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Foreword from FGA / UnB 

 
The engineering sector drives and enables the development of a country. The formation 
of an engineer allows a technical capacity to evaluate, plan, design, suggest and apply 
all possible techniques in search of the best construction of a technological equipment. 
Currently, the engineer must be more and more prepared to solve existing problems in 
various sectors of society. It is through it that societies grow in search of progress. 
The recognition of engineering and the training of new professionals increases every 
year in Brazil. In the 2000s, the University of Brasília (UnB) went through an expansion 
process, resulting in the implementation of the new UnB Engineering Campus in the 
city of Gama (UnB-Gama, FGA). Five new undergraduate courses were created: 
Aerospace Engineering, Automotive Engineering, Electronic Engineering, Energy 
Engineering and Software Engineering. The UnB Gama Campus project converges to 
increase the education level of the Brazilian population, especially in the five areas of 
engineering activity, all in line with current national public policies, aimed at expanding 
the population's access to quality higher education in the country. 
Following the high quality teaching line, the UnB-Gama campus has the Graduate 
Program in Integrity of Engineering Materials (PPG-Integridade). The program has the 
following lines of research: Dynamics and Vibrations, Fatigue, Structural Materials, 
Biomaterials, Structure Fluid Interaction and Numerical Simulation of the Mechanical 
Behavior of Materials. This book series is an initiative of PPG-Integridade - UnB, 
organized as a collaborative work involving researchers, engineers, scholars, from 
several institutions, universities, industry, recognized both nationally and 
internationally. 
Beside the high technical quality and relevance of the topics covered in the books, this 
series will enable an essential internationalization of the research currently developed 
within the University of Brasília. Several authors from different countries also 
contributed to these books, enabling greater interaction between national and 
international research groups. This internationalization raises the level of academic 
education for new professionals in the field of engineering, in addition to more 
advanced scientific research and technological development. 
Additionally, this book series features a strong contribution from the industrial sector. 
Several professionals from different companies collaborated with the writing of some 
chapters in the three volumes that make up this series. These initiatives are of great 
strategic importance, as they allow the grouping of different technical capabilities. On 
the part of companies in the sector, with knowledge of market demands, and on the part 
of universities, by adding the technical-scientific knowledge of their team of researchers 
to the improvement of innovative products and services.  
This book should be appreciated by anyone in need of knowledge of Materials Integrity. 
The completeness of Discrete Modeling and Inverse Methods theory combined with the 
Uncertainty Modeling in Structural Integrity makes these books mandatory for 
everybody aiming at Direct and Inverse Problems, including model-based and signal-
based inverse problems. 
 

Prof. Dr. Sandro A.P. Haddad, Director 
UnB-Gama campus (https://fga.unb.br/) 

https://fga.unb.br/
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Foreword from LAJSS 
Book Series in Discrete Models, Inverse Methods, & Uncertainty 
Modeling in Structural Integrity 
Book Series editors: Ariosto B. Jorge, Carla T.M. Anflor, Guilherme 
F. Gomes, and Sergio H.S. Carneiro 
 
This book series represents a commendable effort in compiling the latest developments 
on three important Engineering subjects: discrete modeling, inverse methods, and 
uncertainty structural integrity. Although academic publications on these subjects are 
plenty, this book series may be the first time that these modern topics are compiled 
together, grouped in volumes, and made available for the community. 
The application of numerical or analytical techniques to model complex Engineering 
problems, fed by experimental data, usually translated in the form of stochastic 
information collected from the problem in hand, is much closer to real-world situations 
than the conventional solution of PDEs. Moreover, inverse problems are becoming 
almost as common as direct problems, given the need in the industry to maintain current 
processes working efficiently, as well as to create new solutions based on the immense 
amount of information available digitally these days. On top of all this, deterministic 
analysis is slowly giving space to statistically driven structural analysis, delivering 
upper and lower bound solutions which help immensely the analyst in the decision-
making process.  
All these trends have been topics of investigation for decades, and in recent years the 
application of these methods in the industry proves that they have achieved the 
necessary maturity to be definitely incorporated into the roster of modern Engineering 
tools. The present book series fulfills its role by collecting and organizing these topics, 
found otherwise scattered in the literature and not always accessible to industry. 
Moreover, many of the chapters compiled in these books present ongoing research 
topics conducted by capable fellows from academia and research institutes. They 
contain novel contributions to several investigation fields and constitute therefore a 
useful source of bibliographical reference and results repository. 
The Latin American Journal of Solids and Structures (LAJSS) is honored in supporting 
the publication of this book series, for it contributes academically and carries 
technologically significant content in the field of structural mechanics. 
 
On behalf of LAJSS, 

 Prof. Dr. Marcílio Alves (USP), Editor-in-Chief 
 Prof. Dr. Rogério J. Marczak (UFRGS), Assoc. Editor 

 Prof. Dr. Pablo A. Muñoz-Rojas (UDESC), Assoc. Editor 
 Prof. Dr. Marco L. Bittencourt (Unicamp), Assoc. Editor 

 

 

Latin American Journal of Solids and Structures (LAJSS) 
(www.lajss.org) 

https://www.lajss.org/index.php/LAJSS
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Foreword from ABCM 

 
 
The Brazilian Society of Mechanical Sciences and Engineering – ABCM welcomes 
enthusiastically the publication of the Book Series in Models, Inverse Methods & 
Uncertainty Modeling in Structural Integrity.  
The initiative, undertaken by Prof. Ariosto B. Jorge, Dr. Carla T.M. Anflor, Dr. 
Guilherme F. Gomes and Dr. Sergio H. S. Carneiro, with the support of the University 
of Brasília, is received by the scientific community as a valuable contribution to the 
dissemination of knowledge encompassing the large number of topics covered in the 
three volumes of the series.  
These topics have been judiciously selected to encompass comprehensively the 
theoretical aspects, modeling techniques and numerical methods related to Structural 
Integrity, and are presented in a large collection of chapters authored by renowned 
experts, from both academia and industry. We gladly realize that many members of 
ABCM have contributed as authors.  
Besides the comprehensive and well-articulated content, one distinguishing 
characteristic of this book series is that it has been conceived to serve both for 
educational purposes at graduate level and as an information source for researchers and 
engineering practitioners, which amplifies, to a large extent, its utility. Another relevant 
feature is that the material is intended to be available to the public in electronic format 
at no cost, which highlights the generosity of the authors and editors and their 
commitment to the most fundamental academic principles.  
On behalf of the scientific community of the field of Mechanical Sciences and 
Engineering, ABCM acknowledges the editors and authors of the present book series 
for their contribution to the progress of Engineering research and education. 
 
 
 
 

Prof. Dr. Domingos Alves Rade 
President of ABCM 

 
On behalf of 

 

Brazilian Society of Mechanical Sciences and 
Engineering (ABCM) 
(www.abcm.org.br) 

 

http://www.abcm.org.br/
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Foreword from ABMEC 
 
 
The whole range of topics related to Direct & Inverse Problems and Modeling of 
Uncertainties is substantially associated with the needs of the mechanical, civil, 
aeronautical/aerospace, nuclear, and naval/oceanic industries. Indeed, they play a core 
role in industrial renewal, contributing to productivity and competitiveness. Especially 
taking Brazil into account, this book series, conceived as a comprehensive one that 
covers these important topics, is very welcome. 
 
These themes are also among the main interests of the Brazilian Association of 
Computational Methods in Engineering, ABMEC. ABMEC is concerned with the 
application of numerical methods and digital computers to the solution of engineering 
problems. Its mission is to promote, foster, and organize activities encompassing the 
development and use of such computational methods in Brazil. 
 
We are fortunate to have the opportunity to support this book series as a collaborative 
work that intends to involve scholars from different institutions and researchers from 
industry, with national and international relevance. We sincerely believe that this work 
will provide a common forum for discussion, education, and research information 
transfer between the several subjects concerning computational methods in engineering.   
 
Our congratulations to the editors, professors Ariosto Bretanha Jorge, Carla Tatiana 
Mota Anflor, Sergio Henrique da Silva Carneiro, Guilherme Ferreira Gomes for this 
important contribution to the Brazilian engineering. 
 
 
 
 

Prof. Dr. Felício Bruzzi Barros 
President of ABMEC 

 
 
On behalf of 

 

Brazilian Association of Computational 
Methods in Engineering (ABMEC) 
(www.abmec.org.br) 

 

 
  

http://www.abmec.org.br/


 

vii 
 

 

Acknowledgements 
Acknowledgements from the Book Series editors 
This book series is an initiative of the Graduate Program in Integrity of Engineering 
Materials (PPG-Integridade) at the University of Brasilia (UnB), Brazil 
(www.pgintegridade.unb.br). 
The editors would like to thank PPG-Integridade and UnB for the initiative, incentive 
and support for this Book Series project. 
The book series is organized as a collaborative work involving researchers, engineers, 
scholars, engaged in research, development and applications in the related areas, 
affiliated to several institutions, universities, industry, and recognized both nationally 
and internationally. 
The editors are grateful and would like to show their appreciation to all the co-authors 
of the book chapters, for their participation, dedication, and support. 
The book series is published as a digital version, with ISBN provided by UnB, and DOI 
for each chapter, provided by the Latin American Journal of Solids and Structures 
(LAJSS) (www.lajss.org). The scope of the Book series is in the broad areas of interest 
of LAJSS, and also of the Brazilian Society of Mechanical Sciences and Engineering 
(ABCM) (www.abcm.org.br) and the Brazilian Association of Computational Methods 
in Engineering (ABMEC) (www.abmec.org.br). For increased visibility, these three 
institutions are encouraging the divulgation of the Book Series project in their websites. 
The editors would like to express their appreciation to LAJSS, ABCM and ABMEC, for 
their incentive, encouragement and support for this Book Series project. 
 Ariosto, Carla, Guilherme, Sergio 

Brasilia, February 1st, 2022. 

A personal dedication from the Book Series leading editor 
In my point of view, this Book Series project represents the culmination of a dedicated 
academic career, in many aspects intrinsically related to the different research topics 
and areas covered along the three Volumes of the Book Series. I would like to thank all 
my co-editors of the Book Series, all the co-authors of the book chapters, and also all 
the researchers, scholars, students with whom I had the opportunity to share 
collaborative work throughout my many years along this academic career. I’ve enjoyed 
learning a lot from you all! 
To you, my sincere thank you! 
I would like also to dedicate this project to my wife Daisy, for her love, understanding, 
and unconditional support, throughout my entire academic career, and to my daughter 
Elisa and my son Luís Paulo, for their love and support. 
To you, my true love and deepest appreciation! 
 Ariosto 

Brasilia, February 1st, 2022. 
  

http://www.pgintegridade.unb.br/
https://www.lajss.org/index.php/LAJSS
https://www.abcm.org.br/
http://www.abmec.org.br/


 

viii 
 

 

Table of Contents 
 
Forewords (FGA/UnB, LAJSS, ABCM, ABMEC); Acknowledgements (Editors) ... iii 

Chapter 1 
Introduction to Optimization and Identification Techniques for Model-Based and 
Signal-Based Inverse Problems  …………………...…………………………………… 1 

Chapter 2 
Overview of Some Optimization and Identification Techniques for Inverse Problems of 
Detection, Localization and Parameter Estimation …………………………….....…… 8 

Chapter 3 
An overview of Linear and Non-linear Programming methods for Structural 
Optimization ……………………………………………………………………..…… 65 

Chapter 4 
Overview of Traditional and Recent Heuristic Optimization Methods …………...… 107 

Chapter 5 
Application of Machine Learning and Multi-Disciplinary/Multi-Objective Optimization 
Techniques for Conceptual Aircraft Design ……………………………………….... 143 

Chapter 6 
On a Bio-Inspired Method for Topology Optimization via Map L-Systems and Fractone 
Modeling…………………………………………………………………………...… 237 

Chapter 7 
Fundamentals on the Topological Derivative concept and its classical applications .. 269 

Chapter 8 
Ultrasound Obstacle Identification using the Boundary Element and Topological 
Derivative Methods ……………………………………………...…………….……. 301 

Chapter 9 
Fundamental Concepts on Wavelet Transforms ………………………………….…. 331 

Chapter 10 
Application of Wavelet Transforms to Structural Damage Monitoring & Detection . 357 

Chapter 11 
Inverse Methods using KF, EKF, EIF, PF, and LS Techniques for Detection, 
Localization, and Parameter Estimation  …………………………………………….. 382 

Chapter 12 
Fundamental Concepts for Impedance-based Structural Health Monitoring  ……..… 443 

Chapter 13 
Fundamental Concepts for Guided Lamb Wave-based Structural Health Monitoring 472 

Chapter 14 
Machine Learning and Pattern Recognition: Methods and Applications for Integrity 
Monitoring of Civil Engineering Structures ……………………………………….... 502 
Book Series: Editors - Bio & Back Cover ……………………………………...…... 536 



 

1 
 

 

Chapter 1. Introduction to Optimization and Identification Techniques for 
Model-Based and Signal-Based Inverse Problems 

 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-71-5.c01 
 
Chapter suggested citation / reference style: 

Jorge, Ariosto B., et al. (2022). “Introduction to Optimization and Identification 
Techniques for Model-Based and Signal-Based Inverse Problems”. In Jorge, 
Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods,  Vol. I, 
UnB, Brasilia, DF, Brazil, pp. 1–7. Book series in Discrete Models, Inverse 
Methods, & Uncertainty Modeling in Structural Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

Book details 

Book: Model-based and Signal-Based Inverse Methods 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume I of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-71-5 

 
 
 
 

https://doi.org/10.4322/978-65-86503-71-5.c01
https://doi.org/10.4322/978-65-86503-71-5


Introduction to Optimization and Identification 
Techniques for Model-Based and Signal-Based 
Inverse Problems 

Ariosto Bretanha Jorge1a*, Carla Tatiana Mota Anflor1b, Guilherme Ferreira Gomes2 and 
Sérgio Henrique da Silva Carneiro1c 

1Post-Graduate Program - Integrity of Engineering Materials, University of Brasilia, 
Brazil. Book series editors. E-mail: ariosto.b.jorge@gmail.com, anflor@unb.br, 
shscarneiro@unb.br 
2 Mechanical Engineering Institute, Federal University of Itajubá, Itajubá, Brazil. Book 
series editor. E-mail: guilhermefergom@unifei.edu.br 

*Corresponding author. Book series leading editor. 
 

Abstract 
This chapter presents an overview of the Book Series in Direct Methods, Inverse Methods and 
Uncertainty Modeling, with focus on its Volume I: Model-Based and Signal-Based Inverse 
Methods, and includes an introduction to the different topics in Optimization and 
Identification Techniques comprising the several chapters included in this Volume I of the 
Book series. 

1 Book Series in Discrete Models, Inverse Methods, & Uncertainty Modeling 
in Structural Integrity: overview 
The Book series in “Discrete Models, Inverse Methods, & Uncertainty Modeling in 
Structural Integrity” is an initiative of the Post-Graduate Program - Integrity of 
Engineering Materials (PPG-Integridade) of University of Brasilia (UnB), organized as 
a collaborative work involving researchers, engineers, scholars, from several 
institutions, universities, industry, recognized both nationally and internationally. 
This book series is an activity related to the Research, Development & Innovation 
(R,D&I) Project at UnB, titled: “Technological Demonstration Platform for Inverse 
Methods and Uncertainty Modeling Integrity of Structures and Components”, available 
at the UnB Central Library (in Portuguese) (Jorge, 2020). 
The Book Series project is comprised by three Volumes: 

• Volume I – Model-based and Signal-Based Inverse Methods 
 

• Volume II – Fundamental Concepts and Models for the Direct Problem 
o Part I - Material Modeling 
o Part II - Discrete Modeling 

 
• Volume III – Uncertainty Modeling: Fundamental Concepts and Models 

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods,  Vol. 1, UnB 2



The different book chapters were elaborated encompassing the relevant project topics, 
including chapters covering: 

• Fundamentals, including topics such as: basic principles, concepts & 
foundations, for the Direct & Inverse Problems (including model-based and 
signal-based inverse methods), and for the Modeling of Uncertainties; 

• Special Topics, Applications, and Research Review, including topics such as: 
research review, state-of-the-art & future trend topics, for the Direct & Inverse 
Problems (including model-based and signal-based inverse methods), and for the 
Modeling of Uncertainties. 

The different book chapters were prepared as a collaborative work by researchers, 
engineers, scholars, involved in research, development and applications in the related 
areas. 
The research areas of interest throughout the book chapters include: 

• Modeling of the inverse problem, monitoring & diagnosis / prognosis: models 
and methods for inverse problems, optimization methods (including techniques 
such as; multi-objective optimization, topology optimization, evolutionary 
optimization), Wavelets, Kalman Filter (KF), Particle Filter (PF), Machine 
Learning (ML), Artificial Intelligence (AI), Data Science (DS), for applications 
such as Structural Health Monitoring (SHM) (including impedance-based and 
Lamb Wave-based techniques), Health & Usage Monitoring Systems (HUMS); 
 

• Modeling of the direct problem: mechanics of materials (including metallic 
materials, composites), structures (including civil, mechanical naval, 
aeronautical structures) machinery design and mechanical components, fracture 
mechanics, impact, fatigue, damage tolerance, integrity, mechanical vibrations, 
dynamics of structures, computational mechanics, including mathematical 
methods and numerical methods for discrete modeling for continuum mechanics 
(such as Finite Element Methods (FEM), Boundary Element Methods (BEM), 
Mesh-Free Methods (MFM)); 
 

• Probabilistic methods and modeling of uncertainties: probabilistic methods in 
engineering, Design of Experiments (DOE), Response Surface Methods (RSM), 
Risk & Reliability (including structural and system reliability), Uncertainty 
Modeling (UM) & Uncertainty Quantification (UQ), Bayesian Approaches 
(BA), stochastic Finite Element approaches (Stochastic FEM, Spectral FEM, 
Polynomial Chaos), sthochastic optimization, meta-modeling (including 
techniques such as Surrogate Models (SM), Reduced Order Models (ROM)), 
model Verification & Validation (V&V). 

The different models, methods and approaches presented throughout the several 
chapters in the three Volumes of this Book Series are intended as an introductory 
presentation of some possibilities of methods that could be used in problems related to 
integrity of structures and components, and maybe even extended to other engineering 
areas, as appropriate. The list of models is not unique, and is neither comprehensive nor 
exhaustive, and the reader is encouraged to look for different possibilities of methods 
that may be applicable to the particular engineering problem at hand. 

Jorge, Ariosto B., et al. (2022) Introduction to Optimization & Identification for Inverse Problems pp. 1-7
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A common aphorism, often presented as "All models are wrong, but some are useful", is 
usually considered to be applicable to scientific models in general, and to statistical 
models in particular. The aphorism recognizes that statistical or scientific models 
always fall short of the complexities of reality but can still be of use. The aphorism is 
generally attributed to the statistician George E. P. Box, although the underlying 
concept predates Box's writings. 
The following sections present an introduction to Model-Based and Signal-Based 
Inverse Methods, with emphasis on the different topics in Optimization and 
Identification Techniques comprising the several chapters included in this Volume I of 
the Book Series, as well as their connection and relationship with regard to the whole 
setting of methods and models. 

2 Volume I: Model-Based and Signal-Based Inverse Methods – context 
The detection, localization, classification and identification of parameters and/or 
material properties, related to the integrity of structures and components, with and 
without defects or damages, involves the modeling of inverse problems, as well as an 
adequate modeling and quantification of the uncertainties involved in the problem. 
The formulation of the direct problem, of the inverse problem, and the related 
uncertainties modeling, needed for an adequate description of the structure and/or the 
mechanical component, and of its potential defects or damages, involves 
multidisciplinary modeling techniques, whose understanding and proper application 
transcends the field of integrity and damage tolerance, being able to serve as a basis for 
applications, in other contexts or fields. 
Among the application problems of interest for inverse methods, one can cite Structural 
health monitoring (SHM) and Health and Usage Monitoring Systems (HUMS). 
The monitoring of structural integrity (SHM) is a competitive technique for damage 
detection and identification, wherein information is collected online, and compared with 
an existing database for an undamaged (“healthy”) structure. From this comparison, 
real-time information on the presence of damages can be obtained, including their 
localization, size, propagation speed, and, ultimately, the remaining operational life of 
the structural component. 
The monitoring of mechanical components (HUMS) is a technique which is being used 
to follow / accompany the state of the integrity of mechanical systems / components 
(Health) and to monitor the appearance of indicators of the presence of damage (usage) 
in dynamic systems, such as rotating components (in engines, for example) and in 
gearboxes (in mechanical transmission systems, for example). In this case, the 
comparison is made between vibration signals from the healthy components 
(accumulated historical data) and from the components being monitored, to identify 
significant discrepancies in the vibration signals, which could be correlated to specific / 
particular / known damages. 
The scientific challenge of the modeling of inverse problems, as well as of the adequate 
modeling and quantification of the related uncertainties, in a problem of integrity of 
structures and components, involves several aspects: 
 

Jorge, Ariosto B., et al. (2022) Introduction to Optimization & Identification for Inverse Problems pp. 1-7
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• The modeling of the problems (direct problem, inverse problem, uncertainties) 
needs to be done, whenever possible, by using more than one technique, for each 
case being described, in order to implement, for the particular problem at hand, 
model techiques which are independent, complementary, and/or redundant. 
Whenever possible, more than one model should be used, for redundancy and/or 
comparative analysis, especially in the case of unavailability of prior data for the 
healthy structure and/or component. 

 The techniques used for inverse methods may involve: 
i. Optimization techniques, based on multiobjective optimization models, using 

classical optimization techniques (such as Sequential Quadratic Programming 
(SQP), BFGS, etc), or evolutionary optimization techniques (such as Genetic 
Algorithms (GA), Differential Evolution (DE), etc); 
 

ii. Identification techniques based on Artificial Intelligence, Machine Learning, 
Pattern Recognition, Data Science, etc, models (such as identification models 
based on Artificial Neural Networks (ANN), for example; 
 

iii. Models based on the Wavelet Transform (continuous Wavelet Transform 
(CWT), discrete Wavelet transform (DWT), with different types and sizes of the 
Wavelet window, for example); 
 

iv. Stochastic models (such as Kalman Filter (KF), Extended Kalman Filter (EKF), 
Extended Information Filter (EIF), Particle Filter (PF), Least Squares (LS), etc). 
 

• In several situations, the direct models to be implemented may involve different 
problem physics (Multi-physics Modeling), and multiple scales (Multi-scale 
Modeling). In such cases, the description for the direct problem may involve coarser 
global models, and more detailed local models; 

• The computational simulations and the experimental / laboratory tests must take into 
account the additional challenge of properly simulating / representing the local 
behavior of a complex structure, in the regions of interest, where the defect of 
damage is expected to be, or is expected to appear. For example, Fracture 
Mechanics (FM) problems and Damage Tolerance (DT) problems cannot be 
properly represented by reduced-scale models, as the damaged region must be 
represented using full-scale models. In these cases, the computational simulations 
(and also the experimental / laboratory tests) are required to reproduce the situation 
in the region of the damage using high fidelity local models. Thus, the region of the 
damage must be modeled in full scale, with the model also representing properly the 
geometry, the mechanical properties, and the real loading in that local region 
(loading that is coming from the external loads that were applied in the structure or 
in the component as a whole). 

• In many cases, inverse problems may belong to the category of ill-posed problems, 
which represents an additional challenge in the modeling of the problem at hand. In 
these cases, the approach for the inverse method may require additional hypothesis 
to be made (for problem regularization, for example), or that a meta-modeling 
approach is adopted (such as surrogate models, reduced order models, etc), 
replacing the original model by the proper meta-model, and then solving this 
approximate model for the problem. 
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• The modeling of inverse problems, such as in the case of SHM and/or HUMS, must 
take into account the proper modeling of the sensor behavior, and also the 
uncertainties associated to these sensors, as well as the simultaneous use of multiple, 
independent, techniques for monitoring, with different sensors. The optimal sensor 
positioning, to maximize the Probability of Detection (PoD), may be seen as a 
topological optimization problem and/or as a stochastic optimization problem. 

• The modeling of inverse problems may involve the detection, localization, and 
identification of parameters and/or material properties (for example, properties such 
as elasticity modulus, Poisson’s coefficient, etc), which may vary through time (for 
example, material degradation thought time) and also along the length of the 
structure or mechanical component (for example, local changes which may occur in 
the material properties and / or mechanical properties of a composite plate, due to 
the debonding between the layers of the composite material). 

3 Chapter topics in Volume I: Model-Based and Signal-Based Inverse 
Methods - presentation 
Along this Volume I of the Book Series, several topics related to model-based and 
signal-based methods for inverse problems are presented in the several book chapters, 
representing the collaborative work from researchers, engineers, scholars, engaged in 
research, development and applications in the related areas, affiliated to several 
institutions, universities, industry, and recognized both nationally and internationally. 
The book chapters in this Volume I of the Book Series are distributed as follows: 
Chapter 1: Introduction to Optimization and Identification Techniques for Model-Based 
and Signal-Based Inverse Problems 
Chapter 2: Overview of Some Optimization and Identification Techniques for Inverse 
Problems of Detection, Localization and Parameter Estimation 
Chapter 3: An overview of Linear and Non-linear Programming methods for Structural 
Optimization 
Chapter 4: Overview of Traditional and Recent Heuristic Optimization Methods 
Chapter 5: Application of Machine Learning and Multi-Disciplinary/Multi-Objective 
Optimization Techniques for Conceptual Aircraft Design 
Chapter 6: On a Bio-Inspired Method for Topology Optimization via Map L-Systems 
and Fractone Modeling 
Chapter 7: Fundamentals on the Topological Derivative concept and its classical 
applications 
Chapter 8: Ultrasound Obstacle Identification using the Boundary Element and 
Topological Derivative Methods 
Chapter 9: Fundamental Concepts on Wavelet Transforms 
Chapter 10: Application of Wavelet Transforms to Structural Damage Monitoring and 
Detection 
Chapter 11: Inverse Methods using KF, EKF, EIF, PF, and LS Techniques for 
Detection, Localization, and Parameter Estimation 
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Chapter 12: Fundamental Concepts for Impedance-based Structural Health Monitoring 
Chapter 13: Fundamental Concepts for Guided Lamb Wave-based Structural Health 
Monitoring 
Chapter 14: Machine Learning and Pattern Recognition: Methods and Applications for 
Integrity Monitoring of Civil Engineering Structures  

4 Final remarks and acknowledgements 
This chapter presents an overview of the Book Series in Direct Methods, Inverse 
Methods and Uncertainty Modeling, with focus on its Volume I: Model-Based and 
Signal-Based Inverse Methods, and includes an introduction to the different topics in 
Optimization and Identification Techniques comprising the several chapters included in 
this Volume I of the Book series. 
This book series is an initiative of the Graduate Program in Integrity of Engineering 
Materials (PPG-Integridade) at the University of Brasilia (UnB), Brazil 
(www.pgintegridade.unb.br). 
The editors would like to thank PPG-Integridade and UnB for the initiative, incentive 
and support for this Book Series project. 
The book series is organized as a collaborative work involving researchers, engineers, 
scholars, engaged in research, development and applications in the related areas, 
affiliated to several institutions, universities, industry, and recognized both nationally 
and internationally. 
The editors are grateful and would like to show their appreciation to all the co-authors 
of the book chapters, for their participation, dedication, and support. 
The book series is published as a digital version, with ISBN provided by UnB, and DOI 
for each chapter, provided by the Latin American Journal of Solids and Structures 
(LAJSS) (www.lajss.org). The scope of the Book series is in the broad areas of interest 
of LAJSS, and also of the Brazilian Society of Mechanical Sciences and Engineering 
(ABCM) (www.abcm.org.br) and the Brazilian Association of Computational Methods 
in Engineering (ABMEC) (www.abmec.org.br). For increased visibility, these three 
institutions are encouraging the divulgation of the Book Series project in their websites. 
The editors would like to express their appreciation to LAJSS, ABCM and ABMEC, for 
their incentive, encouragement and support for this Book Series project. 

References 
 
Jorge, A. B. (2020). Technological Demonstration Platform for Inverse Methods and 

Uncertainty Modeling Integrity of Structures and Components (Plataforma 
demonstradora tecnológica para métodos inversos e modelagem de incertezas em 
integridade de estruturas e componentes). University of Brasilia. 
https://repositorio.unb.br/handle/10482/39570 

 

Jorge, Ariosto B., et al. (2022) Introduction to Optimization & Identification for Inverse Problems pp. 1-7

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 7

http://www.pgintegridade.unb.br/
http://www.lajss.org/
http://www.abcm.org.br/
http://www.abmec.org.br/


 

8 
 

 

Chapter 2. Overview of Some Optimization and Identification Techniques 
for Inverse Problems of Detection, Localization and Parameter Estimation 
 
 
 

Chapter details 

Chapter DOI: 
https://doi.org/10.4322/978-65-86503-71-5.c02 
 
Chapter suggested citation / reference style: 

Sousa, Bruno S., et al. (2022). “Overview of Some Optimization and Identification 
Techniques for Inverse Problems of Detection, Localization and Parameter 
Estimation.” In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based 
Inverse Methods,  Vol. I, UnB, Brasilia, DF, Brazil, pp. 8–64. Book series in 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural 
Integrity. 

P.S.: DOI may be included at the end of citation, for completeness. 

 

 

 

Book details 

Book: Model-based and Signal-Based Inverse Methods 
Edited by: Jorge, Ariosto B., Anflor, Carla T. M., Gomes, Guilherme F., & Carneiro, 
Sergio H. S. 

Volume I of Book Series in: 
Discrete Models, Inverse Methods, & Uncertainty Modeling in Structural Integrity 
Published by: UnB City: Brasilia, DF, Brazil Year: 2022 
DOI: https://doi.org/10.4322/978-65-86503-71-5 
 

https://doi.org/10.4322/978-65-86503-71-5.c02
https://doi.org/10.4322/978-65-86503-71-5


Overview of Some Optimization and 

Identification Techniques for Inverse Problems of 

Detection, Localization and Parameter 

Estimation 

Bruno Silva de Sousa1*, Guilherme Ferreira Gomes1, Patricia da Silva Lopes Alexandro1, 

Sebastião Simões Cunha Jr.1 and Ariosto Bretanha Jorge2 

1Mechanical Engineering Institute, Federal University of Itajubá, Itajubá, Brazil.  

E-mail: bruno_s_sousa@unifei.edu.br; guilhermefergom@unifei.edu.br; 

patty_lauer@unifei.edu.br; sebas@unifei.edu.br  

2Post-Graduate Program - Integrity of Engineering Materials, University of Brasilia, Brazil. E-

mail: ariosto.b.jorge@gmail.com 

*Corresponding author 

   

Abstract 

This chapter presents a compilation of the research work being done by the authors and 

collaborators on the topics of optimization and identification techniques for inverse methods 

in damage detection and localization.  

1 Introduction 

In this chapter the work being done in the Research Group in Computational Mechanics 

(GEMEC) at UNIFEI is presented. In what follows, a short introduction of the different journal 

articles and conference papers prepared by the authors along the last 15 years is presented, 

covering different methods and aspects in optimization and identification techniques for inverse 

methods in damage detection and localization. The subsections below refer to each separated 

topic being discussed. 

1.1 Some concepts and definitions used along this chapter 

1.1.1 Structural damage 

Many structures, during their useful life, are submitted to several types of static and dynamic 

loads. These loads and the structural deterioration process can cause different types of structural 

damages. Damage characterization and the knowledge of the changes in the material properties 

corresponding to these damages depend on the type of material and on the structural 

configuration (Lopes et al., 2007). The proper assessment of the damage in a structure can be 

useful to infer its remaining service life (Suveges et al., 2016). 
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Ensuring the integrity of a structure is of paramount importance to ensure the safety of workers, 

the environment and the general public, as many equipment and structures are part of our daily 

lives. For this, the structure as a whole must be evaluated in an attempt to detect possible 

damage and carry out the necessary maintenance actions, quickly, effectively and economically 

viable. Among the various mechanisms that generate damage, there are fatigue, overloads, 

impacts, corrosion and even natural damage, such as tsunamis, winds, earthquakes, among 

others (Alves, 2012). 

According to (Friswell, 2008) and (Lopes et al., 2010), structural damage can be modeled as 

changes in the physical and/or geometric properties of the structure. The choice of the damage 

model will depend on the type of structure under analysis (trusses, beams, plates and others), the 

type of material, the failure modes and the objectives of the damage assessment. For example, 

compared to simplified models based on local stiffness reduction, more detailed models that 

associate a given geometric shape to damage (holes, cavities, inclusions, cracks and others) can 

provide more information for predicting the remaining service life of the structure. Often times, 

the detection and identification of structural damage can be difficult, for example, due to the 

difficulty of accessing the location of the damage (Suveges et al., 2016). 

 

1.1.2 Inverse problem and direct problem  

The life time of any structure can be predicted through the correct determination of the damage. 

To determine the damage must be performed a comparison between measured and simulated 

data using numerical code. The numerical modeling consists in a direct problem and an inverse 

problem, according to (Lopes et al., 2008). For the direct problem, a model is required to obtain 

information on the distribution of the quantity of interest throughout the structure, given the 

boundary conditions and the presence of the damage. For the inverse problem, a model is 

required for the procedure of locating the damage in the structure given some (partial) 

information on the quantity of interest at some particular locations (for example, where some 

sensors are placed) (Lopes et al., 2010). 

The damage detection problem can be ranked as a problem of system identification or an 

inverse problem. Numerical methods, such as the Boundary Element Method (BEM) or the 

Finite Element Method (FEM) can be used for modeling the direct problem (Lopes et al., 2010). 

Parameter identification techniques and optimization techniques can be used to determine the 

unknown parameters of the damage. Among the parameter identification techniques, one can 

cite Artificial Neural Networks (ANN’s) and Kalman Filter (KF). As for the optimization 

techniques, one can cite Genetic Algorithms (GA's), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), Differential Evolution (DE), Lichtenberg Algorithm (LA), 

SunFlower Optimization (SFO), belonging to the category of global optimization techniques 

wherein the global optimum of the system has larger chances of being obtained. 
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1.2 Overview of the research work in optimization and identification techniques  

1.2.1 Damage detection using GA and ANN 

In the work of (Lopes et al., 2007) an example of heat flow through a simple conduction at a 

thin plate is investigated. The BEM is used to simulate the potential values on the external 

surface of the plate at given points. These potential values represent the distribution of 

temperatures on the plate. An assumption is made that the conduction of heat through possible 

internal holes in the plate is considered null (adiabatic holes). The use of thermal techniques 

shows that the distribution of temperatures on a plate changes due to the variations in the 

mechanical properties of the plate, what could be related to a determined damage. ANN's and 

AG's were used for the identification of the number of holes and its locations. Details of this 

work can be found in Section 2.1. 

In the work of (Lopes et al., 2008) the BEM is used as the direct problem, and two independent 

different techniques GA and ANN were used for the inverse problem, in order to localize and to 

identify the presence of circular holes in the structure. Details of this work can be found in 

Section 2.2.  

In the work of (Lopes et al., 2010) two BEM formulations were used, for potential and 

elastostatic problems, respectively. For the potential formulation, the potential values represent 

the distribution of temperatures on the plate at given points. For the elastostatic formulation, the 

quantities of interest are the interior point displacements and stresses. The inverse problem was 

solved using two independent techniques, GA and ANN, thus allowing more reliable 

information on the damage parameters can be obtained, as a comparison of the results from both 

approaches can provide a means to verify these results. Details of this work can be found in 

Section 2.3. 

In the work of (Alexandrino et al., 2019) an inverse problem of damage identification and 

localization in a structure was modelled as a robust optimization problem using a multiobjective 

GA. In the robust optimization problem, the optimum value and small variations around this 

optimum value are considered. This variance function was obtained by a Design of Experiment 

with regression and also through a relation between functional variance and damage parameters 

found by ANN. As a multiobjective GA obtains multiple solutions, a fuzzy decision making 

technique finds the better tradeoff solution for the problem. The BEM was used to obtain the 

distribution of stress to elastostatic problem. Details of this work can be found in Section 2.4. 

In the works of (Gomes, Almeida, et al., 2018) and (Gomes, Mendéz, Cunha Jr., et al., 2018) a 

numerical-experimental inverse problem study of damage and delamination detections in CFRP 

plates was performed. The direct problem is solved by FEM and then GA was used in order to 

solve the inverse problem considering experimental modal data from delaminated structures. 

Details of these works can be found in Section 2.5 for a more general case and in Section 2.6 for 

an aeronautical structure case. 
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1.2.2 Damage location, identification and detection using SunFlower Optimization 

algorithm 

In the work of (Gomes, Cunha Jr., et al., 2019a) a new nature-inspired optimization method 

based on sunflowers’ motion was introduced to treat the damage detection problem as an 

inverse problem with objective function minimization. The proposed SunFlower Optimization 

algorithm (SFO) technique is a population-based iterative heuristic global optimization 

algorithm for multi-modal problems. The new method was then applied in an inverse problem 

of structural damage detection in composite laminated plates. Details of this work can be found 

in Section 2.7 

In the work of (Gomes et al., 2020) an inverse algorithm based on strain fields for damage 

identification in composite plate structures was presented. The inverse analyses combine 

experimental tests and digital image correlation (DIC) with numerical models based on finite 

element update method with great advantage of being a non-contact method. The proposed 

technique identifies the location and dimension of damages in a CFRP plate using static strains 

formulated as an objective function to be minimized. The SunFlower Optimization (SFO) was 

employed to update the unknown model parameters. Details of this work can be found in 

Section 2.8 

1.2.3 Damage identification and detection using Lichtenberg Algorithm  

In the work of  (J. L. J. Pereira, Francisco, Cunha Jr., et al., 2021) a new metaheuristic 

Lichtenberg Algorithm (LA) was applied to solve a complex inverse damage identification 

problem in mechanical structures built by composite material. To verify the performance of the 

new algorithm, both LA and Finite Element Method (FEM) were used to identify delamination 

damage, considering particular situations like noisy response and low damage severity. The 

results were compared to other algorithms such as Genetic Algorithm (GA) and SunFlower 

Optimization (SFO). Details of this work can be found in Section 2.9.  

In the work of (J. L. J. Pereira, Chuman, et al., 2021) the Lichtenberg Algorithm (LA) was 

implemented to develop a numerical identification and characterization of crack propagation. 

The damage identification problem was treated as an inverse problem, which combines FEM 

with LA to identify the propagation direction of cracks in aluminum structures, with emphasis 

on aeronautical structures when using the 6061-aluminum alloy. Details of this work can be 

found in Section 2.10. 

1.2.4 Damage detection using Ant Colony Optimization and Differential Evolution 

In the work of  (Suveges et al., 2016) an inverse plate damage detection problem was solved 

through different global optimization heuristics coupled with BEM. The selected heuristics to 

solve the inverse problem were GA, ACO, PSO and DE. These heuristics were coupled with the 

BEM to identify a damage modeled as an elliptical hole in a thin isotropic plate, varying the 

position, dimension and inclination of the elliptical hole. Details of this work can be found in  

(Suveges et al., 2016). 
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1.2.5 Other optimization techniques: CRS Algorithm and Topological Sensitivity 

Analysis 

In the work of (Sousa et al., 2008) a methodology for multiobjective airfoil shape optimization 

using a global search algorithm was presented, namely, Controlled Random Search Algorithm 

(CRSA). The multiobjective method implemented was the aggregating approach, in which all 

the objectives of the problem are transformed into a single one, through the weighting 

coefficients that representing the relative importance of each objective function of the problem. 

The airfoil shape is parameterized by two Bezier arcs of high degree representing one the lower 

surface and other the upper surface. Constraints are incorporated by means of a penalty scheme. 

As solver was used a modified version of well known viscous-inviscid flow analysis code 

XFoil. Details of this work can be found in Section 2.11 

In the work of (Sousa et al., 2018) two main problems were analyzed, namely the optimal 

design of multilayered composite laminates and the topological sensitivity analysis in 

anisotropic elastostatics. Regarding the composite design, minimal weight structures subjected 

to bending and Hoffmann failure criteria constraints are considered, where the design variables 

are the shape/topology of each ply and the stacking sequence. The application of topological 

sensitivity analysis is extended to obtain the optimal topology of composite laminated 

structures. From the Topological Derivative mapping methodology, considering the total 

potential energy as an objective function, the optimal topology is obtained by gradual insertion 

of material in the considered domain. The Topological Derivative defines the shape of the new 

added plies, and the optimal layup is obtained by using ACO. Details of this work can be found 

in Section 2.12. 

 

2 Numerical and Experimental Applications 

2.1 Damage Detection using Global Optimization and Parameter Identification 

Techniques  

The damage detection is an important branch of engineering where some measurements can be 

applied to guarantee the structural security. The life time of any structure can be predicted 

through the correct determination of the damage. In this work, an example of heat transfer 

through simple conduction at a thin plate is investigated. The Boundary Element Method (BEM) 

is used to simulate the potential values on the external surface of the plate at given points. These 

potential values represent the distribution of temperatures on the plate. An assumption is made 

that the conduction of heat through possible internal holes in the plate is considered null 

(adiabatic holes). The use of thermal techniques shows that the distribution of temperatures on a 

plate changes due to the variations in the mechanical properties of the plate, what could be 

related to a determined damage. The genetic algorithm (GA) is used as the optimization 

procedure and the artificial neural network (ANN) approach is used as a parameter 

identification technique to identify the number of holes and their locations. The MATLAB® 

was used for the development of the damage detection program. 
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GA is a search method based on the processes of natural evolution. This method works with a 

set of possible solutions for a given problem (initial population) and the problem variables are 

represented as genes in a chromosome or an individual. Starting from an initial population, the 

individuals with better adapted genetic characteristics have higher chances of surviving and 

reproducing (Lopes et al., 2007). Parameters of the GA influence in the behavior of the method 

and the most important parameters are: population size, generation number, crossover 

probability and mutation probability. The choice of the best configuration for the GA 

parameters is difficult and this choice depends on the realization of a great number of 

experiments and tests. 

To obtain the unknown damage parameters (location and size) through the GA, a functional can 

be defined as the difference between the ‘measured’ values (‘simulated’ values by BEM) of the 

potential difference (between undamaged plate and plate with damage) and the ‘calculated’ 

values obtained from the damage detection program. This functional corresponds to the fitness 

function of the GA. The minimization of this fitness function allows the damage detection 

program to find the unknown damage parameters. The potential values are simulated through 

BEM for the potential in 49 internal points of the plate. The functional formulation is shown in 

Eq. (1). 

  2
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simulated calculated
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n

j i ji
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                  (1) 

where n is the number of internal points i (“sensors”in the plate) where the differences are 

evaluated; simulatedi is the vector of simulated values for the differences obtained using BEM 

for a given damage, and calculatedji is the vector of differences in potential calculated by the 

code for each individual j. 

To analyze the circular hole detection problem, a plate with the dimensions (0.06×0.06) m was 

simulated through the BEM, as illustrated in Fig. 1(a) for potential problem. 

 

 

a b 

Figure 1: Plate model for potential problem: (a) dimensions, loading and 
boundary conditions; (b) boundary discretization and sensor locations. 
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Initially, a plate without damage was simulated through BEM. The plate boundary was 

discretized into 12 elements and the value of the potential was evaluated at 49 internal points 

(Fig. 1 (b)). The boundary conditions for the problem were considered the heat flow (q) and the 

temperature (u) on the external boundary. Then, a plate with a central hole of radius 0.06 cm, 

with the same dimensions and boundary conditions, was also simulated, and the obtained results 

for the potential were compared with the plate without damage. For the internal boundary (hole) 

of the plate, zero heat flow was considered. 

The results for the damage detection problem using potential formulation with 330 individuals 

in the initial GA population are presented in Fig. 2. This population was assembled considering 

holes of three different radius sizes (0.03, 0.09 and 0.15 cm) in 110 different positions for each 

radius on the plate, and the values of the potential difference (between undamaged and damage 

plate) at the 49 internal points. The values of the potential difference were normalized, taking in 

consideration the largest value of this difference. As the potential values near the right border 

(temperature equal to zero) of the plate are close to zero, the potential difference is used instead 

of the direct use of the potential value. The program was run only five (5) times, because there 

was no significant difference when this value was increased. In Fig. 2, the “real” position of the 

hole is represented in continuous line and the results found by the GA in non-continuous lines. 

Insets show the region of hole in detail. 

  
a b 

Figure 2: “Real” (continuous line) and simulated hole (non-continuous lines) for 
potential: (a) for a central hole with elitism equal to 2; (b) for a central hole with 

elitism equal to 10. Insets show the region of hole in detail. 

 

After several attempts to configure the GA parameters, good results were obtained for the 

problem. Fig. 2(a) and (b) shows a hole with radius equal to 0.06 cm in the position (3; 3) cm. 

The difference between the two results is that in Fig. 2(a) the elitism parameter (number of 

individuals that survive to the next generation) was equal to 2, and in Fig. 2(b) this parameter 

was equal to 10. Increasing the value of elitism from 2 to 10, the holes were concentric        

(Fig. 2(b)), and the hole position presented a small uncertainty. Moreover, the radius for every 

simulation was not much sensitive to the variation of the GA parameters. In simulations, the 

tolerance of the problem was reached, in other words, there was no improvement in the 

objective function (fitness function) and the maximum number of generations was not reached, 

showing a good convergence of the algorithm. Due to the small mutation presence and a 

crossover function that is different for each run of the algorithm, the results are different for 

each run of GA approach, in other words, there is an associated occurrence probability. So, the 
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developed program finds an occurrence area of the damage, what can be verified by the 

presented results. 

The previous results were for the program that only detects one hole in the plate. For the 

program that detects up to two holes, the initial population took into consideration the 330 

individuals representing only one hole in the plate and other 330 individuals representing two 

holes, totaling 660 individuals. How the initial GA population was formed for this case can be 

seen in (Lopes et al., 2007). The results obtained from this program for the detection of a hole in 

the plate were similar to the results already presented. However, there was difficulty in detecting 

two holes in the plate. Perhaps, the values of the radius were very small and, moreover, there 

was lack of consistent information supplied by the BEM. Finally, the chromosome codification 

of the GA should be the most random to consider all possible solutions of the problem.  

Now considering resolving the inverse problem through parameter identification technique, an 

ANN is a computational technique that presents a mathematic model to represent the human 

brain and to try to simulate the learning process of this brain. An ANN is formed by the 

interconnected neurons whose inputs can be obtained from the outputs of other neurons or from 

input nodes. Different configurations of the artificial neuron can be made to develop different 

network topologies that can be set for the layer number, amount of neurons in the layers and the 

connection type among the neurons (Rao et al., 2006). In this work, a backpropagation neural 

network (BPN) is used, through a feedforward configuration and the backpropagation learning 

algorithm. In a feedforward configuration, neurons are interconnected in layers and the data 

flow only occurs in a direction (CHONG & ZAK, 2004). The backpropagation learning 

algorithm carries out a supervised training process where the desired outputs are given as part of 

the training vector. Then, the correct ANN output is found through the weight adjustment 

among the layers. 

The ANN's simulate the non-linear behavior between the measured potential values in the plate 

and the hole parameters (location and size). In ANN, the potential difference in the plate is 

supplied in the input of the network, and the parameters (location and radius) of the hole are 

supplied in the output. After setting network parameters, the created network can be trained and 

tested for other potential difference data, obtaining as answer, the hole parameters. 

Considering the previous problem of heat flow, initially the presence of a single hole in the 

structure was studied. Then, the influence in the results was verified when the number of sensor 

at the plate was decreased. The sensors were uniformly distributed on the plate and no 

positioning study of the sensors was performed. The problem domain is reduced when there is a 

decrease of the sensor number on the plate. A hole with a radius equal to 0.05 and 0.15 cm in 

nine different hole positions was considered to assemble the input (potential) and output (hole 

parameters - location and size) data of ANN. After a few attempts to configure the ANN, the 

results for a hole of radius 0.10 cm in the positions (3; 3) cm (Fig. 3(a)), (1; 1) cm (Fig. 3(b)), 

and (5; 5) cm (Fig. 3(c)) for five (5) sensors on the plate could be found. The “real” position of 

the hole is represented in continuous line and the results found by the ANN in non-continuous 

lines. 
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a b c 

Figure 3: Potential problem: results from the ANN with five sensors for a hole at 
position: (a) (3; 3) cm; (b) (1; 1) cm and (c) (5; 5) cm. 

 

In order for the ANN to detect more than one hole, the input data in the damage detection 

program needed to be modified. In this case, 25 sensors were considered on the plate and no 

reduction in the sensor number was done. The results showed that it is more difficult to detect 

more than one hole. The results depend on the quality of the input data of the ANN and of the 

appropriate choice of the configuration parameters of the network. To continue with the 

detection of more than a hole in the plate through the ANN, the direct problem (data obtained 

from the BEM) should be gotten better. New loadings on the plate and a new BEM should be 

considered, allowing to identify circular and elliptic holes, and also cracks, in the structures. 

 

2.2 Detection of Holes in a Plate Using Global Optimization and Parameter 

Identification Techniques 

The life time of any structure can be predicted through the correct determination of the damage. 

To determine the damage, the numerical modeling consists in a direct problem and an inverse 

problem. For the direct problem, a model is required to obtain information on the distribution of 

the quantity of interest throughout the structure, given the boundary conditions and the presence 

of the damage. For the inverse problem, a model is required for the procedure of locating the 

damage in the structure given some (partial) information on the quantity of interest at some 

particular locations (for example, where some sensors are placed). As in Section 2.1, the 

software MATLAB® was used for the development of the damage detection program. 

In this work, the direct problem is modeled by means of the elastostatic formulation of the 

boundary element method (BEM). In this formulation, the quantities of interest are the interior 

point displacements and stresses. The problem consisted of a plate with an internal hole, 

considering some boundary conditions (traction on the external surface of the plate). The 

stresses at internal holes in the plate are assumed null. The inverse problem of identifying the 

presence, location and size of damages (circular holes) in a plate structure is modeled using 

optimization and parameter identification techniques. Again, the genetic algorithm (GA) is used 

as an optimization technique and the artificial neural network (ANN) is used as a parameter 

identification technique. GA and ANN are independent techniques to obtain the damage 

location, thus providing a means to verify the results. 

Sousa, Bruno S., et al. (2022) Optimization, Identification for Detection, Localization & Estimation pp. 8-64

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 17



As in Section 2.1, GA is used to find the optimal solution to the problem through a functional. 

For elastostatic formulation, the same equation (Eq. (1) in Section 2.1) can be used as fitness 

function, considering the mean stress values instead of the potential values. The minimization of 

this fitness function allows the damage detection program to find the unknown parameters of the 

damage. 

To analyze a circular hole detection problem, a plate with the dimensions (0.06×0.06) m was 

simulated through the BEM, as illustrated in Fig. 4(a), for elastostatic problem. 

 

 

a b 

Figure 4: Plate model for elastostatic problem: (a) dimensions, loading and 
boundary conditions; (b) boundary discretization and sensor locations. The 

inset shows a stress-free hole and hole discretization for elastostatic problem. 

 

For the elastostatic problem, the boundary conditions (Fig. 4(a)) for the external boundary were 

considered a pair of equal and opposite tractions (tensile stress equal to 1000 MPa) and for the 

internal boundary (hole) of the plate were considered zero traction. A study of the influence of 

numerical errors due to the BEM discretization for the external contour of the plate in the 

optimization was performed in this problem. Fig. 4(b) shows the discretization for the case of  

48 elements in the outer boundary and 12 elements in the hole, as well as the position of the 

nine sensors uniformly distributed on the plate. The plate was simulated with shear modulus 

equal to 94,500MPa and a Poisson’s ratio for plane strain equal to 0.1. 

The results for the problem with 363 individuals in the initial GA population are presented in 

Fig. 5 for elastostatic formulation. This population was assembled considering holes of three 

different radius sizes (0.05, 0.10 and 0.15 cm) in 121 different positions for each radius on the 

plate, and the values of the difference (between undamaged and damage plate) in the mean 

stress at the 9 internal points. The values of the difference in the mean stress were normalized, 

taking in consideration the maximum value of this difference. The values of x and y coordinate 

of the hole center and its radius were also normalized, considering the respective maximum 

value. The program using GA was run ten (10) times and generated a different optimal solution 

each time it ran the algorithm due to its own randomness. Nevertheless, the results of the GA 

approach present a tendency to be concentrated near the “real” hole. The “real” position of the 

hole is represented in continuous line and the results found by the GA in non-continuous lines. 
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a b c 

Figure 5: “Real” and simulated hole for mean stress: (a) for a central hole; (b) 
for a hole at (2; 2) cm and (c) for a hole at (5; 3) cm. 

 

Again, after several attempts to configure the GA parameters, good results were obtained for the 

problem. Fig. 5(a) shows the results for a central hole; Fig. 5(b) shows a hole located at (2;2) 

cm; and Fig. 5(c) shows a hole located at (5;3) cm. The radius of each plot was considered equal 

to 0.12 cm. It is worth noting that for each problem under study, a new configuration of the GA 

must be performed, which is therefore different from the previous problem. GA also presents a 

high computational cost due to the several evaluations of the fitness function. The damage 

detection code using GA can find a region for the probable occurrence of the hole, as this 

algorithm generates a different optimal solution every time it is run. Thus, a confidence interval, 

for the different parameters being identified, can be obtained. 

Now, considering the elastostatic formulation and the same normalized data from the initial GA 

population for this formulation, the ANN simulates the non-linear behavior between the values 

of the local difference in the mean stress (between undamaged and damage plate) and the hole 

parameters (location and size). Information regarding the difference in the mean stress is 

supplied in the input of the network, besides the parameters of the hole are supplied in the 

output of the same network. After creating and training the ANN, this network was tested for a 

0.12 cm radius hole in different positions. Fig. 6 shows the results for nine sensors on the plate. 

The “real” position of the hole is represented in continuous line and the results found by the 

ANN in non-continuous lines. 

   
a b c 

Figure 6: Elastostatic problem: results from the ANN with nine sensors for a 
hole at position: (a) (3; 3) cm; (b) (1; 1) cm and (c) (5; 5) cm. 
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In Fig. 6, the results show a small area of uncertainty near the “real” hole and the hole size was 

obtained with good accuracy. These results were obtained more quickly than in the case of using 

GA (as a global optimization technique). For this reason, the solution of a damage detection 

problem through the ANN (as a parameter identification technique) is also known as an online 

identification. An advantage of the use of ANN in regard to the GA is that, after training the 

network, holes with different sizes and in different locations can be tested without running the 

damage detection program again. More information about how ANN was set up and trained can 

be found in (Lopes et al., 2008). 

 

2.3 Detection of Holes in a Plate Using Global Optimization and Parameter 

Identification Techniques 

Several types of static and dynamic loads and the structural deterioration process can cause 

different types of structural damage. The knowledge of the change in the material properties 

corresponding to the damage depends on the type of material and structural configurations. The 

assessment of the structural damage can be performed through a comparison between measured 

and simulated data. A measured data represents information about a “real” hole and a simulated 

data represents information obtained from each run of the inverse problem. Usually, the 

information on the “real” plate (a plate with a hole with unknown size and location) would be 

available by means of an experimental device, in which sensors would be put in all selected 

interior point locations. However, a numerical code is required to obtain both simulated data and 

measured data, in which a direct model of the problem is consistently used by an inverse 

problem algorithm.  

For the direct problem, two formulations based on Boundary Element Method (BEM) were 

required to obtain the information on the distribution of the quantity of interest throughout the 

structure, given the boundary conditions and the presence or absence of the damage. Potential 

formulation for the heat transfer (conduction) and elastostatic formulation for the distribution of 

displacements and stresses on the plate at given points. In both cases, a small hole inside the 

domain is modeled as damage on the plate.  

For each run of the direct model, the information about the hole (location and radius), boundary 

conditions, loading in addition to information on hole and plate discretization are provided. 

After evaluating the boundary solution, the BEM code evaluates, as a post-processing, some 

quantities of interest at selected interior points that can be candidates to sensor locations for an 

experimental setting. Each run of the direct method using the potential formulation provides one 

piece of information (the potential, i.e. the temperature) at the selected interior points. On the 

other hand, the elastostatic BEM formulation provides three pieces of information at an interior 

point (the components of the stress tensor, i.e. two normal stresses and one shear stress). As the 

goal of the inverse method is to identify and locate the hole, but not to identify any direction-

dependent properties, mean stress is used as an independent scalar quantities obtained at the 

selected interior points. 

The inverse problem of identifying size and location of a small hole in a plate structure can be 

modelled using optimization and parameter identification techniques. The genetic algorithm 
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(GA) is used as the optimization procedure and the artificial neural network (ANN) approach is 

used as a parameter identification technique. By solving the inverse problem using two 

independent techniques (GA and ANN), more reliable information on the damage parameters 

can be obtained, as a comparison of the results from both approaches can provide a means to 

verify these results and also allows for the validation of the inverse procedure. 

The presence of damage may induce rapid changes in the field variable of the problem, and 

even discontinuities in the governing equation in the domain. Classical calculus-based 

optimization methods require evaluation of derivatives of the objective function, which may not 

be possible to be obtained, or may be numerically obtained, with unacceptable inaccuracy. 

Besides, these problems can have several local minima (multiple solutions), and thus a global 

optimization method (such as GA) is a better choice for the numerical solution (Engelhardt et 

al., 2006; Stavroulakis & Antes, 1998). On the other hand, GA uses multiple points to search for 

the solution, rather than a single point, and a global minimum has a better chance of being 

obtained. Also, as GA does not require any evaluation of derivatives, no errors are included in 

the solution due to the approximation of these derivatives. 

Damage detection problem in a thin plate can be formularized as an optimization problem using 

GA according to the flowchart in Fig. 7. The initial population of GA is a set of possible 

solutions for a given problem that can be formed by the geometric information of a numerical 

hole (x and y coordinates of its center, and also its radius) and also by differences in the 

quantities of interest (‘difference 1’) calculated at selected interior points. ‘Difference 1’ is the 

local difference in the potential or the local difference in the mean stress between the 

undamaged plate and the plate with damage for potential and elastostatic formulations, 

respectively. ‘Difference 2’ is a set that can be evaluated at the same interior points, 

representing the ‘measured’ differences for the quantity of interest at these points for the “real” 

hole (also simulated in this work). To validate the damage detection approach, the value of 

‘Difference 2’ was not allowed to be in the initial population of the GA approach. The initial 

population and also ‘Difference 2’ are employed in the fitness function. The fitness function can 

be represented as the functional presented in Section 2.1 by Eq. (1) for the potential formulation. 

For elastostatic formulation, the same equation can be used, considering the mean stress values 

instead of the potential values. 

 

Figure 7: Flowchart for the optimization procedure using GA. 
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The goal of the GA approach is to look for a minimum value of the fitness function. For that, 

the algorithm uses genetic operators to modify the population and subsequently reevaluate the 

fitness function for the new population. As convergence criteria, the maximum number of 

generations or epochs was assumed, together with a default criterion for the tolerance (more 

details can be seen in (Lopes et al., 2010)). When the convergence criterion is met, the 

numerical holes have reached the vicinity of the “real” hole, and thus the information about the 

location and size of the “real” hole is obtained. 

The problem of damage detection in a thin plate also can be formularized as a parameter 

identification problem (using ANN) according to the flowchart in Fig. 8. In this flowchart a 

network is created, considering ‘Difference 1’ (the same ‘Difference 1’ as in the GA approach) 

as the input data and the geometric information for the hole (x and y coordinates of the hole 

center, and its radius) as the output data. The next step is to train the created network, obtaining, 

as a result, a NET that contains information about how to proceed for another input data in the 

problem domain. Finally, the trained network is simulated for ‘Difference 2’ (same    

‘Difference 2’ as in the GA approach). Similar to the optimization algorithm, convergence 

criteria (error goal and epochs) was set to this approach. When the convergence criterion is met, 

the ANN has identified the “real” hole providing the information about its location and size. 

 

Figure 8: Flowchart for the parameter identification procedure using ANN. 

 

To analyze the circular hole detection problem, a plate with the dimensions (0.06×0.06) m was 

simulated through the BEM, as illustrated in Section 2.1 by Fig. 1(a) for potential problem and 

in Section 2.2 by Fig. 4(a) for elastostatic problem. In addition, the plate discretization and 

sensor location (internal points) were presented in Section 2.1 in Fig. 1(b) for potential problem 

and in Fig. 4(b) for elastostatic problem. The results for the damage detection problem using 

GA and ANN, considering the potential formulation, can be seen in Section 2.1. In Section 2.2, 

the results for the elastostatic formulation are presented for both techniques. 

Then, the introduction of random noises into measured data to examine how the inverse method 

using GA responds to measurement error was investigated. The random noise is a signal formed 

by a set of random numbers drawn from a normal distribution with zero mean (white noise) and 

with the coefficient of variation (COV) given as a percentage (5% or 10%) of the measurement 

value at the sensor location. The flowchart presented in Fig. 9 shows this approach. 
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Figure 9: Flowchart for the analysis of the measurement error. 

 

As can be seen in Fig. 9, the noise is added to the measured data to create a set called 

“Measured data 2”. This new measured data was normalized and then used in the GA approach 

for the elastostatic problem. The GA approach was run 10 times for each case (5% and 10% 

noise), always considering the same configuration of parameters as in the case without noise. In 

each run of the GA, a different noise signal was generated with the proper COV. A hole in (3, 3) 

cm position with a radius size equal to 0.12 cm was simulated for the elastostatic problem, 

considering each random noise into measured data. The results show that the GA optimization 

procedure, for identification and localization of the hole in the structure, presents very small 

sensitivities to changes in the measured values at the sensors, proving the robustness of the 

algorithm. 

A plate with external dimensions (0.10×0.10) m was simulated for comparison with the 

literature results (Stavroulakis & Antes, 1998). The results found for the elastostatic problem 

using GA by both examples are shown in Table 1. In both examples, the loading was applied on 

the left-hand side of the external boundary of the plate and the right-hand side was fixed, 

material constants were considered equal to 100 GPa for shear modulus, 0.3 for Poisson’s ratio 

and the results were obtained after 200 generations of GA. In this work, the results were reached 

for a static loading of 1000MPa in horizontal and vertical coordinate direction, the GA 

population was equal to 49 individuals and only a hole with diameter equal to 0.5 was 

considered in some positions where the test case (“real” hole) was not included in the initial 

population, validating the results obtained. In (Stavroulakis & Antes, 1998), the plate was 

subjected to a harmonic dynamic loading in both directions on the left-hand side of the plate, the 

GA population was equal to 5 individuals and no information was given in that text on how the 

individuals of the population are placed in the plate. 

Table 1: GA approach: comparison with literature results. 

  
Results presented by  

Stravoulakis & Antes (1998) 

 
Results in this work 

Test 
“Real” 

hole 

Calculated 

best element 

Average for 

1000 solutions 

Error 

(%) 

 Calculated 

best element 

Average for 

20 solutions 

Error 

(%) 

x 4.0 3.9606 5.59 38.75  3.7336 3.52 12.00 

y 4.0 4.0236 4.74 18.50  3.9578 3.95 1.25 

Diameter 0.5 0.4968 0.52 4.00  0.5000 0.53 6.00 
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As shown in Table 1, the GA approach used in this work has presented, for most cases, more 

accurate results in the identification of the “real” hole dimensions, with respect to the GA 

approach used in the literature example. In that literature example, an average of 1000 solutions 

was computed, while in this work, only an average of 20 solutions was performed. Also, for 

each solution, only a few seconds were needed to run the inverse program using GA on a PC. 

These features illustrate the accuracy and the low computational cost of the current approach. 

In short, the analysis of the results indicates that the damage detection code using GA can only 

find a region for the probable occurrence of the hole, as this algorithm generates a different 

optimal solution every time. Moreover, the GA approach in this work was robust in regard to 

the measurement error, as only a small error was obtained in the results when a noise of 10% 

was added to the measured data. Also, this GA approach compares well, both in accuracy and in 

computational cost, with respect to a similar GA approach used in the literature for damage 

identification. ANN has also generated good results for the several parameters being identified. 

An important observation is that very small holes are difficult to observe by the damage 

detection program, mainly when these holes are close to the borders of the plate. The 

optimization and the identification techniques adopted in this inverse problem can be used 

concomitantly, as independent procedures to identify the presence of a hole on the plate, thus 

providing a means to verify the numerical results obtained for the location and size of the 

damage in the structure, increasing the confidence in the damage identification results. 

 

2.4 A Robust Optimization for Damage Detection Using Multiobjective Genetic 

Algorithm, Neural Network and Fuzzy Decision Making 

Damage can cause changes in the properties of a structure whose effects can be analyzed by 

inverse damage detection techniques. The inverse problem of damage detection can be modeled 

through a direct problem, an inverse problem and the presence of uncertainty. In the direct 

problem, given the boundary conditions and the presence of the damage, the distribution of the 

quantity of interest throughout the structure is obtained. In the inverse problem, a procedure of 

locating damage in the structure given some information on the quantity of interest at some 

particular locations is modeled. Moreover, both direct and inverse problems are stochastic, 

therefore some kind of treatment of randomness needed to be performed at variables of the 

problems. Uncertainties are present in modeling of the plate structure under study, at damages in 

this plate structure and at numerical modeling of the problems. 

Considering the direct problem modeling, BEM approach in 2D was used for elastostatics 

problem. Two BEM model was built for a plate, a model for a circular hole on the plate and a 

model for a crack that can be represented as an elliptical hole (with semi-minor axis much 

smaller than the semi-major axis). For the plate model with a circular hole, the parameters of the 

direct problem are the same as shown in Section 2.3 (hole boundary conditions, plate and hole 

discretization; mean stress between undamaged and damage plate, etc.). For the plate model 

with a crack, a plate with the dimensions (1.00×1.00) m was simulated. In this plate, an 

elliptical hole has as parameters the angle of inclination θ to the horizontal axis, semi-major axis 

a, semi-minor axis b, and the center of the hole (x,y). Nine internal points were chosen on the 

plate (uniformly distributed) to provide the desired information. For the inverse problem, after 
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the direct BEM model evaluates the differences in mean stress between the undamaged and 

damage plate for the interior points, these differences are supplied as input to the multiobjective 

GA subroutines. 

Optimal values to the objective functions and minimum variations of these functions at the 

optimal point vicinity are the goals of robust optimization. In this case, robust optimization also 

is a multiobjective problem and the optimal solutions for a problem are robust because these 

solutions are points in the feasible region where the values of objective function are insensible 

to small variations around these points. In this work, a robust optimization problem was 

performed, considering three approaches: (i) an approach with a functional function and a 

functional variance function for normal distribution, considering information of sensors in the 

population of multiobjective GA; (ii) another approach with the same functions, however 

without information of sensors in the population; and; (iii) an approach with functional function 

and no function for functional variance, but a relation between functional variance and hole 

parameters (center and radius) found by ANN for each individual in fitness function of 

multiobjective GA. 

Taking the first and the second approaches into account, a function for the variance of the 

functional (Eq. (1) in Section 2.1) needs to be found. In these cases, the variance function is 

obtained through a multivariate regression with terms until third order. The independent 

variables are information about holes (for a circular hole, x and y coordinates of its center, and 

also its radius r) and the dependent variable is the standard deviation of the functional 

formulation for each hole. The whole procedure of how the variance function was found is 

presented in the work (Alexandrino et al., 2019). A natural logarithm of values was used for a 

change of scale, then, a multivariate regression was performed with regard to x, y and r 

parameters (considering a 95% confidence level). Since the place of sensors was not considerate 

at computations of the functional variance function, discontinuities can be avoided at this 

function. The multivariate regression function found presents a R2 value equal to 83.9% and a 

p-value equal to 0 for the normal distribution. 

In Fig. 10 is presented a flowchart to the robust optimization problem considering information 

of sensors (“Difference 1”) in the population of multiobjective GA (first approach). 

 

Figure 10: Flowchart for the optimization procedure using multiobjective 
genetic algorithm e fuzzy decision making.  

Multiobjective GA 
Initial 

population 

Result 

Non-dominated 

solutions 

Difference 2 
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Considering this Fig. 10, the initial population for the multiobjective GA approach is formed by 

the geometric information of a numerical hole (x and y coordinates of its center, and also its 

radius r) and also by differences in the mean stress (“Difference 1”) calculated at selected 

interior points on the plate. This initial population and “Difference 2” (“measured” data for the 

mean stress in interior points for “real” hole) are employed in the fitness function of 

multiobjective GA. Bearing in mind that the “Difference 2” values are not in the initial 

population in order to validate the damage detection approach. The fitness function is formed by 

two functions (functional formulation and a function for the standard deviation of this functional 

or square root of the functional variance function). The result obtained from multiobjective GA 

(considering a variant of NSGA-II algorithm developed by (Deb et al., 2000) in MATLAB®) is 

a set of Pareto front points (non-dominated solutions) and the best tradeoff solution is found by 

a decision-making method based on fuzzy set theory. 

The initial population for multiobjective GA approach with the presence of sensors information 

(first approach) and a circular hole was assembled with 168 individuals. The holes of this 

population had three different radius sizes (0.10 cm, 0.125 cm and 0.15 cm) in different 

positions for each radius on the plate and the place of sensors was not considerate in the initial 

population. The other GA parameters can be seen in (Alexandrino et al., 2019). The Pareto front 

for a hole in (1.0;2.0) cm and radius equal to 0.12 cm is showed in Fig. 11(a). This Pareto front 

was obtained in GA generation equal to 106. The number of Pareto front points was equal to 

126 and these points were represented in non-continuous (dashed) line in Fig. 11(b). In this 

same figure, the “real” hole is represented in continuous line and the fuzzy decision making 

results (“Result 1”, “Result 2”, and “Result 3”) in dash-dot line. The “real” hole, Result 1, and 

some results from multiobjective algorithm are showed with more details at zoom area in this 

Fig. 11(b). 

  
a b 

Figure 11: First approach results: a) Pareto front; b) “Real” hole (full line), 126 
holes found by the variation of NSGA-II algorithm (dashed line), and fuzzy 

decision making result (dash-dot line). 

These fuzzy decision making results in Fig. 11(b) consider different fuzzy qualifiers that works 

with imprecise information (Alexandrino et al., 2019). “Result 1” is the result from fuzzy 

decision making where the functional formulation function is “more important” than standard 

Result 1 

Result 2 

Result 3 
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deviation of this functional. “Result 2” presents the result for no importance (without using the 

fuzzy qualifier) to the functions (functional formulation and its standard deviation). “Result 3” 

is the result for the case where only the standard deviation of functional formulation is present. 

This last result (“Result 3”) corresponds to the hole more distant from “real” hole. 

In Fig. 12 is presented a flowchart to the robust optimization problem without information of 

sensors in the population of multiobjective GA (second approach). 

 

Figure 12: Flowchart for the multiobjective optimization procedure using 
multiobjective GA, without information of sensors in the population. 

 

Considering this Fig. 12, the initial population for the GA approach is formed by only the 

geometric information of a numerical circular hole (x and y coordinates of its center, and also its 

radius r). This initial population and “Difference 2” (“measured” data for the mean stress in 

interior points for “real” hole) are employed in the fitness function. Again, the fitness function is 

formed by two functions (functional formulation and a function for the standard deviation of 

this functional). As “Difference 1” is not in initial population, now the “calculated” vector of the 

functional formulation is a BEM procedure that finds the differences in mean stress 

(“Difference 3”) for each individual of population in a generation. The “measured” vector is the 

“Difference 2” set. 

The initial population for multiobjective GA approach without the presence of sensors 

information (second approach) and a circular hole was assembled with only 6 individuals. The 

results found by multiobjective GA to a hole at (1.0,2.0) cm and radius equal to 0.12 cm are 

showed in Fig. 13. The number of points on the Pareto front was equal to 5. The result obtained 

from multiobjective GA approach using fuzzy decision making shows that the exact location of 

“measured” hole was found. 
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Figure 13: Graphical representation of 5 Pareto front points (dashed line) and 
“real” hole (full line). 

 

Then, taking the third approach into account, a relationship between the functional variance and 

the hole parameters using ANN, needs to be found. Figure 14 presents a flowchart to the robust 

optimization where a relation between functional variance and circular or elliptical hole 

parameters can be found by ANN. This relation is performed to each individual in fitness 

function of multiobjective GA so, no function to variance is necessary. The created network is 

known as “NET” that is used in fitness function to find the variance which mean squared give a 

standard deviation for each hole information in the fitness function. Again, a set of Pareto front 

points (non-dominated solutions) is obtained from resolution of multiobjective GA problem and 

the best tradeoff solution can be found by fuzzy decision making method. In this flowchart, the 

sensors information (“Difference 1”) is considered in the initial GA population. 

 
Figure 14: Flowchart for the optimization procedure using multiobjective 
genetic algorithm, artificial neural network and fuzzy decision making. 
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Considering a circular hole, the “real” hole is represented in continuous line in position (1.0;2.0) 

cm with a radius equal to 0.12 cm in Fig. 15(a). The results were obtained in generation equal to 

10 for the same initial population as in the first approach. The number of Pareto front points was 

equal to 77 and these points are represented as circular holes in non-continuous (dashed) line in 

Fig. 15(a). The fuzzy decision making results are represented in dash-dot line. The “real” hole 

and some results from multiobjective algorithm are showed with more details at zoom area in 

this Fig. 15(a). 

Now, for elliptical hole representing a crack in hole in (20;20) cm, with semi-major axis equal 

to 4.0 cm and semi-minor axis equal to 0.75 cm, and angle of inclination equal to 45° is showed 

in Fig. 15(b) in continuous line. The results for Pareto front points equal to 24 are represented as 

circular holes in non-continuous (dashed) line. These results were obtained in generation equal 

to 20 and the initial population of GA consisted of 256 individuals. The initial population and 

the configuration of the GA approach can be seen in (Alexandrino et al., 2019). 

 

  
a b 

Figure 15: Third approach results: a) for a circular hole; b) for a elliptical hole. 

 

In Fig. 15(a), the result from fuzzy decision making was a hole at location x = 1.006 cm,            

y = 2.005 cm, and radius r = 0.124 cm. This result considered the functional formulation 

function “more important” than standard deviation of this functional. An error in x position was 

found about 0.59%, in y position was found about 0.23%, and an error in radius was found 

about 3.07%. These error results show that an approach using ANN to find a relation between 

functional variance and hole parameters (center and radius) is a better choice than an approach 

where a function of variance functional was found. In Fig. 15(b), the result for functional 

function considered “much more important” than its standard deviation was a hole in 

(20.0;20.1) cm, with semi-major axis equal to 4.2 cm and semi-minor axis equal to 1.00 cm, and 

angle of inclination equal to 54.4°. Due to the inherent randomness of the methodology, if it is 

performed again, similar results will be obtained. The methodology cannot find the exact values 

of parameters but can determine the region with the damage with good accuracy. 

Still considering an elliptical hole, Fig. 16 shows the convergence behavior of the separately 

treated J1 and J2 (deviation of J1) functions by addressing the minimum of each function (of the 
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optimal Pareto vector for each one). It is observed the efficient process of convergence of the 

proposed algorithm. 

  
a b 

Figure 16: Convergence of the objective functions: a) J1; b) J2. 

 

It is known that an elitist GA always favors individuals with better fitness value (rank). A 

controlled elitist GA also favors individuals that can help increase the diversity of the 

population even if they have a lower fitness value. It is important to maintain the diversity of 

population for convergence to an optimal Pareto front. Since a multiobjective optimization was 

applied to this work, it would be interesting to evaluate the convergence behavior through the 

Pareto front. Figure 17 shows the Pareto fronts for the inverse problem proposed for some 

specific generations. This Pareto front is for elliptical hole representing a crack in (20;65) cm, 

with semi-major axis equal to 2.4 cm and semi-minor axis equal to 0.6 cm, and angle of 

inclination equal to 0°. The results shown in Fig. 17 show the approximation of the optimal 

solutions to the axes. In addition, Fig. 18 shows a 3D projection of all 100 Pareto fronts (100 

generations) obtained. It can also be seen the convergence of all the non-dominated solutions to 

the optimal front. 

 

   

a b c 

Figure 17: Pareto front convergence for generation: a) 10; b) 40; c) 100. 
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Figure 18: Pareto fronts for the 100 generations evaluated showing the 
convergence process. 

 

Results for the problem, considering that sensors information was not presented in the GA 

population, were better than the program where this information was present in the population. 

However, the inverse problem solution for the first case presented a high computational cost. 

This difference at computational cost occurred because the BEM routine was executed several 

times during the run of the damage detection. Finally, better results and small errors were 

obtained for third approach, mainly considering the error in the radius of hole. 

 

2.5 An estimate of the location of multiple delaminations on aeronautical CFRP 

plates using modal data inverse problem 

Structural health monitoring (SHM) is an interdisciplinary field in engineering that deals with 

innovative methods of structural monitoring, integrity, and performance without affecting the 

structure itself or harming its operation. The SHM methodology uses several types of sensors to 

detect the presence, location, and severity of structural damage. Such technology integrates non-

destructive evaluation (NDE) techniques using sensory and intelligent materials to create self-

monitoring mechanisms characterized by greater reliability and longer structural life. The 

method is applied mainly to systems with critical requirements regarding structural 

performance, where the classical evaluation of localized inspection is costly, difficult, or even 

impossible in terms of operationality (Stepinski et al., 2013).  

SHM is an innovative form of embedded non-destructive testing (NDT) that can be employed to 

directly assess the integrity of aeronautical structures. The principle of SHM is comparable to 

that of the human nervous system, where the sensors form a network comparable to the nervous 

system, detecting and diagnosing structural damage, mechanical loads, or abnormal conditions. 

The aviation company AIRBUS® interrogates its sensors through a diagnostic system “on-

board” or “off-board” and structural condition information is reported to the maintenance team. 

In contrast to conventional NDT, there is no need for a qualified inspector to access the 
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inspection area and to perform measurements, which in most cases are expensive and time-

consuming. Real data is laid out in Fig. 19 showing a significant amount of damage of an A-320 

commercial aircraft. The company manages to overcome this problem by employing SHM 

technology, which has shown great potential for reducing maintenance times and costs in some 

cases, while also increasing aircraft availability (Wenk & Bockenheimer, 2014). 

Currently, there are a number of relevant techniques for identifying and locating structural 

damage. Although each technique has its advantages and disadvantages, there is no general 

algorithm that can resolve all types of problems in all types of structures. Every technique tends 

to be sensitive regarding damage. In other words, a very sensitive technique can produce false 

positives, while a less sensitive technique can lead to false negatives, the latter being the most 

problematic. Generally, only damage above a certain size (threshold) can be detected 

(Montalvão et al., 2006). Therefore, this research deals with aspects related to the detection of 

delamination in structures of composite material using a vibration measurement approach. 

Variations in modal behavior strongly indicate structural states, and, when properly analyzed by 

efficient methods, can indicate the presence and location of a certain types of damage. 

 

Figure 19: Mapping of damage in service to the fuselage of an Airbus A-320 
aircraft. Locations with damage are marked in red in positions delimited by 

vertical lines (adapted from Wenk & Bockenheimer, 2014) 

The premise for these techniques is that damage causes a change in structural physical 

properties, especially in stiffness and damping at the damaged locations. These structural 

property changes in turn alter the dynamic response behavior of the structure respective to its 

initial state. Therefore, monitoring changes in structural response parameters can be an 

important tool for assessing structural integrity and identifying damage as early as possible. 

Based on the technique used for the measured responses in damage identification, 

methodologies can be classified as either “non-model based” or “model-based” (Bayissa & 

Haritos, 2007). Model based methods are able to deal with many facets of damage, such as 

locating and quantifying the severity of the damage. On the other hand, non-model-based 
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methods are often used to identify and locate damage based on two data sets from the 

undamaged and damaged states. 

The global damage identification problem can be summarized in the flowchart in Fig. 20. In a 

first step, we proceeded to manufacture an undamaged plate. This same structure was modeled 

via FEM and analyzed according to its modal characteristics in the free vibration test (obtaining 

the first natural frequencies at this time). The same procedure was performed on the actual plate 

in the laboratory. To do this, modal assay was performed and the natural frequencies were 

obtained in the same way. In this step, the real and numerical natural frequencies were 

compared. As errors can be associated with the material test (signal acquisition, boundary 

condition, material property), an inverse method was performed using a GA to adjust the 

properties of the numerical model. This is essential if the numerical and experimental models 

are to be in perfect harmony. 

 

Figure 20: Flowchart of the delamination identification. 

The damaged plate (inserted Teflon modeling delamination) was manufactured after 

establishing the mechanical properties. Modal experimental analysis was performed on the 

damaged structure to obtain the natural frequencies. Once the damaged natural frequencies were 

obtained, the GA was used as an optimization tool for minimizing the objective function that 

was constructed from the natural frequencies in both the undamaged structure and the 

delaminated structure.  

As delamination alters structural rigidity, the natural frequencies of the delaminated plate are 

expected to be different from the unaltered plate. Therefore, the algorithm begins to apply 

random, yet GA controlled damage until the objective function is as low as possible. This 

occurs when the natural frequencies of both plates are equal. The algorithm proceeds to the 

convergence criterion, and once finalized, the damage is identified.  
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The experimental development was carried out in test structures so cordially provided by the 

Brazilian Aeronautics Company (EMBRAER®). Two plates were analyzed in the experiment. 

The first one was taken as the reference structure, this being a square plate of dimensions           

a = 1 m, with 16 layers, and with a stacking sequence [0/45/−45/90]4S and a thickness of           

t = 0.19 mm in each layer (Fig. 21a). A second plate was then taken, this having the same 

geometric characteristics as the first, except for the fact that it exhibited delamination damage. 

The plates were damaged by inserting four different sizes of Teflon in eight different locations              

(Fig. 21b). 

  

(a) (b) 

Figure 21: Test structures used in this work, cordially provided by EMBRAER®: 
(a) Plate without damage and (b) Plate with damage. 

In order to obtain the results, it was necessary to carry out a quality experimental arrangement. 

The entire experimental apparatus is shown in Fig. 22, which was integrated with an Impact 

hammer, Laser Vibrometer, data acquisition (LabVIEW programming), and signal analysis. 

 

Figure 22: Schematic of the experimental setup.  

The method of identifying damage used in this section was developed experimentally. Modal 

information was taken on the delaminated plate, and the locations of the inserted delamination 

were known. The problem of identifying damage itself was solved by the inverse problem using 

genetic algorithms. The approach of solving the actual problem was to minimize the objective 

function of Eq. (2). 
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where ωreal the natural frequency of the delaminated plate, ωGA the frequencies that are 

calculated by the genetic algorithm in function of the design variables, and i the analyzed 

modes. 

It is known that the presence of even small delaminations can lead to changes in the resonant 

frequencies, and so it is possible to obtain the locations of such damage by minimizing Jexp. It is 

also known that variations in the natural frequencies serve as an excellent overall metric for the 

structural state. In other words, variations serve as reliable values that indicate whether or not a 

damage is present. Although single mode variation analysis does not yield a significant amount 

of information regarding the possible location of damage, by contrast, a set of modes can yield 

much more information as to the location of structural damage: 

The objective function Jexp is composed of the first six nonzero modes. The rigid body modes of 

the structure with “free” boundary conditions were not taken into account, and the fundamental 

mode (first) presented an undesirable noise level, justifying the choice of modes i = 2, …, 5. 

Similar to the numerical identification problems addressed in this section, the same genetic 

operators were used (crossing of 60%, elitism of 1 individual, mutation of 2%, population of 10 

times the number of variables, and maximum number of generations equal to 100). The damage 

search limits were defined by the maximum number of structural elements (1 < Ne < 100) and 

the total degree of severity of the plate (0 ≤ α < 1). 

Regarding the numerical model in finite elements, and in relation to modeling damage, a level 

of severity α is associated with a damaged element. However, when multiple elements are 

considered, only a value of α can be considered. As a damaged plate shows extremely small 

damage, which in turn has higher performance for large structures, the application of this 

methodology seeks to detect at least the approximate location (neighborhood) of the largest 

failures (1-in. dimension square). The minor failures (6.35 × 6.35 mm²) correspond to an area of 

approximately 0.004% of the total area of the structure. Damage of 1 sq. in. (25.4 × 25.4 mm²) 

in turn represents approximately 0.0645% of the total area of the structure. After performing the 

modal test to acquire the modal information, the inputs used in the algorithms were the same as 

those of the objective function minimization inverse problem Jexp (Eq. 2).  

Despite the previous knowledge as to the damage induced on the plate, the algorithm could 

neither identify the location of the damage, the severity of the damage, nor the extent of the 

damage present in the structure. In this regard, the solution of the inverse problem was 

addressed by considering the plate under different failure quantities, i.e., assuming 1, 2, and 8 

failures. As such, the idea was to verify the method’s capacity of in identifying the location of 

induced damage. Given the aforementioned, the optimization was performed and results were 

obtained considering different failure quantities. Figure 23 shows the final results considering 

one and two failures present on the plate. Considering the only one failure (Fig. 23a), the 

damage was obtained at Ne = 9. Given its proximity to element Ne = 19 and considering the 

damaged element, one can observe that there is an extremely narrow search area. The identified 
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damage is located in the vicinity of the actual damage. Since each element has an area of        

0.1 × 0.1 = 0.01 m², the area to be inspected is equivalent to 4 × 0.01 = 0.04 (four elements in 

the vicinity), that is, 4% of the total area of the plate.  

These results in a 96% reduction of the inspected area, thus guaranteeing savings in terms of 

time, labor, and in costs associated with inspections. Additionally, Fig. 23b shows two failures 

and that the damage was found in elements Ne = 10 and Ne = 21. Assuming that the real failures 

are Ne = 22 and Ne = 19, the total inspection area is thus equivalent to 8% of the total area of the 

board, which again translates to large saving in inspection times, as well as other benefits. 

 

Figure 23: Result of damage identification in the delaminated plate considering 
1 and 2 present damages (legend:  damage detected, actual damages) 

 

2.6 Numerical–experimental study for structural damage detection in CFRP plates 

using remote vibration measurement 

Although composite structures are designed to sustain structural damage, reliable structural 

health monitoring (SHM) systems demand the improvement of structural design and 

maintenance performance while maintaining safety. Impact damage detection techniques for 

SHM ring are widely established; however, the associated costs are high because often the 

damaged area cannot be localized, and hence inspection of the whole component is required. 

Much research has been conducted to assess the success of non-destructive damage detection 

techniques, especially on new composite materials used in the aerospace industry (Mujica et al., 

2008). 

The effect of defect or damage to the structural integrity of composite components is essential 

for understanding the criticality of the defect. The defects may be grouped into specific 

categories according to when they arise during the life of composite structure, their relative size, 

location or origin in the structure of the material. Some examples of damage in composites are 

shown in Fig. 24. The service components have defects that occur through mechanical action or 

contact with hostile environments, such as the impact site overload, local heating, chemical 

attacks, ultraviolet radiation, acoustic vibration, fatigue or inadequate action repair. The size of 

a defect has a significant influence on its criticality and may be present in isolation from 

structural features such as slots and bolted joints, or even a random accumulation resulting from 

the interaction between other defects (Talreja & Singh, 2012). 
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Figure 24: Some characteristic damage in composite materials: surface bubble 
(a), crush on a sandwich panel (b) and delamination (c) (Adapted from Talreja & 

Singh, 2012). 

