
Open Access. © 2021 Siyu Chen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution
alone 4.0 License.

Adv. Nonlinear Anal. 2022; 11: 684–701

Research Article

Siyu Chen, Carlos Alberto Santos, Minbo Yang*, and Jiazheng Zhou

Bifurcation analysis for a modi�ed quasilinear
equation with negative exponent
https://doi.org/10.1515/anona-2021-0215
Received June 30, 2021; accepted October 23, 2021.

Abstract: In this paper, we consider the following modi�ed quasilinear problem:{
−∆u − κu∆u2 = λa(x)u−α + b(x)uβ in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0,
1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory
to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of
solution curve at the asmptotic point.
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1 Introduction
In this paper we consider the following modi�ed quasilinear problem{

−∆u − κu∆u2 = λa(x)u−α + b(x)uβ in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN , N ≥ 3, 0 < a(x) ∈ C(Ω), b(x) ∈ C(Ω) ∩ L∞(Ω) and may change
sign, κ > 0 is a real constant, α > 0, 1 < β ≤ 22* − 1, 2* = 2N

N−2 , λ > 0 is a bifurcation parameter. Problem (1.1)
is related to the standing wave solutions for the quasilinear Schrödinger equations

i∂tψ = −∆ψ + ψ + η(|ψ|2)ψ − κ∆ρ(|ψ|2)ρ
′
(|ψ|2)ψ, (1.2)

whereψ = ψ(t, x),ψ : R×Ω → C, κ > 0 is a real constant. Equation (1.2) has been applied extensively inmany
areas of physical phenomena, for the progress of this topic and the othermodi�ed Schrödinger equations one
may refer to [3, 12, 13, 24–26, 29–32, 42, 44–46].

For κ = 0, problem (1.1) can be transformed into a semilinear one. In recent years, this type of equations
has been studied extensively in both bounded and unbounded domains due to its wide applications in non-
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Newtonian �uids. For instance, Lazer and McKenna [27] studied the following semilinear problem{
−∆u = p(x)u−γ in Ω,

u = 0 on ∂Ω.
(1.3)

For p(x) > 0 with some smoothness conditions, they showed that there exists a solution which is smooth
on Ω and continuous on Ω, the Lazer-McKenna obstruction then was �rstly presented: the equation has a
H1
0-solution if and only if γ < 3. For the power of 3, Sun and Zhang [40] provided an extension of the classi-

cal Lazer-McKenna obstruction and revealed the role of 3, they also gave a local description of the solution
set. Lair and Shaker [28] proved that (1.3) has a unique weak H1

0-solution on a bounded domain provided´ ε
0 f (s)ds < ∞ and p(x) ∈ L2(Ω). For the regularity of (1.3), Gui and Lin [17] obtained the positive solutions

that are Hölder-continuous up to the boundary and has even better regularity in some special cases. The
problem was also studied by Ma and Wei [34] when p(x) = −1, they showed that the gradient estimates, L1-
estimates, global upper bounds, Liouville properties, classi�cation of stable and �niteMorse index solutions,
and symmetry properties.

For the perturbed singular problem, Yang [43] considered the following problem with singular nonlin-
earity, {

−∆u = λu−γ + up in Ω,
u = 0 on ∂Ω.

(1.4)

For 0 < γ < 1 < p ≤ (N + 2)/(N − 2), Yang carried out a direct analysis in an H1-neighborhood and proved
that (1.4) has a solution which is a local minimiser with respect to the H1-topology. Then the existence of the
second solution was given by making use of Ekeland’s variational principle. Arcoya and Moreno-Mérida [2]
extended the results of [43] to all γ > 0 in subcritical case by establishing suitable approximated problems,
they showed that there exists Λ > 0 such that (1.4) has two positive solutions for every λ ∈ (0, Λ).

Apart from the existence and regularity of solutions for this type of equations, there aremany researchers
have obtained global bifurcation and local multiplicity results. For instance, the authors in [11] considered
the following singular elliptic problem with exponential type growth in a bounded smooth domain Ω ⊂ R2,{

−∆u = λ(u−δ + h(u)eu
p
) in Ω,

u = 0 on ∂Ω,

where 1 ≤ p ≤ 2, 0 < δ < 1 and h(t) is a smooth "perturbation" of et
p
as t → ∞. For the radial case, they

made a detailed study of the blow-up/convergence of the solution branch as it approaches to the asymptotic
bifurcation point at in�nity. For the critical case p = 2, they also interpreted all previousworks onmultiplicity
in terms of the corresponding bifurcation diagrams and the asymptotic pro�le of large solutions along the
branch at in�nity. Later, Bougherara et al. [5] considered the following semilinear elliptic problem with a
strong singular term in a bounded smooth domain Ω ⊂ RN (N ≥ 2),{

−∆u = λ(u−δ + f (u)) in Ω,
u = 0 on ∂Ω.

(1.5)

They improved the results of [11] to all δ > 0, and obtained an analytic global unbounded path of solutions of
(1.5) by using the framework of analytic bifurcation theory as developed in the work [4]. In two dimensions,
for 0 < δ < 1 and certain classes of nonlinearities f with critical growth, it was shown that the existence of an
analytic unbounded path of solutions of (1.5) whose Morse index is unbounded along the path and admits
in�nitely many turning points. Specially, for p-Laplacian di�erential operator, such bifurcation type results
were obtained by Bai et al. [6], Papageorgiou, Rădulescu and Repovš [35, 36]. For more results about this type
of equations, one may see [1, 8, 14, 18–20, 22, 38] and the references therein.

Motivated by the above papers and by the increasing interest on problems with singular nonlinearities,
our main purpose in this paper is to investigate the analytic global bifurcation in the case of κ = 1 for (1.1).
The quasilinear term u∆u2 makes the problem much more complicated. By using a change of variables, the
authors in [30] transformed the quasilinear Schrödinger equations into a new semilinear one and showed
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that the existence of ground states of soliton-type solutions by variational method. Involving the quasilinear
operator and singular nonlinearities in bounded domain, there are some results as well. For instance, the
authors in [16] considered the following singular quasilinear problem for δ ∈ (0, 1) in a ball Ω ⊂ RN ,{

−∆u − u∆u2 = λu3 − u − u−δ in Ω,
u > 0 in Ω, u = 0 on ∂Ω.

(1.6)

They obtained the existence of solutions of (1.6) when λ belongs to a certain neighborhood of the �rst eigen-
value λ1. Moameni and O�n [33] obtained the same results as in [16] by considering a more general class of
equations. The authors in [37] considered the following class of singular quasilinear problem,{

−∆u − u∆u2 = a(x)u−δ + h(x, u) in Ω,
u > 0 in Ω, u = 0 on ∂Ω.

(1.7)

The function a(x) is nonnegative, δ > 0 is a constant and the nonlinearity h(x, u) is continuous. They showed
that the existence of a solution for the problem via sub-supersolution method when h has an arbitrary poly-
nomial growth. For the second result, they showed that the existence of the second solution by applying the
mountain pass theorem when h has subcritical growth. Recently, the authors in [39] studied problem (1.1) in
the case of 0 < α < 1, they showed that the existence of a minimal solution as a minimum critical point of the
energy functional, and then the second solution was also given by constrained critical point theory.

As far as we know in the literature there is little research on the bifurcation analysis of solutions to this
type of quasilinear equation. The present paper is mainly consider the case of κ = 1, and regard (1.1) as a
bifurcation problem with λ being the bifurcation parameter. There seem to be some di�culties to transform
the quasilinear equation to a semilinear one by making a change of variables, such that the existence of
solutions of (1.1) be equivalent to the existence of solutions to new transformed equation, and there holds
similar properties. Inspired by [4], we use the framework of analytic bifurcation theory to obtain an analytic
global unbounded path of solutions to the transformed equation and so to problem (1.1). Then the direction
of the solution curve at the asmptotic point under some conditions is given bymaking use of local bifurcation
theory.

