseless tensor.

Through defining factor matrices A(i) = [a
(i)
1 , . . . , a

(i)
1 ], the Equation (A.18) can be de-

noted in terms of the n-mode product of an N -dimensional identity tensor IN,L ∈ RL×···×L

and loading matrices A(i)

X = IN,L ×1 A
(1) ×2 A

(2) · · · ×N A(N). (A.19)

Moreover, a useful property for a third-order tensor A = IN,3×1A
(1)×2A

(2)×3A
(3) ∈

CI1×I2×I3 with A(1) ∈ CI1×d, A(2) ∈ CI2×d, and A(3) ∈ CI3×d, its unfolding are:

[A](1) = A(1)(A(2) ⋄A(3))T ∈ CI1×I2I3 , (A.20)

[A](2) = A(2)(A(3) ⋄A(1))T ∈ CI2×I3I1 , (A.21)

[A](3) = A(3)(A(1) ⋄A(2))T ∈ CI3×I1I2 . (A.22)

A.3.5 Higher-Order SVD

The Singular Value Decomposition (SVD) decomposes a given matrix X ∈ CI1×I2 into
the following fashion:

X = UΣVH, (A.23)

where U ∈ CI1×I1 is a unitary matrix holding the left-hand singular vectors and its columns
are related to the column space of X, Σ ∈ CI1×I2 is a matrix containing the singular values
σ1, σs, . . . , σmin (I1,I2) in its diagonal, and V ∈ CI2×I2 is a unitary matrix holding the right-
hand singular vectors and its rows are related to the row space of X.

In order to generalize the SVD to an N -th order tensor the n-mode product previously
described can be applied

X = UΣVH

= Σ×1 U×1 V
∗

= Σ×1 U
(1) ×1 U

(2),

(A.24)

where U(1) = U, and U(2) = V∗. Also, Σ have the properties of pseudodiogonality, only
its diagonal is non-zero, and ordering, where σ1 ≥ σ2 ≥ · · · ≥ σmin (I1,I2) ≥ 0. Therefore,
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we can generalize the SVD to an N -th order tensor X ∈ I⊮ × I⊭ × · · · × IN in terms of an
n-mode product

X = R×1 U
(1) ×2 U

(2) · · · ×N U(N), (A.25)

where the tensor R ∈ CI1×I2×···×IN is the core tensor and has the property of all-
orthogonality, which mean that for two subtensors Rin=α and Rin=β constructed by keeping
the index in fixed, their inner product ⟨Rin=α,Rin=β⟩ = 0 for α ̸= β, and ordering.

Finally, the calculation of the HOSVD can be achieved by finding each unitary left singu-
lar vector matrix U(n) from its respective n-mode unfolding by applying the SVD to [X ](n).
Then, the core tensor R can be computed by applying (A.25)

R = X ×1 U
(1) ×2 U

(2) · · · ×N U(N). (A.26)

A.3.6 Dual-symmetric tensors

A 2N -th order tensor X ∈ I⊮ × · · · × IN × IN+⊮ × . . . I⊭N is dual-symmetric if and only
if there can be a permutation of indexes P , resulting in a tensor X P which follows the
particular PARAFAC Decomposition [34]

X P = I2N,L ×1 A
(1)
1 · · · ×N A

(N)
N+1(A

(1))∗ · · · ×2N (A(N))∗. (A.27)

The dual-symmetric decomposition is useful in signal processing once every correlation
tensor follows this decomposition [44]. In order to harness the relation in (A.27), a particular
unfolding known as Hermitian-symmetric unfolding [5] applied to a dual-simmetric tensor.
The Hermitian-simmetric unfolding of X ∈ CI1×···×I2N , XH is defined as:

XH = unvec
K×K

{vec{X}} ∈ CK×K , (A.28)

with K = I1, . . . , IN . Therefore, the unfolding can be represented in terms of its factor
matrices as:

XH = (A(N) ⋄ · · · ⋄A(1))(A(N) ⋄ · · · ⋄A(N))H. (A.29)

144


	Agradecimentos
	Abstract
	Resumo
	Content
	List of Figures
	Introduction
	Author's Publications

	Time-Delay Estimation for Static Scenarios
	Data Model
	Scenario
	Pre-Correlation Data Model
	Post-Correlation Data Model

	Model Order Selection for Static Environments
	Simulation Results for Probability of Detection for Static Scenarios
	Probability of Detection Utilizing an Array with Errors Considering an Static Scenario

	State-Of-The-Art Tensor-Based Time-Delay Estimation For Third Generation GPS
	HOSVD based Time-Delay Estimation
	DoA/KRF based Time-Delay Estimation
	CPD-GEVD based Time-Delay Estimation
	HOSVD SECSI Based Time-Delay Estimation
	LOS Selection
	Time-Delay Estimation

	Simulation Results for Time-Delay Estimation Simulations for Static Scenarios
	Computational Complexity
	Complexity of HOSVD+FBA+ESPS
	Complexity of DoA/KRF
	Complexity of CPD-GEVD
	Complexity of HOSVD SECSI


	Time-Delay Estimation for Dynamic Scenarios
	Model Order Selection for Dynamic Environments
	Simulation Results for Probability of Detection Considering Dynamic Scenarios

	Proposed Tensor-based Factor Matrices Estimation
	Simulation Results for Time-Delay Estimation Simulations for Dynamic Scenario

	Time-Delay Estimation for Dynamic Scenario with MuDe
	Tensor-based Multiple Denoising
	Time-Delay Estimation Simulations Considering Dynamic Scenarios with MuDe


	Conclusion
	Bibliography
	Appendix Tensor Calculus
	Notation
	Matrix Calculus
	Kronecker product
	Khatri-Rao product
	Outer product
	The vec{} operator
	The unvec{} operator

	Tensor Calculus
	Tensors
	n-mode unfolding
	n-mode product
	PARAFAC model
	Higher-Order SVD
	Dual-symmetric tensors