Composite structures have excellent performance, although this significantly deteriorates the 

presence of damage. Unfortunately damage due to impact events, for example, is difficult to 

visually detect, and, therefore, needs methods for non-destructive testing of these structures. 

According to (Friswell, 2008), although these materials present other failure modes such as 

cracks in the matrix, the fiber breakage or delamination damage these mechanisms produce 

changes in the vibrational response similar to a metal structure when there is a damage. 

Furthermore, a laminated composite carbon fiber/ epoxy plate was manufactured at 

NTC/UNIFEI. The carbon fiber is of the type AS4, unidirectional, GA45 and 5052 epoxy resin 

(Huntsman).  

The plate was produced by the VARTM process—transfer molding vacuum-assisted resin 

symmetrically to 12 layers depending on the orientation of 0° and 90°, i.e., [0/90]3S. Each layer 

of the laminate in turn has 0.1824 mm, with the final structure being 2.1886 mm thick. The 

orientation of the fibers of this compound is structured symmetrically about the median plane of 

the laminate, which means that each layer above the median plane has a layer identical to the 

similar distance below the average plane. The laminate was made using a 30 cm² edge and 

subsequently damage was added to the medium, this being a circular hole of 8 mm radius in the 

central position of the plate (x = 0.15 cm and y = 0.15 cm), as shown in Fig. 25a.  

The mechanical properties of the laminate, used in the design of the numerical model, are the 

result of a study on the estimation of material properties for model adjustment purposes. The 

numerical results in the following paragraphs will show the process performed for this purpose. 

For operational and experimental limitations, the laminated plate was simulated with free 

boundary conditions. The assay was then performed with the aid of a laser vibrometer (Brand: 

Ometron, Model: VQ-500-D) to avoid contact sensors such as accelerometers and used a 

portable system for acquisition of data. Figure 25b shows the experimental scheme used in this 

work. The detection method developed in this work, briefly, will take place in two steps. 

The circular hole damage type is parameterized by their Cartesian x and y positions on the plate 

and the radius r thereof. It is important to note that this damage model is robust and can be 

interpreted as a hole by itself or by corrosion, erosion, tooth, etc., where there has been localized 

loss of material and stiffness. Other interpretations can be given to this model, but the goal of 

the adopted model is to intervene on structural physical characteristics (mass or stiffness) of the 

composite in question. The main goal of the optimization procedure is to adjust the fractional 

order α and the damaged element number Nelem to obtain the best properties of the damage 

identification algorithm. 
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(a) 

 

(b) 

Figure 25: Experimental case: undamaged and damaged composite laminated 
plate (a) and Experimental setup of damage detection using contactless 

vibration measurement (b). 

 

Figures 26a and 26b show the result of the search performed by the optimization algorithm for 

structural damage imposed on the laminate. It is observed that the method was not able to detect 

with great accuracy the presence of the hole. This mainly happens because the inserted 

structural damage is not sufficiently great as to cause a significant change in modal properties, 

in this case the natural frequencies of the laminate. However, the damage is detected at a region 

that is not so distant from the actual bore which leads for example, in the case of inspection of 

large structures (fuselage of aircraft, for example), a starting point (region with possible 

damage) facilitates the identification of the damage.  

Following the idea that the plate has a total area of 900 cm², a rectangular imaginary area (red 

dashed line in figure) may be formed in an area covering both real and average damage that 

leads to obtaining an area possibly 8.66 cm² damaged, or the method promotes a reduction in an 

area unknown to be monitored to an area already known with possible damage, and less than the 

initial, promoting a reduction of about 99% of the region searched in the maintenance process, 

repair, identification, etc. It was also observed that the method effectively met along the axis of 

the damage location x, with an error of only 0.86%. 

According to (Boller, 2000) and (Pawar & Ganguli, 2003) that there is no need to locate damage 

to within a few millimeters. The cost and efforts involved in predicting damage to a high-level 

accuracy can be prohibitive. In addition, because of measurement, model and signal processing 

inaccuracies, systems that claim to predict damage with great accuracy are likely to give false 

alarms. Hence, a better idea is to roughly locate damage in the structure and then use standard 

NDT methods such as acoustic emission and ultrasound for closer analysis of damaged area. 

Modal analysis methods are useful in roughly locating the damage. 
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(a) 
 

(b) 

Figure 26: Minimum area covering the obtained and induced damage:               
(a) producing a global reduction of area inspection and (b) damage detection 
showing a calculated damaged element number near real damaged element 

 

2.7 A sunflower optimization (SFO) algorithm applied to damage identification on 

laminated composite plates 

The performance and behavior of composite structures can be significantly affected by 

degradation caused by exposure to environmental conditions or damage caused by operating 

conditions such as impacts and structural loads. As a result, corrosion, delamination, cracking 

and other failures occur once the structure is in service. In the case of composite laminates, such 

damages are not always visible on the surface, which can lead to catastrophic structural failure. 

To ensure the performance and integrity of a structure of high structural responsibility, prior 

recognition of damage is crucial. 

Traditionally, visual inspection accompanied by some alternative methods is employed to obtain 

general information on structural conditions. However, the inspection is limited and time 

consuming. The development of a comprehensive on-site health monitoring system that can 

inspect a relatively large area, instantly providing reliable, quantitative structural health data 

such as type of defect, location, and severity level minimizes and eventually eliminates 

drawbacks caused by stoppages for monitoring (Zhao et al., 2007). 

The advantage of using metaheuristic is because those methods are zero order methods, 

especially designated for nonlinear and multi-modal problems (Mitchell, 1998). In addiction, 

when working with optimization in the detection of damages, a functional with multiple local 

minimums appear (Gomes, Mendéz, Alexandrino, et al., 2018; Gomes, Mendéz, et al., 2019), 

that justify the use. 

The cycle of a sunflower is always the same: every day, they awaken and accompany the sun 

like the needles of a clock. At night, they travel the opposite direction to wait again for their 

departure the next morning. (Yang, 2012) proposed a new algorithm based on the flower 

pollination process of flowering plants considering the biological process of reproduction. In 

this work, the authors take into account the peculiar behavior of sunflowers in the search for the 

best orientation towards the sun. The pollination considered here was take randomly along the 

minimal distance between the flower i and the flower i + 1. In the real world, each flower patch 

often release millions of pollen gametes. However, for simplicity, we also assume that each 
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sunflower only produces one pollen gamete and reproduces individually. Another important 

nature-based optimization here is about the inverse square law radiation. The law says that the 

intensity of the radiation is inversely proportional to the square of the distance, i.e., the intensity 

(amount) of radiation reduces in proportion to the square of the increase in distance. If the 

distance doubles, the intensity reduces by a factor 4, triples, reduces to a factor 9, and so on. In 

our case, the less the distance from the plant to the sun, the greater the amount of radiation 

received, and it will tend to stabilize in these vicinity. On the other hand, the more distance a 

plant is from the sun, the lower the amount of heat received by it, so the same will be followed 

in this study which will take larger steps to get as close as possible to the global optimum (sun). 

The damage detection problem can be formulated as an inverse problem solved via optimization 

methods. In this approach, it is desired to minimize an objective function that expresses the 

residues between the predicted and experimental responses. The design variables are the 

parameters of the parametric model assumed for the damage and once the optimal solution has 

been found it is assumed that the actual damage was identified, as illustrated by Fig. 27. 

 

Figure 27: Damage modeling on the plate considering three variables in the 
inverse problem 

The presence of a hole (damage) affects the dynamic response of the laminate, then, the inverse 

problem is introduced to find optimal locations where the algorithms best fits the objective 

function. For this case, the results are obtained using fine mesh considering undamped shell 

element with eight nodes in each element. 

To obtain the unknown parameters of the damage, such as location and size, a functional can be 

defined as the difference between the known or measured values of the natural frequencies and 

the calculated values obtained from the optimization algorithm. The minimization of this 

function, also called in this work as “solar radiation” allows the damage detection algorithm to 

find the unknown parameters of the damage. The pristine structural values are simulated 

through FEM. The objective function J based on the change of natural frequencies was defined 

in Eq. (3). 

2

1

1
( ) 1

realn
i
SFO

i

i

J X
n X

 

         (3) 

Sousa, Bruno S., et al. (2022) Optimization, Identification for Detection, Localization & Estimation pp. 8-64

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 40



Where ωreal are the natural frequencies obtained from the real damaged structure and ωSFO  are 

the natural frequencies obtained by the optimization procedure. When J ∼ 0 means that the 

algorithm found a damage that exactly fits the real values. In addiction, X is the vector 

containing the project variables defined as the central position of the damage and its extension, 

i.e., X = {x, y, r} and n = 6. 

As can be seen in Fig. 28, the results of the damage search were satisfactory in the detection of 

circular holes. In both methods (GA and SFO), the results were very close to known (induced) 

damage. However, the proposed OS optimization method behaved equally with GA. This is 

because the proposed method is still in a beta version, programmed in some command lines in 

MATLAB®, and GA is already a method with a large contribution of several researchers and 

very well-elaborated programming in the software used in this work in commercial software. 

 

Figure 28: Structural damage (holes) detection in composite plate using GA and 
SFO algorithm. 

The results of the optimization showed that the new optimization method introduced was able to 

find points of good locations in standard test functions, which proved its good performance. It is 

intended to improve the version of the SFO algorithm for greater variability in the process of 

generating new individuals so that there is no stagnation in sub-regions of optimal location in 

relation to the application of the algorithm in a real non-trivial solution problem. The algorithm 

was still able to solve the damage identification and obtained a performance very similar to the 

widely known and used genetic algorithm. 

 

2.8 Inverse structural damage identification problem in CFRP laminated plates 

using SFO algorithm based on strain fields 

The detection of damages is a field of extreme importance in engineering, since through it 

corrective maintenance can be applied and in this way structural safety can be guaranteed. A 

prognosis of the structure can be made from the moment that a damage is correctly detected, 

thus being able to evaluate the integrity of the structure and determine its life time. 

Non-destructive inspection/evaluation (NDI/E) techniques such as of X-rays, ultrasonic waves, 

eddy currents, shearography, and infrared thermography are often employed for the detection, 

localization, and quantification of flaws and damage in composite materials (Chandarana et al., 
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2017). However, these methods depend on the skill and experience of an operator. The creation 

of an effective and autonomous method, approached in this study, enables the SHM 

methodology and thus avoids the identification of false positives or negatives. 

A justification for using digital image correlation (DIC) is due to a non-contact optical 

technique to measure contour, deformation, vibration and strain on almost any material. The 

technique can be used with mechanical tests including tensile, torsion, bending and combined 

loading for both static and dynamic applications. The use of the digital image correlation 

technique is justified by the possibility of identify damages in composites, from the initial 

(matrix microcraks) to the final phase (fiber failure). DIC can reveal the elementary mechanisms 

in composites such as microcracks, debonding and delamination (Hild et al., 2014). It was 

shown that damage laws can be identified with the help of DIC from mechanical tests imaged at 

different stages of loading. The complex damage type and failure mechanics theory present 

during the loading stage in a CFRP laminate are increased due to the presence of a stress 

concentration factors, causing a wide range of effects, such as stress or strain gradients fields 

(Caminero et al., 2014). It is therefore more desirable when performing experimental testing on 

laminated composites structures to obtain extensive full-field strain data, rather than limited 

strain (by a limited number of sensors) or displacement measurements obtained from traditional 

electrical strain gauges or extensometers. 

In the experiment, the specimen was inserted to the universal test machine as shown in          

Fig. 29, after which it was subjected to a tensile stress (below the yield). During the experiment, 

it was decided not to submit the test specimen to compressive stresses due to the possibility of 

buckling occurrence. 

Two cases were evaluated: (i) a plate and (ii) beam model in the presence of damages. In order 

to capture the strains generated in the test specimen, a data acquisition system was used 

consisting of a camera with sensors and a computational apparatus. The resolution of the camera 

depends on the size of the measurement zone in question, while the maximum size of the 

measurement zone depends on the monochrome light emitter. In order for the data acquisition 

system to work correctly, it is necessary that the background color of the test piece is dark, if it 

is not, the test piece must be painted. As the specimen used in the experiment was already black, 

there was no need to paint it. Next, paint the test specimen in a spray pattern using white paint. 

In this experiment, a sponge was used to make this painting; however, there are other methods 

that can be employed, such as the spray paint itself and even a toothbrush or brush. After the 

experiment was carried out, all the data generated were collected and processed by Bluehill® 

software, which is also provided by INSTRON®, manufacturer of the universal testing machine 

and DIC data acquisition tools.  
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Figure 29: Experimental setup performed for analysis on damaged beam and 
plate models. 

In Fig. 30, a flowchart is introduced to summarize all the methodology that was used in this 

work, from the initial problem to the solution of this problem, in it we can observe the existence 

of two main fronts, one focused on the computational solution of the problem and the other 

solution to the problem 

 

Figure 30: Flowchart of the methodology used in this work 

As it can be seen in Fig. 31, the results presented were satisfactory, since all the parameters 

obtained converged to values very close to the actual damage parameters, and the damage was 

found practically concentric and or tangential when compared to the actual damage. Based on 

the results obtained, the robustness of the SFO is verified when applied in the detection of 

damage in both beams and plates. 
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(a) 

 

(b) 

Figure 31: Experimental damage identification results considering: (a) the 
composite beam and (b) the composite plate. 

The present section has shown the potential of DIC for SHM of composite structures. It is 

revealed as an efficient methodology to identify possible damage in laminates with geometric 

discontinuities. It is still a challenge though to accurately identify internal damage such as 

delamination. With this, it can be said that this method has great potential to be applied in 

several engineering cases: firstly, due to the fact that the method produces relevant results. But 

mainly because of the practical advantages of the method, since it can be applied in an 

uninterrupted way by monitoring the structure continuously, it requires little time to carry out 

the inspection, the results are constant being dependent almost only on the adjustment and the 

quality of the used instruments and also has low cost with instrumentation and operation. In this 

way, when compared to conventional methods of damage identification, the method used in this 

work becomes more practical and efficient in most engineering applications. 

 

2.9 Lichtenberg Optimization Algorithm Applied to Crack Tip Identification in 

Thin Pate-like Structures 

Damage detection in mechanical structures is of great interest, as it is critical to ensure structural 

safety, prevent accidents and reduce maintenance costs. Structure monitoring allows detecting, 
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locating and even predicting damage to mechanical structures  (Gomes, Mendéz, Alexandrino, 

et al., 2018). Cracks and other damages appear when the structure is in service. To ensure 

performance and integrity, there is a need for efficient detection, i.e. monitoring that provides 

fast and reliable results (Gomes, Cunha Jr., et al., 2019b). 

Mechanical systems under fatigue cycles can present cracks inside (internal or superficial) and 

normally these cracks appear in the region of maximum stress and in their direction. 

There are many studies in the literature that deal with crack formation and its consequences on 

the health of a mechanical system. This issue is highlighted in the works of (K. Pereira et al., 

2018), (Floros et al., 2019), (Zhu et al., 2019) and (Xu et al., 2018). 

The SHM methodology is applied to identification and propagation direction of cracks in 

aluminum structures, with emphasis on aeronautical structures when using a 6061-aluminum 

alloy plate. This method allows remote and online monitoring of the SHM. The proposed 

methodology is based on the use of a new nature-inspired optimization algorithm and the 

inverse method (by finite element analysis) to detect the location and propagation direction of 

in-plane cracks. For the inverse problem solution, the metaheuristic Lichtenberg Algorithm 

(LA) was used. According to (J. L. J. Pereira, Francisco, Diniz, et al., 2021), this powerful 

method consists of a hybrid algorithm that unites trajectory and population search strategies by 

exploiting the power of fractals to efficiently explore new solutions in the search space and 

increase the accuracy of those already found. 

The proposed method is a robust one that requires only the information of a number of sensors 

pre-fixed in the structure. The induced damage could represent a real case, where only a few 

deformation points can be acquired. The results, based on strain fields, show a good crack 

detection, including the propagation direction, in plate-like structures using the LA. 

The SHM methodology applied here consists of the use of two computational programs: i) finite 

element method (FEM) modeling (direct problem) and ii) optimization procedure using LA in 

order to detect the crack, including the propagation direction (inverse problem). 

The plate used is modeled (using FEM) in solid material and has a square shape, with 

dimensions of 2×2 m² with 1mm thickness. The structure consists of 6061-T6 aluminum alloy, 

widely used in the aeronautical industry. The mesh has 289 nodes and 356 elements (solid 

element). As a boundary condition, the shape has all its edges fixed; however, its nodes have 

freedom of movement. Crack modeling is a force applied to one of the nodes (the yield strength 

< 255MPa). 

Two cases are proposed in this model according (Suveges et al., 2016): i) edge crack where the 

crack propagation occurs only in one end. In this case, there are four variables to determine: x 

and y positions of the tip and the force components Fx and Fy, ii) central crack where the crack 

propagations occurs in the two ends. Here, there are eight variables to determine: x1, y1, Fx1, 

Fy1, x2, y2, Fx2 and Fy2. The crack propagation direction is given by the direction of the resulting 

force found in the model. The Fig. 32 shows these two models of crack and the strain after load 

application. 
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(a) 

 
(b) 

Figure 32: Two models of crack: (a) edge crack and central crack and (b) the 
strain after load application. 

The inverse problem is modeled based on the principle that from the application of a force in the 

structure, there is a strain in the material that can be detected by properly positioned sensors. 

Thus, the behavior of the structure subjected to stress is changed. Therefore, monitoring these 

changes becomes an important strategy to preventively assess the integrity of the structure. 

In this way, using an appropriated objective function related to strain of the plate will be 

possible to determine the position, magnitude and direction of propagating force acting on the 

crack tips.  

The objective functions used are shown in Eq. (4) and Eq. (5): 

   ∑ √(
 

    
     

 

    
    )

 
 
                                                  (4) 

Where     
     is the strain in the k direction on sensor i computed in each iteration by the 

optimization algorithm and     
     is the strain computed in the k direction on sensor i by the 

MEF in the direct method. In this case k = x or y. 

                                                              (5) 

Jx and Jy are the objective functions related with the strains in x and y direction, w1 and w2 are 

weighting weights (both range from 0 to 1). 

In Table 2 is presented the input variables in the edge crack and in the central crack as well as 

the values of the forces that will be applied to the plate. 

Regarding the number of sensors, it was used 01 and 05 sensors in case of edge crack and 

central crack, as illustrated in Fig. 33. In addition, Fig. 34 summarizes the modeling of the crack 

identification presented in this study. 
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Table 2: Input variables for edge and center cracks. 

edge crack model  central crack model 

Parameter Value  Parameter Value 

x 0.75 m  x1 0.75 m 

y 0.50 m  y1 0.50 m 

Fx -300 N  Fx1 -300 N 

Fy -400 N  Fy1 -400 N 

  x2 1.25 m 

  y2 1.25 m 

  Fx2 200 N 

  Fy2 200 N 

 

 
 

Figure 33: Sensors arrangement. 

 

Figure 34: General methodology. 

Five simulations were performed for each case (edge and central crack). Table 3 shows the 

values found by the LA for edge crack detection and Table 4 and Table 5 for the central crack. 

The magnitude and direction for crack tips detection using LA for both edge and central crack 

are illustrated in Fig. 35 and Fig. 36. 

 

Table 3: Values found by the LA for edge crack. 

Target 
x (m) 

0.75 

y (m) 

0.50 

Fx (N) 

-300 

Fy (N) 

-400 

Simulation 

time 

Run #1 0.7737  0.5425 -264.9938 -355.5506 36h 10min 

Run #2 0.7845  0.5102 -331.6465 -435.6982 35h 55min 

Run #3 0.7323  0.5368 -283.4581 -440.6524 36h 25min 

Run #4 0.7866  0.5521 -315.1874 -422.3685 36h 15min 

Run #5 0.7658  0.4856 -271.6414 -392.7823 36h 00min 

Mean 0.7686  0.5255 -293.3854 -409.4104 - 

SD 0.0131  0.0180 4.6772 6.6542 - 
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Table 4: Values found by the LA for central crack (first end). 

Target 
x1 (m) 

0.75 

y1 (m) 

0.50 

Fx1 (N) 

-300 

Fy1 (N) 

-400 

Run #1 0.7535  0.5595 -288.5471 -377.4165 

Run #2 0.7133  0.5370 -261.3569 -412.6859 

Run #3 0.7437  0.4826 -298.6658 -421.5687 

Run #4 0.7866  0.5426 -314.2587 -382.1258 

Run #5 0.7322  0.5144 -291.3541 -356.3684 

Mean 0.7459  0.5272 -290.8365 -390.0331 

SD 0.0029  0.0192 6.4795 7.0477 

 

Table 5: Values found by the LA for central crack (second end). 

Target 
x2 (m) 

1.25 

y2 (m) 

1.25 

Fx2 (N) 

200 

Fy2 (N) 

200 

Run #1 1.2357  1.2225 194.5687 221.3644 

Run #2 1.2755  1.837 185.2356 94.75145 

Run #3 1.2369  1.2578 236.9874 242.3265 

Run #4 1.2174  1.2241 278.6984 301.3652 

Run #5 1.2512  1.2315 171.3674 257.1459 

Mean 1.2433  1.2439 213.3715 223.3907 

SD 0.0047  0.0043 9.4551 16.5397 

 

 

Figure 35: Detection considering only one crack tip: (a) real view and                  
(b) zoomed view. 

 

   

a b c 

Figure 36: Detection considering two crack tips. (a) real view, (b) and               
(c) zoomed view. 
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2.10 A Powerful Lichtenberg Optimization Algorithm: A Damage Identification 

Case Study 

Composite materials have been widely used over the years in the aerospace industry and other 

engineering applications where structural weight is one of the main reasons for its use. This is 

due to its excellent advantages, such as high strength and remarkable stiffness related to its 

specific mass, besides the high capacity to withstand fatigue and corrosion (Kaw, 2005). 

However, in service, they may have failure mechanisms, such as fiber breakage, cracks in the 

matrix, or delamination. Static overload, impact, fatigue, design errors, and overheating are 

some of the causes of these failures. Delamination is considered the greatest ‘‘weakness’’ of 

laminated composite materials, as it can spread throughout the laminate of a composite structure 

and lead to catastrophic failures if not detected (Chakraborty, 2005). 

Structural Health Monitoring (SHM) inspections that explore vibration measures are methods 

based on the principle that degradation due to damage in a structure changes the vibration 

parameters such as natural frequencies, mode shapes, and structural damping. Then, by 

analyzing the output vibration parameters of a system, it is possible to identify the presence of 

damage using techniques such as inverse modeling and computational intelligence (Gomes, 

Cunha Jr., et al., 2019b). 

This study is dedicated to identifying structural damages in composite laminated structures with 

focus in the detection of delamination using a new metaheuristic based on the Lichtenberg 

figures phenomena called Lichtenberg Algorithm (LA). 

According to (Garg, 1988), delamination is an important form of failure in composite materials, 

which may not be visible on the structural surface and can affect strength and stiffness (local 

loss of stiffness) of the material. Figure 37 shows a case of delamination in Carbon Fiber 

Reinforced Polymer (CFRP).  

 

Figure 37: Composite laminated structure with delamination. Adapted from 
Heslehurst (2014). 

The Lichtenberg Algorithm (LA) was first introduced by (J. L. J. Pereira, Francisco, Diniz, et 

al., 2021) and has been used in engineering problems such as detection and characterization of 

crack propagation in thin plates of composite material (J. L. J. Pereira, Chuman, et al., 2021). 

Here, it will be assesses the potential of LA applied in a damage detection using incomplete and 

noisy modal data in SHM systems. 
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The SHM methodology consists of using two computational routines: i) finite element method 

(FEM) modeling (direct problem) and ii) optimization procedure using LA in order to detect the 

delamination. 

The modeled geometry is a square plate with uniform composite thickness laminated with or 

without delamination in a linear elastic regime. The plate was discretized according to 10 × 10 

elements through a uniform and mapped mesh. It was used shell elements with 8 nodes and      

6-DOF by node. The boundary condition is free (FFFF - Free- Free- Free- Free) on the four 

boundaries sides of the plate. 

The square plate has 30 cm of side and is a symmetrical laminate of composite material 

consisting of 12 layers with different orientations arranged in the form [0/90]3S. Damping is not 

considered in numerical modeling. 

Stiffness reduction, due to delamination, is represented by a non-dimensional parameter that 

changes a local stiffness but conserves the mass of the system (Santos et al., 2000). The 

parameter of local stiffness reduction in percentage terms is given by β = (1-α)×100. In          

Fig. 38 outlines the finite element model and indicates a possible damage position. 

 

Figure 38: FEM model of the discretized system with damage position. 

For delamination detection, it was used the objective function proposed by (Gomes et al., 2019) 

represented in Eq. (6). 

   ∑ √(  
    
          

    
    )

 
 
                                               (6) 

Where     
           are the nodal displacements obtained by the FEM numerically analyzing 

each random point of each iteration generated by the optimization algorithm referring to the 

mode shape i.     
     are the known displacements of the structure that has structural damage. 

 Here, three case will be analyzed: i) single delamination and ii) multiple delamination 

and iii) single delamination with noise in the measures. 
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i) Single Delamination: damage in a single element, element (Ne) 19, Fig. 39 (a), with a damage 

rate (𝛼) of 0.2, 0.5, and 0.9. 

 Table 6 shows the results for the damage located in element number 19 with different 

severity rates: 

 

  
(a) Single delamination (b) Multiple delamination 

 

Figure 39: Induced delamination location: (a) Single delamination and              
(b) Multiple delamination. 

 

Table 6: Results for the damage located in element number 19 with different 
severity rates. 

Target  Results 

Ne α  Ne
* α * Jmin 

19 0.2 
Mean 

SD 

19 

0 

0.2000 

0.0002 

0.0001 

0.2372 

19 0.5 
Mean 

SD 

19 

0 

0.5000 

0.0001 

0.0000 

0.0017 

19 0.9 
Mean 

SD 

19 

0 

0.9000 

0.0041 

0.0000 

0.0005 

 

ii) Multiple Delamination: the system has two elements with local stiffness reduction. It was 

used the same stiffness reduction rate for both elements. The delamination is in the elements 19 

and 65, Fig. 39 (b), with a damage rate of 0.2. 

iii) Single Delamination: damage in a single element, element (Ne) 19 with a damage rate (𝛼) of 

0.2 and noise in the measures. 

Table 7 shows the results for the damage located in elements 19 and 65: 

The noisy signals have intensities of 1, 5 and 10% and Table 8 shows the results for this 

important applications: 
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Table 7: Results for the damage located in elements 19 and 65. 

Target  Results 

Ne1 Ne2 α  Ne1
* Ne2

* α* Jmin 

19 65 0.2 
Mean 

SD 

19 

0 

65 

0.6325 

0.2732 

0.0745 

0.3890 

0.3238 

 

Table 8: Results for the damage located in elements 19 and 65. 

Noise Level (%)  Ne
* α* Jmin 

1 
Mean 

SD 

19 

0 

0.1967 

0.0117 

0.2284 

0.0413 

5 
Mean 

SD 

19 

0 

0.2278 

0.0417 

0.8391 

0.1189 

10 
Mean 

SD 

19 

0 

0.1776 

0.0402 

1.6197 

0.1949 

 

2.11 Multiobjective Optimization Using a Controlled Random Search Algorithm 

(CRSA) 

A direct multiobjective optimization methodology is presented in (Sousa et al., 2008), based on 

CRSA version proposed by (Manzanares Filho et al., 2005), in which two objectives are treated 

using as aggregating approach the well-known weighting method technique. To represent the 

airfoil geometry is used a Bezier curve parameterization scheme, based on two higher degree 

curves that define extrados and intrados, in the same guide lines to those one implemented by 

(Pehlivanoglu & Hacioglu, 2006). The evaluation of aerodynamic coefficients used as objective 

functions are performed by airfoil flow analysis code XFoil, developed by (Drela & Giles, 

1987), based in a panel method with viscous effects incorporated. 

In treatment of multiobjective optimization problems, the CRSA is one option of population-set 

based algorithm considered duo to low computational cost associated to each interaction and 

facility in implementation, when compared with others evolutionary optimization algorithms 

like GA and DE as showed by (Ali et al., 1997) and (Ali & Törn, 2004). 

Initially proposed by (Price, 1977), and improved and modified by (Ali & Törn, 2004) and 

(Manzanares Filho et al., 2005), the CRSA have been shown as a good alternative optimization 

algorithm to apply in aerodynamic shape optimization design problems. 

All CRSA versions start with a random population generation with P individuals, this number of 

individuals is kept during optimization process. Each individual has N design variables, defined 

within upper limit U and lower limit L, thus creating a design space. The version used in this 

work makes selective use of quadratic interpolations in the trial point search, considering 

function objective variability around the best point of current population. In the way to execute 

quadratic interpolations are selected three points in the current population, best point l, namely 

r1, and others two randomly choose, r2 and r3, respectively. Objective functions values are 

assumed as f1 = f(r1), f2 = f(r2) and f3 = f(r3). Varying design variables j = 1, …,N are constructed 
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quadratic interpolations for each one of sets  r1j , r2j and r3j, where trial point design variables pj 

are defined as minimum of the parabola, as described by Eq. (7) and illustrated in Fig. 40. 
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Figure 40: Graphical representation of quadratic interpolation. 

 

To control the use of quadratic interpolations, in the way to avoid it to become ill-conditioned or 

present trial point design variables as maximum of the parabola, are used a mean objective 

function value, fg , and a local variability measure around the best point, , which are calculated 

as follow in Eq. (8) and Eq. (9). 

 2 3

1

2
gf f f                                                                      (8) 

g l

h l

f f

f f






                                                                        (9) 

These equations are used when quadratic interpolation is well-conditioned and best point is not 

contained between others two points. In this case are defined a set of centroidal design variables 

gj, Eq. (10), and through them trial point design variables pj, Eq. (11), are defined by variability 

based reflection around best point. 
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j j
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   12 1j j jp r g                                                                (11) 

If quadratic interpolation is well-conditioned and best point is contained between others two 

points, the trial point design variables are defined normally according to quadratic interpolation. 

Finally, if quadratic interpolation is considered ill-conditioned, trial point design variables are 

defined randomly within design space S.  

Constraints can be introduced in all CRSA versions by means of a penalty scheme, which more 

detailed in (Sousa et al., 2008). This choice is problem dependent a too small factor can 

accelerate the algorithm, but may not be effective in promoting constraint satisfaction. On the 

Design variables j 
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other hand, a too large factor may lead to a loss of information about the original objective 

function and a hampering of the algorithm convergence. 

To treat multiobjectives within CRSA was implemented the weighting method technique, which 

converts several objectives into a single one as described in Eq. (12). Each of the k objective 

functions has a wi weights associated, and the sum of the weights must equal the unit.  

1

.
k

i i

i

Min w f


                                                                      (12) 

Varying weights are determined Pareto optimum set, and consequently, is constructed the Pareto 

front of the multiobjective optimization problem. However, this technique is not able to 

represent concave parts of Pareto front, according to (Coello Coello et al., 2007). The main 

advantages of this technique are ease in implementation and low computational cost. 

Figure 41 presents a comparison of objective functions between numerical results obtained 

through multiobjective optimization and airfoil base NACA 651-412. 
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Figure 41: Comparison between 
multiobjective optimization results with 

NACA 651-412 airfoil. 
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Figure 42: Detail of Pareto front. 

 

Observing Fig. 41, can be noted that results obtained were sensitively improved in relation to 

airfoil base NACA 651-412. In addition, the spread of results was caused duo to Cl/Cd relations 

behavior, which depend directly of the airfoil shapes modified when weights are varied, in the 

way to minimize the objective function formed by two real objectives. Thus, in this optimization 

example, the weights do not reflect proportionally the relative importance of objective 

functions.  
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Observing the shapes of airfoils that form Pareto front in Fig. 42, where first percentage value 

correspond to Cl/Cd relation and second to Cd minimization, can be noted from major solutions 

that, as hopped, reduction on maximum camber associated with it position beyond 50% of 

chord, favor drag minimization. In the same way that increasing on maximum thickness and 

camber, positioned close to 50% of chord, favor Cl/Cd maximization. Compromise solutions are 

given by combinations of these modifications on airfoil geometric parameters. In addition, must 

be noted too, between airfoils that form Pareto front, modifications on maximum thickness and 

camber values were smaller than promoted on respective maximum positions. 

 

2.12 Topological Sensitivity Analysis Applied to Composite Structural Design 

A new approach for Topological Sensitivity Analysis is presented in (Sousa et al., 2018) applied 

to composite structural design. Topological Sensitivity Analysis allows for the assessment of the 

sensitivity of both the objective function and the constraints when the problem definition 

domain changes shape and/or topology. According to (Novotny et al., 2003), Topological 

Sensitivity Analysis results in a scalar function, called the Topological Derivative, which 

provides the sensitivity of the objective function for each point in the problem definition domain 

when a change is created at this point. The calculation is based on a mathematical proof that 

establishes a relationship between the Analysis of Sensitivity to the Change of Form and the 

Topological Derivative, thus leading to a modified, simpler, and general formulation. 

The original formulation of the calculation of the Topological Derivative which was developed 

in the works of (Eschenauer et al., 1994), (Schumacher, 1995) and (Céa et al., 2000), in a way, 

limits the field of application of the Topological Sensitivity Analysis, due to the mathematical 

difficulty of obtaining the Topological Derivative, and also due to the fact that several 

simplifying hypotheses were adopted, mainly with regards to the boundary conditions in the 

border of the holes. Engineering optimization applications were explored in the works of (C. E. 

L. Pereira & Bittencourt, 2008), (Bojczuk & Mróz, 2009) and (Bojczuk & Mróz, 2012).  

In the Topological Derivative original formulation, the original domain of the problem, denoted 

by , after the creation of a small hole  of radius becomes , just as the initial boundary  

becomes , after domain perturbation. Establishing the performance function in the domains  

and , () and () are obtained, as graphically exemplified in Fig. 43. Thus, the 

Topological Derivative is defined as shown in Eq. (13). 

  
   

 
*

0
ˆ limTD x

f





 



  
                                      (13) 

where f() is a regularizing function, such that f() → 0 when  → 0, and so that 0 ≤ |  * ˆ
TD x | ≤ 

∞. The choice of function will depend on the problem being analyzed. According to Cordeiro 

(2007), the regularizing function used in elastic problems corresponding to the hole area , that 

is, the difference between the values of the performance function for the initial topology and the 

disturbed topology is weighted by the size of the perturbation in the hole area created in the 

domain. The great difficulty in working with Eq. (13) lies in the fact that when a hole is created 
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in the domain, it is no longer possible to establish an inverse mapping between  and , 

leading to mathematical difficulties in calculating the Topological Derivative. 

The modification in the calculation of the Topological Derivative, proposed by (Novotny et al., 

2003) in her doctoral thesis, would start from a domain with a pre-existing perturbation ,  

being the initial domain with contour . When a small variation  is caused in the perturbation 

, it is denoted by , and a new domain  and new contour  are defined, as 

graphically exemplified by Fig. 44. In this way, the Topological Derivative can be redefined as 

shown in Eq. (14). 

 
   

   0
0

ˆ limTD x
f f

  




 

  






  


 
                          (14) 

 

 

Figure 43: Concept of 
Topological Derivative in its 

original form. 

 

 

Figure 44: Concept of 
Topological Derivative in its 

modified form. 

The innovation brought about by the definition of the Topological Derivative given by           

Eq. (14) is that it is now possible to establish the inverse mapping between the domains and 

, and also to allow for the use of the concepts of Analysis of Sensitivity to Shape Change 

to obtain the Topological Derivative. The understanding that expanding a hole of radius , when 

→0, would be nothing more than creating it, leads to the thought that it would be possible to 

use the Topological Derivative to map regions of the domain where it would be necessary to 

insert material instead of removing it, thus creating optimal topology.  

The motivation for developing this work by (Sousa et al., 2018) started from the idea that, as 

predicted in the theory described by (Novotny et al., 2003), the optimal topology could also be 

obtained by progressively inserting material in the domain, since this procedure had not yet 

been explored for this purpose. The insertion of material into the domain is a widely used 

procedure for the eventual corrections and smoothing over of the topology if any criteria have 

been exceeded, as illustrated by Fig. 45. 

 

Figure 45: Addition of material in the domain; (a) region of the contour to be 
corrected; (b) corrected region. (Cordeiro, 2007). 
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Because the topology of a structural component made from laminated composite material is 

generated by layer superposition, it would be intuitive to start from an initial layer and then to 

add the other layers until the design goals, constraints, and performance criteria specified in the 

design have been met. Therefore, the premise of this methodology is to start from an undersized 

structure and to add material in regions of the domain defined by the Topological Derivative as 

being more sensitive, until the optimum structure topology has been obtained. 

By mapping the Topological Derivative, it is possible to determine the format of the new layer 

to be created, obviously while respecting the criteria related to the manufacturing process, such 

as minimum size of a layer to be added and the format of the layer to be added.  

Total Potential Energy was used as the performance function. This choice was due to the fact 

that the Total Potential Energy gives information as to the sum of the effects of the Deformation 

Energy, and the Potential of the External Forces, which leads to a more precise identification of 

the points in the domain that need to be added and shows how the load applied to the domain 

can influence the change in the disturbance. The smoothing function is given by the area of the 

layer being created. Thus, the expression for the calculation of the Topological Derivative for 

elasticity problems involving laminated composite material is given by Eq. (15). 

 
   

   0
0

ˆ lim
p p

TD x
f f

  




 

  






  


 
                            (15) 

where p is the Total Potential Energy defined as the sum of the deformation energy (U) and the 

potential of the external forces (Ω), i.e., πp = U + Ω and  is the initial domain. That is, the first 

layer,  is the domain disturbed by the addition of a new layer,  the area of the initial 

layer and  the area of the new layer added to the starting area. 

However, in the design of structures made of laminated composite, the orientation of each layer, 

and the stacking sequence in which they are arranged, strongly influence the stiffness and 

resistance characteristics of the final topology. The orientation of each layer and the stacking 

sequence of the laminated follow the manufacturing constraints and were defined by ACO 

algorithm for each new layer insertion. 

In the example proposed for the application test, the determination of the optimum number of 

layers, and the optimal stacking sequence were sought by minimizing the variability of the 

Topological Derivative, and consequently, by homogenizing its values throughout the domain. 

The minimizing of the variability in the topological derivative has a physical response of 

stiffness increasing. For the thickness of the layers, the constant value of 0.25 mm was adopted 

so as to consider laminate manufacturing issues. 

The domain is defined as a square plate, Lx = Ly = 0.2 m, simply supported on the four edges, 

subjected to a transverse load P = 50 kPa, evenly distributed over the entire surface, as shown in 

Fig. 46. The maximum allowable displacement at the center of the plate (ymax), and the value of 

the maximum failure criterion (Hmax), for any layer of the laminate were defined as feasibility 

criteria. It can be ensured that the laminate configuration is a point belonging to the viable 
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design region when these criteria are met. The formulation of the optimization problem is given 

by Eq. (16). 

           

 

max

max

ˆminimize variability 

0.80

subject to: 1.0

Manufacturing

TD x

H

y mm

  








                   (16) 

 

Figure 46: Square plate simply supported on the edges, with uniformly 
distributed loading along the entire surface, represented in a simplified way by 

the vectors in red. 

In Fig. 47 the Topological Derivative mappings are shown for some iterations for the first 

execution of the algorithm. 

   
(a) Iteration 1 (b) Iteration 4 (c) Iteration 15 

Figure 47: Topological Derivative Mapping of some iterations for the first 
execution of the algorithm. 

In order to verify the behavior of the mean value of the Total Potential Energy, (πp)avg, with 

respect to the increased thickness of the laminate, h, throughout the iterations, until the viable 

configuration of the laminate is obtained for each execution of the algorithm, a graph of      

(πp)avg x h is shown in Fig. 48, in which all the viable configurations of obtained laminates are 

grouped. 
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Figure 48: Behavior of (πp )avg x h over the iterations for all laminates obtained. 

 

By analyzing the curves, it can be seen that the mean (πp) values are constantly decreasing as the 

laminate thickness increases due to the addition of new layers. Note that there is a greater 

dispersion of (πp)avg between the thickness range of 2 and 4.5 mm. Precisely in this range, the 

largest variations occurred in the stacking sequences between the laminate configurations. But 

even so, the downward trend of (πp)avg remains. Thus, it is demonstrated that the Deformation 

Energy of the laminate is more sensitive to the variation of thickness than to variations in the 

stacking sequence. 

Based on the analysis of the results obtained from the application example, it can be concluded 

that the Topological Sensitivity Analysis methodology may be applied in the design of 

laminated composite structures, showing that the calculation of the Topological Derivative 

satisfactorily indicates the region of the domain where a new layer should be added.  

 

3 Concluding Remarks  

This chapter presented previous work performed in the Research Group in Computational 

Mechanics (GEMEC) at UNIFEI. Details of the different journal articles and conference papers 

prepared by the authors along the last 15 years were presented, covering different methods and 

aspects in optimization and identification techniques for inverse methods in damage detection 
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and localization. Current work in the research group includes a follow-up of this work with new 

and modern optimization and identification techniques and approaches.  
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Abstract

This chapter describes the theoretical and practical aspects of deterministic
optimization methods. The introductory section describes the basic equations
commonly found in numerical optimization and lists some standard approaches
in structural optimization. Next, the concepts of Multi-criteria Optimization
and Multidisciplinary Design Optimization are described. The rest of the text
is devoted to clarifying specific variations of the methods in the context of
Linear and Non-linear Programming. Unconstrained and constrained cases
are handled. Algorithms and source code fragments are presented to enrich the
discussion about the methodologies. Some practical considerations for applied
optimization are described throughout the text.

1 Introduction

As a decision-making problem crafted with mathematical formality, an optimization
procedure aims at finding the extreme point that minimize or maximize the value of a
function (Vanderplaats [1998], Butenko and Pardalos [2014]) as defined in Equation
(1)

min,max[F ({X})] (1)

expressing the objective function F , dependent upon an n-dimensional vector of
input variables {X}, which contains the parameters to be determined/modified in
order to achieve the desired optimization/decision goals. As such, these parameters
are usually called decision or design variables, and relate directly to the resources
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available to supply a certain demand Haldar and Mahadevan [1999]. In the partic-
ular context of structural optimization, these decision variables will determine the
load bearing capabilities (supply) to resist the operating conditions (demand).

In a realistic decision-making context, however, changes applied in the content
of {X} will likely affect not only the objective F , but also produce side effects in
other quantities. These other quantities are most plausibly not allowed to vary freely
and thus represent constraints that need to be factored into the determination of
{X} in the pursuit of improving F . Moreover, it is customary to classify these
constraints into 2 categories, defined in Equations (2) and (3) as inequality and
equality constraints, respectively:

Gj({X}) ≤ 0 (2)

Hk({X}) = 0 (3)

Inequality constraints represent more flexible considerations corresponding to a
threshold, as for example when the stress in a structural member should not exceed
an allowable, but a margin of safety (≤) would not be, barring any other consid-
erations, harmful. On the other hand, if a structural failure mode is deliberately
designed to undertake some pre-determined course or sequence, then the load bear-
ing capabilities of its weakest link (and all others thereafter, for that matter) must
fulfill a much more stringent target, giving rise to equality constraints. Please also
note that the nominal values for the failure limits in these 2 scenarios may differ
significantly, and it is standard practice to get them normalized by moving their val-
ues into the left-hand side of inequality (2) and equality (3) relationships, both then
uniformly defaulted to 0, which becomes the reference for all equality and inequality
constraints alike (they are considered violated once they surpass zero).

In addition to the constraints that arise in the form of functions other than the
objective, a special kind of limitation acknowledges the fact that the decision vari-
ables are themselves restricted, as are the resources associated with structural sizing
and material properties. These are the so-called side constraints, which complete
the statement of an optimization problem by specifying limits, both lower (LB) and
upper (UB) bounds, onto the decision variables, as in Equation (4):

{X}LB ≤ {X} ≤ {X}UB (4)

Mass, strength, stiffness and natural frequencies and associated mode shapes of
vibration are examples of objectives/constraints relevant to structural design, and
geometry/materials/manufacturing processes are examples of the collectively shared
decision variables.

2 Structural Optimization

The set of j+k+ 1 functions defined in Equations (1)-(3) all share the same status,
being responses (or outcomes) that depend on the same set of decision variables
(or inputs) {X}. As such, they are in principle interchangeable in terms of which
response is the objective and which ones are to be constrained. The caveat is that
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Sensitivity analysis
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Figure 1: Comparison of the direct and approximate link between the
Finite Element solver and the optimizer.

some of these combinations (alternative formulations for the optimization problem)
are more amenable for solution by existing methods than others. Accordingly, the
practice of structural optimization since its early days has relied upon specific formu-
lations intended to streamline the solution processes. More recently, even with the
emergence of powerful computational resources, these applied optimization frame-
works continue to be improved with focus on formulation, most often dedicated to
mediating the transfer of data between a Finite Element solver and optimization
methods to be detailed in the remainder of the current chapter.

In this context, the direct coupling between analysis and optimization modules,
as indicated in Figure (1a), results in the evaluation of the entire numerical model,
by means of the analysis module, at all iterations performed by the optimizer along
its search for an optimal solution. Since the CPU effort associated to a single
analysis is multiplied by the (usually high) number of function evaluations during
optimization, this scheme is often associated with a computational overhead that
discourages its use.

Based on the fact that not all the parts of the model contribute all the time, and
with the same intensity/relevance to the progress of the optimization procedure, a
set of algorithms known as structural synthesis techniques (Schmidt, 1960) has been
proposed to rationalize the use of computer resources when coupling optimizers to
numerical analysis software. Figure (1b) presents the framework of the synthesis
approach.

It is important to highlight the role of the approximate problem generator in the
framework presented in Figure (1b). This set of algorithms is the ultimate respon-
sible for the feasibility of coupling numerical optimizers to analysis software, since
its use results in significant drop of the need for computer resources in comparison
to the optimization scheme presented in Figure (1a). The methods listed therein
operate described in the next 4 topics, for the duration of this section.
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Figure 2: Schematic depiction of variable linking in a truss type of struc-
ture to generate approximations capable of reducing the computational
cost of structural optimization, while simultaneously enforcing symme-
try.

2.1 Decision Variable Linking

By establishing linear relations among design variables, one can reduce the number of
independent variables to be evaluated. Economy of CPU resources is noticeable due
to the drop in the number of partial derivatives of the responses, to be calculated with
respect to the independent decision variables. Additional advantages introduced by
this technique are: 1) The relations among decision variables are directly controlled
by the user, which helps to keep physical insight; 2) The laws of dependence can
be useful to enforce desirable design features, such as symmetry and parallelism, as
shown in Figure (2).

2.2 Constraint Freezing and Screening

If a given subset of all the prescribed constraints has no risk of violation, it is useless
to waste CPU time with their evaluation and the calculation of their derivatives with
respect to the design variables. Hence, for the sake of feasibility, the constraints far
from the violation threshold (TRS) can be neglected until their importance grows
(i.e., risk of violation arises) at a different stage of the automated design process.
This concept is illustrated graphically in Figure (3a).

For the purpose of further CPU economy, it should be considered that numerical
models are discrete, which leads to the unfolding of the constraints prescribed in the
statement of the optimization problem into a much larger number of components.
For instance, consider a group of thousands of shell finite elements employed to model
an aeronautic airfoil. If one desires to minimize the structure’s weight keeping track
of stress levels, constraints must be prescribed over all the elements of the airplane’s
wing. Just a few (NSTR) elements, however, can be considered at each optimization
iteration, due to their superior representativity in comparison with the others. The
effect of NSTR on constraint screening is illustrated in Figure (3b).

It should be noted that the procedures of constraint freezing and constraint
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(a) (b)

Figure 3: Schematic illustration of the combined constraint freezing/con-
straint freezing procedure. Constraints are normalized.

screening are overlapped (i.e., used in conjunction) in order to avoid the heavy cal-
culations involved in the evaluation of unnecessary constraint functions: the number
of such functions is thus reduced to the least possible.

2.3 Taylor Series Truncation

Up to this point, the model reduction techniques presented acted on quantitative
basis, that is, alternatives to reduce the number of independent design variables
and constraints were indicated. Although these solutions are effective, more CPU
power can be saved by addressing the qualitative aspects related to the functions
evaluated during the optimization procedure. If several simple functions are elimi-
nated by means of constraint deletion and screening but a few very complex, highly
non-linear functions remain, still too much computer effort will result. For this rea-
son, simplification by linearization may be beneficial, and this can be performed by
expanding the functions in a Taylor Series to be truncated at a lower order/first
term, as indicated in the Equations (5) and (6) below:

f(x0 + ∆x) = f(x0) +
df

dx

∣∣∣∣
x0

·∆x+
d2f

dx2

∣∣∣∣
x0

· ∆x2

2!
+
d3f

dx3

∣∣∣∣
x0

· ∆x3

3!
+ · · · (5)

f̂(x0 + ∆x) = f(x0) +
df

dx

∣∣∣∣
x0

·∆x (6)

where the approximation of function f within an interval ∆x around the reference
point x0 can the represented by a Taylor series expansion, with as many terms as
are deemed necessary and sufficient to balance accuracy and expediency including,
at the limit, just the initial linear term.

2.4 Alternative Physical Quantities

Still in the effort of simplifying the functions involved in the numerical non-linear
optimization process, a special group of algorithms was developed, having in mind
engineering situations often present in design optimization tasks.

Choze, Sergio B., et al. (2022) Linear & Non-linear Programming for Structural Optimization pp. 65-106

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 70



As far as specific approaches go, it is useful to recall that a very common struc-
tural optimization task aims to obtain the minimum possible mass without violating
stress constraints. Since the material (and consequently its density) is very seldom
considered as design variables, the optimizer has to impose changes to the geometric
parameters and the area is chosen, most of the times, as the design variable.

In such a formulation, the objective function displays a linear, explicit relation
with respect to the design variables. The same, however, does not hold true for the
constraints, because stresses and areas relate with each other by means of a reciprocal
mathematical function. This situation poses a special difficulty for the optimizer
because the optimization problem is usually strongly driven by the constraints, which
get directly represented as nonlinear entities with respect to the decision variables
in this particular kind of formulation. Indeed, one would prefer, for computational
efficiency reasons, the objective function to became nonlinear, and the constraints
linear with respect to the design variables. This switch can be done if the design
variables became the reciprocal of the areas, which is equivalent to integrate the
stresses with respect to the areas, obtaining the internal forces (Vanderplaats [1998]).
Hence, it is a usual procedure to replace stresses by internal forces in structural
synthesis problems.

Conversely, in the case of structural dynamics problems, the corresponding com-
puter cost mitigation approach consists of replacing the natural frequencies by the
equivalent Rayleigh Coefficient (Canfield [1993]), with Equation (7) representing it
as a dimensionless scalar that also relates the kinetic and elastic energies of the
vibrating structure:

λ = ω2 =
φT · kφ
φT ·Mφ

=
U

T
(7)

where K,M and φ are the stiffness, mass, and modal matrices, respectively. The
scalars ω, λ, U and T stand for the natural frequency, its associated eigenvalue and
the potential and kinetic energies.

3 Multi-criteria Optimization

Another noteworthy scenario with respect to possible combinations of the of j+k+1
functions defined in Equations (1)-(3) is that in which more than one response
can participate within a set of objectives, configuring a multi-criteria optimization
scenario (Gandibleux [2006], Odu and Charles-Owaba [2013]). The solutions for
multi-criteria optimization problems are presented in terms of sets with multiple
possible combinations of decision variables, each of them representing not strictly
an optimal solution, in the absolute sense, but an optimal trade-off among the
participating criteria. The solutions belonging to this set inherently group in a
locus of the responses space, generally alluded to as the Pareto frontier (Wilson et al.
[2001]), in a manifestation of a property called dominance or Pareto-optimality. By
definition, a solution S1 to a multicriteria optimization problem dominates another
solution S2 if S1 is no worse than S2 in all criteria and, furthermore, if S1 is better
than S2 in at least one criterion. The concept of dominance in multicriteria decision-
making can be graphically illustrated as in Figure 4. In panel (a), a two-dimensional
response or output space (for 2 criteria), the best trade-offs would reside on the lower
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(a) 2 criteria - larger is better AND smaller
is better.

(b) 2 criteria - both smaller is better.

Figure 4: Schematic illustration of Pareto-dominance in the solution
space for optimization problems with 2 criteria.

right extreme of the graph. However, driven by other constraints (explicit or not),
there are cases such as S3 relative to S2 and S5 relative to S4 where Criterion 1
improves only at the expense of Criterion 2. In terms of dominance, both S1 and S5
dominate S2, whereas neither S2 nor S3 dominate any of the other solutions shown
explicitly. Conversely, panel (b), shows the case of a two-dimensional output space
where the 2 involved responses have to be minimized, and compete with each other.
Even though the illustrations cover only two responses, for simplicity and clarity,
the concept is valid for whatever arbitrary number of multiple criteria.

In the intersection between structural and multi-criteria optimization, a common
situation arises when a certain region is discretized through some number of finite
elements and, each of them having their own individual stress level, a single stress
constraint is applied over the entire region. More generally, this situation is repre-
sentative of the case in which a vector of responses that are connected/correlated
to each other are subjected to the same practical constraint. In this scenario, a
simple yet ineffective workaround would be to impose the constraint over the max-
imum value in the vector, that is, the maximum stress in this particular example,
in the vein of being conservative. Because max(·) is a highly discontinuous func-
tion, numerical difficulties are to be expected, therefore the alternative presented in
Equations (8) and (9) is recommended (Butkewitsch and Steffen, Jr. [1999]):

min(β), 0 ≤ β ≤ 1 (8)

subject to

G(T, β) = β − T

T ′
≥ 0 (9)

For numerical conditioning, the objective defined by the auxiliary variable β
is normalized in the unit interval, and its value is driven down subjected to the
constraint that it still remains positive while the values in the true target T (the
components of the vector constraint), normalized by T ′ are subtracted from it.
These conditions are only satisfied as the values of T itself are reduced, as initially
intended.
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4 Multidisciplinary Design Optimization

As described in Gandomi et al. [2013], multidisciplinary design optimization (MDO)
has been an established field for as long as optimization migrated from a purely
mathematical to a fully applied science. It gained significant momentum from the
mid-1990s, as asserted by references Ragon et al. [2003], Giunta et al. [1997], Alexan-
drov and Kodiyalam [1998], Venter and Haftka [1999], mainly impelled by the chal-
lenge and opportunity of performing optimal decision making, in the mathematical
sense, as in the present material, however targeting applications in aircraft design,
that could leverage ever increasing computer processing power. Given that aircraft
are highly complex and integrated systems themselves, a natural derivation merged
MDO and Systems Engineering into MSDO (Multidisciplinary Systems Engineer-
ing), in which the mathematical framework to solve MDO problems has been applied
to systems (References Neufville et al. [2004], Gu et al. [2000], Agarwal and Renaud
[2004]).

While settling itself as MDO and evolving into MSDO, this entire knowledge
field has consolidated a number of approaches to handle problems with competing
domains, as described in the sequence.

4.1 All-at-Once (AAO)

For being the most straightforward, All-at-once is also the most usual approach for
optimizing complex systems. It should be noted, however, that the clear exchange
here is to gain simplicity potentially giving up some performance, since a single
optimizer is in charge of determining all of the decision variables, driving all of the
existing objectives and constraints alike. It is assumed, of course, that some repre-
sentation of the system can supply the output values (either exact or approximate),
given a set of inputs. Many options of simulation software exist for the increasingly
preferred computational representation of such input to output relationships (Refer-
ences Altiok and Melamed [2010], Sturrock and Pegden [2011], Waller [2012], Ucar
et al. [2017]). The AAO construct is depicted in Figure 5.

Optimizer

System: condensed / derived
from Functional Decomposition

System
outputs

System 
inputs

Inputs for the
optimizer

Outputs from the
optimizer

Figure 5: All-at-Once (AAO) approach for Multidisciplinary Systems
Design Optimization (MSDO).

Choze, Sergio B., et al. (2022) Linear & Non-linear Programming for Structural Optimization pp. 65-106

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 73



4.2 Individual Discipline Feasibility (IDF)

Contrary to All-at-Once, there is no overarching system representation invoked every
time the optimizer iterates. Each sub-system is optimized in isolation (although the
local mechanism is the same as that applied to the entire system within the AAO
approach) and, at the sub-system level, each optimum is, by definition, feasible
(or locally feasible, to be strict). The system-level optimizer has then to tune the
decision variables if coupling constraints across the multiple-subsystems are violated
in any form. These adjustments will penalize the local optima at the sub-systems
in exchange of overarching feasibility. The notion of giving-up some optimality is
intrinsic to partitioning the system in levels so that, in contrast with the All-at-
Once approach, optimality is sacrificed for performance, since sub-systems can be
optimized independently, and certainly in parallel. A potential drawback is the
possibly unlimited complexity in how to define boundaries between sub-systems.
Figure 6 captures the whole IDF idea.

Optimizer

Sub-system i 
+ Coupling 

inputs

Sub-system j 
+ Coupling 

inputs
Sub-system j Sub-system j

outputs 

Sub-system i Sub-system i
outputs 

Coupling Coupling
outputs

Outputs from 
the optimizer

Inputs for
 the optimizer

Figure 6: Individual Discipline Feasibility (IDF) approach for Multidis-
ciplinary Systems Design Optimization (MSDO).

4.3 Collaborative Optimization (CO)

With Collaborative Optimization, the notion of a hierarchical approach is again
leveraged, with decision variables at 3 levels: the system level, the coupling (inter)
level and the sub-system (intra) level. It is hence similar to the IDF approach, but
with the additional sophistication of decision variables preserved at the system level.
The larger this system-level subset is, the stronger is the effort to preserve optimality
despite the system partitions necessary to address local versus global aspects of the
optimization process, as indicated in Figure 7.
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Figure 7: Collaborative Optimization (CO) approach for Multidisci-
plinary Systems Design Optimization (MSDO).

4.4 Bi-level Integrated System Synthesis (BLISS)

Due to leveraging features/strengths of the many the previous approaches, the
BLISS method is somewhat popular and works as follows:

1. Define a starting configuration

2. Perform an entire system analysis, as in each loop of the AAO approach, to
check both optimality and feasibility

3. If overall feasibility exists (no violated constraints at any sub-system) and
optimality is satisfactory, exit

4. If step 3 above is not satisfied, perform sensitivity analysis at each sub-system
in preparation to optimize them individually, recalling that sensitivities are
objective measurements of rates of change caused in outputs, given variations
on the inputs, in a small enough range or neighborhood (i.e., in the local
sense, as opposed to global sensitivity analysis such as discussed in Rashedi
et al. [2018])

5. Repeat step 4, but at the system level (i.e., consider sensitivity of the couplings
relative to inputs)

6. Optimization at the sub-system level (leveraging step 4)

7. Optimization at the system level (leveraging step 5)

8. Returns to step 3 to either terminate the process or launch the next iteration,
until convergence criteria are met.

It should be noted that in very complex systems, where it is justified to unfold a
hierarchical tree into many levels, nested BLISS configurations give rise to multi-level
system optimization. One could devise something along these lines to encompass
from supply chain elements (at the higher end of the system spectrum), all the way
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down to structural design of individual parts. Contemporary computer tools and
system simulation software make it realistic to address such a use case at the time of
writing (References Altiok and Melamed [2010], Sturrock and Pegden [2011], Waller
[2012], Nardin et al. [2009]). Figure 8 depicts BLISS graphically.

Project
parameters

System
optimizer

Sub-system 1
optimizer

Sub-system n 
optimizer

Performance
evaluation

...

Inputs optimized at System Level

Coupling
constraints

Figure 8: Bi-level Integrated Systems Synthesis (BLISS) approach for
Multidisciplinary Systems Design Optimization (MSDO).

5 Solution Techniques

This section describes and discusses approaches to solve the optimization problem
stated in its various forms, as per the preceding topics within this chapter. A
number of computational implementations is offered to illustrate the main solution
techniques, all of them presented as “Code” crafted in the R statistical computing
platform R Core Team [2020].

For this purpose, the command install.packages is the main tool to add
new packages to the R software. It takes a vector of names and a destination
library, downloads the packages from the repositories (from a local folder or re-
mote web server) and installs them in the R environment. To install the pack-
ages needed to run the codes in this chapter, for example, enter the following
install.packages(’Rglpk’, ’nloptr’)

Help is available at the command prompt via ?install.packages command.

5.1 Classical Optimization Techniques

Classical, calculus-based or gradient-based optimization techniques will employ a
collection of methods which, for the most part, operate by the use of derivatives to
map a decision space between starting point(s) and the optimum, navigating from
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the former to the latter in an iterative fashion. Regardless of how specifically these
iterations are undertaken by each specific method, the process is deemed convergent
into an optimal configuration {X∗} upon satisfaction of the Karush-Kuhn-Tucker
conditions, as in Equations (10)-(12):

Gj({X∗}) ≤ 0 (10)

λj ·Gj({X∗}) = 0 (11)

∇F ({X∗}) +
∑
j

λj · ∇Gj({X∗}) +
∑
k

λk · ∇Hk({X∗}) = 0 (12)

The first of the three conditions states that a solution must be feasible (i.e.,
satisfies all the constraints) to be considered optimal. Second and third conditions
introduce the Lagrange Multipliers λ, which scale the gradient vectors (∇) for both
equality and inequality constraints such that, when they are added to the gradient
vector of the objective function itself, the resultant is zero at the optimum point
{X∗}. This reflects an equilibrium condition, mathematically expressed by the so-
lution of a homogeneous system of linear equations in {X}, tackled by the methods
described in the remainder of this chapter.

6 Linear Programming

Linear programming consists in a class of problems from mathematical programming
which the objective index and constraints are described by linear equations. Hence,
they are particularly kin to structural optimization problems that can be linearized
and, more specifically, when the decision space is discrete, such as when selecting
structural members from a pre-defined catalog. Despite the great variety of problems
and mathematical formulations encompassing the category, the linear program can
be written in the standard form (Noble and Daniel [1988])

max c1x1 + c2x2 + · · ·+ cnxn (13)

subject to

a11x1 + a12x2 + · · ·+ a1nxn = b1 (14)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (15)

· · · (16)

am1x1 + am2x2 + · · ·+ amnxn = bm (17)

xi ≥ 0, ∀i = 1, · · · , n (18)

where c ∈ Rn×1, a ∈ Rm×n, b ∈ Rm×1 are fixed real values and x ∈ Rn×1 are real
numbers. The variables xi, i = 1, · · · , n are the design variables.

In a compact vector notation the standard problem becomes:

max{C}T{X} (19)

subject to
A{X} = {B} (20)
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{X} ≥ 0 (21)

With Equations (19) and (20) reinforcing the linear nature of the entire formulation
through the dot product (linear combination) and system of simultaneous linear
equations, respectively. Given B ∈ Rm×m,m < n a set of m linearly independent
columns of matrix A in Equation (20), the matrix is non-singular and therefore
admits a unique solution for the expression:

B{XB} = {B}. (22)

If all n−m components of {X} not associated with columns of a matrix B are zero,
the corresponding solution is a basic solution of Equation (22) with respect to B,
which is mathematically equivalent to the second condition in Equation (11). The
components of the design variable {X} associated with columns of B are the basic
variables. A vector {X} is feasible if it satisfies equations (20) and (21). If a feasible
solution is also a basic solution, it is said to be a basic feasible solution.

A fundamental theoretical result states that if there is a feasible solution to the
linear program then there is a basic feasible solution. Furthermore, if there is an
optimal feasible solution, there is an optimal basic feasible solution. This result
is important because it converts the task of solving a linear program to a task of
computing basic feasible solutions. For a problem represented by n variables and m
constraints there are

n!

m!(n−m)!
(23)

or less basic solutions. This is an upper limit on the number of solution candidates
for the linear program. There are several algorithms in the literature dealing with
the task of finding an optimal design. The main idea behind a popular method “The
Simplex Method” is outlined in the following.

6.1 The SIMPLEX method

Given the general linear programming problem expressed in Equations (19)-(21),
where {X} ∈ Rn×1, {C} ∈ Rn×1, A ∈ Rm×n and {B} ∈ Rm×1, the optimal solution
is also a basic feasible solution. Solving such problem requires the addition of slack
variables xn+1, · · · , xn+m to convert the inequality constraint given by Equation
(20) in equality constraint. As a result, the extended version of the general linear
programming problem is given by

maxM = {Ce}T{Xe}+ u (24)

subject to
Ae{Xe} = {B} (25)

{Xe} ≥ 0 (26)

where u ∈ R, {Xe} ∈ Rq×1, {Ce} ∈ Rq×1, Ae ∈ Rm×q and {B} ∈ Rm×1. Adopting
this representation as a general linear programming formulation, it follows that
Ae = [A, Im] , {Ce}T =

[
{C}T , {0}T

]
, q = m + n and u = 0 express the equivalence

between Equations (19)-(21) and Equations (24)-(26).
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The first step of the Simplex Method consists in the definition of the matrix

T =

[
Ae {B}

−{Ce}T u

]
(27)

and then a number of elementary operations are performed over the lines of the
matrix. The only allowed operation over the last line of T is the addition of linear
combination of the lines above. As a result, this new matrix is obtained

T ′ =

[
A′e {B′}

−{C ′e}T u′

]
(28)

and the following linear programming problem is equivalent to the problem given
by Equations (24)-(26). Along the Simplex Method a sequence of matrix operations
is performed, according to the matrix representation of T , Equation (28), which
elements where updated by transformations over the lines. For each T , a basic
vector of viable solution exists. Suppose that at the step r, a feasible basic solution
is found and the basic variables are x1, x2, · · · , xm. Furthermore, if the columns of
Tr corresponding to the basic variables are unitary vectors, then Tr is expressed as

Tr =


1 · · · 0 a1,m+1 · · · a1,q b1
0 1 0 a2,m+1 · · · a2,q b2
0 · · · 1 am,m+1 · · · am,q bm
0 · · · 0 −cm+1 · · · −cq ur

 . (29)

In addition, the objective now is written as

M = ur + cm+1xm+1 + · · ·+ cqxq (30)

Equation (30) holds regardless of the values of x1, x2, · · · , xq. The basic solution
available at this stage is found by using xm+1 = xm+2 = · · · = xq = 0 and the
maximum value is M = ur. At this stage, if all cj < 0, for all j = m+ 1, · · · , q, any
increase in the values of xm+1, · · · , xq will lead to a decrease in the objective index
M . This test is an indicative of the optimality of the solution.

On the other hand, if there is at least one cj > 0 for j = s, the value of the
objective index M will be increased by updating the value of xs ≥ 0. In this case,
a new step is performed and the matrix T is updated. As a result, the numerical
procedure is summarized as follows:

1. Find the column index s ∈ {m+ 1,m+ 2, · · · , q} at the last line of the matrix
T whose element −cs has the lowest value.

2. Define k = bi
ai,s

with the smallest value of bi
ai,s

considering cases in which ai,s > 0

holds.

3. Make a matrix pivoting at elements ai,s using the k value calculated above.

The succession of steps described above will lead to a sequence of feasible results
that will maximize the objective index M . Since the number of basic solutions is
finite, this procedure may lead to the optimal design.
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Degeneracy occurs when a basic feasible solution contains a smaller number of
non-zero variables than the number of independent constraints. In this case the
values of some basic variables are zero and the replacement ratio is the same. Cy-
cling in the algorithm will occur when the next basic solution to be investigated is
one that was already investigated before. More advanced schemes are proposed to
deal with the effects of degeneracy and cycling in linear programming. A compre-
hensive discussion about the Simplex Method and typical variants can be found in
Luenberger and Ye [2008] and Vanderplaats [1998].

6.2 Duality and Sensitivity

Once again alluding to Equations (19)-(21) for a linear program, and considering
Y ∗ to be its optimal solution, the maximum objective value of this formulation is
also the minimal objective value of the following, rewritten linear program:

min{B}T{Y } (31)

AT{Y } ≥ {C} (32)

{Y } ≥ 0 (33)

and Y ∗ is also a solution for this problem. The linear program (13)-(18) is the
so called primal problem and the new linear program (31)-(33) is the dual prob-
lem. There are a number of theoretical and computational properties shared by the
formulations:

� The dual problem of a given dual problem is the primal.

� If {X} satisfies the primal constraints (20)-(22) and {Y} satisfies the dual
constraints (30)-(31) then {C}T{X} ≤ {B}T{Y }.

� If {X} satisfies the primal constraints (20)-(21), {Y } satisfies the dual con-
straints (32)-(33) and {C}T{X} = {B}T{Y } then {X} is an optimal solution
of the primal problem and {Y } is an optimal solution of the dual problem.

� If exists non degenerated primal and dual feasible vectors then both primal
and dual programs have optimal design solutions and the optimal objective
values are identical.

� If the optimal program or the dual program has no feasible vector then both
programs have no optimal solution.

These results allow a direct comparison of primal and dual feasible vectors and can
be useful in evaluating the optimality of a solution. The results can also be used
to convert a formulation with a large number of constraints into variables, that
is, if {A ∈ Rm×n|m � n} then the dual problem will be computed through the
constraint matrix {AT ∈ Rn×m|m � n} and the number of matrix operations over
the constraints is largely reduced. This scheme is sometimes required due to the
concern with computational efficiency in problems with large number of constraints.
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Code 1: Linear Programming method.

# maximize: 4 x_1 + 3 x_2 + 2 x_3

# subject to: 3 x_1 + x_2 + 2 x_3 <= 80

# 2 x_1 + 4 x_2 + 2 x_3 <= 70

# x_1 + 3 x_2 + 2 x_3 <= 70

# x_1, x_2, x_3 >= 0

library(Rglpk)

obj = c(4, 3, 2)

mat = matrix(c(3,2,1,1,4,3,2,2,2), nrow=3, ncol =3)

sig = c("<=", "<=", "<=")

rhs = c(80, 70, 70)

Rglpk_solve_LP(obj , mat , sig , rhs , max = TRUE)

$optimum

[1] 115

$solution

[1] 25 5 0

Another important concept refers to the sensitivity analysis of an optimal so-
lution. Given a basic optimal solution ({XB}, 0) of the linear program (24)-(26)
associated to an optimal basis B, where {XB} = B−1B, the solution of the corre-
sponding dual formulation is {λ}T = {CB}TB−1.

If there is no degeneracy in the solution, the basis B is also optimal when small
changes in the bounds {B} of the constraint (Equation (25)) occur. Thus, for
{B}+ {∆B} the optimal solution is

{X} = ({XB}+ {∆XB}, 0) (34)

where {∆XB} = B−1{DeltaB}. The corresponding change in the objective function
value (Equation (30)) is

∆M = {CB}T{∆XB} (35)

This expression addresses the sensitivity of the optimal value when small changes
in {B} are found. It can be understood as a marginal price of the component {B},
since when bj changes to bj + ∆bj, the value of the objective changes accordingly.

To summarize the Linear Programming approach, Code 1 implements it in the
R statistical computing platform (Theussl and Hornik [2019]).
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7 Non-Linear Programming

In the absence of linearization (either in the objective function and/or the con-
straints) or convexity within the decision space, the optimality conditions defined
in Equations (10)-(12) should be resolved via non-linear optimization methods, to
be detailed under each topic within this section.

The plot of f(x, y) = x2 + y2 is shown in Figure 9, along with a contour plot of
the search space. The constrained case will be discussed later in section 8.

(a) Image of f(x, y)
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(b) Contour plot of f(x, y)

Figure 9: Plot of a nonlinear function.

7.1 One-dimensional minimization methods

One-dimensional or line search is the mechanism taking place at each iteration of a
non-linear optimization procedure, whereby the values of the decision variables in
the current iteration (i) are updated from their values in the previous one (i − 1)
according to a step of magnitude α taken along the direction delimited by {S}, a
line or one-dimensional search along this vector’s direction, as in Equation (36):

{X}(i) = {X}(i−1) − α{S}(i) (36)

Since the previous status of {X} is known, the line search boils down to determining
both the search direction and the magnitude of the step along it. Many methods
exist, and the broad categories with the most important ones are the object of the
forthcoming bullet points. It should be noted that the choice of search direction
should influence not only the one-dimensional line to be pursued for the current
iteration but also, for the higher-order methods, how the successive lines of search
are concatenated and, ultimately, how the overall landscape of the decision space
is mapped. In regards to the step size, it plays the role of a learning rate, for
which it is necessary to balance not too large a number that the procedure will
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diverge/overshoot, neither an excessively small one that will unnecessarily penalize
the performance.

The determination of the search direction {S} is discussed next.

7.2 Zero-order methods

Methods in this category require function values only, but none of their derivatives,
which could still be taxing depending upon the size and complexity of the model
used for analysis of the objective function (for now, in an unconstrained scenario).

Usually at the expense of a very high number of function evaluations, these
methods tend to be robust enough to circumvent issues related with non-convex
and discontinuous functions, extensible to the case of discrete decision variables.

The primary representatives of this class are Random Search and Powell’s method
(described in greater detail in the sequence), while other methods are also docu-
mented in the literature (Vanderplaats [1998]).

7.2.1 Random Search

Practical implementations of Random Search depart from limiting the overall scope
(and computational burden) by stipulating bounds as in Equation (4), and then
modify Equation (36) accordingly:

{X}(i) = {X}(i−1) + r
[
{X}UB − {X}LB

]
(37)

where r is randomly drawn from the [0, 1] interval.
The important balance to be established relates to the width of the interval

between the side constraints {X}LB and {X}UB: make it too wide, and the conver-
gence becomes too expensive, whereas excessive narrowing may lead to missing the
global optimum for more complex decision spaces. Ultimately, these factors may be
balanced by way of the heuristic search methods detailed in the next chapter.

It should be noted that in Equation (37), the search direction {S} is replaced by
a randomly chosen point within the side constraints, obtained by the subtraction of
the bounds directly, which gets multiplied by the aleatory scale factor r. Hence, the
direction itself is fixed, as it arises from {X}LB and {X}UB that remain constant.
A more efficient variation affects each component of {S} separately and, for an
n-dimensional search space, works as:

{S}(i) = 2 · [ri − 0.5], i = 1, · · · , n. (38)

7.2.2 Powell’s method

This approach relies theoretically on the concept of conjugate directions, which un-
derpins most of the more powerful classical optimization methods, and can yield
significant success in practice if the problem to be solved is or can be reasonably
approximated as a quadratic one, which is a plausible scenario for structural opti-
mization (via Taylor series, for example).
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Code 2: The BOBYQA algorithm.

library(nloptr)

fobj <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )

}

x0 = c(-2, 2); xl = c(-10, -10); xu = c(10, 10)

opt1 = nloptr(x0=x0, eval_f = fobj , lb = xl , ub = xu ,

opts=list(algorithm=’NLOPT_LN_BOBYQA ’, ’maxeval ’ = 500))

cat(’Optimal value: ’, opt1$objective ,

’\nOptimal design: ’, opt1$solution)

Optimal value: 4.334152e-05

Optimal design: 1.001892 1.004418

Denoting two directions (p) and (q), not necessarily in sequence but indexed as
such for notational simplicity, are conjugate if(

{S}(p)
)T · [H] · {S}(q) = 0. (39)

The first direction is transposed to ensure dimensional compatibility with respect
to the Hessian square matrix of order n, denoted as H, and holding the second order
derivatives of the objective function.

According to Powell’s method, a first set of searches following Equation (36)
is performed across the n orthogonal directions that constitute the coordinates of
the search space, finding each minimum associated with a corresponding α. While
neither of these directions are necessarily conjugate, they provide the starting point
for building subsequent directions that satisfy this condition. Having completed
all n uni-dimensional searches, each of them becomes a column of the following
approximation to the Hessian matrix:

[Ĥ] =
[
α1 · S(1), α2 · S(2), · · · , αn · S(n)

]
(40)

which is then used as a generator for conjugate directions by summation of the
columns of [H], as follows:

S(i+1) =
∑
n

αi · S(i) (41)

The method is repeated thereafter updating the iteration index, disposing of
the leftmost column of [H], shifting all remaining columns leftwards and appending
the most recent conjugate direction into the (now empty) rightmost column. The
flowchart in Figure (10) displays the entire method.

An advanced method using this concept is the BOBYQA (Powell [2009]), which
usage is shown in Code 2 (Johnson [2020]).
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Start

Exit

Choose {X}(0)

Initialize {S} to 
coordinate unit 

vectors
i=1,2,…,n

{X}={X}(0)

{Y}={X}

α=argmin[k]
k=F({X}+α{S})
{X}={X}+α{S}

Converged?

{S}(i+1) = X-Y

α=argmin[k]
k=F(X+α{S})

X(i+1) = X(i)+α{S}

Converged? 

S(i)=S(i+1)

i=1,2,…,n

yes

yes

no

no

i=0

i=i+1

Figure 10: Flowchart with step-by-step description of Powell’s zero-order
optimization method.

7.3 First-order methods

The foremost first-order method is the Steepest Descent algorithm, which leverages
the property of directional derivatives whereby the path of most intense variation of
a function F{X} at point {X0} is that of the gradient of the function at the same
point. In essence, it is as simple as replacing {S} by ∇F ({X}) at each iteration,
until Equations (10)-(12) are reasonably satisfied.

It should be noted however that while the instantaneous variation is the steepest
by following the direction of the gradient to the function at each point, the overall
performance of the method is severely penalized by the fact that the gradient is
always perpendicular to the function surface. Along the successive iterations, this
results in a series of search directions in which the current one is perpendicular to its
prior. In effect, this means that each search direction retains no information what-
soever about the previous one (by orthogonality), and hence the decision landscape
is poorly mapped.

To counter this loss of information that reduces the efficiency of the search, the
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Conjugate Direction method (also known as the Fletcher-Reeves method) requires
only a simple modification of the Steepest Descent approach, yet significantly im-
proves the convergence rate. In effect, its initial search direction is the gradient of
F{X}, to be updated according to Equations (42) and (43):

S(i) = ∇F ({X})(i−1) + β(i) · S(i−1) (42)

β(i) =

∣∣∇F ({X})(i−1)
∣∣2

|∇F ({X})(i−2)|2
(43)

This approach is conceptually similar to Powell’s method, in the sense that the initial
search directions are meant only to initialize the procedure, but different from the
perspective that all of the search directions are conjugate from the beginning. The
flowchart is in Figure 11.

Start

Exit

Choose {X}(0)

{X}={X}(0) 
F=F{X}
α=FT.F

{S}=F

α=argmin[k]
k=F({X}+α{S})

α=0?

{X}={X}+α{S}

F=F{X}

b=FT.F
β=b/α

{S}=F+β{S}
α=b

slope={S}.F

slope ≥ 0? 

α=argmin[k]
k=F({X}+α{S})

{X}={X}+α{S}

Converged?

yes

yes

yes

no

no

no

Figure 11: Flowchart with step-by-step description of Fletcher-Reeves
Conjugate Direction method.
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7.4 Second-order methods and approximations thereof

At this point, it becomes noticeable that adequate mapping of the decision landscape
(i.e., topology of the objective function {F} and how it varies in n-dimensional space)
bears beneficial influence in terms of how efficient the optimization process occurs.
On this vein, mapping the second derivatives will not only entail the information
about the instantaneous reward (as in each isolated iteration of the Steepest De-
scent method), but also provide some anticipation on how the decision space varies
thereafter, connecting a more plausible succession of search directions other than
the sequentially perpendicular ones. As seen in Equation (41), the Hessian matrix
[H] is the container to store all information relative to the second-order derivatives,
as in Equation (44):

[H(F ({X}))] =



∂2F ({X})
(∂X1)2

∂2F ({X})
(∂X1)·(∂X2)

· · · ∂2F ({X})
(∂X1)·(∂Xn)

∂2F ({X})
(∂X2)·(∂X1)

∂2F ({X})
(∂X2)2

· · · ∂2F ({X})
(∂X2)·(∂Xn)

...
...

. . .
...

∂2F ({X})
(∂Xn)·(∂X1)

∂2F ({X})
(∂Xn)·(∂X2)

· · · ∂2F ({X})
(∂Xn)2


(44)

which is square of order n and symmetric with respect to the main diagonal, where
the second-order derivatives are with respect to each individual decision variable in
{X}, with cross terms in the off-diagonal cells.

The paramount approach for utilizing [H] as part of the optimization procedure
is Newton’s method, which starts with the Taylor series expansion in Equation (45),
whose notation differs from that in Equation (5) to embed the notion of search
iterations indexed by (i):

F ({X}) = F ({X}(i)) +∇F ({X}(i))T · δ({X})

+
1

2
δ({X})T ·

[
H(F ({X})(i))

]
· δ({X}) (45)

where
δ({X}) = {X}(i+1) − {X}(i). (46)

Solving Equation (45) for the stationary condition gives:

δ({X}) = −
[
H(F ({X})(i))

]−1 · ∇F ({X}(i)). (47)

Next, Equation (48) can be obtained by combining a re-arranged form of Equa-
tion (46) with Equation (47), and further simplified into Equation (45)

{X}(i+1) = {X}(i) + δ({X}) = {X}(i) −
[
H(F ({X})(i))

]−1 · ∇F ({X}(i)) (48)

{S}(i) = −
[
H(F ({X})(i))

]−1 · ∇F ({X}(i)) (49)

Complementary, Equation (49) can be derived from Newton’s (also known as Newton-
Raphson) method for determining roots of equations. In the present case, the goal
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Figure 12: Newton-Raphson root finding approach to derive Newton’s
second-order search method.

is determining the roots of the equation corresponding to ∇F ({X}) = 0, which
indicates the stationary point of a function of n variables contained in {X}. Figure
12 describes the root finding procedure, projected to a single dimension, and how it
circles back to Equations (47)-(49).

Starting at point {X}(i), a tangent (derivative or gradient component) to the
function is drawn until it intercepts the horizontal axis, much closer to the root at
{X}(i+1). It is possible to see that iterating a few more times from this new point
(corresponding to the vertex A of the triangle ABC), convergence to the root will
eventually occur. However, freezing into the current view and back to the triangle
ABC, it is possible to see that the motion described in Equation (50) is:

tan(θ) =
d(∇F )

d{X}

∣∣∣∣
{X}(i)

=
∇F ({X}(i))

{X}(i+1) − {X}(i)
(50)

and given that

{X}(i+1) − {X}(i) =
∇F ({X}(i))
d(∇F )
d{X}

∣∣∣
{X}(i)

(51)

and
d(∇F )

d{X}

∣∣∣∣
{X}(i)

=
d2F ({X})

dx2
(52)

Equations (51) and (52) can be combined as in Equation (53) and, when generalizing
the second derivative back into its matrix form, confirm Equation (47):

{X}(i+1) − {X}(i) =
∇F ({X}(i))

d2F ({X})
dx2

(53)

The computational counterpart of Equations (44)-(53) in R format is provided within
Code 3 (Dembo and Steihaug [1983], Johnson [2020]):
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Code 3: The Newton algorithm.

library(nloptr)

fobj <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 +

(1 - x[1])^2 )

}

gfobj <- function(x) {

return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 *

(1 - x[1]), 200 * (x[2] - x[1] * x[1])) )

}

x0 = c(2, 2); xl = c(-10, -10); xu = c(10, 10)

opt1 = nloptr(x0=x0, eval_f = fobj , eval_grad_f = gfobj ,

lb = xl, ub = xu,

opts=list(’algorithm ’=’NLOPT_LD_TNEWTON ’,

’xtol_rel’ = 1.0e-6))

cat(’Optimal value: ’, opt1$objective ,

’\nOptimal design: ’, opt1$solution)

Optimal value: 6.252339e-28

Optimal design: 1 1

Let’s now make some considerations regarding the overhead for computing the
second-order derivatives to fill the n-dimensional, symmetrical square matrix [H]. A

total of n(n−1)
2

derivatives is to be calculated, resulting in computational complexity
O(N2). Therefore, while the detailed mapping of the decision space to be navigated
is useful, it has to be pondered against the calculation burden, and the trade-off
is approximating [H] instead of calculating it explicitly. Davidon-Fletcher-Power
(DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS), the paramount methods to
implement this philosophy, are detailed in the sequence. Both of them share Fletcher
and Reeves philosophy about storing information pertinent to previous iterations,
but do that using a vector instead of the single scalar β within Equations (42) and
(43), as well as Figure (11).

Along these lines, to approximate the Hessian matrix, these methods start by
making it equal to the Identity Matrix, which is equivalent to start the search
through the direction of Steepest descent (constant gradient across the main diago-
nal). Then, interactively, this approximate Hessian is updated as follows:

[H](i+1) = [H](i) + [D](i) (54)

where

[D](i) =
σ + θ

σ2
· δ({X}) · δ({X})T +

θ − 1

τ
· [H](i) · y · ([H](i) · y)T

− θ
σ
·
[
[H](i) · y · δ({X})T + δ({X}) · ([H](i) · y)T

]
(55)
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Code 4: The BFGS method.

library(nloptr)

fobj <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )

}

gfobj <- function(x) {

return( c( -400 * x[1] * (x[2] - x[1] * x[1]) - 2 *

(1 - x[1]), 200 * (x[2] - x[1] * x[1])) )

}

x0 = c(-2, 2); xl = c(-10, -10); xu = c(10, 10)

opt1 = nloptr(x0=x0, eval_f = fobj , eval_grad_f = gfobj ,

lb = xl, ub = xu,

opts=list(’algorithm ’=’NLOPT_LD_LBFGS ’,

’xtol_rel’ = 1.0e-6))

cat(’Optimal value: ’, opt1$objective ,

’\nOptimal design: ’, opt1$solution)

Optimal value: 1.243396e-18

Optimal design: 1 1

with the vector y being the difference between the gradients at two successive itera-
tions, as in Equation (55), and the scalars σ and τ defined as in Equations (57) and
(58), respectively:

y = ∇F ({X}(i)) +∇F ({X}{(i− 1)}) (56)

σ = δ({X})T · y (57)

τ = yT · [H](i) · y (58)

DFP assumes θ = 0 and BFGS uses θ = 1, while other methods within this
family, also known as quasi-Newton or variable metric (because of the nature of the
function expressed in Equation (55)) have their own operating strategies. Code 4
provide an illustrative R implementation of the BFGS method (Liu and Nocedal
[1989], Johnson [2020]).

While the emergence of high performance computers reduces the performance
related difficulties of tackling full-fledged Hessian matrices, methods such as DFP
and BFGS retain their relevance with respect to numeric stability, since they avoid
inversion of matrices that often grow to very large sizes.

The determination of the step size/learning rate α is discussed next.
Once a search direction {S} is determined, as discussed in the preceding item, it

is then time to decide upon the magnitude of the motion along {S}, for which the
following methods are mainstream.
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7.4.1 Golden-section method

Consider the following logic to create a Fibonacci series which, apart from its two
initial terms at 0 and 1, consists of progressively adding up the two latest terms to
determine the next one:

F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2, i > 1

(59)

After stabilizing at its recursive portion for i > 1, the ratio between any two con-
secutive terms is equal to the Golden Section ratio φ, a constant calculated as in
Equation (54):

ϕ =
1 +
√

5

2
= 1.61803 (60)

The constant defined as such is useful for finding the optimum of a one-dimensional
function (which is the essence of one-dimensional or line searches) when, similarly
to the bisection method for root finding, one could interactively determine the mini-
mum of a function bounded within a known interval. Specifically, if in the neighbor-
hood of the minimum we can find three points x1 < x2 < x3 with functional values
f(x1) > f(x2) > f(x3), then the minimum is located between x1 and x2 (or exactly
at x2, at the limit).