The paper is organized as follows. In section 2, we state some preliminaries and main results including
transforming quasilinear problem (1.1) into a semilinear elliptic one and give some de�nitions and lemmas.
In section 3, we give the proof to the main results by using bifurcation theory to the transformed problem to
obtain an global unbounded path of solutions, and the properties at turning point.

2 Preliminaries and main results
Taking into account the ideas of [30], we can use the change of variables ω = h−1(u) to transform the

quasilinear equation into a semilinear one with singularity at zero and superlinear at in�nity, which h is
de�ned by

h
′
(t) = (1 + 2|h(t)|2)−1/2 for t > 0, h(−t) = −h(t) for t ≤ 0.

Now, we list some properties of the function h(t) as given in [41, 42].

Lemma 2.1. Assume h : R → R is given as above, then there hold:

(1) h
′′
(t) = −2h(t)(h

′
(t))4, t > 0,

(2) h is unique, invertible, and C∞(R) − function,
(3) 0 < h

′
(t) ≤ 1 for all t ∈ R,

(4) |h(t)| ≤ |t| for all t ∈ R,
(5) lim

t→0
h(t)
t = 1, lim

t→∞
h(t)
t = 0 and lim

t→∞
h(t)√
t = 21/4,

(6) |h(t)h
′
(t)| ≤ 1/

√
2 for all t ∈ R,
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(7) h(t)/2 ≤ th
′
(t) ≤ h(t) for all t ≥ 0,

(8) |h(t)| ≥ h(1)|t| for |t| ≤ 1, and |h(t)| ≥ h(1)|t|1/2 for |t| ≥ 1,
(9) the function h−α(t)h

′
(t) is decreasing for t > 0 and α > 0,

(10) the function hβ(t)h
′
(t) is increasing for t > 0 and β ≥ 1.

Using Lemma 2.1, we can perform the changing of variables ω = h−1(u) to infer that u ∈ H1
loc(Ω) is a solution

of (1.1) if and only if ω ∈ H1
loc(Ω) is a weak solution of{

−∆ω = [λa(x)h(ω)−α + b(x)h(ω)β]h
′
(ω) in Ω,

ω > 0 in Ω, ω = 0 on ∂Ω
(2.1)

in the sense of the following de�nition.

De�nition 2.2. We say ω ∈ H1
loc(Ω) ∩ C0(Ω) is a weak solution of (2.1) if essinf

K
ω > 0 for any compact set

K ⊂ Ω, (u − ε)+ ∈ H1
0(Ω) for any ε > 0 given, and

ˆ
Ω
∇ω∇ϕ =

ˆ
Ω
λa(x)h(ω)−αh

′
(ω)ϕ + b(x)h(ω)βh

′
(ω)ϕ, for any ϕ ∈ C∞0 (Ω).

To state our main result, we denote the following set of all classical solutions to (2.1)

S :=
{
ω ∈ C2(Ω) ∩ C0(Ω), ω > 0 solves (2.1)

}
.

In the sequel, let φ1 be the �rst positive eigenfunction for −∆ in H1
0(Ω), ‖φ1‖L∞(Ω) = 1, we de�ne

ϕα =


φ1, 0 < α < 1,

φ1(− logφ1)
1
2 , α = 1,

φ
2
α+1
1 , α > 1,

then
Cϕ(Ω) :=

{
ω ∈ C(Ω)|for some C > 0, |ω| ≤ Cϕ(x), ∀x ∈ Ω

}
de�nes a Banach space endowed with the norm

‖ω‖Cϕ(Ω) := sup
x∈Ω

∣∣ ω
ϕ(x)

∣∣,
consequently,

C+ϕ(Ω) :=
{
ω ∈ Cϕ(Ω)

∣∣ inf
x∈Ω

ω
ϕ(x) > 0

}
is an open convex subset of Cϕ(Ω).

Now, we de�ne the following solution operator associated to (2.1):

F(λ, ω) = ω − (−∆)−1[λa(x)h(ω)−α + b(x)h(ω)β]h
′
(ω),

where (λ, ω) ∈ R+ × C+ϕ(Ω), λ > 0.

Remark 2.3. Note that, for any ω ∈ C0(Ω) solves equation (2.1) is indeed twice continuously di�erentiable in
Ω by standard elliptic regularity, see for example [5][10].

We recall some results about global analytic bifurcation theory that introduced in [7]. LetX, Y be real Banach
spaces, U ⊂ R × X be an open set containing (0, 0) in its closure and F : U → Y be an R-analytic function.
De�ne the solution set

S = {(λ, x) ∈ U : F(λ, x) = 0}

and the non-singular solution set

N = {(λ, x) ∈ S : ker(∂xF(λ, x)) = 0)}.
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De�nition 2.4. A distinguished arc is a maximal connected subset ofN.

Let us introduce the following assumptions:

(H1) Bounded closed subsets of S are compact in R × X.
(H2) ∂xF(λ, x) is a Fredholm operator of index zero for all (λ, x) ∈ S.
(H3) There exists an analytic function (λ, u) : (0, ε) 7→ S such that ∂xF(λ(s), u(s)) is invertible for all s ∈ (0, ε)

and lim
s→0+

(λ(s), u(s)) = (0, 0).

Denote
A := {(λ(s), u(s)) : s > 0}

and
A+ = {(λ(s), u(s)) : s ∈ (0, ε)}.

Evidently,A+ ⊂ S. The function (λ, u) from (0, ε) to (0,∞) in the R-analytic case as follows.

Lemma 2.5. Assume (H1) − (H3) hold. Then (λ, u) can be extended as a continuous map (still called) (λ, u) :
(0,∞) 7→ S with the following properties:

(a) A ∩N is an at most countable union of distinct distinguished arcs
⋃n
i=0Ai, n ≤ ∞.

(b) A+ ⊂ A0.
(c) {s > 0 : ker(∂xF(λ(s), u(s))) ≠ {0}} is a discrete set.
(d) At each of its points,A has a local analytic re-parameterization in the following sense: for each s* ∈ (0,∞),

there exists a continuous and injectivemap ρ* : (−1, 1) 7→ R such that ρ*(0) = s* and the re-parametrisation

(−1, 1) 3 t 7→
(
λ(ρ*(t)), u(ρ*(t))

)
∈ A is analytic.

Furthermore, the map s 7→ λ(s) is injective in a right neighborhood of s = 0 and for each s* > 0 there exists
ε* > 0 such that λ is injective on [s*, s* + ε*] and [s* − ε*, s*].

(e) One of the following holds:
(i) ‖(λ(s), u(s))‖R×X → ∞ as s → ∞,
(ii) the sequence {(λ(s), u(s))} approaches the boundary of U as s → ∞,
(iii) A is the closed loop:

A = {(λ(s), u(s)) : 0 ≤ s ≤ T, (λ(T), u(T)) = (0, 0) for some T > 0}.

In this case, chosing the smallest T > 0 such that

(λ(s + T), u(s + T)) = (λ(s), u(s)) for all s ≥ 0.

(f) Suppose that ∂xF(λ(s1), u(s1)) is invertible for some s1 > 0. If (λ(s1), u(s1)) = (λ(s2), u(s2)) for some s2 ≠
s1, then (e)(iii) occurs and |s1 − s2| is an integer multiple of T. In particular, the map s 7→ (λ(s), u(s)) is
injective on [0, T).

From the de�nition of F, we immediately have the following Lemma.

Lemma 2.6. Let F be given as above. Then

(i) ∂ωF(λ, ω)v = v − λ(−∆)−1a(x)[h(ω)−αh
′
(ω)]

′
v − (−∆)−1b(x)[h(ω)βh

′
(ω)]

′
v,

(ii) ∂λF(λ, ω)v = −(−∆)−1a(x)h(ω)−αh
′
(ω)v,

(iii) ∂ωωF(λ, ω)(v, z) = −λ(−∆)−1a(x)[h(ω)−αh
′
(ω)]

′′
vz − (−∆)−1b(x)[h(ω)βh

′
(ω)]

′′
vz.

Now, we are ready to state our main results.
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Theorem 2.7. Assume that α > 0, 1 < β ≤ 22*, and b+ ≠ 0. Then there exists Λ ∈ (0,∞) and an unbounded
set A ⊂ (0, Λ] × C+ϕα (Ω) of solutions to problem (2.1) which is globally parametrised by a continuous map s 7→
(λ(s), ω(s)) where s ∈ (0,∞) and (λ(s), ω(s)) ∈ A ⊂ S. Furthermore, the pathA has following properties:

(i) (λ(s), ω(s)) → (0, 0) in R × Cϕα (Ω) as s → 0+,
(ii) ‖ω(s)‖Cϕα (Ω) → ∞ as s → ∞,
(iii) {s ≥ 0 : ∂ωF(λ(s), ω(s)) is not invertible} is a discrete set,
(iv) the branch of minimal solutions {(λ, ωλ) : 0 < λ < Λ} of (2.1) coincides with a path-connected portion of

Awhich closure containing (0, 0), furthermore, the minimal solution branch is parametrised by an analytic
map,

(v) A has at least one asymptotic bifurcation point Λa ∈ [0, Λ],
(vi) each point of A has a local analytic re-parametrization as follows: for each s* ∈ (0,∞), there exists a

continuous and injective map ρ* : (−1, 1) 7→ R such that ρ*(0) = s* and the re-parametrisation

(−1, 1) 3 t 7→ (λ(ρ*(t), ω(ρ*(t))) ∈ A is analytic.

Moreover, the map s 7→ λ(s) is injective in a right neighborhood of s = 0 and for each s* > 0 there exists
ε* > 0 such that λ is injective on [s*, s* + ε*] and [s* − ε*, s*].

Corollary 2.8. In addition to assertions in Theorem 2.7, if (Λ, ωΛ) ∈ A for some ωΛ ∈ C+ϕα (Ω) and α ≥
√
5 − 2.

ThenA turns to the left of {λ = Λ} at the point (Λ, ωΛ) ∈ A.

Fig. 2.1: Possible bifurcation branch

3 Local and global bifurcation analysis
In this section, we establish local and global bifurcation to problem (2.1). Firstly, we consider the properties
of the linearised operator for the corresponding function F to the problem.

3.1 Analysis of the solution operator and linearised operator

Proposition 3.1. Assume that the changing of variables h is de�ned section 2. Then the map F : R×C+ϕα → Cϕα
is well de�ned and analytic.

Proof. We split the proof in three steps.
Step 1. h(ω) ∈ C+ϕα for any ω ∈ C+ϕα . We just consider the case 0 < α < 1, because the case α ≥ 1 is similar.

Since ϕα = φ1, it follows from the properties of h(t) and ‖φ1‖L∞(Ω) = 1, that there exist positive constants
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C1, C2 depend on ω such that

0 < C1 ≤
h(ω)
φ1(x)

≤ ω
φ1(x)

≤ C2 < ∞, ∀x ∈ Ω.

Then h(ω)−α ∈ C+ϕ−αα (Ω) for ω ∈ C+ϕα . By the fact that λ > 0, 0 < a(x) ∈ C(Ω) and h
′
(ω) ∈ C(Ω), we conclude

that λa(x)h(ω)−αh
′
(ω) ∈ C+ϕ−αα (Ω).

Step 2. For any ω ∈ Cϕ−αα (Ω), by similar ideas made in the proofs of Proposition 2.3 in [5], we are able to
obtain that ω 7→ (−∆)−1ω ∈ Cϕα (Ω) is a linear continuous map and hence analytic.

Step 3.Due to α > 0, 1 < β ≤ 22*−1 and the properties of h(t), it is easy to see that (−∆)−1b(x)h(ω)βh
′
(ω) ∈

Cϕα (Ω) for any ω ∈ C+ϕα .
Hence, by the above three steps, we can obtain the result.

Now, to show the existence of the analytic global path of solutions to F in R+ × C+ϕα (Ω), we consider the
following problem: {

−∆w + kw = λa(x)h(w)−αh
′
(w) + g(x) in Ω,

w = 0 on ∂Ω,
(3.1)

where k ≥ 0 and g(x) is a local Hölder continuous function in Ω.
To begin with, we have the following comparison principle.

Lemma 3.2. Assume that there exist u and v satisfying the following inequalities in the weak sense,
−∆u ≤ λa(x)h(u)−αh

′
(u) + g(x) − ku in Ω,

−∆v ≥ λa(x)h(v)−αh
′
(v) + g(x) − kv in Ω,

u ≤ v on ∂Ω,
(3.2)

then there holds u ≤ v in Ω.

Proof. Arguing by contradiction, assume that Ω0 := {x ∈ Ω : u(x) > v(x)} ≠ ∅. For �xed ϵ > 0, let us de�ne

uϵ(x) = u(x) + ϵ, vϵ(x) = v(x) + ϵ

and
φϵ =

(u2ϵ − v2ϵ )+
uϵ

, ψϵ =
(u2ϵ − v2ϵ )+

vϵ
.

By pointwise limit, we get

φϵ → φ := u
2 − v2
u χΩ0 , ψϵ → ψ := u

2 − v2
v χΩ0 ,

where χΩ0 represent the characteristic function of Ω0.
By taking derivatives, we get

∇φϵ = ∇u − 2
v + ϵ
u + ϵ∇v +

(v + ϵ)2
(u + ϵ)2∇u,

and
∇ψϵ = 2u + ϵv + ϵ∇u −

(u + ϵ)2
(v + ϵ)2∇v −∇v

in Ω0. From the above argument, we have that φϵ , ψϵ ∈ H1
loc(Ω) ∩ C0(Ω). So, by density arguments, we are

able to test the �rst and second inequalities in (3.2) against φϵ and ψϵ, respectively, to obtainˆ
Ω0

[
∇u∇φϵ −∇v∇ψϵ

]
dx =

ˆ
Ω0

[
|∇u|2 − 2 v + ϵu + ϵ∇u∇v +

(v + ϵ)2
(u + ϵ)2 |∇u|

2

− 2u + ϵv + ϵ∇u∇v +
(u + ϵ)2
(v + ϵ)2 |∇v|

2 + |∇v|2
]
dx

=
ˆ
Ω

[
|∇u|2 − 2 vϵuϵ

∇u∇v + v
2
ϵ
u2ϵ
|∇u|2dx

− 2uϵvϵ
∇u∇v + u

2
ϵ
v2ϵ
|∇v|2 + |∇v|2

]
dx.