Finding this minimum starts by picking a brand-new point x4 located between
x2 and x3, such that either the minimum is located between x4 and x3 (upwards)
or between x1 and x4 (downwards). Regardless, a new interval containing 3 points,
similar to but narrower than the previous one, is delimited. For efficiency, we prefer
that the remaining interval to be interactively shrunk from the previous one is as
small as possible, which is obtained by intervals of same width irrespective to which
side the search pivots to. Equality of interval lengths using the above notation is
enforced as in Equation (55):

(x2 − x1) + (x4 − x2) = (x3 − x2) (61)

which gets rearranged into

(x2 − x1)2 + (x2 − x1) · (x3 − x2)− (x3 − x2)2 = 0 (62)

because (x3 − x2) = (x3 − x4) + (x4 − x2). Solving Equation (61) and choosing
the positive of the two roots yields a ratio between (x2− x1) and (x3− x2) which is
exactly the golden section φ of Equation (60). This leads to the following update law
for the iterative process, to be deemed converged upon reaching a suitable, typically
problem dependent tolerance:

x
(i+1)
1 = x

(i)
2 (63)

x
(i+1)
2 = x

(i)
3 (64)

x
(i+1)
3 = x

(i)
3 + ϕ ·

(
x
(i)
3 − x

(i)
2

)
(65)
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7.4.2 Root finding/Interpolation methods (quadratic and cubic cases)

A unique parabola may be fitted through 3 points x1, x2 and x3 discussed in the
golden section method above, resulting in the functional form and optimum ex-
pressed in Equations (66) and (67):

a · α2 + b · α + c (66)

αoptimum =
−b
2 · a

(67)

Given the functional values at x1, x2 and x3 chosen for the golden search ap-
proach, it is guaranteed that a > 0 in Equation (66) and, therefore, the optimum α
does correspond to a minimum. Moreover, computational efficiencies can be gained
if one of the three points within the working interval is made to be 0 and/or they
are evenly spaced.

In some cases, even narrowly bounded intervals will contain functional behav-
ior that is highly non-linear, requiring higher order interpolation to be performed.
Equation (68) shows the cubic case. Optimality is guaranteed by finding the roots
of Equation (69), which is the quadratic form of obtained by deriving the cubic
interpolate. Moreover, minimization is obtained when the second derivative, which
is linear, is strictly positive as shown in Equation (70). Calculation of the coeffi-
cients a and b that satisfy this condition is possible by having four gradient/function
evaluations or, alternatively, three gradient evaluations.

a · α3 + b · α2 + c · α + d (68)

3 · a · α2 + 2 · b · α + c = 0 (69)

6 · a · α + 2 · b > 0 (70)

8 Constrained optimization techniques

Insofar, motion along the search direction {S} at steps with length α did not ac-
count for encountering any constraint. While this is an adequate simplification for
methodological purposes, not incorporating constraints prevents actual applicability
of these methods, which will then be amended to represent the full extent of the op-
timization problem statement introduced in Equations (1)-(4). Hence, constrained
optimization problems are solved by extensions of the well-established methods for
the unconstrained scenarios.

A geometric representation of a constraint is shown in Figure 13. In the case of
an equality constraint, the search space is reduced to the dashed line. In the case
of an inequality constraint, the search space is a subset above or below the dashed
line.

8.1 Sequential Methods

One of the strategies for leveraging unconstrained optimization methods into prob-
lems that actually do pose constraints is to penalize the search outcome to limit
constraint violation.
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Figure 13: Contour plot of a search space.

While simple, this idea has side effects as it results in numerical ill-conditioning,
due to discontinuous nature of the penalties, which behave like “jumps” during the
search process. This obstacle may be circumvented by modulating the penalties with
a weight factor rp as in Equation (71), which is moderate at the earlier search stages
and increases as the solution approaches the optimum, operating in a sequentially
increasing penalization mode, yielding the name for this class of methods:

φ(X, rp) = F ({X}) + rp · P ({X}) (71)

The pseudo-objective φ(X, rp) results from penalizing the original F ({X}) with the
variable penalty P ({X}). Once again, the explicit dependency of the penalty on
the current value of the decision variables stresses its adaptive nature.

8.1.1 Exterior Penalty Method

A penalty function (Equation (72)) is built in a fashion that it is innocuous if no
constraint is violated:

P (X) =
m∑
i=1

[max(0, Gj({X}))]2 +
k∑

i=1

[Hk({X})]2 (72)

accounting for both inequality and equality constraints in Gj({X}) and Hk({X}),
respectively. Squaring the constraints ensures a slope of zero for the constraint
function at its violation boundary, improving numerical conditioning of the pseudo-
objective defined in Equation (56).

Remaining ill-conditioning issues can be resolved by balancing the choice of rp.
When it is too small, the search process is very stable but lax for allowing constraints
violation. Conversely, large rp values lead to strict observance of the constraints,
but induce the “jumps” alluded to before. It is customary to modulate this process
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by sequentially increasing the value of rp by a constant factor γ, which is then
fine-tuned for each problem. Figure 14 represents the Exterior Penalty method in
graphical form.

Start

Given
{X}(0), rp, γ

Minimize
ϕ({X},rp)

unconstrained

Converged?rp = γ.rp Exit
yesno

Figure 14: Flowchart for the Exterior Penalty method for constrained
optimization.

8.1.2 Interior Penalty Method and Extension

By providing a special treatment for inequality constraints, whereby the penalties are
actually reduced instead of decreased over the search process (Equations (73)-(74)),
this method aims at simplifying the unconstrained search portion of the solution:

φ(X, r′p, rp) = r′p ·
m∑
i=1

− 1

Gj({X})
+ rp ·

k∑
i=1

[Hk({X})]2 (73)

φ(X, r′p, rp) = r′p ·
m∑
i=1

− log(−Gj({X})) + rp ·
k∑

i=1

[Hk({X})]2 (74)

with both Equations (73) and (74) exchanging the discontinuous max(·) function
present in Equation (72) for continuous ones, with variation “b” being reputed
for slightly better numerical conditioning. Also, an additional weight factor r′p is
introduced to handle the inequality constraints separately from the equality ones.
Over the course of the search, r′p will decrease at a rate modulated by the constant
parameter γ′.

The extended version of the method accounts for the specific degree of constraint
violation relative to a tolerance level ε, a small negative quantity dependent upon
constants C and a, that marks the transition between the interior penalty method
to its extended version. Detailed formulation is described in Equations (75)-(78),
and a flowchart of both interior penalty approaches is presented in Figure 15.
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Start

Given
{X}(0), rp, γ, rp’, γ’

Minimize
ϕ({X}, rp,  rp’)
unconstrained

Converged?

rp = γ.rp

Exit
yes

no

rp’ = γ’.rp’

(a) Original method

Start

Given
{X}(0), rp, γ, rp’, 

γ’, C, a

Minimize
ϕ({X}, rp,  rp’, ε)
unconstrained

Converged?

rp = γ.rp

Exit
yes

no

rp’ = γ’.rp’

ε=C(rp’)a

(b) Extended method

Figure 15: Interior penalty method for constrained optimization.

P ({X}) =
m∑
i=1

Ḡj({X}) (75)

where

Ḡj({X}) = − 1

Gj({X})
if Gj({X}) ≤ ε (76)

Ḡj({X}) = −2ε−Gj({X})
ε2

if Gj({X}) > ε (77)

and

ε = −C · (r′p)a,
1

3
< a <

1

2
. (78)

Closer examination of Equations (75)-(78) reveals that the penalty functions
have continuous first derivatives at Gj({X}) = ε, but the continuity of the second
derivative is not assured unless the order of the penalty function is increased as in
its quadratic form displayed at Equation (79):

Ḡj({X}) = − 1

Gj({X})′
if Gj({X}) ≤ ε (79)

Ḡj({X}) = −1

ε
·

[(
Gj({X})

ε

)2

− 3 · Gj({X})
ε

+ 3

]
if Gj({X}) > ε (80)
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8.1.3 Additional Penalty Methods for improved numerical conditioning

Relatively recent developments are meant to ensure better balance between feasi-
bility (the optimal solution respects the constraints) and numerical stability. Along
these lines, a family of variable penalty functions is proposed as in Equations (81)
to (89), and the logarithmic approach introduced in Equation (74) is improved as
per Equations (90) to (91).

Ḡj({X}) = −−[Gj({X})]1−s

s− 1
if Gj({X}) ≤ ε (81)

and

Ḡj({X}) = (−ε)1−s ·

[
A ·
(
Gj({X})

ε
− 1

)3

+
1

2
·
(
Gj({X})

ε
− 1

)2

−
(
Gj({X})

ε
− 1

)
+

1

s− 1

]
if Gj({X}) > ε (82)

which undergo the following modifications when s = 1:

Ḡj({X}) = − log (−Gj({X})) if Gj({X}) ≤ ε (83)

and

Ḡj({X}) = A ·
(
Gj({X})

ε
− 1

)3

+
1

2
·
(
Gj({X})

ε
− 1

)2

−
(
Gj({X})

ε
− 1

)
− log(−ε) if Gj({X}) > ε. (84)

Both Equations (82) and (84) depend on parameters A and s, whose values and
fine tuning contemplate literature recommendations as expressed in Equations (85)
to (90), connecting with the notion of the constraint violation tolerance ε and the
sequential penalty approaches, such as those contained in Equations (71) to (74):

ε = −β · (r′p)q (85)

where β is a positive constant chosen such that ε remains near zero at the start of
the search, while q is recommended to be within the range in Equation (86)

1

2 + s
≤ q ≤ 1

s
. (86)

On its turn, A should be defined as in Equation (87)

A =
1 + s

3
if Gj({X}) ≤ 0 (87)

and

A =

[
(1− s) ·

(
C∗

ε− 1

)][
1

3

(
C∗

ε− 1

)−2]
if Gj({X}) > 0 (88)
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indicating violated constraints, at a maximum C∗, and falling back into Equation
(89) when all constraints are violated.

A =
s

6 ·
(
1− C∗

ε

) (89)

Regarding the logarithmic penalty function, also known as log-barrier function,
its enhancement towards better numerical conditioning involves the modification in
Equation (90). While it only explicitly addresses inequality constraints, the equality
ones can be either handled by the standard exterior penalty method, or treated as
two equal but opposite inequality constraints.

P (x, r′p, λ
i) = r′p ·

m∑
j=1

λij · log

[
1− Gj({X})

r′p

]
. (90)

Lastly, the Lagrange multipliers λ, recalled from the KKT convergence conditions
in Equations (10)-(12), are updated along the i iterations as described in Equations
(91)-(92).

λi+1
j =

λij[
1− Gj({X})

r′p

] if Gj({X}) ≤ k · r′p, with k < 1 (91)

λi+1
j =

λij
2r′p(1− k)

if Gj({X}) > k · r′p, with k < 1. (92)

The next topic is dedicated to cover the role of Lagrange Multipliers in greater
detail, including additional methods in which they have a more prominent role in
solving constrained optimization problems.

8.1.4 Augmented Lagrange Multiplier Method

Adding a penalty term to the original objective function to account for the con-
straints continues to be the governing idea, but with direct influence from the KKT
convergence condition of Equations (10)-(12). Historically, this approach was first
derived for equality constraints (Equation (93)) and then generalized to include the
inequality ones (Equation (99)). Both approaches are similar, as highlighted by the
flowcharts in Figure 16.

A(X,λ, rp) = F ({X}) +
∑
k

2λkHk({X}) + rp[Hk({X})]2 (93)

Observe that Equation (93) reduces to the exterior penalty method of Equation
(72) if all λk are equal to 0. More interestingly, if the values of the Lagrange
multipliers are chosen to be optimal, it is possible to prove that the true optimum
of F ({X}) can be determining (for positive, but finite values of rp), skipping the
constrained portion of the method altogether and requiring a single unconstrained
search. Since these optimum values of the Lagrange multipliers are actually unlikely
to be available, it is possible to update them from an initial guess by using Equation
(94):

λi+1
k = λik + 2rpHk({X}i) (94)
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Now, Equation (96) will provide the inequality constraints version of Equation
(93), after the inequalities from Equation (2) are evened out into equalities, by
adding the term Z2 as in Equation (95). The value Z is squared due to the numerical
conditioning ease of parabolic functions.

Gj({X}) + Z2 = 0 (95)

A(X,λ, Z, rp) = F ({X})+
∑
j

[
λj ·

(
Gj({X}) + Z2

)
+ rp ·

(
Gj({X}) + Z2

)2]
(96)

By way of mathematical equivalence, Equation (79) brings an advantage over
Equation (96) for it achieves the same conversion of inequality into equality con-
straints, but dispensing with the potentially many slack variables Z2. Connecting
with the optimization theory presented in the linear programming section, it should
be noted that there will be as many Z2 as there are inequality constraints, and then
their number can be also contained by using the duality principle.

A(X,λ, rp) = F ({X}) +
∑
j

[
λj · ψj + rp · ψ2

j

]
(97)

ψj = max

(
Gj({X}),

−λj
2rp

)
. (98)

Finally, the all-encompassing case, with both equality and inequality constraints,
can be represented in Equation (99) by combining Equations (93) and (97):

A(X,λ, rp) = F ({X}) +
∑
j

[
λj · ψj + rp · ψ2

j

]
+
∑
k

λk+mHk({X}) + rp[Hk({X})]2. (99)

Among the many advantages of this formulation, the following should be high-
lighted:

� Relative insensitivity with respect to the value of rp;

� Precise zero values of both equality and inequality constraints are handled in
a numerically stable way;

� Acceleration can be achieved by updating the values of the Lagrange multipli-
ers, as in Equations (100) and (101):

λ
(i+1)
j = λ

(i)
j + 2rp ·max

(
Gj({X}),

−λ(i)j

2rp

)
, j = 1, . . . ,m (100)

λ
(i+1)
k+m = λ

(i)
k+m + 2rp ·Hk({X}(i)) (101)

where k is the number of equality constraints.
Code 5 provides an illustrative implementation of the Augmented Lagrangian

Multiplier method (Birgin and Mart́ınez [2008]) in the R statistical computing plat-
form (Johnson [2020]).
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no

Start

Given
{X}(0), λ(0), rp, γ, rpmax

Minimize
A({X}, λ,  rp)
unconstrained

Converged?

λk = λk+2.rp.Hk.({X}*)
k=1,l

Exit
yes

no

rp = γ.rp

rp > rpmax
 rp = rpmax

yes

(a) Only equality constraints

no

Start

Given
{X}(0), λ(0), rp, γ, rpmax

Minimize
A({X}, λ,  rp)

unconstrained

Converged?

λj = λj+2.rp.max[Gj({X}*), (-λj /2rp)], j=1,m

Exit
yes

no

rp = γ.rp

rp > rpmax
 rp = rpmax

yes

λk+m = λk+m+2.rp.Hk.({X}*), k=1,l

(b) Equality and inequality constraints

Figure 16: Augmented Lagrangian method for constrained optimization.

9 Direct Methods

The naming for this class of methods reflects their strategy of dealing with the
constraints directly, instead of using modified versions of methods initially intended
to solve unconstrained problems to tackle constrained ones.

9.1 Sequential Linear Programming (SLP)

This method consists of using a truncated Taylor series around a point X0 as a
linearized version of the general non-linear optimization problem, to be updated at
every iteration. Equations (102) to (105) reflect the resulting problem statement,
as it stems from the original Equations (1) to (4):

min,maxF ({X}) ≈ F ({X0}) + {∇F ({X0})}T · δ{X} (102)

subject to
Gj({X}) ≈ Gj({X0}) + {∇Gj({X0})}T · δ{X} ≤ 0 (103)

Hk({X}) ≈ Hk({X0}) + {∇Hk({X0})}T · δ{X} = 0 (104)

and side constraints
{X}LB ≤ {X}+ δ{X} ≤ {X}UB. (105)
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Code 5: Augmented Lagrange Multiplier Method.

library(nloptr)

fobj <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )

}

gcon <- function(x) {

return(x[1] + x[2] - 2.5) # x1 + x2 >= 2.5

}

x0 = c(-2, 2); xl = c(-10, -10); xu = c(10, 10)

opt1 = auglag(x0=x0, fn = fobj , hin = gcon ,

lower = xl, upper = xu)

cat(’Optimal value: ’, opt1$value ,

’\nOptimal design: ’, opt1$par)

Optimal value: 0.02504044

Optimal design: 1.158152 1.341849

It should be noted that, although this theoretical construct is such that any
linear programming method as described in section 6 could in principle be applied
to its solution, practitioners have devised more specific approaches, which rely on
several tunning parameters to enhance the overall performance. As a result, SLP is
usually a very robust alternative when solving complex engineering problems, even
if the attained optimality would vary in a problem dependent fashion.

An example of the SLP method (Nelder and Mead [1965]) implemented in R is
provided by Code 6 (Johnson [2020]).

9.2 Method of Feasible Directions and Modified Method of
Feasible Directions (MFD and MMFD)

In trying to deal with the actual non-linearity of the optimization problem in an
explicit manner, MFD attempts to follow the constraint boundaries, but not in
a precise tangential fashion. It does so by leveraging the concepts of usable and
feasible search directions {S}, as defined in Equations (106) and (107), respectively:

{∇F ({X0})}T · {S} ≤ 0 (106)

{∇G({X0})}T · {S} ≤ 0 (107)

Equation (106) means that a small move from {X0} along {S} will improve
the value of the objective function F ({X}). Equation (107) means that a small
move from {X0} along {S} will not violate any constraint G({X}), represented
here without the sub-indices for brevity and generality.

As in Equation (108), a positive parameter θ is added to Equation (107) to ensure
feasibility, that is, the constraint will not be violated despite movements along {S}
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Code 6: Sequential Linear Programming Method.

library(nloptr)

fobj <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )

}

x0 = c(-2, 2); xl = c(-10, -10); xu = c(10, 10)

opt1 = nloptr(x0=x0, eval_f = fobj , lb = xl , ub = xu ,

opts=list(’algorithm ’=’NLOPT_LN_NELDERMEAD ’,

’xtol_rel’ = 1.0e-6))

cat(’Optimal value: ’, opt1$objective ,

’\nOptimal design: ’, opt1$solution)

Optimal value: 0.003021801

Optimal design: 0.9569033 0.9122515

while trying to remain strictly tangent to a function with curvature:

{∇G({X0})}T · {S}+ θ ≤ 0 (108)

From vector dot product theory, the geometric interpretation of Equation (108)
is that the cosine of the angle between the search direction and the gradient of
the constraint function has a strictly negative value. Hence, the search direction
is separated from the constraint boundary by an angle always greater than 90 deg,
meaning that they are being moved away from each other, fulfilling the feasibility
goal (no constraint violation). On the other hand, we can balance this separation
motion (between the search direction and the constraint boundary) by prescribing
the usability from Equation (106):

{∇G({X0})}T · {S} −
(
{∇F ({X0})}T · {S}

)
· θ ≤ 0 (109)

Furthermore, the usability condition itself can be simplified, rendering Equation
(96), in which the maximization of β will minimize the dot product involving the
gradient of the objective function and the search direction, making the search di-
rection further usable, that is, capable of improving the objective (note that the
search direction no longer improves the objective when the dot product in Equation
(106) crosses into positive territory, and therefore optimality is enhanced by having
it minimized further into the negative one).

Combining Equations (109) and (110),

{∇F ({X0})}T · {S}+ β ≤ 0 (110)

the feasibility requirement becomes:

{∇G({X0})}T · {S}+ θβ ≤ 0. (111)
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Besides rewriting the usability and feasibility conditions initially expressed in
Equations (106) and (107), Equations (110) and (111) also hold as constraints ap-
plicable to the following transformation of the optimization problem statement, with
Equation (112) subject to (113):

max β (112)

subject to
{S}T · {S} ≤ 1. (113)

The ensemble of Equations (110) to (113) is the method of feasible directions,
based on maximizing a parameter β as long as the solution remains feasible, usable,
the search direction does not degenerate into a vector whose magnitude explodes
into infinity (Equation (113)).

The MMFD method, on its hand, once more rewrites the statement of the opti-
mization problem as follows:

max
(
{−∇F ({X0})}T · {S}

)
(114)

which is still equivalent to minimize Equation (106) in the spirit of usability, subject
to Equation (113) and also

{∇Gj({X0})}T · {S}+ θ ≤ 0 (115)

which slightly but importantly rewrites Equation (107) to highlight individual con-
straints, allowing for a special treatment for those that are initially infeasible. More-
over, the equality constraints are also addressed in a specific manner, resulting in the
following two additional constraints appended to the objective stated in Equation
(114) and the original constraint in Equation (113) to complete the formulation:

[A] · {S} ≤ 0 (116)

[B] · {S} = 0 (117)

where [A] contains the gradients of inequality constraints only if they are active
(with the safety margin term θ from Equation (109) dropped), and [B] contains the
gradients of the equality constraints.

9.3 Sequential Quadratic Programming (SQP)

As an extension of the linear approximation introduced via Equations (102) to (105),
the SQP method will define a search direction creating a quadratic approximation
for the augmented objective function and a linear approximation to the problem
constraints, such that:

min

(
F ({X}) + {∇F ({X})}T · {S}+

1

2
· {S}T · [HL] · {S}

)
(118)

subject to
{∇Gj({X})}T · {S}+ δj ·Gj({X}) ≤ 0 (119)

{∇Hk({X})}T · {S}+ δ̃ ·Hk({X}) = 0 (120)
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Code 7: Sequential Quadratic Programming Method.

library(nloptr)

fobj <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )

}

gfobj <- function(x) {

return( c( -400 * x[1] * (x[2] - x[1] * x[1])

- 2 * (1 - x[1]), 200 * (x[2] - x[1] * x[1])) )

}

x0 = c(-2, 2); xl = c(-10, -10); xu = c(10, 10)

opt1 = nloptr(x0=x0, eval_f = fobj , eval_grad_f = gfobj ,

lb = xl, ub = xu,

opts=list(’algorithm ’=’NLOPT_LD_SLSQP ’,

’xtol_rel’ = 1.0e-6))

cat(’Optimal value: ’, opt1$objective ,

’\nOptimal design: ’, opt1$solution)

Optimal value: 1.174518e-19

Optimal design: 1 1

where HL starts as an identity matrix and gradually converges to the Hessian of
the Lagrangian, which is directly derived from the KKT conditions of Equations
(10)-(12) (expressed below in Equation (121)), with parameters δj and δ̃ providing
the other angle of the update process throughout the method iterations, as per the
rules in Equations (122)-(124):

∇F ({X}) +
∑
j

λj · ∇Gj({X}) +
∑
k

λk · ∇Hk({X}) (121)

δj = 1, if Gj({X}) < 0 (122)

δj = δ̃, if Gj({X}) ≥ 0 (123)

0 ≤ δ̃ ≤ 1, (typically, towards the upper bound). (124)

An example of the SQP method (Kraft [1988]) implemented in R is provided by
Code 7 (Johnson [2020]).

This method will provide a compromise about efficiency in numerical compu-
tation (typical of linear methods) and precision in evaluation (typical of nonlinear
methods). A number of nonlinear programming methods will rely on SQP as internal
engine to solve nonlinear problems with reduced computational cost.
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Abstract

This chapter describes theoretical and practical aspects of Heuristic Op-
timization Methods. The introductory section describes the basic equations
commonly found in numerical optimization and enumerates some open ques-
tions in the field. Next, general principles are outlined, and an overview of
some heuristic optimization methods is presented, followed by considerations
about the main aspects of numerical computations. The rest of the text is
devoted to the clarification of method-specific variations and novel methods.
Algorithms and fragments of source code are showed to enrich the discussion
about the methodologies. Some practical considerations for applied optimiza-
tion are the concluding remarks.

1 Introduction

Heuristic optimization methods are meant to handle special conditions of the same
fundamental mathematical optimization problem introduced in the Chapter “Overview
of Linear and Non-linear Programming Methods for Structural Optimization”, as
defined in Equations (1) - (4) below. This means that while the problem statement
or formulation remains unchanged, the solution methods no longer rely on deriva-
tives, either because 1) they are not available at all, or 2) because they are not
effective to determine a search path leading to a satisfactory solution.

min,maxF (x) (1)

subject to:
Gj(x) ≤ 0 (2)

Hk(x) = 0 (3)

xLB ≤ x ≤ xUB (4)
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y = f(x)

x
Attr. 1 Attr. 2 Attr. 3

(a) Three basins of attraction seen across one
dimension.

(b) 2-dimensional case of the Rastrigin func-
tion, showing multiple basins of attraction.

Figure 1: Function with multiple basins of attraction.

Situation 1 is prone to arise in various circumstances, even when the optimization
process is driven by actual physical experimentations that cannot be undertaken,
but in the context of computational mechanics are usually associated with non-linear
and discontinuous analyses in which convergence of a certain simulation scenario is
not attainable, and hence information for calculation of derivatives is missing.

More often though, still in the realm of highly complex and non-linear search
spaces, situation 2 happens when derivative based methods may be uncapable of
navigating throughout the decision space at large, being confined to a narrow search
domain which does not necessarily contains the best possible decision, which at this
point is unknown or undetermined. The narrow sections of the overall decision space
are called basins of attraction, which may contain local or global optima, as repre-
sented in Figure 1. Panel (a) sketches a simplified (for illustration purposes) one-
dimensional function (or a one-dimensional cut of a multivariate function) whereby
3 adjacent basins of attraction are identified. Panel (b) shows the 2-dimensional
case of the Rastrigin function [1], a common test function for the performance of
the methods to be covered in this chapter. The functions have multiple basins of at-
traction: (a) schematic decision space with basins of attraction 1, 2, and 3, with the
latter one containing a global optimum (function minimum) concerning the other
two and (b) 2-dimensional Rastrigin function, with multiple basins of attraction and
known analytical global optimum at (0, 0).

Many problems in engineering can be formulated as optimization problems, sub-
ject to complex nonlinear objective functions and constraints. As already stated by
Yang (2020), the solutions of highly nonlinear problems usually require sophisticated
optimization algorithms, and traditional algorithms may struggle to deal with such
problems.

Many real-world engineering applications involve the optimization of certain ob-
jectives such as the minimization of costs, energy consumption, environment and the
maximization of performance, efficiency and sustainability (Yang [2020]). In many
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cases, the optimization problems that can be formulated are highly nonlinear with
multimodal objective landscapes, subject to a set of complex, nonlinear constraints.
Such problems are challenging to solve. Even with the ever-increasing power of
modern computers, it is still impractical and not desirable to use simple brute force
approaches. Thus, whenever possible, efficient algorithms are crucially important
to such applications. However, efficient algorithms may not exist for most of the
optimization problems in applications. Though there are a wide range of optimiza-
tion algorithms such as gradient-based algorithms, the interior-point method and
trust-region method, most of such algorithms are gradient-based and local search
algorithms, which means that the final solutions may depend on the initial starting
points. In addition, the computation of derivatives can be computationally expen-
sive, and some problems such as the objective with discontinuities may not have
derivatives in certain regions.

Despite the effectiveness of nature-inspired algorithms and their popularity, there
are still many challenging issues concerning such algorithms, especially from theo-
retical perspectives.

The paper Yang [2020] highlights five main challenging issues that justify the
use of advanced metaheuristic techniques. However, much remains to be explored
in this field of research. The following stand out:

� Open Problem 1: How to build a unified framework for analyzing all nature-
inspired algorithms mathematically, so as to obtain in-depth information about
their convergence, rate of convergence, stability, and robustness?

� Open Problem 2: How to best tune the parameters of a given algorithm so
that it can achieve its best performance for a given set of problems? How
to vary or control these parameters so as to maximize the performance of an
algorithm?

� Open Problem 3: What types of benchmarking are useful? Do free lunches
exist, under what conditions?

� Open Problem 4: What are the most suitable performance metrics for fairly
comparing all algorithms? Is it possible to design a unified framework to
compare all algorithms fairly and rigorously?

� Open Problem 5: How to best scale up the algorithms that work well for
small-scale problems to solve truly large-scale, real-world problems efficiently?

The authors of Yang [2020] concludes that there are other open problems con-
cerning nature-inspired algorithms, including how to achieve the optimal balance
of exploitation and exploration, how to deal with nonlinear constraints effectively,
and how to use these algorithms for machine learning and deep learning. Nature-
inspired computation is an active area of research. It is hoped that the above five
open problems we have just highlighted can inspire more research in this area in the
near future.

As indicated by the nomenclature, basins of attraction will draw the search
method towards themselves, which is neither harmful nor advantageous per se, de-
pending primarily on: 1) how sooner or later the attraction happens in the search
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process and 2) how much decision making elements are available to ascertain that
the optimum contained in a basin of attraction is the best decision, given a search
cost requirement and 3) what are the resources available to afford a larger or smaller
search effort, without explicit guarantee that a better solution is available at a dif-
ferent basin of attraction.

Despite of these considerations, a common feature of all basins of attraction
is that they tend to contain derivative values of zero for functions that represent
the decision spaces where the search is being performed, which means the stalling
of classical, derivative driven optimization methods. In optimization jargon, this
phenomenon is known as “being trapped at a local optimum” , and the goal of
this chapter is to discuss the so-called heuristic optimization methods, which are
meant to avoid this phenomenon by being more flexible than strict derivatives to
balance exploration (mapping of a broader decision space, identifying as many as
possible basins of attraction) with exploitation (deciding upon the best solution to
be exploited, conditioned on the knowledge of the decision space accrued thus far
by exploration and the budget to further the search). This flexibility is achieved
by replacing the point-to-point search strategies characteristic of derivative driven
methods by population-based approaches, which signify an additional cost to per-
form the search.

2 General principles

Heuristic optimization methods depart from multiple starting points, on the vein of
balancing the odds across multiple potential (and often unknown, at least a priori)
basins of attraction. Hence, they are from the onset population based, and balance
should be achieved between how representative the population is (typically an arti-
fact of its size, barring any biases) and how feasible it is to handle the computational
cost of evaluating larger populations as they grow.

Once the multiple starting points are determined, instead of proceeding with
derivative based searches for each of every of them (the multi-start concept in clas-
sical optimization (De Jong [2016])), which would ensue a totally deterministic op-
eration of the methods thereafter, aleatory components are actually introduced to
further balance the odds with respect to finding or avoiding the possible basins of
attraction. On this vein, the values of the decision variables are randomly perturbed
according to an approach particular to each method, which also rank the resulting
perturbed decision points (candidate optima) based on their own particular criteria.
Rather than continuing to randomly perturb the values of the decision variables, the
design candidates arising from these perturbations are somehow combined or mixed
(again, according to each method?s particularities) so that the effects of random-
ness apply population-wise, rather than just at each individual setup. The combined
candidate designs are then appraised and, for the most part, those with superior per-
formance will comprise a larger fraction of the candidates pool for the next iteration,
with a minority of relatively underperforming individuals still kept for diversity of
the overall population and feasibility of reaching to alternative basins of attrac-
tion. After multiple repetitions of this sample → perturb → combine → appraise
→ resample sequence, it is expected that deterministic and aleatory search compo-
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nents are ideally balanced and, between the extremes of classical and totally random
searches, the best tradeoff has been met and the most suitable design, within the
best relative basin of attraction, has been achieved at the minimum computational
cost.

It should be noted that, along these lines, no formal convergence criteria sim-
ilar to the Karush-Kuhn-Tucker (KKT) conditions apply, and the most adequate
nomenclature is actually search termination, either because the allotted budget has
been exhausted and/or the balance between random and deterministic search ele-
ments is such that no plausible improvement can be achieved. In order to strike this
best balance even in the absence of formal criteria, intense research is devoted to
the understanding and characterization of heuristic search methods as random pro-
cesses, that may be modeled according to one of the canonical forms or combinations
thereof available in this field of knowledge.

Lastly, since the aleatory-deterministic search balance effects one given function
(typically the optimization objective expressed in Equation (1)), it is common not
to account explicitly for constraint functions (equality or inequality, as in Equations
(2) and (3)) for the execution of heuristic optimization methods. Because the de-
cision making is not practical without any form of consideration of the constraints,
they are either verified offline (simplistic approach) or embedded into the objective
by way of a penalty (similarly to the constrained optimization methods detailed in
Chapter “Overview of Linear and Non-linear Programming Methods for Structural
Optimization”, section 8) or, in the most sophisticated approaches, the problem
statement is completely reconfigured as a multicriteria (Chapter “Overview of Lin-
ear and Non-linear Programming Methods for Structural Optimization”, section
3) or multidisciplinary (Chapter “Overview of Linear and Non-linear Programming
Methods for Structural Optimization”, section 4) procedure.

Table 1 summarizes how the general principles outlined above are handled by
each of the established search methods. Since these common principles are shared,
the methods are inevitably similar to each other in many aspects, with the different
approaches and respective nomenclatures arising more as an artifact of successful
practice rather than formal mathematical features. The forthcoming sections are
dedicated to explore each of the methods listed in Table 1 in greater detail.
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Table 1: Overview of heuristic optimization methods according to the elements they use to balance aleatory and
deterministic search components in pursuit of (potentially) global optima.

Method Individual Unit Population Unit Iteration Unit Operators Comments
Genetic Algorithm chromosomes, as a collec-

tion of genes (codified de-
cision variables)

Population comprised of a
determined number of in-
dividuals, each one with
its chromosome

Generations, which get
updated by successive ap-
plication of the genetic op-
erators

Selection, Crossover, Mu-
tation

Basis (both historically
and algorithmically) for
most of the other heuristic
methods. Multiple varia-
tions exist, but the core
consists of applying the
genetic operators in the
order they appear in the
previous column

Evolutionary Pro-
gram

chromosomes, as a collec-
tion of genes (codified de-
cision variables)

Population comprised of a
determined number of in-
dividuals, each one with
its chromosome

Generations, which get
updated by successive ap-
plication of the genetic op-
erators

Mostly random muta-
tions, at various categories
and intensities

Similar to GAs, empha-
sizing the randomized
element of the search
through various modali-
ties of mutations

Simulated Anneal-
ing

Candidate designs, as co-
hesive sets of decision vari-
ables

Sets of candidate designs Annealing cycle Heating, Cooling

Ant Colony Path traveled by individ-
ual ants

Path traveled by all ants Excursions from and back
to the ant colony, through
a random path

Pheromone deposition
and evaporation

Particle Swarm Particles Swarm of many particles Particle’s Position and Ve-
locity variations

Inertia, individual best
and social best

Differential Evolu-
tion

chromosomes, as a collec-
tion of genes (codified de-
cision variables)

Population comprised of a
determined number of in-
dividuals, each one with
its chromosome

Generations, which get
updated by successive ap-
plication of the genetic op-
erators

Mutation, Selection,
Crossover

Same basic operators as
GAs, but with mutation
taking place earlier at
each perturbation cycle
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(a) (b)

Figure 2: The (a) Rastrigin test function and (b) the contour plot.

3 Numerical Computation

As outlined in Equation (1), the maximization and minimization of functions are
similar from the computational perspective. Several algorithms are implemented
aiming minimization. However, it is worth to note the difference in computational
implementation that will switch between max and min. This feature will be used on
snippet of computational codes along the text, implemented within the R statistical
computation platform (R Core Team [2020]).

For this purpose, the reader may please refer to the command install.packages

as the main tool to add new packages to the R software. It takes a vector of names
and a destination library, downloads the packages from the repositories (from a local
folder or remote web server) and installs them in the R environment. To install the
packages needed to run the codes in this chapter, for example, enter the following

install.packages(’GA’, ’ecr’, ’DEoptim’, ’GenSA’, ’pso’,

’metaheuristicOpt’)

Help is available at the command prompt via ?install.packages command.
As an example, consider the Rastrigin function, which is provided as test function

aiming minimization. The global minimum value is 0 at the design x = (0, .., 0). It
is shown in Figure 2.

A two-dimensional implementation for minimization algorithms is given in Code
1.

Code 1: R implementation defining the 2D version of the Rastrigin func-
tion as the unconstrained objective to be minimized by various heuristic
optimization methods.

obj2min <- function(x)

{

obj =20+x[1]^2+x[2]^2 -10*(cos(2*pi*x[1])+ cos(2*pi*x[2]))

return (obj)

}
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On the other hand, a two-dimensional implementation aiming maximization al-
gorithms is shown in Code 2.

Code 2: R implementation defining the 2D version of the Rastrigin func-
tion as the unconstrained objective to be maximized by various heuristic
optimization methods.

obj2max <- function(x)

{

obj =20+x[1]^2+x[2]^2 -10*(cos(2*pi*x[1])+ cos(2*pi*x[2]))

return (-obj)

}

That is, the objective obj2max evaluated by a maximization algorithm will lead
to the same result as the objective obj2min evaluated by the minimization algorithm.
As a result, the multiplication of the objective function by -1 is sufficient to translate
an unconstrained optimization problem between the minimization and maximization
perspectives.

Following this template, the corresponding code snippets are offered the meth-
ods described throughout sections 4.1 to 4.6 below, as well as sections 5.3 and 5.4.
These exemplary codes are offered whenever actual R packages (basic R topic mod-
ules) are available at the time of writing and able to offer implementations for each
of the methods alluded within the aforementioned sections (group 4 for the more
established techniques, and group 5 for the more recent developments).

The reader should notice minor variations in formatting and structure, due to
particularities of each package implementing the applicable functions. At the same
time, in an effort to create a multipurpose heuristic methods engine within the R
statistical computing platform, Riza et al. [2019] proposed the metaheuristicOpt

package, in which any of the specific algorithms listed (in alphabetical order) within
Code 1 can be instantiated as determined by the parameter “algorithm” (Table
2) illustrated at the associated code fragment. The length of the list indicates the
level of research activity in the field, as well as the commonality of nature inspired
analogies underpinning the proposition of different heuristic methods that share sev-
eral common principles. While the entire field is evolving, several novel methods
introduce additional tuning parameters that may require a significant level of ex-
perimentation for fine tuning, and hence the most complex option is not necessarily
the one yielding superior performance.

4 Method specific variations

4.1 Genetic Algorithms

As the very foundational of heuristic optimization methods, Genetic Algorithms
balance random and deterministic decision-making efforts by way of the following
sequence of operations:

� An encoding method, or schema, is adopted to codify combinations of decision
variables in a string (per the biological analogy, a chromosome) that lead to
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Code 3: Code fragment for minimization of the Rastrigin function
through the metaheuristicOpt R package.

# Input #

obj2min <- function(x)

{

return( 20 + x[1]^2 + x[2]^2 - 10 * (cos(2*pi*x[1]) +

cos(2*pi*x[2]) ) )

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’metaheuristicOpt ’)

BA_ans = metaOpt(obj2min , optimType=’MIN’, algorithm=’BA’,

numVar = 2, rangeVar = rbind(lower_bound , upper_bound),

control = list(numPopulation = 20, maxIter = 700) )

cat(’\nOptimal value ’, BA_ans$optimumValue ,

’\nOptimal design ’, BA_ans$result)

# Output #

Optimal value 0

Optimal design 3.238586e-292 1.289825e-29

Table 2: Collection of heuristic optimization methods available through
the metaheuristicOpt R package.

Algorithm Name/Option Description of the algorithm parameter
ABC Artificial Bee Colony Algorithm
ALO Ant Lion Optimizer
BA Bat Algorithm
BHO Black Hole Based Optimization Algorithm
CLONALG Clonal Selection Algorithm
CS Cuckoo Search Algorithm
CSO Cat Swarm Optimization Algorithm
DA Dragonfly Algorithm
DE Differential Evolution Algorithm
FFA Firefly Algorithm
GA Genetic Algorithm
GBS Gravitation Based Search Algorithm
GOA Grasshopper Optimization Algorithm
GWO Grey Wolf Optimizer
HS Harmony Search Algorithm
KH Krill Herd Algorithm
MFO Moth Flame Optimizer
PSO Particle Swarm Optimization
SCA Sine Cosine Algorithm
SFL Shuffled Frog Leaping Algorithm
WOA Whale Optimization Algorithm
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the corresponding values of responses and ensuing fitness. In other words,
a standard indexed stream of information, like a vector or list, becomes the
genetic identity of each decision. More often, this encoding is binary, but
representation via real numbers is also possible in GA and mainstream in DE;

� A random sample of individuals (population) is created for initialization.
Therefore, sample size in itself is a configuration parameter important to bal-
ance random diversity and computational effort;

� Individuals within the initial population, and also thereafter, are ranked ac-
cording to a scaling function intended to systematically gauge their relative
fitness;

� A fitness-based selection operation will sub-sample from the original popula-
tion to propagate features belonging to the fittest individuals throughout the
subsequent steps;

� Crossover of the selected individuals, generating new ones (subsequent gener-
ation) that combine features associated with the superior fitness driving the
selection step;

� Mutation (aleatory changes into randomly chosen features of random individ-
uals) to increase the stochastic element of the overall decision-making process;

� Check of termination criteria, which are not formal convergence metrics but
rather a heuristic verification of improvement vis-Ã -vis the ability to afford
additional computational effort. At this point, the cycle is either finalized or
a new generation starts back into the selection step and onwards.

Algorithm 1 summarizes the outline above in a computer centered manner, with
Figure 3 being its flowchart counterpart.

Algorithm 1: Genetic Algorithm.

Generate initial population
while termination criteria not satisfied do

Calculate the fitness of each element in population
for n steps do

Use fitness to select a pair of elements for the new generation
Create new elements e1 and e2

end
Randomly mutate some elements
Evaluate fitness of new elements
New population ← elements with best fitness among new elements and
current population

end

Code 4 implements a genetic algorithm function call in R (Scrucca [2013]) to
maximize the negative of the 2-dimensional Rastrigin function available through
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Define GA parameters (population size, selection
method, crossover method, mutation rate, etc.)

Create initial population, randomly distributed
throughout the design space (other distributions

can be performed)

Select mates to the crossover
(mimics the natural selection)

Reproduce and replace the worst individuals in
the population by the offspring

Mutate, to avoid premature convergence
(other parts of the design space are explored)

Evaluate objective function for the new
individuals and take it as a fitness measure

Stop criterion?

Results

Yes

No

Figure 3: Genetic Algorithm flowchart.
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Code 4: R implementation calling Genetic Algorithms to maximize the
2D version of the Rastrigin function as an unconstrained objective.

# Input #

obj2max <- function(x)

{

obj = 20 + x[1]^2 + x[2]^2 - 10 *

( cos(2*pi * x[1]) + cos( 2*pi * x[2] ) )

return (-obj)

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’GA’)

GA_ans <- ga(type = "real -valued", fitness = obj2max ,

lower = lower_bound , upper = upper_bound , popSize = 20,

maxiter = 300)

cat(’\nOptimal value ’, GA_ans@fitnessValue ,

’\nOptimal design ’, GA_ans@solution)

# Output #

Optimal value -2.1734e-06

Optimal design 8.811057e-05 5.64903e-05

Code 2. The results of one function call are summarized in Figure 4, and are ex-
pected to vary from run to run due to the underlying stochastic nature of heuristic
optimization methods (if affordable, a reasonable amount of repetitions should es-
tablish a stable enough trend for each application in context).

Figure 4 further illustrates the populational nature of the method, with a dis-
tribution of results at each iteration (generation) of the search. Within these dis-
tributions, some individuals are fitter than others, and statistical summaries such
as the mean and the median are useful to characterize how the fitness of the entire
population converges towards the intended maximum.

4.2 Evolutionary Program

Another heuristic optimization method that operates similarly to Gas, Evolutionary
Program (EP) relies on the behavioral linkage between parents and their offspring,
as outlined in these 3 fundamental steps (De Jong [2016]).

� Randomly initialize the initial population, whose size strongly influences the
speed of optimization. The caveat is the absence of definite rules, which means
that practical applications shall require some level of experimentation for fine
tuning the nest tradeoff between speed and maximum coverage of loci which
might contain the global optimum;

� A second generation clones the initial one, such that a spectrum of various
mutation intensities is applied over the offspring solutions, according to a
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Figure 4: Graphic Output highlighting maximization of the objective
along iterations.

distribution of mutation types, according to how strongly they affect the fitness
of the parents (initial population);

� An arbitrarily chosen number of solutions (keeping or varying the popula-
tion size determined in the initialization) within a fitness rank is for the next
generation.

Algorithm 2 formalizes these steps, while Code 5 contains both the input and
output to the corresponding routine in R (Bossek [2017]), in text format.

Algorithm 2: Evolutionary Programming.

Given the parameters a and b
Generate initial population
while termination criteria not satisfied do

Calculate the fitness of each element in population
for each individual do

Generate a random vector ni ∈ Gaussian(0, 1)
New xi ← xi + ni ∗

√
a ∗ f(xi) + b

end
Evaluate fitness of new elements
New population ← elements with best fitness among new elements and
current population

end

A striking feature of the ecr library (Bossek [2017]) is the ability to easily incor-
porate user-defined functions for fitness evaluation, mutation strategies, and stop-
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Code 5: R implementation calling Evolutionary Programming Optimiza-
tion to minimize the 2D version of the Rastrigin function as an uncon-
strained objective.

# Input #

obj2min <- function(x)

{

return( 20 + x[1]^2 + x[2]^2 - 10 *

( cos(2*pi*x[1]) + cos(2* pi * x[2]) ) )

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’ecr’)

EC_ans = ecr(fitness.fun = obj2min ,

representation = ’float ’,

n.dim = 2, n.objectives = 1, survival.strategy = ’plus’,

lower = lower_bound , upper = upper_bound , mu = 20,

lambda = 10, mutator = setup(mutGauss , sdev = 2,

lower = lower_bound , upper = upper_bound),

terminators = list(stopOnIters (300)))

cat(’\nOptimal value ’, EC_ans$best.y,

’\nOptimal design ’, EC_ans$best.x[[1]][1:2])

# Output #

Optimal value 1.059243

Optimal design 0.01795939 0.9936067
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ping criteria, among others. Therefore, this library would be an adequate platform
for development and evaluation of new evolutionary strategies.

4.3 Simulated Annealing

Annealing is a term from metallurgy used to describe a process in which a metal
is heated to a high temperature, inducing strong perturbations to its atom?s posi-
tions. Providing that the temperature drop is slow enough, the metal will eventually
stabilize into an orderly structure and, otherwise, an unstable atom structure arises.

Simulated annealing can be performed in design optimization by randomly per-
turbing the decision variables and keeping track of the best resulting objective value.
After many tries, the most successful design is set to be the center about which a
new set of perturbations will take place. In an analogy to the metallurgical an-
nealing process, let each atomic state (design variable configurations) result in an
energy level (objective function value) E. In each step of the algorithm, the atoms
positions are given small random displacements due to the effect of a prescribed
temperature T (standard deviation of the random number generator). As an effect,
the energy level undergoes a change ∆E (variation of the objective function value).
If ∆E ≤ 0, the objective stays the same or is minimized, thus the displacement is
accepted, and the resulting configuration is adopted as the starting point of the next
step. If ∆E > 0, on the other hand, the probability that the new configuration is
accepted is given by Equation (5):

P (∆E) = e∆E/kbT (5)

where kb is the Boltzman constant, set equal to 1. Since the probability distribution
in Equation (5) is chosen, the system evolves into a Boltzman distribution. The
random numbers r are obtained according to a uniform probability density function
in the interval (0, 1). If r < P (∆E) the new configuration is retained. Else, the
original configuration is used to start the next step.

The temperature T is simply a control parameter in the same units as the ob-
jective function. The initial value of T is related to the standard deviation of the
random number generator, whilst its final value indicates the order of magnitude
of the desired accuracy in the location of the optimum point. Thus, the annealing
schedule starts at a high temperature which is discretely lowered (using a factor
0 < rt < 1) until the system is “frozen”, hopefully at the optimum, even if the
design space is multimodal.

Similarly to previous sections, Algorithm 3 reflects the computational aspects of
this procedure (Xiang et al. [2013]), actually implemented as in Code 6 to create the
numeric and graphic outputs shown in panels (a) and (b) of Figure 5, respectively.

4.4 Ant Colony Optimization

As directly alluded to by its name, the natural analogy underpinning this method
mirrors how ants move between their colonies and sources of food (Blum [2005]).
Major components of this process are a) ants should minimize the total path trav-
elled to gather food into their colony; b) ants may not be able to carry all the food
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Algorithm 3: Simulated Annealing.

Set initial temperature T > 0
Cooling function: C(T ) ∈ [0, T ]
Generate initial population
x0 ← optimal design
while termination criteria not satisfied do

Generate a new candidate design x1

if f(x1) > f(x0) then
u← Uniform(0, 1)
if u < e([f(x)−f(x1)]/T ) then

New x0 ← x1

end

else
New x0 ← x1

end
T = C(T )

end

Code 6: R implementation calling Simulated Annealing to minimize the
2D version of the Rastrigin function as an unconstrained objective.

# Input #

obj2min <- function(x)

{

return( 20 + x[1]^2 + x[2]^2 - 10 *

(cos(2*pi*x[1]) + cos(2*pi*x[2]) ) )

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’GenSA’)

SA_ans = GenSA(fn=obj2min , lower=lower_bound ,

upper=upper_bound , control = list(maxit = 300))

cat(’\nOptimal value ’, SA_ans$value ,

’\nOptimal design ’, SA_ans$par)

# Output #

Optimal value 0

Optimal design -5.591672e-12 3.819151e-14
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Figure 5: Graphic Output highlighting minimization of the objective
along iterations.

available to the colony at once, and should need a pheromone trail (memory) to find
their way back to the remaining food at the source and c) in subsequent excursions,
ants will follow the shorter paths, since they result more dense on pheromones.
Mathematically, this key step “c” corresponds to increasing the probability associ-
ated with a certain solution path, given its relative success as measured by earlier
experimentations (when the method is exploring the decision space). In some varia-
tions, the pheromone trail is updated in each movement of an ant from one location
to another, while others opt to update after all ants completed their tour. Simpli-
fying this search into a 2-dimensional map for clarity, Equation (6) represents the
amount of pheromone deposited T at a location (x, y) as a function of itself in the
previous iteration (i− 1), discounting an evaporation rate ρ (loss of memory in the
process) and adding the reinforcement of each ant (counted by k) that travels to the
same location to gather food.

τ (i)
x,y = (1− ρ)τ (i−1)

x,y +
∑
k

∆τ kx,y (6)

Furthermore, the additional pheromone deposited in Equation (6) is parameter-
ized as follows:

∆τ kx,y =

{
Q/Lk, if the ant reinforces the same path to x, y

0, otherwise
(7)

where Q is a calibration constant and Lk is the cost of ant k traveling that arc
into location (x, y). The incentive/penalty is then balanced and measured along the
iterations, as the commensurate amount of pheromone is deposited. Algorithm 4
describes this mechanism from the computational perspective:
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Algorithm 4: Ant Colony Optimization.

Given the population of ants, the problem dimension and the discretized
interval

Evaluate fitness of initial population
while termination criteria not satisfied do

for each ant do
for each dimension do

for each discretized interval do
Set probability p

end
Update pheromone index with probability p

end

end
Ci ← cost of solution found by ant i
for each dimension do

for each discretized interval do
for each ant do

Update pheromone quantity according to pheromone index
end

end

end

end
The optimal design is represented by the interval with biggest pheromone
concentration
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4.5 Particle Swarm Optimization

The natural analogy underpinning this method is that of the behavior and motion
of collectives of animals, such as birds and fish (Mercangöz [2021]). Individual
animals within the swarm are like alternative solutions known as “particles”, without
knowing which one is the best, but being able to measure each particle?s fitness.
Per Equation (8), from each iteration i to the next (i + 1), the position P of each
particle k is updated by a velocity term V , itself defined in Equation (9):

P
(i+1)
k = P

(i)
k + V

(i+1)
k (8)

V
(i+1)
k = ω · V (i)

k + c1 · r1 ·
(
P

(i)
BEST − P

(i)
k

)
+ c2 · r2 ·

(
P

(i)
GLOBAL BEST − P

(i)
k

)
(9)

The update of the velocity term occurs by adding up 3 terms: 1) the inertia (pon-
dered by ω), which factors the preference for a current solution/basin of attraction;
2) the individual best (pondered by c1 and r1), connected to the best solution/basin
of attraction ever attained by an individual particle k and 3) the collective or social
best (pondered by c2 and r2), connected to the best solution/basin of attraction
ever attained by any individual. As summarized in Equation (10), both r1 and r2

vary along a small range (typically the unit interval [0, 1]) and are unique search
hyperparameters for each particle and each iteration.

Parameters c1 and c2, on the other hand, may take any positive real value and
work as the elitism factor in Genetic Algorithms (the larger they are, the higher
is the weight attributed to the best solution found up to that point of the search,
which reduces the exploration into alternative basins of attraction).

r1,2 ∈ [0, 1], c1,2 ∈ R+ (10)

The method is described in computational terms by Algorithm 5 and imple-
mented following Bendtsen [2012] in Code 7, with both numeric and visual outputs
displayed in Figure 6.

Algorithm 5: Particle Swarm Optimization.

Define neighborhood, maximum influence and maximum velocity
Generate initial population
Set each element velocity vector
x0 ← optimal design
while termination criteria not satisfied do

for each individual do
Compute the velocity of neighbors
Update the velocity of the element
x1 ← new position of the element

end

end
x0 = min(f(x0), f(x1))
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Code 7: R implementation calling Particle Swarm Optimization to mini-
mize the 2D version of the Rastrigin function as an unconstrained objec-
tive.

# Input #

obj2min <- function(x)

{

return (20 + x[1]^2 + x[2]^2 - 10 *

(cos(2*pi*x[1]) + cos(2* pi * x[2])))

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’pso’)

PSO_ans = psoptim( par = rep(NA ,2), fn = obj2min ,

lower = lower_bound , upper = upper_bound ,

control = list(trace=1, maxit =300, trace.stats=TRUE))

cat(’\nOptimal value ’, PSO_ans$value ,

’\nOptimal design ’, PSO_ans$par)

# Output #

Optimal value 0

Optimal design 6.107478e-11 -3.494791e-10

Figure 6: Graphic Output highlighting minimization of the objective
along iterations.
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4.6 Differential Evolution

Expanding along the lines of GA, DE is also population based stochastic technique,
that is used to optimize non-linear (or even discontinuous), non-differentiable prob-
lems which are otherwise difficult to solve using classical optimization techniques.
Among the GA/DE similarities, there is the reliance on the same list of core op-
erators (selection, crossover, mutation). Also, the fitness evaluation is done for
the current generation, serving as guidance for the creation of the subsequent ones.
However, unlike GA, where crossover is performed initially and later followed by mu-
tation, DE mutates the individuals prior to a recombination step which is, in essence,
crossover. This particular sequence is formally captured in Algorithm 6 and may
be better visualized in Figure 7. Code 8 contains its implementation (Mullen et al.
[2011]) within the R statistical platform to minimize the 2-dimensional Rastrigin
function, with results of a representative run summarized in Figure 8.

Algorithm 6: Differential Evolution.

Generate initial population
while termination criteria not satisfied do

for each element xi in population do
Set random parameters
Compute mutation of current design
for each dimension do

Apply mutation with a given probability
end
Define new design ni
if f(ni) < f(xi) then

xi ← ni
end

end

end

5 Miscellaneous novel methods operating upon

nature inspired analogies

Over the past decades, many different meta-heuristic algorithms have been pro-
posed for complex optimization problems such as Genetic Algorithms (GA), Ant
Colony Optimizaton (ACO) and Particle Swarm Optimization (PSO). Others new
nature-inspired algorithms have emerged in recent years in order to optimize com-
plex multimodal objective functions such as Firefly algorithm (FA), Sunflower Opti-
mization (SFO), Bat algorithm (BA), Grey Wolf Optimization (GWO), Lichtenberg
Algorithm (LA) and many others.
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Figure 7: Schematic representation of the DE workflow.
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Code 8: R implementation calling Differential Evolution to minimize the
2D version of the Rastrigin function as an unconstrained objective.

# Input #

obj2min <- function(x)

{

return( 20 + x[1]^2 + x[2]^2 - 10 *

(cos(2*pi*x[1]) + cos(2*pi*x[2])) )

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’DEoptim ’)

DE_ans = DEoptim( fn = obj2min , lower = lower_bound ,

upper = upper_bound ,

control = list( NP = 20, itermax = 300, trace = T))

cat(’\nOptimal value ’, DE_ans$optim$bestval ,

’\nOptimal design ’, DE_ans$optim$bestmem)

# Output #

Optimal value 1.445954e-12

Optimal design -3.099187e-08 -7.951384e-08

Figure 8: Graphic output highlighting minimization of the objective along
iterations.
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5.1 Sunflower Optimization Method

The Sunflower Optimization (SFO) method, proposed by Gomes et al. [2019], is a
metaheuristic optimization method that is based on the flower pollination process
proposed by Yang (2010) with the addition of a movement of plants towards the sun,
which increases the convergence speed of the method, in relation to its predecessor.
A population of Npop plants containing parameters between a specified lower and
upper limit is randomly created. The sun is assumed to be the best plant among
those generated. At the beginning of each iteration m(%) of the plants will die
and give way to new plants generated randomly, p(%) of the plants will pollinate
each other and give rise to the new plants according to Equation 11. In addition,
Algorithm 7 shows the pseudocode of the SFO methodology (Gomes and de Almeida
[2020]).

xi,j+1 = xi+1,j + rand(xi,j − xi+1,j) (11)

The random function multiplies the vector, term-to-term by a random value
between 0 and 1 generated evenly. The rest of the plants will take steps towards the
sun. The direction of plants in the sun will be the second displayed in Equation 12.

si =
x− xi
||x− xi||

, i = 1, 2, ..., Npop (12)

The step of each plant will be calculated according to Equation 13 and the
maximum step is calculated in Equation 14.

di = λ · Pi(||xi + xi−1||) · ||xi + xi−1|| (13)

dmax =
||xmax − xmin||

2 ·Npop

(14)

Finally, the new plantation will be calculated by Equation 15.

xi,j+1 = xi,j + di · si (15)

The sunflower optimization source code in MATLAB language can be found in
Gomes [2021].

5.2 Lichtenberg Spectrum Algorithm

The Lichtenberg algorithm (LA) was recently developed by Pereira et al. [2021]. It
is inspired in the physical phenomenon of radial propagation of an intra-cloud light-
ning. The author used the Lichtenberg figures (LF) as a model for the construction
of the optimizer. Figure 9 shows an example of LF.

A theory that is called Diffusion-Limited Aggregation (DLA) based on cluster
growth can be used to describe an FL. This model is based on delimiting a region
and fixing a particle in the center. A second particle is added at random and moves
towards the fixed point, adhering and becoming part of the cluster. This happens
with n particles until the figure is completely formed.
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Algorithm 7: Sunflower Optimization Method.

A random population begins with n plants
Find the sun (Individual aiming closer to zero)
while (k < Maximum number of iterations) do

p(%) of plants pollinate each other
m(%) of the plants are removed and new random plants will be
generated

Or remaining plants will pollinate around the sun
Evaluates new individuals
if (New individual is better than its predecessor) then

The new individual is stored in place of the old
end
if (New individual is a great overall) then

Updates the sun
end

end
Best solution found

Figure 9: FL in tetra-fluoride gas under 30kV voltage and 30.3atm pressure
(Pereira et al. [2021]).
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(a) S = 0.1 (b) S = 0.5 (c) S = 1

Figure 10: Influence of the Adhesion Coefficient S on the density of the
cluster.

Figure 11: Local Figure (red) with 30% of the global size (blue).

Every time a particle meets the cluster, a random value is generated that is
compared with an adhesion coefficient S. If the generated value is less than S, the
particle is fixed, otherwise, it escapes. The lower the S, the less likely the particles
will join the cluster and the greater the density. Figure 10 shows the LF formed
with different values of S.

Some points about the LA must be highlighted: the maximum number of points
used to build the LF is one of the input variables. If the figure exceeds the dimension
of the search space, the algorithm is finalized before using all points; A random
variable between zero and one is used to determine the scale factor of the figure,
i.e., the size of the LF is different in each interaction, being delimited by the search
space; A random factor is used to rotate the figure, avoiding repeated points; A
refinement factor is used to create a second LF with the same trigger point, same
rotation and smaller scale factor than the primary figure, helping to improve the
local search. Figure 11 shows an example of global LF (blue) and local LF (red).

In this way, LA generates several ramifications for each iteration, always looking
for the optimum point. LA has been tested in some cases with excellent results.
Thus, this algorithm will be used to evaluate its performance and the already estab-
lished PSO will be used too. Figure 12, adapted from Pereira et al. [2021], shows a
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flowchart summarizing the functioning of the Lichtenberg algorithm. In addition, A
summary of the algorithm code can be seen through the pseudocode in Algorithms
8 and 9.

In addition to Algorithm 8, the Lichtenberg Algorithm optimization source code
in MATLAB language can be found in Pereira et al. [2021].

5.3 Firefly Optimization Algorithm

Based on the behavior of fireflies attracted by light sources, Yang [2009] proposed
the Firefly Algorithm that has its pseudo-code shown in Algorithm 10.

In this algorithm, there are two central questions: the variation of the brightness
intensity and the attractiveness of each individual. In a simple way, one can assume
that the attractiveness of a firefly is determined by its brightness, which is directly
related to the value of the objective function. As in the real case, it will be considered
that the medium absorbs the intensity of the light emitted by the fireflies, based on
the distance between each individual. It is called the light absorption coefficient.
The expression for intensity I is given by Equation 16.

I(r) = I0e
−λr2 (16)

where I0 is the original intensity of the light and r is the distance between the
fireflies. The attractiveness β, which is proportional to the intensity of light and can
be defined and written as shown in Equation 17.

β(r) = β0e
−λr2 (17)

where β0 is the attractiveness at r = 0.
The distance between two fireflies i and j in xi and xj, respectively, is the

Cartesian distance given by Equation 18.

rij = ||xi − xj|| =

√√√√ d∑
k=1

(xi,k − xj,k)2 (18)

where xi,k is the k− th component of the space coordinate xi of the i− th firefly.
The motion of a firefly i is determined by a more attractive (bright) firefly j and is
defined by Equation 19.

xi = xi + β0e
−γr2ij(xj − xi) + α(rand− 1/2) (19)

where the second term represents attractiveness while the third term determines
randomness, α being a parameter of randomness. The expression rand is a random
number generator evenly distributed in [0, 1]. In addition, some studies indicate
that the FA is particularly suited for parallel implementation and may outperform
existing algorithms, such as PSO, GA, SA, and Differential Evolution, in terms of
efficiency and success rates.

Leveraging implementations available at the R statistical computing platform,
Code 9 allows application of the Firefly method for the minimization of the Rastrigin
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Figure 12: Lichtenberg Algorithm Flowchart.
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Algorithm 8: Lichtenberg Spectrum Optimization Method - Main code.

Main:
Set objective function and search space J , upper and lower bounds
Set number of iterations and population Niter, Pop (common to all
optimizers)

Set Refinement and Parameter for changing the LF: Ref,M (LA routine
parameters)

Set LF Parameters Rc, Np, S
if M = 2 then

Load LF
end
if M = 0 then

Create a LF
end
while (iter ¡ Niter) do

if M = 1 then
Create a LF

end
Xtrigger ← search space center (trigger point of the first LF)
if ref = 0 then

Apply random scale and rotation
Initialize random population through LF, Xi (i = 1, 2, ..., Pop)

else
copy LF to create a second LF of size ref ∗ LF (Local)
Apply the same random scale and rotation to both
Initialize global random population through LF,
Xglobali (i = 1, 2, ..., 0.4 ∗ Pop)

Initialize local random population through LF,
Xlocalj (j = 1, 2, ..., 0.6 ∗ Pop)
Xi = Xglobali +Xlocalj

end
Calculate the fitness of each Xi

Xbest← the lowest Xi value found
Xtrigger ← Xbest
iter = iter + 1

end
return Xbest
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Algorithm 9: Lichtenberg Spectrum Optimization Method - Sub-routine
creation of LF.

Sub-routine: creation of LF
Create an matrix of Rc sized zeros
Place a unitary particle in its center
while (i < Np) do

Randomly place a unitary particle in the matrix
if the plotted unitary particle t is next to another unitary particle then

if rand < S then
This new unitary particle is placed in the matrix
i = i+ 1

else
The plotted unitary particle is eliminated

end

end
if the cluster of unitary particles reaches Rc then

The simulation is finished
end

end
X ← coordinates of all unitary particles for Cartesian space in the size of
the search space.

Algorithm 10: Firefly Optimization Algorithm.

Objective function f(x), x = (x1, x2, ..., xn)T

Generate an initial population of n fireflies xi, (i = 1, 2, ..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient γ
while (t < MaxGenerations) do

for i = 1 : n (all n fireflies) do
for j = 1 : n (inner loop: all n fireflies) do

if (Ii < Ij) then
Move firefly i towards j

end

Vary attractiveness with distance r via e−γr
2

Evaluate new solutions and update light intensity
end

end
Rank the fireflies and find the current global best g∗

end
Postprocess results and visualization
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Code 9: R implementation calling the Firefly optimization method to
minimize the 2D version of the Rastrigin function as an unconstrained
objective.

# Input #

obj2min <- function(x)

{

return( 20 + x[1]^2 + x[2]^2 - 10 *

(cos(2*pi*x[1]) + cos(2*pi*x[2])) )

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’metaheuristicOpt ’)

FFA_ans = metaOpt(obj2min , optimType = ’MIN’,

algorithm = ’FFA’, numVar = 2,

rangeVar = rbind(lower_bound , upper_bound),

control = list(numPopulation =20, maxIter =700))

cat(’\nOptimal value ’, FFA_ans$optimumValue ,

’\nOptimal design ’, FFA_ans$result)

# Output #

Optimal value 4.510703

Optimal design 0.9207517 1.081387

Function, in the present case presenting both input and output (a dedicated post-
processing module is still to be implemented to enable the generation of graphical
output, such as the value of the objective function over iterations, for example).

5.4 Bat Optimization Algorithm

The Bat Optimization Algorithm (BA) is inspired in the micro-bats behavior and
its ability of echolocation. This algorithm uses as parameters the loudness and pulse
emission, it was also the first to take and account the frequency tuning.

Bats utilize a type of sonar, called echolocation, to recognize prey, stay away from
obstacles, and locate their roosting crevices in the obscurity. These bats emanate
a loud sound pulse tune in for the reverberation that bounces back from the sur-
rounding objects. Their pulses fluctuate in properties which can be corresponded
with their chasing methodologies and strategies, depending on the species. Most
bats utilize short, frequency-modulated signals to sweep through about an octave;
others all the more frequently utilize consistent recurrence signals for echolocation.
Their sign data transfer capacity changes with species and frequently increments by
utilizing more harmonics (Yang [2010]).

The BA uses the diversity of pulse emission rate r and loudness A to control
exploration and exploitation characteristics. In the main BA, Equations 20, 21 and
22 present the main equations for the evolutionary process (Yang [2010]).
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fi = fmin + (fmax − fmin)β (20)

vti = vt−1
i + (xt−1

i − x∗)fi (21)

xti = xt−1
i + vti (22)

where βin[0, 1] is a random vector drawn from a uniform distribution so that the
frequency can vary from fmin to fmax. Equally important, these updating equations
are also associated with the pulse r and loudness A via a uniformly distributed
random number ε. Selection is done by the current best solution x∗ found so far by
all the bats.

It can be seen that both above equations are linear in terms of xi and vi. However,
the control of exploration and exploitation of the BA is defined by the changes of
loudness A from a high value to a lower value and the emission rate r from a lower
to a higher value (Equation 23).

At+1
i = µAti, r

t+1
i = r0

i (1− e−γt) (23)

where 0 < µ < 1 and γ > 0 are two random parameters. As a result, the
actual algorithm can have a weak nonlinearity. Consequently, BA can have a faster
convergence rate in comparison with PSO. The basic steps of BA can be summarized
as the schematic pseudo code shown Algorithm 11.

Algorithm 11: Bat Optimization Algorithm.

Initialize the bat population xi and vi
Initialize frequencies fi, pulse rates ri and the loudness Ai
while termination criteria not satisfied do

Generate new solution by adjusting frequency
Update velocities and locations/solutions
if rand > ri then

Select a new solution
Generate local solution around the selected

end
Generate a new solution by flying randomly
if (rand < Ai) and (f(xi) < f(x∗) then

Accept the new solutions
Increase ri and reduce Ai

end
Rank the bats and find the current best x∗

end

Similarly, to the previous section, the existence of an implementations available
at the R statistical computing platform allows the construction of Code 10, which
uses the Bat Optimization method for the minimization of the Rastrigin Function.
(Once again both input and numeric output are presented, with the availability of
visual results pending a dedicated post-processing module).
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Code 10: R implementation calling the Bat optimization method to min-
imize the 2D version of the Rastrigin function as an unconstrained ob-
jective.

# Input #

obj2min <- function(x)

{

return( 20 + x[1]^2 + x[2]^2 - 10 *

(cos(2*pi*x[1]) + cos(2*pi*x[2]) ) )

}

lower_bound = c(-7, -7); upper_bound = c(7, 7)

library(’metaheuristicOpt ’)

BA_ans = metaOpt(obj2min , optimType = ’MIN’,

algorithm = ’BA’, numVar = 2,

rangeVar = rbind(lower_bound , upper_bound),

control = list(numPopulation = 20, maxIter = 700))

cat(’\nOptimal value ’, BA_ans$optimumValue ,

’\nOptimal design ’, BA_ans$result)

# Output #

Optimal value 0

Optimal design 3.238586e-292 1.289825e-292

6 Practical considerations for applied optimiza-

tion in general and structural optimization in

particular

Noteworthy of population-based methods is the increase in computational effort
resulting from simultaneous consideration of multiple designs per iteration instead
of a singular one, as in the case of classical (derivative based) optimization methods.

For this reason, it is often impractical to couple heuristic optimizers directly
into high-fidelity analysis codes (Finite Element and others), and it is standard
practice to evaluate the functions pertaining to the optimization problem by way
of approximations, such as the statistical surrogates (or metamodels) described in
another Chapter of the present volume. While a faster to calculate surrogate will
enable heuristic optimization methods to work properly and improve the decision
making process even with the complexity added by multiple basins of attraction,
attention is required to manage the propagation of approximation errors, which
takes place a) preemptively, by building accurate enough approximations and b)
correctively, by updating/enhancing initial versions of surrogates as needed and,
in certain cases, making calls to the actual analysis software at a lower frequency
(not at every iteration or step of the search process) so that error propagation can
be contained. The remaining challenge is to ensure that the search is not prone
to invoke a design candidate whose analysis and/or derivative calculation are not
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feasible, and addressing it is often dependent upon sound judgment about physical
regimes and their changes.

On a different but related note, it is not unusual that a singular heuristic search
method is not the best alternative to solve a given optimization problem, regardless
of how powerful (and intrinsically computationally sophisticated/expensive it might
be). Hence, practitioners have developed the so-called lifecycle approaches (Viana
et al. [2007]), so that combinations of optimization algorithms (calculus based and/or
heuristic) are employed in tandem, subject to several configuration and transition
criteria that evolve with the progress of the search itself and rely on more than one
method over the duration of the optimization procedure (also known as “lifecycle”,
hence the approach name).
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Abstract 

The development of fuel-efficiency airliners is crucial for the survival of aircraft manufacturers 

and airlines. In this context, multi-disciplinary optimization encompassing multiple objectives 

has provided great contributions to the aerospace industry. Thanks to the increase of 

computational power and efficient optimization algorithms, many tasks usually performed in 

the preliminary design phase are now carried out into the conceptual phase. Aeroelastic 

analysis and complex finite element models are already part of the conceptual phase. In 

addition, accurate and efficient surrogate models made faster and more stable computations 

possible. The content of this Chapter discusses the quest for the incorporation of high aspect 

wings into aircraft configurations, provides an overview of machine learning algorithms, and 

presents three engineering applications: two multi-objective optimizations of transport aircraft 

and a fluid-structure calculation of KC-135. The first optimization task is concerned with an 

aerodynamic optimization of an airliner wing by using a surrogate model to calculate 

aerodynamic coefficients based on artificial neural networks. The second optimization 

application encompasses the incorporation of flutter speed constraint for airliners of metallic 

construction into a multi-disciplinary optimization platform tailored for transport aircraft 

design. For this purpose, a package for structural sizing and aeroelastic analysis was integrated 

into the optimization framework developed at the Institute Technological of Aeronautics.  This 

package is known as the Next-Generation Conceptual Aero-Structural Sizing (NeoCASS) from 

the University of Milano. NeoCASS is used to estimate the flutter speeds of individuals that arise 

during an optimization process. Finally, the detailed aircraft wing structure model of the KC-

135 aerial refueller was built by using preliminary sizing procedures based on estimated main 

aerodynamic loadings, flight enveloped, V-n diagram, and detailed structural layout reports. 
Then a fluid-structure interaction (FSI) computer simulation procedure and compared to 

available experimental data. 
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Greek symbols 

α Angle of attack  

Γ𝜙 Diffusion coefficient 

ϕ Potential of velocities 

Υ Neuron activation function 

κ Thermal conductivity 

µ Dynamic viscosity 

ρ Fluid density 

𝜎𝑖𝑗 Stress tensor 

θ Neuron bias 

Other Symbols and abbreviations 

ADS-B ADS-B stands for Automatic Dependent Surveillance Broadcast. ADS-

B is a tracking system based merely on data transmission - in Mode-S (S 

stands for Select) - by the transponder at the frequency of 1090 MHz 

Broadcasted are several aircraft parameters 

AF2 Approximate factorization (Scheme 2) introduced by Ballhaus and 

Steger [1] 

ANN Artificial neural network 

AR Aspect ratio 

ARw Wing aspect ratio 

BOW Basic operating weight 

BPR Engine by-pass ratio 

𝐶𝐷𝐼 Induced drag coefficient 

CFD Computational Fluid Dynamics 

𝐶𝐿 Lift coefficient 

𝐶𝐿.𝑚𝑎𝑥  Maximum lift coefficient 

Cp Pressure coefficient 

CSD Computational structural dynamics 

D Drag force 

DOC Direct operating cost 

DOE Design of experiment 

e Oswald’s factor (Related to induced drag) 

𝑒𝑙𝑤𝑒𝑏 The thickness of the front spar 

𝑒𝑡𝑤𝑒𝑏 The thickness of the rear spar 

𝑒𝑢𝑝𝑎𝑛𝑒𝑙 The thickness of upper skin 

𝑒𝑙𝑝𝑎𝑛𝑒𝑙 The thickness of lower skin 

𝑆𝐵𝑜𝑜𝑚,𝑖 Area of idealized boom 

Bi Area of real boom 

EI and EILiner Efficiency index of an aircraft configuration 

FAR Federal aviation regulation 

Fd Fuselage equivalent diameter 

FEM Finite element method 
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Fhw Fuselage height-to-width ratio 

FSI Fluid-structure interaction 

ℎ𝑙𝑤𝑒𝑏 Height of front spar 

ℎ𝑡𝑤𝑒𝑏 Height of rear spar 

L Lift force 

L/D Lift-to-frag ratio 

Lf Fuselage length 

LCO Limit cycle oscillation 

LRC Long-range cruise 

M Number of Mach 

Md Dive Mach number 

M∞ Freestream Mach number 

MAC Mean aerodynamic chord 

MMO Maximum operating Mach number 

MTOW Maximum takeoff weight 

MZFW Maximum zero-fuel weight 

NeoCASS Next-Generation Conceptual Aero-Structural Sizing 

OPR Engine overall pressure ratio 

p Pressure 

PAX Passenger/Passengers 

RANS Reynolds averaged Navier Stokes 

Re Reynolds number (The ratio between the viscous and inertia forces in a 

fluid) 

Rnm Range in nautical miles 

RoC Rate of climb 

SMARTCAD Simplified Models for Aeroelasticity in Conceptual Aircraft Design 

Sw Wing reference area 

tc_root The maximum relative thickness of the root wing station 

TFL Takeoff field length 

TOGW Take-off gross weight 

TW Thrust-to-weight ratio 

V Speed 

VT Vertical tail 

VMO Maximum operating calibrated speed 

𝑤𝑏𝑖 Width of the torsion box 
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1. The quest for high aspect-ratio wings and new aircraft configurations 

1.1 Induced drag 

Induced drag is drag linked to the generation of lift, which is a phenomenon that involves 

the production of vorticity at the trailing edge and wingtip of trapezoidal wings of 

transport aircraft (Delta wings presents other sources of vorticity).  The vortex intensity 

generated at the trailing edge is directly proportional to the loading distribution (product 

of the chord in each section by the lift coefficient of the section) along the span. Eq. 1 

shows the basic formula for the calculation of induced drag coefficient: 

𝐶𝐷𝐼 =
𝐶𝐿

2

𝜋 ⋅ 𝐴𝑅𝑤 ⋅ 𝑒
 (1) 

Oswald’s factor shown in Eq. 1 is an efficiency parameter that measures how the loading 

distribution along the wingspan departs from a hypothetical elliptical one. Thus, shock 

waves, the lift itself and any other things that impact aerodynamics will also exert an 

influence on Oswald’s factor. Niță and Scholz elaborated an empirical and low-fidelity 

model to calculate Oswald’s factor with a satisfactory degree of accuracy [2]. The 

considerable increase of wing aspect ratio typically represents the pragmatic approach to 

reduce induced drag. However, this will bring some great disadvantages to the airplane 

configuration. Flutter is a primary cause of concern for design teams considering the 

adoption of high aspect-ratio wings. Usually, the design and optimization of an aeroelastic 

wing structure may be undertaken to minimize a structural mass that satisfies many 

different types of constraints. 

The flutter boundary of an aeroelastic system is defined as the lowest airspeed at which a 

small perturbation to a static equilibrium leads to self-powered oscillatory motion that 

does not decay. Thus, it is defined as the lowest airspeed at which the system has a 

complex-conjugate pair of eigenvalues with zero real part. For linear systems, the 

dynamics predicted by flutter analysis apply globally and thus any perturbation at flutter 

speed leads to a divergent oscillation. The structural system is then dynamically unstable, 

and disturbances may catastrophically grow at an extremely low time [3].  

Indeed, flutter ordinarily occurs due to a speed and lift coefficient combination. In this 

specific issue, there is an analogy with flight dynamics. The stability derivatives may be 

indicators of how a given aircraft will behave dynamically in a flight condition. However, 

after merely applying some commands from an initial condition it is then possible to 

analyze whether the trajectory will be stable or not. Similarly, the modal frequencies of 

an aircraft structure alone do not indicate dynamic behavior. The aircraft structure must 

be typically experiencing some loading to proceed cautiously with the comprehensive 

analysis of its flutter characteristics.  

Nonlinear mechanisms within the aeroelastic system may attenuate the disturbance 

propagation and produce a self-sustained limit cycle oscillation [4]. For nonlinear 

structures, like that, merely represented by the Timoshenko beam model, the dynamics of 

the perturbation beyond the local region are unknown. Timoshenko's theory of beams 

constitutes an improvement over the Euler-Bernoulli theory, in that it incorporates shear 

and rotational inertia effects 
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As the deformation in the system becomes significant, changes in structural properties 

mean the modal interactions necessary for a flutter to inevitably take place may be 

naturally affected. In this manner, the dynamics are no longer topologically equivalent to 

that of a linear system [5]. 

At the flutter boundary itself, there are two distinct possibilities for a nonlinear system. 

The first comprises a flawless transition to a stable LCO when the critical airspeed is 

exceeded, the amplitude of which increases from zero for speeds higher than the flutter 

speed. In this case, the nonlinear flutter point coincides with a so-called supercritical Hopf 

bifurcation (Figure 1). This region is beneficial when compared to the linear case (Figure 

1), as the unbounded oscillation is replaced by a reversible response via airspeed 

reduction (see arrows in Figure 1). Unfortunately, a harmful case is also part of the space 

of states: a subcritical Hopf bifurcation may occur, characterized by an unstable LCO 

region for speeds lower than the flutter one and a path turn featuring periodic oscillations, 

suddenly leading to a dangerous situation with large stresses and structural deflections 

[6]. Even decreasing the speed below the flutter point the system dynamics will not return 

immediately to the origin, resulting in a hysteresis loop [6]. 

The existence of subcritical behavior as described before leads to new considerations in 

aircraft optimization concerning posing flutter speed as a constraint for non-linear 

systems. Even considering the harmful situation that may occur in the subcritical region, 

below flutter speed, a gust, for example, can bring the system dynamics onto the stable 

large-amplitude limit cycle branch [6]. Naturally increasing wing aspect ratio leads to 

increased deflections when loading is present. However, the slenderness and reduced 

overall stiffness of wings optimized for minimal weight may lead to more complex 

deflections of more considerable magnitudes, resulting in nonlinear behavior. Such 

nonlinear effects can undoubtedly significantly influence the aeroelastic behavior of civil 

aircraft fitted properly with high aspect-ratio wings. 

 
Figure 1: Generic flutter possibilities: linear, supercritical Hopf bifurcation, and 

subcritical Hopf situation; green color means stable behavior; red, unstable [5] [6] 
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The aerospace community has intensively been researching the efficient utilization of 

high aspect-ratio wings for commercial airplanes. Boeing developed its new 787 long-

range airliner featuring extremely flexible wings in 2011, with All Nippon Airways as the 

launch customer [7]. Such highly flexible wings benefit from the stable LCO 

characteristics of nonlinear systems. Airbus chose a composite wing for the A350XWB 

airliner after a deep redesign of the initial proposition of an improved A330 [8]. The 

European Consortium adopted a figure of 9.49 for the A350-900 version   [8]. The A350’s 

wing features a quarter-chord sweep of 31.9 degrees, advanced shaped winglets, and 

spoilers that droop with flap extension to fully seal the gap between the Fowler flaps and 

wing to reduce drag [9]. Embraer developed a new variant of its E195 airliner and 

designated it E195E2, which features a considerable increase in wing aspect ratio when 

compared to previous products of that company. Both E195 and E195E2 feature wings 

of conventional wing aluminum structure. Table 1 shows some compared characteristics 

of the original E195 to its variant E195E2 [10] [11] [12] [13] [14]. According to Table 1, 

a considerable BOW increase for the E2 version can be observed. 

Table 1: Comparison of some characteristics of E195E1 and E2 

 E-195E1 AR E-195E2 

Wing reference area [m2] 92.50 103 

Wing quarter-chord sweepback angle 23.5o 27.5o 

Wing aspect ratio 8.1 9.4 

Engine by-pass ratio 5.4:1 12:1 

Single-engine dry weight [kg] 1,700 2,177 

Max. passenger accommodation 124 @ 31" | 30" | 29" pitch 146 @ 28" pitch 

Range (Full PAX, LRC) 2,300 nm (typical reserves) 2,655 nm (100 nm alternate) 

MTOW/BOW [kg] 52,290/28,700 61,500/35,750 

BOW/MTOW 0.55 0.58 

Maximum usable fuel [kg] 13,100 13,500 

The reduction of induced drag is the main reason behind the incorporation of high aspect 

ratio wings into transport aircraft configurations. Induced drag is dependent on the square 

of lift coefficient, aspect ratio, and the loading distribution along the wingspan. Despite 

its benefit due to the way it affects the induced drag, high-aspect-ratio wings bring with 

them several drawbacks: 

• Flutter speed is reduced. 

• Structural weight increases sharply [15]. 

• In combination with high-sweepback angles, they may lead to pitch-up behavior. 

• The average chord is usually smaller, therefore, increasing the parasite drag. 

• Potentialize the adverse yaw effect.  

Transport airplanes with higher aspect ratio wings of metallic construction may require 

flutter ballast in front of the wing elastic line. Increasing the stiffness of the outer wing 

structure may not be enough to increase flutter speed. A concentrated mass of lead is 

typically used in such cases. The addition of winglets may require additional ballast due 

to pitch inertia increase at wingtips aggravating critical flutter modes [16]. For the Boeing 

737-800 airliner, a reduction in the low altitude operating speed was avoided by adding 

41 kg of ballast per wing in the outboard leading edge [16].   
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The necessity of incorporating a wing with a considerable aspect ratio into an aircraft will 

depend on the mission and other requirements of the project. Jet airplanes conceived for 

oceanic crossings will perform the cruising mission at optimal 𝑀 × 𝐿
𝐷⁄  value. This 

translates into a cruise Mach number lower than the MMO, resulting in a lift coefficient 

where the induced drag will be a considerable part of the overall drag. This may not be 

the case for regional airplanes, which perform the cruise phase is shorter when compared 

with long-haul airplanes. This type of airplane should be optimized for the airline network 

they will operate [17]. Table 2 shows the average stage length flown in the United States 

of some major airlines [18]. 

Table 2: Average stage length in the U.S. flown by small narrow-body fleet [18] 

 1995 1997 2000 2010 2016 

American 852 898 850 860 762 

Continental 731 822 903 1,003 - 

Delta 552 569 609 745 665 

Northwest 612 614 639 - - 

United 692 721 767 995 977 

US Airways 514 521 554 779 - 

America West 620 738 854 - - 

 --sub Network 664 699 727 835 766 

Due to the structural and aeroelastic reasons pointed out before, the strength and fatigue 

advantages of carbon fiber encouraged aircraft manufacturers to incorporate higher-

aspect-ratio wings into airliner configurations. Besides the utilization of carbon fiber, 

unusual airplane configurations have been also proposed to mitigate the adverse effects 

of high-aspect-ratio wings (Figure 2). The unusual aircraft configurations being 

considered to address the induced-drag issue are summarized below: 

• Twin-fuselage configuration 

• truss-braced and strut-braced airliner 

• highly flexible wings 

• joined wings 

 
 

  

Figure 2: Some configurations usually proposed to mitigate drawbacks related 
to the adoption of high-aspect-ratio wings 
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1.2 Bracing 

In aircraft design, bracing comprises a peculiar kind of structural component that stiffens 

the functional airframe to accrescent nominal rigidity and strength under loading. 

Structural reinforcements are applied both internally and externally and may take the form 

of the strut, which withstands compression or tension. Exposed wires, which resist 

tension, only, were commonly used to provide structural strength to vintage airplanes. 

Strut-braced wing (SBW) and truss-braced wing (TBW) configurations provide a 

didactical example of drag reduction benefits that a radical change in wing configuration 

could bring. Such configurations are commonly seen on high-wing general aviation 

airplanes like the Cessna Skylane and Skyhawk and almost universal on parasol-winged 

airplanes such as the Consolidated PBY Catalina (Figure 3). Less commonly, some low-

winged monoplanes like the Piper Pawnee agricultural airplane are characterized by lift 

struts mounted on the wing upper surface, acting in compression in flight and tension on 

the ground (Figure 4). For aircraft of moderate engine power and speed, lift struts 

represent a compromise between the higher drag of a fully cross-braced structure and the 

higher weight of a cantilevered wing.  

 

Figure 3: PBY Catalina (Photo: B. Mattos) 

 
Figure 4: Piper PA-25 Pawnee (Photo released to the public domain) 
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On a high-wing aircraft, a strut connects an outboard point on the wing with a point lower 

on the fuselage to form a rigid triangular structure. While in flight the strut acts in tension 

to carry wing lift to the fuselage and hold the wing level, while when back on the ground 

it acts in compression to hold the wing up. This kind of airplane has been studied by 

universities and aerospace manufacturers as a viable concept for medium-sized airliners. 