(3.3)
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Now, setW1 := ∇ ln uϵ = ∇u
uϵ andW2 := ∇ ln vϵ = ∇v

vϵ in Ω0, it follows from (3.3) and Lemma 4.2 of [23], that
ˆ
Ω

[
∇u∇φϵ −∇v∇ψϵ

]
dx

=
ˆ
Ω0

[
|u2ϵ |W1|2 − 2v2ϵW1W2 + v2ϵ + 2u2ϵW1W2 + u2ϵ |W2|2 + v2ϵ |W2|2

]
dx

=
ˆ
Ω0

u2ϵ
[
|W1|2 − |W2|2 − 2W2(W1 −W2)

]
+ v2ϵ

[
|W2|2 − |W1|2 − 2V1(V2 − V1)

]
dx

≥
ˆ
Ω0

(u2ϵ + v2ϵ )|W1 −W2|2dx ≥ 0.

(3.4)

On the other hand, since a(x) > 0 and h(t)−αh
′
(t) is decreasing for t > 0 and α > 0, we have

ˆ
Ω
λa(x)

[
h(u)−αh

′
(u) (u

2
ϵ − v2ϵ )+
uϵ

− h(v)−αh
′
(v) (u

2
ϵ − v2ϵ )+
vϵ

]
dx

=
ˆ
Ω0

λa(x)(u2ϵ − v2ϵ )+
[
h(u)−αh

′
(u) 1uϵ

− h(v)−αh
′
(v) 1vϵ

]
dx

≤
ˆ
Ω0

λa(x)(u2ϵ − v2ϵ )+h(v)−αh
′
(v)( 1uϵ

− 1
vϵ
)

< 0.

(3.5)

Besides, we are able to obtain ˆ
Ω

[
kv (u

2
ϵ − v2ϵ )+
vϵ

− ku (u
2
ϵ − v2ϵ )+
uϵ

]
dx

=
ˆ
Ω0

k(u2ϵ − v2ϵ )(
v
vϵ
− u
uϵ

)

< 0.

This, together with (3.4) and (3.5), implies

0 ≤
ˆ
Ω

[
∇u∇φϵ −∇v∇ψϵ

]
dx < 0,

which is a contradiction. Thus, Ω0 = ∅, and hence the proof is completed.

Lemma 3.3. There exists a unique weak solution w ∈ W1,q
0 (Ω) ∩ C0(Ω) for some q > 1 to problem (3.1). Fur-

thermore, w ∈ [cϕα , ϕ] for c > 0 small enough if there exists ϕ ∈ C+ϕα (Ω) which is a super-solution of (3.1). In
particular, w ∈ C+ϕα (Ω).

Proof. Given k > 0, 0 ≤ g(x) ∈ L∞(Ω), we consider the following approximated problem:{
−∆w + kw = λa(x)h(w + ε)−αh

′
(w + ε) + g(x) in Ω,

w = 0 on ∂Ω.
(3.6)

It is easy to check that for c > 0 small enough, ψϵ = (c 1+α
2 φ1 + ε

1+α
2 ) 2

1+α − ε is a sub-solution of (3.6) for ε > 0.
The unique positive solution ψε ∈ H1

0(Ω) of

−∆ψε + kψε = λa(x)h(ε)
−αh

′
(ε) + ‖g(x)‖L∞(Ω)

is a super-solution of (3.6). Indeed, it follows from the monotonicity of h(t)−αh
′
(t) that

−∆ψε + kψε =λa(x)h(ε)
−αh

′
(ε) + ‖g(x)‖L∞(Ω)

≥λa(x)(h(ψε) + ε)
−αh

′
(ψε) + g(x).

By comparison principle, it is obvious that ψϵ < ψε. Then we obtain a solution wε ∈ [ψϵ , ψε] to (3.6) by
standard arguments, and uniquely by the non-increasing nature of the right hand side in (3.6). Thus, we can
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infer that wε is Hölder continuous on Ω through elliptic regularity. In addition, wε > 0 in Ω by maximum
principle.

Now we prove that wε is monotone as ε → 0+ by a comparison argument: let 0 < ε
′
< ε, then we have

−∆(wε′ − wε) + k(wε′ − wε)

= λa(x)
[
h(wε′ + ε)

−αh
′
(wε′ + ε) − h(wε + ε)

−αh
′
(wε + ε)

]
.

On the other hand, assume x0 = argmin
Ω

(wε′ − wε) ∈ Ω, and (wε′ − wε)(x0) ≤ 0, then it follows that

−∆(wε′ − wε)(x0) + k(wε′ − wε)(x0)

−λa(x)
[
h(wε′ (x0) + ε)

−αh
′
(wε′ (x0) + ε) − h(wε(x0) + ε)

−αh
′
(wε(x0) + ε)

]
< 0,

which is a contradiction with the last equation. Thus we have wε′ > wε in Ω if 0 < ε
′
< ε. Therefore, we obtain

that
w = lim

ε→0+
wε ≥ cϕα and w ∈ C0(Ω) (3.7)

and satis�es in the sense of distributions of (3.1).
Furthermore, w ∈ W1,q

0 (Ω) for some q > 1. Indeed, from g(x) ∈ L∞(Ω) and (3.7), it is easy to get that
g(x) + λa(x)h(w)−αh

′
(w) ∈ L1(Ω, d(x, ∂Ω)s) for some s < 1. Then, it follows from Theorems 3 and 4 of [15],

that w ∈ W1,q
0 (Ω) for some q > 1. Using the comparison principle again, we can derive that w is the unique

weak solution of (3.1).
Now, assume that (3.1) has a super-solution ϕ ∈ C+ϕα (Ω). It is clear that ϕ is also a super-solution of (3.6).

Thus, for c > 0 small enough, we get cϕα ≤ ϕ. Hence ψε can be replaced by ϕ and repeat the above argument
to get a solution w ∈ C+ϕα (Ω). Thus we complete the proof.

Since 0 < a(x) ∈ C(Ω) and h(t)−αh
′
(t), t > 0, is decreasing, then (h(t)−αh

′
(t))

′
≤ 0. From the idea of [5], let

m(x) := −a(x)(h(ω)−αh
′
(ω))

′
, then we have m(x) ≥ 0. Now, we consider the following problem

−∆v + m(x)v = m(x)z in Ω, z ∈ Cϕα (Ω).

We have the following result.

Lemma 3.4. Assume that m(x) is de�ned as above, 0 ≤ m(x) ≤ m1d(x, ∂Ω)−2 for some positive constant m1.
Then, for given z ∈ Cϕα (Ω), there exists a unique v ∈ Cϕα (Ω) solves −∆v + m(x)v = m(x)z in Ω. Furthermore,
‖v‖Cϕα (Ω) ≤ C‖mz‖C−αϕα (Ω) for some constant C > 0 independent of z.

To this end, we need the next Lemma.

Lemma 3.5. If m(x) is de�ned as above, then there exists positive constant m1 such that m(x) ≤ m1d(x, ∂Ω)−2.

Proof. Since a(x) ∈ C(Ω) be bounded, it su�ces to prove that there exists a positive constant C such that
−(h(ω)−αh

′
(ω))

′
≤ Cd(x, ∂Ω)−2 for all ω > 0. In the following process, the C represents di�erent positive

constant. A direct calculation shows that

−(h(ω)−αh
′
(ω))

′
=h(ω)−α−1[α(h

′
(ω))2 − h(ω)h

′′
(ω)]

=h(ω)−α−1[α(h
′
(ω))2 + 2h2(ω)(h

′
(ω))4]

=h(ω)−α−1(h
′
(ω))2[α + 2h2(ω)(h

′
(ω))2].

Note that h(ω)−α−1 ∼ d(x, ∂Ω)−2 near ∂Ω. Besides this, by Lemma 2.1-(3) and -(6), we have (h
′
(ω))2 ≤ C

and [h(ω)h
′
(ω)]2 ≤ C for all ω > 0. Now, it is obvious that −(h(ω)−αh

′
(ω))

′
≤ Cd(x, ∂Ω)−2 for all ω > 0.

Consequently, one can choose a positive constant m1 such that m(x) ≤ m1d(x, ∂Ω)−2.
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Corollary 3.6. Let g(x) ∈ C−αϕα (Ω), m(x) ∈ C(Ω) and 0 ≤ m(x) ≤ m1d(x, ∂Ω)−2 for some positive constant m1. If
v ∈ Cϕα (Ω) ∩ C

2(Ω) is a classical solution of

−∆v + m(x)v = g(x) in Ω,

then ‖v‖Cϕα (Ω) ≤ c‖g‖C−αϕα (Ω) for c > 0 independent of g.

Lemma 3.7. The map ∂ωF(λ, ω) is Fredholm with index 0 for all (λ, ω) ∈ R+ × C+ϕα (Ω).

Proof. Rewrite ∂ωF(λ, ω) = I + Aλ + B, where Aλv = −λ(−∆)−1a(x)(h(ω)−αh
′
(ω))

′
v, Bv =

−(−∆)−1b(x)(h(ω)βh
′
(ω))

′
v.

Applying Lemma 3.4withm(x) = −λa(x)(h(ω)−αh
′
(ω))

′
, which turns out that I+Aλ is invertible onCϕα (Ω).

On the other hand, B is compact on Cϕα (Ω). Thus, ∂ωF(λ, ω) is Fredholm with index 0.

3.2 Local and global bifurcation analysis

In this section, we shall show the existence of minimal solution to problem (2.1) for λ ∈ (0, Λ), and then
state that the full set of minimal solution can be parametrised by an analytic curve. Besides this, we shall
illustrate some bifurcation results for λ = Λ, where

Λ := sup{λ > 0 : (2.1) has a weak solution}.

Lemma 3.8. It holds 0 < Λ < ∞ and (2.1) admits a minimal solution ωλ ∈ C+ϕα (Ω) for all 0 < λ < Λ with
b+(x) ≠ 0.

Proof. Let ϕλ = cλ
1

1+α ϕα, then we can check that ϕλ is a sub-solution of (2.1) for all λ > 0 if c > 0 is chosen
small enough. Next, we �nd a super-solution to (2.1). Consider the following problem{

−∆ω = λa(x)h(ω)−αh
′
(ω) in Ω,

ω > 0 in Ω, ω = 0 on ∂Ω.
(3.8)

Since the conditions (g1) and (g2) of Theorem 2.2 in [10] are ful�lled by the nonlinear perturbation of (3.8),
we conclude that (3.8) admits a unique solution ψλ ∈ C+ϕα (Ω) for any α > 0. Let ν solves{

−∆ν = 1 in Ω,
ν > 0 in Ω, ν = 0 on ∂Ω.

(3.9)

De�ne ϕλ := ψλ + Mν. For an appropriate constant M > 0 and some λ > 0, ϕλ is a super-solution of (2.1) for
0 < λ < λ. Indeed, combining the monotonicity of h(t)−αh

′
(t) with the properties of h(t), we have

−∆ϕλ = λa(x)h(ψλ)
−αh

′
(ψλ) +M ≥ λa(x)h(ϕλ)

−αh
′
(ϕλ) + b(x)h(ϕλ)

βh
′
(ϕλ),

if λ+M > λ+b(x)h(ϕλ)βh
′
(ϕλ) su�ciently large. This also implies λ > 0. Note that we can obtain ϕλ ∈ C+ϕα (Ω),

then there holds lim inf
λ→0+

inf
x∈Ω

ϕλ
λ

1
1+α ϕα

> 0. This implies for all 0 < λ < λ, there holds ϕλ < ϕλ in Ω if choose c > 0

small enough.
Consider the following monotone iterative scheme for all λ ∈ (0, λ),{

−∆ωn − λa(x)h(ωn)−αh
′
(ωn) + kωn = b(x)h(ωn−1)βh

′
(ωn−1) + kωn−1 in Ω,

ωn = 0 on ∂Ω,
(3.10)

with ω0 = ϕλ and k = k(λ) > 0 large enough such that b(x)h(t)βh
′
(t) + kt is non-decreasing on [0, ‖ϕλ‖L∞(Ω)].

From the comparison principle and Lemma 3.3, we can get the existence of ωn, and ϕλ < ωn < ϕλ. It is easy
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to check that ϕλ, ϕλ are respectively sub and super-solution to (3.10). Furthermore, due to the monotonicity
of the left side of (3.10), it follows that the monotonicity of the iterates, that is ωn ≥ ωn−1. By Ascoli-Arzela
Theorem, there exists ωλ such that ωn → ωλ in C+ϕα (Ω) as n → ∞ and ϕλ ≤ ωλ ≤ ϕλ. That is, ωλ is a minimal
solution of (2.1) for 0 < λ < λ.

Now, we set
Λ := sup{λ > 0 : (2.1) has a weak solution}.

From the above argument, we have Λ > 0. We claim that Λ < ∞. In fact, taking φ1 as the test function in (2.1),
we obtain ˆ

Ω
(λa(x)h(ω)−αh

′
(ω)φ1 + b(x)h(ω)βh

′
(ω)φ1)dx

=
ˆ
ω
φ1(−∆)ωdx =

ˆ
ω
ω(−∆)φ1dx = λ1

ˆ
Ω
ωφ1dx.

(3.11)

If we chose a λ > 0, large enough if necessary, such that λa(x)h(t)−αh
′
(t) + b(x)h(t)βh

′
(t) > 2λ1t for all t > 0,

which is a contradictionwith (3.11). Thus Λ < ∞must holds. Now, we can further get the existence ofminimal
solution ωλ ∈ C+ϕα (Ω) for (2.1) with any 0 < λ < Λ. In fact, taking ϕλ = cλ

1
1+α ϕα as a sub-solution, and ϕλ′ ,

solves problem (2.1)λ′ , for appropriate λ < λ
′
< Λ as a super-solution of (2.1). Then by the similar proceeding

above, we can conclude that there exists a minimal solution ωλ ∈ C+ϕα (Ω) for all 0 < λ < Λ, which completes
the proof.

Remark 3.9. Suppose that there exists M0 > 0 such that

λa(x)[h(t)−αh
′
(t)]

′
+ b(x)[h(t)βh

′
(t)]

′
≤ 0 in (0,M0),

if further choose λ0 small enough such that sup
0<λ<λ0

‖ωλ‖C(Ω) < M0. Then ωλ is the unique solution in (0, λ0)×{ω ∈

C+0(Ω) : ‖ω‖C(Ω) < M0}.
Indeed, suppose ω̃λ is another solution and satis�es ‖ω̃λ‖C(Ω) < M0 with λ < λ0. Let ψλ = ωλ − ω̃λ, then ψλ

solves
−∆ψλ −

[
λa(x)(h(ξλ)−αh

′
(ξλ))

′
+ b(x)(h(ξλ)βh

′
(ξλ))

′]
ψλ = 0,

where ξλ lies between ωλ and ω̃λ. It is easy to see λa(x)(h(ξλ)−αh
′
(ξλ))

′
+ b(x)(h(ξλ)βh

′
(ξλ))

′
≤ 0 and hence

ψλ ≡ 0.

Lemma 3.10. Let ω ∈ C2(Ω) ∩ C+ϕα (Ω), λ > 0. If ∂ωF(λ, ω)φ = 0 for some φ ∈ C2(Ω) ∩ Cϕα (Ω), then φ ∈
H1
0(Ω)∩Cφ1 (Ω) and is a H1-weak solution for −∆φ − [λa(x)(h(ω)−αh

′
(ω))

′
+ b(x)(h(ω)βh

′
(ω))

′
]φ = 0. Inversely,

if φ ∈ H1
0(Ω) is a non-negative H1-weak solution for −∆φ − [λa(x)(h(ω)−αh

′
(ω))

′
+ b(x)(h(ω)βh

′
(ω))

′
]φ = θφ

for some θ ∈ R, then φ ∈ C2(Ω) ∩ Cφ1 (Ω).