TBW offers potential for performance improvements in terms of fuel efficiency thanks to 

the higher aspect ratio wings it allows. Gern et al. claim that a strut-braced wing enables 

lower airfoil thickness, which will lower the transonic wave drag and hence require a 

lower wing sweepback angle [19]. In turn, they continue affirming that the lower wing 

sweep and high-aspect ratios will produce natural laminar flow thanks to low Reynolds 

numbers. Consequently, a significant increase in the overall aircraft performance is 

achieved. However, a lower airfoil thickness-to-chord ratio will inevitably lead to a 

heavier wingbox. The trade-off among several factors, lower wing sweepback angle, and 

the strut itself may bring a lighter airplane. In addition, there are also challenges for 

structural designers as the mitigation buckling of the strut or truss [20]. 

In 2000, Grossman et al. perform a comparative study for a 325-passenger class airliner 

fitted with two GE-90 engines [21]. The truss-braced airplane presents fuselage-mounted 

engines. Using contemporary multi-disciplinary design optimization techniques available 

at that time integration of the aerodynamic and structural design requirements was carried 

out. They considered a hexagonal wingbox and optimized area/thickness ratios for spar 

webs and caps, stringers, and skins. The results for the truss-braced configuration 

indicated that the take-off gross weight was reduced by more than 10-percent when 

compared to an equivalent cantilever wing airplane. According to Ref. [21], significantly 

larger weight reductions (19% TOGW) are obtained for the wing-mounted engine case.  

To illustrate some characteristics of a strut-braced beam and compare it with a cantilever 

beam, the derivation of shear force and bending moments for beams was carried out and 

shown in the last part of this Section. 

 
Figure 5: Internal reactions of a cantilever beam 

Figure 5 shows a cantilever beam and the internal forces and moments at the boundary 

of two slices of it.  V is the shear force; M is the bending moment and w is a uniform 

loading expressed in terms of force per unit length. The equilibrium of forces and 

moments promptly allows the derivation of two equations: 

∑ 𝐹𝑦 = 0 (2) 

∑ 𝑀𝑥=𝐿 = 0 (3) 
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Inserting the right parameters in Eqs. 2 and 3, the following expressions for shear force 

and bending moment distributions can be derived: 

𝑤(𝐿 − 𝑥) − 𝑉 = 0 ⟹ 𝑉 = 𝑤(𝐿 − 𝑥) (4) 

𝑀 + 𝑉 ∗ (𝐿 − 𝑥) − 𝑤(𝐿 − 𝑥)
(𝐿 − 𝑥)

2
= 0 ⟹ 𝑀 = −𝑤

(𝐿 − 𝑥)2

2
 (5) 

Figure 6 shows the shear force and bending moment distributions from Eqs. 4 and 5 for 

a 20-m-length beam and w = 5000 N/m. The shear force presents a linear variation with 

the horizontal distance from the wall and the bending moment a quadratic one. 

 
Figure 6: Shear force and bending moment along a cantilever beam 

The same calculation procedure is now applied to obtain the distributions regarding a 

beam with a single strut, also subjected to a uniform lifting load. Assuming that the strut-

wing junction is located at one-third of the overall beam length from the wall, the 

schematics of forces and moments for the whole beam are depicted in Figure 7. 

 
Figure 7: Schematics of reactions of a beam with a single strut 

The balance equations for the whole beam for this case are as follows: 

∑ 𝐹𝑥 = 0  ⇒ 𝑅𝑥 − 𝐹𝑥 = 0 ⇒ 𝑅𝑥 = 𝐹𝑥  (6) 

∑ 𝐹𝑦 = 0  ⇒ 𝑅𝑦 − 𝐹𝑦 + 𝑤𝐿 = 0 (7) 

∑ 𝑀𝑥=0 = 0  ⇒ 𝑤𝐿
𝐿

2
− 𝐹𝑦𝑎 − 𝑀0 = 0 (8) 
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Considering that the reaction moment M0 at the wall is zero, we obtain the vertical force 

acting on strut: 

𝐹𝑦 =
𝑤𝐿2

2𝑎
 (9) 

Now, Fx can be obtained: 

𝐹𝑥 =
𝐹𝑦

𝑡𝑔𝛼
=

𝑎

𝑏
𝐹𝑦 =

𝑤𝐿2

2𝑏
 ⇒  𝑅𝑥 =

𝑤𝐿2

2𝑏
 (10) 

For the obtention of shear force and bending moment distributions, it is necessary to make 

the force diagram of generic beam elements of the inner and outer beam (Figure 8). 

 
Figure 8: Force and moment schematics for two slices of the beam with strut 

Considering the three balance equations for the outer beam, the shear force and bending 

moment distributions for this part can be easily obtained: 

∑ 𝐹𝑥 = 0  ⇒ 𝑁 = 0  (11) 

∑ 𝐹𝑦 = 0  ⇒ 𝑤(𝐿 − 𝑥) − 𝑉 = 0 ⇒ 𝑉 = 𝑤(𝐿 − 𝑥) (12) 

∑ 𝑀𝑥=𝑎 = 0  ⇒ 𝑀 + 𝑤(𝐿 − 𝑥)
(𝐿 − 𝑥)

2
= 0 ⇒ 𝑀 = −

𝑤

2
(𝐿 − 𝑥)2 (13) 

A straightforward calculation procedure is then carried out for the inner beam: 

∑ 𝑁 − 𝐹𝑥 = 0  ⇒ 𝑁 = 𝐹𝑥  (compression) (14) 

∑ 𝐹𝑦 = 0  ⇒ 𝑤(𝐿 − 𝑥) − 𝑉 − 𝐹𝑦 = 0 ⇒ 𝑉 = 𝑤(𝐿 − 𝑥) − 𝐹𝑦  

⇒                      𝑉 = 𝑤(𝐿 −
𝐿2

2𝑎
− 𝑥) 

(15) 

∑ 𝑀𝑥=0 = 0  ⇒ 𝑀 + 𝑤(𝐿 − 𝑥)
(𝐿 − 𝑥)

2
− 𝐹𝑦(𝑎 − 𝑥) = 0 

⇒                            𝑀 =
𝑤

𝑎

𝐿2

2
(𝑎 − 𝑥) −

𝑤

2
(𝐿 − 𝑥)2 

(16) 

Figure 9 shows the shear force and bending moment distributions 
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Figure 9: Shear force and bending moment along a strut-braced beam 

An advantage of the beam with a strut is a reduction of the bending moment at the root 

station. However, the inner part of the beam becomes subject to compressive forces and 

therefore may suffer from buckling more prematurely. 

1.3 Dual-fuselage aircraft 

The main reason to consider a double-fuselage concept for airliners is the utilization of 

high aspect-ratio wings without aeroelastic penalties of an equivalent cantilever wing 

attached to a single fuselage. The stiffness of the resulting set is enough to provide higher 

flutter speeds. 

Figure 10 shows Mach contours and Figure 11 is a compound image of streamlines and 

contour surface that resulted from an Euler Simulation of a dual-fuselage configuration 

able to accommodate 34 passengers. Despite a relatively low freestream Mach number, 

many supersonic regions can be seen in the calculated flow over the configuration. A 

strong shock wave affects the wing between the fuselages, probably leading to flow 

separation at the Mach number of this simulation and higher. Indeed, the flow experiences 

a high acceleration in the region in between the two fuselages, behaving similarly as flow 

in a Venturi tube. Thus, the central wing must be carefully designed with additional 

considerations for a sound and aerodynamically clean design. 

 
Figure 10: Euler calculation for a double-fuselage configuration (Mach = 0.76, α = 0o). At 

left: red regions indicate supersonic flow. At right: red color and yellow colors are 
associated with lower speeds; green color indicates that the local speed is close to the 

freestream Mach number 
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Figure 11: Streamlines over the dual-fuselage configuration (Mach = 0.76, α = 
0o). Surface geometry is colored according to the calculated Mach number. 

Notice the rapid expansion of engine exhaust gases 

To illustrate how important, it is in aircraft design to raise relevant topics that influence 

the manufacture, performance, and operation of the aircraft, here are some of the 

advantages of a dual fuselage aircraft and its disadvantages.  

On the bright side: 

• Wing with a high aspect ratio is feasible. The central wing will not have any wingtip (i.e., 

the wing starts and ends in the fuselage spanwise). The absence of a wingtip reduces the 

induced drag generated by the central wing. The overall wing could be of a higher aspect 

ratio contributing to the induced drag reduction. However, as shown before, the central 

wing must be carefully designed to prevent flow separation and high wave drag 

coefficients. 

• Two smaller vertical tails can eventually save weight, depending on the design 

requirements and the mission of the aircraft. In addition, in a catastrophic event where 

one VT is damaged, the remained one may continue to be operated. 

• A smaller fuselage will not require bigger production facilities and lighter support 

equipment around. Fuselage skin thickness is strongly dependent on the fuselage 

diameter; therefore, the fuselage weight grows exponentially to its diameter. However, 

are the loads in the flight envelope that will determine the structural sizing of the aircraft. 

• Cargo and passenger airplane. Each fuselage could separately accommodate cargo and 

passengers facilitating handling and operation for this type of aircraft.  

• A dedicated fuselage for the business class passenger. One of the fuselages could be 

configurated to accommodate business and/or first-class passengers only, allowing this 

way an exclusive service for them. 

• It provides some advantages to specialized airplanes such as Scaled Composites VMS 

Eve (Figure 12). This aircraft is an example of a mother ship that carries a parasite 

aircraft between the two fuselages, releasing it later to perform a high-altitude flight or a 

sub-orbital spaceflight. 
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Some disadvantages of dual-fuselage configs are given as follows: 

• Disturbances in airflow over the wing caused by the two fuselages may lead to higher 

interference drag and negatively impact the load distribution, which will contribute to an 

increase in the induced drag. 

• Larger rolling moments: A dual-fuselage airplane will need larger rolling moments and 

hence, more effective ailerons.  

• The central wing must keep the two fuselages together. So, the wing must take a bit of 

tensile/compressive loads. The forces separating the two fuselages are not the dominant 

forces, but still, something to keep in mind while designing. Also, the middle wing must 

maintain the two fuselages at the same pitch, so add a bit of twisting moments to the wing 

design, apart from aerodynamic twisting forces. 

• Roll stability: In addition to the traditional parameters affecting the roll stability, i.e., the 

outer wing sweep and the outer wing dihedral, now there is a new parameter in the picture, 

the position of the two fuselages. I don’t know if the twin-fuselage configuration has 

reduced or better roll stability, but either way, it complicates the things for achieving 

reasonable roll stability margins. 

• A higher number of control surfaces is a challenge to the control system design. The by-

wire system is a must for modern double-fuselage airliners.  

• Ground operations will become more complex and difficult such as passenger boarding 

and deplaning, waste servicing, and catering. 

In the past, some dual-fuselage configurations were developed (Figure 13). The Heinkel 

He 111Z was a combination of two existing He 111 tactical bombers. It was produced in 

a few units just to tug the huge transport glider Messerschmitt Me 321. To take advantage 

of the war surplus of P-51 Mustangs, a dual fuselage variant was developed for aerial 

reconnaissance missions (Figure 13). 

 
Figure 12: Scaled Composites VMS Eve (Drawing released to the public 

domain) 

  
Figure 13: Dual-fuselage vintage aircraft. Left: Twin Mustang; Right: Heinkel He 111Z 

(Public domain photos) 
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2. A simple method to calculate wing structural weight 

The primary structure of wings is represented by the torsion box or wingbox. An example 

of the structural layout of the torsion box of a wing is given in Figure 14. As can be seen 

in 1, the primary wing structure is something complex, and it is not possible to scale in a 

simple and fast way, the main objective of this work. For this, a simplified torsion box 

model is considered. Megson [22] elaborated a simplified wingbox model for its sizing, 

which was adopted for the calculation of the wing structural weight of some airliners 

(Figure 15). Stringers and spar flanges are replaced by concentrations of area, known as 

booms, over which the direct stress is constant, and which are located along the lines 

representing the skin. The content of this Section is an extended work of Videiro [23]. 

 

Figure 14: Illustration of a wingbox of a cantilever wing (Drawing from ITA’s 
Aircraft Design Department) 

 
 

Figure 15: Simplified model of a wingbox 

Calculating stations 

Here are considered airplanes with a constant leading-edge sweep and a trailing edge with 

a single inflection, the latter called break station. Due to the wing structure complexity, 

the structural model is discretized into five distinct sections along the wingspan: wing 

root station, wing break station, and two sections beyond it (Figure 16). It is noteworthy 

that the number of stations can be changed by the user as well as their location.  
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Figure 16: Calculating stations 

External loading 

Each section is sized individually. The loads are calculated by a wing-body full potential 

code and properly transferred to the sections. There are cases where the fuel weight is 

considered, and others are not. As the mission proceeds, some airplanes are continuously 

pumping fuel stored in the wings to a central tank in the fuselage to increase the fatigue 

life of the structure. 

Another routine built the structural layout according to prescribed rib spacing and spar 

locations (Figure 17). The fuel storage capacities for the internal and external tanks are 

also calculated as well as the center of gravity of tanks considering them filled with fuel. 

 
Figure 17: Example of wing layout for a 72-passenger airliner fitted with 

underwing engines 

Mattos, Bento S., et al. (2022) Machine Learning & MDO for Conceptual Aircraft Design pp. 143-236

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 159



  

Internal stresses 

The internal stress in each case is represented by the tensor of forces: 

𝜏 =  {𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝑀𝑥, 𝑀𝑦, 𝑀𝑧}  (17) 

The reference system is indicated in Figure 18, and it has its origin in the geometric center 

of the section which due to the hypotheses of structural idealization that was adopted will 

coincide with the center of sharp stresses of the torsion box. 

 
Figure 18: CEC Position (Cutting Stress Center) 

Consequently, shear flows arise in the stringers and panel skins that need to be calculated 

for the very dimensioning of these components.  Also, there will be axial forces, due to 

the actuation of bending moment, which, as already mentioned, are supported exclusively 

by the boons. Each section is treated as an isosceles trapezium to simplify structural 

calculations (Figure 19). 

 
Figure 19: Approximation of the Wingbox Cross Section as an Isosceles 

Trapezium 

The distance between the position of the geometric center of the trapezium and the front 

stringer is given by: 

𝑑𝐶𝐺 = (
𝑤𝑏𝑖

3
)

2ℎ𝑙𝑤𝑒𝑏 + ℎ𝑡𝑤𝑒𝑏

ℎ𝑙𝑤𝑒𝑏 + ℎ𝑡𝑤𝑒𝑏
 (18) 

Determination of the area of the idealized sections 

For the center of mass to coincide with the geometric center of the section, the boom areas 

after idealization must be equal.  

The moments of inertia of the section are given by: 

𝐼𝑥𝑥 =
𝑆𝐵𝑜𝑜𝑚,𝑖ℎ𝑙𝑤𝑒𝑏

2

2
+

𝑆𝐵𝑜𝑜𝑚,𝑖ℎ𝑡𝑤𝑒𝑏
2

2
 (19) 

𝐼𝑧𝑧 =
𝑆𝐵𝑜𝑜𝑚,𝑖𝑑𝐶𝐺

2

2
+

𝑆𝐵𝑜𝑜𝑚,𝑖(𝑤𝑏𝑖 − 𝑑𝐶𝐺)2

2
 (20) 

The axial stress at a generic point can then be expressed as: 

𝜎(𝑥, 𝑧) =
𝑀𝑥𝑧

𝐼𝑥𝑥
+

𝑀𝑧𝑥

𝐼𝑧𝑧
 (21) 
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According to Eq. 21, it is possible to deduce which of the four booms will present the 

highest axial stress and will consequently be the most critical for sizing. Considering that 

the rupture stress of material that constitutes the wing is known. the critical boom can be 

dimensioned. In this step, the idealized area of the boom and not its real area is employed. 

At the end of the sizing procedure is when the thicknesses of the stringers and the skin 

will be known. 

Shear flow 

Figure 20 shows an example of shear force due to aerodynamic loading for a load factor, 

n, equal to 1. 

 
Figure 20: Example of shear force distribution along semispan of jet transport 

aircraft ((M∞ = 0.80, CL=0.48, n=1) 

To find the values of the shear flow of a closed section, the method presented by Megson 

[22]. The shear flow is divided into two parts: 

𝑞 = 𝑞𝐵 + 𝑞𝑠,𝑂 (22) 

In Eq. 22, qB is the flow calculated after making a "cut" on one of the walls of the closed 

section. This flow varies depending on the path around the perimeter of the section: 

𝑞𝐵 = − (
𝑆𝑥𝐼𝑥𝑥 − 𝑆𝑦𝐼𝑥𝑦

𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

) (∫ 𝑡𝐷𝑥𝑑𝑠 +  ∑ 𝑆𝐵𝑜𝑜𝑚,𝑖𝑥𝑟

𝑛

𝑟

𝑠

0

)

−  (
𝑆𝑦𝐼𝑦𝑦 − 𝑆𝑥𝐼𝑥𝑦

𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

) (∫ 𝑡𝐷𝑦𝑑𝑠 + ∑ 𝑆𝐵𝑜𝑜𝑚,𝑖𝑦𝑟

𝑛

𝑟

𝑠

0

) 

(23) 

As the section is symmetrical concerning the axis x => 𝐼𝑥𝑦 = 0. Besides, the idealization 

assumes that the thickness is null, 𝑡𝐷 = 0, so that the expression of Eq. 23 can be 

simplified: 

𝑞𝐵 = −
𝑆𝑥

𝐼𝑦𝑦
∑ 𝑆𝐵𝑜𝑜𝑚,𝑖𝑥𝑟

𝑛

𝑟

−  
𝑆𝑦

𝐼𝑥𝑥
∑ 𝑆𝐵𝑜𝑜𝑚,𝑖𝑦𝑟

𝑛

𝑟

 (24) 

Eq. 24 indicates that the shear flow is constant on the same wall and any variation is 

caused solely due to the presence of a boom. The contribution of 𝑞𝑠,𝑂 is constant on all 

walls of the closed section. Its function is to equalize the torque produced by the external 

forces with the internal torque that will arise due to the internal shear flow. Therefore, 

knowing the external forces and the idealized area of the booms, shear flows can be 

determined and consequently size the thickness of the stringers and skin.   
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Shear stress is given by the division between shear flow and material thickness. Thus, 

smaller thicknesses result in higher shear stresses. 

𝜏 =
𝑞

𝑒
⟹ 𝑒 =

𝑞

𝜏𝑀𝐴𝑋
 (25) 

The last step of structural sizing is to revert the idealization of the structure to obtain the 

actual areas of the booms: 

𝐵1 = 𝑆𝐵𝑜𝑜𝑚,𝑖 −
𝑒𝑙𝑤𝑒𝑏ℎ𝑙𝑤𝑒𝑏

6
−

𝑒𝑢𝑝𝑎𝑛𝑒𝑙𝑤𝑏𝑖

2
 (26) 

𝐵2 = 𝑆𝐵𝑜𝑜𝑚,𝑖 −
𝑒𝑡𝑤𝑒𝑏ℎ𝑡𝑤𝑒𝑏

6
−

𝑒𝑢𝑝𝑎𝑛𝑒𝑙𝑤𝑏𝑖

2
 (27) 

𝐵3 = 𝑆𝐵𝑜𝑜𝑚,𝑖 −
𝑒𝑡𝑤𝑒𝑏ℎ𝑡𝑤𝑒𝑏

6
−

𝑒𝑙𝑝𝑎𝑛𝑒𝑙𝑤𝑏𝑖

2
 (28) 

𝐵4 = 𝑆𝐵𝑜𝑜𝑚,𝑖 −
𝑒𝑙𝑤𝑒𝑏ℎ𝑙𝑤𝑒𝑏

6
−

𝑒𝑙𝑝𝑎𝑛𝑒𝑙𝑤𝑏𝑖

2
 (29) 

Rib sizing 

Contrary to what was performed for the sizing of the coating, stringer, and booms, a 

statistical and historical approximation is used to determine the mass of the ribs. This is 

due to failed attempts to scale this component, whose main structural function is to resist 

buckling to ensure the shape of the ass when loaded. 

Another difficulty presented was the fact that the ribs of the aircraft presented holes for 

the passage of hydraulic components and weight alleviation, for example, or to form the 

fuel tank inside the wings. 

The solution adopted was to use an area density for the ribs, 𝜌𝑁𝑒𝑟𝑣 = 9.6𝑘𝑔/𝑚2. The 

average spacing between the ribs on a passenger transport aircraft is 0,70 m. Thanks to 

the planform known data and the location of the rear and front spars, and other data a 

routine was built to define the structural layout and therefore all positioning and some 

dimensions of ribs in the wing. The mass of all ribs is given as: 

𝑀𝑁𝑒𝑟𝑣 =  𝜌𝑁𝑒𝑟𝑣𝑆𝑁𝑒𝑟𝑣 (30) 

Where is the sum of the areas of all cross-section sum of the areas of the cross-section 

where the ribs are located, 𝑆𝑁𝑒𝑟𝑣. 

Model for the secondary structure 

In the previous chapter, a model for calculating the mass of the primary structure of the 

wing was elaborated. Now, it remains to do the same procedure for the secondary 

structure (flaps, spoilers, hydraulic systems, etc.) to obtain a complete model of the wing 

of an aircraft. However, due to the complexity of scaling the devices of the secondary 

structure, a statistical approach is used to estimate the mass. 

The difficulty comes, among other factors, from the wide variety of types of hyper-

support devices that an aircraft can have: 

In addition, the sizing of systems such as hydraulics is a complex task, with a level of 

difficulty that escapes the objectives of this work and that are not compatible during the 

conceptual design stage of the aircraft. 
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Historically, the mass of the secondary structure contributes with 20-30% mass of wings. 

This enables a very simple first mass estimation: 

𝑀𝑊𝑠𝑠 = 0.26𝑀𝑊 (31) 

Torenbeek [24] proposed a method to estimate the mass of the secondary structure with 

more accuracy. This method requires that the area of high-lift devices be known. 

However, due to unsatisfactory results when compared to the actual mass of existing 

aircraft wings, its use was then not here considered [25]. The more accurate formula 

proposed by Roux  [25] is to assume that the mass of the secondary structure is 

proportional to the power of the wing area. 

𝑀𝑊 = 𝐾 𝑆𝑛 (32) 

Being the factors and adjusted from historical values, minimizing the quadratic error 

between the model and the actual mass. 𝐾 = 25.9  and 𝑛 = 0.97 for airplanes with 

MTOW higher than 20 t. 

Once the tensor of stresses is constructed, the design of the primary structure of the wings 

can be started. The sizing of the primary structure can be divided into two cases: 

• Sizing of continuous structures along with the aircraft's wings, such as stringer, skin, and 

reinforcers. The structural module must be written in a routine that from the geometry of 

the wings and the force tensioner returns the area of each section to be sized. 

• For the sizing of the discontinuous structures along the aircraft wing, more specifically 

the ribs, the same subroutine must provide the total volume of this structure throughout 

the whole wing. 

Two test cases were run with aircraft like B737-200 and A320-200 (Tables 3 and 4). 

Since airfoil geometry and other relevant information are unknown; airfoils presenting 

the same maximum relative thickness as those of the real airplanes were utilized, instead. 

Overall wing mass estimated using the Torenbeek method [24] is also provided. The 

MZFW that is required by the Torenbeek approach was furnished based on the fuel 

capacity calculated by the present methodology considering that fuel is stored only on the 

wings. 

Table 3: Airplanes selected to test the methodology 

 Similar to Boeing 737-200 Similar to A320-200 

Seating abreast in the Y-class 6 6 

Single class passenger capacity (32-in pitch)  132 180 

Wing aspect ratio 8.83 9.38 

Wing taper ratio 0.266 0.240 

Wing area [m2] 91.04 122.4 

Location of the front/rear spar 23/64% chord 23/64% chord 

Rib spacing (in) 22 22 

tc_root 15.4% at 19.6% chord 15.13% 

MMO 0.82 0.82 

Table 4: Mass estimation compared with actual on 

 Similar to Boeing 737-200 Similar to A320-200 

Estimated wing mass 

(primary/secondary/total) 
3432/2060/5492 5950/2744/8694 

Mass according to Torenbeek [24] 5346 kg 8285 kg 

Actual overall wing mass [25] 5038 kg 8766 kg 
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3. A fluid-structure simulation for capturing elastic effects on wing 

structure 

The objective of this Section is to highlight the importance of considering aeroelastic 

effects on the aircraft conceptual design. For this purpose, aeroelastic effects observed in 

a military jet airplane were computed by a fluid-structure interaction (FSI) computer 

simulation procedure and compared to available experimental data. The effects of elastic 

characteristics of the configuration on pressure coefficient distribution were deeply 

investigated. The detailed aircraft wing structure of the KC-135 aerial refueller was built 

by using preliminary sizing procedures based on estimated main aerodynamic loadings, 

flight enveloped, V-n diagram, and detailed structural layout reports. The simulation 

results are in excellent agreement compared with wind tunnel and flight-test data. 

3.1 Fluid-structure interaction models 

The modeling of fluid-structure interaction can be classified under three major branches, 

following the coupling strategy: fully coupled, loosely coupled, and closely coupled 

analyses. 

The fully coupled approach combines structural equations of motion and fluid dynamics 

equations in integral form and solves the related time-discretized equations. However, 

such a procedure requires constructions that produce matrices with different orders of 

magnitude for solids and fluids because they are written for different modeling reference 

frames (Figure 21). This hinders the discretization of the problem, limiting the 

construction of the grids and being expensive from the computational point of view, 

usually being used in two-dimensional problems [26]. 

 
(a) Eulerian control volume  

(b) Lagrangian control volume moving and deforming with fluid flow 

Figure 21: Reference frames 

Loosely coupled approaches [27], unlike fully coupled strategy, structural dynamics and 

fluid dynamics are solved using separated solvers and have different computational grid 

topologies in which boundaries are non-coincident. An external connection between fluid 

and structure modules is made. The fluid solver, in general, has reasonable techniques to 

export forces to the interface with the structure solver. 
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The closed approach is one of the most widely used methods in the field of computational 

aeroelasticity. Fluid models and structures are solved in different solvers. However, it has 

an internal connection module that exchanges information between the two models, 

which intercommunicate iteratively (Figure 22).  

The information exchanged are the surface loads, mapped on the CFD surface grid and 

transmitted to the structural dynamics (CSD) grid, which maps the displacement field, 

transferring this information to the CFD solver [28].  

 

Figure 22: Fluid-structure coupling procedures 

3.2 Fluid Flow Dynamics Fundamental Equations 

In this section, an overview of the fluid dynamics equations for an Eulerian reference 

frame is given.  

The fluid model assumes a linear relationship between viscous stress and strain: 

2

3

ji k
ij ij ij

j i k

vv v
p

x x x
   

  
= + − −       

(33) 

The laws of conservation of mass, motion, and energy may be written as: 

( )
0i

i

v

t x

 
+ =

 
 

(34) 

( )( ) 2

3

i j ji i k
ij i

i j j j i k i

v v vv v v p
f

x x x x x x x


  
      

+ = + − − +              
(35) 

2

( )( ) 2

3

ji i i i i i

i j j i i i i i

vv e v v v v ve
p q

t x x x x x x x x


  
            
 + = + − − + +                      

(36) 

where ρ is the density of the fluid,𝑓𝑖 are the external forces, and q represents heat sources. 
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The realizable 𝜅 − 𝜖 turbulence model is well known, and it was employed in the 

computations of the present Section. Enhanced wall treatment was also chosen, where the 

entire domain is subdivided into a viscous-affected near-wall region and a fully turbulent 

region determined by a wall-based turbulent Reynolds number and interpolated by 

enhanced wall functions that approximate expected boundary layer behavior and the 

region between viscous-affected and fully turbulent is represented by a blending function. 

A finite volume method was used to solve numerically partial differential equations of 

fluid flow. It consists of the approximation of integral by applying Gauss’s divergence 

theorem. Finite volume methods integrate the partial differential equations over each 

control volume to find discretized equations to each control volume, conserving physical 

quantities (e.g., mass, heat transfer) to each control volume. 

This method is applied over a conservation equation reformulated into the general form, 

called as general transport equation [29], written in its differential form: 

( ) ( )div u div S
t






 


+ =   +

  

(37) 

Eq. 38 was written in divergence form to allows application of Gauss’s theorem, that 

follows:  




=+



dSndJd

t



 

(38) 

Integrating the generalized transport equation considering a time interval ∆𝑡 in the control 

volume Ω, the following finite volume equation can be obtained: 

( ) ( ) faces facest t t N N

p p

f f f f f f

f f

V V A A S V
t





 
  

+ −
 +  =    +


 

 

(39) 

For spatial discretization, it is assumed that properties are constant on a given control 

volume at a given time in its center of gravity, varying these properties along with 

elements through interpolation functions in which the most known are centered, upwind 

(first-order or second-order accuracy), and hybrid, based on Péclet number. 

The solvers generally used to handle these equations are pressure-based ones (SIMPLE, 

SIMPLE-C, PISO, FSM) [30] [31] and density-based solvers (ROE-FDS, AUSM, HLLC) 

[31] [32] [33].  

The present simulation used is an implicit density-based with ROE-FDS scheme, with a 

second-order upwind scheme applied in the flow and on turbulence model (calculation of 

kinetic energy and dissipation rates). The condition of convergence is based on the 

Courant number for a given cell size and time step. 
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3.3 Structural dynamics approach 

We consider the Lagrangian reference frame and a linear relationship between stress and 

strain in these models. 

휀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (40) 

The equations of linear elasticity are derived from linear stress and strain relationship and 

describe conservation of displacement and are known as equations of motion, in its 

generalized form, known as Navier-Cauchy equations for linear elasticity. 

𝜌𝑠

𝜕2𝑢𝑖

𝜕𝑡2
− 𝛻 ∙ 𝜎(𝑢) = 0 (41) 

To solve numerically Eq. 41 is used the finite element method (FEM) that divide the solid 

domain 𝛺𝑠 (or 𝛺𝑠) into multiple finite elements 𝛺𝑒 and the calculation of the displacement 

field 𝑈𝑒 is performed on each finite element from values calculated on its nodes (points 

that are part of finite element edges) and interpolated by polynomials.  

According to that was described in the preceding paragraph, a linear equation on the 

element 𝛺𝑒 can be then obtained: 

𝑈(𝑥𝑖 , 𝑡) = 𝑁𝑒(𝑥𝑖)𝑈𝑒(𝑡) (42) 

where 𝑈𝑒(𝑡) is the nodal displacements unknowns and 𝑁𝑒(𝑥𝑖) is the interpolation 

polynomial matrix, polynomials called shape functions (based on Hermite’s 

polynomials). 

Using the Galerkin method to discretize 𝑈(𝑥𝑖, 𝑡), we obtain the generalized equation of 

motion for each finite element as follows: 

𝑚𝑒�̈�𝑒 + 𝑘𝑒𝑢𝑒 = 𝑓𝑒 (43) 

with elementary mass matrices 𝑚𝑒, stiffness elementary matrix 𝑘𝑒, and external forces 

vector represented by the element 𝑓𝑒.   

Assembling the equations of all elements presented into the domain, we have the 

generalized equation of motion to the domain 𝛺𝑠:  

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = [𝐹(𝑡)] (44) 

The equation can be solved using a modal approach in which the solution is composed by 

eigenvectors of the vibration subproblem, which can be written as n individual equations, 

corresponding one equation to each vibration shape mode, as follows: 

{
�̈�𝑖(𝑡) + 2𝜉𝑖𝜔𝑖�̈�𝑖(𝑡) + 𝜔𝑖

2𝑢𝑖(𝑡) = 𝑓𝑖(𝑡)              𝑖 = 1,2,3, . . . , 𝑛

𝑓𝑖(𝑡) = 𝛷𝑖
𝑇[𝐹(𝑡)]

 (45) 

where 𝜔𝑖 is the natural frequency for ith mode and 𝜉𝑖 is the damping parameter for ith 

mode. To solve this system is necessary to calculate numerically integrals in the mass and 

stiffness matrices using Gaussian quadrature and after that, solve the linear system to 

obtain displacement vector through Gauss-Seidel methods and perform modal extraction 

through Lanczos Method. 
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3.4 The fluid-structure interface 

In the case of the FSI problem we consider a solid domain 𝛺𝑠 and a fluid domain 𝛺𝑓 in 

contact with each other along with the interface 𝛤𝑓/𝑠 (as we can see in Figure 23). The 

density of contact forces on the fluid in the solid domain perspective is written as: 

s s st n=
 

(46) 

Similarly, the density of contact forces on the fluid in the fluid domain perspective is 

written as: 

f f ft n=
 

(47) 

 
Figure 23: FSI domains 

There are the Dirichlet displacement function u and Dirichlet data functions based on 

velocity vector v on boundary conditions regarding the solid domain. Therefore, two 

assumptions are made to solve this general problem. The first assumption is that the 

velocities are continuous along with the interface 𝛤𝑓/𝑠, given by: 

𝑣 = �̇� (48) 

The other assumption is relative to the mechanical equilibrium on 𝛤𝑓/𝑠 

0s ft t+ =
 

(49) 

The normal vectors are linked by the following relationship: 

s fn n n= = −
 

(50) 

Therefore, the interface equilibrium condition arises: 

( ) 0f s n − =
 

(51) 

To model meshing motion in the fluid domain is necessary to reconcile characteristics of 

both reference frames seen in Figure 21, to allow carry through a control volume quantity 

of mass and heat, and at the same time, this control volume may deform and move with 

time. 
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To meet these requirements, there is an Arbitrary Lagrangian-Eulerian (ALE) formulation 

that combines the regions in the fluid domain where we need to approximate a Lagrangian 

formulation to follow particle motion (for example close to the interface between the fluid 

and the solid domains) and the regions where an Eulerian description is sufficient to 

describe the flow (far away from solid domain). This formulation is succinctly described 

by Eq. 52. 

2

2

Find ( , ) ( ) ( ),  such that

2
( ) : ( ) ,  ( )

Re

( ) 0,  ( )

f f
t t

f
t

f d f

t t
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t

v p V L t I

v
v w v d p v d b d V

t

v qd q L
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   =   


 


 

(52) 

Applying the Galerkin Method, substituting velocity and pressure fields by its discretized 

versions and the original spaces by approximation spaces and its respective test functions, 

we have: 
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(53) 

The spatial discretization of this model is realized by choosing special types of elements, 

Crouzeix–Raviart that allows a discontinuous approximation of the pressure or Taylor-

Hood elements which allows continuous approximation of the pressure. The temporal 

discretization has the following form: 

( )

1

1 1
* * 1 *

0

3 4 1

2 Re

n

n n n
n

v

v v v
v w v p v

t

+

+ +
+

  =

  − +

+ −  = − +  
   

(54) 

with 

1 *3

2

n np v p
t

+ =  −
  

(55) 

To determine the field velocities, it is necessary to treat the nonlinearities present in the 

convective term within ALE. This limitation is resolved using the iterative fixed-point 

method or Picard’s method to minimize residues as assures the ALE algorithm 

convergence. 
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The position of mesh motion is determined using the spring analogy, suggested by 

Hartwich and Agrawal [34], in which the strategy was based on the master/slave node 

relationship between the moving surface points (masterpoints) and vertices located at the 

other blocks (slave points). 

The movement of the masterpoints is based on the displacements obtained from the 

structural calculation solver. The movement of the slave points depends on the movement 

of its corresponding master point from point 𝑥𝑚 to 𝑥𝑚+1 and slave points move from 𝑥𝑠 

to 𝑥𝑠+1. 

𝑥𝑠+1 = 𝑥𝑠 + 𝜃(𝑥𝑚+1 − 𝑥𝑚) (56) 

where θ is a decay function that depends on stiffness factor β, in which larger values mean 

that meshes act like a rigid body and 𝑓𝑚𝑖𝑛 ensures optimal remeshing behavior if master 

nodes present small displacements. 

minexp min ,
( )

dv
f

dm
 



    
= −   

+      

(57) 

where dv and dm are spatial gradients and a ς number sufficient small to avoid division 

by zero. 

𝑑𝑣 = √(𝑥𝑣 − 𝑥𝑚)2 +  (𝑦𝑣 − 𝑦𝑚)2 + (𝑧𝑣 − 𝑧𝑚)2 
(58) 

𝑑𝑚 = √(𝑥𝑚+1 − 𝑥𝑚)2 +  (𝑦𝑚+1 − 𝑦𝑚)2 + (𝑧𝑚+1 − 𝑧𝑚)2 

Figure 24 summarizes fluid-structure Interaction numerical calculation. CFD and CSD 

(FEM) solvers perform calculations normally in regions where the domain is purely solid 

or fluid. In the fluid-structure interface region, the ALE solver performs the fluid 

computation by emulating a Lagrangian fluid particle frame, interpolating information in 

the solid mesh of the interface region the virtual displacements resulting from the velocity 

field and the forces from the pressure field (Figure 24).  

The FEM solver calculates the deformations, and the equilibrium condition of the 

interface is checked by the coupling module.  If this condition is not attained, the coupling 

module sends the deformations calculated by the FEM solver to the dynamic mesher of 

the fluid domain, which deforms the mesh and the calculations restart, and the iterations 

continue until the equilibrium condition is reached. 

 
Figure 24: Mesh domains coupling and interpolation 
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3.5 Airplane model 

From reports and other sources of information [35] [36], the external geometry (Figure 

25) and structural layout of KC-135 could be obtained. The detailed structural layout 

could also be then defined, as well as the flight envelope of the airplane (Figure 26), and 

the V-n diagram (Figure 27). The highest load factor is 2.5 and the lowest is -1. 

  

Figure 25: CAD model of the KC-135 

 
Figure 26: Boeing KC 135 Stratotanker flight envelope [35] 

 
Figure 27: V-n diagram for the structural sizing of KC-135 
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Figure 28 shows the structural calculation procedure for the sizing of the KC-135 wing. 

Based on the collected performance data of the aircraft, the loads and load distributions 

along the wingspan and the chord could be calculated. The load calculation considers 

cases from maneuvers, gust loads, rolling acceleration, flap and aileron deflections, fuel 

tank, and engine weights. However, it is necessary to ensure proper safety margins to 

withstand unforeseen loads at adverse operational conditions. 

 

Figure 28: Calculation procedure of KC-135 wing structural elements 

The spanwise distribution of bending moment and shear force is important for sizing 

components whose buckling, and shear stresses are significant, such as stringers and spar 

sections. The inertia moment of the structure also depends on the number of stringers and 

spacing of both stringers and spars. Chordwise distributions are important for sizing the 

local buckling of the stringers and the shearing stresses under the ribs. The thickness of 

the skin is influenced by the spanwise and chordwise loadings that affect the panel 

buckling at each wing station. Some dimensions of wing structural elements are shown 

in Table 5. The actual dimensions were obtained from [37], [38], and [39]. The calculated 

values agree very well with them. The rebuilt wing structural layout can be seen in Figure 

29. 

Table 5: Calculated wing structural elements and their comparison with available data 

 Calculated Data 

The average thickness of wing skin [in] 0.050 0.038 

Ribs minimum thickness range [in] 0.025-0.098 - 

Maximum allowable spacing of ribs [in] 32.48 26.4-28.5 

Maximum allowable spacing of stringers [in] 13.39 12.5 

The chordwise relative position of spars [%] 23.5/65 23/65 

The average thickness of spars [in] 0.285 0.32 

Wing mass [kg] 11320 
10859 [25]  

11462 [24] 

Fraction of wing weight in terms of MTOW* [%] 8.40 8.05-8.50 

* MTOWRef=134838 kg [24] 
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Figure 29: Structural layout of the rebuilt KC-135 wingbox 

After the creation of the geometrical model, the CSD and CFD computational meshes 

were built. The finite element meshes contain quadrilateral shell elements to comply with 

the skewness criteria of elements as close as possible to 0, which guarantees the accuracy 

of the analysis (Figure 30). In the case of the structural model, the meshes referring to 

the geometry of the outer surfaces of the wing were defined as the fluid-structure 

interaction interfaces as well as the communication parameters with the Multiphysics 

coupling module, discretized in quadrilaterals shell elements with skewness values 

between 0.22-0.26. CFD meshes were generated using tetrahedral and hexahedral 

elements to meet the orthogonal quality criteria of cells close as possible to 1, to ensure 

the convergence and the use of inflation close to the walls, to allow the accurate 

calculation of the boundary layer in the region through interpolation of the wall functions.  

The mesh of the fluid model was discretized in tetrahedral elements with orthogonal mesh 

metrics values between 0.85-0.92. 

 

Figure 30: CSD finite element model 
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3.6 Results 

Simulations considering rigid and elastic models were carried out. Their results were 

compared with wind tunnel data (rigid) and flight test ones (flexible). The wind tunnel 

runs were carried out for two scaled models: one featuring winglets; the other had no 

winglets. The flight test is only concerned with a version of KC-135 fitted with winglets. 

The winglet was also introduced into the computational models, and it features a 15o 

dihedral angle and a -4o twist. 

Figure 31 shows the results of a transonic flow simulation for the configuration with no 

winglets. As expected, there is an excellent agreement between the calculated distribution 

and the wind tunnel data. Figure 32 presents two distinct calculated Cp distributions for 

the configuration fitted with winglets: one obtained with a pure CFD simulation; the other 

considering a simulation encompassing FSI. Again, the fluid dynamic simulation, which 

considers that the model is rigid, agrees very well with wind tunnel data whereas the 

simulation considering aeroelastic effects is in perfect accordance with flight test data. 

  

Figure 31: Calculated Cp distributions for the rigid model wing with no winglets 
compared with wind tunnel test and flight test data (Mach = 0.70, α = 3.5o) 

  

Figure 32: Calculated Cp distributions for the rigid and flexible models fitted 
with winglets. At left, Cp distribution in a winglet station for a CFD solution. At 

right, the FSI simulation results agree very well with flight test data (Mach = 
0.70, α = 3.5o) 
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In Figure 33, calculated elastic displacements for the baseline configuration without 

winglets and the KC-135 wing fitted with winglets. The wing fitted with a winglet 

presents a greater displacement at the wingtip. A wider range of wingtip displacements at 

a freestream Mach number of 0.76 and for a wider range of lift coefficients can be seen 

in Figure 34. This includes some winglet twist variation for a fixed dihedral angle of 15o. 

 
Figure 33: Calculated wingtip displacement in meters (Mach = 0.70, α = 3.5o) 

 

Figure 34: Wingtip deflection for some winglet configurations 
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Figure 35 reveals that the addition of winglets to the KC-135 configuration reduced the 

modal frequencies. The addition of winglet weight at the wingtip region, behind the 

elastic line, therefore, increases the moment of inertia there and may decrease flutter 

speed. The additional lift generated at the wingtip increases the bending moment at the 

wing root, demanding a slightly heavier structure. There is an extended aerodynamic 

effect due to the winglet presence on the configuration. Comparing the lift distribution to 

the wing without winglets, the unloading of the central and inner part of the wing may 

further reduce the drag coefficient at transonic conditions due to the eventual reduction 

of the strength of shock waves there. 

 

Figure 35: Mode shapes and frequencies of KC-135 wing with and without 
winglets 
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4. Considerations about flow modeling 

In the applications, concerning optimization of transport aircraft that are shown in the 

following Sections, the flow model that was adopted for calculating aerodynamics was 

the full potential one. Because of this, it is important to address the advantages and 

drawbacks of such a formulation, as well as to justify its use here.  

During the computation of airplane mission performance, where critical masses like the 

MTOW must be accurately calculated, aerodynamic coefficients are intensely required. 

For this purpose, aerodynamic databanks are usually built up with computational fluid 

dynamic analyses, wind tunnel data, or a combination of both. In this approach, only the 

total drag is modeled, and not its components, and this leads to inaccurate interpolations. 

The alternative to this is the call of aerodynamic codes in real-time.  In the case of Euler 

or RANS formulations, this is not viable, because of the high computation time that is 

necessary for every flow condition. A realistic mission calculation may require more than 

one hundred runs for aerodynamic coefficient calculation at each step of the mission. This 

means that even for full potential codes, which require an average computation time of 

one minute for a transonic case calculation, an MDO task, where thousands of airplanes 

must be evaluated, can become a burden for a Linux cluster composed of few processors. 

A metamodel of aerodynamics offers an elegant and viable alternative to overcome those 

limitations. Thanks to its faster calculation time, full potential codes are an attractive 

formulation for the build-up of databases for the training of ANNs. 

A viable alternative for MDO computations is the utilization of full potential codes with 

viscous and non-isentropic corrections [40]. Their cost-benefit makes this formulation 

extremely attractive for external aerodynamic calculations of aircraft configurations 

inside an MDO process, which requires extensive calls of the flow analysis codes for 

performance, load, and stability calculations. However, the extremely sensitive nature of 

transonic flow regarding airplane geometry, in which geometric variations of lifting 

surfaces in the order of boundary-layer thickness or lower lead to significant changes in 

pressure distribution, makes it mandatory that integral boundary-layer routines be 

coupled with the transonic potential codes. Besides delivering satisfactory zero-lift drag 

values, the viscous coupled calculation shall also be able to handle shock-boundary layer 

interaction. Tinoco affirms that the full potential equation offers a quick alternative for 

analyzing transonic flow with a good degree of accuracy [41]. Eqs. 59 and 60 are the non-

stationary three-dimensional equations of the full potential in three dimensions.  

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝜙𝑥)

𝜕𝑥
+

𝜕(𝜌𝜙𝑦)

𝜕𝑦
+

𝜕(𝜌𝜙𝑧)

𝜕𝑧
= 0 (59) 

𝜌 = [1 −
𝛾 − 1

𝛾 + 1
(𝜙𝑥

2 + 𝜙𝑦
2 + 𝜙𝑧

2)]

𝛾
𝛾−1

 (60) 

In Eq. 60, γ is the isentropic expansion factor, the ratio of the heat capacity at constant 

pressure to heat capacity at constant volume. The velocity components on the x, y, and z 

axes are u, v, and w, respectively, and they can be obtained by deriving the potential for 

velocities 𝜙: 

𝑢 = 𝜙𝑥

𝑣 = 𝜙𝑦

𝑤 = 𝜙𝑧

 (61) 
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For acceptable solutions of the full potential equation, it is recommended that the 

Cartesian mesh close to the body be normal to it. The full potential equation can be written 

in strong conservation-law form for a general, body-conforming, curvilinear coordinate 

system (Figure 36). As an example, for the bi-dimensional equation: 

(
𝜌𝑈

𝐽
)

𝜉

+ (
𝜌𝑉

𝐽
)

𝜂

= 0 (62) 

Here,  is the chordwise coordinate,  is the coordinate in the normal direction regarding 

the airfoil. J is the Jacobian of the coordinate transformation. If velocities are made 

dimensionless concerning the critical speed of sound (a*), the density can be expressed 

as 

𝜌 = [1 −
𝛾 − 1

𝛾 + 1
(𝑈𝜙𝜉 + 𝑉𝜙𝜂)]

1
(𝛾−1)⁄

 (63) 

Eq. 63 also assumes that density is made dimensionless concerning stagnation density. 

Moreover, the present formulation considers mass and momentum conservation, besides 

the isentropic hypothesis. 

The nomenclature that is typically adopted is the standard one, such that 𝜙 is the full 

velocity potential, and the subscripts indicate partial derivatives concerning each of the 

spatial coordinates. The contravariant velocity components, U and V are given by 

𝑈 = 𝐴1𝜙𝜉 + 𝐴2𝜙𝜂  (64) 

𝑉 = 𝐴2𝜙𝜉 + 𝐴3𝜙𝜂  (65) 

 
Figure 36: Coordinate transformation and mesh topology 

Holst [42] reviewed various potential equation forms with emphasis on the full potential 

equation. The review also discussed applicable mathematical characteristics and all 

assumptions adopted for equation derivation. The impact of the derivation assumptions 

on simulation accuracy, especially concerning models for the capture of shock waves was 

analyzed. The extensive article also contains the description of key characteristics of all 

numerical algorithm types employed for solving nonlinear potential equations, including 

steady, unsteady, both space and time marching, and design methods. Both spatial 

discretization and iteration scheme characteristics were examined by Holst. 
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The full potential code employed here presents the following characteristics: 

• It solves the three-dimensional full potential equation in the conservative form. 

• The airplane configuration to be analyzed is comprised of the fuselage, low wing, and 

winglet. 

• Both subsonic and transonic flow can be calculated. 

• The implicit AF2 algorithm [1] is employed for the time-marching in the pseudo time 

[43]. 

• A fast viscous-inviscid coupling with a blowing technique is utilized for 3D 

calculations. 

• The location of flow transition can be prescribed. In the present work, the value of 

5% of correspondent reference length was used. 

A non-isentropic correction is applied to the pressure coefficient (Cp) distributions [44]. 

To demonstrate the accuracy and cost-benefit for employing full potential codes in 

conceptual design, a comparison of Cp distributions from Euler and RANS codes with 

those from full-potential solutions was carried out for a transonic airfoil flow as well as 

for the airflow on a twinjet airliner with rear-mounted engines. 

The two-dimensional FPE2D full potential code used the formulation described in Mattos 

[45] and the simulation was used to calculate a transonic flow over an 11.823%-thick 

airfoil, called here ITADX4. The convergence history is shown in Figure 37 as well as 

the Mach number contours of the converged solution. The Euler code used to calculate 

the flow over the same airfoil at the same conditions is the NSC2KE developed by Bijan 

Mohammadi [46]. This is a finite-volume Galerkin program computing 2D and 

axisymmetric flows on unstructured meshes. To solve the Euler part of the equations, a 

Roe, Osher, and a kinetic solver are available. To compute turbulent flows a k-epsilon 

model is available [46]. Figure 38 shows a comparison between the Cp distribution on 

airfoil from the full potential code and the Euler solution. As expected, the conservative 

full potential solution shock location lies behind that of the Euler solution and it turns out 

to be a stronger shock wave than that from the Euler formulation. However, if a non-

isentropic correction is applied to the full potential solution, both distributions will match 

closely [44]. 

 

 

Figure 37: Solution of a transonic flow calculated over the airfoil ITADX4 with a 
full potential code (M∞= 0.73 and 1.5o angle of attack) 
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Figure 38: Comparison of Cp distributions for the ITADX4 airfoil obtained by an 

Euler solution and with the one from full potential code 

An inverse technique was developed for this code [45] [47]. From a prescribed Cp 

distribution and an initial airfoil geometry, a new geometry that satisfies the prescribed 

distribution at the desired flight condition can be found just in a few interactions of the 

redesign process. The difference between the prescribed and existing pressure distribution 

is translated into a normal velocity to airfoil or wing geometry. Through an interactive 

process where the geometry is modified, this difference is progressively eliminated. 

A test case that handles the design of a supercritical profile for a specific flow 

condition was chosen to demonstrate the capability of the inverse design 

technique. The pressure distribution calculated with the code FPE3D for the 

profile RAE2822 with Mach number = 0.730 and angle of attack 2o is 

characterized by a moderate compression shock located at 65% of the chord. 

The prescribed pressure distribution, shown in dashed lines in Figure 39, 

eliminates the shock wave on the upper surface. The design process converged 

after 24 cycles and Figure 39 shows that there is a particularly good agreement 

between the calculated pressure distribution and the prescribed one. Figure 39 

also compares the RAE2822 profile to the obtained with the inverse technique 

that typically converges in a few interactions [47]. The RAE2822 airfoil was 

mainly modified on the upper surface after the shock location by a flat curve 

extension, with its nose geometry suffering almost no modifications. However, 

the inverse technique presents the disadvantage of undesirable behaviors off the 

design point. However, conjunctly with optimization techniques, it can be 

incredibly useful within a multi-objective optimization context. 

  
Figure 39: Example of the inverse technique application for airfoil design at a 

transonic condition (M∞= 0.73, α=2o) [45] [47] 
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The TRE planform has a typical shape designed for the transonic regime: the twist 

between the wingtip and the wing root is 4, the aspect ratio is 8.4, the leading-edge 

sweepback angle is 25.5o, a taper ratio of 0.22, and the root profile is 15% thick. The TRE 

planform can be seen in Figure 40. The computing mesh comprises 60x21x30 points in 

 -, - or  -direction, respectively. 

 

Figure 40: TRE-planform with surface mesh 

A complete configuration with the TRE planform was investigated for a wide range of 

Mach numbers in Boeing’s transonic wind tunnel [45]. The configuration includes 

fuselage, tail units, wings, winglets, and rear-mounted engine nacelles. The experimental 

measurement data used here were obtained for a variant without a vertical stabilizer. The 

numerical calculation was performed with the DWING full potential code for wing-alone 

configuration. 

Figure 41 shows the calculated and measured pressure distributions for wing stations at 

22% and 66% of the wingspan respectively at a Mach number of 0.70, α=0.365. For the 

inboard station, the flow has a moderate compression shock in the front area and is 

slightly overcritical in the suction tip of the station at 66% of the wingspan. There is a 

very good agreement everywhere between the experimental Cp values and the pressure 

distribution calculated by DWING. Due to a missing pressure sample at the bottom of the 

trailing edge, it is not possible to make a direct comparison of both pressure distributions 

at this point. In this part of the wing, the viscous effects are of great importance and their 

effect on the geometry is expressed by a decambering effect of the airfoil geometry in this 

region.   

  
Figure 41: Pressure distributions for a station of the TRE planform at 22% (at 

left) and 66% (at right) of the wingspan. Mach = 0.700,  = 0.365 
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For the analysis of the twinjet airliner designated ITA50SR (Figure 42), the RANS 

simulation [48] employed the SST k-ω turbulence model, and the hexahedral mesh that 

was created for the simulation was composed of approximately 2.1 million cells. Making 

use of an implicit scheme for time marching, the convergence was reached after all 

residuals dropped to values below 1x10-4, which consumed 5675 iterations and some mesh 

adaptions [49]. Each iteration running on three cores of a desktop computer fitted with an 

Intel® Core™ i5-11600K processor demanded on average 18 secs. The full potential 

solution for the wing-fuselage combination took 25 secs to converge on the same 

machine. Figure 42 shows contours of velocity magnitude over the airplane and Figure 

43 shows a comparison between the results from the RANS simulation and the full 

potential code. There, Cp distributions for two wing stations of the airliner of ITA50SR 

are shown. The agreement between the related Cp distributions is particularly good. In 

addition, Mattos et al. show another comparison between a RANS code and a full 

potential one, where drag coefficients were computed for a wing-body-winglet 

configuration [50]. There is a particularly good agreement between both flow 

formulations. 

 
Figure 42: Contours of velocity magnitude for the ITA50SR airliner (M∞ = 0.775, 

α=1.21o) 

 
 

Figure 43: Cp distributions obtained with a RANS code and a full potential one 
for the ITA50ADV airliner. At left, station a 22% of semispan; right, station 

located at 50% of semispan (M∞ = 0.775, α=1.21o, Reynolds number of 15x106) 
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5. Machine Learning overview and applications 

5.1 Introduction  

Machine learning is the elaboration and application of computational techniques to 

discover patterns and trends contained in data (call it experience, to some extent). 

Machine learning algorithms can learn information directly from data, without relying on 

a predetermined equation as a model. Sometimes is almost impossible to derive equations 

or a system of equations to model a physic phenom. In other cases, even considering that 

a system of differential equations is available, it can be very costly to solve and therefore 

surrogate models are a good option.  

Machine learning algorithms improve their performance adaptively as the number of 

samples available for learning increases and it can be split into two types of techniques 

(Figure 44): supervised learning, which trains a model from known input and output data 

enabling predictions when inputs of non-trained data are provided; and unsupervised 

learning that finds hidden patterns or intrinsic structures in the input data. 

 
Figure 44: Machine learning branches 

The main goal of supervised machine learning is to build a model that makes evidence-

based predictions in the presence of uncertainty. A supervised learning algorithm employs 

a known set of input data and known responses to the data (output) to create a model that 

generates accurate predictions when new and untrained data is supplied. Supervised 

learning uses classification and regression techniques to develop predictive models. In 

other words, supervised learning can be defined by using labeled datasets to train 

algorithms that classify data or accurately predict outcomes. 

Classification techniques properly provide for categorical answers. A simple example is 

whether an email can be categorized as genuine or as spam. Another example is predicting 

the imminence of a heart attack. Classification models sort input data into distinct 

categories. Typical applications naturally include medical imaging, speech recognition, 

customer behavior, and credit score. Classification can be precisely defined as the process 

of assigning a label to an object based on its characteristics according to a class. Problems 

can involve any number of them, which are defined as a group containing objects that 

share attributes. In binary classification, however, two classes are only allowed. 
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Regression analysis is widely used for prediction and forecasting, where its use has 

substantial overlap with the field of machine learning. Prediction of oil prices and stock 

prices are examples of application. In some situations, regression analysis can be used to 

infer causal relationships between the independent and dependent variables. Importantly, 

regressions by themselves only reveal relationships between a dependent variable and a 

collection of independent variables in a fixed dataset. To use regressions for prediction 

or to infer causal relationships, respectively, a researcher must carefully justify why 

existing relationships have predictive power for a new context or why a relationship 

between two variables has a causal interpretation. The latter is especially important when 

researchers hope to estimate causal relationships using observational data. 

Unsupervised learning discovers hidden patterns or intrinsic structures in the data. It is 

used to make inferences from datasets that consist of input data without labeled responses. 

Grouping is the most common unsupervised learning technique. It is used for exploratory 

data analysis to find hidden patterns or data groupings. Applications for grouping include 

gene sequence analysis, market research, and object recognition. 

There are plenty of supervised and unsupervised machine learning algorithms (Figure 

45), and each has a different approach to the learning process [51]. Merely choosing a 

good one may prove difficult because there is no direct approach or the best method and 

therefore finding the right algorithm for a particular problem. Highly flexible 

representations tend to super-adjust data by modeling small variations that can be noised; 

simple ones are easier to interpret and faster to run but may inevitably have less accuracy. 

Therefore, choosing the right algorithm requires exchanging one benefit for another, 

including speed, accuracy, and complexity of the model. Trial and error are the essences 

of machine learning - if one used the approach or used algorithm does not work, the 

concerned user must merely try another.  

 
Figure 45: Supervised and unsupervised learning algorithms 
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Kireev et al. developed Self-Organizing Maps (SOM) to solve a classification problem of 

large databases of chemical reactants [52], i. e., an application of unsupervised learning 

with Korhonen neural networks. With the utilization of entropy statistics, Frenken and 

Leydesdorff [53] analyzed scaling patterns in terms of changes in the ratios among 

characteristics of 143 configurations of commercial transport aircraft. In their research, 

the piston-powered DC-3, and the jet-powered Boeing 707, were revealed to have 

triggered scaled trajectories. Some configuration characteristics of both airplanes have 

been scaled at different moments in time, which points to the versatility of a dominant 

design that allows a firm to react to a variety of customer requirements. Scaling at the 

level of the industry took off only after subsequently re-engineered models were 

introduced, like the piston propeller Douglas DC-4 and the twin-aisle Boeing 767. The 

two scaling trajectories in civil aircraft corresponding to the piston propeller and the 

turbofan paradigm can be compared with a single, less pronounced scaling trajectory in 

helicopter technology for data during the period 1940–1996 [53]. They state that 

management and policy implications can be specified in terms of the phases of 

codification at the firm and the industry level, thanks to the entropy statistics analysis. 

5.2 Artificial neural networks 

Artificial Neural Networks (ANNs) are a special type of machine learning algorithms that 

are modeled similarly as information is processed by the human brain. That is, just like 

how the neurons in our nervous system can learn from the past data, similarly, the ANN 

can learn from the data and respond to the form of predictions or classifications. ANNs 

are nonlinear statistical models which display a complex relationship between the inputs 

and outputs to discover a new pattern. They can be used for a broad range of applications 

such as image recognition, regression, speech recognition, machine translation as well as 

medical diagnosis. ANNS can handle a mix of many variables of different types (logical, 

real, integer). They can also deal with a large amount of data, whereas usual regression 

methods do not. 

An important advantage of ANN is the fact that it learns from the example data sets. The 

most common usage of ANN is that of a random function approximation. With these 

types of tools, one can have a cost-effective method of arriving at the solutions that define 

the distribution. ANN is also capable of taking sample data rather than the entire dataset 

to provide the output result. With ANNs, one can enhance existing data analysis 

techniques owing to their advanced predictive capabilities.  

A neural network is an interconnected structure of processing elements, called nodes, 

whose goal is to mimic the biological neuron. Weights are attributed to the inter-unit 

connections, and they are obtained by a process of adaptation from a set of training data. 

After the trained ANN is stimulated with a group of inputs, the signal processing through 

the neuron layers will produce an output, simulating an interpolation of the database.  

Lipmann [54] performed a description of the evolution of ANN research and McCulloch 

[55] presented one of the first mathematical models of ANN. Rosenblatt [56] introduced 

and endorsed the single-layer perceptron (Linear Neurons) network for classification 

problems. However, Minsky [57] stated the weakness of perceptron architecture. This led 

to some disinterest in the ANN research field [58] until the development of new network 

architectures and learning methods, such as the back-propagation algorithm [59]. 
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ANNs find applications in many areas such as pattern recognition, non-linear control, 

optimization, and decision making. The use of ANN also improved the techniques for 

computer speech and image recognition [60]. There are many neural network types and 

architectures. Below, short descriptions of some of the most known types are provided: 

• Feedforward Neural Network – Artificial Neuron. This is the simplest type of ANN, where the 

data or the input flows from input to output layers, going through the intermediate layers to the 

output nodes. Hidden layers are optional in the architecture and there are not any loops in this 

network type. Feedforward networks are utilized for any input to output mapping [61].  

• Radial basis function Neural Network. The radial basis function (RBF) is a real-valued function 

whose value depends only on the distance between the input and some fixed point, which can be 

the origin or some other fixed point. Sums of radial basis functions are used to approximate 

intricate functions. In an RBF network, radial basis functions perform the role of the activation 

function. 

• Kohonen Self Organizing Network. A Kohonen network maps inputs of arbitrary dimension to a 

discrete neuron map. A Kohonen map is an unsupervised learning (self-organizing) model. It is a 

method for dimensional reduction, as high-dimension inputs are mapped into a lower-dimensional 

discretized representation and conserve the implicit structure of its input space. When training the 

map, the location of the neuron remains constant, but the weights will differ depending on the 

value [62]. This self-organization process has distinct steps: initially, every neuron weight is 

initialized with a small value in the input vector; in the second phase, the neuron closest to the 

point is then selected as the winning neuron and the neurons that are linked to it will also move 

towards that point. The distance between the point and the neurons can be calculated by the several 

distance approaches like, for instance, the Euclidean one, and the closest neuron is then taken as 

the winner. Through the interactive process, all points are clustered, with each neuron representing 

each kind of cluster.  

• Recurrent Neural Networks are based on the principle of feeding the output of a layer back to the 

input to help in recalibrating neuron weights to better predict the outcome of the layer. Here, the 

first layer is formed like the feed-forward neural network with the product of the sum of the 

weights and the features [62]. Indeed, the recurrent neural network process starts once this is 

calculated. Thus, from one-time step to the next, each neuron will remember some information 

recorded in the previous time step. This way, each neuron acts as a memory cell in the 

computations. In this process, it is necessary to let the neural network work on the front 

propagation and save what information it needs for later use. Hopfield networks are recurrent or 

fully interconnected neural networks. There are two versions of Hopfield neural networks: in the 

binary version all neurons are connected but there is no connection from a neuron to itself, and in 

the continuous case all connections including self-connections are allowed. Hopfield neural 

networks are applied to solve many optimization problems. In medical image processing, they are 

applied in the continuous mode to image restoration, and the binary mode to image segmentation 

and boundary detection. 

• Convolutional Neural Network (CNN) is an architecture for deep learning, in the field of machine 

learning.  Here, a model learns to perform tasks directly from images, text, video, or audio. 

Examples of deep learning are computational vision, natural language processing, and audio 

recognition. CNN may have tens or hundreds of layers that each learns to detect different features 

of an image. Filters are applied to training images at different resolutions, and the output of each 

convolved image is used as the input to the next layer [63]. The filters can start with simple 

features, such as brightness, contrast, and edge detection, and then with increasing complexity, 

they capture unique features of the object of interest [63]. After the learning process in many 

layers of the image features is completed, the architecture of a CNN is then ready for 

classification. 

• Modular Neural Networks. This sort of network encompasses an assortment of different networks 

working independently and contributing to delivering an output. Each neural network presents 

distinctive input sets when compared to other networks constructing and performing other derated 

assignments. These networks do not interact or signal each other for the accomplishment of the 

assignments. The advantage of a modular neural network is that it breaks down an outsized 

procedure into smaller parts decreasing its complexity 
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ANN consists of many simple computational elements denominated artificial neurons, 

which are densely interconnected and operate in parallel. They are many possible neuron 

combinations and therefore many ANN architectures. Figure 46 shows a typical 

arrangement of an artificial neuron, which converts a group of inputs into a single output 

after being processed by an activation function. These activations can derive from 

external variables or other artificial neurons. 

 
Figure 46: Artificial Neuron structure 

Figure 47 shows an example of the application of an ANN to trace straight boundaries 

among four clusters of points, a classification problem, indeed. The neural network type 

perceptron of MATALB® was used in the code [64] [65]. The perceptron algorithm 

initializes all weights to zero and performs an iterative process for training using the cloud 

of points. It updates the weights only if the classification was wrong. The activation 

function hardlim (hard limit) was used, and the solution’s convergence is very fast. 

 
Figure 47: A simple cluster classification problem using an ANN 

Another example of the application of the artificial neural network is the accurate 

representation of the following function, called here Peaks: 

The shape of this function can be seen in Figure 48. It is characterized by a hill adjacent 

to a valley. 

 

Figure 48: A graph of a function called here Peaks: 𝒇𝒑𝒆𝒂𝒌𝒔 = 𝒙𝒆−𝒙𝟐−𝒚𝟐
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Radial basis networks can be used to approximate functions. The MATLAB® command 

newrb adds neurons to a radial basis network’s hidden layer until it meets the specified 

mean squared error goal [66]. A parameter called spread must also be provided to the 

newrb command. The larger spread is, the smoother the function approximation. Too 

large a spread means a lot of neurons are required to fit a fast-changing function. Too 

small a spread means many neurons are required to fit a smooth function, and the network 

might not generalize well [66]. It is recommended to use newrb with different spreads to 

find out the best value for a given problem. 

Figure 49 shows the surrogate model of the Peaks function using the radial basis network 

of MATLAB®. The parameter spread was set to 1, the goal parameter received 1x10-7, 

and 1681 points were used for training and validation of the ANN model. The number of 

neurons that was adopted for this model is 20, but it is recommended to test a set of them 

to obtain an optimal representation of the Peaks function. Figure 49 also contains a graph 

of the estimation errors by the ANN, and it can be observed that they are higher close to 

the boundaries determined by the set of points that were used for the training and 

validation. As homework, it is suggested to the experienced reader to carry out two 

optimizations with MALAB®: the first directly utilizing the Peaks function as objective; 

the second one should use the estimated ANN values for function estimation. It is a good 

test to verify whether the surrogate model can be used in optimizations or not. 

  

Figure 49: Peaks function as modeled by radial basis network and estimation 
errors 

5.3 Extracting flight data from large databases  

A. Improving mission profiles 

Although the system-of-systems philosophy in aircraft design allows for tools for the 

inclusion of operational aspects during the optimization process, few existing design 

frameworks consider information about the actual aircraft mission profiles, their inherent 

constraints, and how they impact the airline economics. The increase of distance flown 

by a long-range aircraft when compared to a benchmark distance (Great Circle Distance), 

is often referred to as en-route inefficiency.  

Figure 50 shows a route performed by a Boeing 777-300ER that flew from New York to 

Narita Airport in Japan in May 2020. The flight data were obtained from a flight tracking 

website [67]. Another route this time of a transatlantic flight is with a Boeing 747-8 in 

May 2020 [68] as illustrated in Figure 51. Taking off from São Paulo Guarulhos Airport 

the time spent to reach the initial cruise altitude was 23 min and 21 s (Figure 52). Two 

distinct marks for this flight are the step cruise and a speed overshoot at the beginning of 

the cruise phase. Although the Boeing 747-8 service ceiling is 43,100 ft, the maximum 

altitude this airplane flew in this long-range flight was 38,000 ft. For both flights, there is 

a considerable departure from the Great Circle trajectory.  
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Recent operational data have shown that depending on the region, en-route inefficiency 

may vary between 2 and 7 percent [69]. Such values are naturally associated with a 

proportional increase in fuel burn and emissions. Rios Cruz et al. [69] evaluated the 

consequences of such an increase in traveling distance in the design of a European airline 

network. Data data-driven mission profile definition was incorporated into an MDO 

framework for airplane conceptual design. Machine learning methods were applied to 

Automatic Dependent Surveillance-Broadcast (ADS-B) flight data considering ten major 

EU airports over six months. Thus, the definition of principal flight patterns was possible 

to feed an aircraft performance module whose output is the operational cost. A genetic 

algorithm optimizer is part of the design framework, which also contains an aircraft sizing 

module, a data-driven mission performance evaluator, and an embedded airline network 

optimizer. Altogether, the proposed algorithm aims to maximize the network profit. The 

results show that more conservative estimations in terms of profit and direct operational 

cost are achieved when accounting for realistic mission profiles. 

 
Figure 50: Three-dimensional view of the route from New York to Tokyo with 

a Boeing 777-300ER. Some data of the cruise phase are missing and were 
linearly interpolated 

 
Figure 51: Three-dimensional view of the route from São Paulo to Frankfurt with 

a Boeing 747. Some data of the cruise phase are missing and were linearly 
interpolated 
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Figure 52: Flight profile of a flight GRU-FRA in May 2020. Ground speed 

and altitude are given as a function of traveled distance 

To enhance the cluster detection performed by the DBSCAN algorithm [70] without 

losing flight information, a phase identification was added to the framework elaborated 

by Rios Cruz. This process employs the methodology elaborated by Sun et al [71], which 

applied fuzzy logic on the time series data following the theory from [72]. 

Fuzzy logic was applied to establish to which phase a certain point in the dataset pertains 

considering a set of membership functions to describe altitude, speed, and rate of climb, 

related to a certain flight phase. Four types of membership functions are used: Gaussian, 

Z-shaped, S-shaped, and Pi functions. Differently from [71], the Pi function was included 

to increase the accuracy in the cruise and level descent phase detection. Additionally, 

during the process of phase identification, it was observed that cruise phase detection is 

a function of the distance between airports. Because of that, the settings proposed by [71] 

for the definitions of high altitude, needed to be tuned for situations where the distance 

between airports was small than 200 nautical miles, considering a value of Hhi(η) = 

G(η,30000,15000). 

The membership functions related to the different characteristics of the flight stages are 

shown in Figs. 53 to 55. The x-axis represents the low and high extremes of each feature. 

Four membership functions were used for the altitude and RoC, and only three for the 

speed. This is justified considering that is expected that the same range of speeds takes 

place during the last part of the climb, the cruise, and the beginning of the descent phase. 

 
Figure 53:Altitude 
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Figure 54: Rate of climb 

 
Figure 55: Speed 

The following rules were used to identify the correct phase: 

• if Hgnd ∧ Vlo ∧ RoC0 then Ground 

• if Hlo ∧ Vmid ∧ RoC+ then Climb 

• if Hcr ∧ Vhi ∧ RoCcr   then Cruise 

• if Hlo ∧ Vmid ∧ RoC− then Descent 

• if Hlo ∧ Hhi ∧ Vmid ∧ RoC0 then Level flight 

The fuzzy logic then uses this information for a given data point and all possible discrete 

flight phase states P(0 ≤ Pi ≤ 6) (all represented by Gaussian functions). Finally, a 

defuzzification takes place, where the most likely flight phase state is found using Eq. 66. 

�̂� = 𝑟𝑜𝑢𝑛𝑑(arg
𝑚𝑎𝑥

𝑃
𝑆(𝑃)) (66) 

In Eq. 66, �̂� represents the output where the highest combined fuzzy value occurs. The 

labels generated in this step (’GND’, ’CL’, ’CR’, ’DE’, ’LVL’) are included in a column 

of the data frame to be used in the following steps. 

To detect the main horizontal and vertical flight patterns, a two-step cluster approach 

followed the preceding procedure. Only the cruise information of the trajectories was 

used to measure the distance between them (input for the selected algorithm), envisioning 

the reduction of outliers. Considering this and due to the spatial nature of the dataset, the 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm was 

selected to perform the clustering task. 
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B. Estimating airliner mass from flight data 

This is another good example of the use of inverse techniques. There have been several 

approaches to compute the mass at initial climb segments. These masses are used for fuel 

consumption calculation and trajectory prediction.  

Bayesian inference has been used for the estimation of the mass of airliners from 

statistical flight data. Bayesian inference derives the posterior probability from two 

known data: a prior probability and a "likelihood function" derived from a statistical 

model for the observed data (Figure 56). 

 
Figure 56: Illustration of application of Bayes’ rule 

After a study presented by Sun et al. [73], the estimation of the initial mass of airplanes 

not just at one specific flight phase, but a combination of all phases, derived an 

improvement of their methodology [74]. The mass estimation problem was considered as 

a single parameter for a Bayesian inference task, considering observational masses 

computed along with the entire flight. In addition to multiple observations, prior 

knowledge of weight was used to improve the estimation. Sun et al. used approximations 

to obtain the number of passengers, considering constraints for the variation of weight 

estimation according to the known payload for each airplane. The authors state that prior 

knowledge can be very valuable for the estimation of actual aircraft mass when applying 

Bayesian inference. Fuel consumption was modeled by using the ICAO aircraft engine 

emissions database, which is freely available. Using this data, the authors proposed a 

quadratic fuel flow model that is constructed setting the fuel flow as a function of the ratio 

between thrust at a given flight condition and maximum static thrust [74]. 

Silva [75]  proposed three methods to estimate airliner takeoff mass from en-route 

climbing data, gathered from Automatic Detection Surveillance-Broadcast sources 

(ADS-B). The first method proposed by Silva is a deterministic one, consisting of the 

identification of flight procedures for climbing segments such as initial altitude for 

acceleration before the climb itself, and, for example, where the calibrated airspeed is 

constant. The second and the third approaches compute operational parameters directly 

from Automatic Detection Surveillance-Broadcast data and utilize them in each step for 

the performance calculation. Mass estimation process can be optionally carried out 

considering wind effects. Silva [75] made use of the BADA 3 performance model [76], 

calibrated with ADS-B data, and used a genetic algorithm for error minimization. The 

derivatives dV/dH and dV/dt (necessary for trajectory computations) are calculated from 

ADS-B data plots, providing more efficient results than on previous academic studies, 

which normally use the constant calibrated airspeed method.  
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The objective function utilized is summarized in Eq. 67. 

𝐹𝑜𝑏𝑗 = (
1

𝑁
∑ [(𝐻𝑝)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡𝑖) − (𝐻𝑝)𝑠𝑖𝑚𝑙(𝑚, 𝛿𝑟𝑒𝑑 , 𝑡𝑖)]2

𝑁𝑝𝑜𝑖𝑛𝑡𝑠

𝑖=1

)

0.5

 

 

(67) 

where: 
• N represents the number of samples extracted from ADS-B at a specific time stamp ti 

• (𝐻𝑝)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed altitude (from ADS-B string) at a specific time stamp ti 

• (𝐻𝑝)𝑠𝑖𝑚𝑙  is the simulated altitude, calculated via Aircraft Performance Model, related to the time 

stamp 𝑡𝑖. 

• 𝛿𝑟𝑒𝑑 is a thrust setting coefficient. 

Data from selected flights operated with A330-200 were employed to validate the three 

approaches employed for mass estimation. All flights departed from Medellin (Colombia) 

to Madrid (Spain). The methodology for mass estimation from an integrated simulation 

on several points along stable segments in the climb phase contributed to the good 

accuracy of the results.  The simulations with and without wind models have shown 

equivalent results, with errors between 2% to 4% when compared with actual mass data 

for two of the approaches (Table 6). Sensitivity analyses by varying 𝛿𝑟𝑒𝑑 with altitude 

were performed. An improvement in mass estimation was recorded when compared with 

previous academic studies, which present errors ranging from 5% to 10% for masses at 

the initial climb phase. 

Table 6: Estimated and actual masses for flights with A330 @ 11,500 ft  [75] 

Flight 

 

Approach 

 

𝑭𝑶𝒃𝒋 [m] 𝜹𝒓𝒆𝒅 Calculated mass [kg] Actual mass [kg] Error [kg] Error [%] 

1 

dVdH 11.56 m 0.950 200,340 202,701 2361 <2% 

dVdt 14.54 m 0.989 208,192 202,701 5491 <4% 

2 

dVdH 26.54 m 0.942 204,205 206,420 2215 <2% 

dVdt 32.19 m 0.973 208,971 206,420 2551 <2% 

3 

dVdH 11.56 m 0.966 207,759 209,324 1564 <1.5% 

dVdt 14.54 m 0.966 213,495 209,324 4172 <2% 

5.4 applications of multi-layer perceptron network 

A. Multi-layer perceptron network 

Multi-disciplinary airplane design frameworks, essential tools for today’s aircraft design, 

require considerable computational power, and the computing cost grows when higher 

fidelity tools are used to model the associated disciplines. The use of surrogate models 

offers an efficient alternative to overcome this issue. In turn, artificial neural networks 

have been successfully used to generate auxiliary models in complex systems with many 

variables. In this context, the present work deals with the design and application of 

artificial neural networks to predict aerodynamic coefficients of transport airplanes with 

a high degree of accuracy. The neural networks are fed with calculations from 

computational fluid dynamic codes, and they can predict lift, pitch moment, and drag 

coefficients for wing-fuselage-winglet configurations of transport airplanes. The input 

parameters for the neural network control the wing planform, winglet geometry, fuselage 

geometric parameters, airfoil geometry, and flight condition. Airfoil geometry is modeled 

by attributing weights to 14 basic airfoils compounding a database. An aerodynamic 

database consisting of approximately 62,000 cases calculated with a full-potential code 
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with computation of viscous effects is used for the neural network training, validation, 

and test. Networks with different numbers of neurons are evaluated and those with the 

lowest mean quadratic errors are selected. 

A Multi-layer Perceptron (MLP) network consists of an input layer, several intermediate 

layers (to transform inputs into something that the output layer can use), and an output 

layer. Connecting several nodes in parallel and series, an MLP network is formed. The 

image shown in Figure 57 reveals the schematic of a feedforward network, which 

consists of a layered structure with information flowing from the inputs to the outputs. 

The inputs are points or data collection that may differ in nature which receive structured 

information and repass them to the first layer containing neural (Perceptron) nodes. This 

first layer of functional nodes is known as the hidden layer because it is not targeted to 

inspect or control the output values on these nodes during the process of training when 

the network weights are obtained. The incorporation of hidden layers enables the network 

to model complex non-linear behavior [77] by using the usual transfer functions already 

mentioned before. The optimal number of hidden layers could be smaller than the number 

of inputs. Typically, just two hidden layers work fine with few data and a higher number 

of hidden layers can be fruitful for the difficult object. Several architectures must be 

evaluated and presented the lowest mean quadratic error should then be taken. The 

outputs that flew through the hidden layers are subsequently processed by an output layer 

and the results are compared to the known values associated with the input pattern. 

Eq. 68 illustrates the simplicity of the calculation of output values for the two-hidden-

layer network shown in Figure 57 using the input set. 

𝑦𝑖 = ∅ (∑ 𝑤𝑗𝑖,2

3

𝑗=1

Υ(𝑧𝑗,1) + 𝜃𝑗,2) = ∅ (∑ 𝑤𝑗𝑖,2

3

𝑗=1

Υ (∑ 𝑤𝑘𝑗,1𝑥𝐾 + 𝜃𝑗,1

𝐾

𝑘=1

) + 𝜃𝑗,2) (68) 

It is possible to generate a layer with neurons that share the same inputs. An artificial 

neural network is the juxtaposition of these layers. Several ANN architectures are 

described in recent literature. Among these architectures, the multi-layer feed-forward 

ANN is recommended for non-linear regression problems [78]. This type of network can 

approximate any function to any desired degree of accuracy, provided it has enough 

neurons [79]. When multi-layer feed-forward ANN is used in regression problems, the 

neurons of the last layer use linear transfer functions, as the output might be any real 

number. The neurons of other layers usually use the hyperbolic tangent transfer function. 

 
Figure 57: Exemplification of a multi-layer feed-forward network 
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All networks that were considered for the estimation of aerodynamic coefficients present 

two hidden layers. MATLAB® fitnet function fitting neural network [80] was employed 

in the present study. The fitnet is a specialized version of feedforward networks. The 

hyperbolic tangent sigmoid [81] was employed as transfer functions in the hidden layers. 

The network training function updates weight and bias values according to Levenberg-

Marquardt optimization, also known as the Damping Least Square method [82] [83]. Like 

the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to 

approach second-order training speed without having to compute the Hessian matrix. The 

training/validation/test with the Levenberg-Marquart algorithm was fed with 57,000 

cases. Training stops when any of these conditions occur [84]: 

• The maximum number of epochs is reached. 

• The maximum stipulated processing time is exceeded. 

• Performance is minimized and reaches the goal. 

• The performance gradient falls below a minimum value that was previously set. 

• The damping factor exceeds the prescribed maximum value. 

B. Forecasting oil price 

Crude oil is a commodity found in geological formations below the Earth's surface, and 

at the bottom of the oceans. It can be refined into various kinds of consumer fuels and 

other substances, many of them finding applications in the petrochemical industry. Crude 

oil is amongst the most important energy resources on earth right now. So far, its 

derivatives remain the world’s leading fuel, providing nearly one-third of the global 

energy consumption. In addition, this information is crucial to methodologies that 

elaborate the market outlook of transport aircraft [85] 

To forecast the oil price precisely, a two-hidden-layer perceptron network was chosen to 

train and validate data from crude oil production, demand, and stocks. The activation 

functions for the first and second layers are tangent sigmoid and log sigmoid, respectively. 

The input variables and their respective sources of information are as follows: 

• World oil demand [86]. 

• U.S. oil stocks [87]. 

• Total oil production [88] [89]. 

The output variable, or the variable to be forecasted, is the West Texas Intermediate 

(WTI) crude oil price [90]. 

Figure 58 shows the crude oil output from three different sources and Figure 59 is a two-

vertical axis graph containing the WTI crude oil price and demand over time. The 

available data were compiled and adjusted for the 1987-2019 period. 

 A set of networks comprising different combinations of several neurons into two hidden 

layers was evaluated. The number of neurons in the first hidden layer varied from 20 to 

120. The second layer could then receive neurons starting from 20. The maximum number 

possible to attain depends on the number of neurons existing in the first layer.  
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Figure 58: Crude oil yearly output 

 
Figure 59: Average WTI crude oil price and demand 

Ten years of the compiled data were normalized and thereafter separated for forecasting 

by ANN. The remaining data were then used for training and validation. The ANN with 

the lowest mean square error has 120 and 60 neurons in the first and second hidden layer, 

respectively. Figure 60 compares the forecasted values by the selected ANN with actual 

data. The average error in the period analyzed was US$ 16.37. 

 
Figure 60: Forecasted and actual crude oil prices for the 2012-2019 period 
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C. Estimating drag coefficients with a surrogate model 

Here, a surrogate model with ANN to replace a full-potential code in airplane MDO 

frameworks is described and some results are presented. A database with almost 72,000 

cases to train and design the ANNs was generated. The data robustness of the database 

was checked with the learning curves method. The 59 design variables were used for the 

surrogate model with neural networks. Figure 61 shows some range and boundaries for 

some of them, whose distribution in design space was performed by a Latin hypercube 

Design of Experiment (DOE) algorithm. Some additional runs at higher Mach numbers 

were enforced because of the non-linear relationship among the design variables and the 

aerodynamic coefficients in this part of the design space. 

  

Figure 61: Some variables used for flow calculation with successful output. Notice the 
good coverage provided by a Latin hypercube DOE.  

All training validation and testing of candidate networks ran on a desktop computer fitted 

with an Intel® Core™ i9-9900K CPU @ 3.60 GHz clock. Figure 62 displays the main 

panel of the training/validation/test process for the 120x120 network. The process for this 

network took over 39 h of computing time. 

 

Figure 62: A main panel of the training/validation/test process with MATLAB® 
for the 120x120 network targeted to estimate the pitching moment coefficient 
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The airplane with ID 165218 (Figure 63) was chosen to verify the capability and accuracy 

of drag coefficient prediction of the neural network system that was developed in the 

present work. This configuration was not used in the training/validation/test procedure. 

The features of this configuration are provided in Table 7. Figs. 64 to 68 show a 

comparison among results from the surrogate ANN model and calculations performed 

with the full potential code at the same flow condition. 

 
Figure 63: Configuration with ID 156218 

Table 7: Data for the ID 156218 configuration 

Wing aspect ratio 10.85 

Wing taper ratio 0.433 

Location of the wing break station 43% of semispan 

Dihedral angle 2.60o 

Root incidence angle 2.83o 

Incidence of the break station 1.08o 

Incidence of the tip station -4.00o 

Wing area 133.88 m2 

Quarter-chord sweepback angle 16.19o 

Winglet aspect ratio 2.81 

Winglet taper ratio 0.493 

Winglet sweepback angle 30.04o 

Winglet dihedral angle 48.20o 

Winglet twist angle -2.36o 

Fuselage length 38.90 m 

Fuselage width 3.331 m 

Fuselage height 3.642 m 

Fuselage wetted area 367.76 m2 

Figure 64 shows the comparison between the results for the lift coefficient at several 

numbers of Mach. All flow conditions were considered at a one-degree angle of attack 

and 13,000 m flight altitude. The Reynolds number with the wing MAC as reference 

length varies with the Mach number. The agreement between the CFD code and the 

surrogate model is excellent with errors lower than a fraction of one drag count, even at 

higher Mach numbers where strong shock waves are present. 
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Figure 64: Comparison between lift coefficient estimation for airplane 156218 

by the chosen ANN and those calculated with the full potential code 

Figure 65 and Figure 66 show graphs that compare calculations carried out by the full 

potential code with predictions from the surrogate models for Mach numbers varying 

from 0.20 to 0.83. The vertical scale of graphs was set in drag counts - one drag count 

corresponds to a drag coefficient of 1x10-4 - to facilitate readings. Only for reference 

purposes, the green symbols in both graphs are relative to the configuration with ID 

156218 with no winglets. The winglet increased the configuration drag but the 

comparison shall be made at the same lift coefficient when its benefit regarding lower 

drag will emerge.  

Figure 65 reveals that there is an exceptionally good agreement for the CD0 between the 

values estimated by ANN of size 100x60 and the results from the CFD code. According 

to Figure 66, the same is valid for the estimation of the induced drag, CDI, with those 

from the chosen ANN of size 100x100. In both curves, the difference between the CFD 

code and the ANN lies below one drag count except for the Mach number of 0.80, where 

the discrepancy increased approximately to two drag counts. However, this is a region of 

drag divergence and this difference can be considered negligible and the capacity of the 

ANN system to predict viscous and induced drag coefficients is outstanding.  