Proof. For some φ ∈ C2(Ω) ∩ Cϕα (Ω), de�ne the minimization problem inf
ψ∈H1

0(Ω)
F(ψ), where

F(ψ) =
ˆ
Ω
|∇ψ|2dx −

ˆ
Ω
λa(x)(h(ω)−αh

′
(ω))

′
ψ2dx −

ˆ
Ω
b(x)(h(ω)βh

′
(ω))

′
φψdx.

By the properties of h(t), a(x) and b(x), it is easy to show that the above functional is coercive andweakly
lower semicontinuous on H1

0(Ω). Then there exists a minimiser ψ0 ∈ H1
0(Ω) and is a non-trivial H1-weak

solution of
−∆ψ0 − λa(x)(h(ω)−αh

′
(ω))

′
ψ0 = b(x)(h(ω)βh

′
(ω))

′
φ.

By standard elliptic regularity, we have ψ0 ∈ C2(Ω). Now, in H1 -weak sense, let us take a comparison with
the solution ξ ∈ H1

0(Ω) of −∆ξ = M in Ω, where M = sup
Ω
|b(x)(h(ω)βh

′
(ω))

′
φ|, which infer that ψ0 ∈ Cφ1 (Ω).

Then we get that φ − ψ0 ∈ C2(Ω) ∩ C0(Ω) is a solution of

−∆(φ − ψ0) − λa(x)(h(ω)−αh
′
(ω))

′
(φ − ψ0) = 0.
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It follows from maximum principle that φ ≡ ψ0. Hence φ ∈ H1
0(Ω) ∩ Cφ1 (Ω) and is a H1-weak solution for

−∆φ − [λa(x)(h(ω)−αh
′
(ω))

′
+ b(x)(h(ω)βh

′
(ω))

′
]φ = 0.

Inversely, by similar ideas made in the proofs of Theorem 8.15 in [21], we can easily see that if φ ∈ H1
0(Ω)

is a non-negative H1-weak solution of

−∆φ − [λa(x)(h(ω)−αh
′
(ω))

′
+ b(x)(h(ω)βh

′
(ω))

′
]φ = θφ

for some θ ∈ R, then φ ∈ Cφ1 (Ω) ∩ C2(Ω).

De�nition 3.11. Let Γ := {(λ, ωλ) : 0 < λ < Λ, ωλ is the minimal solution of (2.1)}.

Lemma 3.12. For any (λ, ωλ) ∈ Γ, ∂ωF(λ, ωλ) is invertible, and further the full set of minimal solutions Γ is
parametrised by an analytic map.

Proof. We just consider the case of α > 1, the case of 0 < α ≤ 1 is similar. Consider the following problem{
−∆v = λa(x)h(v + ε)−αh

′
(v + ε) + b(x)h(v)βh

′
(ω) in Ω,

v > 0 in Ω, v = 0 on ∂Ω,
(3.12)

where ε > 0. Let ψε = (c α+12 φ1 + ε
α+1
2 ) 2

α+1 − ε, then we can check that ψε is a sub-solution of (3.12) if we
chose c = cλ > 0 small enough and λ > 0. On the other hand, we can �nd that ωλ, obtained above, is a
super-solution of (3.12). Then ψε ≤ ωλ and ψε ≤ ϕα can be guaranteed by restricting cλ if necessary. Hence
there exists a minimal solution vελ to (3.12) by using the method of monotone iteration again, which satis�es
ψε ≤ vελ ≤ ωλ.

Now, let us de�ne

Λ1(λ) = inf
ϕ∈H1

0(Ω),
´
Ω ϕ2=1

ˆ
Ω
|∇ϕ|2 − λa(x)[h(ωλ)−αh

′
(ωλ)]

′
ϕ2dx

−
ˆ
Ω
b(x)[h(ωλ)βh

′
(ωλ)]

′
ϕ2dx (3.13)

and

Λε1(λ) = inf
ϕ∈H1

0(Ω),
´
Ω ϕ2=1

ˆ
Ω
|∇ϕ|2dx −

ˆ
Ω
λa(x)[h(vελ + ε)

−αh
′
(vελ + ε)]

′
ϕ2dx

−
ˆ
Ω
b(x)[h(vελ)

βh
′
(vελ)]

′
ϕ2dx, (3.14)

where ωλ is the minimal solution of (2.1), λ ∈ (0, Λ).
Let φελ ∈ H

1
0(Ω) be a nonnegative minimiser of (3.14). We can obtain Λε1(λ) ≥ 0 for any λ ∈ (0, Λ). Indeed,

assume that Λε1(λ) < 0 for some ε > 0 and λ ∈ (0, Λ). It is easy to verify that vελ − µφ
ε
λ is a super-solution

of (3.12) for µ > 0 small enough. Using the method of monotone iteration again, we can conclude that there
exists a solution to (3.12), ṽλ, such that ψε ≤ ṽλ ≤ vελ − µφ

ε
λ, which is a contradiction with vελ is a minimal

solution. It follows from vελ ≤ ωλ and elliptic regularity, that there exists vλ such that vελ → vλ in Cloc(Ω), that
is, vλ solves (2.1) and vλ ≡ ωλ by the minimality of ωλ.

Furthermore, we can obtain Λ1(λ) ≥ 0 for any λ ∈ (0, Λ). Indeed, note that vελ + ε ≥ ψε + ε ≥ cλϕα,
−(h(t + ε)−αh

′
(t + ε))

′
= h(t + ε)−α−1(h

′
(t + ε))2[α + 2h2(t + ε)(h

′
(t + ε))2]. Applying Lemma 2.1 and Hardy’s

inequality, there exists C > 0 such that 2h2(t + ε)(h
′
(t + ε))2 ≤ C and

ˆ
Ω
h(vλ + ε)−α−1φ2

λ ≤ c
−α−1
λ

ˆ
Ω
d−2φ2

λ < ∞,
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where φλ be the nonnegative minimiser of (3.13). Applying dominated convergence theorem, we have

Λ1(λ) =
´
Ω |∇φλ|

2dx + λa(x)h(ωλ)−α−1(h
′
(ωλ))2[α + 2h2(ωλ)(h

′
(ωλ))2]φ2

λdx

−
ˆ
Ω
b(x)[h(ωλ)βh

′
(ωλ)]

′
φ2
λdx

=
ˆ
Ω
|∇φλ|2dx + λa(x)h(vελ + ε)

−α−1(h
′
(vελ + ε))

2[α + 2h2(vελ + ε)(h
′
(vελ + ε))

2]φ2
λdx

−
ˆ
Ω
b(x)[h(vελ)

βh
′
(vελ)]

′
φ2
λdx + oε(1)

≥ Λε1 + oε(1),

which yields Λ1(λ) ≥ 0 for any 0 < λ < Λ.
Now we prove Λ1(λ) > 0. Suppose there exists some λ0 ∈ (0, Λ) such that Λ1(λ0) = 0. Without loss of

generality, we may assume that Λ1(λ) > 0 for λ0 < λ < Λ. Then we have

0 =
ˆ
Ω
|∇ϕλ0 |

2dx − λ0
ˆ
Ω
a(x)[h(ωλ0 )

−αh
′
(ωλ0 )]

′
ϕ2
λ0dx −

ˆ
Ω
b(x)[h(ωλ0 )

βh
′
(ωλ0 )]

′
ϕ2
λ0dx,

which implies

λ0
ˆ
Ω
a(x)[h(ωλ0 )

−αh
′
(ωλ0 )]

′
ϕ2
λ0dx +

ˆ
Ω
b(x)[h(ωλ0 )

βh
′
(ωλ0 )]

′
ϕ2
λ0dx > 0.

For any λ < λ0, combining 0 < a(x) ∈ C(Ω) with the monotonicity of h(t)−αh
′
(t), we obtainˆ

Ω
|∇ϕλ0 |

2dx − λ
ˆ
Ω
a(x)[h(ωλ0 )

−αh
′
(ωλ0 )]

′
ϕ2
λ0dx −

ˆ
Ω
b(x)[h(ωλ0 )

βh
′
(ωλ0 )]

′
ϕ2
λ0dx < 0,

which implies Λ1(λ) < 0 for λ < λ0, a contradiction with Λ1(λ) ≥ 0 for all λ ∈ (0, Λ). Therefore, Λ1(λ) > 0 for
all 0 < λ < Λ.

Suppose ∂ωF(λ, ωλ) is not invertible for some λ ∈ (0, Λ). Then there exists φ ∈ C2(Ω) ∩ Cϕα (Ω) with´
Ω φ

2 = 1 satisfying

−∆φ − λa(x)[h(ωλ)−αh
′
(ωλ)]

′
φ − b(x)[h(ωλ)βh

′
(ωλ)]

′
φ = 0. (3.15)

From Lemma 3.10, we have φ ∈ H1
0(Ω) is a H1-weak solution of (3.15), that is, Λ1(λ) = 0, which is a contradic-

tion with the above attained. Then we can apply the implicit function theorem at any (λ, ωλ) for λ ∈ (0, Λ) to
obtain that the minimal solution branch is parametrised by an analytic map.

Lemma 3.13. There exist closed and bounded subsets of S = {(λ, ω) ∈ R+×C+ϕα (Ω) : F(λ, ω) = 0} are compact.

Proof. Assume that (λ, ω) ∈ S and ω solves (2.1). We claim that

inf
S
inf
Ω
( ω
λ 1
α+1ϕα

) ≥ c (3.16)

for some positive constant c. Since ω ≥ ωλ, where ωλ is obtained as above, then we can �nd a su�ciently
small constant c > 0 such that cλ 1

α+1ϕα is a sub-solution of (2.1) for λ > 0. Thus ωλ ≥ cλ
1
α+1ϕα, which implies

the claim is true.
LetQ be a closed and bounded subset of S. Then there exists a constantM > 0 such that λ+‖ω‖Cϕα (Ω) ≤ M

for all (λ, ω) ∈ Q. It follows from (3.16) and the properties of h(t), that there exists small enough c such that

|∆ω| ≤ λa(x)h(cλ
1
α+1ϕα)−αh

′
(cλ

1
α+1ϕα) + |b|∞ sup

[0,M]
h(ω)βh

′
(ω). (3.17)

Now, according to Lemma 2.1-(8), if |cλ 1
α+1ϕα| ≤ 1, the another case is similar, then together with Lemma

2.1-(3), we can continue to calculate (3.17) as follows:

|∆ω| ≤ λa(x)h(1)−α(cλ
1
α+1ϕα)−α + |b|∞ sup

[0,M]
h(ω)βh

′
(ω)
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≤ λ
1

1+α a(x)h(1)−αc−αϕ−αα + |b|∞ sup
[0,M]

h(ω)βh
′
(ω)

≤ M
1

1+α a(x)h(1)−αc−αϕ−αα + |b|∞ sup
[0,M]

h(ω)βh
′
(ω). (3.18)

By the above estimate and applying Proposition 3.4 of [17], it is easy to see

sup
Q

‖ω‖
Cτ(Ω) < ∞ for some τ ∈ (0, 1).

Let {(λn , ωn)} ⊂ Q. Then there exists, up to a subsequence, (λn , ωn) → (λ0, ω0) in C(Ω). We claim that
(λn , ωn) → (λ0, ω0) in Cϕα (Ω). First, we claim λ0 ≠ 0. Otherwise, we have ωλn ∈ H

1
0(Ω) satis�es ‖ωλn‖ → 0.

By the above Lemma, ωλn → 0 in Cϕα (Ω). By Lemma 3.8, we have ωλn = ωn and implies (λn , ωn) → (0, 0)
in R+ × Cϕα (Ω), which is a contradiction with (0,0) does not belonging to Q. Thus λ0 > 0. Then we have
−∆ω0 ∈ C+ϕ−αα (Ω) by combining inequality (3.18) with bounded ωn in Cϕα (Ω). Furthermore, by Lemma 3.4, it
follows that ω0 ∈ C+ϕα (Ω). Let vn = ω0 − ωn, in virtue of (3.16), we have vn solves

−∆vn +
[
− λ0a(x)(h(ξn)−αh

′
(ξn))

′
− b(x)(h(ζn)βh

′
(ζn))

′]
vn

= (λ0 − λn)a(x)h(ωn)−αh
′
(ωn)

= o(1)ϕ−αα ,

where ξn and ζn lie between ωn and ω0. Applying Corollary 3.6 with

m(x) = −λ0a(x)(h(ξn)−αh
′
(ξn))

′
− b(x)(h(ζn)βh

′
(ζn))

′
,

and meets the hypothesis what m(x) needs if b ≥ 0 small enough, and then we can obtain that ωn → ω0 in
Cϕα (Ω). This implies the Lemma holds.

Remark 3.14. It is clear that the above lemma remains true if b(x) < 0.

Next we consider the bifurcation analysis at λ = Λ.

Lemma 3.15. The solution of F(λ, ω) = 0near (Λ, ωΛ) is described by a curve (λ(s), ω(s)) = (Λ+τ(s), ωΛ+sϕΛ+
x(s), where s → (τ(s), x(s)) ∈ R × X is a continuously di�erentiable function near s = 0 with τ(0) = τ

′
(0) = 0,

x(0) = x
′
(0) = 0. Furthermore, τ is of class C2 near 0 and τ

′′
(0) < 0 if α ≥

√
5 − 2 and b+ ≠ 0.

Proof. From Lemma 2.6, we have the following function at λ = Λ:

∂ωF(Λ, ωΛ) = I − Λ(−∆)−1a(x)[h(ωΛ)−αh
′
(ωΛ]

′
− (−∆)−1b(x)[h(ωΛ)βh

′
(ωΛ]

′
.

Then we have Λ1(Λ) ≥ 0 by the above obtained, and in fact Λ1(Λ) = 0 by the implicit function the-
orem and (2.1) has no solution for λ > Λ. We now verify the conditions of the local bifurcation result
of Cranduall-Rabinowitz [9]. From obtained above, the map ∂ωF(λ, ω) is Fredholm with index 0 for all
(λ, ω) ∈ R+ × C+ϕα (Ω), then we can easily get ker(∂ωF(Λ, ωΛ)) is one dimensional and spanned by φΛ which
is the associated eigenfunction of Λ. We can also get codimRange(∂ωF(Λ, ωΛ)) = 1. Now we claim that
∂λF(Λ, ωΛ) ∉ Range(∂ωF(Λ, ωΛ)), where ∂λF(λ, ω)v = −(−∆)−1a(x)h(ω)−αh

′
(ω)v. If it is not true, then there

exists v ∈ C10(Ω) such that

v − (−∆)−1
[
Λa(x)(h(ωΛ)−αh

′
(ωΛ))

′
v − b(x)(h(ωΛ)βh

′
(ωΛ))

′
v
]

= −(−∆)−1a(x)h(ωΛ)−αh
′
(ωΛ).