 

Figure 65: Comparison of zero-lift drag coefficient for airplane 156218 between 
ANN and those calculated by the full potential code 
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Figure 66: Induced drag coefficient for airplane 156218 at α=1o at an altitude of 
13,000 m 

Figure 67 and Figure 68 show graphs that compare calculations carried out by the full 

potential code with predictions from the surrogate models for the wave drag, CDW, and 

the wing pitching moment coefficient, CM. Figure 67 reveals that there is a good 

agreement for the CDW between the values estimated by the dedicated ANN of size 

100x100 and the results from the CFD code. The main difference between calculated and 

predicted values is in the order of four drag counts, taking place at curve foothills. Figure 

68 reveals an excellent agreement between the calculated and predicted CM. The graph at 

left, the variation of pitching moment with the angle of attack, meaning that the slope, 

which corresponds to CMα, is constant as expected for a subsonic flow condition. 

 
Figure 67: Comparison between wave drag coefficient estimation for airplane 

156218 by the 100x100 ANN and that calculated by the full potential code 
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Figure 68: Comparison of pitch moment coefficient estimation for ID 156218 by 
the chosen ANN and that calculated by the full potential code. At left, variation 
with Mach number at a constant angle of attack; at right, variation with angle of 

attack at a Mach number of 0.70 and altitude of 10,000 m 

To illustrate the utilization of the ANN surrogate model, an aerodynamic optimization of 

an airplane similar in capacity to the B757-200 was carried out. This is our baseline or 

reference airplane, and it is designated here BF-200LR. A top view of both airplanes is 

provided in Figure 69. Basic data for BF-200LR is given in Table 8. 

 

Figure 69: B757-200 and BF-200LR top-view juxtaposition for comparison 
purposes 
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Table 8: Basic data for BF-200LR 

Wing 

Aspect 

ratio 

Wing 

area 

Wing 

sweep 

Overall 

thrust 

Engine 

BPR 

Engine 

diameter 

Two-class 

Accommodation 

@ 32-inch pitch 

in Y-class 

Design 

range 

9.97 175.35 m2 22.29o 285.6 kN 6.00:1 1.93 m 192 3,420 nm 

MTOW OEW MMO Fuel capacity Range 

100,111 kg 53,573 kg 0.81 30,924 kg 3,470 nmα 

α @ FL370 and FL390, Mach number of 0.80, payload of 19,200 kg, ISA+0 oC, takeoff with MTOW,  
      200 nm to an alternate, 30 min loiter @ 1,500 ft 

This additional study was intended to design the break- and tip-station airfoils, jointly to 

find out the optimal wing twist angle, and the incidence of the break station for a set of 

objectives and constraints. 

Airfoil geometry impacts enormously the maximum lift coefficient. According to Ref. 

[91], the CLmax at landing for the B757-200 is 2.38, considerably lower than that of its 

computational representation airplane considered here, which presents a value of 3.06 for 

this coefficient. This is due to the different wing airfoil geometries that compose the actual 

airplane and its counterpart of the present work. There is no information available about 

the B757-200 airfoils and that utilized here are transonic airfoils that intend to match the 

maximum relative thickness of them as close as possible. On the other hand, the MMO 

of B757-200 is 0.86 [91], relatively high considering the moderate sweepback angle of 

its wing. Despite the typical mission established for the B757 was to fly domestic routes 

in the United States, even for medium populated cities, the North American manufacturer 

preferred a configuration with higher speed, which certainly worse field performance. In 

general, airfoils presenting good transonic characteristics like higher divergence Mach 

number tend to reveal some degradation of field performance. Thus, an optimization with 

these two conflicting objectives may produce interesting results. 

The optimization task that was then carried out included two objectives:  

• the maximum value of the Mach x Lift/Drag (MLD) in the 0.70-0.85 Mach number range, 

• and the maximum lift coefficient at landing configuration. 

The constraints for this problem are: 

• the maximum relative thickness of break-station airfoil must be greater than that of tip-

station airfoil. 

• The maximum relative thickness of the root-station airfoil must be greater than that of the 

break-station airfoil. 

• MMO must be higher than 0.80. 

• Fuel capacity greater than 30,000 kg. 

• CLmax @ landing must be higher than 2.5. 

• Drag rise to MMO lower than 20 counts. 

The aerodynamic coefficients at the transonic regime for this simulation were calculated 

by an ANN system with 64 input variables for wing-fuselage-winglet combinations [92] 

and the remaining aircraft components a Class-II approach was employed. The airfoils 

were generated by 14 weights applied to the geometry of 14 airfoil geometries composing 

a database. Thus, 42 input variables are necessary to define the geometry of three basic 

wing stations, root, break, and tip. The clean-wing maximum lift coefficient is calculated 
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by a full-potential code in combination with a 2D panel code by the critical section 

method [93]. Utilizing this information and additional configuration characteristics, the 

Datcom method [94] is then employed for the estimation of the CLmax coefficients at 

landing and takeoff configurations. 

The simulation for airfoil optimization was stooped after 20 generations with 1200 

individuals being analyzed. The multi-objective gamultiobj genetic algorithm of 

MATLAB® was employed in all simulations that were carried out here [95]. Figure 70 

shows the Pareto front and the characteristics of feasible and unfeasible individuals that 

arose in the simulation. A considerable improvement of MLD for the reference airplane 

was obtained, the same cannot be said for the CLmax. Figure 71 compares the original and 

optimized airfoils that resulted from the optimization run. 

Table 9 shows the characteristics of a selected individual from the Pareto front. MMO of 

0.82 was obtained with the utilization of the surrogate ANN system considering a lift 

coefficient of 0.50. The aircraft module of the present design framework calculated the 

MTOW based on the same mission as that for the BF-200LR of maximum takeoff thrust, 

and a value of 97,841 kg was obtained. This is considerably lower than that shown in 

Table XI, of our reference airplane. However, this be only credited to the new airfoils, 

because MMO was increased from 0.81 to 0.82. A lower MMO means lower structural 

loads, and this will lead to a lower OEW. In addition, an aircraft with a similar mission 

of B757-200 when fitted with new, high by-pass engines, higher aspect ratio wings, and 

optimized airfoils, recorded a 17-t decrease in MTOW. 

 

Figure 70: Optimization of wing airfoil geometry for a B757-200 similar aircraft 

Mattos, Bento S., et al. (2022) Machine Learning & MDO for Conceptual Aircraft Design pp. 143-236

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 203



  

 

Figure 71: Break- and tip-station airfoils of the selected airplane optimal 
configuration 

 

Table 9: Optimization of wing airfoils of BF-200LR 

Parameter Value 

Max. MLD 16.21 

CLmax landing configuration (Flap 40o) 2.987 

CLmax clean wing 1.59 

MMO 0.82 

Fuel capacity 31,287 kg 

Max. relative thickness of root airfoil 15.1% 

Max. relative thickness of the break-station airfoil 12.0% 

Max. relative thickness of tip airfoil 11,9% 

Wing twist angle -3.74o 

Incidence of wing break station 0.276o 

MTOW 97,841 kg 

OEW 52,854 kg 

ΔMTOWα -2,270 kg 

ΔOEW -719 kg 

α @ FL370 and FL390, Range of 3,470 nm @ Mach number of 0.80, payload of 19,200 kg, 

 ISA+0 oC, takeoff at MTOW, 200 nm to an alternate, 30 min loiter @ 1,500 ft 
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D. Optimization with prescribed pressure coefficient distributions 

An optimization task was carried out for the design of a 90-seat airliner wing. Two 

objectives were considered: the first one is the maximization of 𝑀 𝐿
𝐷⁄ ; the remained 

objective was the minimization of the square error of the difference between the 

calculated Cp distributions and the prescribed ones at six stations along wingspan (𝑀∞ =
0.78, 𝛼 = 1.8𝑜). An airfoil database consisting of 21 geometries was used to build up the 

root, break, and tip station airfoils. The airfoils belonging to this database vary from 

NACA airfoils to supercritical ones from NASA e RAE (Royal Aeronautical 

Establishment). A fixed wing area of 92.29 m2 was adopted for the airplane configuration 

considered in the present optimization task. The design variables are as follows: 

• Wing quarter-chord sweepback angle 

• Wing twist 

• Incidence of the break station 

• Wing aspect ratio 

• Wing taper ratio 

• Location of the break station (fraction of semispan) 

• Root airfoil geometry (defined by 21 weights) 

• Break-station airfoil geometry (defined by 21 weights) 

• Tip airfoil geometry (defined by 21 weights) 

Two constraints were set: 

• Clean wing CL,max higher than 1.65 

• Wing fuel storage capacity greater than 8600 kg 

The CL,max is calculated according to the critical section method [93] by a combination of 

a full potential code and the XFOIL panel code [96]. The aerodynamic coefficients were 

calculated with the ANN developed by Secco and Mattos [97]. The divergence Mach 

number (MachDiv) is computed when the drag coefficient increases 20 drag counts above 

the subsonic value considering a constant wing-body lift coefficient of 0.45. The 

maximum 𝑀 𝐿
𝐷⁄  is then obtained in the Mach number range of 0.65-MachDiv. The 

multi-objective gamultiobj genetic algorithm of MATLAB® was employed in all 

simulations that were carried out here [95].  

Figure 72 shows the Pareto front composed of four configurations and the individuals 

that surfaced during just ten generations of the optimization task. The optimal 

configuration with the lowest 𝑀 𝐿
𝐷⁄  presents the better agreement with the prescribed 

Cp distributions (Figure 73). The divergence Mach number of this configuration is 0.786, 

which is slightly above the Mach number of the prescribed distributions (𝑀∞ = 0.78). 

This is a good result, but it may be not enough to guarantee that off-design undesired 

behavior arises. Considering that the computation of aerodynamic coefficients has 

become very fast with the utilization of ANNs, is highly recommendable to set up 

constraints for the divergence Mach number, in addition to those two already employed 

here. The divergence Mach number should be higher than the Mach number where the 

Cp distributions are prescribed. This constraint must also encompass not just one but 

some lift coefficients. 
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Figure 72: Simulation for the wing design of a 90-seat airliner. Sq is the square 
error that resulted after computing the difference between the prescribed and 

calculated Cp distributions at six stations along the wingspan 

 

Figure 73: Prescribed and calculated Cp distributions for the optimal 

configuration with the lowest 𝑴 𝑳
𝑫⁄  

  

Mattos, Bento S., et al. (2022) Machine Learning & MDO for Conceptual Aircraft Design pp. 143-236

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 206



  

6. Flutter Constraints into Conceptual Design of Transport Airplane 

6.1 Introduction 

Long-haul jet airliners usually present high aspect ratio wings because they perform the 

cruise phase at the highest possible 𝑀 × 𝐿
𝐷⁄ . This is achieved at Mach number lower 

than the maximum operational one, meaning that the lift coefficients are moderately 

higher during a large part of the cruise phase and, naturally, during the climb phase. The 

induced drag coefficient is proportional to the square of the lift coefficient and the inverse 

of the aspect ratio. Besides a weight penalty, increasing the wing aspect ratio will lead to 

many adverse effects such as tip stall, lower flutter speed, and pitch up, the latter resulting 

from the combination of high aspect ratio wing with higher sweep angles. The increase 

in aspect ratio has a two-sided effect on induced drag because Oswald’s factor [98] is 

playing an important role, as well. There is an additional increase in this drag component 

that is caused by the loading increase at the outboard wing, which can be mitigated by a 

combination of wing twist with chord distribution along the wingspan. 

The flutter of a lifting surface involves the interaction of flexural and torsional motions. 

Separately, neither motion may cause flutter, but when considered conjunctly, at critical 

values of amplitude and phase angle, the forces produced by one motion excite the other; 

the two types of motion are then said to be coupled [22].  Inertial, aerodynamic, and elastic 

are usual sources of coupling. However, modern aircraft configurations with vortex-

dominated flows may involve contained regions of separated flow, unsteady phenomena 

comprising of separation and subsequent flow reattachment, stalling conditions, besides 

various time-lag effects between the aerodynamic forces and the motion [99]. 

Even the addition of winglets must be carefully managed for preventing the appearance 

of flutter in the flight envelope. The transformation of the Boeing 737-800 airliner into 

the Boeing Business Jet (BBJ) involved the addition of winglets and for this reason, each 

wing received 75 lb of concentrated mass to mitigate flutter [100]. The quest for a more 

efficient aircraft has bumped into the limits of the aluminum-built cantilever wing 

configuration. Therefore, many approaches have been adopted for new possibilities to 

mitigate flutter for high-aspect-ratio wings such as the Truss-Braced Wing concept [101] 

or extremely flexible composite wings [102]. Another possibility is the increase in wing 

aspect ratio, which enables a reduction in induced drag. However, as mentioned before, 

cantilever wings of a higher aspect ratio are more likely to have flutter problems. 

Therefore, studies involving the flutter phenomenon become an even more relevant 

design consideration for new aircraft concepts and require those constraints to be included 

in the design as early as possible, preferably at the conceptual design stage. This way, 

costly changes are avoided at later stages of the aircraft development program. 

Problems with torsional divergence affected aircraft in the First World War. They were 

solved by trial-and-error and stiffening of the wing without carrying for broader 

implications [103]. The first recorded and documented case of flutter in an aircraft 

occurred to a Handley Page O/400 English bomber during a flight in 1916 [103]. The 

airplane suffered a violent tail oscillation that led to an extreme distortion of the rear 

fuselage and the elevators to move asymmetrically [103]. Although the aircraft landed 

without injuries and fatalities, in the subsequent investigation some recommendations 

stated that left and right elevators should be rigidly connected by a stiff shaft. These 

recommendations subsequently became a design requirement. In addition, the National 

Physical Laboratory (NPL) was required to investigate the phenomenon theoretically.  
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The first formal flutter test was carried out by von Schlippe in 1935 in Germany [103]. 

The test aircraft was submitted to vibration at resonant frequencies at progressively higher 

speeds. Schlippe plotted amplitude as a function of airspeed and a rise in amplitude would 

suggest reduced damping with flutter occurring at the asymptote of theoretically infinite 

amplitude. This idea was applied successfully to several German aircraft until a Junkers 

Ju 90 military transport suffered flutter and crashed during a flight test in 1938 [103]. 

The distribution of heavy mass items in the wing can be optimized for flutter prevention. 

Wing structural design is driven by both strength and stiffness criteria. For example, if 

the torsion carrying structure of a wing is designed by a stiffness requirement, the wing 

would probably consist of a structure that carries its normal stresses in the wing skin with 

a minimum of stringers and flanges. This type of wing structure would require several 

spanwise webs to stabilize the heavily loaded skin. For a wing designed initially by 

strength criteria to withstand a specked load factor, it is straightforward that a higher 

torsional stiffness and hence a higher flutter speed will result if the ratio of stiffener area 

to skin area is reduced to a minimum. In addition, the use of higher strength alloys, which 

have no corresponding increase in modulus of elasticity, tends to make flutter more 

critical for wings designed for strength only. Wing aspect ratio should be treated as a 

design variable and not as objective as stated in Ref. [104].  Beyond certain limits of this 

design variable, flutter can no longer be avoided by mass distribution in the wing or by 

the addition of ballast. For non-linear systems, some design considerations were outlined 

in the first Section of this Chapter. 

In the work of Opgenoord [105], the influence of aeroelasticity was investigated during 

the conceptual design of a transport aircraft by using a multi-disciplinary optimization 

tool. His article described an airfoil flutter model based on low-order physics. The flutter 

model handles the smallest vorticity moments of the flowfield and the volume source 

density perturbations. The model is calibrated using unstable 2D transonic CFD 

simulations. The resulting aeroelastic system combines the calibrated aerodynamic model 

with a beam model. The low computational cost of the model allows its incorporation 

into a conceptual design tool for state-of-the-art transport aircraft. The results presented 

in that work showed that the inclusion of flutter restrictions in the optimization of the 

aircraft design limits the wing aspect ratio, resulting in higher fuel consumption. 

Therefore, it was concluded that flutter limits performance gains obtained by using more 

advanced materials in the wing. 

Jonsson et al. presented a review of the methods of development, implementation, and 

application of flutter and post-flutter constraints in the optimization of aircraft designs 

[106]. Furthermore, discussions about additional requirements associated with this type 

of project optimization, such as acceptable computational cost, smoothness of function, 

robustness, and derivative calculus, were introduced. In its conclusion, a summary of the 

current state of this field and the main open problems were presented. 

A comparative sensitivity study for aeroelastic instability of aircraft wings in subsonic 

flow was carried out by Berci [107], which used analytical models and numerical tools 

with different multi-disciplinary approaches. His analyses were based on previous works 

and covered parametric variations of aero-structural properties, quantifying their effect 

on the aeroelastic stability frontier. Considering various degrees of fidelity both 

theoretical and computational calculations were evaluated, for possible practical 

applications in the preliminary design and optimization of aircraft. The results presented 
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in that comparative study recommend the use of a hybrid strategy for the analyses, in 

which the flutter limit is obtained using a high-fidelity approach, while flutter sensitivity 

is calculated using a low fidelity approach.  

The present work investigates the impact of flutter speed constraints in the configuration 

of a transport airplane. The package NeoCASS [108], a sophisticated suite developed for 

aircraft structural sizing and flutter speed calculation, was integrated into an existing 

MDO platform for aircraft conceptual design [109].  Two simulations tasks were carried 

out, one incorporating the flutter constraint and the other not. The results were analyzed 

and are discussed here. 

6.2 Aircraft Conceptual Design Framework 

A. Multi-disciplinary design framework 

A MATLAB-based aircraft conceptual design framework for conceptual airliner design 

was developed at ITA over the years counting on contributions from several masters and 

doctoral thesis [109] [49] [110] [97] [111]. This framework is composed of several 

modules, which can handle and integrate aeronautical disciplines, manage airplane 

configuration, and control the optimization process. In addition, this MDO tool can 

calculate airplane noise signature at ICAO reference points [49], estimate engine 

emissions [49], and can be coupled with unsupervised learning algorithms to provide 

airplane classification, [112].  

The workflow of the airplane design framework of the present work is shown in Figure 

74. There are many possibilities in terms of fidelity of the discipline modeling that is used 

for airplane sizing. For example, lift-drag characteristics can be calculated from simpler 

models like Class-I formulations to CFD codes, or even by surrogate ANN models [97]. 

NeoCASS can be considered a medium-fidelity structural and aeroelasticity tool and will 

be described in detail in a dedicated section of the present study, as well as the multi-

objective genetic algorithms were chosen to perform the optimization tasks. 

 
Figure 74: Overview of the present MDO platform 
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Important design requirements must be considered because they will generate a feasible 

airplane configuration when satisfied. Certification requirements such as climb gradient 

in the 2nd segment, cruise and missed approach thrust requirements, rate of climb at 

service ceiling, and balanced takeoff field length are some of them. 

The multi-objective gamultiobj algorithm from MATLAB® was employed in all 

simulations that were carried out in this Section [95]. Two objectives were considered 

here: direct operating cost per nautical mile and an efficiency index for the configuration 

that was elaborated by the authors and will be discussed later in the following sections. 

B. Airplane analysis tool 

The airplane calculator workflow shown in Figure 75 is an essential part of the MDO 

framework. From airplane geometry and topology, and mission requirements, an iterative 

process for MTOW calculation is performed. Designated here of airplane analysis tool 

(AAT), this component is the masterpiece of the framework. AAT provides an embracing 

description and characterization of the airplane. Many levels of fidelity for discipline 

representation are available.  Noise and emissions footprint can be optionally calculated. 

Detailed mission performance and range evaluations are derived from flight profiles set 

by the user and obeying air traffic constraints, all based on the aerodynamics, mass, and 

engine characteristics of the airplane. It is possible to examine any design mission or off-

design missions corresponding to specific takeoff weights or required block distances. 

Realistic airplanes obey must obey some requirements: 

• Enough thrust to fly in the service ceiling at MMO. 

• Required 2nd segment climb gradient. 

• Required FAR 24.119 landing climb gradient. 

• Required FAR 24.121 landing climb gradient. 

• Enough thrust to perform en-route climb. 

• Takeoff field length at a specified atmospheric condition and altitude. 

• Landing field length at a specified atmospheric condition and altitude. 

• Fuel storage to perform a mission with a specified range and payload. 

The airplane mission setup is highly detailed with a flight profile that makes accurate 

calculations of major airplane masses possible like MTOW, OEW, and MZFW. Air traffic 

constraints can be incorporated into the calculation, if required [113]. Several 

aerodynamic methods are available in the framework with different levels of fidelity, 

including an artificial neural network surrogate model. An in-house generic turbofan 

engine model is also part of the MDO framework [110]. It is possible to analyze the 

performance, emissions, and operational costs for missions inside a complex airline 

network with different takeoff weights or block distances [17]. The fuel storage capacity 

is precisely calculated considering the actual airplane geometry and structural layout. 

All mission segments are analyzed, and optimal and transitional climb altitudes are 

calculated considering buffet margins, available engine thrust, rate of climb, and accurate 

airplane lift-to-drag ratio. Alternate airport, hold and descent patterns, reserve and 

maneuvering fuels, and weight allowances are additional parameters. Typically, after the 

second segment climb, the in-route climb uses airspeed schedules, namely, a calibrated 

airspeed (CAS) segment followed by a constant previously stipulated Mach number up 

to the initial cruise altitude. The cruise phase can be flown at a constant altitude or 

following a step-increasing altitude pattern. There are two cruise speed profiles, one with 

a constant Mach number and a long-range pattern. 
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Figure 75: Workflow of the airplane analysis tool 

C. Airframe weight and maximum takeoff weight 

For the calculation of the maximum takeoff weight (MTOW), the estimation of the empty 

weight is needed, which can be supplied according to the MTOW (class I weight method) 

itself or it can be calculated by the sum of the individual structural weights and aircraft 

systems (Class II method). Within the Class I methodology, the following relationship 

between MTOW and OEW was developed at ITA: 

𝑂𝐸𝑊

𝑀𝑇𝑂𝑊

= [𝑎 + 𝑏 (𝑀𝑇𝑂�̂� 𝐴𝑅 ̂ 𝑇𝑊 𝑆�̂�  𝑀𝑀𝑂 �̂�𝑓 𝐹𝑤Ψ̂ 𝑆�̂̂�)
𝐶0

+ 𝑐(𝑀𝑇𝑂�̂�)
𝐶1

(𝐴�̂�)
𝐶2

 (𝑇𝑊)𝐶3 (𝑆�̂�)
𝐶4

 (𝑀𝑀𝑂)𝐶5 (�̂�𝑓)𝐶6 (𝐹𝑑)𝐶7(Ψ)𝐶8(𝑆�̂�)𝐶9] 

(69) 

Eq. 69 was tailored for a mix of units of the international and English systems. The MMO, 

TW, and Fw symbols refer to the maximum Mach of operation, the thrust-to-weight ratio, 

and the equivalent diameter of the cross-section of the passenger cabin, respectively.  
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Normalizations that were considered in Eq. 69, given in Table 10.    

Table 10: Variable normalization for Eq. 69 

𝑀𝑇𝑂�̂� =
𝑀𝑇𝑂𝑊

50000
 MTOW = Maximum Takeoff Weight [kg] 

𝐴�̂� =
𝐴𝑅

8
 AR = Wing aspect ratio 

𝑊�̂� =
𝑊𝐿

100
 WL = Wing loading [kg/m2] 

�̂�𝑓 =
𝐿𝑓

30
 Lf = Fuselage length [m] 

Ψ̂ =
Ψ

20
 Ψ = Quarter-chord sweepback angle [degree] 

𝑆�̂� =
𝑆𝐶

40000
 SC = Service Ceiling [ft] 

To obtain the exponents and multipliers of the terms of Eq. 69, the authors used a database 

of line aircraft containing information from 123 airliner models, with their entry into 

service from the 1950s up to others with commercial operation expected in 2020. Figure 

76 shows the relationship between the MTOW and the reference area of the wings for the 

aircraft in the database. An optimization algorithm was elaborated for the minimization 

of the mean quadratic error between the OEW/MTOW estimated by Eq. 69 and the actual 

values of the airplanes in the database. The exponents and coefficients of Eq. 69 are the 

design variables. The mono-objective genetic algorithm of MATLAB® 2019a [114] was 

used in optimization simulations and after 5500 generations the simulation was stopped. 

Table 11 shows the coefficients and exponents that the optimization run provided. Table 

12 contains some estimation errors for the weight fraction of the present method. The 

agreement between the actual and estimated weights is very good. 

Table 11: Values of the coefficients present in Eq. 69 

a b c C1 C2 C3 C4 C5 C6 C7 C8 C9 

-0.2359 -0.3065 0.8900 -0.1731 0.0871 0.0857 0.1050 -0.0931 0.1220 0.2232 0.0857 0.0418 

Table 12: Estimation error of weight fraction for some jet airliners 

Airplane 
Actual 

OEW/MTOW 

Calculated 

OEW/MTOW 
Percent error 

Boeing 737-700 0.54157 0.53548 1.12 

Airbus A320-200 0.54494 0.53829 1.22 

B747-400 0.49077 0.4976 1.39 

Boeing 757-300 0.53874 0.49639 7.86 

Boeing 767-300 0.55681 0.55400 0.505 

CRJ200ER 0.59806 0.59552 0.425 

EMBRAER E170LR 0.55645 0.56798 2.07 

Fokker 100 0.57074 0.55416 2.90 

Tupolev Tu-104A 0.54737 0.56043 2.39 

VFW 614 0.61048 0.60329 1.18 
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Figure 76: MTOW plotted against wing reference area considering airplanes 

utilized for the elaboration of Eq. 69. The different symbols in the graph 
reflect the different engine configurations 

D. Engine weight 

There are some simple methods as well as some more sophisticated methods for the 

estimation of turbofan engine weight [115]. But for WATE++, all of them are not accurate 

enough to be used in the optimization framework for airplane design. Thus, a 

methodology developed by Fregnani et al. [116] was adopted for turbofan engine weight 

estimation. This approach utilizes a formulation based on some engine geometric and 

thermodynamic parameters (Eq. 70). 

𝑊𝐸 =
𝑇1 ∗ (𝐵𝑃𝑅 𝐵𝑃𝑅̅̅ ̅̅ ̅̅⁄ )𝑎(𝑂𝑃𝑅 𝑂𝑃𝑅̅̅ ̅̅ ̅̅⁄ )𝑏(𝑇𝑠 �̅�⁄ )𝑐(𝐷𝐸 𝐷𝐸

̅̅̅̅⁄ )𝑑(𝐿𝐸 𝐿𝐸
̅̅ ̅⁄ )𝑒(�̇� �̅̇�⁄ )𝑓 +

𝑇2 ∗ (𝐵𝑃𝑅 𝐵𝑃𝑅̅̅ ̅̅ ̅̅⁄ )(𝑂𝑃𝑅 𝑂𝑃𝑅̅̅ ̅̅ ̅̅⁄ )(𝑇𝑠 �̅�⁄ )(𝐷𝐸 𝐷𝐸
̅̅̅̅⁄ )(𝐿𝐸 𝐿𝐸

̅̅ ̅⁄ )(�̇� �̅̇�⁄ ) + 𝑇3
 (70) 

The coefficients and exponents of Eq. 70 were obtained by an optimization using a 

genetic algorithm [114].  The objective was the minimization of the mean square error of 

known engine weights. A database, comprised of 20 engines, was elaborated which 

embraced a large variety of turbofan engines [14]. Table 13 shows the T1, T2, and T3 

coefficients and a, b, c, …, f parameters obtained with the optimization process. Table 

14 shows the average parameters used for normalization in Eq. 70. 

Table 13: Obtained exponents and coefficients for Eq. 70 

Coefficient/exponent Value 

T1 2587.2461 

T2 50.1920 

T3 154.6179 

a -0.1965 

b -0.0718 

c 1.0435 

d 0.2493 

e -0.3444 

f -0.1455 
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Table 14: Parameters used for normalization in Eq. 70 

Parameter Value 

𝐵𝑃𝑅̅̅ ̅̅ ̅̅  4.6911 

𝑂𝑃𝑅̅̅ ̅̅ ̅̅  25.4000 

�̅�𝐸 [m] 1.7906 

�̅�𝐸 [m] 3.3276 

�̅� [kN] 148.1217 

�̅̇�  [kg/s] 464.7333 

Table 15 contains weight estimation errors for some known turbofan engines. 

Table 15: Weight error estimation for some known engines 

Engine Percent error 

AE3007A1P 10.94 

CF6-50C 2.55 

JT8D-219 0.74  

GE CF-34-10A 6.48   

R&R RB211-535C 0.97 

Trent 800-875 3.12 

Williams FJ-44 4.29 

Pratt & Whitney PW2040 0.44 

GE-90/77B 0.31 

R&R Tay 620 2.65 

E. Direct operating cost  

Although it is widely discussed which cost elements do belong to Direct Operating Costs 

and which do not, it is generally accepted that DOC includes those cost elements which 

depend on the equipment (aircraft) and crew that are necessary to perform a given flight. 

On contrary, Indirect Operating Costs (IOC) depend on the way an airline is administrated 

[117]. The ATA 67 DOC method [118], a good reference, considers as aircraft-dependent 

and hence part of DOC: 

• cockpit crew costs, 

• fuel costs, 

• maintenance costs, 

• depreciation, 

• insurance (against hull loss). 

Cockpit crew cost is heavily dependent on MTOW, and it is calculated in terms of flight 

hours. Training costs for the crew or maintenance personnel traditionally are considered 

as a percentage of the crew's fixed cost. For the engine, it is necessary to provide to the 

DOC calculation routine the number of engines, the engine weight, and the time between 

overhauls that is considered. 

Figure 77 displays the result of a direct operating cost estimation performed for the 

hypothetical 76-seat ITA76ADV airliner with a design range of 2100 nm. The calculation 

considered two jet-fuel prices, US$ 1.70 and US$ 2.389, a 40.6% increase. The 

contribution to DOC increased from 25% to 31%, surpassing the crew slice related to that 

cost. Thus, as expected, the DOC is indeed sensitive to fuel price. 
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DOC: US$ 10.82/nm 

Jet A1: US$ 2.387/gallon 

DOC: US$7.85/nm 

Jet A1: US$ 1.70/gallon 

Figure 77: DOC breakdown for the ITA76ADV considering two Jet A1 fuel prices 

The values here calculated for the DOC have estimated values and no comparison to 

actual values practiced by airlines is possible, because they handle this information as 

strategic and confidential. Nevertheless, it offers a relatively good basis for comparison 

among the airplanes that are an object of investigation. It is worth mentioning, that 

changing the fuel price will significantly alter the way the airplanes are evaluated, as 

shown in Figure 77, and eventually it could be part of a Pareto front. Ref. [119] provides 

graph information about the annual variation in jet fuel price. 

Efficiency index 

The authors elaborated a parameter that synthesizes the value of an airliner and that was 

designated here as efficiency index: 

𝐸𝐼𝐿𝑖𝑛𝑒𝑟 =
𝑅𝑛�̂� × 𝑀𝑀𝑂 × 𝑁𝑃𝐴�̂�

(𝑇𝑊 × 𝑂𝐸�̂�)
 (71) 

The symbols of Eq. 71 are: 

𝑁𝑃𝐴�̂� =
𝑁𝑃𝐴𝑋

150
𝑅𝑛�̂� =

𝑅𝑛𝑚

2500
𝑂𝐸�̂� =

𝑂𝐸𝑊

40000
 

An airplane presenting low efficiency may be an indication of a low range, a low cruise 

speed, or a high OEW for the mission it was conceived for. A low speed may appear not 

to be important, but it can be translated into a longer block time that impacts DOC. 

Besides, slower airplanes are obligated by air traffic control to fly at lower altitudes to 

not interfere with faster airplanes. Flying at lower altitudes, in turn, may cause a higher 

fuel consumption depending on the mission profile.  
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F. Passenger cabin sizing 

Considering that the medium-range aircraft is the subject of the present research, a two-

class cabin configuration was selected, where the cabin is configurated with 10% of the 

seats destined for first-class, and the other 90% are economy class, this proportion being 

suggested by [120]. The fuselage is modeled as a long cylinder with a constant ellipsoidal 

cross-section whose length is determined by the cabin length variable (𝐿𝑓) and the shape 

of the ellipse by the height-to-width ratio variable (Fhw). 

The cabin sizing module is divided into two steps. Initially, the layout of the cross-section 

of the passenger cabin is defined. The cargo hold space of the aircraft is also considered. 

In the present work, a container of type LD3-45W (2.44m x 1.53m x 1.14m) has been 

considered. The function makes the layout obey all the minimum clearance distances.  A 

MATLAB® routine was written to design the cross-section of passenger cabins. After 

sizing the cross-section, the second step begins with the elaboration of the cabin floorplan. 

The cabin plan code calculates cabin length, toilet and galley positions, emergency exit 

sizing, and other relevant parameters. Figure 78 shows an example of some cabin cross-

sections. FAR 24.810 rules are employed in the incorporation of emergency exits. 

Additional considerations are carried out to comply with ditching regulations. 

 
Figure 78: Examples of fuselage cross-sections 
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6.3 Verification of the B757-200 airliner 

The B757 has a six-abreast cross-section and is powered by either RB211 or PW2030 and 

PW2040 Series turbofans. The B757-200 is the basic version, which entered service in 

1983.  

In August of 1978, Eastern Airlines and British Airways announced orders for the B757 

and chose the RB211-535 to equip the airplane [121]. Designated RB211-535C, the 3-

spool engine entered service in January of 1983 when the first B757-200 was delivered 

to Eastern Airlines. The engine has a nominal thrust of 37,400 lbf (166.36 kN) and an 

OPR of 21.2:1 [122]. In 1979, Pratt & Whitney launched its PW2000 engine, claiming 

8% better fuel efficiency than the -535C for the PW2037 version [121]. The English 

engine manufacturer reacted and using the -524 core as a basis, the company developed 

the 40,100 lbf (178 kN) thrust RB211-535E4, which entered service in October of 1984. 

There are differences in appearance between the two versions like a mixed exhaust nozzle 

and a bigger fan cone for the RB211-535E4. BPR was slightly reduced to 4.40:1 from 

4.46 for the 535C [122]. There is another version of the Rolls&Royce engine designated 

RB-211E4B, which has a takeoff thrust of 43,500 lb [123]. The 535E4 engine was also 

the first to use the wide chord fan which increased efficiency, reduced noise, and gave 

increased protection against damage from foreign object ingestion [121]. As a result, a 

relatively small number of -535Cs was installed on production aircraft in May of 1988. 

American Airlines ordered 50 B757s powered by the -535E4 emphasizing the engine's 

low noise as an important factor for their choice. The stretched version B757-300 entered 

service with Condor Flugdienst in 1999. With a length of 54.5 m, the type is the longest 

single-aisle twinjet ever built.  

According to Ref. [124], The B757-200 has several sub-versions presenting different 

MTOW, OEW, and MZFW. Two configurations fitted with RB211-535E4B engines 

were selected as references for the ongoing work, and their payload-range diagrams are 

shown in Figure 79 and some characteristics are given in Table 16 [123]. Two ranges 

signaled by the dashed lines in the payload-range diagrams are related to a mission with 

a payload of 192 passengers. 

 
Figure 79: Payload-range diagram for some sub-versions of B757-200 [123] 
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Table 16: Characteristics of two B757-200 sub-versions fitted with RB211-
535E4B engines [121] [122] [123] [125] 

Sub-version MTOW OEW MZFW Usable fuel 
Takeoff 

Thrust 
TFL 

1 99,790 kg 58,570 kg 83,460 kg 42,680 kg 37,400 lbf 1,660 m 

2 
115,650 

kg 
58,570 kg 84,360 kg 43,490 kg 43,500 lbf 2,070 m 

Lf wAR wS wSw14 MMO Aisle width of Y-class 

46.97 m 7.82 185.25 m2 25o 0.86 0.508 m 

Some of the B757-200 main characteristics calculated by the present methodology are 

given in Table 17. Again, the agreement between actual and estimated weights is 

particularly good. The year 1984 was set for the year of service entry. As expected, the 

airplane was categorized as a classic design (scaled trajectory). However, just for testing, 

if the year 1981 were adopted for that parameter, the airplane would be labeled by the 

entropy statistics classification program as a breakthrough, as also is expected. The reason 

behind this is simple: this way the configuration being analyzed passes its unique 

characteristics to the actual airplanes that entered service in 1983 and 1984, which are 

part of the database. 

Table 17: Estimated values for the B757-200 fitted with RB211-535E4 by the 
present design 

MTOW OEW Fuel Capacity Range Categorized as 

115,100 kg 58,495α kg 41,138β kg 3,272 nm α Classic 

α @ FL370 and FL390, Mach of 0.80, payload of 19,200 kg, ISA+0 oC, takeoff with MTOW, RB211-535E4, 200 

nm to an alternate, 30 min loiter @ 1,500 ft 

β wing capacity of 30,918 kg / ε Jet A1 price of US$ 2.387 US$/gal 

6.4 NeoCASS 

NeoCASS is an open-source computational package written in MATLAB® that was 

conceived to be a structural analysis tool focused on the conceptual and preliminary 

design of aircraft [108]. It is also a structural module for the design framework 

CEASIOM, a project conceived by SimSAC. The CEASIOM project was started in 2006 

with the support of several contributing institutions around the world. The software is 

divided into several modules, and Politecnico di Milano was responsible for developing 

a module for aeroelastic studies in conceptual phases, which was called NeoCASS. 

The NeoCASS suite was developed with the following objectives: 

• Ensure easy coupling with other codes. 

• be relatively accurate for the conceptual phase and provide correct trend data to allow 

the project to move in the proper direction. 

• be computationally efficient. 

• be interchangeable between speed and accuracy, leaving the level up to the user 

required mesh discretization. 

• do not need many model preparations. 

• provide sensitivity derivatives by changing design variables. 
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Besides other capabilities, NeoCASS provides a method based on fundamental structural 

principles to estimate the structural weight of an aircraft, which is a hybrid method, 

because it uses both empirical calculations, based on the actual weights of existing 

aircraft, and analytical calculations, based on the utilization of simplified finite element 

models. In this way, it is possible to obtain good results even using unconventional 

aircraft configurations. For this, the software has an approach in which empirical 

calculations are first performed, so that, throughout the analyses, the structural weights 

are changed. For the analytical structural design, different operating conditions from 

standards or the user are used. The software can deliver both aircraft detail results, such 

as structural masses; static and dynamic aeroelastic behavior. The explanations about all 

the methods used in the software that will be presented below were taken from Cavagna 

and Ricci (2013), which is the software manual. 

Figure 80 displays the NeoCASS architecture that was employed in the present study. 

The suite is composed of two main modules, which are GUESS (Generic Unknown 

Estimator in Structural Sizing) and SMARTCAD (Simplified Models for Aeroelasticity 

in Conceptual Aircraft Design), whose functions and operating principles will be 

explained in detail later. In gray are represented the preprocessing modules called 

AcBuilder (Aircraft Builder) and WB (Weight and Balance). These modules are 

considered pre-processing, as they are used only in the creation or preparation of the 

aircraft.xml file, which is in green color, which is the file that contains all the information 

of the aircraft and is used in all phases of the program. Also in green is another input file 

that is called smartcad.dat. This file merges data outputs from GUESS with some 

parameter settings for solving aeroelastic phenomena. In yellow are the files that must be 

configured by the user, where the characteristics of the maneuvers and analysis modes to 

be considered by the program are found. In light blue color are the program outputs, which 

are the analytical structural masses of the aircraft, the vibration modes, the mesh.dat file, 

which is a structural representation of the aircraft based on a beam model, and the file 

smartcad.dat, which is a file compatible with other software like NASTRAN for post-

processing analyses. 

 

Figure 80: NeoCASS architecture 
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6.5 Sensitivity analysis 

A. Influence of aspect ratio on the flutter speed 

To measure the influence of wing geometric parameters on flutter speed, a sensitivity 

study was conducted by varying wing geometric parameters and determining flutter speed 

using the present design framework. Wing taper ratio, aspect ratio, and sweep were the 

geometric parameters that suffered variation. 

The aspect ratio has a large influence on the flutter speed, as can be seen in Figure 81, 

which always poses a challenge for aircraft design teams. As expected, the results show 

that an aspect ratio increase leads to a significant reduction of flutter speed. This is due to 

the decrease of the wing inertia and the bending moment increase at the wing root. 

Another important aspect is the small effect of Mach number increase on the flutter speed 

of the wing analyzed here. The results shown in Figure 81 agree with the results presented 

by Opgenoord [105]. 

 
Figure 81: Influence of aspect ratio on flutter speed 

B. Influence of wing taper ratio on the flutter speed 

The taper ratio tends to decrease the flutter speed when it is increased, as can be seen in 

Figure 82. It can be observed that the Mach variation does not have much effect on the 

flutter speed and the taper ratio only determines the offset between the curves. This is to 

be expected since the increase in taper leads to an increase in the total bending and 

twisting moments, which increases the natural frequency of the wing, as shown in the 

work of Opgenoord [105]. 

 

Figure 82: Influence of taper ratio on the flutter speed 
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C. Influence of sweep on the flutter speed 

The wing sweepback angle also has a large influence on the flutter speed, as can be seen 

in Figure 83. It shows a similar behavior as for the aspect ratio as a function of Mach 

number. On the other hand, as the sweep increases, the flutter speed also increases, which 

is the opposite result of the aspect ratio. This result was also recorded by Barmby [126]. 

 

Figure 83: Influence of sweep on the flutter speed 

6.6 Results 

A. Design variables 

The design variables that were used to generate the models of each aircraft are described 

in Table 18. It was necessary to establish lower and upper bounds for each of these 

variables, as this way it is possible to prevent the algorithm from searching for 

unconventional individuals during the optimization in regions where the models are not 

validated, generating misleading results or even in a region where these individuals are 

unfeasible. The boundaries for each of these variables are also shown in Table 18. The 

boundaries are based on typical values for airliners with passenger capacity varying from 

130 to 220, with a small amount of tolerance being added to ensure design space freedom 

for the optimizer. 

Table 18: Boundaries of variables of the present optimization problem 

Variable Lower boundary Upper boundary 

Wing Area (𝑺𝒘) 110 m² 210 m² 

Aspect Ratio (𝑨𝑹𝒘) 7.7 11.0 

Taper Ratio (𝝀𝒘) 0.24 0.45 

Wing Quarter-chord Sweepback angle (𝜦𝒘) 22º 32º 

Fuselage Length (𝑳𝒇) 36 m 50 m 

Height/width of central fuselage ratio (Fhw) 0.9 1.1 

Design range starting with MTOW, ISA conditions (𝑹𝒏𝒎) 2100 nm 3700 nm 

Maximum Mach Operating (MMO) 0.78 0.83 

Maximum aircraft certified altitude (SC) 35000 ft 41000 ft 

Maximum Takeoff Thrust at sea level / ISA conditions (T) 220 kN 400 kN 
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B. flight envelope 

To define the application of the flutter constraint, it was initially necessary to define the 

flight envelope of each aircraft being analyzed. The graph of altitude versus speed limit 

was then elaborated as an example (Figure 84). 

 
Figure 84: V-H diagram 

The flight envelope shown in Figure 84 restricts the maximum speed possible to be 

achieved by the aircraft at a certain altitude. The dark blue line represents the flight 

envelope for a typical mission, where a climb is performed at a constant calibrated speed 

of 250 kts up to an altitude of 10,000 ft. Afterward, a climb at a constant calibrated speed 

of 310 knots to crossover altitude is established. Finally, there is the cruise phase, in which 

the aircraft MMO was the cruise Mach number, which for the airplane of Figure 84 was 

0.82. The green line represents the aircraft's maximum dive speed. In the constant 

calibrated speed region, 350 kts were used for the envelope considering the dive speed, 

which was derived from the VMO of some aircraft in the category. VMO is usually 

associated with operations at lower altitudes and deals with structural loads and flutter. 

In the region at constant Mach number, the dive speed (Md) is given by: 

𝑀𝑑 = 𝑀𝑀𝑂 + 0.07 (72) 

The FAR 25.629, which determines the aeroelastic stability requirements of commercial 

aircraft, the minimum limit for the aeroelastic instability velocity is obtained from the V-

H diagram of the aircraft's flight envelope. The aeroelastic instability threshold value is 

drawn from the aircraft's dive velocity curve and must be 15% greater at an equivalent 

velocity. If this value exceeds 1.00, in the constant Mach region, the value of 1 should be 

adopted for the Mach number. Based on the V-H diagram shown in Figure 84, the 

diagram of Figure 85 was elaborated to comply with FAR 25.629 requirements. 
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Figure 85: Flight envelope considering flutter speed constraints 

C. Multi-objective optimization without flutter constraint 

A multi-objective optimization design task was carried out without any flutter constraint. 

After 35 generations with 55 individuals using the MATLAB® multi-objective genetic 

algorithm, the number of feasible individuals that emerged from the computations was 

1682, i. e., those not violating any constraint. (Figure 86) - out of a total number of 1925 

configurations analyzed. The analysis of each plane took on average 30 seconds and the 

optimization task lasted about 16 hours on a Desktop PC fitted with Intel® I9-9800K 

processor and 32 GB of RAM. 

 

Figure 86: Optimization task with no flutter constraint 
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The individuals belonging to the Pareto front presented a wing aspect ratio higher than 

9.92. Table 19 contains some characteristics of the optimal airplanes. 

Table 19: Some design variables of individuals belonging to the Pareto front of the 
optimization without flutter constraint 

ID 
𝑺𝒘 

[m²] 
𝑨𝑹𝒘 𝝀𝒘 𝑳𝒇 [m] 𝑹𝒏𝒎 

DOC 

[US$/nm] 
EI 

1855 171.65 10.92 0,263 38.9 3470 18.46 0.846 

1627 171.65 10.42 0,267 37.1 3470 18.04 0.790 

1808 170.65 10.67 0,263 36.4 3470 17.85 0.765 

1907 171.65 9.92 0,263 37.1 3471 18.07 0.795 

1590 171.65 10.92 0,263 36.0 3470 17.73 0.744 

All individuals in Pareto front for classic airliners share some features: 

● MMO of 0.83. 

● Wing quarter-chord sweepback angle of 22º. 

● Height/width ratio of the central fuselage of 0.91. 

● Maximum Takeoff Thrust at sea level of 303 kN. 

● Maximum aircraft certified altitude 35,000 ft. 

Table 20: Selected optimal airplanes compared to the A320-200 airliner 

 A320-200 Highest EI Lowest DOC 

MTOW [kg] 76,653 89,579 84,771 

OEW [kg] 43,298 49,514 47.,439 

Npax 150 156 140 

ARw 9.50 10.92 10.092 

Range [nm] 2550 3470 3470 

Wing area [m2] 122.4 171.65 171.65 

EI 0.622 0.846 0.745 

DOC [US$/nm] 18.99 18.46 17.73 

Table 20 contains some estimated characteristics of the A320-200 airliner compared to 

those of two optimal individuals. The data for the airplanes presenting the highest EI and 

the lowest DOC is compared to those figures estimated for A320-200. To satisfy the 

maximization of the EI, the algorithm found solutions with larger wing areas to increase 

the fuel capacity, leading to an increase in range. Comparing the aircraft with the highest 

EI to the one with the lowest DOC, both present similar characteristics but different 

passenger capacity carried and the maximum take-off weight, characteristics that directly 

modify DOC. 
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The aircraft with the smallest DOC (#1590) presented a short fuselage and therefore a 

smaller number of passengers. This characteristic resulted in a reduction in empty weight 

of about 2 tons when compared with the aircraft with the higher EI (#1855). The smaller 

fuselage also leads to a reduction in the wetted area of the aircraft, a parameter directly 

related to drag. These factors are crucial for reducing the aircraft's fuel consumption and 

consequently DOC. On the other hand, the aircraft with the highest EI (#1855) had the 

longest fuselage length among the aircraft located at the Pareto front, which is expected, 

because the number of passengers is a parameter directly proportional to EI. The analyzes 

have shown that the characteristics that most affect the results of EI and DOC were aspect 

ratio, range, and wing area. 

D. Multi-objective optimization with flutter speed constraint 

The second task of the multi-objective optimization involved constraining the flutter 

speed within the flight envelope of the aircraft. Again, after 35 generations of 55 

individuals, using the gamultiobj algorithm [95], a set of 1491 viable individuals, i.e., 

those not violating any constraint. (Figure 87) - out of a total of 1925 configurations 

analyzed. The analysis of each plane took an average of 180 seconds, and the total 

optimization runtime was about 96 hours. The Pareto front consisted of a total of 146 

individuals. Table 21 contains information on some individuals that belong to the Pareto 

front. 

  

Figure 87: Optimization results with flutter constraint 

The number of viable individuals has decreased with the inclusion of this new constraint. 

In this optimization run, the Pareto front is formed by three small, interspersed regions 

containing many individuals. This front happened at this time as the algorithm found two 

viable and distinct solutions which gave good results. Another interesting from the 

obtained results is the low occurrence of individuals with an aspect ratio higher than 10, 

which is due to the flutter constraint. In the present optimization, we note that one of the 

regions of the Pareto front is very close to the A320 plane, indicating results that are more 

in line with reality. 
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Table 21: Some design variables of individuals belonging to the Pareto front of the 
optimization with flutter constraint 

ID 𝑺𝒘 [m²] 𝑨𝑹𝒘 𝝀𝒘 𝑳𝒇 [m] Fhw 𝑹𝒏𝒎 SC [ft] 
DOC 

[US$/nm] 
EI 

1462 177.97 9.49 0.342 39.3 0,90 3409 40,000 19.42 0.761 

1107 177.97 9.68 0.258 39.2 0,90 3409 40,000 19.31 0.753 

1839 144 8.03 0.256 39.2 0,90 2725 35,000 19.07 0.604 

1273 144 7.94 0.258 39.2 0,92 2725 35,000 19.12 0.605 

1870 144 9.81 0.258 39.2 0,90 2725 35,000 18.76 0.589 

All individuals in the Pareto front for classic airliners share some features: 

● MMO of 0.83. 

● Wing quarter-chord sweepback angle of 22º. 

● Maximum takeoff thrust at sea level of 339 kN. 

Table 22 shows some characteristics of the A320-200 aircraft compared to those of 

optimal individuals with the highest EI and the one with the lowest DOC. Comparing the 

characteristics of the A320 with the characteristics of the higher EI aircraft, it is again 

noticeable that due to the objective of maximizing the EI, the algorithm has searched for 

solutions with larger wing areas to increase the fuel capacity, which leads to an increase 

in the range. However, comparing the characteristics of the A320 with those of the aircraft 

with the lowest DOC, it was found that at this time these aircraft presented very similar 

characteristics. This feature occurred because aircraft with high aerodynamic efficiency 

was no longer feasible by subtracting the flutter speed, thus the other parameters that 

compose the calculation of DOC became more important. As a result, smaller aircraft 

have become more attractive as they have lower maintenance, crew, and depreciation 

costs. 

Table 22: Selected optimal airplanes compared to the A320-200 airliner 

 A320-200 Highest EI Lowest DOC 

MTOW [kg] 76,653 91,554 82,343 

OEW [kg] 43,298 50,424 46,342 

Npax 150 160 158 

ARw 9.50 9.49 9.81 

Range [nm] 2550 3409 2725 

Wing area [m2] 122.4 178.0 144.0 

EI 0.622 0.761 0.589 

DOC [US$/nm] 18.99 19.43 18.78 

According to the figures contained in Table 22, range and passenger capacity are directly 

proportional to EI. Therefore, larger aircraft and consequently aircraft with greater range 

and number of passengers tend to have higher EI values. The aircraft found with the 

highest EI (#1462) meets this standard, as it combines the greater range and greatest 

number of passengers of the Pareto front. 
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6.7 Impact of aspect ratio on optimal design 

The plots shown in Figure 88 provide a good comparison between the results of the two 

optimization tasks carried out here. They show the feasible individuals that emerged in 

the optimization runs and related Pareto front at the same scale. 

 
Figure 88: Comparison between the optimization tasks with and no flutter 

constraint 

Comparing the results in Figure 88 (a) and (b), it is noticeable that optimization with no 

flutter speed constraint resulted in optimal individuals with an aspect ratio close to 11, in 

a much higher proportion than in the results obtained from the optimization task where 

the constraint was incorporated. This feature can be explained as individuals with a higher 

aspect ratio present lower flutter speed, as can be seen in Figure 88, which was penalized 

when the flutter constraint was added to the optimization procedure. The added constraint 

equation also led to a change in the position of the Pareto front, which is much more 

central in Figure 88 (b), showing the significant degradation of the results found. When 

comparing the Pareto frontiers in Figure 88 (c) and (d), it is noticeable that the Pareto 

frontier from the optimization with no flutter speed constraint is composed of individuals 

with a high aspect ratio than those from the optimization task where the constraint was 

imposed. 

Table 23 contains the characteristics of the aircraft with the highest EI of the two 

optimizations and Figure 89 shows a simplified top view of both. The two aircraft have 

similar solutions because in both cases maximizing the EI led the optimizer to look for 

aircraft with a larger wing area, passenger capacity, and range. However, due to the lower 

aspect ratio, the flutter-constrained aircraft has poorer aerodynamic performance and 

therefore a 10% lower EI and a 5.25% higher DOC. In addition, the poorer aerodynamic 
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performance caused the optimizer to further increase some design variables of the flutter-

constrained aircraft, which consequently has a larger wing area, cabin length, and overall 

traction. Despite the larger wing area, the constrained aircraft has a shorter range due to 

the degraded aerodynamic performance. Overall traction was increased because more 

traction was required to meet climb requirements due to increased drag. 

Table 23: Comparison of design variables of higher EI aircraft 

Aircraft ID 𝑺𝒘 [m²] 𝑨𝑹𝒘 𝝀𝒘 𝜦𝒘 

With no constraint 1855 171.65 10.92 0.263 22 

With constraint 1462 177.97 9.49 0.342 22 

𝑳𝒇 [m] WR 𝑹𝒏𝒎 MMO SC [ft] T [kN] 

38.9 0.91 3470 0,83 35,000 303 

39.3 0.90 3409 0.93 40,000 339 

 
Figure 89: The largest EI aircraft with and without restriction 

Table 24 contains the design variables of the aircraft with the lowest DOC of the two 

optimizations, and Figure 90 has their top views. In this case, the two aircraft presented 

significantly different characteristics, as the aircraft with the smallest DOC showed a 

longer range and a shorter fuselage length in the unconstrained optimization, while the 

range was reduced, and the cabin size increased in the constrained optimization. Despite 

this fact, the restricted aircraft presented poorer aerodynamic performance and 

consequently a 5.92% higher DOC and a 20.9% lower EI. This large difference in EI is 

justified by the different passenger numbers and ranges that place the aircraft in different 

market niches. Full traction was again increased to meet climb requirements. 

Table 24: Comparison of design variables of the optimal aircraft with the lowest 
DOC that resulted from the two optimization tasks 

Aircraft ID 𝑺𝒘 [m²] 𝑨𝑹𝒘 𝝀𝒘 𝜦𝒘 

Without constraint 1855 171.65 10.92 0.263 22o 

With constraint 1462 177.97 9.49 0.342 22o 

𝑳𝒇 [m] WR 𝑹𝒏𝒎 MMO SC [ft] T [kN] 

38.9 0.91 3470 0.83 35,000 303 

39.3 0.90 3409 0.93 40,000 339 
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Figure 90: The lowest DOC aircraft with and without restriction 

Another important difference between the results is the time that was taken to fulfill the 

two optimizations. Although the two optimizations used the same computer 

configuration, the computational cost for the optimization with the flutter constraint was 

six times higher than that for the optimization without the flutter constraint. This shows 

that aeroelastic analyzes significantly increase the computational cost, especially 

considering that the analyzes only consider one case of takeoff weight, while normally 

this type of analysis considers different weights and Mach numbers. 

7 Conclusions 

This Chapter intends to discuss the importance of incorporating medium and high-fidelity 

aeroelastic tools into multi-disciplinary and multi-objective design platforms tailored to 

handle transport airplanes. In addition, the development of surrogate models for transonic 

flow representation with acceptable levels of accuracy is also the objective of this 

Chapter. For a better understanding of these topics alongside the three computational 

applications contained here, additional Sections are also part of the present Book Chapter, 

namely an overview of induced drag and new aircraft configurations, as well as the 

meaning of machine learning and its objectives.  

The following topics were discussed in this Book Chapter: 

The quest for high aspect-ratio wings has led to new airplane configurations to reduce induced 

drag. A dual-fuselage configuration was especially analyzed. Some pros and cons related to the 

adaptation of such configuration for passenger and cargo transport were raised. Structural 

considerations were also discussed for a strut-braced airliner. 

A closely coupled FSI approach was used to investigate the aeroelastic behavior of the KC-135. 

Detailed structural and aerodynamic characteristics could be captured for this airplane, enabling 

the verification of main effects that arose from the winglet incorporation, verifying how the 

flexibility of the structures affects the aerodynamic behavior of the wing and the winglet. Besides 

the validation of the approach adopted here, corroborated by the excellent agreement with wind 

tunnel and flight test, an outstanding capacity of prediction of the aeroelastic phenomena is 

available, both qualitatively and quantitatively. The main utility of modeling these coupled 

physics is to obtain more accurate metamodels for preliminary studies, calibration of aeroelastic 

plant models for control purposes, and parametric models to perform multidisciplinary 

optimization studies. Thus, the objective of utilizing it from the design of morphing winglets is 

fulfilled. 
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Full potential flow is a very attractive approach for MDO platforms that are elaborated for aircraft 

conceptual design. Besides 3D applications, a computer code for the inverse transonic airfoil 

design was presented and its performance and accuracy are excellent. The design methodology 

presented at issue proved to be a simple and efficient tool for preliminary wing design, always 

converging towards unique solutions for each set of reasonable prescribed Cp distribution. After 

a few design iterations, it is possible to introduce large geometric modifications on the wing airfoil 

sections, and properly reproduce a suitable pressure distribution.  

A surrogate model with ANN to replace a full-potential code in airplane MDO frameworks was 

presented. A database of approximately 72,000 cases to train and design the ANNs was generated. 

The size of the database was checked with the learning curves method. It is also important to 

visualize how the input variables of the database were distributed over the proposed domain, as 

this had a direct impact on the prediction errors distribution along with the domain of each input 

variable. Several multi-layer feed-forward ANNs were trained using the scaled Levenberg-

Marquardt algorithm. ANN architectures in terms of several neurons were selected based on 

minimum mean squared error presented by approximately 5000 cases that did not take part in the 

training/validation/test of the networks. The ANNs dedicated to the three drag components, 

parasite, induced, and wave, give better predictions when compared with the single-network 

approach. The parasite drag coefficient presents the toughest patterns for ANN learning. A 

reduction of 1660 times in computational cost was recorded, with average absolute errors lower 

than one drag count for all kinds of drag coefficients. According to the results, it is possible to set 

up ANN to substitute CFD software to reduce the computational cost in a multidisciplinary 

optimization framework, with acceptable errors for the conceptual design phase. 

A study on the influence of aeroelastic analysis on the configuration of transport airplanes 

obtained by a multi-disciplinary optimization procedure was carried out. For this purpose, two 

multi-objective optimization tasks were performed, with the main goal of minimizing the direct 

operational cost and maximizing the efficiency index for a medium-range wide-body aircraft, one 

without and the other with aeroelastic constraints. An MDO framework was integrated with the 

NeoCASS package for aeroelastic analysis. Thus, an aeroelastic constraint was implemented in 

which the maximum operating Mach number of the aircraft was scanned to find a flutter speed 

and an altitude at which the phenomenon occurs. If this flutter speed and altitude were inside the 

flight envelope of the aircraft, the individual was considered infeasible. The comparison of the 

optimization runs performed showed that the inclusion of flutter constraints in the optimization 

of the aircraft design has limited the wing aspect ratio, leading to poorer aerodynamic 

performance and, consequently, poorer optimization results. The comparison of aircraft with 

higher EI found in the two optimizations shows a 10% decrease in EI and a 5.25% increase in 

DOC, while for aircraft with lower DOC there was a 20.9% decrease in EI and a 5.92% increase 

in DOC. In the second case, the constraint completely changed the characteristics of the aircraft 

by reducing the range and increasing the number of passengers. The inclusion of aeroelastic 

constraints in conceptual design restrains the performance improvement and therefore 

significantly alters the optimal designs obtained. Moreover, it was found that these trends cannot 

be generalized for each aircraft project, since the occurrence of the flutter phenomenon is quite 

characteristic for each aircraft, responding to small changes in wing geometry, engine parameters, 

or aerodynamic forces. Therefore, the incorporation of a fast and accurate aeroelastic analysis at 

the beginning of the conceptual design phase is of utmost importance to increase the confidence 

of the optimizations. 
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L-Systems and Fractone Modeling
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1University of Hawaii at Manoa, Department of Mechanical Engineering, 2540 Dole
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Abstract

Nature has long been a source of inspiration to both engineers and designers alike.
This chapter describes a bio-inspired, topology optimization method for engineering de-
sign optimization. The method is based on evolutionary developmental processes in
biology and employs a cellular division model to develop topologies. Concretely, a Map
L-System, a graph based, parallel rewriting method, is used to model the cellular division
process that generates the topology of the design, and a genetic algorithm is then used to
evolve a population of designs. In the developmental process of the structure, fractones,
elements that play a fundamental role in the regulation of cellular divisions, are modeled
and incorporated as an additional control parameter for the formation and optimization
of topologies. The performance of the resulting method is illustrated with an aeroelas-
tic flapping membrane wing optimization problem in which the supporting structure is
optimized for power, lift, and thrust requirements.
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1 Introduction

Topology optimization seeks the economical distribution of material within a design domain,
while satisfying a set of constraints. There exists myriad computational methods for topology
optimization, each employing a variety of techniques and with unique advantages as well as
limitations—see the monographs Rozvany [1994], Allaire [2002], Bendsøe and Sigmund [2003],
Osher and Fedkiw [2003] and review papers Gain and Paulino [2013], van Dijk et al. [2013],
Deaton and Grandhi [2014], Wang et al. [2021] for a detailed description and study of the
existing methods.

The most popular method for topology optimization, namely, the solid isotropic material
with penalization (SIMP), involves a “pixelation” of the design domain. The color of each
pixel is determined by a density function, ρ, that can vary from zero (void) to one (solid).
The addition of non-physical “gray” material (0 < ρ < 1) is penalized by raising the density
function to a power p ∈ N, p > 1, and defining the stiffness tensor at a point as the product
ρpE0, where E0 is the elasticity tensor of the structural material. Since ρp, the addition
of gray material is made less effective as p increases, thus reducing the regions with gray
material in the domain. Though simple to implement and intuitive in its formulation, the
designs obtained with SIMP require post-processing to interpret the optimized layout, since
inevitably they contain regions of artificial, gray material. In addition, filtering techniques
and high resolution are often required to achieve meaningful results from these methods—
higher resolution in turn greatly increases the computational demand to explore the design
domain. To alleviate these demands, a genetic algorithm (GA) may be employed. In this
approach complex problems may converge toward optimal designs without exploring every
possibility, by directly translating the discretized domain into a genome and simulating a
natural selection process to evolve the topologies. In addition, given the independence of
the individuals in the population, perfectly parallelizable algorithms can be easily devised to
speed up the computation of the population of designs in each generation.

The biologically inspired method described in this chapter takes advantage of the evolu-
tionary algorithm, but it generates topologies without a discretization of the domain, thus
avoiding the mesh dependency of the results that arise from the pixelation resolution. In
place of a pixelated approach, the map L-system follows the sequence of rules to generate a
vast pool of maps, which can be translated into engineering structures.

Previous studies have proven this biologically inspired method capable of successfully
performing complex optimizations—see, for instance, Kobayashi et al. [2009], Stanford et al.
[2012], Stanford et al. [2012], Kolonay and Kobayashi [2015]. Here we explore a mecha-
nism of cellular division in neurosciences to enhance the search effectiveness and efficiency in
discovering and refining of optimized solutions to engineering problems.

2 Map L-Systems

Introduced in 1968 by biologist Aristid Lindenmayer, the Lindenmayer system (or L-system)
is a method of rewriting a series of character/grammar strings in a parallel fashion. The
versatility of the L-system to represent the parameters of any starting element with a char-
acter string and evolve the structure by implementation of the governing production rules
has proven the system to be useful for a number of applications. Some applications in-
clude the ability to produce interesting fractal geometries, model the branching growth of
plant structures, and simulate cellular divisions—see figure 1. The map L-system proposed
by Nakamura, Lindenmayer, and Aizawa (Prusinkiewicz and Lindenmayer [2004] Nakamura
et al. [1986]) is an extension of L-systems for graphs that are maps, and was originally develop
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to model single layer cellular divisions. This class of methods forms the basis for modeling
the topologies of structures in this work.

Figure 1: Sample images generated by L-
systems: fractal pattern (top), development of
plant structures (mid and bottom)

Maps are planar graphs defined by a fi-
nite set of regions in which each region is
enclosed by a string of edges which meet at
vertices. Every edge has one or two associ-
ated vertices, all edges are a part of a re-
gion’s boundary, and all edges are connected
(such that there are no ‘islands’ within the
domain). A map may be representative of
a single cellular layer where the edges are
the cell wall, the enclosed regions are the
intracellular space within the cells and the
extracellular spaces lay within the walls. Si-
multaneous cell divisions are modeled with
a binary propagating map 0L system with
markers (or mBPM0L-system). The 0L sys-
tem is the context-free Lindenmayer parallel
rewriting system in which there are no in-
teractions between cells. The map L-system
is binary and propagating because cells are
always divided into two daughter cells and
in this model cells are never destroyed or joined. The markers play the functional role of
flagging the boundary edges at potential vertices where the cell may divide and new edges
may form (see Prusinkiewicz and Lindenmayer [2004]).

Informally, a two dimensional map L-system is first initiated with an axiom that defines
the edges of the domain. Once initiated, the closed map undergoes a series of subdivisions
by the addition of straight internal edges. The creation and location of these edges are
governed by a predefined set of production rules. The algorithm begins each iteration with a
discretization of the existing edges of the map and a placement of markers at selected nodes.
The discretization patterns of the edges and the location and orientation of markers are based
on the production rules. Once all edges have been divided and markers placed, the new edges
are created by matching the markers. When two markers are present along the boundary of
a common region, have the same label, and appropriate orientations, they will form a new
wall between the two markers.

Mathematically, the system is defined by an alphabet, Σ, which is a finite set of characters
(letters and symbols) and may be represented as Σ = {A,B,C, ..., [, ],+,−}. From this
alphabet, characters are selected to create an axiom, Ω, which is the string that initiates the
rewriting process. For example, an axiom would be Ω = ABAB. The third and final item
required is the finite set of production rules or rewriting rules, P . The production rules are
also limited to the characters of the alphabet, Σ, and must take the form α→ χ, where α is a
single character of the alphabet which serves as the predecessor and χ is the word (or string)
called the successor. Note that if there are multiple rules with identical predecessors and
differing successors, a probability may be assigned to each rule to determine the frequency at
which each are utilized. As an illustrative example, we consider the following two production
rules:

A → B[−A]x[+A]B

B → A
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To this point, the example is nearly a simple D0L-system (deterministic because the prede-
cessors are non-repeating and context free) which is not specific to a map generation. The
example put forth, however, may be applied to a mapping problem with the addition of a
few rules.

In a mapping scenario, each letter of the axiom represents an edge of the initial map.
Therefore the length of the axiom must be equal to the number of edges in the initial structure.
It is also customary to include the special characters [, ], +, and - when using a map L-system.
When included in the production rules, the matching brackets, [ and ], indicate the inclusion
of a marker which is labeled by the enclosed character. The orientation (+ or -) preceding
the label in the closed brackets indicates the directionality of the marker, in this case the
+ symbol correlates to a counterclockwise placement of the edge. The remaining characters
of the successor, which are not enclosed by brackets, indicate the number of segments the
preceding edge is divided into. The new edges will be labeled as prescribed by the rules
and nodes are placed between the edges. For example the first edge, A, which is the lower
boundary of the map in figure 2, is discretized into three equal segments. The new edge
segments are labeled, B, x, and B respectively. Between the first and second segments a
marker oriented downward is placed and an upward oriented marker is placed between the
second and third segments. Since the first marker is oriented outward from the map it is
discarded while the second marker is eventually paired with the other inward facing marker
on the upper boundary.

After all the pertaining edges are subdivided and markers are placed, the markers are
checked for any possible pairings. As mentioned earlier, a pair of markers are matched if
they belong to the same cell (are on the boundary of the same region), are not located on
the same edge, if their labels are the same, and if they are oriented toward each other. There
may be more than one potential set of marker pairs in a given cell, but the first pair to
be found determines the location of the cell division. After cells are scanned for matching
markers and the locations of the cellular divisions are determined, the remaining markers
are discarded. The resulting maps generated in this example, for an initial square map with
equal subdivisions of the edges, are shown in figure 2.

For the purpose of generating and optimizing topological maps in engineering applications
it is useful to enforce a few additional constraints. After satisfying the previous conditions to
create a cell wall, an eligible marker pair and its respective new edge must also meet certain
limits prescribed by the user:

1. Prevention of small angles: the angles between the adjacent edges in the divided cells
must be larger than a prescribed lower limit; this prevents the creation of cells with
narrow angles.

2. Prevention of small areas: each newly formed cell must have a regional area which
is greater than a prescribed percentage of the original map to avoid the formation of
excessively small regions.

For practical problems, the structure must also have a finite number of edges. In some cases
the cell divisions will cease when all edges of the map are labeled with a terminal token such
(such as x in the previous example). Otherwise there exists a maximum number of iterations
to be completed. Since this value is highly variable and dependent on the problem at hand,
a number of iterations may be prescribed at the start of the map generation program or
optimized in the genetic algorithm.

This section has provided a brief introduction to L-systems and an overview of the map
L-system as is pertinent to topological map generations. For more details and information
on Lindenmayer systems, the reader is referred to Prusinkiewicz and Lindenmayer [2004] and
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Figure 2: Example of the mBPMOL-systems process for the first four iterations where Ω =
ABABand P: A→ B[−A]x[+A]B and B → A.

the references there in. The next section will further investigate the biological aspects of
cellular division and their associated regulation mechanisms.

3 Fractones

In cellular biology the mitotic phase, or period of active cellular division, is generally a
minor component of the overall cell cycle. A majority of the cell’s time is rather spent in
preparation for a cellular division, where accumulation of mass and nutrients and synthesis of
DNA occurs. Cell cycles may also be dormant at times when inactive time gaps are included
Becker [2009]. While rapid cellular division may take place in the early stages of life to
promote growth of the individual, the main purpose of cellular divisions in adult organisms
is for the maintenance of the body. Adult cellular divisions are reduced to the replacement
of damaged and aged cells and to meet the overall functional needs of the individual. As a
result, the frequency of cellular divisions is highly variable and dependent on the type of cell
and the physical state of the body. To accommodate these variable rates of demand, the cells
will typically enter periods of arrest or dormancy until an external indicator is presented and
initiates the division process.

For this engineering application, our interest lies in the regulation of the cell cycle. Many
cells do not replicate very frequently and often branch from the cell cycle into a dormant
phase until signaled to resume active division. In these cases the cell only begins to actively
divide when initiated by an external source, most often by cell-type specific molecules known
as growth factors. Our focus is in better understanding these control and regulation processes
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which govern the cell cycle and initiate cellular divisions. Recent findings in the area of neu-
rosciences have introduced new concepts for better understanding such regulatory processes.
The results of these studies, which will be reviewed in this section, are the inspiration for the
model presented in this work.

In adult neurogenesis, neurons are generated from neural stem and progenitor cells (NSPC).
NSPC are localized in specific area of the brain, most notably the subependymal layer of the
left ventricle Kerever et al. [2007] Mercier et al. [2003]. Neural stem cell differentiation and
proliferation in these areas are also known to be governed by the presence of growth factors,
but the details of this regulatory process have remained unknown.

Figure 3: Cell proliferation and Fractones in
the lateral ventricle: Fractones (arrows, green
labeled N-sulfated HS) and proliferating cells
(red labeled BrdU+) near the N-sulfated hep-
aran sulfate fractone structures.

It has been hypothesized that the extra-
cellular matrix in the adjacent regions of the
left ventricle wall also plays a contributing
role in the initiation of cellular divisions.
Close examination of these regions have
brought attention to branched structures in
the extracellular matrix which come in di-
rect contact with the NSPC. This branched
(stem and bulb) structure which binds to the
NSPC has assumed the term, fractonesKer-
ever et al. [2007] Mercier et al. [2003]. Frac-
tones are believed to be associated with the
material of basement membranes which is
the surface tissue containing high concen-
trations of extracellular molecules (ECM).
These extracellular molecules include hep-
aran sulfate proteoglycans (HSPG) which
is a known binding cofactor of growth fac-
torsKerever et al. [2007].

Imaging and statistical analysis methods
have produced many new findings and evi-
dence supporting the relationships theorized
above. Molecules comprising the basement
membranes have been identified in fractones
structures, confirming that the two materi-
als are indeed affiliated. A high density of cell proliferation was also observed near fractones,
especially those containing N-sulfate HSPGKerever et al. [2007]. Immunolabeling techniques
were performed to identify cells recently entering mitosis in several dissection samples. It
was found that the majority of cells initiating cellular division were in the areas adjacent
to fractones and capillaries, however statistical analysis revealed that cells initiating mitosis
were generally in closer proximity to fractonesKerever et al. [2007]. These results indicate
that fractones store the fibroblast growth factor 2 (FGF-2) via binding with HSPG and they
are the main structures in relaying FGF-2 (growth factors) to the neural stem cells which
then undergo mitosis.

The introduction to fractones presented here express the basic concepts that are of interest
in this work. For further details on the analysis of fractones refer to Kerever et al. [2007] and
Mercier et al. [2003].
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4 The Fractone Map L-system

Thus far the map L-system and fractones have been introduced individually. In this next
segment, the map L-system will undergo modifications to incorporate the idea of fractones
and generate the resulting fractone map L-system.

It was previously demonstrated that fractones play a vital role in initiating division of their
associated cells through the capture and delivery of growth factors from the extracellular space
to the eligible cell. The model proposed here utilizes a similar and slightly simplified concept.
For the purposes of this study, fractones are modeled as small and stationary structures which
passively capture and consume simply diffusing growth factors. The fractones initiate mitosis
in its neighboring cell once a threshold quantity of the growth factors is accumulated. The
rates of growth factor accumulation in these structures are governed by a constant diffusion
coefficient and the initial distribution of the growth factor molecules.

Integration of the fractones into the map L-system is accomplished by the assumption
that all of the previously introduced markers in the map L-system represent fractones. All
boundary and internal nodes also indicate active fractones (corner nodes are neglected). For
simplification it is assumed that all markers (i.e. fractones) are actively consuming growth
factors and remain active for the remaining iterations of the map generation. The fractones
also have the same affinity for growth factors, and all fractones have the same threshold
value. There is only one type of growth factor present in this model and the diffusivity of
the molecule is constant throughout the system.

The diffusion of the growth factors along the edges is approximated with a one dimen-
sional, piecewise linear finite element scheme. Diffusion is modeled along each line segment
between markers and each segment is discretized with a constant number of uniform nodes.
The source term of the diffusion equation is set to zero and the initial distribution of the
growth factor is prescribed. All segment ends (fractone locations) are prescribed Dirichlet
boundary conditions with a fixed concentration of zero.

The diffusion model is also prescribed a finite number of uniform time steps and after
each time step, the amount of growth factors consumed at each node is computed. All eligible
markers must accumulate the threshold value of growth factors in addition to satisfying all
other requirements to form a pair and initiate a new cell wall formation. One example for
such a case where the fractones influence the topology can be seen in figure 4.

After each iteration of the map generation when additional markers are placed and new
walls may be formed, the growth factors are redistributed. For each existing segment that
undergoes new subdivisions, the total quantity of growth factor is conserved and distributed
among the new subsections. The existing growth factors of the edge are accumulated and
dispersed with a weighted distribution governed by the length of each new segment. When
a new wall is formed, an initial concentration of growth factors must also be assigned. In
this case the average growth factor concentration of all existing segments is computed and
assigned to the newly formed wall segments. This averaging is performed to remove any bias
of wall formations at this member due to extremely low or high concentrations of growth
factors relative to the remaining edges.

The growth factor concentrations for these calculations are carried over from the previous
iteration in the map generation. If a pair of markers were matched in the preceding iteration,
the growth factor concentrations of all edges during the first time step in which both markers
reached the threshold value, serve as the initial conditions for the next iteration of the map.
If there were no matching pairs in the previous iteration, the growth factor concentrations
along all the edges during the last time step are the values carried over to the next iteration
of the map generation.
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(a) (b) (c)

Figure 4: First iteration of a mapping with and without fractones with axiom: ABAB and
production rules:A → B[+A]x[+A]x[+A]B and B→A: a) First subdivision using original
mapping system b) Diffusion of growth factors along linearized edges of the map (starting at
bottom edge): GF concentration vs. x c) First subdivision using fractone mapping system

While this method is more complex and requires greater computational time to generate
maps compared to the original map L-system, it has the potential to improve the overall
performance of the optimization with the addition of the diffusion parameters in the genetic
algorithm. This scheme may prove to be beneficial when applied to complex optimization
problems such as the application presented in the next section.

5 Flapping Wing Optimization

An aeroelastic flapping membrane wing model Stanford et al. [2011] will serve as the test
application of the above mentioned optimization methods. This problem analyzes the perfor-
mance of a forward flight flapping membrane wing for a micro air vehicle. These bio-inspired
wings are comprised of thin, flexible membranes reinforced with a rigid beam network, similar
in form to the veined wings of insects. The performance of the wing structures are influenced
by the venation patters of the supporting members and it is this topology which will undergo
optimization. Both the original and fractone inspired map L-systems will be applied inde-
pendently and the resulting maps will be used to generate the Pareto curves parameterized
by the designs power requirement and thrust generation.

Evaluation of the wings under the given flight conditions are to be accomplished as follows.
The structural modeling of the wing will be completed using a finite element analysis of the
membranes with a triangular mesh (figure 5). The respective governing equation is applied
to each element of the membrane:

Nx · w,xx +2Nxy · w,xy +Ny · w,yy +fz(x, y, t) = ρ · w,tt (1)

where N is the pre-stressed resultants, w and f are the out-of-plane displacement and applied
force per area, and ρ is the membrane density per length. The Euler-Bernoulli equation is
used to analyze the beam members (battens, leading edge, tip, and root) Stanford et al.
[2011].

The governing equations are converted into the usual finite element matrix form:

M · u′′ + C · u′ +K · u = F (2)
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Figure 5: Finite element mesh of a sample wing design: triangular mesh of membrane, battens
(red)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F is the
accumulated load vector, and u is the total deformation of the structure Stanford et al.
[2011] Eric B. Becker and Oden [1981]. Here the solution, u, is also approximated with a
linear combination of modes:

u = Φ · η (3)

where Φ is the modal matrix of natural vibrations and η is the modal amplitudes.
Prior to evaluating the performance of the wing designs, a few parameters must be defined.

The flight kinematics are characterized by two angles of the wing, the first is the static angle
of attack with respect to the external flow, α, and the second value, β, prescribes the range
of the sinusoidal flapping. A constant velocity is also defined for the external air flow and a
body attached coordinate system is utilized for the remaining computations.

Figure 6: Characteristic angles and span-wise stations of the flapping wing with an attached
coordinate system

The aerodynamic loads as opposed to the structural analysis are evaluated with a number
of span-wise cross-sections of the wing. The pressure across the wing is determined by
applying the no-penetration condition at each span-wise station:

ν + λ = uo ·
∂h

∂x′
+
∂h

∂t
+ νo + ν1 · x′/b (4)

Kobayashi, Marcelo H. (2022) Bio-Inspired Topology Optimization, Map L-Systems & Fractone pp. 237-268

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 246



where h is the shape of the wing, uo is the horizontal velocity, the last three terms are
the vertical velocity (where b is the local semi-chord), and ν and λ are the induced flow
from the bound and trailing circulations Stanford et al. [2011]. The terms h, ν and λ are
transformed using the Glauert space ϕ = acos(x′/b) for computations henceforth and the
resulting integrations are computed using a defined set of Gaussian integration points.

The loads acting over each span section are computed using:

Fy′ =

∫ b

−b
∆P · dx′ + F νy′ (5)

Fx′ =

∫ b

−b
∆P · ∂h

∂x′
· dx′ − 2π · b · ρ∞ · (nuo + ho − λo + uo · Σn ·

hn
b

)2 + F νx′ (6)

and the respective viscous terms are computed as follows (F vy′ is determined similarly):

F vx′ = b · ρinfty · U2
∞ · (CD0 · cos2αs + CDπ/2 · sin2αs) · uo/

√
u2o + v2o (7)

αs = atan(
h(−b)− h(b)

2b
) + atan(

vo
uo

) (8)

where αs is the local angle of attack, and CD0 and CDπ/2 are the drag coefficients at angles
0 and π/2 respectively.

A coupling of the two previous models (structural and airload) is employed to solve for
the wing response at each temporal state. The loads are solved for at each cross-sectional
segment and interpolated into the structural finite element mesh. The value of the pressure
is evaluated at the center of each finite element and considered to be constant over the entire
element. The deformation of the wing is determined and the wing shape is updated.

When the air vehicle is subjected to time-periodic flight conditions, the above solution
may also be assumed to be time-periodic upon degradation of any transient terms. Each
complete flapping cycle may therefore be discretized in time and the set of time-monolithic
solutions are approximated using a finite element method.

Further details and information on evaluation of this model may be found in Stanford
et al. [2011] and the references therein.

5.1 Genetic Algorithm

Once the topological maps have been generated by the previously discussed scheme, there
is then the need for a system to evaluate, analyze and optimize the maps to produce useful
results. Here the topologies are optimized using a genetic algorithm (GA). Just as biolog-
ical evolution continues to progress by the process of natural selection, the nature of this
method is to mimic the evolutionary process by preserving the most fit individuals. Genetic
algorithms also allow for mutations and hybridization of individuals to produce offspring,
however the advantage here is that computational process is greatly accelerated compared to
the conventional evolution process.

The genetic algorithm generally begins with strings of numbers (equal in length) which are
analogous to genomes of a common species. Each numerical string represents one individual
and the number of strings represents the population size, which is constant through each
generation. The genomes are representative of the structures which are to be optimized;
in this case each genome may be translated into a topological map by the (fractone) map
L-system. The individual genes or elements of the string are used to generate the axiom and
production rules associated with the map L-system. The first set of numbers in the genome is
translated into the axiom, generating a character label and directionality for each initial edge
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of the map. The majority of the genes used occur in the second extraction from the genome.
This set generates the production rules which again prescribe a number of character strings
and associated orientations for the markers. In the case of the fractone map L-system, an
additional three genes are placed at the tail of the genome. These last three genes contain
the values for the threshold, diffusivity, and initial concentration of the growth factors in the
fractone model. The only constraint placed on these values is that the threshold value must
be less than the initial concentration.

Once the genomes are translated into their associated maps, they are evaluated by a
function unique to the problem at hand and each member of the population is ranked based
on their “fitness”. The most fit individuals are retained to repopulate the next generation of
individuals by a combination of random mutation and cross-over of two parent genomes. The
probabilities of crossover and mutation shall be cautiously selected by the user to ensure that
the desirable characteristics are retained while allowing enough variation to avoid convergence
at local optima. Once the offspring are generated, they are also evaluated for fitness and
pooled together with the parent genomes. The combined population is ranked and the best
genomes are selected to begin the next iteration. The process is completed when a prescribed
number of iterations are achieved.

While a single objective optimization problem would be a straightforward example for
determining ”fitness” in a genetic algorithm, it is often desired that a multiobjective opti-
mization be performed. In this case there is a defined constraint:

g(x) ≤ 0 (9)

and a vector of objective functions to be minimized:

{f1(x), f2(x), · · · , fn(x)} (10)

This problem is solved using a non-domination ranking system in which designs are preferred
if they perform superior to other designs in one or more of the objective functions. Generally
there is no single optimum design, and rather a Pareto front is formed. The points along
the Pareto optimum are characterized such that one objective function cannot be improved
without compensation in another target function. A niching scheme based on the proximity
of points is also employed and promotes a greater spread of the Pareto front. The topological
designs contained in or closest to the Pareto front are ranked higher and favored in the
selection of parents for the next generation.

The previous section presented the methodologies for performing a topology optimization
using a biologically inspired fractone model. In this section the results are presented for an
optimization of the venation pattern for a flapping membrane wing of a micro air vehicle. Both
the original map L-system topology generation and the fractone map L-system methods are
employed and the resulting performances are compared. Some optimal wing designs and their
performances are introduced here along with some analysis of the Pareto fronts generated
during the optimizations.

6 Wing Design

The wing structure was composed of a thin latex membrane and a carbon fiber lattice struc-
ture. The membrane was characterized with an isotropic pre-stress condition and the carbon
fiber beams were prescribed a rectangular cross-section. These details, along with the re-
maining material and geometric properties of the wing are presented in Table 1.

The wing shape was defined with a root chord of 0.16 meters, a wing length of 0.4 meters,
and a tip chord of 0.04 meters. A parabolic camber was prescribed with a maximum value
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property membrane battens leading edge

elastic modulus, E 2 MPa 300 GPa 300 GPa
Poisson’s ratio, ν 0.5 0.34 0.34

density, ρ 1200 kg/m3 1600 kg/m3 1600 kg/m3

thickness 0.1 mm 0.8 mm 2 mm
width - 3 mm 5 mm

pre-stress, Nx, Ny 10 N/m - -

Table 1: Material and geometric properties of the membrane wing

of 2% the local chord length. There was no twist of the original wing, the dihedral angle was
zero, and the angle of attack (α) was set to 4 ◦.

The kinematics of flight were parameterized with a flapping frequency (ω) of 40 rad/s
and a 30 ◦ amplitude of sinusoidal flapping (β). The flow velocity (U∞) was 10 m/s and the
density of air (ρ∞) was 1.225 kg/m3. The drag coefficients, CD0 and CDπ/2, were 0.05 and 2
respectively.

A number of parameters were also prescribed for the evaluation process which computed
the fitness of each wing design. The structural analysis of the wings was performed with a
finite element method using 20 modes. Airload analysis was performed with 20 span wise
wing stations with 20 Gauss points and 6 inflow states. The flight dynamics were computed
using a total of 100 timesteps per flapping cycle and 5 full cycles.

Three coefficients were defined for the multidisciplinary optimization of the wings. The
lift generation, thrust generation, and power requirements were evaluated as follows:

CL = −Fx/(0.5 · ρ∞ · U2
∞ · S)

CP = P/(0.5 · ρ∞ · U3
∞ · S)

CT = −Fy/(0.5 · ρ∞ · U2
∞ · S)

where F represents the respective forces, P is the accumulated power, and S is the area of the
wing. For this optimization all coefficients were averaged over the flapping cycle and the lift
coefficient was selected for the constraint function. The critical CL value had a magnitude
of 0.4892 (corresponding to a recorded average lift required for maximum thrust) and the
constraint function was defined as:

g(x) = CL − 0.4892 (11)

The thrust and power coefficients were retained as the two objective functions (f1(x), f2(x))
to generate the Pareto fronts. A population size of 200 individuals and 200 generations were
used in the genetic algorithm. The crossover probability of the genomes was 0.8 and the
probability of mutation was 0.1.

The map L-system was constrained to a 20 letter alphabet and a maximum of 8 letters
per production rule. A total of 4 iterations in the map generation were allowed. Growth
factor diffusion was assessed in the fractone map L-system with a fixed number and length
of timesteps. A total of 5 timesteps were used in each iteration of the map generation and
each step was uniform with a length of 0.1.