By Lemma 3.10, we have v ∈ C2(Ω) ∩ Cφ1 (Ω) solves

−∆v = Λa(x)(h(ωΛ)−αh
′
(ωΛ))

′
v − b(x)(h(ωΛ)βh

′
(ωΛ))

′
v − a(x)h(ωΛ)−αh

′
(ωΛ).
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Multiplying the above equation by ϕΛ and integrating by parts, we obtain

−
ˆ
Ω
a(x)h(ωΛ)−αh

′
(ωΛ)ϕΛdx = 0,

which is a contradiction with the properties of a(x) and h(t). Thus the claim holds.
Now, let X be any complement of the span {ϕΛ} in C10(Ω). De�ne θ : R × R × X → H1

0(Ω) with θ(s, τ, x) =
F(Λ + τ, ωΛ + sϕΛ + x). It is easy to see that

∂τ,xθ(0, 0, 0) = (∂λF(Λ, ωΛ), ∂ωF(Λ, ωΛ))

is an isomorphism from R × X onto C1(Ω) ∩ C0(Ω). In fact, it follows from

codimRange(∂ωF(Λ, ωΛ)) = 1 and ∂λF(Λ, ωΛ) ∉ Range(∂ωF(Λ, ωΛ)),

that the map
(τ, x) 7→ τ∂λF(Λ, ωΛ) + ∂ωF(Λ, ωΛ)x (3.19)

is injective for (τ, x) ∈ R × X. Then, for ϵ > 0, there exists a neighborhood V of 0 in R and a unique C2

function g : (−ϵ, ϵ) → V × X so that g(s) := (τ(s), x(s)) with s ∈ (−ϵ, ϵ), τ(0) = 0, x(0) = 0, θ(τ(s), x(s)) =
F(Λ + τ(s), ωΛ + sϕΛx(s)) = 0. Di�erentiating the expression (3.19) with respect to s at s = 0, we have

τ
′
(0)∂λF(Λ, ωΛ) + ∂ωF(Λ, ωΛ)(ϕΛ + x

′
(0)) = 0.

Then τ
′
(0) = 0 and x

′
(0) = 0 since ∂ωF(Λ, ωΛ)ϕΛ = 0. Di�erentiating the above equation again with respect

to s at s = 0, we have

τ
′′
(0)∂λF(Λ, ωΛ) + ∂ωF(Λ, ωΛ)x

′′
(0) + ∂ωωF(Λ, ωΛ)(ϕΛ , ϕΛ) = 0.

Applying the dual product with −∆ϕΛ, we obtain〈
τ
′′
(0)∂λF(Λ, ωΛ) + ∂ωF(Λ, ωΛ)x

′′
(0) + ∂ωωF(Λ, ωΛ)(ϕΛ , ϕΛ), −∆ϕΛ

〉
=
〈
− τ

′′
(0)(−∆)−1a(x)h(ωΛ)−αh

′
(ωΛ) + {x

′′
(0) − Λ(−∆)−1

[a(x)(h(ωΛ)−αh
′
(ωΛ))

′
x
′′
(0)] − (−∆)−1[b(x)h(ωΛ)βh

′
(ωΛ)x

′′
(0)]}

−Λ(−∆)−1[a(x)(h(ωΛ)−αh
′
(ωΛ))

′′
ϕ2
Λ]

−(−∆)−1[b(x)(h(ωΛ)βh
′
(ωΛ))

′′
ϕ2
Λ], −∆ϕΛ

〉
= −τ

′′
(0)
〈
(a(x)h(ωΛ)−αh

′
(ωΛ), ϕΛ

〉
+
〈
x
′′
(0), −∆ϕΛ

−Λa(x)(h(ωΛ)−αh
′
(ωΛ)

′
ϕΛ − b(x)(h(ωΛ)βh

′
(ωΛ))

′
ϕΛ
〉

−
〈
Λa(x)(h(ωΛ)−αh

′
(ωΛ))

′′
ϕ2
Λ + b(x)(h(ωΛ)βh

′
(ωΛ))

′′
ϕ2
Λ , ϕΛ

〉
= −τ

′′
(0)
〈
(a(x)h(ωΛ)−αh

′
(ωΛ), ϕΛ

〉
−
〈
Λa(x)(h(ωΛ)−αh

′
(ωΛ))

′′
ϕ2
Λ

+b(x)(h(ωΛ)βh
′
(ωΛ))

′′
ϕ2
Λ , ϕΛ

〉
= 0.

By computing, we can easily get a(x)(h(ω)−αh
′
(ω))

′′
+ b(x)(h(ω)βh

′
(ω))

′′
> 0 for α ≥

√
5 − 2 and b+ ≠ 0, and

hence τ
′′
(0) < 0.

Remark 3.16. 1. From the above results, we can infer that the direction of the solution curve at the neighborhood
λ = Λ. That is, τ

′′
(0) < 0means the curve of solution from right turns to left at {λ = Λ}.

2. If 0 < α < 1/3 and b < 0, there holds λa(x)(h(ω)−αh
′
(ω))

′′
+ b(x)(h(ω)βh

′
(ω))

′′
< 0, and hence τ

′′
(0) > 0.

The case of τ
′′
(0) > 0 needs further analysis.

3. The sign of τ
′′
(0) is inde�nite when 0 < α <

√
5 − 2 and b+ ≠ 0 or 1/3 ≤ α < 1 and b < 0.
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3.3 The proof of main results

Proof of Theorem 2.7. Let U = R+ × X = R+ × Cϕα (Ω) and the positive cone W = C+ϕα (Ω). Clearly W is
open. Conditions (H1)-(H3) of Lemma 2.5 hold because of Lemma 3.13, Proposition 3.1, Lemma 3.7 and Lemma
3.12. In fact, by Lemma 3.12, we may �x A+ = {(λ(s), w(s)) : 0 < s < s0} for some s0 > 0 be an analytic
parametrisation which is one portion of minimal solution branch which given by {(λ, ωλ) ∈ Γ : 0 < λ < λ0}.
Then Lemma 2.5 holds. Next, we apply Lemma 2.5 to prove Theorem 2.7. It is clear that assertions (iii) and (vi)
of Theorem 2.7 are true. From the de�nition of A and A+, assertion (i) easily obtained. Assertion (iv) can be
get from Lemma 3.8 and Lemma 3.12.

It remains to prove assertion (ii), clearly, (v) is a consequence of (ii). In order to showassertion (ii), we only
need verify the property (e)(i) of Lemma 2.5 occurring. If case (e)(ii) is occur, then there exists (λ(sn), ω(sn)) →
(0, ω0) as sn → ∞ inU, where (0, ω0) is a boundary point. Then ∆ω(sn) → 0 in Cloc(Ω), i.e. ω0 = 0 and hence
ω0 ≡ 0. By Lemma 3.8, it is easy to see that ω(sn) is the minimal solution for all large sn. However, the
minimal solution arc A0 starting from (0, 0) is isolated from other solutions, and hence, the distinguished
arc corresponding to all large s coincide withA, which is a contradiction with (a) of Lemma 2.5. By the same
argument, we can rule out case (e)(iii). Hence case (e)(i) holds. Therefore, ‖ω(s)‖Cϕα (Ω)

→ ∞ as s → ∞ since
(2.1) has no solution for λ > Λ. This completes the proof. 2

Proof of Corollary 2.8. It follows from Lemma 3.15 and Lemma 2.5, that one can easily get the analytic
pathA turns to the left at the point (Λ, ωΛ). 2
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