A large variety of skeletal designs were generated from the optimization schemes param-
eterized here. A glimpse at the diverse pool of the resulting topologies can be seen in figure
7. Here the most optimal designs for the power and thrust objective functions are displayed.
Each set of structures were randomly selected from a fractone and non-fractone based op-
timization. The drastic differences in the power and thrust optimums are apparent as well
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as the similarities of results generated within each set. Both skeletal structures for optimal
power coefficients contain very few members. The optimal design produced using the frac-
tone system is especially sparse, while the design generated without fractones includes some
reinforcement of the trailing edge. Similarly both designs for optimal thrust closely resemble
each other with higher densities of the lattice structures and the majority of the members
oriented span-wise.

(a) Optimal power coefficient design
without fractones: CP,avg = 0.3971,
CT,avg = 0.1873, conavg =0.0081

(b) Optimal thrust coefficient design
without fractones: CP,avg =0.5270,
CT,avg =0.2503, conavg = 4.79e−4

(c) Optimal power coefficient design
using fractones: CP,avg =0.4085,
CT,avg =0.1975, conavg =0.0105

(d) Optimal thrust coefficient de-
sign using fractones: CP,avg =0.5142,
CT,avg =0.2380, conavg =0.0046

Figure 7: Optimal power and thrust coefficient designs

A selection of the resulting wings and their performances are presented in greater detail
in figures 8 to 21. This collection includes a minimum power coefficient wing design resulting
from the original map and fractone mapping systems in figures 8 and 15 respectively. An
optimal thrust coefficient layout is also presented for the original and fractone mapping cases
in figures 9 and 16 respectively. A total of five intermediate structures were also selected at
random from each of the mapping scenarios and are displayed in figures 10 thru 14 and 17
through 21.

These results illustrate the structural dependence of the performances and correlate to
the results found in Stanford et al. [2011]. As seen in the cases of the minimum power re-
quirement designs, the lack of reinforcement at the trailing edge allowed for steeper gradients
of displacement in the membranes. This allowed the wing a greater contour to the flow condi-
tions and minimized the total power demand by reducing the aerodynamic resistance during
both the upstroke and down-stroke of the flap. The compensation of this design however,
was a reduction in peak thrust and lift performance. These designs (especially the fractone
generated design with only one batten) had inferior lift performance to all other designs;
while the lack of reinforcement allowed the wing to contour to more to flow, it reduced the
occurrence of increased cambering and inflation.

In contrast to the power optimal designs, the stiffened thrust optimal designs exhibited
reduced gradients with respect to the structures out-of-plane deformation. In both thrust
optimal designs, the out-of-plane deformations were due to span-wise bending of the struc-
tures. During the down-stroke of these designs, when the lift was increased, it is seen that
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the angle of attack was also slightly reduced and this favored the generation of thrust.
Interesting results are also observed in the inspection of the random designs. In many of

these scenarios, inflation occurred where venation was sparse and large deformation gradients
were formed. Presumably these occurrences favored a lift optimal design. An interesting
design is also seen in figure 19, in which chord wise reinforcements were incorporated. This
design resulted in intermediate performance in all three design variables between the thrust
and power optimal designs.

(a) Optimized map lay-
out

(b) Meshed wing structure

(c) Lift coeff vs. t/T ,
conavg =0.0081

(d) Power coeff vs t/T,
CP,avg =0.3971

(e) Thrust coeff vs. t/T,
CT,avg =0.1873

(f) Deformation of wing over a flapping cycle

Figure 8: Optimal power coefficient design: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =
4.79e−4

(d) Power coeff vs t/T, CP,avg =0.5370

(e) Thrust coeff vs. t/T,
CT,avg =0.2503

(f) Deformation of wing over a flapping cycle

Figure 9: Optimal thrust coefficient design: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0014 (d) Power coeff vs t/T, CP,avg =0.4325

(e) Thrust coeff vs. t/T,
CT,avg =0.2086

(f) Deformation of wing over a flapping cycle

Figure 10: Random design #1: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0224 (d) Power coeff vs t/T, CP,avg =0.4936

(e) Thrust coeff vs. t/T,
CT,avg =0.2316

(f) Deformation of wing over a flapping cycle

Figure 11: Random design #2: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0081 (d) Power coeff vs t/T, CP,avg =0.5039

(e) Thrust coeff vs. t/T,
CT,avg =0.2371

(f) Deformation of wing over a flapping cycle

Figure 12: Random design #3: Original mapping system Run 1
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(a) Optimized map lay-
out

(b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0034 (d) Power coeff vs t/T, CP,avg =0.4390

(e) Thrust coeff vs. t/T,
CT,avg =0.2120

(f) Deformation of wing over a flapping cycle

Figure 13: Random design #4: Original mapping system Run 1
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(a) Optimized map lay-
out

(b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0099 (d) Power coeff vs t/T, CP,avg =0.4750

(e) Thrust coeff vs. t/T,
CT,avg =0.2235

(f) Deformation of wing over a flapping cycle

Figure 14: Random design #5: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0105 (d) Power coeff vs. t/T,
CP,avg =0.4085

(e) Thrust coeff vs. t/T,
CT,avg =0.1975

(f) Deformation of wing over a flapping cycle

Figure 15: Optimal power coefficient design: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0046 (d) Power coeff vs. t/T,
CP,avg =0.5142

(e) Thrust coeff vs. t/T,
CT,avg =0.2380

(f) Deformation of wing over a flapping cycle

Figure 16: Optimal thrust coefficient design: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0807 (d) Power coeff vs. t/T,
CP,avg =0.4489

(e) Thrust coeff vs. t/T,
CT,avg =0.2141

(f) Deformation of wing over a flapping cycle

Figure 17: Random Design #1: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0114 (d) Power coeff vs. t/T,
CP,avg =0.4726

(e) Thrust coeff vs. t/T,
CT,avg =0.2220

(f) Deformation of wing over a flapping cycle

Figure 18: Random Design #2: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0017 (d) Power coeff vs. t/T,
CP,avg =0.4321

(e) Thrust coeff vs. t/T,
CT,avg =0.2051

(f) Deformation of wing over a flapping cycle

Figure 19: Random Design #3: Fractone mapping system Run 2

Kobayashi, Marcelo H. (2022) Bio-Inspired Topology Optimization, Map L-Systems & Fractone pp. 237-268

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 262



(a) Optimized map lay-
out

(b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0043 (d) Power coeff vs. t/T,
CP,avg =0.4640

(e) Thrust coeff vs. t/T,
CT,avg =0.2168

(f) Deformation of wing over a flapping cycle

Figure 20: Random Design #4: Fractone mapping system Run 2
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(a) Optimized map lay-
out

(b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0153 (d) Power coeff vs. t/T,
CP,avg =0.4285

(e) Thrust coeff vs. t/T,
CT,avg =0.2021

(f) Deformation of wing over a flapping cycle

Figure 21: Random Design #5: Fractone mapping system Run 2
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7 Pareto Front Analysis

A total of ten trials were performed for each of the fractone and non-fractone optimizations.
A typical Pareto front resulting in the final (200th) generation can be seen in figure 22. The
Pareto front exhibited here illustrates a wide distribution of points as biased by the niching
technique and superior performance of individuals compared to the other random designs.

Figure 22: Sample Pareto Front (obtained from Run 2 without fractones):- Power coefficient
vs. Thrust Coefficient, Pareto front (red) and other random designs (black)

7.1 Repeatability and Performance

The final Pareto fronts obtained from of each of the ten trials were collected to observe the
repeatability of the algorithm. Figure 23 displays the repeatability of results from both the
fractone and original mapping schemes. The two different methods appear to have comparable
performances in terms of consistency as seen from the clustering of points and relatively
narrow band-widths of the collected fronts.

The collection of Pareto fronts from the two methods were further combined in figure 24
to compare the fitness of the two methods. The dispersion of points belonging to the two
cases are fairly even and consistent. While both methods seem to perform equally well on the
thrust optimal end of the spectrum, the fractone mapping designs exceed the capabilities of
the original mapping system for the majority of the spectrum as it progresses to the minimal
power requirement designs. This is observed by the dominance of the fractone designs along
the leading edge of the Pareto Front, especially along on the right hand side of the curve.

7.2 Convergence

To determine the convergence of the GA, the gradual nearing of the Pareto fronts were
numerically approximated by computing an averaged norm. The distance from the highest
ranked points in each iteration to the set of points in the final (200th generation) Pareto front
were estimated and averaged for each approaching generation. The resulting convergence
rates were compiled and averaged and can be seen in figure 25. Here the convergence rates
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(a) Original mapping (no fractones) (b) Fractone mapping

Figure 23: Final Pareto fronts collected from runs 1 through10 (each test batch displayed in
different colors and markers)

appear to be comparable, however, the rate of convergence with the fractone mapping scheme
continuously improves over the 200 generations while the original methods quickly converges
during the first few iterations and then levels off. The convergence of the fractone model is
more consistent and it should be noted that the convergence rates are with respect to the
final Pareto Fronts of each case and the final results of the fractone model were generally
superior.

8 Conclusion

The results of these preliminary tests indicate that the performance of the fractone modified
mapping system are in fact superior to the conventional mapping system used for topology
optimization. Since the inclusion of fractones results in a competitive method for generating
maps, new methods have the potential to further improve the performance and convergence
of topology optimizations should the simple system be revised.

Future studies may test the effects of more complex fractone systems that incorporate
multiple and competing growth factors, source terms, variations in the initial distributions,
and removal or deactivation of fractones themselves. Inclusion of these additional control
parameter could provide greater control of the final designs and improve the overall efficiency
and capabilities of the process.
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Abstract

The concept of the topological derivative has been derived for several engi-
neering problems during the last years. In this chapter, the fundamentals and
the resulting closed formulae of topological derivative for some of the most clas-
sical problems are addressed. A brief review of the mathematical statements
used in the topological derivative concept is given. The programming strate-
gies regarding implementing the main routine for the topology optimization are
pointed out. Some numerical examples concerning classical applications are
introduced to demonstrate the application of the topological derivative concept
for topology problems.

1 Introduction
Topological sensitivity analysis was presented as a technique that allows obtain-

ing simultaneously the optimal shape and topology, being proposed originally by
(Schumacher [1996], Sokołowski and Żochowski [1997], Sokolowski and Zochowski
[1999], Garreau et al. [1998], Garreau et al. [2001]). This sensitivity calculation
results in a scalar function called a topological derivative (DT ). The DT provides
for each point in the domain the sensitivity of the cost function when creating
a small hole at that point.Garreau et al. [1998]), proposed the truncated domain
method to calculate the topological derivative. The proposed method was based
on some simplifying assumptions, the most severe of which consisted in the fact
that the cost function should not explicitly depend on the domain. The works of
Sokolowski and Zochowski [1999] and Céa et al. [2000] presented the calculation
of DT , via shape sensitivity analysis, particularized only for cases where the ho-
mogeneous Neumann boundary condition was prescribed in the holes. The other
boundary conditions, such as non-homogeneous Neumann, Dirichlet and Robin do
not validate their applicability in this calculation hypothesis. Novotny et al. [2003]
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precisely establish the concepts of derived topology and shape change sensitivity
analysis for isotropic materials. This last methodology does not present any limi-
tation regarding the cost function or the type of boundary condition prescribed in
the holes. Since then several classes of engineering and physics problems have been
solved by employing the DT concept, for instance, topology optimization ([Amstutz
and Novotny [2010], Novotny et al. [2007]]), inverse analysis ([Carpio and Rapún
[2008], Rocha and Novotny [2017]]), and image processing ([Hintermüller and Lau-
rain [2009], Larrabide et al. [2008]]). The DT was also computed using the Boundary
Element Method (BEM) for topology optimization of potential (Anflor [2007],An-
flor and Marczak [2009], Anflor et al. [2014]) and elasticity (Marczak [2008], Bertsch
et al. [2008], Anflor et al. [2018]) problems as an alternative to the Finite Element
Method (FEM) employed as the standard numerical solver. All advantages provided
by BEM as a boundary method were taken into account showing the efficiency of
the developed methodology for optimization problems. Another class of problem of
great interest concerns the damage identification in structures. The identification of
flaws by the inverse problem was generally solved by heuristic algorithms where the
information about sensitivity or gradient of the cost functional with respect to design
parameters are not needed. Despite the success of the use of these algorithms, the
computational cost was still high because a large number of direct problems has to
be evaluated and solved. The computational time can be drastically reduced by us-
ing the cost functional topological sensitivity instead of the full functional (Comino
et al. [2008]). In addition, the use of topological sensitivity coupled to heuristic
algorithms increases the accuracy for estimating the location and size of defects.
The concept of DT becomes naturally attractive and suitable for problems concern-
ing damage detection, once the DT measures the sensitivity of a functional shape
with respect to an infinitesimal singular domain perturbation. The perturbation
may be represented as damages in the structure in the shape of holes, inclusions,
sources terms, or even cracks. The topological sensitivity analysis was carried out
for the Laplace equation to identify arbitrary shaped cracks in two-dimensional do-
mains (Amstutz et al. [2005]). A method based on the multi-frequency DT was
developed as an alternative to standard guided-waves-based Structural Health Mon-
itoring (SHM) methods and used for locating the presence of flaws in thin plates
(Martinez Dominguez et al. [2018]). The damage identification based on the DT

method was addressed in (da Silva and Novotny [2022]) for problems governed by
the elastodynamic Kirchhoff and Reissner-Mindlin plate bending models in the fre-
quency domain. According to this brief review, the reader can have an idea about the
wide range of the use of DT in physical phenomena modeled by partial differential
equations. In the remainder of this chapter, the fundamentals on DT for classical
problems of topology optimization are introduced, and some numerical examples
are presented, showing the efficiency and applicability of this concept for generating
optimal geometries.
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2 Topological derivative considering the insertions
as voids

The theory behind the DT is the evaluation of a given cost function when a small
hole of radius is open inside the domain, as shown in 1.

Figure 1: The new concept of the topological derivative and the boundary
conditions

In this sense, the concept of DT consists of determining the sensitivity of a given
function cost (ψ) when this small hole is increased or decreased. The local value of
the DT at a point x̂ inside the domain for this case is given by eq. 1:

DT (x̂) = lim
ε→∞

ψ(ωε)− ψ(ω)

f(ε)
, (1)

where ψ(ω) and ψ(ωϵ) are the cost function evaluated for the original domain and
the perturbed domain, respectively, and (f) is a problem-dependent regularizing
function. It is important to highlight that it is not possible to establish an iso-
morphism between domains with different topologies using eq.1. A new concept
regarding the DT was introduced by Novotny et al. (2003) that allowed the non-
isomorphism between the original and the modified domains to be overcome. The
mathematical idea was based on the creation of a hole that can be accomplished by
a single perturbation to an existing hole with radius tending to zero. This allows
the restatement of the such a way that it is possible to establish a mapping between
them, as presented in eq.2:

DT (x̂) = lim
ε→∞

ψ(ωε+δϵ)− ψ(ωε)

f(Ωε+δε)− f(Ωε)
, (2)

where δ is a small perturbation of the hole’s radius. It’s worth mention that eq.2 is
a general definition for DT . This section introduces the DT particularized for some
of the classical engineering problems.
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2.1 Potential problems

In the case of isotropic linear heat transfer problems, the direct problem is stated
as: Find uε, such that

−k∇uε = b in Ω ,
uε = u on ΓD,

k∂nu = q on ΓN ,
k∂nuε = hε(uε − u∞) on ΓR,

h(α, β, γ) = 0 on Γε,

(3)

Γϵ stands for the holes boundary and

h(α, β, γ) = α(uε − ūε) + β(k
∂uε
∂n

+ q̄ε) + γ(k
∂uε
∂n

+ hc(u − ūε)), (4)

is a function which takes into account the type of boundary condition on the perime-
ter of holes to be created. In eq. 4, uϵ and duε

dn
= qϵ are the temperature and the

flux on the hole boundary, while uϵinf and hϵc are the holeâs internal convection pa-
rameters, respectively. Suitable choices of α, β and γ define the type of boundary
condition on the hole. One may impose α = 1 and β = γ = 0 in eq. 4 if the
Dirichlet b.c. is applied to the holes that are being opening during the iterative
process. Using asymptotic expansions to include the effects of a hole inserted in Ω
it is possible derive analytic expressions for Ψ(Ωε and Ψ(Ωε+δε), which are used to
generate the final expressions for eq.2.

A general form for the cost function can be written as the total potential energy
function,

Ψ(Ωτ ) =
1

2

∫
Ωτ

ϕΩτ (uτ )dΩτ +

∫
Γτ

ϕΓτ (uτ )dτ, (5)

where τ is a parameter associate to the shape change velocity, i.e., xτ (x) =
x + τv(x) . The sensitivity of the cost function with respect to τ can be derived
from the Gâteaux derivative as,

d

dτ
Ψ(Ωτ )τ=0 = lim

τ→0

Ψ(Ωτ − Ωτ=0)

τ
h(α, β, γ) = 0, (6)

In this case the problem can be re-stated as,

Evaluate: d
dτ
Ψ(Ωτ ) = 0

Subject to,

aτ (uτ , nτ ) = lτ (nτ ), ∀ nτ ∈ βτ and ∀ τ ≥ 0, (7)

where a is a continuous, coercive bilinear form, lτ is a continuous linear functional
and βτ is the space of the admissible perturbation functions for the perturbed domain
Ωτ . Using the total potential energy as a cost function (Ψτ (uτ ) := 1

2
aτ (uτ , uτ ) −

lτ (u(τ)), the aτ and lτ functional are written as:
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aε(uε, nε) :=

∫
Ωε

k∇uε · ∇ηε dΩ +

∫
Γε

hcuεηε dΓ +

∫
∂Λε

hεcuεηε d∂Λ (8)

lε(nε) :=

∫
Ωε

bnεdΩ−
∫
Γ

qηεdΓ−
∫
Γc

hcu∞ηεdΓ +

∫
∂Λεqε

ηεd∂Λ + γ

∫
∂Λε

hεcu∞ηεd∂Λ

(9)
Equation 7 can be derived and the DT particularized according to the boundary

condition prescribed on the holes.

Neumann Boundary condition

When considering Neumann boundary condition eq.4 is set as (α = 0, β = 1, γ =
0) and the DT is obtained by taking the limit as,

DT (x̂) = − lim
ε→0

1

2f ′(ε)

∫
∂Ωε

[k(
∂uε
∂t

)− k(
∂uε
∂n

)− 2buε −
2

ε
qεuε] dΩε, (10)

where the variables t and n stand for the tangencial and normal directions, respec-
tively.

In case of Neumann boundary conditions both cases can be considered, the ho-
mogeneous and non-homogeneous as introduced by eqs.11 and 12 , respectively

qε =
∂uε
∂n

|∂Ωε= 0 with f ′(ε) = −πε2, (11)

qε =
∂uε
∂n

|∂Ωε ̸= 0 with f ′(ε) = −2πε2. (12)

Dirichlet Boundary Condition

For this case eq.5 can be particularized by setting the variables as (α = 1, β =
0, γ = 0) and the DT is obtained by taking the limit as,

DT (x̂) = − lim
ε→0

1

2f ′(ε)

∫
∂Ωε

[k(
∂uε
∂t

)− k(
∂uε
∂n

)− 2buε] dΩε, (13)

being the conditions uε = uε and ∂uε

∂t
̸= 0, which are employed along with f ′(ε) =

− 2π
ε ln(ε)2

.

Robin Boundary Condition

In this case one has (α = 0, β = 0, γ = 1) and the DT is obtained taking the
limit as,

DT (x̂) = − lim
ε→0

1

2f ′(ε)

∫
∂Ωε

[k(
∂uε
∂t

)− k(
∂uε
∂n

)− 2buε −
2

ε
hεc(uε − 2uε∞)]dΩε (14)
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being the regularization function as f ′(ε) = −2πε.

The obtained closed formulae for the DT are summarized in Table 1, considering
the three classical cases of boundary conditions on the holes.

Table 1: Analytical expressions for DT depending on the b.c. applied on the holes
B. C. Type DT (x̂) x̂

Neumann (α = 0, β = 1, γ = 0) k∇u∇u− bu x̂ ∈ Ω ∪ Γ
−qεu x̂ ∈ Ω ∪ Γ

Dirichlet (α = 1, β = 0, γ = 0) −1
2
k(u− uε) x̂ ∈ Ω

k∇u∇u− buε x̂ ∈ Γ
Robin (α = 0, β = 0, γ = 1) hεc(uε − 2uε∞) x̂ ∈ Ω ∪ Γ

*It is important to take attention that DT is evaluated by different expressions
for interior and boundary points.
**Topological optimization considering anisotropic media for potential problems
were considered in Anflor and Marczak [2009].

2.2 Linear elasticity

The direct problem for elasticity is stated as,

Find: {uϵ|divσε = b} on Ωε (15)

A general form for the cost function can be written as the total strain energy
function:

Ψ(uτ ) =
1

2

∫
Ωτ

C∇τuτ · ∇τuτdΩτ −
∫
b · uτdΩτ −

∫
Γ

t̄ · uτdτ =
1

2
aτ (uτ , uτ )− lτ (uτ ),

(16)
where τ is the perturbation form for the cost function with respect to the shape, C
is Hookeâs tensor, b is the body force, t̄ is the traction boundary condition, and uτ
denotes the displacement vector field. Equation (17) refers to the sensitivity of the
cost function with respect to τ and can be obtained from the Gâteaux derivative of
the perturbed configuration given by Equation (13):

d

dτ
Ψ(Ωτ )τ=0 = lim

τ→0

d

dτ
Ψ(Ωτ ). (17)

In the absence of body forces, the DT results:

DT (x̂) = − lim
ϵ→0

1

f ′(ε)

∫
Γε

1

2ρE
σtt
ε dΓε. (18)

If the limit of ε→ 0 in Equation 16, eq. 18 results:

DT (x̂) =
1

2ρE
[(σ1 + σ2)

2 + 2(σ1 − σ2)
2], (19)
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where σ1, σ2 are the principal stresses of the stress tensor σ|x̂ computed in x̂ ϵ ω.
The principal stresses are given by

σ1,2 =
1

2
[trσ ±

√
2σDσD], (20)

and σD is the deviatoric stress tensor:

σD = σ − 1

2
tr(σ)I. (21)

Computing σ1,σ2 using Equations 20 and 21 and substituting in Equation 19 results
in

DT (x̂) =
1

2ρE
[4σσ − (trσ)2]). (22)

After some algebraic manipulation using Equation (19) and the constitutive re-
lation, the DT for plane stress problems stands as

DT (x̂) =
2

1 + ν
σ · ε+ (3ν − 1)

2(1− ν2)
trσ trε (23)

In eq.23, σ and ϵ are computed in the original domain, i.e. without voids. For
the plane strain, the DT results as

DT (x̂) = 2(1− ν)σ · ε+ (1− ν)(4ν − 1)

2(1− 2ν)
trσ trε, (24)

where ν denotes the Poisson ratio, while trσ and trϵ stand for the trace of the stress
and strain tensors, respectively. A complete derivation for obtaining Equations 23
and 24 can be found in Novotny and Sokolowski [2013].

3 Topological Derivative considering the insertion
of inclusions

In this section, the mathematical models for the diffusive-convective-reactive
problem, Heat Exchanger, Eigenvalue of the Laplace problem, Kirchhoff Plate,
Reissner-Mindlin Plate and Compliance. The original unperturbed and topologi-
cally perturbed problems are stated as well as the topological derivatives associate
the shape functionals we are dealing with, are introduced.

3.1 Diffusive-Convective-Reactive Problem

The mathematical model for the diffusive-convective-reactive problem, as well as
the shape functionals we are dealing with, are introduced. The original unperturbed
and topologically perturbed problems are stated, together with arguments on the
existence of the associated topological derivative (see Carvalho [2020]).

The original unperturbed problem is stated as:

u ∈ H1
0 (Ω) :

∫
Ω

α∇u · ∇η +
∫
Ω

β(∇u · V )η +

∫
Ω

ρkuη =

∫
Ω

fη ∀η ∈ H1
0 (Ω), (25)
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where α, β, ρ and k are positive and bounded functions, f is a distributed source
and V is a given vector field, such that, div(V ) = 0 in Ω and V · n = 0 on ∂Ω.
The quantities α, β, ρ, k and f are assumed to be piecewise constant functions as
described in Table 2, with ω ⊂ Ω. Precise physical meaning of (25) is given in
Sections 3.1.2 and 3.1.3.

Table 2: Values of α, β, ρ and f

α β ρ f
Ω \ ω α0 β0 ρ0 f0
ω α1 β1 ρ1 f1

In Figure 2 is presented a scheme in which it is possible to remove or add material
according to the domain sensitivity.

Figure 2: scheme of adding/removal material

The auxiliaries shape functionals are defined by,

G(u) =
∫
Ω

ρku2 and J (u) =

∫
Ω

α∥∇u∥2. (26)

In order to simplify further analysis, we introduce the adjoint problems

q ∈ H1
0 (Ω) :

∫
Ω

α∇q · ∇η −
∫
Ω

β(∇q · V )η +

∫
Ω

ρkqη =

− 2

∫
Ω

ρkuη, ∀η ∈ H1
0 (Ω), (27)

p ∈ H1
0 (Ω) :

∫
Ω

α∇p · ∇η −
∫
Ω

β(∇p · V )η +

∫
Ω

ρkpη =

− 2

∫
Ω

α∇u · ∇η, ∀η ∈ H1
0 (Ω). (28)

3.1.1 Perturbed problem

The topological perturbation is defined according to Tables ?? and 4, where
Bε(x̂) = {∥x− x̂∥ < ε} for x̂ ∈ Ω and ω ⊂ Ω. From these elements, the topologically
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perturbed problem is stated as,

uε ∈ H1
0 (Ω) :

∫
Ω

αε∇uε · ∇η +
∫
Ω

βε(∇uε · V )η +

∫
Ω

ρεkuεη =∫
Ω

fεη ∀η ∈ H1
0 (Ω), (29)

with V · n = 0 on ∂Bε. The auxiliary shape functionals in perturbed domain are
defined by

Gε(uε) =

∫
Ω

ρεku
2
ε and Jε(uε) =

∫
Ω

αε∥∇uε∥2. (30)

The contrasts of materials in the perturbed domain are shown in the tables 3
and 4.

Table 3: Values of αε, βε, ρε and fε
αε βε ρε fε

Ω \Bε α β ρ f
Bε γαα γββ γρρ γff

Table 4: Values of γα, γβ, γρ and γf
γα γβ γρ γf

Ω \ ω α1/α0 β1/β0 ρ1/ρ0 f1/f0
ω α0/α1 β0/β1 ρ0/ρ1 f0/f1

Before stating the two main results, let us introduce the following second-order
polarization tensors

Pα =
1− γα
1 + γα

I and Pαβ =
1− γβ
1 + γα

I, (31)

associated with the contrast on the diffusive γα and convective γβ terms. From
the problems presented in (25) and (29) two results are formulated, related to the
topological derivative.

Theorem 1 Let G(u) be the shape functional defined in (26)-left, then its associated
topological derivative is given by

DTG = −2αPα∇u · ∇q − 2β(Pαβ∇u · V )q − ρk(1− γρ)u(u+ q) + (1− γf )qf, (32)

where q is the adjoint state solution of (27).

Theorem 2 Let J (u) be the shape functional presented in (26)-right. Then, the
topological derivative of J is given by

DTJ = −2αPα∇u · ∇(u+ p)− 2β(Pαβ∇u · V )p− ρk(1− γρ)up+ (1− γf )pf, (33)

where p is the adjoint solution of problem (28).
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3.1.2 Heat Exchanger

We are interested in the diffusion-convection (Eq. (25) with k = 0) problem
which can be stated as: Find u, such that

−div(α∇u) + β(∇u · V ) = f in Ω ,
u = 0 on ΓD,

∂nu = 0 on ΓN .
(34)

Therefore, u represents the temperature field, whereas α is the diffusion coefficient,
β is the convection coefficient and V is a given velocity field.

Let us consider the following shape functional

F(u) = τ

∫
Ω

α∥∇u∥2 + (1− τ)

∫
Ω

ρ|u|2, (35)

with 0 ≤ τ ≤ 1 and u solution to (34). Then, its associated topological derivative,
by taking into account contrasts on α and ρ (and not on β as well as on f), is given
by (see Ruscheinsky et al. [2020b]),

DTF = −2αPα∇u · (τ∇u+∇p+∇q)− (1− τ)(1− γρ)ρ|u|2, (36)

where p and q are respectively solutions of the following adjoint problems

p ∈ U(Ω) :
∫
Ω

α∇p · ∇η −
∫
Ω

(∇p · V )η = −2τ

∫
Ω

α∇u · ∇η ∀η ∈ U(Ω), (37)

q ∈ U(Ω) :
∫
Ω

α∇q · ∇η −
∫
Ω

(∇q · V )η = −2(1− τ)

∫
Ω

ρuη ∀η ∈ U(Ω), (38)

with the space U(Ω) = {φ ∈ H1(Ω) : φ|ΓD
= 0}.

3.1.3 Eigenvalue of the Laplace problem

The eigenvalue of the Laplace problem modeling a membrane under free vibration
can be stated as: Find u and λ, such that{

−div(α∇u) = λρu in Ω,
u = 0 on ∂Ω,

(39)

so that u represents the transverse displacement field, α is the stiffness coefficient
and ρ is the density.

The associated first eigenvalue is defined as

λ1 =

∫
Ω
α∥∇u∥2∫
Ω
ρ|u|2

, (40)

with u solution of (39). The topological derivative for simple eigenvalues of the
Laplacian can be found in Ammari and Khelifi [2003]. The extension to multiple
eigenvalues and other types of singular domain perturbations has been derived in
Nazarov and Sokolowski [2008]. In particular, the topological derivative of

F(u) = λ−1
1 (41)
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is given by:

DTF =
2αPα∇u · ∇u− (1− γρ)ρλ1|u|2

λ21
∫
Ω
ρ|u|2

, (42)

which can be formally derived from Theorems 1 and 2. The rigorous justification for
this result can be found in the book by Novotny and Sokolowski [2013]. As observed
by Haftka and Gürdal [1992], standard sensitivities of eigenvalues hold only in the
case of distinct eigenvalues. According to Seyranian et al. [1994] symmetric and
complex structures that depend on many design parameters often present multiple
eigenvalues. A numerical method of solution was developed by the authors to de-
termine an ascent direction in the design space for the smallest eigenvalue. More
recently, a simple strategy proposed by Zhang et al. [2015] can be used in order to
deal with multiplicity of eigenmodes, which consists in select the closest eigenmode
to the current one. See also the paper by Torii and Rocha de Faria [2017] for more
sophisticated approach based on a smooth p-norm approximation for the smallest
eigenvalue.

3.2 Kirchhoff Plates

Before starting the main results of this section, let us introduce the following
fourth-order polarization tensor associated with the plate bending model

P = − 1− γα
1 + γαδ2

(
(1 + δ2)I+

1− γα
2

δ1 − δ2
1 + γαδ1

I⊗ I

)
, (43)

where constants δ1 and δ2 will be defined later according to the model problem we
are dealing with, namely Kirchhoff or Reissner-Mindlin. In (43), the symbols I and
I are used to denote the second and fourth order identity tensors, respectively

The theory of Kirchhoff bending plates is based on the following kinematic as-
sumption:

The normal fibers to the middle plane of the plate remain normal during
deformation and do not suffer variations in their length. Consequently,
both transversal shear and normal deformations are null.

Therefore, the original unperturbed problem can be stated as: Find u ∈ V(Ω),
such that ∫

Ω

αM(u) · ∇∇v +
∫
Ω

ρkuv =

∫
Ω

fv, ∀v ∈ V(Ω), (44)

where V(Ω) = H2
0 (Ω;R). The coefficients α, ρ and f are given in Table 5. In addi-

tion, M(u) = C∇∇u is the moment tensor, u : Ω 7→ R the transverse displacement
and k a positive function. The constitutive tensor C is given by

C =
Eh3

12(1− ν2)
((1− ν)I+ νI⊗ I) , (45)

being ν is the Poisson ratio, E is the Young modulus and h the plate thickness.
The L2 and energy norms shape functionals, we are dealing with, are respectively
defined as

G(u) =
∫
Ω

ρk|u|2 and J (u) =

∫
Ω

αM(u) · ∇∇u. (46)
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In order to simplify bluethe form of the topological derivatives, we introduce the
adjoint problems for displacements q and p, as

q ∈ V(Ω) :
∫
Ω

αM(q) · ∇∇v +
∫
Ω

ρkqv = −2

∫
Ω

ρkuv, ∀v ∈ V(Ω), (47)

p ∈ V(Ω) :
∫
Ω

αM(p) · ∇∇v +
∫
Ω

ρkpv = −2

∫
Ω

αM(u) · ∇∇v, ∀v ∈ V(Ω). (48)

The topologically perturbed counterpart of problem (44) is written as: Find
uε ∈ V(Ω), such that∫

Ω

αεM(uε) · ∇∇v +
∫
Ω

ρεkuεv =

∫
Ω

fεv, ∀v ∈ V(Ω), (49)

where the coefficients αε, ρε and fε are defined through Table 3 and Table 4. The
associated shape functionals are then defined as

Gε(uε) =

∫
Ω

ρεk|uε|2 and Jε(uε) =

∫
Ω

αεM(uε) · ∇∇uε. (50)

3.2.1 Topological sensitivities

By setting the constants δ1 and δ2 in the definition of the polarization tensor
(43) as follows

δ1 =
1 + ν

1− ν
and δ2 =

1− ν

3 + ν
, (51)

we can state the two main results of this Section, whose proofs are completely
analogous to the presented by Amstutz and Novotny [2011]:

Theorem 3 Let G(u) be the shape functional defined by (46)-left, then its associated
topological derivative is given by

DTG = αPM(u) · ∇∇q − (1− γρ)ρku(u+ q) + (1− γf )fq a.e. in Ω (52)

where q is the adjoint state solution of (47).

Theorem 4 Let J (u) be the shape functional presented in (46)-right, then its topo-
logical derivative is given by

DTJ = αPM(u) · ∇∇(u+ p)− (1− γρ)ρkup+ (1− γf )fp a.e. in Ω (53)

where p is the adjoint solution of problem (48).

The eigenvalue problem for the Kirchhoff model of a clamped thin plate under
free vibration can be stated as: Find u and λ, such that{

div div(αM(u)) = λρu in Ω,
u = ∂nu = 0 on ∂Ω.

(54)

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 281



The associated first eigenvalue can be defined as

λ1 =

∫
Ω
αM(u) · ∇∇u∫

Ω
ρ|u|2

, (55)

being u solution of (54). The topological derivative of J(D) := λ−1
1 is given by (see

Carvalho et al. [2020]),

DTJ = −αPM(u) · ∇∇u+ (1− γρ)ρλ1|u|2

λ21
∫
Ω
ρ|u|2

. (56)

3.3 Reissner-Mindlin Plates

The theory of Reissner-Mindlin bending plates is based on the following kine-
matic assumption:

The normal fibers to the middle plane of the plate remain straight dur-
ing the deformation process and do not suffer variations in their length,
but they do not necessarily remain normal to the middle plane. Con-
sequently, the transversal shear deformations are not negligible and the
normal deformations are null.

Therefore, the unperturbed problem is stated as: Find (θ, u) ∈ H(Ω), such that∫
Ω

αM(θ)·(∇η)s+
∫
Ω

βQ(θ, u)·(η−∇v)+
∫
Ω

ρkuv =

∫
Ω

fv, ∀ (η, v) ∈ H(Ω), (57)

where H(Ω) = H1
0 (Ω;R

2) × H1
0 (Ω;R). The coefficients α, β, ρ and f are given

in Table 2. In addition, θ : Ω 7→ R2 is the rotation, u : Ω 7→ R is the transver-
sal displacement, M(θ) = C(∇θ)s is the generalized bending moment tensor and
Q(θ, u) = D(θ − ∇u) is the generalized shear tensor. The constitutive tensor C is
defined by (45) whereas the second order tensor D is given by

D =
σEh

2(1 + ν)
I, (58)

with shear correction factor σ = 5/6. The L2 and energy norms shape functionals,
we are dealing with, are defined as

G(θ, u) =
∫
Ω

ρk|u|2 and J (θ, u) =

∫
Ω

(αM(θ) · (∇θ)s + βQ(θ, u) · (θ −∇u)).(59)

In order to simplify bluethe form of the topological derivatives, we introduce the
adjoint problems for displacements (q, p) and the rotations (φ, ϕ), as

(φ, q) ∈ H(Ω) :

∫
Ω

αM(φ) · (∇η)s +
∫
Ω

βQ(φ, q) · (η −∇v) +
∫
Ω

ρkqv =

− 2

∫
Ω

ρkuv, ∀(η, v) ∈ H(Ω), (60)
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(ϕ, p) ∈ H(Ω) :

∫
Ω

αM(ϕ) · (∇η)s +
∫
Ω

βQ(ϕ, p) · (η −∇v) +
∫
Ω

ρkpv =

− 2

∫
Ω

(αM(θ) · (∇η)s + βQ(θ, u) · (η −∇v)), ∀(η, v) ∈ H(Ω). (61)

The topologically perturbed counterpart of problem (57) is written as: Find
(θε, uε) ∈ H(Ω), such that∫
Ω

αεM(θε)·(∇η)s+
∫
Ω

βεQ(θε, uε)·(η−∇v)+
∫
Ω

ρεkuεv =

∫
Ω

fεv, ∀ (η, v) ∈ H(Ω),

(62)
where the coefficients αε, βε, ρε and fε are reported in Tables ?? and 4. The
associated shape functionals are then defined as

Gε(θε, uε) =

∫
Ω

ρεk|uε|2 and (63)

Jε(θε, uε) =

∫
Ω

(αεM(θε) · (∇θε)s + βεQ(θε, uε) · (θε −∇uε)). (64)

3.3.1 Topological sensitivities

Let us introduce the following second-order tensor

P = −2
1− γβ
1 + γβ

I. (65)

Now, by setting the constants δ1 and δ2 in the definition of the polarization tensor
(43) as follows

δ1 =
1 + ν

1− ν
and δ2 =

3− ν

1 + ν
, (66)

we can state the two main results of this section, whose proofs are completely anal-
ogous to the paper by Sales et al. [2015]:

Theorem 5 Let G(θ, u) be the shape functional defined by (59)-left, then its asso-
ciated topological derivative is given by

DTG = αPM(θ) · (∇φ)s + βPQ(θ, u) · (φ−∇q)
− (1− γρ)ρku(u+ q) + (1− γf )fq a.e. in Ω (67)

where (φ, q) is the adjoint state solution of (60).

Theorem 6 Let J (θ, u) be the shape functional presented in (59)-right, then its
associated topological derivative is given by

DTJ = αPM(θ) · (∇(θ + ϕ))s + βPQ(θ, u) · ((θ + ϕ)−∇(u+ p))

− (1− γρ)ρkup+ (1− γf )fp a.e. in Ω (68)

where (ϕ, p) is the adjoint solution of problem (61).
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the eigenvalue problem of a Reissner-Mindlin model of a clamped thick plate
under free vibration can be stated as: Find (θ, u) and λ, such that

−div(αM(θ)) + βQ(θ, u) = 0 in Ω ,
div(βQ(θ, u)) = ρλu in Ω ,

θ = 0, u = 0 on ∂Ω .
(69)

The associated first eigenvalue is defined as

λ1 =

∫
Ω
(αM(θ) · (∇θ)s + βQ(θ, u) · (θ −∇u))∫

Ω
ρ|u|2

, (70)

being (θ, u) solution of (69). The topological derivative of J(D) = λ−1
1 is given by

(see Carvalho et al. [2020]),

DTJ = −αPM(θ) · (∇θ)s + βPQ(θ, u) · (θ −∇u) + (1− γρ)ρλ1|u|2

λ21
∫
Ω
ρ|u|2

. (71)

3.4 Compliance Problem

The compliance of the plate under bending effects is obtained as the sum of
the shape functionals given by (46) for Kirchhoff problem and by (59) for Reissner-
Mindlin problem. The zero order term in both problems (see eqs. (44) and (57)) can
be interpreted as an elastic support, so that we define the quantity s = ρk, where s
represents the stiffness of the support. The transverse load f is assumed to be fixed,
so that its associated contrast γf = 1.

In the case of Kirchhoff plate bending problem, the shape functional to be mini-
mized is defined as J(D) := J (u) + G(u), with J (u) and G(u) given by (46), where
u is the solution to: Find u, such that{

div div(αM(u)) + su = f in Ω,
u = ∂nu = 0 on ∂Ω.

(72)

Therefore, from Theorem 3 and Theorem 4, we have that the associated topological
derivative of the compliance shape functional J(D) is given by (see, Carvalho et al.
[2020]),

DTJ = −αPM(u) · ∇∇u+ (1− γρ)s|u|2. (73)

Analogously, in the case of Reissner-Mindlin plate bending problem, the shape
functional to be minimized is defined as J(D) := J (θ, u)+G(θ, u), with J (θ, u) and
G(θ, u) given by (59), where (θ, u) are the solutions to: Find (θ, u), such that

−div(αM(θ)) + βQ(θ, u) = 0 in Ω ,
div(βQ(θ, u)) + su = f in Ω ,

θ = 0, u = 0 on ∂Ω .
(74)

Thus, from Theorem 5 and Theorem 6, we have that the associated topological
derivative of the compliance shape functional J(D) is given by

DTJ = −αPM(θ) · (∇θ)s − βPQ(θ, u) · (θ −∇u) + (1− γρ)s|u|2. (75)
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4 Numerical strategy framework
In this section the illustrative scheme presented in fig. 3 shows the numerical

strategy implemented for the methodology aforementioned. The steps of implemen-
tation can be listed as,

• Step 1 - Generates the geometry, boundary conditions, and set the mechanical
properties;

• Step 2 - Solves the direct problem using the chosen numerical solver (FEM,
BEM, or other);

• Step 3 - Applies the respective DT closed formula to the problem under con-
sideration to get the domain’s sensitivity;

• Step 4 - Select those points with low efficiency (low DT ) for being removed.
Remark: The user must set the percentage of volume to be removed per iter-
ation;

• Step 5 - Applies an auxiliary routine for material removal at the candidate
internal points. Remark: This routine is based on pure geometry depending
on the numerical method employed and must be able to detect new frontiers
reapplying the b.c. as well as to detect the possible detached material (islands)
from the main domain (mainly for BEM).

Figure 3: Numerical methodology scheme for implementation

It is important to highlight that the strategy of material removal depends on
the numerical approach and the methodology employed by the user to deal with
the geometry. In the case of FEM, generally, one can set the domain fixed and
suppress (in case of voids) or impose different values of mechanical properties (in
case of inclusion insertion) to those elements with low sensitivities. In this kind
of approach, no concerns with the boundary conditions or even islands arising up
are needed, because the elements are not rearranged, see for instance the work

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 285



of Ruscheinsky et al. [2020a]. It is also important to reinforce that the concept
of DT is derived considering the singular perturbation as voids or inclusions. In
this sense, one must have attention to using the appropriate DT closed formula to
implement the strategy of removal/add material accordingly. When considering the
BEM, one can deal with a fixed domain or moving frontiers. The first strategy
is similar to the FEM procedure but in this case the technique of multiple regions
must be considered, as implemented in Anflor et al. [2014]. For the moving frontiers,
special treatment must be given in attention to the new geometry resulted from the
previous iteration. When considering moving frontiers, the material is removed and
new elements are added to redesign the domain needing the rearrangement on the
discretization process. At this point, islands may arise (fig. 4 and the subroutine
developed for Step 5, must be able to detect and discard them.

Figure 4: Detail of island detection, deletion and the renumbering of the
elements

Additionally, several resources such as offset of internal points (switch off the
entire grid of internal points), shape and size of stamps used to remove material
are examples of strategies to improve in fast and efficiency of the iterative process
when using BEM (fig.5). Further details about these strategies can be consulted in
Marczak [2008] and Anflor et al. [2018].

Figure 5: Strategies based on the BEM particularities

5 Numerical examples
This section presents some numerical examples in the context of topological

optimization for classical problems of engineering, such as: Potential Problem,

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 286



Linear Elasticity, Heat Exchanger, Maximization of the First Eigenvalue in Mem-
brane, Plates (Kirchhoff and Reissner-Mindlin) and the Compliance for Kirchhoff
and Reissner-Mindlin problem. The algorithm based on the DT is implemented
using BEM for the first two examples and FEM for the remaining examples. The
resulting analytical formulae (see formulas (36), (42), (56),(71), (73), (75)) are used
together with a level-set domain representation method to devise a simple topology
design algorithm (for more details see Amstutz and Andrä [2006]). The obtained
final topologies show the efficiency of the topological derivative method.

5.1 Potential Problem: Printed Circuit Board

This example concerns to a printed circuit board (PCB) substrate. The charac-
teristics of of good PCB designs is the efficiency to dissipate the maximum amount
of thermal energy with the minimum possible volume of material. In this sense
the topology optimization becomes attractive for this class of problem. Figure 6
introduces the initial layout for this case, where four heat sources are used to simu-
late the heat generated by major electronic components mounted on the PCB. The
hatched areas are not allowed changes because they are used for clamping the PCB.
The domain is discretized with 32 linear boundary elements (BEs) and the holes
opened during the optimization process with 6 linear BEs. All the cavities opened
as the iterative process evolves have prescribed Neumann homogeneous as bound-
ary condition. For this problem the optimization procedure is halted was halted
when a volume ratio of 70% between the final and the original designs is achieved.
The domain’s sensitivity was computed using the first equation introduced in Table
1. The evolution history is introduced according Fig. 7. It is worth mentioning
that in the PCB case, new cavities are created during the process near the corners,
characterizing truly topological changes in the domain.

Figure 6: Initial design for the PCB
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Figure 7: Topology evolution for the PCB

5.2 Linear Elasticity

This example consists of a traditional beam, as shown in 8. A rectangle with
dimensions of 5 units x 10 units is subjected to a total vertical load P = 1 kN applied
at the middle of the bottom side. The first and the last element of the bottom side are
pinned and bolted, respectively. The radius of the holes was set to 0.013125a. The
stop criterion was set as the final volume reaching approximately 54% of the initial
volume and the domain’s sensitivity was computed using eq.23. The percentages
of internal points selected to be removed during the optimization procedure are
presented in Table 1. As can be seen, the amount of material removed during the
iterative process is variable, based on the domain’s sensitivity. As a comparison, the
amount of material removed using linear and quadratic BEs is also presented. Figure
6 shows the evolution of the iterative process using quadratic elements, where the
final topology results after only six iterations. The final topology results for linear
and quadratic BEs are quite similar, as expected. The main difference is that with
increasing accuracy of the BE solutions, the domain sensitivity isolines become more
evident, allowing the removal of a greater amount of material per iteration.

It is important to highlight that the final topology resulted in the shape of a
truss structure, as shown in Figure 9. Using a mirror-image effect procedure on this
final topology (iteration 6), the result is a geometry similar to a wheel with radial
supports (Figure 11). Based on the literature, a resulting shape of a wheel ensures
that the developed optimization routine is capable of generating feasible topologies.
In Figure 10 it is possible to observe the amount of material being removed, taking
into account the linear and quadratic BEs, as the iterative process evolves.
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Figure 8: Beam boundary conditions

Figure 9: Beam topology evolution: a) linear and b) quadratic boundary
elements
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Figure 10: Volume x number of iterations history

Figure 11: Final topology after a mirror-image effect

5.3 Heat Exchanger Design

The hold-all domain D is given by a unit square of size (0, 1) × (0, 1) with a
distributed uniform heat generation of intensity f = 104W over the domain. All
the boundary are thermally insulated, with exception of the regions TL and TH of
lengths 0.2. The temperature at TL is prescribed as u = 273K and TH is prescribed
as u = 373K. Fig. 12 shows the initial domain and the initial temperature map.
The penalty parameter is set as µ = 4, the weight as t = 1 and α = 1. During the
optimization procedure two material are used, the first one is the aluminum (α =
205W/mK) and the second one is a material with low thermal conductivity γα ≪ α.
The initial domain consists of aluminum only (Ω = D). As the optimization process
iterativelly evolves the aluminum is replaced by the second material. The domain’s
sensitivity is computed according to eq.36. Figures 13a-d show the evolution of
topologies in the jth iteration. In the j=56 iteration, we have the optimized topology.
Figure 14, illustrates the shape function. The final topology (see Fig. 13(d)) has
60% volume of high thermal conductivity material.
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Figure 12: initial domain (left) and the initial temperature map (right)

Figure 13: Topologies evolution (jth) iteration (a)-(d) and Final topology
(d)
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Figure 14: Shape function history

5.4 Membrane Problem: First eigenvalue maximization

The membrane is clamped in the four vertices and free in the rest of the contour.
The non-structural concentrated mass m is applied at the plate’s center (0.5, 0.5),
as depicted in Figure 15. Four cases are considered, namely, cases M1, M2, M3
and M4. The values of the penalty parameters µ and the non-structural mass m as
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depicted in table 5. The domain’s sensitivity is computed according to eq. 42.

Figure 15: Initial domain

Table 5: Penalty values and concentrated mass
Case M1 Case M2 Case M3 Case M4

µ 0.4 0.2 0.1 0.4
m 0.02 0.03 0.04 0.7

The final topologies for each case are presented in Figures 16a-d. Fig. 17 intro-
duces the normalized first eigenvalue history λ1/λ0 (where λ10 is its initial value) as
the iterative process has evolved. The normalized first eigenvalues history λ1/λ2 are
introduced in figure 18. Note that they are completely separated, so that multiple
eigenvalues phenomenon was not observed in this particular example. The evolution
histories for the volume fraction and shape funcion are presented in Fig. 19 and 20,
respectively. The initial domain is discretized by using linear triangular finite ele-
ments resulting in an initial uniform mesh with 10,000 elements and 5,101 nodes. In
order to increase the accuracy as well as the topology smoothness 4 steps of mesh
refinement during the iterative process are allowed. After the fourth refinement the
resulting mesh presents 2,560,000 elements and 1,281,601 nodes.

Figure 16: Optimized topologies for Cases M1, M2, M3 and M4
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Figure 17: Normalized first eigenvalue λ1/λ01 history

Figure 18: Normalized first eigenvalue λ1/λ2 history

Figure 19: Shape Function history

Figure 20: Volume Fraction history

5.5 Kirchhoff and Reissner-Mindlin Plates: First Eigenvalue
Maximization

For the eigenvalue problem we will also consider for both problems (Kirchhoff
and Reissner-Mindlin) a hold-all domain Ω given by a clamped square on the left

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 293



and right sides and simply supported on the top and bottom sides of dimensions
(0, 1) × (0, 1)m2. The non-structural concentrated mass is represented by black
dot (see Figure 25). The Young modulus is E = 210GPa, Poisson ratio ν = 0.3
and the plate thickness is h = 0.05m. The contrasts are given by γα = γρ =
10−3 and the penalty parameter is set as µ = 1.2. The domain’s sensitivity is
computed using eq. 56 for Kirchoff plate and eq. 71 for Reissner-Mindlin plate.
The experiments are labeled as Cases E1 and E2 for Reissner-Mindlin and Kirchhoff
plates, respectively. The final topologies are presented in Fig. 22(a)-(b). Finally, the
history of the normalized first eigenvalue λ1/λ10 (with λ10 = 311.38 and λ10 = 286.52
for Kirchhoff and Reissner-Mindlin cases, respectively), volume fraction and shape
function obtained during the iterative process are presented in Fig. 23 to Fig. 24.
The domain is discretized by using linear triangular finite elements resulting in an
initial uniform mesh with 10, 000 elements and 5, 101 nodes. In order to increase
the accuracy as well as the topology smoothness 3 steps of uniform mesh refinement
during the iterative process are allowed, leading to a mesh with 640, 000 elements
and 320, 801 nodes.

Figure 21: Initial domain for the Kirchhoff and Reissner-Mindlin plates

In Reissner-Mindlin case (Fig. 22(b)) it is observed the presence of small struc-
tures due to the numerical artefacts. The mesh refinement isn’t enough to overcome
this issue even if a higher mesh resolution is imposed. It is well-know that there is a
lack of sufficient optimality conditions for such shape optimization problems, so that
thin components like those pointed out may appear. In spite of the presence of small
structures a local minimum has been reached up to a small numerical tolerance.

(a) Kirchhoff (b) Reissner-Mindlin

Figure 22: Final Topologies
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Figure 23: Eigenvalue λ1/λ10 (a) and Volume Fraction history (b)
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Figure 24: Shape Function history

5.6 Compliance Minimization

In the numerical experiment we consider for both problems (Kirchhoff and Reissner-
Mindlin) a hold-all domain Ω given by a clamped square of dimensions (0, 1) ×
(0, 1)m2 submitted to concentrated forces, perpendicular to the plane of the plate,
of values f = −1MN located at the centre of plate. A circular elastic support of
radius 0.2m and center at (0.50, 0.50) is also considered (see sketch in Fig. 25(a)-(b).
The concentrated loads is represented by black dot whereas the support is repre-
sented by a hatched circular area in grey color. The Young modulus is E = 210GPa,
Poisson ratio ν = 0.3, the stiffness of the elastic support is s = 10−2E and the plate
thickness is h = 0.05m. The contrasts are given by γα = γρ = 10−4 and the penalty
parameter is set as µ = 1.7. The domain’s sensitivity is computed using eq. 73 for
Kirchoff plate and eq. 75 for Reissner-Mindlin plate. The experiments are labeled as
Cases C1 and C3 for Reissner-Mindlin with and without support, respectively and
Cases C2 and C4 for Kirchhoff with and without support, respectively. The final
topologies are presented in Fig. 26(b)-(d) and Fig. 26(a)-(c) for Kirchhoff (Cases
C2 and C4) and Reissner-Mindlin (Cases C1 and C3) plates, respectively. Finally,
the history of the compliance, volume fraction and shape function obtained during
the iterative process are presented in Fig. 27 to Fig. 29.

In addition, the domain is discretized by using linear triangular finite elements
resulting in an initial uniform mesh with 14, 400 elements and 7, 321 nodes. In order
to increase the accuracy as well as the topology smoothness 3 steps of uniform mesh
refinement during the iterative process are allowed, leading to a mesh with 921, 600
elements and 461, 761 nodes.
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Figure 25: Initial domain with support (a) and without support (b).
The concentrated loads are represented by black dots whereas the elastic
support is represented by a hatched circular area in grey color

(a) with support: Case C1 (b) with support: Case C2

(c) without support: Case C3 (d) without support: Case C4

Figure 26: Final Topologies

6 Final remarks
In this chapter the DT concept was introduced for classic problems of topology

optimization.This methodology can be also extended to other applications as inverse
problems and image processing. The DT measures the sensitive of a domain when
a singular perturbation is inserted inside the domain. According to this statement
it is possible to glimpse that this methodology becomes suitable for detecting the
presence of damage in structures. The presence of holes, cracks, or inclusions are
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typical examples of damages that can be evaluated by employing the appropriate
DT closed formulae to map those problematic regions. Based on this approach,
the inverse problem can also be addressed by coupling the appropriate topological
derivative to probabilistic optimizations methods. Furthermore, there are no con-
straint restrictions in the use of the present methodology with numerical methods
for the direct problem, such as the finite element method, the boundary element
method, or any other numerical method used for the discretization of the quantity
of interest in the domain.
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Abstract

This chapter gathers together the key concepts of acoustic scattering and
the inverse identification problems, the explicit expressions of the topological
derivative for sound-hard and penetrable obstacles, and the key features of to
solve the inverse identification problem numerically using the Boundary Ele-
ment Method. Special attention is given to the implementation for the cases in
which the search area has pre-existent obstacles, either sound-hard, penetrable
or combination of both. Thus, a general BEM implementation framework is
provided, which might be used by the reader to develop its own specific appli-
cation. Several examples for sound-hard obstacles are used to demonstrate the
performance of the method.

1 Introduction
Inverse scattering problems find practical applications in the detection and imaging
of objects embedded in continuous media, such as the case of ultrasound in medicine,
reflection of seismic waves in oil prospecting and crack detection in structural me-
chanics.

The standard procedure to solve inverse scattering problems consists in emitting
waves that interact with the objects and measuring these waves at receptor loca-
tions. The total field, consisting of emitted, scattered and transmitted waves, solves
a partial differential equation with boundary conditions at the interface between the
obstacles and the medium. The inverse problem is stated as follows: knowing the
emitted waves and the measured patterns, find the obstacles for which the solution
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of the corresponding boundary value problem agrees with the measured at the re-
ceptors. Detecting devices like radars, sonars, lidars and scanners follow this general
procedure.

The main features of the inverse scattering problem are nonlinearity and ill-
posedness. It is nonlinear since the solution to the scattering problem depends non-
linearly on the boundary of the obstacle, and it is ill-posed because given a number
of arbitrary measurements at the receptors, a solution for the obstacle boundary
may not exist, and if it exists, it may not depend continuously on the parameters
that define the obstacle boundary.

Colton and Kress [2013, 2018] provide a review about the historical evolution and
the methods to solve inverse scattering problems. The first attempts to solve the
inverse obstacle problem dealt with the non-linearity issue by linearizing the problem
with the aid of the physical optics approximation. Among others, this approach
presents the drawback of being valid only for large wave numbers. Solutions of the
full nonlinear inverse obstacle scattering problem can be obtained by means of the so
called decomposition methods. These methods break up the problem into two parts:
the first part deals with the ill-posedness by constructing the scattered wave from its
far field pattern and the second part deals with the nonlinearity by determining the
unknown boundary of the obstacle as the location where the boundary condition
for the total field is satisfied. However, these methods face the difficulty that in
the first step the domain of definition of the scattered wave is not known. Hence,
mathematically satisfying formulations of decomposition methods need to combine
both parts into an optimization reformulation of the inverse scattering problem.

More modern methods pose the inverse problem as a constrained optimization
problem where the ’design variable’ is the domain wherein the scattering problem
is defined. A cost functional is constructed which quantifies the mismatch between
the measured scattering pattern and the scattering pattern corresponding to the
current approximation of the shape of the object. The problem is then solved using
iterative shape optimization methods, which require, for each step, the computation
of the cost function and its derivative with respect to the geometrical parameters
that define the boundary of the obstacle, see for example Feijóo [2004] and Feijóo
et al. [2004]. This approach is effective, but it does not allow for topological changes
in the obstacle, i.e., the number of obstacles has to be known from the beginning.
This problem was solved by introducing deformations inspired by level-set methods,
which allow creating and destroying boundaries during the iterative process. The
paper by Dorn and Lesselier [2006] provides a review on the use of level-set methods
for inverse scattering. Nevertheless, level-set based iterative methods may be rather
slow unless a good initial guess of the obstacle shape and position is available.

Topological derivative methods have emerged as powerful tools for the numeri-
cal solution of inverse problems. The concept firstly appeared in Eschenauer et al.
[1994] in connection with topological optimization of mechanical structures, allow-
ing to implement algorithms where ’excess’ material is iteratively removed until a
satisfactory shape and topology are reached. The basic idea behind the topological
derivative is the evaluation of the sensitivity of the cost function towards creating
a hole within the problem domain. The topological derivative does not require pre-
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existent holes like in level-set methods, so it avoids the aforementioned limitations
of shape optimization methods.

The topological derivative to for inverse scattering in acoustics can be traced
back to the works by Feijóo [2004], Guzina and Bonnet [2006] and Carpio and
Rapún [2008a]. Feijóo [2004] applied the approach introduced by Novotny et al.
[2003] to derive topological derivative in a simple and constructive way by using
shape sensitivity analysis concepts. On the other hand, Carpio and Rapún [2008a]
further developed the topological derivative concept to compute the sensitivity to
the insertion of sound-soft obstacles and to deal with non-empty domains.

The boundary element method (BEM) is a very effective numerical technique for
solving acoustic problems, especially for simulations that involve infinite domains.
One of its advantages is the mesh required. While other techniques like the finite
element method (FEM) discretize the entire propagation medium, the discretization
of the BEM is limited to the boundary of the objects only. This does not only speed
up the model creation and mesh refinement, but it also results in models with less
degrees of freedom compared to FEM. The drawback is that unlike FEM, BEM gen-
erates fully populated and non-symmetric matrices which limit the benefits of using
iterative solvers and memory storage management schemes. Another important as-
pect of the BEM formulation is that the Sommerfeld’s radiation condition(which
implies that only outgoing waves are allowed) is implicitly satisfied. Additionally,
the unknowns of BEM formulation are the pressure and its derivative, the flux, as
such making the method very accurate for the representation of discontinuities Wro-
bel [2002]. The works by Bonnet [2006], Nemitz and Bonnet [2008], Abe et al. [2010]
and Sisamón et al. [2014] are examples of BEM implementations of the topological
derivative to inverse acoustic scattering.

This chapter gathers together the key concepts of acoustic scattering and the
inverse identification problem (Sections 2, 3 and 4), the explicit expressions of the
topological derivative for sound-hard and penetrable obstacles (Section 5), and the
key features of to solve the inverse identification problem numerically (Section 6).
Special attention is given in Section 6 to the BEM implementation for the cases
in which the search area has pre-existent obstacles, either sound-hard, penetrable
or combination of both. In this way, a general BEM implementation framework
is provided, which might be used by the reader to develop its own specific ap-
plication. Several examples for sound-hard obstacles are used to demonstrate the
performance of the method. Finally, Section 7 is devoted to Comments and Con-
clusions, with same ideas about further extensions of the methodology to deal with
three-dimensional and geometrically complex problems that might require of fast
BEM solvers.

2 The Forward Scattering Problem
The general setting of the forward problem is schematized in Figure 1. It consists
in an infinite exterior medium Ωe with a buried obstacle Ω 1. The illumination of

1The problem is posed in terms of a single obstacle to preventing the proliferation of subscripts.
The extension to multiple obstacles is immediate and will be discussed later in the sections devoted
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the medium results in the reflection of the incident radiation, uinc, by the obstacle
to produce scattered radiation, usc. The total radiation field,

u = uinc + usc, (1)

is measured along the boundary Γmeas that is placed far enough from the obstacle.
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Figure 1: Set-up of the forward scattering problem.

Incident waves can be either planar

uinc(x,d) = eiλex·d, (2)

where d is the propagation direction, or due to a point source,

uinc(x,x0) =
i

4
H

(1)
0 (λer), (3)

where x is the evaluation point, x0 is the location of the point source, i is the
imaginary unit, r = |x − x0| is the distance to the source point and H

(1)
0 is the

Hankel function of the first kind. The symbol λe = ω/c is the wave number , i.e.,
the relation of the angular frequency ω to the wave speed c.

The obstacle can be either opaque or penetrable to the incident radiation. An
opaque obstacle completely reflects the incident radiation, while for a penetrable
obstacle part of the radiation is reflected and the rest is transmitted inside. Thereby,
the total wave field in the exterior domain Ωe and in the interior of the obstacle Ω
results after the solution of two coupled Helmholtz problems:

∇2u+ λ2
eu = 0 in Ωe and

α∇2u+ λ2u = 0 in Ω,
(4)

to numerical implementation.



where the coefficient α accounts for the radiation transmitted inside the obstacle
–so that α = 0 indicates an opaque obstacle– and λ is the wave number for the
propagation in the interior of the obstacle. The coupling between the two problems
are the transmission conditions on the interface Γ:

u− − u+ = 0 and
α∂nu

− − ∂nu+ = 0,
(5)

where u+ and u− are the limits of u from the exterior and interior of Ω, respectively; n
is the unit normal vector pointing outside Ωe and ∂n stands for the normal derivative
along Γ.

In addition, it is imposed the standard Sommerfeld radiation condition on the
propagation of the scattered field usc at infinity, which implies that only outgoing
waves are allowed:

lim
r→∞

√
r(∂r(u− uinc)− iλe(u− uinc)) = 0, r = |x|, (6)

where ∂r is the radial derivative and i the imaginary unit.
When the obstacle is opaque there is no transmitted wave inside Ωe , what allows

to reduce the problem to the solution of the external domain Ωe with a null Neumann
boundary condition on Γ. So, the problem in equations (4) to (6) reduces to

∇2u+ λ2
eu = 0 in Ωe,

∂nu = 0 on Γ and
lim
r→∞

√
r(∂r(u− uinc)− iλe(u− uinc)) = 0, r = |x|.

(7)

3 The Inverse Problem
The inverse problem consists in finding the shape and location of the obstacle from
the radiation measurements on Γmeas. A variational approach to solve the inverse
problem consists in looking for a domain Ω that minimizes the difference between
the solution of the forward problem and the measurements on Γmeas. This leads to
the following constrained optimization problem: minimize

J(Ω) =
1

2

∫
Γmeas

|u− umeas|2dl. (8)

where Ω is the design variable and the forward problem in Section 2 is the constraint
on the admissible field u.

When measurements on Γmeas for N different illuminations are available, the
optimization problem is: minimize

J(Ω) =
N∑
j=1

1

2

∫
Γmeas

|uj − ujmeas|2dl. (9)

The above problems are strongly ill-posed (Colton [1984]). Given arbitrary data
umeas, an associated scatterer Ω may not exist, and if it exists, it may not depend
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continuously on umeas. The obstacle is uniquely determined by the far-field scattered
wave for all incident directions and one fixed wave number (Kirsch and Kress [1993],
Gerlach and Kress [1996]). Therefore, by an analyticity argument (see Colton and
Kress [2013]), if Γmeas is a circumference, then the values of the total wave on Γmeas
for all incident waves determine uniquely the obstacles. The question of uniqueness
without any a priori knowledge about the location of the obstacles a finite number
of incident plane waves is still an open problem.

4 The Adjoint Problem
As it will be shown in next section, the derivation of the expressions of the topological
derivative requires the solution of the so-called adjoint problem. This auxiliary
problem consists in propagating back the discrepancy (u−umeas) from Γmeas towards
the region of analysis.

In the case the region of analysis is empty, the adjoint wave p solves (seee Carpio
and Rapún [2008a])

∇2p+ λ2
ep = −(u− umeas)δΓmeas in R2,

lim
r→∞

√
r(∂rp+ iλep) = 0,

(10)

where δΓmeas is the Dirac Delta function on Γmeas. For penetrable obstacles, the
adjoint problem is

∇p+ λ2
ep = −(u− umeas)δΓmeas in Ωe,

α∇2p+ λ2p = 0 in Ω,

p− + p+ = 0 on Γ,

∂np
− + ∂np

+ = 0 on Γ and
lim
r→∞

√
r(∂rp+ iλep) = 0, r = |x|.

(11)

Finally, for opaque obstacles, the adjoint the problem reduces to the Neumann
problem

∇2p+ λ2
ep = −(u− umeas)δΓmeas in Ωe,

∂np = 0 on Γ and
lim
r→∞

√
r(∂rp+ iλep) = 0, r = |x|.

(12)

As for the forward problem, the Sommerfeld radiation condition is imposed to the
back-propagated field. In this sense, note the plus sign in the last of equations in
(10) to (12) in contrast to the minus sign in the last of equations in (6).

5 The Topological Derivative for Inverse Scattering
The topological derivative measures the sensitivity of the objective function (8) to
the inclusion of an infinitesimal obstacle into the problem domain, such that regions
where it takes on large negative values are identified as the positions of the obstacles.
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The derivation of the topological derivative formulas in this section follows Carpio
and Rapún [2008a]. The setting of the problem is in Figure 2. Starting from a
domain R with no obstacles, a small circular obstacle is introduced at a point x,
which modifies the domain by creating a ’hole’ Bε(x) of radius ε. The topological
derivative is defined as

DT (x,R) = lim
ε→0

J(Rε)− J(R)

f(ε)
, (13)

where J(R) and J(Rε) are the cost function evaluated for the reference and per-
turbated domains, Rε = R − Bε(x), respectively; ε is the radius of the obstacle,
and f(ε) is a monotonically decreasing negative function that is chosen such that
f(ε) → 0 when ε → 0. The function f(ε) is usually related (although this is not
mandatory) to the measure of area of the obstacle, f(ε) = −πε2, in this case.
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Figure 2: Definition o the topological derivative using the shape sensitiv-
ity approach.

Explicit expressions of the topological derivative can be obtained via the shape
derivative (Feijóo [2004]). The link between the topological and shape derivatives is
established by the relationship

J(Rε) = J(R) + f(ε)DT (x) +O(f(ε)). (14)

The shape derivative of the functional (8) along a vector field V is defined as

DJ(R) ·V =
d

dε
J(φ(R))

∣∣∣
ε=0

, (15)

where φ(x) is the mapping function between the reference and perturbated domains,

φ(x) = x + εV(x), x ∈ R2, (16)
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in which the vector field points towards the obstacle boundary ∂B, i.e., V(x) =
Vnn(z) with Vn < 0 vanishes out of a neighborhood of ∂B. Then, the expression for
the topological derivative results as

DT (x,R) = lim
ε→0

(
1

f ′(ε) | Vn |
d

dε
J(φ(Rε))

∣∣∣
ε=0

)
, (17)

where f ′(ε) if the derivative of f(ε).
A family of explicit expressions of the topological derivative results after the

solution of (17) for specific problem settings that consider the identification of opaque
and penetrable obstacles. For the details about the derivations these solutions –
which involve rather technical analyses– the reader is referred to Carpio and Rapún
[2008a].

The expressions of the topological derivative for penetrable obstacles is

DT (x) = Re

[
2(1− α)

1 + α
∇u(x)∇p̄(x) + (λ2 − λ2

e)u(x)p̄(x)

]
, (18)

where p̄ stands for the conjugate of the adjoint problem solution. For the limiting
case of perfect transmission across the interface, i.e. α = 1, expression (18) reduces
to

DT (x) = Re
[
(λ2

i − λ2
e)u(x)p̄(x)

]
. (19)

Additionally, the topological derivative for opaque obstacles is

DT (x) = Re
[
2∇u(x)∇p̄(x) + λ2

eu(x)p̄(x)
]
. (20)

It is interesting to point out that the above three expressions for the DT are
independent of the structure of the incident wave, so they hold for plane waves and
due to point sources or any other type of source.

Another cool feature of the above expressions is that, although they have been
derived starting from an empty domain, they can be used for domains with pre-
existent obstacles, say Ω0. In such a case, the forward and adjoint problems are
solved in Ωe = R2 − Ω0 with transmission or Neumann boundary conditions at the
interface. The solution of such problems will be discussed thoroughly next in the
section devoted to the numerical implementation.

Analogous formulae of the DT have been deduced in three dimensions, see for
example Guzina and Bonnet [2006] and Carpio and Rapún [2008a] .

6 Numerical implementation

6.1 Problem setting

For the sake of simplicity, but without loss of generality, the computation of the DT

is presented here in the context of sound scattering and planar incident waves.
The problem setting is depicted in Figure 3. Two cases may arise: either the

search area is empty or it contains pre-existent obstacle Ω0. In any cases the search
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area is illuminated from N different directions and the sound pressure is measured
at xk with k = 1...M receptor points s that are placed on the circular boundary
Γmeas of radio Rmeas that encloses the search area. As it will be shown later, the
use of discrete point receptors to on Γmeas simplifies the computations and allows
for efficient BEM implementations.

The DT is sampled at P regularly spaced points on the search area. These points
are referred as the ’domain points’ and they are as xl with l = 1...P .
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Figure 3: Topological derivative computation: (a) empty domain, (b) do-
main with a pre-existent obstacle. Symbols • and × indicate the positions
of the receptors and the domain points, respectively.

The evaluation of DT requires knowing the pressure and its gradient for the
direct and adjoint problems (see equations (18), (19) and (20)) at the domains
points. There are two implementations: the first for the case of the empty search
area, in which all calculations can be performed analytically; and the second for
the case of a pre-existing obstacle, which uses numerical solution by means of BEM
models.

or it contains pre-existent obstacles.

6.2 Empty domains

The absence of obstacles makes the problem free of dispersion, which allows the
pressures and their derivatives of both the direct problem and the adjoint problem
to be calculated analytically.



6.2.1 Computation of the direct problem

The incident pressure field is computed using equation (2) for unit incident waves,
see Figure 3(a). Due to the absence of scattering, the total pressure is u = uinc (see
equation (1)).

On the other hand, the spatial derivatives of the planar wave are

u,m(x,d) =
∂u(x,d)

∂xm
= (iλe · dm)eiλex·d with m = 1, 2. (21)

6.2.2 Computation of the adjoint problem

The adjoint problem consist in propagating back the pressure discrepancy a the
receptors towards the search area. So, consistent with the point receptors used in
this implementation, the radiation from the receptors are computed using equation
(3) with the amplitudes given by (u− umeas). Thus, the pressure field associated to
a point source in the kth receptor is

p(x) = −[u(xk)− umeas(xk)]
i

4
H

(1)
0 (λer), (22)

and its spatial derivatives are

p,m(x) = −[u(xk)− umeas(xk)]
iλe
4
H

(1)
1 (λer)

∂r

∂xm
with m = 1, 2, (23)

where r = |x− xk| is the distance from the receptor.

6.2.3 Algorithm

i Set-up the problem as it depicted in Figure 3(a), and have available the data of
the pressure measurements at theM receptors due to each of the N illumination
directions. Store the pressure measurements in ujmeas(x

k), which are j = 1...N
vectors with k = 1...M elements each.

ii Use equations (2) and (21) to compute the pressures and pressure gradients due
to each of the illumination directions at the domain points. These results are
stored in uj(xl), which are j = 1...N vectors of length l = 1...P ; and ∇uj(xl),
which are j = 1...N matrices with l = 1...P rows and two columns, one for each
component of the gradient, m = 1, 2.

iii Use equation (2) to compute uj(xk), the pressures due to each of the j = 1...N
illumination directions at the k = 1...M receptors.

iv Use equations (22) and (23) with the results in ujmeas(x
k) and uj(xk) to compute

the adjoint pressure and pressure derivatives at the domain points. Note that
since each illumination direction results in discrepancies at all the receptors,
the solutions to the adjoint problem at each domain point is the sum of the
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contributions of the M receptors. Thus, the adjoint pressure field at the lth
domain point do the jth incident wave is

pj(xl) =
M∑
k=1

−[uj(xk)− ujmeas(x
k)]
i

4
H

(1)
0 (λer

(k)), (24)

and its spatial derivatives are

pj,m(xl) =
M∑
k=1

−[uj(xk)− ujmeas(x
k)]
iλe
4
H

(1)
1 (λer

(k))
∂r(k)

∂xm
with m = 1, 2. (25)

Following the same scheme in step (ii), the results of the above computations
are stored in the arrays pj(xl) and ∇pj(xl), respectively.

v Select the adequate expression of DT in Section 5 and use the results in uj(xl),
∇uj(xl), pj(xl) and ∇pj(xl), to compute the topological derivative at the do-
main points for each of the N illumination directions: Dj

T(xl).

vi Compute the overall topological derivative at the domain points as the sum of
the contributions of all the illumination directions:

DT (xl) =
N∑
j=1

Dj
T(xl) (26)

vii Draw a contour plot with the DT (xl) results over the search domain. The ge-
ometry of the hidden obstacle is that delimited by the largest negative values of
the topological derivative.

6.2.4 Examples

Identification of a single obstacle. The hidden obstacle is that depicted in
Figure 4a, which has a smooth boundary with concave and convex portions.

The problem set-up is similar to that depicted in Figure 3a. The search area
is of dimensions L × L =10 m×10 m. The hidden obstacle is illuminated by N
plane waves with their angles of incidence equally distributed over 2π. The number
of receptors M , the distance Rmeas, as well as the number of illumination waves N
and their wavelengths λ are subjects of the analysis. The reference sound-pressure
values at the receptors due to the dispersion of the N incident waves by the obsta-
cle, ujmeas(x

k), were produce synthetically using high-resolution BEM models with
element sizes equal to one-tenth the incident wavelength (the details of the BEM
models will be introduced later in Section 6.3).

The first set of results assess the effect of the wavelength on the quality of the
identification. The analysis is performed for wavelengths λ = c/fi =3.4, 1.7, 0.85,
0.567 and 0.425 m, corresponding to frequencies fi =100, 200, 400, 600 and 800 Hz
for a speed of sound c =340 m/s. The number of incident waves, N = 100, the
number of receptors, M = 100, and their distances, Rmeas=10 m, are kept constant.
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Figure 4: Identification of a single obstacle in an empty domain. Contour
plots of DT for different illumination wavelengths: (a) Geometry of the
hidden obstacle and results for the obstacle shape for (b) λ/D = 0.85, (c)
λ/D = 0.425 , (d) λ/D = 0.213, (e)λ/D = 0.142 and (f) λ/D = 0.106.
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Grid size of the domain point arrangement are one-tenth of the wavelength of the
incident wave. Depending on the wavelength, the number of domain points ranged
from 870 to 55360.

The results for the topological derivative DT in terms of λ/D, the ratio between
the wavelength and the characteristic length of the obstacle, are presented in Figures
4b to f. The shape of the scatterer is given by the locus of the most negative
lowest DT values. As it was expected, the quality of the identification improves as
the wavelength decreases. The reconstruction provides a reasonable result of the
obstacle shape for wavelengths λ/D ≤ 0.20.

The second analysis is about the influence of the number of illumination direc-
tions. The problem is solved for Ni = 25, 50, 75 and 100. Based on the previous
analysis, the source wavelength is set to λ/D = 0.142 (f = 600Hz). The number
and distance of the receptors, M =100 and Rmeas =10 m, are the same as in the
previous analysis. The results are shown in Figure 5. It can be observed that a
reduced number of sources as low as N = 25 provides a reasonable approximation
of the obstacle shape.

The effect of the distance of the receptors is assessed in the third analysis. To
this end, the problem is solved for the normalized distances Rmeas/D =2.5, 5, 10
and 20. The number of illumination directions, their wavelengths and the number
of receptors are set to N = 100, λ/D = 0.142 and M = 100, respectively. The
results are shown in Figure 6. As it was expected, the quality of the identification
deteriorates with the distance increases. However, this lost of performance is not
significant for the range of distances considered.

Finally, the effect of the measurement error is investigated by adding noise to
the pressure values at the receptors. Random noise is added to the amplitude and
phase of ujmeask . The effects of the noise amplitude are examined in the range from
5% to 50% the amplitude of the incident waves. Figure 7 illustrates some results for
the example with N = 100, λ/D = 0.142, M = 100 and Rmeas/D = 10. The effect
of noise starts to be noticeable for noise amplitudes around 20% (compare Figures
6c and 7a). Noise amplitudes of 50% clearly deteriorates the performance of the
method, see Figure 7b; however, it is still possible to distinguish the silhouette of
the hidden obstacle.
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Figure 5: Identification of a single obstacle in an empty domain. Contour
plots of DT in terms of the number of sources: (a) N = 25, (b) N = 50, (c)
N = 75 and (d) N = 100.
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Figure 6: Identification of a single obstacle in an empty domain. Contour
plots of DT in terms of the distance to the receptors: (a) Rmeas/D = 2.5,
(b) Rmeas/D =5, (c) Rmeas/D =10 and (d) Rmeas/D = 20.
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Figure 7: Identification of a single obstacle in an empty domain. Contour
plots of DT in terms of the number of sources: (a) N = 25, (b) N = 50, (c)
N = 75 and (d) N = 100.

Identification of multiple obstables The problem geometry is illustrated in 8a.
It consists in the identification of two hidden obstacles: a circle of radius r =2 m
and a square with side length s = 2r =4 m .

The performance of the method is demonstrated with regard to the distance
between the objects, which is examined in the range 2

√
2 ≤ d/r ≤ 6

√
2, where d

is the distance from the center of the circle to the center of the square. Based on
the results of the previous example, M = 100 receptors are placed on the circular
boundary Γmeas of radius Rmeas = 10r = 20 m. The search areas is illuminated by
N = 100 planar waves with their angles of incidence equally distributed over 2π.
The wavelength is set to λ =0.567 m, so that λ/s = 0.142. The size of the search
area is set in accordance with the distance of the scatterers, from 12 m× 12 m for
the closest positions to 20 m×20 m for the furthest one. Accordingly, the number of
domain points ranges from 58081 to 161336. Like in the previous example, reference
sound-pressure values at the receptors due to the hidden scatterers, ujmeask , were
computed using high-resolution BEM models.

The DT results in terms of distance between the obstacles s are plotted in Figure
8b to f. It can be observed that obstacles shapes are resolved with high precision.
It is interesting to note that the DT intensities along the portions of the obstacles
boundaries facing each other are larger than along the portions of the boundaries
facing the open space. This is because the obstacles shield each other, what hinders
the illumination of the closest portions of the boundaries. Moreover, the highest
values of DT occur in the zone between the obstacles, what indicates that this is
the most sensitive zone towards the minimization of the objective function. This
is coherent with the behavior expected for the limiting case, in which the objects
touch or overlap, and thus behave as a single obstacle.
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Figure 8: Identification of two obstacles in an empty domain. Contour
plots of DT in terms of the separation between the obstacles: (a) hidden
obstacles, (b) d/r = 6

√
2, (c) d/r = 5

√
2, (d) d/r = 4

√
2, (e) d/r = 2.5

√
2 and

(f) d/r = 2
√

2. The same color scale is used in all the figures.
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6.3 Domains with pre-existent obstacles

In contrast to the empty-domain analyses, the evaluation of the DT for domains
with pre-existent obstacles requires of numerical models to solve the scattered fields
of the forward and adjoint problems. Boundary element models are used for this
purpose.

6.3.1 The BEM for the Helmholtz’s equation

Main aspects of the Boundary Element Method (BEM) are described next, aiming
to the specific task of computing the DT . The BEM formulation is not introduced
thoroughly; the reader is referred to classical books on BEM such as Wrobel [2002]
or Brebbia et al. [1984] for full details.

Consider the problem in Figure 3(b) and assimilate Ω0 to a hole, such that
Ωe = R − Ω0. The starting point to formulate the BEM for solving the scatter
problem over Ωe is the integral formulation of the Helmholtz equation:

c(x′)usc(x
′) +

∫
Γ

q∗(x,x′)usc(x)dΓ(x) =

∫
Γ

u∗(x,x′)qsc(x)dΓ(x) + uinc(x
′,d), (27)

which relates usc(x′), the pressure at a position x′ (the so-called collocation point),
with the pressure and the pressure flux, usc(x′) and qsc(x) = ∂usc

∂n
, respectively, on

the boundary Γ(x). The term c(x′) in (27) is a coefficient that depends on the
boundary geometry at x′; and u∗(x,x′) and q∗(x,x′) are the fundamental solutions
for the pressure and flux fields, respectively.

The pressure fundamental solution u∗ is the solution to the Helmholtz’s equation
for the pressure generated at a field point x by a concentrated unit source at x′ in
an unbounded space. Note that this solution is the same of the point source in
equation (3). So,

u∗(x,x′) =
i

4
H

(1)
0 (λer), (28)

with the distance r = |x− x′| defined from the collocation to the field point. Simi-
larly, the fundamental solution q∗ is the flux in the normal direction at Γ(x) gener-
ated by the unit source at x′, this is

q∗(x,x′) =
∂u∗

∂n
= −iλe

4
H

(1)
0 (λer). (29)

It is worth to note that the above formulation naturally satisfies the standard
Sommerfeld radiation condition on the propagation of the scattered field at infinity
(see Section 2).

The BEM consists in discretizing the boundary Γ(x) into nel elements. Depend-
ing on the discretization strategy, u(x) and q(x) can be interpolated using constant,
linear or quadratic elements. For the sake of simplicity but without the loss of
generality, constant elements 2 are used in this work, such that Γ =

∑nel
j=1 Γj. The

2These elements approximate both theu and q fields as constants and have a single node at
their midpoints.

Cisilino,Adrián P, Anflor,Carla TM (2022) Ultrasound Obstacle Identification BEM&TD pp. 301-330

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 319



 

  

 

 

𝑢!"# 	
d 

We 
  

n 
  

element 
node 

Figure 9: Boundary element discretization of the problem consisting in
an open domain with an embedded hole.

discretized model is depicted in Figure 9. Notice the normal vector pointing out
of the domain. The discretized version of equation (27) for the collocation point
located at the ith node is

ci(xi)uisc(x
i)+

nel∑
j=1

∫
Γj

ujsc(x)q∗(x,xi)dΓ(x) =
nel∑
j=1

∫
Γj

qjsc(x)u∗(x,xi)dΓ(x)+uinc(x
i,d).

(30)
Upon the evaluation the of the integrals, equation (30) can be written in matrix

form as follows:

ciuisc +
nel∑
j=1

Ĥ ijujsc =
nel∑
j=1

∫
Γj

Gijqjsc + uiinc, (31)

where

Ĥ ij =

∫
Γj

q∗(x,xi)dΓ(x) and

Gij =

∫
Γj

u∗(x,xi)dΓ(x).

(32)

If the position of the collocation point i is made to vary from 1 to nel, that is,
the fundamental solution is applied in each of the nodes successively, the evaluation
of (31) to each node results in the system of equations

Husc = Gqsc + uinc, (33)

where H collects the elements Ĥ ij plus the terms ci(xi).
Matrices H and G in equation (33) have dimensions nel × nel, while usc, qsc

and uinc are vectors of length nel. This makes a system of nel equations with
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2 · nel unknowns (uisc and qisc), which will not be solvable until boundary conditions
are specified on Γ. In the next section, the formulation will be specialized for the
cases of pre-existing sound-hard (opaque) and penetrable obstacles by specifying the
appropriate boundary conditions on Γ.

6.3.2 Computation of the forward problem

Sound hard obstacles. When dealing with sound hard obstacles, the sound flux
q = ∂usc

∂n
is zero along Γ(x). So, the integrals in the right-hand side of (30) vanish

to yield

ciuisc +
nel∑
j=1

Ĥ ijujsc = uiinc, (34)

and the system of equation (33) reduces to

Husc = uinc. (35)

The system in (35) is solved to obtain the nodal pressures on the obstacle boundary,
usc. Notice that matrix H depends on the geometry of the obstacle only, so, it is
computed once and then used repeatedly to solve the boundary pressures for each
of the N incident waves. Conversely, vector uinc depends on the direction of the
incident wave, so it has to be computed repeatedly for each incident wave.

Once the boundary pressure is known, the total pressures and pressure gradients
at the domain points are computed using equation (1) in combination with the
pressure boundary integral equation. Thus, the discretized expressions for the total
pressure and its gradient components are

usc(x
l) =

nel∑
j=1

∫
Γj

ujsc(x)q∗(x,xl)dΓ(x) + uinc(x
l,d) (36)

and

usc,m(xl) =
∂usc(x

l)

∂xlm
=

nel∑
j=1

∫
Γj

usc(x)
∂q∗(x,xl)

∂xm
dΓ(x) +

∂uinc(x
l,d)

∂xm
with m = 1, 2,

(37)
respectively. The discretized matrix forms of equations (36) and (37) are

usc(x
l) = Ausc + uinc (38)

and
usc,m(xl) = A′usc + uinc,m . (39)

Notice that matrices A and A′ have to be computed repeatedly for each domain
node, since they depend on the position xl. The computation of A and A′ are the
most expensive tasks of the algorithm, as they are typically computed hundreds or
thousands of times.
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Figure 10: Boundary element discretization of the problem with a pre-
existent obstacle.

It is also worth to notice that although the above formulation has been introduced
for a single pre-existent obstacle, its extension to multiple obstacles is immediate.
In such a case, it is only necessary to assimilate Γ to the union of boundaries of all
obstacles.

In turn, expression (36) is also used to compute the sound pressures at the
receptors, u(xk), which will later used to pose the adjoint problem.

Penetrable obstacles. The BEM setup for penetrable obstacles needs of multiple
domains in order to account for the propagation within the obstacles. For the sake
of simplicity, a formulation for a single pre-existent obstacle will be introduced next;
its extension to multiple pre-existing obstacles is straightforward.

Two domains are considered: the external infinite domain, Ωe, and that of an
embedded pre-existent obstacle, Ω0, as in Figure 3(b). A simple strategy for de-
veloping the general BEM model is to apply the boundary element procedure to
each domain independently, and then combine their systems of equations using the
compatibility and continuity conditions at the interface.

As shown in Figure 10, the two domains use the same boundary element mesh,
but they have opposite normal vectors (this is because both are external normals of
their corresponding domains). The integral formulation for the exterior problem is
that in equation (27). Analogously, for the embedded domain is

c0(x′)u0
sc(x

′) +

∫
Γ0

q∗0(x,x′)u0
sc(x)dΓ(x) =

∫
Γ0

u∗0(x,x′)q0
sc(x)dΓ(x), (40)

where fundamental solutions u∗0 and q∗0 are the same in (28) and (29), respectively,
but with λe replaced by λ0.

The discretized matrix form of equation (40) is

H0u
0
sc = G0q

0
sc. (41)
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If one adopts the pressure and the flux of Ωe as reference values (which is equiv-
alent to say that the normal on the interface is the is the normal to Ωe), the com-
patibility and equilibrium conditions in equations (5) results in

usc = u0
sc (42)

and
qsc = −αq0

sc. (43)

These conditions can be introduced in (33) and (41), which can now be written
together as follows: [

H
H0.

]
usc =

[
G
−αG0

]
qsc +

[
uinc

0

]
(44)

The system above can be rewritten as[
H −G
H0 αG0

] [
usc

qsc

]
=

[
uinc

0

]
, (45)

where the matrix on the left-hand side has dimensions 2 ·nel×2 ·nel and the vector
containing usc and qsc is of length 2 · nel. The system is then solved to obtain the
pressures and fluxes on the obstacle boundary.

The above formulation can be easily extended to handle multiple obstacles, which
could have different penetration coefficients α. Moreover, sound-hard and penetrable
obstacles can be combined into a single BEM scheme. It is also interesting to point
out that when more obstacles are included, the system of equations (45) tend to
have large number of zero submatrices, which improves computational efficiency.

Once pressures and fluxes on the obstacle boundary are known, total pressures
and pressure gradients at the domain points in Ωe are computed using their boundary
integral representations. Their discretized expressions are

usc(x
l) =

nel∑
j=1

∫
Γj

ujsc(x)q∗(x,xl)dΓ(x) +
nel∑
j=1

∫
Γj

qjsc(x)u∗(x,xl)dΓ(x) + uinc(x
l,d)

(46)
and

usc,m(xl) =
∂usc(x

l)

∂xlm
=

nel∑
j=1

∫
Γj

usc(x)
∂q∗(x,xl)

∂xm
dΓ(x) +

nel∑
j=1

∫
Γj

qsc(x)
∂u∗(x,xl)

∂xm
dΓ(x)+

+
∂uinc(x

l,d)

∂xm
with m = 1, 2.

(47)

Notice that in comparison to the sound-hard case, the above equations incorporate
an extra term that accounts for the boundary flux. The discretized matrix forms of
equations (46) and (47) are

usc(x
l) = Ausc + Bqsc + uinc (48)
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and
usc,m(xl) = A′usc + B′qscuinc,m . (49)

The comments for the reusability of A, A′, B and B′ and the most efficient
implementation strategy are the same as for the sound-hard case.

6.3.3 Computation of the adjoint problem

The solution of the adjoint problem in Section 4 is decomposed –as it is done for
the forward problem– into the incident and scattered parts, i.e., p = pinc + psc.

• The solutions for the incident pressure and the pressure gradient are the same
of forward problem in Section 6.2.2. So, pinc and pinc,m fields due to the
point source in the kth receptor are computed using equations (22) and (23),
respectively.

• Te solution of the scattered field is analogous to the forward problem in Section
6.3.2, so psc and psc,m can be computed using the same BEM schemes. For
this, it is only necessary to specify the incident waves as point sources of
amplitude −[u(xk)− umeas(xk)] at the receptors. Note that all BEM matrices
(those to solve the boundary problem and to compute the solutions at the
internal points) are the same of the forward problem, so they do not need to
be recomputed.

6.3.4 Algorithm

The algorithm for the evaluation of the DT is basically the same introduced in
Section 6.2.3 for the empty space. However, it needs to be adapted to replace the
analytical solutions by BEM ones.

i Set-up the problem as it depicted n Figure 3(b), and have available the data of
the pressure measurements at theM receptors due to each of the N illumination
directions. Store the pressure measurements in ujmeas(x

k).

ii Use the BEM to solve the forward problem for each of the illumination direc-
tions and compute the corresponding pressures, uj(xl), and pressure gradients,
∇uj(xl), at the P domain points. For this, choose the appropriate BEM formu-
lation from Section 6.3.2, depending on whether the pre-existent obstacles are
sound-hard or penetrable.

iii Use the BEM model to compute the pressures uj(xk) at the M receptors for
each of the illumination directions.

iv Follow the strategy in Section 6.3.3 to use the BEM model and the discrepan-
cies at the receptors, [u(xk) − umeas(xk)], to calculate the adjoint pressure and
pressure derivatives at the domain points for each illumination direction. Then,
add up the contributions of the M receptors to compute pj(xl) and ∇pj(xl),
the adjoint fields at the domain points for each illumination direction.
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v Select the adequate expression of DT in Section 5 and use the results in uj(xl),
∇uj(xl), pj(xl) and ∇pj(xl), to compute the topological derivative at the do-
main points for each illumination directions: Dj

T(xl).

vi Compute DT (xl), the overall topological derivative at the domain points as the
sum of the contributions of all the illumination directions.

vii Draw a contour plot with the DT (xl) results over the search domain. The ge-
ometry of the hidden obstacle is that delimited by the largest negative values of
the topological derivative.

6.3.5 Example

This example revisits the problem of the multiple obstacle identification in Section
6.2.4, but with the variation that square obstacle is visible while the circular one is
hidden.

The problem is solved using the same wavelength, number and position of the
receptors and number of incident waves as in the previous analysis. The BEM
models for the computation of the forward and adjoint problems are discretized
with elements of size equal to one-tenth of the wavelength.

The DT results in terms of distance between the obstacles are plotted in Figure
11. Plots show the effectiveness of the procedure to identify the circular obstacle.
It is interesting to see that the quality of the identification of the circle, especially
the portion of the boundary that faces the square, is better than in the previous
analysis. This result because, being the presence of the square known a priori, the
identification does not suffer the shielding effects when the obstacles are close to
each other.

The robustness of the method to measurement error is investigated using the
same strategy as for the previous example. The case d/r = 5

√
2 in Figure 11b, is

selected for the analysis. Figure 12 illustrates some results. It is found that the
degradation of the results starts to be noticeable for noise amplitudes around 10
%, see Figure 10a. However, and like in the previous example, it is still possible
to identify the hidden object with measurement errors of up to around 50%, , see
Figure 12b.

7 Comments and Conclusions
A framework for the inverse analysis of acoustic scattering problems in open domains
using the Boundary Element and Topological Derivative Methods has been presented
in the previous sections. The modeling strategy takes advantage of the inherent
characteristics of the BEM to effectively deal with problems with infinite domains.
The tool has the capability to identify obstacles in initially empty domains and as
well as in domains with pre-existent obstacles.

The performance of the tool is demonstrated for sound-hard obstacles. Such
problems are solved using single-domain BEM models. An efficient BEM imple-
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(c) (d) 

(e) 

Figure 11: Identification of the square obstacle in the presence of a pre-
existent circular obstacle. Contour plots for the topological derivative
results as function of the distance between obstables: (a) d/r = 6

√
2, (b)

d/r = 5
√

2, (c) d/r = 4
√

2, (d) d/r = 2.5
√

2, (e) d/r = 2
√

2. The same color
scale is used in all subfigures.
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Figure 12: Assessment of the measuring error. Contour plots for the
topological derivative results with (a) 10% and (b) 50% noise in the pres-
sure values at the receptors.

mentation is proposed, which re-uses the matrices assembled for the solution of the
forward problem for the computation of the adjoint problem.

Good quality results are obtained provided the lengths of the incident waves
are smaller than one fifth of the characteristic size of the obstacles. An initial set-
up with 50 sources and 100 receptors is recommended for practical identification
problems. These settings can be adjusted later depending on the characteristics of
each particular problem. The method shows low sensitivity to measurement error.
Measurements with a noise of 50% the amplitude of the incident wave allow for
positive identifications of the hidden obstacles. On the other hand, the flexibility
of the method in the problem set-up makes it attractive for the implementation of
adaptive strategies for the optimum placement of the sources and/or the receptors.

Although they have been practically shown for sound-hard obstacles, the formu-
lations introduced for the inverse scattering problem and the BEM are general. They
can handle problems involving penetrable obstacles (both, pre-existent and hidden
ones), and even combinations of obstacles with different penetration coefficients. The
solution of such problems will require the implementation of multi-domain BEM.

The extension of the analysis to three-dimensional problems leads to analogous
formulae. See the works by Carpio and Rapún [2008b], Guzina and Bonnet [2006]
and Nemitz and Bonnet [2008] for the details.

The method exhibits the potential to solve problems larger and more geometri-
cally complex than those presented in this work. However, solving such problems
would require faster algorithms to speed up not only the solution of limits but,
more importantly, the post-processing on the BEM results at internal points for the
computation of the DT . In the BEM used in this work, the computational cost of
solving direct and adjoint boundary problems is modest compared to post-processing
at internal points.
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The solution of the direct and adjoint boundary problems can be easily adapted
to benefit from fast BEMs for acoustics, like the fast multipole in Nemitz and Bonnet
[2008] and hierarchical matrices in Brancati et al. [2012]. On the other hand, itera-
tive methods are an alternative to avoid the exhaustive sampling of the optimization
for the computation of theDT . A simply approach based on that introduced by Car-
pio and Rapún [2008a]. The idea is simple. Perform a first solution to the problem
for a coarse array of internal points and use the points in which the DT falls below a
certain negative threshold to define a first guess the obstacle geometry. Then solve
the problem for the new geometry and compute the TD on a finer array of internal
points. Such array of internal points only need to extend around the pre-existent
obstacles and on zones with lowest values of the TD in the previous step. Find the
points with the lowest values of TD for the new solution: those points which are
close to any of the existing obstacles are included into that obstacle, whereas the
points that far enough from the existing obstacles are used to create a new obsta-
cle. Update the configuration and repeat the process until a stopping criterion (for
instance, a threshold value of the DT or a limit to the rate of change to the obstacle
area) is fulfilled.
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Abstract 

This chapter presents some fundamental concepts on wavelet transforms, both discrete and 

continuous, each are useful to understand the ability of the wavelet transform to capture 

sudden changes in material properties or parameters along the span of structural components 

being assessed. The chapter also discusses some families of wavelet transforms, some wavelet 

properties and regularization aspects. 

 

Keywords: Wavelet Transform, Continuous Wavelet, Discrete Wavelet, Wavelet 

Family Function, Wavelet Packet. 

 

1 Introduction of Wavelet Transform 

Wavelet comes from the French word “ondalette”, which means small wave. Wavelets 

were first mentioned in the appendix of Haar's thesis (Haar, 1910). Haar wavelets 

remained anonymous for several years until in the 1930s (Reis, 2018). Working 

independently, various groups made research using the wavelet functions using a base 

and varying scales. On that occasion, using the Haar wavelets as a basis, Paul Levy 

investigated the Brownian motion (Reis, 2018). He showed that Haar-based functions 

were better than Fourier-based functions for studying the small Brownian motion with 

intricate details. 

For a long period, Haar wavelets continued to be the only known orthonormal wavelet 

basis. In 1985, Mallat gave wavelets a big boost through his/her work in digital image 

processing. Meyer (1989), inspired by Mallat's results, constructed the first non-trivial 

(smooth) wavelet. Unlike the Haar wavelet, Meyer wavelet is continuously 

differentiable, but do not have compact support. In 1990, Ingrid Daubechies used 

Mallat's work to build a set of smooth wavelet orthonormal bases with compact 
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supports. Daubechies' works are the foundation of current Wavelets applications 

(Palechor et al., 2019; Silva et al., 2019). 

For a good understanding of wavelet analysis, it is necessary to start with the analysis of 

simple techniques. In practice, many signals can be represented in the time domain and 

in the frequency domain. 

The representation of the signal in the frequency domain is obtained by applying the 

Fourier transform (FT) to the original signal expressed in the time domain. The result of 

this transformation is a set of frequencies that characterize the original signal. But the 

question arises: why do we need frequency information? Often the information that is 

needed cannot be seen in the time domain, but in the frequency domain. In other cases, 

the most important part of the signal information is “hidden” in their frequencies. This 

transformation can be applied to non-stationary signals; that is, signals that change their 

parameters over time. 

In many applications, periodic oscillatory behavior is intermittent. For these analyses, 

the FT is no longer the most suitable as the series must be stationary (its parameters 

remain constant over time). As an alternative to solve this problem, there is the Short-

Time Fourier Transform (STFT) (a generalization of the Windowed Gabor Transform) 

(Michel Misiti et al., 1997). Its application allows the signal information achievement in 

time and frequency. The STFT methodology has some difficulties in determining the 

ideal time domain window width (e.g., interval of time that is slid along time series). 

 

Wavelet analysis takes a different approach as it is based on the idea that any signal can 

be broken down into a series of basic functions called “wave”. This technique also 

allows the use of basic functions with variable size, and the use of long and short time 

and space intervals to capture the necessary information (Figure 1). 

 

A great advantage provided by wavelets is the ability to perform local analysis. 

Consider a sinusoidal signal with a small break, so small that it is barely visible as in 

Figure 2. 

 

Figure 1 – Wavelet Transform (adapted from Misiti et al. 1997). 
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Figure 2 – Discontinuity on signal (adapted from M Misiti et al., 1997) 

A graph of Fourier amplitudes (Fourier coefficients) as a function of frequency, 

obtained by the FT of this sinusoidal signal, does not show anything, except the peaks 

due to the characteristic frequencies of sinusoidal signal, Figure 3(a). However, a 

portion of wavelet coefficients clearly shows the exact location in time of the 

discontinuity generated by the signal disturbance, Figure 3(b). 

 

 

(a) (b) 

Figure 3 – Comparation between Fourier coefficients (Weeks, 2007)(a) 
 and Wavelet coefficients (M Misiti et al., 1997) (b) 

A wavelet is an effectively time-limited waveform with a zero-value averaging. One of 

the main advantages provided by the Wavelet Transform is the ability to perform local 

analysis; that is, it can analyze a restricted data series of a larger signal. This analysis 

can reveal aspects that other signal processing techniques cannot obtain, aspects such 

as: trends, points of degradation, discontinuities. In the case of damage identification, 

these discontinuities may be caused, for example, by cracks (Ovanesova, 2000; 

Ovanesova and Suárez, 2004). 

The wavelet decomposition consists of calculating a “resemblance index” between the 

signal and the wavelet function. If the index is large then the similarity is strong, 

otherwise the similarity is weak. The Wavelet transform of a signal 𝒇(𝒙), is the family 

𝑪(𝒂, 𝒃), which depends on two indices 𝒂 and 𝒃, the values 𝑪(𝒂, 𝒃) are called 

coefficients, that will be described section 3. 
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Wavelets have been widely used to analyze time-domain signals. For the Wavelet 

analysis of spatial-domain signals, we can simply replace time with a spatial coordinate 

f(x), corresponding to vibration modes or displacements due to static load (Wu and 

Wang, 2011). 

 

Similar to the windowed Fourier transform, the unidimensional Wavelet Transform 

projects a signal into two-dimensional space. The Wavelet Transform of the signal 𝑓(𝑥) 

is defined as: 

𝑊𝜓
𝑓(𝑎, 𝑏) = |𝑎|−1/2 ∫ 𝑓(𝑥)𝜓∗ (

𝑥 − 𝑏

𝑎
)

∞

−∞

𝑑𝑥 (1) 

where 𝜓∗(. )  indicates the complex conjugate of 𝜓(. ) it is assumed that the mean value 

of the function 𝜓(𝑥) is null: 

∫  𝜓(𝑥)

∞

−∞

𝑑𝑥 = 0 (2) 

 

In both Short-Time Fourier Transform and the Wavelet Transform, the signal 𝑓(𝑥) is 

multiplied by a function of two variables. In the case of Short-Time Fourier transform 

variables, the function is as follows: 

𝑤𝑤,𝜏(𝑥) =
1

2𝜋
𝑤(𝑥 − 𝜏)𝑒−𝑖𝑤𝑥 (3) 

 

The respective function for the wavelet transform is given by: 

𝜓𝑎,𝑏(𝑥) = |𝑎|−1/2𝜓∗ (
𝑥 − 𝑏

𝑎
) (4) 

The 𝜓𝑎,𝑏 functions are called wavelets or mother wavelet functions. Short-time Fourier 

transform functions usually fluctuate and decay rapidly. In contrast to the 𝜓𝑎,𝑏(𝑥) 

functions, the number of oscillations remains constant with window changes. This 

means that a wavelet is “scaled” along the axis of time (or space). For short-time 

Fourier transform, the size of the window remains constant while the number of 

oscillations changes. This principle is illustrated in Figure 4. 
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(a) 

 

(b) 

 

(c) 

Figure 4 – Comparation between (a) Fourier transform, (b) short-time Fourier transform, 
(c) Wavelet transform (Michel Misiti et al., 1997). 

 

For the wavelet transform analysis, 𝜓(𝑥) is the complex function of values located in 

the spatial domain 𝑥. The function 𝜓(𝑥) is the mother wavelet that generates the 

wavelet coefficients by shifting and scaling (Wu and Wang, 2011). The shifting from 

mother wavelet can be defined as: 

𝜓𝑎,𝑏(𝑥) = 2
𝑎
2𝜓(2𝑎𝑥 − 𝑏) (5) 

where 𝑎 and 𝑏 are scaling and shifting, respectively. 

 

For a spatial signal 𝑓(𝑥) in the interval [𝑎, 𝑏], its wavelet transform is given by: 

𝐶𝑎,𝑏 = ∫ 𝑓(𝑥)
∞

−∞

𝜓𝑎,𝑏(𝑥)𝑑𝑥 (6) 

where 𝐶𝑎,𝑏 is wavelet coefficient for mother wavelet 𝜓𝑎,𝑏 (𝑥) with scale 𝑎, and position 

𝑏 (Wu and Wang, 2011). 

 

Wavelet Transform includes Continuous Wavelet Transform (TCW) and Discrete 

Wavelet Transform (TDW). The main advantage of TCW is its ability to provide time 

and scale information (Li et al., 2009). The difference between the two transformations 

is in the form of scale representation (Table 1): 

• In continuous analysis, the scale varies almost continuously between 21 and 25, for 

example. When a scale is small, only small details are analyzed. This is why 

continuous analysis is often easier to interpret (Ovanesova, 2000; Ovanesova and 

Suárez, 2004); 

• In discrete analysis, the scale is dyadic, for example, 21, 22, 23, 24, and 25. Each 

level coefficient 𝑘 is repeated 2𝑘 times. This is why discrete analysis guarantees 

saving of coding space and is sufficient for synthesis (Ovanesova, 2000; Ovanesova 

and Suárez, 2004). 

 

Palechor, Erwin U. L., et al. (2022) Fundamental Concepts on Wavelet Transforms pp. 331-356

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 336



Table 1 – TCW and TDW differences (Ovanesova, 2000; Ovanesova and Suárez, 2004) 

Continuous Time Continuous Time Discrete Time (𝜟 = 𝟏) 

Continuous Analysis Continuous Analysis Discrete Analysis 

𝐶𝑎,𝑏 = ∫ 𝑆(𝑡)
1

√𝑎
𝑅

𝜓 (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 

𝑎 𝜖 𝑅+, 𝑏 𝜖 𝑅 

𝐶𝑎,𝑏 = ∫ 𝑆(𝑡)
1

√𝑎
𝑅

𝜓 (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 

𝑎 = 𝛥2𝑗, 𝑏 = 𝛥𝑘2𝑗 

𝑗, 𝑘 𝜖 𝑍2 

𝐶𝑗,𝑘 = ∑ 𝑠(𝑛)𝑔
𝑗,𝑘

(𝑛)

𝑛𝜖𝑍 

 

𝑎 = 2𝑗 , 𝑏 = 𝑘2𝑗 

𝑗 𝜖 𝑁, 𝑘 𝜖 𝑍 

 

2 Wavelets Properties 

Wavelet functions have different properties suitable for certain purpose. According to 

Estrada (2008), the most relevant properties of the wavelet function to enable damage 

detection are: 

 

PROPRIETY I – Orthogonality and Biorthogonality: Two functions 𝑢(𝑥) and 𝑔(𝑥) 

are orthogonal if their scalar product is null: 

〈𝑢(𝑥), 𝑔(𝑥)〉 = ∫ 𝑢(𝑥)𝑔∗(𝑥)

𝑏

𝑎

𝑑𝑥 = 0 (7) 

where 𝑔∗(𝑥) is the complex conjugate of function 𝑔(𝑥). The term “biorthogonal” refers 

to two different bases orthogonal to each other, but the bases do not form an orthogonal 

set of functions. 

These properties ensure fast determination of wavelet coefficients. Unfortunately, not 

all wavelet functions have the two following properties.  

 

PROPRIETY II – Compact Support: support of a function is a set of points where the 

function is non-zero. A function has compact support if the adherence of the set, of 

non-null points, forms a closed and delimited set. This property means that the 

wavelet function does not assume a zero value for finite intervals, allowing for a 

more efficient representation of signals that have localized characteristics. 

 

PROPRIETY III – Vanishing Moment: More precisely, if the mean value of 𝑥𝑘𝜓(𝑥) 

is equal to zero, for 𝑘 = 0,1, … , 𝑛, where 𝜓(𝑥) is the corresponding scaling wavelet 

function. Then the wavelet function has 𝑛 + 1 vanishing moments and polynomials 

of degree 𝑛 are suppressed by this wavelet function. This property determines the 

maximum degree of the polynomial that can be approximated. This property is used 

to select the most suitable mother wavelet function for damage detection. 
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PROPRIETY IV – Regularity: is the number of times a function is differentiable at 

point 𝑥0. Singularities in a function can be detected by this property of regularity. 𝒔 

is the regularity of the function 𝑓; if the derivative of order m of 𝑓 , at x0, approaches  

|𝑥 − 𝑥0|𝑟 locally around 𝑥0, then 𝒔 = 𝑚 + 𝑟, with  0 < 𝑟 < 1. 

 

Table 2 – Proprieties of the mother wavelet functions. 

Propriety morl mexh meyr haar dbN symN coifN BiorNr.Nd 

Regular Infinitely x x x      

Compact Orthogonal 

Support 
   x x x x  

Compact 

Biorthogonal 

Support 

       x 

Orthogonal   x x x x x  

Biorthogonal   x x x x x x 

Number of Arbitrary 

Null-Momentum 
    x x x x 

Continuous 

Transform 
x x x x x x x x 

Discrete Transform   x x x x x x 

 

According to these properties, the most known mother wavelets are classified into 

(Ovanesova and Suárez, 2004): 

• The wavelets functions Haar, Daubechies of n-th order, Meyer, Symlets of n-th order 

and Coiflets of n-th order are examples of orthogonal mother wavelets. 

• The wavelets functions Haar, Daubechies of n-th order, Symlets of n-th order, and 

Coiflets are mother wavelets with compact support. 

• The wavelets functions Daubechies of n-th order, Symlets of n-th order and Coiflets 

of n-th order are examples of mother wavelets with a number arbitrary of vanishing 

moments. 

• The wavelets functions Morlet, Meyes and Gaussian are regular. Alternatively, the 

functions Daubechies of nth order, Symlets of n-th order and Coiflets of n-th order 

are mother wavelets with weak regularity. 

 

3 Continuous Wavelets Transform (CWT) 

The Fourier Transform is defined as the projection of the signal of the product of 𝑓(𝑡) 

and the exponential complex (orthogonal) function at time, as described in expression: 

Palechor, Erwin U. L., et al. (2022) Fundamental Concepts on Wavelet Transforms pp. 331-356

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 338



𝐹(𝑤) = ∫ 𝑓(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡
+∞

−∞

 (8) 

The TF results are Fourier coefficients, for each frequency 𝜔. The reconstitution of the 

original signal 𝑓(𝑡) is obtained by multiplication of Fourier coefficients by harmonic 

function exp(𝚥𝜔𝑡) (Figure 5). 

 

Figure 5 – Decomposition process of Fourier Transform (adapted from Misiti et al., 1997) 

 

Likewise, Continuous Wavelet Transform (CWT) is defined as the sum over entire time 

(or entire space) of the signal multiplied by mother wavelet function for a specific scale 

and position. 

𝐶(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = ∫ 𝑓(𝑥)𝜓(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)𝑑𝑥
+∞

−∞

 (9) 

Results of CWT is the wavelet coefficient 𝐶. Such coefficients depend on a specific 

scale and position. Multiplying each wavelet coefficient by appropriately scaled mother 

wavelet produces the original signal (Figure 6). 

 

Figure 6 – Wavelet Transform Process (adapted from M Misiti et al., 1997). 

3.1 Scale 

Scaling a wavelet means stretching or compressing a function. Figure 7 present the 

effect of scale factor for a function𝑓(𝑡), if the signal was a sinusoids. 

FOURIER

TRANSFORM

SENOIDAL COMPONENT AT DIFFERENT FREQUENCIESSIGNAL

WAVELET

TRANSFORM

SIGNAL WAVELETS IN DIFFERENT SCALES AND POSITIONS
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Figure 7 – Scale of Wavelet Transform (Weeks, 2007). 

3.2 Shifting 

Shifting wavelets is simply delaying its onset along of signal. Mathematically, delaying 

𝒌 times, a function 𝒇(𝒕) is represented by 𝒇(𝒕 − 𝒌) (Figure 8). 

  

Figure 8- Wavelet function (Weeks, 2007). 

The signal CWT is the integration over signal multiplied by scale 𝑎 and offset 𝑏. This 

process produces wavelet coefficients function of dimension 𝑎 and position 𝑏. The 

option of CTW coefficients is performed by an algorithm in five steps: 

 

1. Choose a mother wavelet and compare it to signal interval at the beginning of 

original signal. 

2. Calculate a coefficient 𝐶 representing the similarity (“resemblance index”) 

between mother wavelet and original signal at analyzed interval. Note that the 

resulting coefficient depend on chosen wavelet shape (Figure 9). 
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Figure 9 – Schematic calculus of wavelet coefficients (adapted from M Misiti et al., 1997). 

3. Shift mother wavelet to the right and repeat steps 1 and 2 until it covered the 

entire signal (Figure 10). 

4. Scale mother wavelet on analyzed stretch and repeat steps 1 to 3. 

 

Figure 10 – Illustration of Wavelet scale (adapted from M Misiti et al., 1997). 

5. Repeat steps 1 to 4 for all scales. 

Original Signal

Mother Wavelet - Function

Original 

Signal

C=___

Mother

Wavelet
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As a result, CWT produces wavelet coefficients for different scales. The x-axis 

represents position along the signal (time or space) and the y-axis represents the scale 𝑎. 

The color at each point (𝑥, 𝑦) in space signal-scale represents the magnitude of wavelet 

coefficients 𝐶 (Figure 11). Figure 12 shows the wavelet coefficients´ map generated by 

TCW. 

 

Figure 11 – Axis explanation of TCW graphs (modified by Gutierrez, 2002). 

 (a) 3D 

 (b) 2D 

Figure 12 – Examples of TCW graphs (Silva et al., 2019). 
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For CWT, the coefficient wavelet 𝜓(𝑎, 𝑏) surface can be described as an analytical 

function, function of parameters 𝑎 (scale) and 𝑏 (shifting) changing continuously over 

all space ℝ2 (excluding 𝑎 =  0). The CWT is defined by the following equation: 

𝑊𝜓
𝑓(𝑎, 𝑏) = |𝑎|−1/2 ∫ 𝑓(𝑥)𝜓 (

𝑥 − 𝑏

𝑎
)

∞

−∞

𝑑𝑥 (10) 

 

3.3 CWT Analytical Example 

Calculate the CWT of the following function 

𝑓(𝑥) = 𝑒
𝑥2

2  (11) 

using the Mexican hat wavelet (Ricker wavelet): 

𝑊𝜓
𝑓(𝑎, 𝑏) =

1

√𝑎
∫ 𝑓(𝑥)𝜓∗ (

𝑥 − 𝑏

𝑎
) 𝑑𝑥

=
1

√𝑎
∫ 𝑒

𝑥2

2 (1 − (
𝑥 − 𝑏

𝑎
)

2

) 𝑒−
(

𝑥−𝑏
𝑎

)
2

2 𝑑𝑥 

(12) 

Scaling for 𝑎 = 1 and shifting for 𝑏 = 0, the coefficients can be obtained by the 

following expressions: 

𝑊(1,0) =
1

√1
∫ 𝑒

𝑥2

2 (1 − (
𝑥 − 0

1
)

2

) 𝑒−
(

𝑥−0
1

)
2

2 𝑑𝑥 (13) 

In other terms, 

𝑊(1,0) = ∫ 𝑒
𝑥2

2 (1 − 𝑥2)𝑒−
𝑥2

2 𝑑𝑥 

= ∫(1 − 𝑥2)𝑒0 𝑑𝑥 

= 𝑥 −
𝑥3

3
+ 𝐶 

(14) 

 

The constant  𝐶 appears once we have an indefinite integral. If we estimate 𝑊(1,0) we 

compute  𝑥 = 10, −323,33 plus the constant. 

 

4 Discrete Wavelet Transform 

The wavelet coefficients calculus on a continuum scale is a complicated task due to the 

generation of a fair amount of data. To minimize this task, only a discontinuous subset 
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of scales and positions is chosen. This subset of scales and positions chosen are based 

on powers of 2 (dyadic scales) which is more efficiently computed. This approximate 

kind of wavelet analysis is called Discrete Wavelet Transform (DWT) (Ovanesova, 

2000; Ovanesova and Suárez, 2004).  

 

For this purpose, we define the scale 𝑎 = 2𝑗 and the shifting 𝑏 = 𝑘(2𝑗), where (𝑗, 𝑘) ∈
𝑍 and 𝑍 is integer set. Using these discrete parameters, DWT is given as: 

𝑇𝐷𝑊𝑗,𝑘 = 2−𝑗/2 ∫ 𝑓(𝑥)𝜓(2−𝑗𝑥 − 𝑘)𝑑𝑥 = ∫ 𝑓(𝑥)𝜓𝑗,𝑘(𝑥)𝑑𝑥

∞

−∞

∞

−∞

 (15) 

 

The following three-step algorithm describes the stages for damage detection on a 

structure using DWT: 

 

1. Obtain a signal or structure response associated with the complete structure or exam 

just a specific area of the structure. 

2. Calculate the wavelet coefficients, performing signal DWT to different scales. 

Wavelet coefficients 𝐶𝑗,𝑘 are obtained by: 

𝐶𝑗,𝑘 = ∫ 𝑓(𝑥)
𝑍

𝜓𝑗,𝑘(𝑥)𝑑𝑥 (16) 

where the analyzed signal 𝑓(𝑥) is described by a scale 𝑗 ∈ 𝑁 and position 𝑘 ∈  𝑍; 𝑁 and 

𝑍 are the set of all positive scale integers and all position integers, respectively; and 

𝜓𝑗,𝑘(𝑥) is a mother wavelet and can be expressed by:  

𝜓𝑗,𝑘(𝑥) = 20.5𝑗 𝜓𝑗,𝑘(2𝑗𝑥 − 𝑘) (17) 

 

3. Plot the wavelet coefficient for each scale level. 

 

The examination of the distribution of the wavelet coefficients for each level is done so 

that suddenly changes can be observed (i.e., a peak) meaning local disturbance. If a 

peak is not caused by a known source, such as geometric or material discontinuity, the 

detected disturbance means that there is damage near to disturbance peak location. 

5 Wavelet Family 

Mathematically, a function 𝜓(𝑥), to be considered a mother wavelet, if and only if, it 

belongs to 𝐿2(𝑅) space (Daubechies, 1992; Mehra, 2018) and satisfy admissibility 

conditions. Without much mathematical rigor, a mother wavelet is a function that 

oscillates, has finite energy, and has an average value of zero. The different families of 

wavelet functions are enumerated below, presenting the wavelet families used to 

Palechor, Erwin U. L., et al. (2022) Fundamental Concepts on Wavelet Transforms pp. 331-356

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 344



damage detection in next chapters. One note exhaustive list of wavelet families are 

presented in Mehra (2018). 

5.1 Haar Wavelet Family 

Haar wavelet is the first, and the simplest of all wavelets. Haar wavelet resembles a step 

function. It is a special case of Daubechies wavelet, the db1 wavelet itself. 

 

Figure 13- Harr Wavelet Family (Modified from M Misiti et al., 1997). 

5.2 Daubechies Wavelet Family. 

Ingrid Daubechies, one of the brightest stars in wavelet research world, invented the 

known orthonormal wavelets. The Daubechies wavelets names are also written as 

“dbN”, where N is the order. As mentioned above, db1 wavelet is the Haar wavelet. 

Figure 14 show the next nine mother wavelet functions of Daubechies family. 

   

   

   

Figure 14- Daubechies Wavelets Family (Weeks, 2007). 
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Orthogonal Daubechies wavelets, “dbN” are perfectly time compact. But in the 

frequency domain, they have a high degree of spectral superposition between the scales. 

The orthogonality is their main advantage. An error in the input signal does not increase 

after the transformation. This property ensures computational and numerical stability. 

5.2.1 Coiflets Wavelet Family 

Concepted by Daubechies by Coffman's request, the mother wavelet has 2𝑁 and scale 

function has 2𝑁 − 1 vanishing moments, respectively. The two functions have a 

support length of 6𝑁 − 1 (Figure 15).  

 

 

 

Figure 15- Coiflet Wavelets Family (Daubechies, 1992). 

 

5.3 Biorthogonal Wavelet Family 

Biorthogonal wavelet bases (Daubechies, 1992) were conceived to obtain a symmetric 

wavelets family with compact support (De Souza et al., 2007). Figure 16 shows some 

examples of biorthogonal wavelets. 

 

5.4 Symlets Wavelet Family. 

Proposed as dbN family modification by Daubechies, Symlet wavelets are almost 

symmetrical. The properties of dbN and Sym family are similar. But Symlet functions 

tend to be symmetric. Figure 17 presents examples of Symlet wavelet functions. 
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Figure 16- Daubechies Wavelets Family (Daubechies, 1992). 
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Figure 17- Symlet Wavelets Family. 

 

5.5 Recommendations to choose a Wavelet family 

One of the main criticisms directed towards the wavelet transform is the criteria to 

choose the better mother wavelet function 𝜓𝑎,𝑏. To aid in this choice, there are a series 

of criteria and recommendations in the literature to be considered. After choosing a 

wavelet family, Torrence and Compo (1998) enumerate some important considerations, 

as presented below: 

✓ Orthogonal or non-orthogonal criteria 

The wavelet transform, using families of orthogonal wavelets (Meyer, 1989), 

provides a more compact representation of the analyzed signal. Conversely, the 

Wavelet transform obtained by non-orthogonal wavelet families is highly 

redundant at larger scales, in which the Wavelet Spectrum at adjacent times is 

highly correlated (Meyer, 1989). The non-orthogonal Wavelet Transform is 

useful in analyzing time series (also valid for spatial series) where smooth and 

continuous variations in amplitude are expected. 

 

✓ Complex or real criteria:  

A complex wavelet function, providing amplitude and phase information, is 

better suited to capture time-series oscillatory behavior. Instead, a real wavelet 
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function only provides information about component amplitude. This wavelet 

function can only be used to locate peaks and discontinuities. 

 

✓ Criteria support:  

The wavelet function resolution is determined by the balance between its 

support in real space and frequency space. A function with more compact 

(narrower) support will have good time-domain resolution and poorer 

frequency-domain resolution. While a function with wider (broader) support will 

have a poorer resolution in time-domain resolution, and a good resolution in 

frequency-domain (a consequent characteristic which is due to the Heisenberg 

uncertainty principle). 

 

✓ Format Criteria: 

The wavelet function chosen must reflect the characteristics of the analyzed 

signal. For series with peaks or discontinuities, a good choice would be Haar 

wavelet. While, for smoother series with more subtle variations, a wavelet 

function such Morlet wavelet family should be chosen. If the main interest is to 

obtain the Wavelet Energy Spectrum, then the choice of the wavelet function is 

not critical and any one of them will provide the same qualitative result. 

6 Wavelet Packet Transform 

The Wavelet Packet Transform (WPT) is a technique that decompose repeatedly a 

signal into successive low and high frequency components using a recursive decimation 

filter operation. This technique was first introduced by Coifman, Meyer and 

Wickerhauser (Mallat, 1999; Peng, Hao and Li, 2012). Wavelet packages consist of a 

usual linearly combined wavelet functions family. Figure 18 shows binary tree of a 

temporal signal 𝑓(𝑡) up to the 3rd level of WPT. 

 

Figure 18- Wavelet Packet Decomposition (WPD) (adapted from Peng, Hao and Li, 2012). 

 

After the j-th level of decomposition, the original signal 𝑓(𝑡) can be constructed by the 

sum of 2𝑗 components as follows: 

𝑓(𝑡) = ∑ 𝑓𝑗
𝑖(𝑡)

2𝑗

𝑖=1

 (18) 
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where, 𝑓𝑗
𝑖(𝑡) is the Wavelet Packet signal component that can be expressed by a linear 

combination of wavelet functions: 

𝑓𝑗
𝑖(𝑡) = ∑ 𝑐𝑗,𝑘

𝑖

∞

𝑘=−∞

(𝑡)𝜓𝑗,𝑘
𝑖 (𝑡) (19) 

where the indexes 𝑖, 𝑗 and 𝑘 are integers defined as modulation, scale and shifting 

parameter, respectively. The coefficient 𝑐𝑗,𝑘
𝑖  and the function 𝜓𝑖,𝑘

𝑖 (𝑡) are, respectively, 

Wavelet Packet coefficient and function. The Wavelet Packet coefficient 𝑐𝑗,𝑘
𝑖  is obtained 

by orthogonal projection of the signal 𝑓(𝑡) by report to Wavelet Packet family 𝜓𝑗,𝑘
𝑗 (𝑡), 

as described as follows: 

𝑐𝑗,𝑘
𝑖  = ∫ 𝑓(𝑡)𝜓𝑗,𝑘

𝑖 (𝑡)𝑑𝑡
∞

−∞

 (20) 

And Wavelet Packet function is defined as: 

𝜓𝑗,𝑘
𝑖 (𝑥) = 2𝑗/2𝜓𝑖(2𝑗𝑡 − 𝑘) (21) 

where 𝜓1(𝑡) = 𝜓 (𝑡) is defined as mother wavelet function. And wavelet functions 𝜓𝑖  

(𝑖 ≥  1) are function of recursive relationships: 

𝜓2𝑖 = √2 ∑ ℎ(𝑘)

∞

𝑘=−∞

𝜓𝑖(2𝑡 − 𝑘) (22) 

 

𝜓2𝑖+1 = √2 ∑ 𝑔(𝑘)

∞

𝑘=−∞

𝜓𝑖(2𝑡 − 𝑘) (23) 

where ℎ(𝑘) and 𝑔(𝑘) are Quadrature Mirror Filters (QMF) associated to scale function 

and the mother wavelet function. 

 

Each component in the Wavelet Packet Decomposition (WPD) tree can be seen as 

output from a filter tuned to a particular base function (Figure 18). At WPD top (root 

node), where decomposition level is low, we have a good time-domain resolution but a 

poor frequency-domain resolution. At WPD bottom (leaf node), where decomposition 

level is relatively high, we have a good frequency-domain resolution but a poor time-

domain resolution. For structural integrity monitoring purposes, good frequency domain 

resolution is more important and thus, a high level of DWP is often needed to detect 

minor changes in signals (Sun and Chang, 2002, 2004). 

6.1 Wavelet Packet Energy 

Wavelet Packet Energy has demonstrated to be a more robust tool for damage 

identification compared to Wavelet Packet coefficients (Sun and Chang, 2002; Peng, 

Hao and Li, 2012). 
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The energy of the wavelet packet signal is given by: 

𝐸𝑓 =  ∫ 𝑓2(𝑡)𝑑𝑡
∞

−∞

= ∑ ∑ ∫ 𝑓𝑗
𝑚(𝑡)𝑓𝑗

𝑛
∞

−∞

2𝑗

𝑛=1

(𝑡)𝑑𝑡

2𝑗

𝑚=1

 (24) 

where 𝑓𝑗
𝑚

 and 𝑓𝑗
𝑛

 are decomposed wavelet components. The total energy of the signal 

is expressed as the energy summation of wavelet packet components when mother 

wavelet is orthogonal: 

𝐸𝑓 = ∑ 𝐸
𝑓𝑗

𝑖

2𝑗

𝑛=1

= ∑ ∫ 𝑓𝑗
𝑖(𝑡)2

∞

−∞

2𝑗

𝑖=1

(𝑡)𝑑𝑡 (25) 

From Eqs. (24) and (25), the signal component 𝑓𝑗
𝑖(𝑡) is a superposition of wavelet 

functions 𝜓𝑗,𝑘
𝑖  (𝑡) of the same scale 𝑗, but translated in the time domain (−∞ < 𝑘 <

+∞). The energy component 𝐸
𝑓𝑗

𝑖   is the energy stored in a frequency band determined 

by wavelet functions 𝜓𝑗,𝑘
𝑖 (𝑡). 

 

7 Regularization Methods 

The Wavelets coefficient disturbance is generated by several causes (e.g., signal noisy). 

To reduce this disturbance, Tikhonov regularization method can be applied (Tikhonov 

and Arsenin, 1977). 

 In general, inverse problems are ill-posed and their solutions are very sensible to 

noise. Small errors, due to experimental measured data, can result in a significant 

difference in ill-posed problems. Regularization methods seek to reduce oscillations in 

numerical solution by modification of objective function (Tikhonov and Arsenin, 1977; 

Schnur and Zabaras, 1990; Bezerra and Saigal, 1993; Bezerra, 1995; Tikhonov et al., 

1995; Silva Neto and Moura Neto, 2005). The most used “regularization” terms are 

zero-order, first-order, and second-order terms (Beck, Blackwell and Clair Jr, 1985; 

Silva Neto and Moura Neto, 2005). The zero-order term controls change in the 

magnitude of vector 𝑢, the first-order term controls change in the amplitude of the rate 

of change of vector 𝑢, and second-order terms can be expressed in integral form as 

(Schnur and Zabaras, 1990): 

ρ= β
0

∫(u2) ds + β
1

∫ (
∂u

∂s
)

2

ds + β
2

∫ (
∂²u

∂s²
)

2

ds (26) 

 

In finite differences, an analogous regularization equation is written as: 

ρ= β
0

∑  (ui
(n))

2

p

i=1

+ β
1

∑  (ui
(n)  - ui

(n - 1))
2

p

i=1

+ β
2

∑  (ui
(n)  - 2ui

(n - 1)
 + ui

(n - 2))
2

p

i=1

 (27) 
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where, to an iteration number 𝑛, 𝛽𝑗 is regularization parameters, 𝑠 spatial parameter, 

and 𝑢𝑖 the components of 𝑢. According to Beck et al (1985), Equation (27) is analogous 

to Equation (26). The finite difference regularization expression (27) is simple to 

implement. 

With large values of 𝛽𝑗, variations of the vector 𝑢 are obtained and tend to delay 

convergence. While small values of 𝛽𝑗 can result in large oscillations of solution 

(Bezerra and Saigal, 1993; Bezerra, 1994, 1995). 

 

EXAMPLE 01: Wavelet Signal Regularization 

To increase the changes caused by damage at response signal, Tikhonov regularization 

method was applied. Figure 19 shows difference between the wavelet coefficients for a 

smoothed and an unregulated signal. 

(a) 

(b) 

Figure 19 – Wavelet coefficients (a) with and (b) without Tikhonov Regularization. 

 

In the Annex, Algorithm 3 is the Tikhonov Regularization coded in MATLAB. 
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8 Concluding Remarks 

 

In this chapter some fundamental concepts on wavelet transforms were presented, both 

for discrete and continuous cases. The wavelet transforms are useful to understand the 

ability of wavelet transform to capture sudden changes in material properties or 

parameters along the span of structural component being assessed. Several families of 

wavelet transforms were discussed, including some wavelet properties and 

regularization aspects. 
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Annex 

Algorithm 1 – Signal Discontinuity 

Algorithm 1 – Signal discontinuity (MATLAB implementation). 

t1= 0:0.1:6; x1= sin(2*pi*t1); 

t2= 6:0.1:6; x2= sin(2*pi*t2+0.1); 

t = [t1 t2]; x = [x1 x2]; plot(t,x) 

Algorithm 2 – Cubic spline interpolation 

Algorithm 2 – Cubic spline interpolation (MATLAB implementation). 

x = [1 2 3 4 5]; 

y = [0 1 0 1 0]; 

xx = 1:.05:5; 

yy = spline(x,y,xx); 

x_interp = 1.5; 

y_interp = spline(x,y,x_interp) 

y_interp = 1.1250 

plot(x,y,'o',xx,yy,'r-',x_interp,y_interp,'*') 

Algorithm 3 – Tikhonov Regularization 

Algorithm 3 – Tikhonov regularization (MATLAB implementation). 

B0=100; 

B1=100; 

B2=100; 
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n=length(u);  

Part1=0; 

Part2=0; 

Part3=0; 

for i=1:n     

     if i==1 

          a=(u(i,2))^2;  

          Part1=a; 

          b=((u(i,2)))^2;  

          Part2=b; 

          c=((u(i,2)))^2;  

          Part3=c; 

          u_reg(i)=(B0*(Part1))+(B1*(Part2))+(B2*(Part3)); 

      elseif i==2 

          a=(u(i,2))^2;  

          Part1=a; 

          b=((u(i,2))-(u(i-1,2)))^2;  

          Part2=b; 

          c=((u(i,2))-(2*(u(i-1,2))))^2;  

          Part3=c; 

          u_reg(i)=(B0*(Part1))+(B1*(Part2))+(B2*(Part3));   

      else 

          a=(u(i,2))^2;  

          Part1=a; 

          b=((u(i,2))-(u(i-1,2)))^2;  

          Part2=b; 

          c=((u(i,2))-(2*(u(i-1,2)))+u(i-2,2))^2;  

          Part3=c; 

          u_reg(i)=(B0*(Part1))+(B1*(Part2))+(B2*(Part3)); 

      end 

end 

figure 

hold on 

grid on 

plot(u(:,1),u(:,2),'b') 

plot(u(:,1), u_reg(:),'r') 

title('TIKHONOV Regulatization') 

where, u_reg(i) is the regularization vector of signal u(:,2). 
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Abstract 

This chapter presents applications of Wavelet Transforms in damage identification, in 1D 2D 

and 3D structures, using numerical and experimental data, the research works developed at the 

Graduate Program of Structures and Civil Construction of University of Brasília.  

 

Keywords: Wavelet application, Structural Health Monitoring, Wavelet Transform, 

Continuous Wavelet, Discrete Wavelet, Wavelet Family Function. 

1 Wavelet Applications Review on Damage Detection of Structures 

Damage detection and localization inside structures has great importance due to being 

critical for the serviceability and safety of structural elements. Only ultrasonic and x-ray 

are reliable techniques for nondestructive examination of structures. They may be applied 

in practice for the precise location of subsurface damages. Both of them require special 

procedures and are time consuming and expensive. Current research point toward the 

possible use of numerical-computational methods in assisting the detection of damages 

inside structures. 

Vibration-based methods of damage detection rely on the fact that dynamic characteristics 

such as natural frequencies, mode shapes and damping are influenced by stiffness 

(Friswell, 2007; Janeliukstis et al., 2017). The most serious limitation of those methods 

is the need for a structural response of the healthy structure. But, in the past few years, 

wavelet transform analysis have attracted attention for vibration-based damage 

localization techniques (Kim and Melhem, 2004; Yang and Oyadiji, 2017). The wavelet 

transform analysis has the advantage of need only damage structure response. 
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Palechor (2013) presents experimental results using Wavelet Transform to determine the 

damage localization in a laminated steel beam (I-profile), using the static response 

(displacements) of the damaged beam. 

Silva, Palechor et al. (2019) presents a damage localization analysis using experimental 

data of Dogna Bridge, Italy. In this case, this methodology use CWT of experimental 

modal shape, with cubic spline interpolation and regularization techniques, to localize 

damage in beam grid structures. The paper uses experimental results and calibrate 

numerical model to localize induced damage. The experimental/numerical methodology 

do not need comparation to intact structural model. 

Silva, Bezerra et al (2019) associate boundary element method with wavelet transform to 

detect and localize damage in structures subjected to static loads. The applications cases 

concern the localization of subsurface cracks in structures two-dimensional with different 

support conditions. This methodology investigates two-dimensional structures with 

single and multiple cracks with different orientations inside. The effectiveness of this 

methodology is discussed through the resumé of principal numerical results obtained. 

All presented applications of damage localization using Wavelet Transforms, in 1D 2D 

and 3D structures, are research results developed by Graduate Program of Structures and 

Civil Construction of University of Brasília. 

 

2 Basics Concepts of Wavelet Transform 

The Wavelet Transform, widely used in several engineering domain, was applied to 

damage detection in structures. Damage is a local phenomenon is not sensible apparent 

in vibration response data of structure. Wavelet transform can identify even slight changes 

in global response of vibrational signal. Wavelet transform make possible this using base 

functions 𝜓(𝑥), called wavelets, to analysis any signal in several scale and position 

(Palechor et al., 2022). Wavelet Transform projects a signal into two-dimensional space, 

function of scale and position. 

 

The Continuous Wavelet Transform (CWT) of the signal 𝑓(𝑥) is defined as: 

𝑊𝜓
𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑥)𝜓𝑎,𝑏(𝑥)𝑑𝑥

∞

−∞

 (1) 

where, 𝜓𝑎,𝑏(𝑥) = |𝑎|−1/2𝜓′(𝑥 − 𝑏 𝑎⁄ ) is the mother wavelet function, and coefficients 

𝑎 and 𝑏 are scale and position, respectively. 

 

The Discrete Wavelet Transform (DWT) (Ovanesova, 2000; Ovanesova and Suárez, 

2004; Palechor et al., 2022) of the signal 𝑓(𝑥) is defined as: 

𝑊𝑗,𝑘 = ∫ 𝑓(𝑥)𝜓𝑗,𝑘(𝑥)𝑑𝑥

∞

−∞

 (2) 
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where, 𝜓𝑗,𝑘(𝑥) = 𝜓(2−𝑗𝑥 − 𝑘) is the discrete mother wavelet; the scale 𝑎 = 2𝑗 and the 

shifting 𝑏 = 𝑘(2𝑗), where (𝑗, 𝑘) ∈ 𝑍 (integer set). 

 

The wavelet coefficients 𝑊𝜓
𝑓(𝑎, 𝑏) (for CWT) and 𝑊𝑗,𝑘 (for DWT) has a property to be 

sensitive to local singularities in signal. This property is particularly useful to identify a 

beam discontinuity due to a loss of stiffness (stiffness damage).  

3 Damage Detection of Steel Beams using Static Displacement 

Using experimental results, Wavelet transform is applied to figure out the open crack 

position in damage laminated steel beam. 

 

The metallic beams evaluated is simply supported beam in MR-250 steel, with 6𝑚 of 

length, subjected to various levels of load applied at middle-span. The geometric and 

material characteristics of essayed beams are shown in Table 1. It is worth mentioning 

that the values, the yield stress (fy), modulus of elasticity (E) and Poisson's ratio (𝜈), were 

chosen from the catalog provided by the manufacturer. 

 

Figure 1 show the discretization of beams span into sixteen longitudinal segments, with 

a length Δ𝐿 = 375𝑚𝑚, totaling 17 nodal points. 

 

 

Figure 1 – Schematic representation of steel beam discretization into 16 segments. 

 

Figure 2 show schematic representation for location and characteristics of induced 

damage on essayed beams. The load application in mid-span was the same for all essays, 

at node 8. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L3 L14 L15

A B

LVDT

37.5 cm

Load
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INTACT BEAM V1E 

- intact beam with load 

applied at mid-span. 

(a) Intact Beam V1E 

 

DAMAGE BEAM V2E 

- damage location at 

1.50𝑚 of left support 

- damage length of 2 𝑐𝑚. 

 

(b) Damage Beam V2E. 

 

DAMAGE BEAM V2E-2 

- damage location at 

1.50𝑚 of left support 

- damage length of 4 𝑐𝑚. 

 

(c) Damage Beam V2E-2. 

 

DAMAGE BEAM V3 

- damage location at 

1.50𝑚 and 4.2𝑚 of left 

support 

- damage length of 2𝑐𝑚. 

 

Figure 2 – Schematic description of induced damage for each experimental static essays 

 

The induced damage was carried out using a circular saw with cuts with 2cm or 4cm 

length in longitudinal direction. Both open cracks induce a decrease of second moment 

of in cross section (Figure 3).  

Table 2 shows area moment of inertia for intact and damage section. 

 

1.80 m

4.20 m
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Table 1 – Material and geometric characteristics of essayed beam. 

Steel I-shape 102 X 11,4 

h(cm) 10,16 

 

h0(cm) 8,68 

tf(cm) 0,74 

t0(cm) 0,483 

c(cm) 1,59 

b(cm) 6,76 

Surface (cm2) 14,5 

Ix (cm4) 252 

Wx (cm3) 49,7 

ix (cm) 4,17 

Iy (cm4) 31,7 

Wy (cm3) 9,37 

iy(cm) 1,48 

Zx(cm3) 56,220 

Zy (cm3) 17,414 

fy(kN/cm2) 25 

E (kN/cm2) 20000 

Length L (m) 6 

 

 

(a) intact beam 

 

(b) transversal section of damage 

 

(c) 2cm induced damage 

 

(d) 4cm induced damage 

Figure 3 – Geometry of induced damage in steel beam 
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Table 2 – Decreased moment of inertia of the cross section induced by open crack 

 𝑰𝒙 (𝒄𝒎𝟒) 𝑰𝒚 (𝒄𝒎𝟒) 𝒓𝒙
1 (𝒄𝒎) 𝒓𝒚 (𝒄𝒎) 

Intact Section 252 31,7 4,17 1,48 

Damage Section 130,71 4,0215 3,83 0,67 

 

To ensure simple support (Figure 4a), two plane plates and a roller were used to allow 

displacement only in the x direction. For the hinged support (Figure 4b), two grooved 

plates with a roller were designed to restrict the translation in all direction, permitting 

only rotation. 

 

(a) Roller Support. 

 

(b) Pinned Support 

Figure 4 – Structural support description of steel span. 

Along of steel beam, seventeen LVDTs collected the experimental data corresponding to 

nodal vertical displacements for essayed beams. Exported to Matlab, experimental data 

was interpolated, using cubic-spline tool (spline command), to smooth data with more 

registers. The Tikhonov regularization method was applied to the interpolation results. 

As a last procedure, the damage identification was done using TDW and TCW. 

For each essayed beam, Table 3 describe the correspondence of damage location for 

spatial position and wavelet node (signal position) to make easy the visualization of 

wavelet coefficients. 

Table 3 – Correspondence between spatial distance and wavelet node  
to each damage beam. 

Beam Position(m) from left support Node (#) TDW Node (#) TCW 

V2E damage of 2cm at 1,5 m 25 250 

V2E-2 damage of 4cm at 1,5 m 25 250 

V3E damage of 2cm at 1,8 m and 4,2 m 30 e 70 300 e 700 

 
1 Radius of gyration 𝑟 = √𝐼 𝐴⁄  (𝑟𝑥, 𝑟𝑦) 

Uz=0 

Uy=0 

Uz=0 

Ux=0 

Uy=0 
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Figure 5 show experimental results of vertical displacements 𝑈𝑦 for each tested beam 

statically essayed. Each steel beam is subjected for several static load levels. But wavelet 

transform was obtained for an intermediated load (V2E – 3330N, V2E-2 – 3990N and 

V3E – 3120N), inferior of maximum resistance load of intact beam (4373N).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 – Horizontal displacement of structural span for study conditions:  
(a) intact beam, and damage beam V2E (b), V2E-2 (c) and V3E (d). 

 

The damage location was performed using only the static experimental responses of 

damaged beams V2E, V2E-2 and V3E. The obtained results with DWT and CWT are 

presented below. 

3.1 Discrete wavelet transform results 

From all mother wavelet functions in Matlab to calculate TDW coefficients, Palechor et 

al. (2014) analyses four mother wavelets (bior6.8, rbio2.6, sym6, coif3 and db5). For this 

chapter, Daubechies mother wavelet (db5) are presents due the fact of others mother 

wavelets analyzed is similar. 

Figure 6 show discrete wavelets coefficients of experimental static data of V2E beam 

using Daubechies mother wavelet (db5). The damage is located at node 25 corresponding 

to 1.5 m from left support. At node 25, the DWT coefficients observe a small peak around 

the damaged region surrounding by others smaller ones due to signal noise. In addition, 
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DWT generated disturbances at the extremity of DWT coefficient data, due to the 

geometric discontinuities of the supports.  

Figure 7 show discrete wavelets coefficients of experimental static data of V2E-E beam 

with damage location at node 25. Compared to V2E (Figure 6), the DWT coefficients 

observe a highest pick due to the increase of open crack, now with 4cm. The noise 

pollution surrounding the damage is smaller too. 

The V3E beam have two open cracks located at node 30 (1.8m from left support) and at 

node 70 (4.2 m). Figure 8 show discrete wavelets coefficients of experimental static data 

of V3E-E beam. The discrete wavelets coefficients were able to detect clearly the open 

crack at 70. The damage locates at node 30 have smaller spikes. 

 

 

Figure 6 – DWT coefficients for V2E beam using db5. 

 

 

Figure 7 – DWT coefficients for V2E-2 beam using db5. 
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Figure 8 – DWT coefficients for V3E beam using db5. 

 

3.2 Continuous wavelet transform results 

Similar to DWT, Pachelor et al. (2014) select the same few set of mothers wavelets 

functions to calculate TDW coefficients of experimental data. Daubechies mother 

wavelet (db5) were choose due to others mother wavelets analyzed is similar. CWT 

presents the wavelet coefficients as function of position and scale which can be 

represented as 3D and 2D graph. 

Figure 9 has the continuous wavelets coefficients of experimental static data of V2E beam 

using Daubechies mother wavelet (db5). Figure 10 and Figure 11 represent the same 

result for beam V2E-2 and V3E, respectively. The damage location using CWT is similar 

to DWT results. The damage is located at node 25 corresponding to 1.5 m from left 

support.  

 

(a)  (b) 

Figure 9 – CWT coefficients for beam V2E using db5: (a) 3D view and (b) 2D plan. 
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(a) (b) 

Figure 10 – CWT coefficients for beam V2E-2 using db5: (a) 3D view and (b) 2D plan. 

 

(a) (b) 

Figure 11 – CWT coefficients for beam V3E using db5: (a) 3D view and (b) 2D plan. 

3.3 Important Remarks 

We select some highlight: 

• Continuous and discrete wavelet transform present similar results respect to 

damage localization 

• The mother wavelet bior6.8, rbio2.6, sym6, coif3 and db5 are efficient to damage 

localization in experimented beams (Palechor et al., 2014). 

• Wavelet coefficients are sensitive to geometric discontinuities of structural 

supports. The wavelet coefficients graphs shown pics similar (or superior) to 

damage discontinuities. 

• Wavelet coefficients are sensible to damage intensity. Intensity of damage results 

in wavelet coefficients picks. The open cracks with 4 cm cut present betters results 

than 2cm cut. 

4 Damage Detection in Bridge using Experimental Modal Shape 

Silva et al. (2019) present a damage localization methodology using CWT associated with 

spline interpolation and regularization techniques applied to identified mode shapes. . As 

application test, the authors present the analysis of Dogna Bridge (Italy) using only 

damage response.  

The villages of Crivela and Valdogna, located the Italian north east region, are connect 

by Dogna bridge crossing river Fella (Artemis Modal, 2014). This a reinforced concrete 

bridge has four-span with single-lane structure with 64m long (16m each) and 4m wide 
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(Figure 12ab). Three longitudinal beams, with rectangular cross-sections 120×35 cm^2, 

support an 18cm-thick slab. Figure 12c shows transversal section of three longitudinal 

beams and slab. Progressive damage introduction is detailed in the next sections.   

 

 (a) 

(b) (c) 

Figure 12 – Picture with overview of Dogna Bridge (a) and its schematic representation of 
longitudinal view (b) and transversal section (c). 

 

4.1 Proposed Methodology 

The proposed methodology is based on the use of three well-known techniques: cubic 

spline interpolation, Tikhonov regularization (Friswell, 2007; Palechor et al., 2022) and 

continuous wavelet Transform. Silva et al (2019) applied the proposed methodology for 

damage localization using experimental data or numerical results. 

Firstly, the data of damage structure need be obtained by experimental test or numerical 

simulation. And it is necessary extract the mode shapes from damage structure data. 

Secondly, the cubic spline interpolation determines intermediated spatial data due to 

experimental data are compose of few measurement points (Palechor, 2013). Thirdly, 

Tikhonov regularization technique reduce numerical oscillations of interpolated mode 

shape signal (Palechor et al., 2022). Lastly, it is determined the continuous wavelet 

coefficients of regularized mode shape. It is search for discontinuities in wavelet 

coefficients plots that correspond to damaged region. Figure 13 summarize the flowchart 

of proposed methodology. 
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Figure 13 – Proposed methodology flowchart. 

4.2 Dynamic test of intact bridge 

The Dogna bridge was essayed experimentally to obtain the dynamic proprieties of modal 

frequency and modal shape. The dynamic test use ambient vibration, as excitation. Figure 

14 show the position of ten accelerometers. All the experimental signal accelerations of 

intact and damaged bridge cases were provided by Structural Vibration and Solutions 

(SVIBS) company, developer of ARTeMIS software (Artemis Modal, 2022). 

(a)  (b) 

Figure 14 – Instrumentation in Dogna bridge:  
(a) instrumental layout and (b) perspective view. 

The frequencies and mode shapes identification was performed using the frequency 

domain decomposition method available in ARTeMIS software (Artemis Modal, 2022). 

Numerical model of reinforced concrete bridge was done in Ansys Mechanical using 

element SOLID65 (3-D Reinforced Concrete Solid). The equivalent reinforced concrete 

material characteristics was modal elasticity 𝐸 = 32𝐺𝑃𝑎, Poisson ratio 𝜈 = 0.3 and 

concrete density 𝜌 = 2500 𝑘𝑔/𝑚3. The degrees of freedom on the supports were 

modeled by imposing nodal displacement constraint at ends of longitudinal beams. Figure 

15 to Figure 17 compare experimental and numerical of first three mode shape of 

undamaged bridge structure. Figure 18 show the average normalized singular values of 

spectral density functions of all experimental signal used by FDD technique. Figure 19 

shows auto-MAC correlation matrix of experimental mode shapes with a good agreement 

of first three modal shapes. 

Palechor, Erwin U. L., et al. (2022) Wavelet Transforms for Structural Damage Monitoring pp. 357-381

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 369



(a) (b) 

Figure 15 – First frequency mode shapes of intact beam: 
(a) experimental (10.25Hz), (b) numerical (12.09Hz). 

(a) (b) 

Figure 16 – Second frequency mode shapes of intact beam: 
(a) experimental (14.16Hz), (b) numerical (13.06Hz). 

(a) (b) 

Figure 17 – Third frequency mode shapes of intact beam: 
(a) experimental (27.29Hz), (b) numerical (25.72Hz). 
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Figure 18 – Average normalized singular values of spectral density function using FDD. 

 

 

Figure 19 – AutoMAC correlation matrix of experimental mode shapes. 

 

4.3 Damage localization 

The damage case D1 consists of a half cut (45cm) of external beam. Damage case D1 

represent reduction of 8% of total cross section of Dogna Bridge (Figure 20). A concrete 

cutter saw machine introduce the damage in external longitudinal beam (Figure 21). The 

experimental campaign for damage case D1 carries out a similar experimental procedure 

of intact case. Numerical modelling introduces damage deleting finite elements at the 

same position as the experimental test. 
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(a) (b) 

Figure 20 – Transversal cut view of damage D1(a) and  
localization of damage position by plan view(b). 

 

 

Figure 21 – View of artificial introduction of damage in longitudinal beam. 

 

Table 4 compare modal frequency of first four modes for intact and damage D1 cases. 

presents the values of numerical natural frequencies of the intact and the damaged bridge. 

First frequency of experimental intact and damage results a sensible difference. And the 

numerical damage model presents a minor reduction compared to intact ones. 

 

Table 4 – Comparation of modal frequencies (Hz) for intact and damage case D1. 

Mode 
Intact Damage Case D1 

Experimental Numerical Experimental Numerical 

1º 10.25 12.09 9.96 12.08 

2º 14.16 13.06 14.06 13.05 

3º 27.29 25.72 27.63 25.72 

4º 35.99 38.29 35.32 38.28 
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Applying the proposed methodology, it’s used the first mode shape of damaged D1 to 

determine damage localization. The data set of five points, corresponding to a line of first 

mode shape is exported to Matlab. Cubic spline interpolate this data set transforming 5 

points in 1000 nodes. The Tikhonov regularization technique regularize this interpolated 

data set. Finaly, CWT determine wavelet coefficients of regularized data set. 

Figure 22 show the experimental and numerical comparation of CWT for damage D1 

case. The determination of wavelet coefficients uses Daubechies5 wavelet mother 

function (Db5). We observe important discontinuity of wavelet coefficients near the 

damage position for experimental results and numerical model.  

 

 

 (a) 3D of Experimental Data (b) 3D of Numerical Model 

(b)  

 (c) 2D of Experimental Data (d) 2D of Numerical Model 

Figure 22 – Experimental and numerical comparation of CWT for damage D1 case. 

 

5 Damage Detection using 2D Boundary Element Method 

Silva, Bezerra et al (2019) localize damage in 2D structure by wavelet transform of static 

boundary element solution. After presenting boundary element formulation, we show 

some examples concerning the localization of subsurface cracks using static loads in two 

dimensional structures. Single and multi-cracks with different orientations inside two-

dimensional structures with different support conditions are investigated. The results 

show the proposed numerical procedure is effective in indicating the location of damages.  

Damage position
Damage position

Damage position

Damage position
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5.1 Numerical examples 

There are three cases of two-dimension deep beam: (a) cantilever beam single cracked, 

(b) cantilever beam single cracked with simulated noise, and (c) fixed panel multi-

cracked. These three cases are simulated with same material with Young modulus 𝐸 =
200𝐺𝑃𝑎 and Poisson ratio 𝜈 = 0.30. The static solution, obtained by boundary element 

method, was carried out by internal points in reference line. DWT obtain wavelet 

coefficients using mother wavelet Biorthognal 3.7 (bior3.7). 

 

5.1.1 Cantilever beam 

Figure 23 present a schematic representation of cantilever deep beam case with boundary 

conditions clamped-free, i.e., fixed in left side and free and right side. The dimensions 

are length 𝐿 = 500𝑚𝑚 and height 𝐻 = 100𝑚𝑚. Static load is a concentrated force 𝐹 =
500𝑘𝑁 at the top of free right end. An embedded vertical crack with length 25𝑚𝑚, are 

induced at a distance 𝑑 = 330𝑚𝑚. Boundary element model discretized with 100 

quadratic elements for beam domain and 25 quadratic elements for crack (Figure 23). 

Schematic representation illustrates reference line at 25𝑚𝑚 from bottom line, without 

intersect crack, with 480 discretized points equally distributed of 1𝑚𝑚. The reference 

line starts at 10𝑚𝑚 away from left side and finish at 10𝑚𝑚 before right side. But 

previous analysis show that others reference line present similar results for wavelet 

transformation. 

After simulate described BEM model using Elast_qua (Silva, Bezerra, et al., 2019), 

Figure 24 show beam deformed shape. Figure 25 show DWT wavelet coefficients of 

vertical displacement 𝑢(𝑥), from internal points of reference line, performed by 

MATLAB/Wavetoolbox Biorthogonal 3.7 (bior3.7). 

 

Figure 23 – BE mesh of cantilever beam case and internal nodes. 

 

Figure 24 – Deformed shape of cantilever beam case. 
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Figure 25 shows wavelet coefficients results of DWT of 𝑢(𝑡) (reference line). The 

position at 320 nodes correspond approximately to internal crack, i.e., estimated crack 

distance 𝑑𝑒𝑠𝑡 = (320 − 1) ⋅ 1𝑚𝑚 + 10𝑚𝑚 ≃ 330𝑚𝑚 is well estimated by present 

wavelet transformation. And similar to others results, it can be observed similar 

anomalous perturbation at extremity of wavelet coefficients DWT. 

 

 

Figure 25 – Wavelet coefficients DWT using bior3.7 for cantilever beam case. 

 

5.1.2 Cantilever beam with noise 

During experimental tests, there are noticeable levels of noise in sensor readings signal. 

To simulate experimental conditions, white Gaussian noise has been introduced into static 

signal 𝑢(𝑡) at reference line. The noise levels were 0.5%, 1% and 2% of noise of the 

maximum measured displacements. 

As describe in Figure 26, the dimensions are length 𝐿 = 500𝑚𝑚 and height 𝐻 =
100𝑚𝑚. And the concentrated load 𝐹 = 500𝑘𝑁 at top of free right side. An embedded 

vertical crack with length 25𝑚𝑚, are induced at a distance 𝑑 = 125𝑚𝑚. The reference 

line starts at 10𝑚𝑚 away from left side and finish at 10𝑚𝑚 before right side. 

 

Figure 26 – BE mesh of cantilever beam case with noise. 
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Figure 27 show beam deformed shape. Figure 28 show DWT wavelet coefficients for the 

present cantilever beam without noise. Figure 29 to Figure 31 show DWT wavelet 

coefficients of static displacement 𝑢(𝑡) added with 0.5%, 1.0% and 2.0% of white 

Gaussian noise, respectively. The noise/signal ratio is important to present methodology 

of damage localization. For low levels of noise, the disturbance in DWT wavelet 

coefficients do not difficult the localization of crack. But, with 2.0% of noise, the noise 

pollution difficult to detect clearly the crack position. 

 

 

Figure 27 – Deformed shape of cantilever beam case with noise. 

 

 

Figure 28 – Wavelet coefficients using bior3.7 of cantilever beam case without noise. 
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Figure 29 – Wavelet coefficients using bior3.7 of cantilever beam case with 0.5% of noise. 

 

Figure 30 – Wavelet coefficients using bior3.7 of cantilever beam case with 1.0% of noise. 

 

Figure 31 – Wavelet coefficients using bior3.7 of cantilever beam case with 2.0% of noise. 
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5.1.3 Beam with two fixed ends 

Figure 32 show an example with coupled bending and tension forces. The panel fixed on 

left end. And a uniform distributed load 𝑞 = 0.5𝑘𝑁/𝑚𝑚 is applied vertically at panel top 

and horizontally at panel right end. The dimensions are length 𝐿 = 2000𝑚𝑚 and height 

𝐻 = 1000𝑚𝑚. Multiple cracks are positioned vertically (𝑑 = 333𝑚𝑚 and 1667𝑚𝑚 at 

middle) and horizontally (𝑑 = 1000𝑚𝑚) with respect left end side, as describe in Figure 

32. Embedded cracks have length 25𝑚𝑚. Reference line, positioned 167𝑚𝑚 from 

bottom line, is discretized with 480 nodes equally distributed. The reference line starts at 

44𝑚𝑚 away from left side and finish at 44𝑚𝑚 before right side. Figure 33 show beam 

deformed shape. 

 

 

Figure 32 – BE mesh of panel with one side fixed. 

 

 

Figure 33 – Deformed shape of panel with one side fixed. 

 

Figure 34 show DWT wavelet coefficients of vertical displacement 𝑢(𝑥), from internal 

points of reference line, performed by MATLAB/Wavetoolbox Biorthogonal 3.7 

(bior3.7). The wavelet coefficients peaks correspond nodes 74, 240 and 408. These 

Palechor, Erwin U. L., et al. (2022) Wavelet Transforms for Structural Damage Monitoring pp. 357-381

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 378



peaks correspond to damages locates with centers near to 339, 1000, and 1669𝑚𝑚 

measured from panel left end. Under coupled bending and tension forces, the bending 

deformation is more intense close to free end. The wavelet coefficients have narrow peaks 

near to vertical crack while the other horizontal cracks spread peaks in DWT. In any case, 

the numerical methodology was able to indicate the damage localization. 

 

 

Figure 34 – Wavelet coefficients DWT using bior3.7 of panel with one side fixed. 

 

6 Concluding remarks 

Wavelet transform is an interesting tool to damage detection and localization. In this 

chapter, three research application of wavelet transform are shown in 1D, 2D and 3D 

structures using experimental and/or numerical data. The wavelet transform only requires 

structure damage response. It’s a advantage in comparation to traditional damage 

identification methods. 

 

Firstly, the detection of open crack damage on laminated steel beams are presented using 

experimental static displacement. Discrete and continuous wavelet transform with 

Daubechies mother wavelets was applied to obtain wavelet coeficients of experimental 

data. Wavelet coefficients are sensible to damage intensity. The 40mm-depth cracks 

results in more intensive wavelet coefficients picks than 20mm-depth ones.  

 

The second aplication presents the damage localization on Dogna bridge (Italy). Using a 

proposed methodology, a damage localization using continous wavelet transform 

associated with spline interpolation and regularization techniques applied to 

experimentaly identified mode shapes is presented. Numerical 3D FE model was 

calibrated with experimental data. The damage localization compare the wavelet 

coefficients of experimental data and numerical 3D FE results with similar results. As 
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application test, the authors present the analysis of Dogna Bridge (Italy) using only 

damage response.  

 

At last, the wavelet coeficient was applied to localize damange in 3D structure modeled 

by boundary element method. Static response of elastic linear structures with single and 

multi-cracks was analysed using discrete wavelet transform. The damage localization 

using DWT with bi-ortoghonal mother wavelets was effective. And noise/signal ratio is 

an important influence to methodology successfully. 
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Abstract

This chapter presents some fundamental concepts for detection, localization, and parameter estimation
using Kalman filter, extended Kalman filter, extended information filter, particle filter, and least squares.
These techniques can be used to characterize singularities, discontinuities, material properties, boundary
conditions, loading, damage, structural changes, etc. Unfortunately, directly characterizing parameters of
interest such as structural damage and concentrated heating sources is often difficult or not possible with
current sensors. Other quantities can be measured and the parameters of interest can be estimated using an
inverse method. Several types of static and dynamic loads and the structural deterioration process can cause
different types of structural damage. Parameter estimation addresses the problem of estimating quantities
that are not directly observable and can be inferred from sensor data. Sensors carry only partial informa-
tion and their measurements are corrupted by noise. Parameter estimation seeks to recover state variables
from the sensor data. Probabilistic parameter estimation algorithms compute belief distributions over possible
world states.

Keywords
detection, localization, paramter estimation, characterization, structural damage, heating source, material prop-
erties, Kalman filter, extended Kalman filter, particle filter, least squares, information filter.

1 Introduction
It is increasingly essential that a structure or equipment not fail. When considering the particular case of an
aircraft wing, where failure can be catastrophic, it is possible to see the importance of maintaining structural
integrity. All aircraft receive maintenance during its life, where the frequency and type of maintenance depend
on the type of aircraft and the cycle (takeoff - landing) or flight hours. But some points of the aircraft are
difficult to access, if not impossible, without damaging the structure. In order to monitor these points, it
was thought the inclusion of sensors during manufacture, that during the same maintenance in a hangar, a
window would have access to the communication of sensors, with some equipment for data collection. These
data provided by sensors, with the analysis made by the present method in a station of data collection, indicate
the presence or absence of damage to the monitored region of the structure. Structural damage estimates could
be compared between two independent objective functions such as mean stress and octahedral stress. A pareto
front could be used to find the best match.

Characterizing concentrated heating sources is another engineering challenge. For example, knowledge of
where air flowing across a body transitions from laminar flow to turbulent flow (Figure 1) can provide numerous
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Figure 1: Flow regimes Recreational Aviation Australia [2010].

benefits to air vehicle design, thermal protection system design, and air vehicle in-flight control Reed et al.
[1997]. Of particular interest is the transition region for hypersonic vehicles (Mach 5+). At the transition
between laminar and turbulent flow, a change in body-surface temperature has been measured for hypersonic
conditions Horvath et al. [2002], Schneider [1999, 2004], Berger et al. [2009] and is illustrated in Figure 2. Thus,
a measurement system is envisioned that leverages the hypersonic body-surface heating profile to locate the
boundary layer transition region.

Unfortunately, directly characterizing structural damage and concentrated heating sources is often difficult
or not possible with current sensors. Other quantities can be measured and the parameters of interest can be
estimated using an inverse method. Several types of static and dynamic loads and the structural deterioration
process can cause different types of structural damage. The damage can be characterized by a change in the
structure, such as the presence of holes and cracks. The knowledge of the change in the material properties
corresponding to the damage depends on the type of material and structural configurations. The proper as-
sessment of the damage in a structure can be useful to infer its remaining service life. The assessment of the
structural damage can be performed through a comparison between measured and simulated data. To provide
the simulated data, a numerical code is required, in which a direct model of the problem is consistently used
by an inverse problem algorithm. For the direct problem, a model is required to obtain the information on
the distribution of the quantity of interest throughout the structure, given the boundary conditions and the
presence of the damage. For the inverse problem, a model is required for the procedure of locating the damage
in the structure given some (partial) information on the quantity of interest at some particular locations (e.g.
where some sensors are placed).

The presence of damage may induce rapid changes in the field variable of the problem and even discontinuities
in the governing equation in the domain. Classical calculus-based optimization methods require evaluation of
derivatives of the objective function, which may not be possible to be obtained, or may be numerically obtained,
with unacceptable inaccuracy. These problems can also have several local minima (multiple solutions), and thus
a global optimization method is a better choice for the numerical solution Stavroulakis and Antes [1998],
Engelhardt et al. [2006].

Numerical methods, such as the boundary element method or the finite element method can be used for
modelling the direct problem. The damage detection problem can be considered as a problem of system iden-
tification or an inverse problem. The inverse problem of identifying the presence, location and size of damage,
such as cracks and holes, in a plate structure can be modelled using optimization and parameter identification
techniques. The remainder of this chapter focuses on inverse methods using finite element method and the
annex focuses on inverse methods using boundary element method Vieira et al. [2011].
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Figure 2: Heating profile on a ballistic RV, peak Mach=20 Schneider [2004].

State

(environment)
Control system

Belief

(world model) 

Actions

Observations

Figure 3: Object-environment interaction.

2 Detection, localization, and parameter estimation
Figure 3 illustrates the conceptual interaction of an object with its environment. The environment is a dynamic
system that possesses an internal state. It is convenient to think of the state as the collection of all the object’s
aspects and its environment that can affect the future. Certain state variables can change over time such as
the object’s speed, acceleration, temperature, and location. Other state variables tend to remain static, such
as the location of the ground or the earth. There are endless possibilities for potential state variables. The
first challenge is to determine which of the potential state variables are important and need to be included in
the problem. Throughout this chapter, state will be denoted X and the specific variables included in the state
will depend upon the context. The state at time t will be denoted Xt. Time is considered discrete, that is, all
interesting events take place at discrete time steps t = 0, 1, 2, . . ..

There are two fundamental types of interactions between an object and its environment: The object can
influence the state of its environment through its control system, and it can gather information about the
state through its sensors. Control actions include moving control surfaces and applying force to accelerate or
decelerate the object. Sensors are noisy and many parameters cannot be measured directly. As a consequence,
the object maintains an internal belief with regards to its state. The distinction between measurement and
control is crucial. While measurements over time tend to increase the object’s knowledge, motion and control
inputs tend to induce a loss of knowledge due to the inherent noise in control actuation and the stochasticity
of the environment.

Myers, Michael R, Jorge, Ariosto B (2022) KF EKF EIF PF LS Localization Estimation pp. 382-442

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 385



Xt-1 = [  ]x
y

Ut

at , At

State model 
and Jacobian

Thermal
Model

bt , Bt

Expected 
measurements 
and Jacobian

Extended
Kalman

Filter
Zt

Parameter
Estimate

Control Input

Actual
Measurements

ΔXt 

Parameter
Estimate
Update

Filter

Direct 
Model

Figure 4: Parameter estimate update process using an inverse method and a direct model.

Parameter estimation addresses the problem of estimating quantities that are not directly observable but that
can be inferred from sensor data. Sensors carry only partial information and their measurements are corrupted
by noise. Parameter estimation seeks to recover state variables from the sensor data. Probabilistic parameter
estimation algorithms compute belief distributions over possible world states. A state Xt is called complete
if it is the best predictor of the future. Completeness entails that knowledge of past states, measurements,
and control inputs carry no additional information that would help us predict the future more accurately. In
practice, it is impossible to specify a complete state for any realistic singularity or discontinuity situation. A
complete state includes not only aspects of the object itself and of the environment immediately surrounding
the object being studied but also the environment away from the object that may affect its future. Some of
these elements are hard to obtain and therefore practical implementations single out a small subset of all state
variables.

The Markov assumption postulates that past and future data are independent if one knows the current
state Xt. Unmodeled environment dynamics, inaccuracies in probabilistic models, and approximation errors
induce violations of the Markov assumption. In principle, many of these variables can be included in the
state, however, incomplete state representations are often preferable to more complete ones to reduce the
computational complexity of the filter algorithm. It is advisable to exercise care when defining the state Xt so
that the effect of unmodeled state variables has close to random effects.

Figure 4 illustrates the parameter estimate update process for an inverse method and a direct model. The
estimated state is Xt = [xs, ys]

T where xs and ys represent the estimated parameters of interest at time t. The
parameters of interest (state) may be the location and size of structural damage or concentrated heating source.

3 Methods
This section details some inverse methods that have proven useful for estimating state variables that cannot be
directly observed.

3.1 Kalman Filter
The Kalman filter was developed by R. E. Kalman in 1960 to solve the model of space state of Wierner,
recursively. Combining the filter with the advances in digital computing, the technique had a strong application
in automation and assisted navigation. The Kalman filter, was originally developed for discrete linear systems
and have white Gaussian noise. What does not occur in real systems, but may, in some regions, be approximated
to linear, extending its application. But for the Kalman filter is able to estimate the state, it is necessary that
the process is observable. This filter is the original Kalman filter and provided the basis for the development of
derivatives, the extended Kalman filter, and many hybrid filters.

The Kalman filter is a member of a family of recursive state estimators collectively called Gaussian filters.
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Table 1: Kalman filter algorithm.

Step Operation
1 Xt = AtXt−1 +BtXt

2 Σt = AtΣt−1A
T
t +Qt

3 Kt = ΣtC
T
t (CtΣtC

T
t +Rt)

−1

4 Xt = Xt +Kt(Zt − CtXt)

5 Σt = (I −KtCt)Σt

6 Return to step 1 for next time step
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Figure 5: Parameter estimate update process using the Kalman filter and a direct model.

Historically, Gaussian filters constitute the earliest tractable implementations of the Bayes filter for continuous
spaces Thrun et al. [2006]. Kalman filters construct a framework of predicting the state based on an input
to the system and correcting the predicted state based on sensor observations. Kalman filters were invented
by Swerling (1958) and Kalman (1960) as a technique for filtering and prediction in linear Gaussian systems
Thrun et al. [2006]. Kalman filters assume that all continuous random variables possess probability density
functions (PDFs). A common density function is that of the one-dimensional normal distribution with mean µ
and variance σ2. The PDF of a normal distribution is given by the following Gaussian function:

p(x) = (2πσ2)−
1
2 exp

{
−1

2

(x− µ)2

σ2

}
(1)

Normal distributions play a major role in Kalman filters and are abbreviated as N(µ, σ2) which specifies
mean of the random variable and its variance. The normal distribution in equation 1 assumes that x is a scalar
value. All Gaussian filters share the basic premise that beliefs are multivariate normal distributions. The PDF
of a multivariate normal distribution is given by the following Gaussian function:

p(X) = det(2πΣ)−
1
2 exp−1

2
(X − µ)TΣ−1(X − µ) (2)

Where X is a multivariate vector, µ is the mean vector, Σ is a positive semidefinite and symmetric matrix called
the covariance matrix.

The Kalman filter consists of two phases, the phase prediction and phase correction. After the initial
estimate, the Kalman filter begins one update cycle of the two phases until convergence of the state, ie, the
state predicted corresponds to the state that generated the measurement. Figure 5 illustrates the process cycle
of Kalman filter and Table 1 contains the full Kalman filter algorithm.
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Figure 6: Unimodal illustration.

3.2 Extended Kalman Filter
The extended Kalman filter linearizes nonlinear Gaussian systems. Kalman filters implement belief computation
for continuous states with all disturbances additive and Gaussian with zero mean.

Xt = a(Ut, Xt−1) + εt, εt ∼ N(0, Qt) (3)

Zt = b(Xt) + δt, δt ∼ N(0, Rt) (4)

Where a and b are nonlinear functions, Ut is the input, Xt is the state, Zt is the observation, and εt ∼ N(0, Qt)
and δt ∼ N(0, Rt) represent Gaussian random disturbances with zero mean and the specified covariance. a
represents the state transition function and its purpose is to predict the current state Xt, based on the previous
state Xt−1 and the current control input Ut. For a hypersonic vehicle, the control input to the extended
Kalman filter could be the pilot’s flight control commands (e.g., throttle, attitude controls, etc.) and sensor
data (e.g., angle of attack, altitude, etc.). b represents the measurement transition function and are the expected
measurements based on the current state Xt. εt is a Gaussian random variable that models the uncertainty
introduced by the state transition function and δt describes the measurement noise.

Kalman filters assume a unimodal approximation to the true belief. A function is unimodal if for some value
m (the mode), it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case,
the maximum value of f(x) is f(m) and there are no other local maxima (Figure 6).

The Kalman filter assumes linear state and measurement models. Unfortunately, state transitions and
measurements are rarely linear in practice. The extended Kalman filter relaxes this linear assumption by
approximating the nonlinear state and measurement models with a first order Taylor expansion linear model
(Figure 7). Instead of passing the Gaussian through the nonlinear function g, it is passed through a linear
approximation of g. The linear function is tangent to g at the mean of the original Gaussian. The resulting
Gaussian is shown as the dashed line in the upper left graph. The linearization incurs an approximation error,
as indicated by the mismatch between the linearized Gaussian (dashed) and the Gaussian computed from the
highly accurate but expensive Monte-Carlo estimate (solid).

The extended Kalman filter is computationally quite efficient (Table 2). It is polynomial in measurement
dimensionality k and state dimensionality n : O(k2.4+n2) Thrun et al. [2006]. The input to the extended Kalman
filter is the belief at time t − 1 represented by Xt−1 and Σt−1. In step 1, the predicted state Xt is computed
using the state transition function a(Ut, Xt−1) and the control input. The uncertainty estimate Σt grows in
step 2 by incorporating the state model Jacobian At, the state model covariance Qt, and the uncertainty from
the previous time step Σt−1. The Kalman gain is computed in step 3 by leveraging the predicted covariance
Σt, the measurement transition Jacobian Bt which contain the derivatives of the measurements with respect
to the state variables, and the measurement covariance matrix Rt. The Kalman gain specifies the degree that
the measurement update Zt is incorporated into the new state estimate Xt. The output is the belief at time t,
represented by Xt and Σt, which are computed in steps 4 and 5 where the Kalman gain is incorporated. The
measurement update corrects the predicted state Xt and shrinks the uncertainty. The filter represents the belief
at time t by the state Xt and the covariance Σt.

Figure 8 illustrates the parameter estimate update process for an extended Kalman filter and a direct model.
The estimated state is Xt = [xs, ys]

T where xs and ys represent the estimated parameters of interest at time t.
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Figure 7: Illustration of linearization applied by the extended Kalman filter Thrun et al. [2006].

Table 2: Extended Kalman filter algorithm.

Step Operation
1 Xt = a(Ut, Xt−1)

2 Σt = AtΣt−1A
T
t +Qt

3 Kt = ΣtB
T
t (BtΣtB

T
t +Rt)

−1

4 Xt = Xt +Kt(Zt − b(Xt))

5 Σt = (I −KtBt)Σt

6 Return to step 1 for next time step

Xt-1 = [  ]x
y

Ut

at , At

State model 
and Jacobian

Thermal
Model

bt , Bt

Expected 
measurements 
and Jacobian

Extended
Kalman

Filter
Zt

State

Control Input

Actual
Measurements

ΔXt 

Q,R 
Covariance
Update

Extended 
Kalman 
Filter

Direct 
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Figure 8: Parameter estimate update process using a the extended Kalman filter and a direct
model.
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Table 3: Adaptive extended Kalman filter algorithm.

Step Operation
1 Xt = a(Ut, Xt−1)
2 Σt = AtΣt−1A

T
t +Qt

3 Kt = ΣtB
T
t (BtΣtB

T
t +Rt)

−1

4 Xt = Xt +Kt(Zt − b(Xt))
5 Σt = (I −KtBt)Σt

6 Qt+1 =

 Qt ∗Mt if |∆Σt| > Σtolerance and ∆Xt < ∆Xlimit

Qt/Mt if |∆Σt| > Σtolerance and ∆Xt ≥ ∆Xlimit

Qt if |∆Σt| ≤ Σtolerance
7 Return to Step 1 for next time step

3.3 Adaptive extended Kalman filter
Examining the extended Kalman filter algorithm (Table 2), if the measurement covariance is known with a
small uncertainty, the state model covariance is unknown, and the state model covariance and measurement
covariance are correlated, changes can be made during each iteration to the state model covariance to improve
convergence. A value is needed from the extended Kalman filter to drive changes to the state model covariance.
Two possible sources exist in the EFK algorithm: the Kalman gain (Kt) and the state covariance (Σt). The
Kalman gain specifies the degree that the measurement update Zt is incorporated into the new state estimate
Xt while the state covariance Σt represents the uncertainty in the new state estimate Xt.

An adaptive extended Kalman filter was developed Myers et al. [2012a] and is presented in Table 3 and
illustrated in Figure 9. Step 6 is the only change from the extended Kalman filter. The state model covariance
matrix Q is modified at the end of each iteration based on the state covariance Σ and the rate of change in the
estimated state ∆Xt. Three conditions are possible when modifying Q. First, if the covariance is increasing at
a rate greater than a predefined tolerance value and if the estimated state is changing less than a predefined
limit, Q is multiplied by an predefined adaptive gain M . This adaptive gain will have a value greater than
1, which, in this first condition, has the effect of increasing the magnitude of Q and increasing the rate of
convergence. From the analysis above, an increasing state covariance Σ indicates the solution is not converged
and if the change in the estimate state is below a threshold, convergence time can be reduced by increasing the
magnitude of Q. Second, if the covariance is increasing at a rate greater than a predefined tolerance value and
if the estimated state is changing more than a predefined limit, Q is divided by the predefined gain M . In this
second condition, increasing the magnitude of Q might cause erratic convergence or a failure to reach a solution.
Thus, by reducing the magnitude of Q, convergence is dampened. Third, if the covariance is increasing at a
rate less than a predefined tolerance value, no change is needed to Q.

3.4 Extended Information Filter
The extended information filter is also called the information form of the Kalman filter. The key difference
between the extended Kalman filter and the extended information filter is the way the Gaussian belief is
represented. In the extended Kalman filter, the Gaussians are represented by their mean and covariance
moments. In the extended information filter, the Gaussians are represented by their canonical parameterization
where

Ω = Σ−1 φ = Σ−1µ (5)

Ω is called the information matrix and φ is the information vector. The mean and covariance of the Gaussian
can be obtained from the canonical parameterization by

Σ = Ω−1 X = Ω−1φ (6)

The algorithm is presented in Table 4. Ut, a(Ut, Xt−1), At, b(Xt), Bt, Qt, and Rt are identical to those in the
extended Kalman filter. The prediction is implemented in steps 1 through 3 while the correction is implemented
in steps 4 through 6.
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Figure 9: Parameter estimate update process for the adaptive extended Kalman filter and a
direct model.

Table 4: Extended information filter algorithm.

Step Operation
1 Xt−1 = Ω−1

t−1φt−1

2 Ωt = (AΩ−1
t−1A

T +Q)−1

3 φt = Ωta(Ut, Xt−1)

4 Xt = a(Ut, Xt−1)

5 Ωt = Ωt +BTR−1B

6 φt = φt +BR−1[Zt − b(Xt) +BXt]

7 Return to step 1 for next time step

The extended information filter is polynomial in measurement dimensionality k and state dimensionality
n : O(k2 + n2.4). Comparison with the extended Kalman filter reveals the duality the these two filters. The
measurement update is the difficult step in the extended Kalman filters because it requires a matrix inversion
of a large matrix for every iteration. The extended information filter possesses an advantage of allowing R−1

to be computed once and reused for all iterations.
Figure 10 illustrates the parameter estimate update process for an extended information filter and a direct

model. The estimated state is Xt = [xs, ys]
T where xs and ys represent the estimated parameters of interest at

time t.

3.5 Particle Filter
The particle filter is an alternative nonparametric implementation of the Bayes filter and is a Monte Carlo
technique used for the solution of state estimation problems. The main idea is to represent the required
posterior density function by a set of random samples with associated weights and to compute the estimates
based on these samples and weights Vianna et al. [2010]. Figure 11 illustrates how particles are used to represent
the belief. The lower right graph in Figure 11 shows samples drawn from a Gaussian random variable, x. The
samples are passed through the nonlinear function y = g(x) shown in the upper right graph. The resulting
samples are distributed according to the random variable y which is the actual posterior density function.
Figure 11 can be compared to the illustration of extended Kalman filter in Figure 7 where the posterior density
function is approximated with a Gaussian. Because it is nonparametric, the particle filter can represent a much
broader space of distributions than Gaussians and has the ability to model nonlinear transformations of random
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Figure 10: Parameter estimate update process using the extended information filter and a direct
model.

Table 5: Particle filter algorithm.

Step Operation
1 Generate m random possible parameters of interest (particles)
2 Obtain expected measurements for each particle i for the current time t (Zi,t)
3 Obtain actual measurements for the current time (Ztruet)
4 Weight each particle i according to N(Ztruet, I)
5 Normalize weights for each particle i into bins from 0 to 1
6 Resample best particles using normal distribution
7 Add position noise to each particle
8 Return to Step 2 for next time step

variables Thrun et al. [2006]. The particle filter algorithm to locate the source can be found in Table 5.
Figure 12 illustrates the parameter estimate update process for a particle filter and a direct model. The

estimated state is Xt = [xs, ys]
T where xs and ys represent the estimated parameters of interest at time t.

3.6 Least Squares
Ordinary least squares is applied to approximate solutions of overdetermined systems, i.e. systems of equations
in which there are more equations than unknowns. Ordinary least squares is often applied in statistical contexts,
particularly regression analysis. Ordinary least squares may be interpreted as a method of fitting data. The best
fit, between modeled data and observed data, in its least-squares sense, is an instance of the model for which
the sum of squared residuals has its least value, where a residual is the difference between an observed value
and the value provided by the model. The method was first described by Carl Friedrich Gauss around 1794
Bretscher [1995]. Ordinary least squares corresponds to the maximum likelihood criterion if the experimental
errors have a normal distribution and can also be derived as a method of moments estimator Woodbury [2003a].

The ordinary least squares method is sometimes called the ÃGauss method of minimizationÃ Woodbury
[2003a]. For a given state X, the value of T at X = X + ∆X is obtained through the truncated Taylor’s series
as

T |X+∆X ≈ T |X +
∂T

∂X

∣∣∣∣
X

∆X. (7)

The ordinary least squares objective function is

S = (Y − T |X −B∆X)T (Y − T |X −B∆X). (8)
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Figure 11: Illustration of how the particle filter represents the posterior density function Thrun
et al. [2006].

Xt-1 = [  ]x
y

Ut

at , At

State model 
and Jacobian

Thermal
Model

bt , Bt

Expected 
measurements 
and Jacobian

Extended
Kalman

Filter
Zt

Parameter
Estimate

Control Input

Actual
Measurements

ΔXt 

Parameter
Estimate
Update

Particle 
Filter

Zt

Ztrue

Direct 
Model

Figure 12: Parameter estimate update process using the particle filter and a direct model.

Myers, Michael R, Jorge, Ariosto B (2022) KF EKF EIF PF LS Localization Estimation pp. 382-442

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 393



Estimate

unknown 

parameters (X)

Compute 

expected 

measurements

Compute the 

correction to X 

(∆X)

Forward 

conduction 

solution 

(numerical 

model) Compute 

Jacobian 

matrix

(B)

Update 

unknown 

parameters (X)

Figure 13: Ordinary least squares algorithm.

The minimizer of equation 8 is found by forcing to zero the derivative with respect to ∆X resulting in the
estimator

∆X = (BTB)−1BT (Y − T |X). (9)

The sensitivity matrix B can be normalized to produce a better conditioned matrix for the inversion in equation
9. As illustrated in Figure 13, X is updated using ∆X and a new ∆X is computed. Once each component in
∆X is small, the solution is converged yielding our estimate for the unknown parameters.

Figure 13 illustrates the parameter estimate update process for a least squares and a direct model. The
estimated state is Xt = [xs, ys]

T where xs and ys represent the estimated parameters of interest at time t.

4 Measurement Models
Different measurement methods and sensors are available when estimating a quantity of interest such as move-
ment, speed, acceleration, vibration, temperature, heat flux, ultrasonic signal propagation time, and x-ray
profile. This section details heating source experiments to demonstrate and develop measurement models for
use with inverse methods in detection, localization, and parameter estimation.

Consider a 61cm x 30.5cm x 0.635cm stainless steel 316L plate (Figure 14) with constant properties (Table
6). Four K-type thermocouples are attached on one side and four on the other. With plate center being the
origin and the x-axis being the length (Figure 14), thermocouples were attached at (x, y) locations of (1cm,
1cm), (2cm, 2cm), (3cm, 3cm), and (−1cm, −1cm) on the heated side (z = 0) and on the non-heated side
(z=0.635cm). The desire is to have thermocouple pairs in exactly the same position on either side of the plate
allowing measurement of the temperature difference between the two sides. The thermocouples are secured to
the plate with thermal grease and Kapton tape to ensure good thermal contact. Flat black paint is applied to a
1.5cm diameter area at the plate center to maximize energy absorption from the heater. The plate is oriented
vertically with the positive y-axis pointing up. A Research, Inc. SpotIR® 4150 heater with focusing cone is
positioned approximately 2mm from the plate surface such that its beam strikes the plate center. Experiments
are conducted with the heater running at full-power which, according to manufacturer’s specifications, produces
1.7MW/m2 of heat flux on the plate in a circular area 0.635cm in diameter. Consequently, approximately
54Watts of energy are being absorbed by the plate when the heater is on.

During the experiment, the heater is turned on at t = 300s and turned off and removed at t = 600s. Data
acquisition equipment is used to record thermocouple temperature readings every second during the experiment.
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Figure 14: Illustration of flat plate with heat source and sensors (not drawn to scale).

Table 6: Material properties for the stainless steel 316L test sample used in the conduction
experiments.

Property Value
density (ρ) 8, 000kg/m3

thermal conductivity (k) 14.6W/mK
specific heat (cp) 500J/kg K
sound speed (v0) 5, 100m/s @ 293K
ultrasonic TOF temperature factor (ξ) 110−61/K
sample length 61cm
sample width 30.5cm
sample height 0.635cm
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Figure 15: Temperature response on non-heated side of the plate at four sensor locations.

A MIKRON Thermo Scan TS7302 infrared camera is used to collect thermal images of the plate and heater.
Coupled with a laptop computer, this system records thermal images every five seconds during the experiment.
Benefits gained from the thermal images include visualization of the temperature distribution throughout the
experiment and the need to model secondary convection and radiation heating in addition to modeling the
primary high heat flux coming from the heater’s beam. Figure 15 illustrates the thermocouple temperature
data recorded during the experiment. Analysis of the data indicates that a spatial temperature gradient of
6◦C/mm exists during heating in the area of the thermocouple sets closest to the source [(1cm, 1cm) and
(−1cm, −1cm)]. Positioning the heating source and the sensors within this degree of precision proved difficult.
Therefore, sensor and heating source placement error is the most likely cause of the discrepancies between the
two thermocouple sets closest to the source.

The forward conduction solution leverages COMSOLMultiphysics® by the COMSOL Group and MATLAB®

by The Mathworks, Inc. The COMSOL® model uses a finite element mesh with smaller elements near the heat
source and larger elements near the plate edges to conserve computing resources.

For the flat plate detailed above, the governing equation for the subdomain (conduction in the plate) is

ρCp
∂T

∂t
−∇ · (k∇T ) = Q (10)

where ∇ is the Laplacian and Q is an internal heat source (0 in this case). For the flat plate, k is assumed
constant. Thus, the subdomain governing equation is

∇2T =
ρCp
k

∂T

∂t
(11)

or
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
=
ρCp
k

∂T

∂t
(12)

The boundary condition is
n · (k∇T ) = q0 + h(Tinf − T ) (13)

where n is the surface normal vector, q0 is the inward heat flux. Radiation effects are assumed negligible for
the plate.

The first meshing method analyzed in this section is the 3D free mesh using tetrahedral elements. A
0.635cm diameter cylindrical subdomain in the plate’s center is used to create a boundary for applying the
heating source. This technique also creates small elements near the heating source and large elements far

Myers, Michael R, Jorge, Ariosto B (2022) KF EKF EIF PF LS Localization Estimation pp. 382-442

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 396



0 1 2 3 4 5 6 7 8 9

x 10
4

68

70

72

74

76

78

80

82

84

86

Degrees of Freedom

T
e
m

p
e
ra

tu
re

 C
h
a
n
g
e
 (

K
)

 

 

Free mesh

Extruded mesh

Kozlov

Figure 16: Grid independence results for the heated side at 1.4cm from the source and t = 400s.

away from the source where temperature gradients are small thereby conserving computing resources. Mesh
refinement is accomplished using all of the predefined free mesh sizes available in the direct model starting with
the coarsest mesh and proceeding to the finest mesh. Grid convergence is achieved with 13,256 elements and
26,628 degrees of freedom, however the solution does not agree with an analytical solution of heating through
a circular domain without convection Kozlov et al. [1989] as illustrated in Figure 16. Element sizes from the
converged 3D free mesh were used to create an extruded mesh which does agree the analytic solution (Figure
16). The extruded mesh is generated by first creating 2D triangle elements in the plate’s x− y plane and then
extruding the 2D mesh in the z-direction to create prism elements. Two subdomains consisting of a 0.635cm
diameter circle with a maximum element size of 13m and a 6cm diameter circle with a maximum element size
of 5−3m were used. The 2D mesh is created with the predefined normal free mesh setting in the direct model.
The mesh extrusion process incorporates an option to create multiple mesh layers, therefore grid independence
is contingent upon the number of layers through the thickness of the plate. The worst case is where the highest
temperature gradients through the plate’s thickness exist which is located at plate center. Figure 17 illustrates
the computed temperature profile through the plate at plate center with one, two, four, and six mesh layers.
The grid convergence study led to the selection of three mesh layers through the plate’s thickness dimension,
9,780 total elements, and 45,983 degrees of freedom. Agreement between the final the direct model solution and
the closed-form solution Kozlov et al. [1989] is acceptable with mean absolute error less than 0.5K.

Even with manufacturer specifications, the heat transfer between the radiative heater and the plate is
not known with much certainty. Further complicating matters, the heater’s proximity to the plate implies
an unknown amount of secondary radiation and convection heating on the plate. The focusing cone reaches
temperatures in excess of 200◦C and the lamp is cooled with forced air that exits the heater through the
focusing cone pointed at the plate. Based on the focusing cone temperature and a focusing cone area of 20cm2,
approximately 2.5W of radiation and convection energy are absorbed by the plate outside of area illuminated
by the lamp. If we assume the area affected by this secondary heating is a circle with a radius of 9cm, we
can approximate the secondary heating with a Gaussian profile of q′′g = 100W/m2 and σ2

g = 0.0009m2. Figure
18 illustrates the boundary conditions used in modeling the plate. For this initial analysis, the main heat flux
and convection coefficient are estimated. The convection coefficient being estimated is the average value over
the duration of the experiment. While areas of the heated side of the plate may have a different convection
coefficient value during heating, once the heater is removed, the average convection coefficient is identical on
both sides of the plate. Thus, the heat transfer coefficient h is assumed constant and identical on both sides of
the plate. Estimating h using free convection correlations Incropera and DeWitt [2002] produces an expected
range of 2W/m2K ≤ h ≤ 5W/m2K. Since the plate edges do not contribute significantly to the thermal load,
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Figure 17: Number of mesh layers for best accuracy.

h = 3W/m2K is assumed on all four plate edges.
Three inverse methods are compared to quantify the heat flux (q′′) and convection coefficient (h) on the

plate: least squares, extended Kalman filter, and extended information filter. For the inversion, the entire
experiment is treated as one event and temperature measurements are combined together. The experiment
covers 1,400 seconds and data are recorded at one second intervals. Not all of the data is needed for the inverse
and longer time steps can be used during periods of little thermal activity. Accordingly, one measurement
at t = 0s, one measurement per second from t = 290 to 800s (the heater is on from t = 300 to 600s), and
one measurement per five seconds from t = 805 to 1, 400s is used. The 5,056 temperature measurements
therefore are effectively 5,056 separate sensors. All three methods start with an initial guess of the state
x0 = [q′′ h]T = [1.7MW/m2 5.0W/m2K]T and are processed recursively to convergence.

For least squares, the estimated temperatures T for each sensor location and for each time t, a 5, 056 × 1
matrix, depend on a vector of two unknowns in the state X and the value of T at X = X + ∆X is obtained
through the truncated Taylor’s series as Woodbury [2003b]

T |X+∆X ≈ T |X +
∂T

∂X

∣∣∣∣
X

∆X. (14)

The gradient coefficient in equation 14 is the 5, 056× 2 sensitivity matrix

B =
∂T

∂X
=


∂T1

∂q′′ q
′′ ∂T1

∂h h
∂T2

∂q′′ q
′′ ∂T2

∂h h
...

...
∂T5,056

∂q′′ q′′
∂T5,056

∂h h

 (15)

which has been normalized to have units of temperature producing a better conditioned matrix for the inversion
in the least squares estimator ∆X = (BTB)−1BT (Y − T |X) Woodbury [2003b].

The direct numerical model produces values of T based on current estimates for the state X. The sensitivity
matrix B is obtained using finite differences (a 5, 056×2 matrix) by independently varying the state parameters
0.1%. We designate our experimentally obtained temperature measurements as Y , a 5, 056 × 1 matrix. Our
goal is to improve the estimate for the state X based on the observations Y .

The algorithm for the extended Kalman filter is listed in Table 2 where Xt is the predicted state, a(Ut, Xt−1)
is the state model based on the input Ut and the previous state Xt−1, A is the state model Jacobian, Σ is the
uncertainty estimate, Qt is the state model covariance, Kt is the Kalman gain, Bt is the measurement Jacobian,
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Figure 18: Illustration of boundary conditions on the flat plate.

Rt is the measurement covariance, b(Xt) is the measurement transition function and represents the predicted
measurements from the forward conduction solution based on the predicted state, and Zt represents the actual
measurements. The filter represents the belief at time t by the state Xt and the covariance Σt. For the flat
plate considered here, there is no input to the state thus the state model is a = I2 and the state model Jacobian
is A = I2, where I2 is a 2× 2 identity matrix. The measurement transition function b is a 5, 056× 1 matrix of
the predicted temperatures from the forward conduction solution, and the measurement Jacobian B is obtained
using finite differences (a 5, 056 × 2 matrix) by independently varying the state parameters 0.1%. The state
model covariance matrix Q is a 2× 2 diagonal matrix using σ2

q = 0.1MW 2/m4 and σ2
h = 0.1W 2/m4K2. These

values were chosen through a parameter sweep to achieve smooth convergence behavior since small values for
the state model covariance matrix cause the Gaussian filters to diverge while arbitrarily large values for the
state model covariance matrix render the Gaussian filters essentially identical to the least squares method.
The thermocouples have a measurement accuracy of ±1.5◦C, which translates to a measurement variance of
σ2
T = 0.25◦C2. This value is used for the diagonal elements of the measurement covariance matrix R, a

5, 056×5, 056 matrix. The filter is initialized with the initial state x0 (stated above) and covariance Σ0 = 0. For
the extended information filter (Table 4), a, A, b, B, R, and Q are identical to those in the extended Kalman
filter. The extended information filter possesses an advantage of allowing the inverse of the measurement
covariance matrix Q−1 to be computed once and reused for all iterations. Because the initial state covariance
matrix Σ0 is inverted in the extended information filter, the filter is initialized with Σ0 = R instead of the zero
matrix used to initialize the extended Kalman filter.

Figures 19 and 20 illustrate the convergence behavior for all three methods. The extended Kalman filter
and extended information filter converge identically and are presented together. The Gaussian filters converge a
bit slower than the least squares method, however the convergence is smoother. Once convergence is achieved,
statistical moments are computed from the last three iterations (Figure 21). Results are similar for all three
methods. The least squares method uses the least amount of wall time and memory of the three methods.
Wall time for each iteration, independent of recomputing the direct model for the updated parameters, is
approximately two orders of magnitude longer for extended information filter and four orders of magnitude
longer for extended Kalman filter than the wall time for least squares. Memory usage is approximately 1.5 times
more for extended information filter and 2 times more for extended Kalman filter than the memory required by
least squares. When considering convergence behavior and computational cost, least squares outperforms the
other methods for this type of parameter estimation.
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Figure 19: Least squares convergence.
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Figure 21: Statistical moments from parameter identification for (a) heat flux q′′ and (b) con-
vection coefficient h comparing least squares, extended Kalman filter, and extended information
filter.

Figure 22 compares the temperature response measured during the experiment with the temperature response
of the model using the results of the estimation (i.e., q′′ = 0.930MW/m2 and h = 3.20W/m2K). The residuals
Beck and Woodbury [1998], Dowding and Blackwell [2001] are illustrated in Figure 23. Agreement between
the model and the experiment is acceptable, however improvement could be achieved through modifications to
the heating profile (e.g., secondary heating). Agreement with the experiment is better when simultaneously
estimating q′′ and h than when estimating q′′ with h arbitrarily fixed.

A check of the boundary effect errors is conducted to ensure the plate is sized sufficiently large (Figure 24).
Of particular interest is in the region of (±4cm,±4cm) where the errors remain well below 0.5% for the entire
experiment. Even at (±10cm,±10cm), the errors are below 1% for much of the experiment and stay below 3%
for the entire experiment.

4.1 Measurement model selection
One important question in this analysis is determining if an ultrasound-based solution can outperform a ther-
mocouple solution. This section seeks to answer this question by examining six measurement models, two
incorporating thermocouples and four incorporating ultrasonic transducers. The following six measurement
models have been identified for analysis and will be detailed in the following sections:

1. Temperature measurement model

2. Radius from temperature measurement model

3. Ultrasonic pulse-echo time of flight measurement model

4. Radius from ultrasonic pulse-echo time of flight measurement model

5. Ultrasonic pulse one-way time of flight measurement model

6. Ellipse from ultrasonic one-way pulse time of flight measurement model

These measurement models represent different ways to collect measurements (sensors) and different ways to
process the data. Comparison of the six measurement models is performed using the extended Kalman filter
(algorithm in Table 2) to locate the source (xq, yq). For all six measurement models, the estimated state is
Xt = [xs, ys]

T where xs and ys represent the estimated location of the source at time t. There is no input to the
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Figure 22: Comparison of the temperature response on non-heated side of the plate at four sensor
locations.
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Figure 23: Residuals of the model when compared to the experiment measurements on the
non-heated side.
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Figure 24: Illustration of when and where the plate edges introduce errors in the temperature
distribution.

state thus the state model is a = I2 and the state model Jacobian is A = I2. Sensitivity of the state variance is
compared for values from σ2 = 0.01m2 to 0.000001m2 with the lower values providing a damping effect. A state
variance of σ2 = 0.0001m2 provides smooth, fast convergence without producing erratic convergence behavior
exhibited by the higher state variance values and will be used for all measurement model comparisons in this
section. Thus, the state model covariance matrix is Qt = 0.0001m2 ∗ I2, where I2 is a 2× 2 identity matrix.

Locating and characterizing a heating source depends upon many factors such as heating source movements in
time, heating source magnitude changes in time, and other transient behaviors. Fairly restrictive assumptions
can be imposed that simplify the problem. Analysis and algorithm development can proceed using these
restrictive assumptions and then assumptions can be relaxed in stages to achieve the end result of source
localization and characterization. The assumptions for this section are:

1. Source in fixed position (location unknown)

2. Source applied at time t = 300s and removed at t = 600s

3. q′′ = 0.930MW/m2 over 0.00635m diameter circular area while source applied (value obtained in param-
eter estimation above)

4. Secondary heating is characterized by a Gaussian with magnitude q′′g = 100W/m2 and variance σ2
g =

0.0009m2 while source applied

5. Convection coefficient h = 3.20W/m2K on both sides of the plate (value obtained in parameter estimation
above)

6. Convection coefficient h = 3W/m2K on the plate edges

7. Thermal conductivity k = 15W/mK

8. Specific heat Cp = 500J/kgK and density ρ = 8, 000kg/m3

9. Positions of sensors are (±4cm, ±4cm) on the non-heated side
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4.2 Temperature measurement model
In this direct model, temperatures are measured using four thermocouples on the non-heated side of the plate.
Expected temperatures and the partial derivatives are obtained directly from the direct model to form the
measurement transition function b(Xt) and the Jacobian Bt.

b(Xt) =


θ1

θ2

θ3

θ4

 (16)

Bt =


− ∂θ1
∂x1

−∂θ1∂y1

− ∂θ2
∂x2

−∂θ2∂y2

− ∂θ3
∂x3

−∂θ3∂y3

− ∂θ4
∂x4

−∂θ4∂y4

 (17)

where t is time in seconds with a time step of 1s, θ is the expected change in temperature relative to a reference,
obtained from the direct model, if the heating source is located at (xs, ys), and (xi, yi) with i = 1, 2, 3, 4 indicating
the locations of the four thermocouples. The Jacobian Bt is constructed using the derivatives with respect to
sensor position for convenience since this information can be obtained with one direct model simulation. The
derivatives are obtained directly from the direct model. Based on the flat plate experiment above, sensor
noise is assumed be ±0.045K and is normally distributed (σ2 = (0.045/3)2 = 2.225−4K2). The measurement
covariance matrix is R = 2.225−4K2 ∗ I4.

4.3 Radius from temperature measurement model
This indirect model is similar to the previous model in that temperatures are measured using thermocouples,
but in this model, the direct model is used as a lookup table to convert measured temperatures to a radius
from each sensor to the source. Knowledge of the heating start time, one of the assumptions in this section,
enables a simple direct model lookup of expected temperatures for a range of radius values from the heating
source. Linear interpolation is used with this lookup table to obtain an expected radius for each temperature
measurement.

ri =
√

(xi − xs)2 + (yi − ys)2 (18)

where (xi, yi) is the location of sensor i for i = 1, 2, 3, 4 and (xs, ys) the heating source location. The Jacobian
is based solely on geometry, which may reduce errors.

∂ri
∂xs

=
1

2

(
(xi − xs)2 + (yi − ys)2

)− 1
2(

∂

∂xs
(x2
i − 2xixs + x2

s)

) (19)

∂ri
∂xs

=
xs − xi
ri

,
∂ri
∂ys

=
ys − yi
ri

(20)
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The measurement transition function b(Xt) and the Jacobian Bt are then

b(Xt) =


√

(x1 − xs)2 + (y1 − ys)2√
(x2 − xs)2 + (y2 − ys)2√
(x3 − xs)2 + (y3 − ys)2√
(x4 − xs)2 + (y4 − ys)2

 (21)

Bt =


xs−x1

r1

ys−y1
r1

xs−x2

r2

ys−y2
r2

xs−x3

r3

ys−y3
r3

xs−x4

r4

ys−y4
r4

 (22)

where t is time in seconds with a time step of 1s, ri with i = 1, 2, 3, 4 is the radius from the sensor to the source,
obtained from the direct model, if the source is located at (xs, ys), and (xi, yi) with i = 1, 2, 3, 4 indicating
the locations of the four thermocouples. Based on the flat plate experiment above, sensor noise is assumed be
±0.045K and is normally distributed (σ2 = (0.045/3)2 = 0.000225K2). Since measured temperature is being
related to radius, sensor noise must be converted into radius noise. The complication in this conversion arises
from the fact that radius is a non-linear function of temperature and time. Based on insights gained from
the forward conduction model and analysis of the temperature response in the plate, a value of 0.015m/K is
used resulting in a radius noise of ±0.000675m with normal distribution (σ2 = 5.06−8m2). The measurement
covariance matrix, therefore, is R = 5.06−8m2 ∗ I4.

4.4 Ultrasonic pulse-echo time of flight measurement model
This direct model uses ultrasonic pulses to measure the average temperature through the material thickness
at each sensor location. In the pulse-echo method, the ultrasonic pulse travels through the material thickness,
reflects off the boundary, and returns to the transducer. The time of flight is Myers et al. [2008, in review, 2010]

Gii =
2L

vo

(
1 + ξθavg|L0

)
(23)

where L represents the material thickness, v0 is the speed of sound in the material at a reference tempera-
ture, ξ is the ultrasonic time of flight factor which is material dependent, and θ is the change in temperature
from the reference temperature. The ultrasonic pulse time of flight measurement model consists of obtaining
expected temperatures from the direct model, computing the average temperature between the transducer and
the boundary, and then computing an expected time of flight using equation 23 to form the measurement tran-
sition function b(Xt) (equation 24). The Jacobian partial derivatives are obtained using time of flight difference
when moving the source in the x and y directions independently (equation 25).

b(Xt) =


G1

G2

G3

G4

 (24)

Bt =


−∂G1

∂x1
−∂G1

∂y1

−∂G2

∂x2
−∂G2

∂y2

−∂G3

∂x3
−∂G3

∂y3

−∂G4

∂x4
−∂G4

∂y4

 (25)

where t is time in seconds with a time step of 1 second, Gi with i = 1, 2, 3, 4 is the expected ultrasonic pulse
time of flight, obtained from the direct model, with the heating source at location (xs, ys), and (xi, yi) with
i = 1, 2, 3, 4 indicating the locations of the four transducers. The Jacobian Bt is constructed using the derivatives
with respect to sensor position for convenience since this information can be obtained with one direct model
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Figure 25: Ultrasonic pulse-echo technique.

simulation. The derivatives are obtained from the direct model using finite differences by independently varying
the x and y positions of all sensors by 0.0001m. Based on the flat plate experiment above, sensor noise is
assumed be ±2.3−10s and is normally distributed (σ2 = 5.88−21sec2). The measurement covariance matrix,
therefore, is R = 5.88−21sec2 ∗ I4.

4.5 Radius from ultrasonic pulse-echo time of flight measurement model
In this indirect model, ultrasonic pulse-echo time of flight is measured using four transducers on the non-heated
side of the plate. Similar to radius from temperature method, this method converts the measured time of flight to
a radius using the direct model as a lookup table. Knowledge of the heating start time, one of the assumptions
in this section, enables a simple direct model lookup of expected temperatures for a range of radius values
from the heating source. Temperatures in the plate are related to time of flight through equation 23. Linear
interpolation is used with this lookup table to obtain an expected radius for each time of flight measurement.
Equations 18 to 20 develop the geometry behind the measurement transition function b(Xt) and the Jacobian
Bt which are

b(Xt) =


√

(x1 − xs)2 + (y1 − ys)2√
(x2 − xs)2 + (y2 − ys)2√
(x3 − xs)2 + (y3 − ys)2√
(x4 − xs)2 + (y4 − ys)2

 (26)

Bt =


xs−x1

r1

ys−y1
r1

xs−x2

r2

ys−y2
r2

xs−x3

r3

ys−y3
r3

xs−x4

r4

ys−y4
r4

 (27)

where t is time in seconds with a time step of 1 second, ri with i = 1, 2, 3, 4 is the radius from the sensor to
the source, obtained from the direct model, if the source is located at (xs, ys), and (xi, yi) with i = 1, 2, 3, 4
indicating the locations of the four thermocouples. Based on the flat plate experiment above, sensor noise is
assumed be ±2.3−10s and is normally distributed (σ2 = 5.88−21sec2). Sensor noise in terms of temperature
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Figure 26: One-way ultrasonic pulse technique.

can be expressed as

θnoise =
Gnoisev0

2Lξ
= 0.84K (28)

Since measured time of flight is being related to radius, sensor noise must be converted into radius noise. The
complication in this conversion arises from the fact that radius is a non-linear function of time of flight and
time. Based on insights gained from the forward conduction model and analysis of the temperature response
in the plate, a value of 0.015m/K is used resulting in a radius noise of ±0.0126m with normal distribution
(σ2 = 1.76−5m2). The measurement covariance matrix, therefore, is Rt = 1.76−5m2 ∗ I4.

4.6 Ultrasonic pulse one-way time of flight measurement model
Instead of sending an ultrasonic pulse through to a boundary and receiving the echo at the original transducer,
one transducer can transmit the pulse and another transducer can receive the pulse. The time of flight is

Gij =
Rij
vo

(
1 + ξθavg|ji

)
(29)

where Rij is the distance between transducers (m). This direct measurement model consists of obtaining
expected temperatures from the direct model, computing the average temperature between the transducers,
and then computing an expected time of flight to form a(Ut, Xt−1) (equation 30). For the current analysis,
the average temperature is based on the line on the plate surface between the two sensors. The Jacobian
partial derivatives are obtained using time of flight difference when moving the source in the x and y directions
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Figure 27: Ellipse properties.

independently (equation 31).

b(Xt) =


G1

G2

G3

G4

 (30)

Bt =


−∂G1

∂x1
−∂G1

∂y1

−∂G2

∂x2
−∂G2

∂y2

−∂G3

∂x3
−∂G3

∂y3

−∂G4

∂x4
−∂G4

∂y4

 (31)

where t is time in seconds with a time step of 1s, Gi with i = 1, 2, 3, 4 is the ultrasonic pulse time of flight,
obtained from the direct model, with the heating source located at (xs, ys), and (xi, yi) with i = 1, 2, 3, 4
indicating the locations of the four transducers. The JacobianBt is constructed using the derivatives with respect
to sensor position for convenience since this information can be obtained with one direct model simulation. The
derivatives are obtained from the direct model using finite differences by independently varying the x and y
positions of all sensors by 0.0001m. Based on the flat plate experiment above, sensor noise is assumed be
±1.05−8s and is normally distributed (σ2 = ((1.05−8)/3)2 = 1.225−17sec2). The measurement covariance
matrix, therefore, is R = 1.225−17sec2 ∗ I4.

4.7 Ellipse from ultrasonic pulse one-way time of flight measurement model
In this indirect model, a particular ultrasonic pulse time of flight at a particular time after the heater is turned
on means that the source could be anywhere on an assumed elliptical shape around the sensors. Figure 27
illustrates the geometry of an ellipse. The two sensors are assumed to be the focus points for the ellipse. Since
the distance between sensors is known, ellipse parameters c and d can be related to each other and the ellipse
can be represented with just one parameter c.

ris + rjs = 2c =
√
r2
ij + 4d2 (32)
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where i and j are sensors and s is heat source.

c =
1

2

√
r2
ij + 4d2 =

ris + rjs
2

(33)

ris =
√

(xi − xs)2 + (yi − ys)2 (34)

rjs =
√

(xj − xs)2 + (yj − ys)2 (35)

∂ci
∂xs

=
1

2

[
xs − xi
ris

+
xs − xj
rjs

]
(36)

∂ci
∂ys

=
1

2

[
ys − yi
ris

+
ys − yj
rjs

]
(37)

The parameter c is measured indirectly by first measuring the one-way ultrasonic pulse time of flight. The
forward conduction solution is used to get time of flight for a range of c values and interpolated using the
spline method to obtain c for the measured time of flight. The measurement transition function b(Xt) and the
Jacobian Bt are then

b(Xt) =


c1

c2

c3

c4

 (38)

Bt =


∂c1
∂xs

∂c1
∂ys

∂c2
∂xs

∂c2
∂ys

∂c3
∂xs

∂c3
∂ys

∂c4
∂xs

∂c4
∂ys

 (39)

where t is time in seconds with a time step of 1s, ci with i = 1, 2, 3, 4 is the ellipse parameter if the source
is located at (xs, ys). Based on the flat plate experiment above, sensor noise is assumed be ±1.05−8s and is
normally distributed (σ2 = 1.22−17s2). The sensor noise in terms of temperature can be expressed as

θnoise =
Gnoisev0

Lξ
= 6.09K (40)

Since measured time of flight is being related to the ellipse parameter c, sensor noise must be converted into
ellipse parameter noise. The complication in this conversion arises from the fact that c is a non-linear function
of time of flight and time. Based on insights gained from the forward conduction model and analysis of the
temperature response in the plate, a value of 0.015m/K is used resulting in an ellipse noise of ±2.044m for the
c parameter with normal distribution (σ2 = 4.62−9m2).

4.8 Extended Kalman filter convergence behavior
Extended Kalman filter convergence behavior for all six measurement models are compared in Figures 28 through
31. With the heating source located inside the sensor grid (Figure 28), all measurement models converge to the
correct location, however both temperature measurement models exhibit rather noisy convergence. The ellipse
from ultrasonic pulse one-way time of flight measurement model produces the best results with the heating
source located inside the sensor grid. With the heating source located at the edge of the sensor grid (Figure 29),
all measurement models once again converge to the correct location and both temperature measurement models
and the radius from ultrasonic pulse-echo time of flight measurement model exhibit undesirable convergence
behavior. The ellipse from ultrasonic pulse one-way time of flight measurement model produces the best results
with the heating source located at the edge the sensor grid. With the heating source located outside of the
sensor grid (Figure 30), none of the measurement models converge to the correct location, however the ellipse
from ultrasonic pulse one-way time of flight and radius from ultrasonic pulse-echo time of flight measurement
models converge to within 1cm of the actual location. These examples started with an initial guess of (0cm,
0cm) for the heating source location. Figure 31 illustrates the convergence behavior for all six models using an
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Figure 28: Extended Kalman filter convergence for all six measurement models with source at
(2cm, 0cm) and initial guess of (0cm, 0cm).

initial guess of (8cm, 8cm) for the heating source located inside the sensor grid. Interestingly, all direct models
fail to converge to the correct location in this scenario. Overall, the ellipse from ultrasonic pulse one-way time
of flight measurement model produces the best results when considering accuracy of converged solution, ability
to converge to the correct solution given different initial guesses, and smoothness of convergence behavior.

Because we are using numerical tools to solve the governing equations, we lack a set of state equations and
cannot determine the observability index in the standard fashion. We can, however, examine sensitivity to
heating source location relative to sensor location as well as sensitivity to other parameters including heating
source magnitude, plate thermal conductivity, and plate surface convection coefficient. Sensitivity analysis to
address observability is included in Section 5.

5 Sensitivity
Sensitivity is important to understand and characterize when measuring and estimating parameters of interest.
This section details sensitivity to source position, boundary conditions, and thermal conductivity from the flat
plate experiments discussed in the previous section.

5.1 Sensitivity to source position
To determine the one-way pulse method’s sensitivity to source location, it is necessary to examine how the
average temperature between the two sensors is affected by the relative position of the heat source. Note
that this discussion assumes the source is static and therefore not moving with time. Figure 32 illustrates the
temperature profile on the plate’s non-heated side at t = 320s with the source located at (x = 0cm, y = 0cm).
The average temperature difference between the two sensors is 13.5K. If the source is located at (x = 2cm,
y = 0cm) as in Figure 33, the average temperature difference is nearly identical at 13.2K. We conclude, then,
that even with knowledge that the source is between the sensors, its x-location cannot be determined very
accurately. If the source were further to the right, say at (x = 3cm, y = 0cm), the average temperature
difference would be 11.8K indicating that sensitivity to x-location is greater close to the transducers. However,
the observations do not reveal if the heat source is closer to the pulse generator or the receiver. If the source
is instead offset in the y-direction at (x = 0cm, y = 1cm) as in Figure 34, the average temperature difference
is 5.3K. Thus, the sensitivity to source position in the y-direction is greater than for the x-direction for this
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Figure 29: Extended Kalman filter convergence for all six measurement models with source at
(4cm, 0cm) and initial guess of (0cm, 0cm).
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Figure 30: Extended Kalman filter convergence for all six measurement models with source at
(6cm, 0cm) and initial guess of (0cm, 0cm).
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Figure 31: Extended Kalman filter convergence for all six measurement models with source at
(2cm, 0cm) and initial guess of (8cm, 8cm).

sensor pair. More generally, the sensitivity is greater in the direction normal to the ultrasonic pulse propagation
path.

The sensitivity to heating source location is expressed as

Sxy =

√(
∂θavg
∂x

)2

+

(
∂θavg
∂y

)2

. (41)

Figures 35 and 36 illustrate Sxy at two different times during the heating. These figures highlight the high
sensitivity regions around the sensor path and the drastic drop-off near the path. These figures support the
observation above that sensitivity is greater perpendicular to the ultrasonic propagation path. One should
notice the rapid decrease in sensitivity as the source location nears the path between sensors.

5.2 Sensitivity to boundary conditions and thermal conductivity
Sensitivity to boundary conditions (Figure 18) and thermal conductivity are analyzed for an ultrasonic sensor
configuration of four sensors in an 8cm square configuration (Figure 37). This configuration is based on the
sensitivity analysis in Section 5 and represents a starting point for analysis. Sensitivity for the primary heat
flux (q′′), secondary heating magnitude and spread (q′′g and σ2

g), convection coefficients for the plate (hsides and
hedges), and thermal conductivity of the plate (k) are illustrated and analyzed for source locations inside the
sensor grid and up to 2cm outside the grid (i.e., a 12cm by 12cm area).

Assumptions for the sensitivity to boundary conditions and thermal conductivity analysis are:

1. Source at known, fixed position

2. Source applied at time t = 300s and removed at t = 600s

3. Main heat flux q′′ = 0.930MW/m2 over 0.00635m diameter circular area during heating (value obtained
in previous study Myers et al. [2010a,b, 2012c])

4. Secondary heating is characterized by a Gaussian with magnitude q′′g = 100W/m2 and variance σ2
g =

0.0009m2 during heating
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Figure 32: Temperature response at t = 320s with source located at (x = 0cm, y = 0cm). θavg =
13.5K between sensors.
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Figure 33: Temperature response at t = 320s with source located at (x = 2cm, y = 0cm). θavg =
13.2K between sensors.
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Figure 34: Temperature response at t = 320s with source located at (x = 0cm, y = 1cm). θavg = 5.3K
between sensors.
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Figure 35: Heating source location sensitivity for one-way pulse sensor configuration and all
possible heating source locations at t=320s.
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5. Convection coefficient h = 3.20W/m2 −K on both sides of the plate (value obtained in previous study
Myers et al. [2010a,b, 2012c])

6. Convection coefficient h = 3W/m2 −K on the plate edges

7. Thermal conductivity k = 14.6W/m−K

8. Specific heat Cp = 500J/kgK and density ρ = 8, 000kg/m3

9. Positions of sensors are (±4cm, ±4cm) on the non-heated side

Sensitivity is computed using finite differences where baseline ultrasonic pulse time of flight values are
computed using the assumptions above and then new ultrasonic pulse time of flight values are computed with the
parameter being investigated multiplied by 1+δ. Sensitivities are presented scaled according to the relationBeck
and Arnold [1977]

Sβi
= βi

∂G

∂βi
(42)

Sβi
≈ βi

G(x, y, z, t, β1, · · · , βi(1 + δ), · · · , βp)−G(x, y, z, t, β1, · · · , βp)
βi(1 + δ)− βi

(43)

Sβi
≈ G(x, y, z, t, β1, · · · , βi(1 + δ), · · · , βp)−G(x, y, z, t, β1, · · · , βp)

δ
(44)

where βi is the parameter being investigated and G is ultrasonic pulse time of flight. The δ parameter used in
this section is δ = 0.001. By normalizing the sensitivities, direct comparison between all investigated parameters
can be performed.

6 Comparison
The flat plate experiments detailed above are used in this section for comparing filter performance. This section
examines heating source localization using four ultrasonic transducers in an 8cm square pattern (Figure 37).

Locating and characterizing a heating source depends upon many factors such as heating source movements in
time, heating source magnitude changes in time, and other transient behaviors. Fairly restrictive assumptions
can be imposed that simplify the problem. Analysis and algorithm development can proceed using these
restrictive assumptions and then assumptions can be relaxed in stages to achieve the end result of source
localization and characterization. The assumptions for this work are:

1. Source in fixed position (location unknown)

2. Source applied at time t = 300s and removed at t = 600s

3. Main heat flux q′′ = 0.930MW/m2 over 0.00635m diameter circular area while source applied (value
obtained in previous study Myers et al. [2010a,b, 2012c])

4. Secondary heating is characterized by a Gaussian with magnitude q′′g = 100W/m2 and spread σ2
g =

0.0009m2 while source applied

5. Convection coefficient h = 3.20W/m2K on both sides of the plate (value obtained in previous study Myers
et al. [2010a,b, 2012c])

6. Convection coefficient h = 3W/m2K on the plate edges

7. Thermal conductivity k = 14.6W/mK

8. Specific heat Cp = 500J/kgK and density ρ = 8, 000kg/m3

9. Positions of sensors are (±4cm, ±4cm) on the non-heated side
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The three inverse methods compared are: extended Kalman filter, particle filter, and least squares. The two
measurement models studied are: ultrasonic pulse one-way time of flight measurement model, and ellipse from
ultrasonic pulse one-way time of flight measurement model. With the particle filter, only the ultrasonic pulse
one-way time of flight measurement model is considered because, as will become clear later, the particle filter
does not depend upon a Jacobian, and the ellipse model is an alternative way of expressing the Jacobian for
those methods that require a Jacobian. Comparison of the five methods is performed in locating the heating
source on the plate in the x − y plane (xq, yq). For all methods, the state therefore is Xt = [xq, yq]

T . In all
methods considered, the ultrasonic time of flight is normalized by the time of flight before the heating source is
applied to the plate (Gij/G0).

6.1 Extended Kalman filter with ultrasonic pulse one-way time of flight measure-
ment model

The extended Kalman filter algorithm to locate the source can be found in Table 2 . The state is Xt = [xq, yq]
T ,

and there is no input (Ut) to the state; thus the extended Kalman filter state model is a = I2 and the state model
Jacobian is A = I2, where I2 is a 2 × 2 identity matrix. A parameter sweep is conducted for the state model
variance from σ2 = 0.01m2 to σ2 = 0.000001m2. A small value for the state model variance (σ2 = 0.000001m2)
produces a damping effect on the convergence whereas a large value (σ2 = 0.01m2) produces fast but erratic
convergence. From this parameter sweep, it is determined that a state variance of σ2 = 0.0001m2 provides
a good compromise between damping and stability and this value is used. Thus, the state model covariance
matrix is Qt = 0.0001m2 × I2.

This measurement model consists of obtaining expected temperatures from the direct model using the pre-
dicted state Xt, computing the average temperature between the transducers, and then computing an expected
time of flight from 29 to form b(Xt) (equation 45). For the current analysis, the average temperature is com-
puted along the path on the non-heated plate surface between the two sensors. The Jacobian partial derivatives
are obtained using finite difference when moving the source in the x and y directions independently (equation
46).

b(Xt) =


G1

G2

G3

G4

 ; (45)

Bt =


−∂G1

∂x1
−∂G1

∂y1

−∂G2

∂x2
−∂G2

∂y2

−∂G3

∂x3
−∂G3

∂y3

−∂G4

∂x4
−∂G4

∂y4

 , (46)

where t is time in seconds with a time step of 1s, Gi with i = 1, 2, 3, 4 is the ultrasonic pulse time of flight with
the heating source located at (xs, ys), and (xi, yi) with i = 1, 2, 3, 4 are the locations of four transducers. The
Jacobian Bt is constructed using the derivatives with respect to sensor position for convenience because this
information can be obtained with one direct model simulation. The derivatives are obtained from the direct
model using finite differences by independently varying the x and y positions of all sensors by 0.0001m. Based
on the flat plate experiment above, the sensor noise is assumed be ±6−5 (a non-dimensional number based on
Gij/G0) and is normally distributed (σ2 = ((6−5)/3)2 = 4−10). Solution instabilities were present when using
this variance, which were reduced by increasing the variance to 4−7. This larger variance effectively dampens
the solution and prevents large changes from one iteration to the next. The measurement covariance matrix,
therefore, is R = 4−7× I4.

6.2 Extended Kalman filter with ellipse from ultrasonic pulse one-way time of
flight measurement model

In an attempt to simplify the sensitivity calculation, the lines of constant time of flight around the sensor pairs
form approximate ellipses. With this approximation, the sensitivities can be calculated algebraically. Figure 27
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illustrates the geometry of an ellipse, where the two sensors are assumed to be the foci for the ellipse. Since the
distance between sensors is known, ellipse parameters c and d can be related to each other and the ellipse can
be represented with just one parameter c.

ris + rjs = 2c =
√
r2
ij + 4d2 (47)

where i and j are sensors and s is heat source.

c =
1

2

√
r2
ij + 4d2 =

ris + rjs
2

(48)

ris =
√

(xi − xs)2 + (yi − ys)2 (49)

rjs =
√

(xj − xs)2 + (yj − ys)2 (50)

∂ci
∂xs

=
1

2

[
xs − xi
ris

+
xs − xj
rjs

]
(51)

∂ci
∂ys

=
1

2

[
ys − yi
ris

+
ys − yj
rjs

]
(52)

This measurement model consists of measuring the one-way ultrasonic pulse time of flight, using the direct
model to obtain the average temperature between the transducers for a range of c values, using equation 29
to compute time of flight for the range of c values, and then interpolating the time of flight results using the
spline method to obtain c for the measured time of flight. The measurement transition function b(Xt) and the
Jacobian Bt are then

b(Xt) =


c1

c2

c3

c4

 ; (53)

Bt =


∂c1
∂xs

∂c1
∂ys

∂c2
∂xs

∂c2
∂ys

∂c3
∂xs

∂c3
∂ys

∂c4
∂xs

∂c4
∂ys

 , (54)

where t is time in seconds with a time step of 1 second, ci with i = 1, 2, 3, 4 is the ellipse parameter if the source
is located at (xs, ys). Based on the flat plate experiment above, sensor noise is assumed be ±1.05−8s and is
normally distributed (σ2 = 1.22−17sec2). The sensor noise in terms of temperature can be expressed as

θnoise =
Gnoisev0

Lξ
= 6.09K (55)

Using the average slope of 0.015m/K determined in Section 4 and documented in previous work Myers et al.
[2010a,b, 2012c], ellipse noise for the c parameter from ultrasonic pulse time of flight measurement model is
±0.0914m and is normally distributed (σ2 = 9.28−4m2). Since the measurement covariance matrix R represents
the measurement noise of the c parameter, the measurement covariance is 3.19−10m2 ([1.05−8s/3×5, 100m/sec
sound speed]2).

6.3 Particle filter with ultrasonic pulse one-way time of flight measurement model
The particle filter is an alternative nonparametric implementation of the Bayes filter and is a Monte Carlo
technique used for the solution of state estimation problems. The main idea is to represent the required posterior
density function by a set of random samples with associated weights and to compute the estimates based on
these samples and weights Vianna et al. [2010]. Because it is nonparametric, the particle filter can represent a
much broader space of distributions than Gaussians and has the ability to model nonlinear transformations of
random variables Thrun et al. [2006]. The particle filter algorithm to locate the source can be found in Table 5.

Myers, Michael R, Jorge, Ariosto B (2022) KF EKF EIF PF LS Localization Estimation pp. 382-442

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 418



−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

Distribution of particles at 300 sec

Figure 38: Particle locations (m = 40) at 300s.

Implementation of the particle filter for heating source localization starts with defining the area of possible
source locations on the plate. The number of particles m to use in the algorithm must also be defined. A
large number of particles yields a higher probability that one or more particles will be located near the actual
source but the downside is higher computational cost. For this study, the area is defined as the 8cm × 8cm
sensor grid and the number of particles is m = 40. The algorithm starts with the generation of m random
particles within the defined area of possible source locations (Figure 38). Step 2 involves obtaining expected
temperatures from the direct model with the heating source at each particle location, computing the average
temperature between the transducers, and then computing an expected time of flight to form Zi,t, a 4×1 matrix
for each particle i at the current time t. For the current analysis, the average temperature is computed along
the path on the non-heated plate surface between the two sensors. Step 3 entails obtaining actual ultrasonic
time of flight measurements at the current time t for all four sensor pairs to form Ztruet, a 4× 1 matrix. The
particle filter relies on an importance factor, or weight wi,t, to incorporate the measurement Ztruet into the
particle set. The weight wi,t for each particle is computed in Step 4 using

wi,t = N(Ztruet, I)

= det(2πI)−
1
2 exp

{
−1

2
((Zi,t − Ztruet)× gain)T I−1((Zi,t − Ztruet)× gain)

}
.

(56)

Gain is discussed in detail later in this section. A number of resampling techniques have been devised Thrun
et al. [2006], Vianna et al. [2009], Arulampalam et al. [2002]. This work employs the sampling importance
resampling technique because this technique requires fewer particles than some of the other methods and
focuses the computational resources to regions in the state space with high posterior probability Thrun et al.
[2006]. In Step 5, the particle weights are normalized into bins from 0 to 1, which gives the particles with the
highest weight the largest bins and then in Step 6, the particles are resampled using a normal distribution. By
resampling across the bins from 0 to 1 using a normal distribution, a higher probability exists that the best
particles will be chosen but some particles that are not the best will be chosen too. It is important to note
that the number of particles m remains constant through the resampling process, thus some particles will have
identical locations on the plate after resampling. Degeneracy is common with particle filters, a situation where
the solution converges to the one best particle within the current particle set without considering locations
nearby Doucet et al. [2002]. This fact necessitates Step 7 where position noise or roughness is added to each
particle Salmond et al. [1993]. In this work, uniform position noise of ±0.5cm is used. Figures 39 and 40
illustrate the particle distribution before and after adding noise to each particle location. After completion of
Step 7, the algorithm returns to Step 2 and the process is repeated for the next step in time. For this work, a
time step of 1s is used. Figure 41 illustrates the particle distribution at t = 330sec.

Because the magnitude of the non-dimensional values in the matrix Zi,t − Ztruet in equation 56 ranges
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Figure 39: Particle locations (m = 40) at 315s.
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Figure 40: Particle locations (m = 40) at 315s after adding noise to each particle location.
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Figure 41: Particle locations (m = 40) at 330s.

from 0 to 0.008, using no gain (gain = 1) produces a value of 1 in the exponent portion of the equation for all
particles. Thus, identical weights are computed for all particles (Figure 42). For the particle filter to function
properly, it is imperative that the particles close to the actual heating source location receive the highest weight
(Zi,t−Ztruet close to zero in Figure 42) and those particles far from the actual heating source location receive
a weight close to zero. The non-dimensional sensor noise measured in the experiment above is approximately
6−5. Therefore, the applied gain should yield the largest weights for Zi,t − Ztruet magnitudes between 0 and
the noise of 6−5 and should yield weights close to 0 for Zi,t − Ztruet magnitudes larger than the sensor noise.
Illustrated in Figure 42, a gain of 14 is too small to produce weights close to zero for Zi,t −Ztruet magnitudes
larger than the sensor noise, but a gain of 64 precipitates the desired effect. Figure 43 illustrates the effect of
the number of particles m on the convergence behavior and performance of the particle filter. The filter is quite
robust and Figure 43 demonstrates the filter’s ability to converge to the correct location with only 10 particles.
The particle filter used in the comparisons with the other localization methods in the next section is based on
40 particles.

6.4 Least squares with ultrasonic pulse one-way time of flight measurement model
The ordinary least squares method is sometimes called the ÃGauss method of minimizationÃ Woodbury [2003a].
For the current localization, the estimated time of flight G for each sensor pair for a particular time t, a 4× 1
matrix, depends on a vector of two unknowns in the state X and the value of G at X = X + ∆X is obtained
through the truncated Taylor’s series as

G|X+∆X ≈ G|X +
∂G

∂X

∣∣∣∣
X

∆X. (57)

The derivative in equation 57 is the 4× 2 sensitivity matrix

Bt =
∂G

∂X
=


∂G1

∂x1

∂G1

∂y1
∂G2

∂x2

∂G2

∂y2
∂G3

∂x3

∂G3

∂y3
∂G4

∂x4

∂G4

∂y4

 (58)

where t is time in seconds with a time step of 1s, Gi with i = 1, 2, 3, 4 is the ultrasonic pulse time of flight
with the heating source located at (xs, ys), and (xi, yi) with i = 1, 2, 3, 4 are the locations of four transducers.
The experimentally obtained time of flight measurements are designated as Zt, a 4 × 1 matrix. The desire is
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Figure 43: Particle filter convergence for selected numbers of particles with heating source located
at (x = 2cm, y = 0cm) and an initial guess of (x = 0cm, y = 0cm).
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to improve the estimate for the state Xt based on the observations Zt. The ordinary least squares objective
function is

S = (Zt − G|Xt
−Bt∆Xt)

T (Zt − G|Xt
−Bt∆X). (59)

The minimizer of equation 59 is found by forcing to zero the derivative with respect to ∆X resulting in the
estimator

∆Xt = (BT
t Bt)

−1BT
t (Zt − Gt|Xt

). (60)

This method consists of obtaining expected temperatures from the direct model, computing the average
temperature between the transducers, and then computing an expected time of flight from equation 29. For
the current analysis, the average temperature is computed along the path on the non-heated plate surface
between the two sensors. The Jacobian Bt is constructed using the derivatives with respect to sensor position
for convenience since this information can be obtained with one direct model simulation. The derivatives are
obtained from the direct model using finite differences by independently varying the x and y positions of all
sensors by 0.0001m.

6.5 Least squares with ellipse from ultrasonic pulse one-way time of flight mea-
surement model

This method uses the same ellipse model detailed above with the extended Kalman filter and employs least
squares method detailed above to locate the source. Figure 27 illustrates the geometry of an ellipse, where
the two sensors are assumed to be the foci for the ellipse. Since the distance between sensors is known, ellipse
parameters c and d can be related to each other and the ellipse can be represented with just one parameter c.

ris + rjs = 2c =
√
r2
ij + 4d2 (61)

where i and j are sensors and s is heat source.

c =
1

2

√
r2
ij + 4d2 =

ris + rjs
2

(62)

ris =
√

(xi − xs)2 + (yi − ys)2 (63)

rjs =
√

(xj − xs)2 + (yj − ys)2 (64)

∂ci
∂xs

=
1

2

[
xs − xi
ris

+
xs − xj
rjs

]
(65)

∂ci
∂ys

=
1

2

[
ys − yi
ris

+
ys − yj
rjs

]
(66)

This measurement model consists of measuring the one-way ultrasonic pulse time of flight, using the direct
model to obtain the average temperature between the transducers for a range of c values, using equation 29 to
compute time of flight for the range of c values, and then interpolating the time of flight results using the spline
method to obtain c for the measured time of flight. The sensitivity matrix Bt is then

Bt =


∂c1
∂xs

∂c1
∂ys

∂c2
∂xs

∂c2
∂ys

∂c3
∂xs

∂c3
∂ys

∂c4
∂xs

∂c4
∂ys

 , (67)

where t is time in seconds with a time step of 1second, ci with i = 1, 2, 3, 4 is the ellipse parameter if the source
is located at (xs, ys). The desire is to improve the estimate for the state Xt based on the observations c.

6.6 Results
Convergence behavior for the three inverse methods and both measurement models is compared in Figures 44
through 46. With the heating source located inside the sensor grid (Figure 44), the extended Kalman filter
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Figure 44: Least squares, extended Kalman filter, and particle filter convergence for both one-
way ultrasonic pulse measurement models with the heating source located at (x = 2cm, y = 0cm)
and an initial guess of (x = 0cm, y = 0cm).

and the least squares with the direct model and the particle filter converge to the correct location while the
extended Kalman filter and the least squares with the ellipse model do not. Similar convergence behavior is
found with the heating source located at the edge of the sensor grid (Figure 45), although convergence is much
faster. With the heating source located outside of the sensor grid (Figure 46), none of the methods converge to
the correct location. These examples started with an initial guess of (x = 0cm, y = 0cm) for the heating source
location.

Sensitivity to heating source location, explored in Section 5 and documented in previous work Myers et al.
[2012b], can help explain these results. With the heating source outside the sensor grid, only one sensor pair
would have sufficient sensitivity to heating source location and only then if the heating source is located close
to the sensor pair. With only one sensor pair receiving usable information, the inverse routine has insufficient
information to converge on the correct heating source location. With the heating source located inside the sensor
grid, all sensor pairs receive usable information and the inverse routine is able to converge to the correct location.
With the heating source located at the edge of the sensor grid, one sensor pair receives usable information almost
instantaneously resulting in faster convergence.

The extended Kalman filter with ellipse and least squares with ellipse models use the least amount of wall
time and but the most memory of the five methods. Wall time for each iteration, independent of re-computing
the direct model for the updated parameters, is approximately three times longer for the least squares time of
flight model and almost four times longer for the extended Kalman filter time of flight model than the wall time
for both of the ellipse models. The particle filter requires approximately 37 times more wall time than the ellipse
models. Memory usage is lowest for the extended Kalman filter time of flight model and the least squares time
of flight model. The particle filter requires approximately 30% more memory and the ellipse models require
approximately four times more memory than the time of flight models.

Repeating the experiment using multiplexing equipment and a complete sensor grid of four transducers
instead of simulating the sensor grid with separate experiments using two transducers might produce different
convergence behavior, especially for heating source locations outside the sensor grid. While the experiment is
reproducible, simulating a sensor grid with separate experiments introduces uncertainties that could effect the
results. Additionally, sensor and heating source placement introduce uncertainties when simulating the sensor
grid.
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Figure 45: Least squares, extended Kalman filter, and particle filter convergence for both one-
way ultrasonic pulse measurement models with the heating source located at (x = 4cm, y = 0cm)
and an initial guess of (x = 0cm, y = 0cm).
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Figure 46: Least squares, extended Kalman filter, and particle filter convergence for both one-
way ultrasonic pulse measurement models with the heating source located at (x = 6cm, y = 0cm)
and an initial guess of (x = 0cm, y = 0cm).
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Figure 47: Extended Kalman filter convergence for a range of state model covariance values
(Q) with constant measurement covariance values of R = 4−7× I4, the heating source located at
(x = 2cm, y = 0cm), and an initial guess of (x = 0cm, y = 0cm).

6.7 Adaptive extended Kalman filter
Figure 47 illustrates the sensitivity to the state model covariance by comparing values from Q = 0.1m2 × I2
to 0.000001m2 × I2. Decreasing the state model covariance (Q) magnitude results in a damping effect on the
convergence. Decreasing the magnitude too far causes the estimated position values to remain fairly constant
and the solution fails to converge. Conversely, increasing the state model covariance (Q) magnitude increases
the convergence rate. Increasing the state model covariance (Q) too far results in erratic position estimates and
the solution fails to converge.

Figure 48 illustrates the sensitivity to the measurement covariance by comparing values from R = 4−5× I4
to R = 4−10 × I4. Increasing the measurement covariance (R) magnitude results in a damping effect on the
convergence. Increasing the magnitude too far causes the estimated position values to remain fairly constant
and the solution fails to converge. Conversely, decreasing the measurement covariance (R) magnitude increases
the convergence rate. Decreasing the measurement covariance (R) too far results in erratic position estimates
and the solution fails to converge.

A trend is evident when comparing Figures 47 and 48 in that Q and R appear to be inversely correlated.
Figure 49 illustrates the relationship. Decreasing Q by one order of magnitude or increasing R by one order
of magnitude results in similar convergence behavior. Likewise, increasing Q by one order of magnitude or
decreasing R by one order of magnitude also results in similar convergence behavior. For example, using
Q = 0.0001m2×I2 and R = 4−7×I4 as the baseline, decreasing the state model covariance toQ = 0.00001m2×I2
but keeping the measurement covariance at R = 4−7 × I4 results in similar convergence behavior if the state
model covariance is kept at Q = 0.0001m2 × I2 and the measurement covariance is increased to R = 4−6× I4.

We can conclude from these observations that the state model covariance (Q) and the measurement covari-
ance (R) are correlated for this heating source localization scenario. The measurement covariance is determined
from sensor noise, a measurable quantity, and the state model covariance is unknown and not measurable.
Therefore, a large uncertainty exists in the state model covariance while a small uncertainty exists in the mea-
surement covariance. Selection of an appropriate state model covariance must then be obtained through a
parameter sweep while observing convergence behavior.

Figure 51 illustrates the magnitude of each element in the Kalman gain (Kt), which, for this heating source
localization, is a 2×4 matrix. Comparing Figure 51 with Figure 50, the (1, 3) value from the Kalman gain (Kt)
stands out as a possible source since it increases until convergence and then decreases rapidly. However, this
value remains large even after convergence.

Figure 52 illustrates the normalized magnitude of the variance contained in the state covariance matrix (Σ)
which is a 2×2 matrix in this heating source localization problem. The variance values are in the main diagonal
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Figure 48: Extended Kalman filter convergence for a range of measurement covariance values
(R) with constant state model covariance values of Q = 1−4m2 × I2, the heating source located at
(x = 2cm, y = 0cm), and an initial guess of (x = 0cm, y = 0cm).
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Figure 49: Extended Kalman filter convergence illustrating the correlation between the state
model covariance matrix (Q) and the measurement covariance matrix (R). The heating source is
located at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm).

Myers, Michael R, Jorge, Ariosto B (2022) KF EKF EIF PF LS Localization Estimation pp. 382-442

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 427



300 305 310 315 320 325 330 335 340
−2

0

2

4

Time (s)

E
s
ti
m

a
te

d
 x

 l
o

c
a

ti
o

n
 (

c
m

)

300 305 310 315 320 325 330 335 340
−4

−2

0

2

4

Time (s)

E
s
ti
m

a
te

d
 y

 l
o

c
a

ti
o

n
 (

c
m

)

Figure 50: Extended Kalman filter convergence with the state model covariance values of Q =
1−4m2 × I2, measurement covariance values of R = 4−7 × I4, heating source located at (x = 2cm,
y = 0cm), and an initial guess of (x = 0cm, y = 0cm).

of the matrix and are identical. Comparing with Figure 50, we observe that the variance increases steadily,
decreases rapidly just before and during convergence, and remains small after convergence. Figure 53 illustrates
the normalized magnitude of the variance for a range of state model covariance values from Q = 1−1m2 × I2
to Q = 1−6m2× I2 and a measurement covariance of R = 4−7× I4. A comparison of Figure 53 with Figure 47
yields the observation that the variance increases steadily, decreases rapidly just before and during convergence,
and remains small after convergence for every state model covariance examined.

The adaptive extended Kalman filter incorporates three new parameters. The predefined tolerance value
Σtolerance for changes to the state covariance Σ is based on the variance found in the first iteration and is
defined as Σtolerance = Σ1. The magnitude of Σ is dependent upon filter parameters including the state model
covariance Q, thus basing the tolerance on the first iteration ensures the adaptive nature of the filter will
smooth convergence near the converged solution. The predefined limit to convergence rate ∆Xlimit for this
work is defined as ∆Xlimit = [∆xlimit,∆ylimit]

T = [1cm/sec, 1cm/sec]T . Figure 54 illustrates convergence for
the adaptive extended Kalman filter with Q0 = 1−4m2×I2, R = 4−7×I4, and an adaptive gain ofMt = 2. The
adaptive extended Kalman filter outperforms the extended Kalman filter in this example. Figure 55 illustrates
the variance value in Q during convergence for the adaptive extended Kalman filter while Figure 56 illustrates
the variance values from Σ for a range of initial state model covariance Q0 values.

Figure 57 illustrates the effect that different initial state model covariance values has on the adaptive extended
Kalman filter convergence. Comparing with Figure 47, the adaptive extended Kalman filter is able to converge
quicker for a significant range of initial state model covariance values Q0. Figure 58 illustrates the sensitivity
to the adaptive extended Kalman filter gain Mt.
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Figure 51: Kalman gain values during convergence for state model covariance of Q = 1−4m2 × I2
and measurement covariance of R = 4−7× I4. The heating source is located at (x = 2cm, y = 0cm)
with an initial guess of (x = 0cm, y = 0cm). Legend entries refer to the matrix element in the
Kalman gain which is a 2× 4 matrix. Convergence (from Figure 50) is at 324s.
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Figure 52: Variance (σ2) from the state covariance matrix (Σ) for state model covariance of
Q = 1−4m2 × I2 and measurement covariance of R = 4−7 × I4. The heating source is located at
(x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm). Convergence (from Figure 50) is at
324s.
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Figure 53: Variance (σ2) from the state covariance matrix (Σ) for a range of state model covariance
values (Q) and constant measurement covariance of R = 4−7 × I4. The heating source is located
at (x = 2cm, y = 0cm) with an initial guess of (x = 0cm, y = 0cm). Convergence behavior can be
found in Figure 47.
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Figure 54: Extended Kalman filter and adaptive extended Kalman filter convergence with Q0 =
1−4m2 × I2, R = 4−7× I4, and M = 2. The heating source is located at (x = 2cm, y = 0cm) with an
initial guess of (x = 0cm, y = 0cm).
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Figure 55: Adaptive extended Kalman measurement covariance (Qt) values during convergence
with Q0 = 1−4m2×I2, R = 4−7×I4, and Mt = 2. The heating source is located at (x = 2cm, y = 0cm)
with an initial guess of (x = 0cm, y = 0cm).
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Figure 56: Adaptive extended Kalman filter variance (σ2) from the state covariance matrix (Σ)
for a range of starting state model covariance values (Q0), constant measurement covariance of
R = 4−7× I4, and Mt = 2. The heating source is located at (x = 2cm, y = 0cm) with an initial guess
of (x = 0cm, y = 0cm).
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Figure 57: Adaptive extended Kalman filter convergence for a range of initial state model covari-
ance values (Q0), constant measurement covariance of R = 4−7× I4, and a state model covariance
gain of M = 2. The heating source is located at (x = 2cm, y = 0cm) with an initial guess of
(x = 0cm, y = 0cm).
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Figure 58: Adaptive extended Kalman filter convergence for a range of state model covariance
gain values M , an initial state model covariance of Q0 = 1−4m2 × I2, and constant measurement
covariance of R = 4−7 × I4. The heating source is located at (x = 2cm, y = 0cm) with an initial
guess of (x = 0cm, y = 0cm).
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7 Chapter Summary
This Chapter presents some fundamental concepts for detection, localization, and parameter estimation using
inverse methods. These techniques can be used to characterize singularities, discontinuities, material properties,
boundary conditions, loading, damage, structural changes, etc. Parameter estimation addresses the problem of
estimating quantities that are not directly observable but that can be inferred from sensor data. Sensors carry
only partial information and their measurements are corrupted by noise. Parameter estimation seeks to recover
state variables from the sensor data using an iterative approach that incorporates a direct model.
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Annex: On the use of a Kalman Filter model for an inverse problem of
localization and identification of damage parameters on a 2-D structure
An alternative to the finite element method detailed above, the boundary element method presents another tool
for the direct model. In this annex, the boundary element method is used with a potential formulation and an
elastostatic formulation for a plate with an inner hole representing damage to the plate. The damage here is
treated as a circular hole, a geometric discontinuity, where the state, coordinates, and radius of the hole do not
change with time, there is no control on the model, and the noise is considered to be white noise and low in
amplitude.

Potential formulation
In the potential model, the plate and the hole are divided equally where its nodes should contain information
on the x and y-directions on the temperature T and heat flux q. The number of elements that divide the plate
and the number of elements that divide the hole need not be the same as this amount is the user’s discretion,
noting that the greater the division will produce more accurate results while also increasing computational cost.

This model consists of a temperature distribution on the surface of a square plate, six centimeters on each
side. A temperature differential of 300 °C is applied between two edges with the other two edges and the hole
adiabatic (i.e. the heat flow is zero). The potential model of the plate is illustrated by Figure 59.

Figure 59: Plate model for the potential problem.

A hole of 0.06 cm of radius in the plate’s center and the sensors were placed initially at 0.6 cm from the edges
of the plate with a total of eight sensors. This sensor positioning was adopted, imagining a better utilization
coupled with the possibility of easy positioning of thermocouples in the coordinates. With respect to the model
developed in the boundary element method, the plate is divided into 12 elements and the hole with 24 elements,
this division can be seen in Figure 60 along with the sensor positions.

Elastostatic formulation
As in the potential model, the plate and the hole are divided by elements, where its nodes should contain
information on the x and y-directions, but now about the stress, shear τ or normal σ, or displacement δ
prescribed itself. These stresses, normal and shear, cannot be used as a response of boundary element method
in a damage detection problem, since they depend on the coordinate system used, or the normal direction of
the cut plane that passes through the point of interest Lopes et al. [2010]. Therefore, it is necessary to use
invariants of stress, which may be the average normal stress or octahedral stress.
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Figure 60: Potential model: (a) discretization of the plate and positioning of sensors, (b) dis-
cretization of the hole.

The average stress for the two-dimensional case is defined as:

σm =
σx + σy

2
(68)

where σx is the normal stress in the axis direction x; σy is the normal stress in the axis y; and the octahedral
stress, also in the two-dimensional case, is defined as:

τoct =

√
2

9

[
(σx + σy)2 − 3(σxσy − τ2

xy)
]

(69)

The elastostatic model, consists of a plate of same dimensions as above with an applied load of 1,000 MPa
traction on the plate towards the ordinate axis and leaving the other sides free. With respect to the hole, it is
considered that there is no load. Figure 61 illustrates the model.

With respect to material of the plate, this is simulated considering a shear modulus of 94.5 GPa and a
Poisson’s ratio for plane strain of 0.1 Brebbia and Dominguez [1994], Lopes et al. [2010]. In this model, the
hole used has a radius of 0.12 cm and sensors are positioned at 0.6 cm from the edges of the plate with a total
of eight sensors. The plate is divided into 24 elements and the hole into 12 elements. The model is illustrated
in Figure 62.

Potential model results
First the parameters were adjusted for the direct and inverse problem, where most parameters are determined
by trial and error. Soon, after a few iterations, the following parameters were adopted:

R =

(
0.01I8x8

3

)2

, (70)

Q =

 0.1 0 0
0 0.1 0
0 0 0.01

2

, (71)
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Figure 61: Plate model for the elastostatic problem.

Figure 62: Elastostatic model: (a) discretization of the plate and positioning of sensors, (b)
discretization of the hole.
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Figure 63: Region limit of identification of the filter for the sensor to 0.6 cm from the edges of a
plate of 6x6 cm.

and the variations of the components of the state to calculate the sensitivity matrix

∆x = ∆y = ∆r = 0.002 (72)

The covariance matrix of the measurement noise was defined as the accuracy of a thermocouple of 0.01 °C,
multiplied by the identity (each sensor has no effect on the other and they are not correlated). The covariance of
the noise process, which also is not correlated, provides values only on the main diagonal, and the noise values
being 10% and 1% of the state, to the coordinates and size of the hole, respectively.

With these parameters, using sensors at a distance of 0.6 cm from the edges and a maximum of 50 iterations,
the Kalman filter obtained a result with error less than 0.3% for any of the three components of the state within
a region that is illustrated by Figure 63, whose area is 20.56 mm2.

When positioning the hole outside the region, which is 0.1 mm displacement, the error for the estimation
of the filter jumps to extremely high values. This setting limit shows that the boundary conditions, as well as
the sensors, interfere with the results of the estimation of the filter. The position of the sensors, therefore, is
limited to a distance of 0.06 cm from the plate edges. The acceptable sensor region is illustrated in Figure 64
whose area is 21.48 mm2 and the errors are less than 0.05%.

For this model, with these settings used, the positioning of sensors interferes in performance of the Kalman
filter. For both configurations, the positioning of sensors has an increase of 4.47% of the area detectable by the
Kalman filter. This inner region is where the filter locates and identifies the hole, since the external region have
points that the filter can locate and identify, but randomly, being some isolated points and other forming small
sub-regions.

For the positioning sensor to 0.06 cm from the edges, for a hole with coordinates (2.00;2.00) cm and radius
equal to 0.06 cm, the Kalman filter produced results presented in Figures 65-68.

Elastostatic model
Figure 69 shows the results of the Kalman filter for the elastostatic model using as parameters:

Q =

 0.1 0 0
0 0.03 0
0 0 0.001

 ∗ 103

2

, (73)

R = (σzkI8x8)2,∆x = ∆y = 0.00035, (74)
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Figure 64: Region limit of identification of the filter for the sensor to 0.6 cm from the edges of a
plate of 6x6 cm.

Figure 65: Estimation of components of state for a hole (2.00;2.00;0.06) cm for a potential model.
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Figure 66: Performance of Kalman filter for a hole (2.00;2.00;0.06) cm for a potential model.

Figure 67: Performance of Kalman filter for a hole (3.00;2.00;0.06) cm for a potential model.
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Figure 68: Performance of Kalman filter for a hole (4.00;5.00;0.06) cm for a potential model.

Figure 69: Performance of Kalman filter for a hole (3.00;3.00;0.06) cm for an elastostatic model.
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and

∆r = 0.002 (75)

The tolerance for conversion is 1 x 10−3 and the maximum number of iterations equal to 75. In the
measurement noise the covariance consists of the standard deviation of measured (σzk) times the identity
matrix (I8x8).

Summary
In this annex, an inverse problem using the Kalman filter has been presented for localization and identification
of damage parameters with a potential and an elastostatic formulation of a 2-D problem. A hybrid model of
was presented where the state is described by a linear model and the measurements by a non-linear model,
obtained from the numeric results of a boundary element method model of the direct problem.

In both formulations, the local information is obtained at an interior point (the temperature, for the potential
case and the average stress or the octahedral stress for the elastostatics case), is a scalar quantity, and thus it
is not dependent on the coordinate system. For the potential formulation with an adequate positioning of the
sensors, there was an interior region in the domain in which the Kalman filter was able to identify and locate
the hole. For the elastostatic formulation, the number and location of the internal points must be optimized to
properly locate and identify the presence of the hole.
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Abstract 

Engineering has developed new approaches over the last 50 years in all its areas. Among the different 

areas, the design areas became more agile and computer-based, logistics developed new modes and 

interactions more Just in Time, while materials engineering revolutionized the options of possibilities in 

all sectors. However, the maintenance area gains special attention due to its objective to present limiting 

working conditions. While the production areas allow infinite productivity development, creating new 

processes and techniques, the maintenance area has a limit of improvement focused on the utopian zero 

defects. Thus, several techniques have been developed in recent decades, mainly with the advancement 

of computational power and integration. Techniques for assessing structural integrity have also 

developed, enabling the implementation of more precise techniques in the qualitative capacity of 

identifying a failure, as well as quantifying its severity and location. This chapter discusses the Structural 

Integrity Monitoring Method based on Electromechanical Impedance. This is one of the most explored 

techniques in recent decades by several research groups in Brazil and worldwide, having applications 

in aeronautics, space, oil and gas, bioengineering, civil construction, among others. In the next sections, 

some historical aspects of the technique are presented, as well as basic concepts and variables that 

influence this monitoring. Finally, a case study of the investigation of a failure simulated by machining 

an aluminum structure monitored in a climatic chamber is presented. As it is a chapter in which it is 

more concerned with the fundamentals and aspects that influence the use of the methodology, the 

conclusions of this case study do not cover any type of statistical modeling or based on machine learning 

as usually seen in scientific articles in the method. In this case, the effects of temperature on the 

impedance signature are focused, as well as the calculation of some damage metrics. 

 

1.  Introduction of the Impedance-based SHM 

The SHM method described in this section is based on the electromechanical impedance 

(EMI), an ultrasonic technique that has been considered one of the most attractive 

nondestructive methods (NDE) for evaluating different types of structures.  

  The Impedance-based SHM technique (ISHM) was first proposed by Liang et al. 

(1994) and, subsequently, the method was extended by Chaudhry et al. (1995, 1996), Sun et 

al. (1995), Park et al. (1999, 2000, 2001, 2003), Moura and Steffen (2004), Peairs et al. 

(2004), Moura and Steffen (2006) and Palomino and Steffen (2009). This is an experimental 

technique and it is based on the piezoelectric effect, which couples the mechanical and the 

electrical domains. 
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  In most applications of the ISHM, a piezoelectric transducer (PZT) is employed to 

interact with the monitored structure. The transducer must be bonded or embedded to the 

target structure and an electrical excitation will return information about the so-called “state 

of health” of the structure. Several types of pre/post-processing of the collected data can be 

employed to better evaluate the target structure. The next section describes the EMI 

technique in detail. 

1.1.  Physical principle of the EMI technique. 

The EMI technique is considered to be a non-destructive method for evaluating different 

types of structures (NDE), as stated by Park G., et al [2003]. The only modification required 

is to bond the PZT to the target structure or to embed it (in the case a new structure is in the 

process of fabrication. In any case, since the transducer is very small and thin (thickness less 

than 1mm and less than 20mm in diameter for a disc patch), there are no major problems in 

incorporating these transducers into the target structure. Figure 1 presents a set of ceramic 

PZT, made of lead-zirconate-titanate (PZT) and produced by MPI Ultrasonics, and Figure 2 

illustrates an aircraft aluminum window panel instrumented with six PZT patches. 

 

 

Figure 1: Examples of ceramic PZT transducers. Source: www.mpi-ultrasonics.com). 

 

 

Figure 2: Aircraft aluminum window panel instrumented with six PZT patches (source: 
Maruo et al, 2015) 

  Independent of the shape, or even the material which the transducer is made of, the 

piezoelectric effect is what enables the electronic instrumentation of the target structure. This 

effect correlates the mechanical deformation of the transducer with a voltage at its terminals. 

It is possible to deform the transducer and obtain a differential voltage (direct effect) or to 
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apply voltage and obtain mechanical deformation (converse effect). Figure 3 illustrates the 

direct and converse piezoelectric effects. 

 

 

Figure 3: Direct and inverse piezoelectric effects. Source: Lakshmi et al, 2018. 

 

  In most cases, the PZT is fabricated to be sensitive to mechanical deformations 

applied to only one arbitrary direction, which can be perpendicular to the plane of bonding 

(or embedding) of the target structure. If the thickness of the bonding layer is considered to 

be not relevant, a simplified one degree of freedom (DOF) model may represent the 

bonded/embedded transducer. Figure 4 illustrates this 1 DOF model. The model reduces the 

complexity of the structure to a system represented by its mass, stiffness, and dampening. 

Any structural modification, like damage, will change at least one of those properties. 

 

Figure 4: Mechatronic 1 DOF model of the coupled electromechanical transducer 

(source Maruo et al (2015)). 

 

  A sinusoidal voltage, with an arbitrary high-frequency band (tens to hundreds of 

kHz) and low amplitude (1V to 10V), is applied to the transducer. An equivalent strain will 
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be applied to the coupled structure and the total circulating electrical current will be related 

to the transducer’s electrical impedance and, also, the so-called mechanical impedance of 

the structure. 

  The mechanical impedance can be defined as a measure of how much a structure 

resists motion when subjected to a harmonic force. This property is also highly tied to other 

mechanical properties like mass, stiffness, and damping.  In this case, the harmonic force is 

provided by the piezoelectric transducer (converse effect). So, the deformation of the bonded 

transducer will be directly affected by the mechanical impedance of the structure. The 

conclusion is that de equivalent impedance of the PZT will also be directly affected by the 

mechanical impedance. Liang et al (1994) modeled the so-called electromechanical 

impedance (EMI) of the coupled transducer as a function of frequency, as presented in 

equation (01). 

 
(01) 

Where: 

. ZE(ω) represents the electrical admittance (inverse of electrical impedance); ω is the 

excitation frequency; 

. �̅�11
2 is the complex Young’s modulus of the PZT at zero electric field; 

. 𝑑3𝑥
2  is the piezoelectric strain constant in the arbitrary x-direction at zero stress; 

.  𝜀33
𝑇 is the dielectric constant at zero stress; and a is a geometric constant of the PZT;  

. is the dielectric loss tangent of the piezoelectric patch; 

. Zs(W) represents the mechanical impedance of the monitored structure and any 

structural changes will represent new values for ZS(ω) and, consequently, for ZE(ω). 

 Usually, the frequency of the sinusoidal voltage applied to the PZT is between 20kHz 

and 1MHz, where the upper limit is defined by the impedance analyzer and the electrical 

characteristics of the PZT employed.  

 Measuring the impedance over a frequency band will return a waveform (impedance 

versus frequency) that can be used to identify the mechanical state of the target structure at 

the moment of that measuring. The next section will describe the way to evaluate those 

frequency-dependent waveforms to characterize de “state of health” of the target structure. 

1.2. Impedance signatures and Damage indexes. 

If external effects like temperature variations and static or dynamic loads, on the monitored 

structure, were not taken into account, an Impedance Signature (IS) is a bi-dimensional 

waveform that describes the structure’s EMI over an arbitrary and limited frequency band. 

Instruments like the impedance analyzer HP4194A are employed to obtain de IS from any 

kind of PZT patch. The HP4194A can obtain an IS with 400 frequency points and with an 

upper frequency bound of 1GHz. 

  The definition of the lower and the upper bounds of the frequency band depends on 

the complexity of the structure and the characteristics of the damage that is subject to 

identification. This statement may appear very nebulous and imprecise but authors like 

Chaudhry et al (1995, 1996), Palomino et al. (2011), Finzi Neto et al. (2010), Liang et al. 
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(1994), Moura et al. (2004) Park et al. (1999, 2000, 2001, 2003), Sun et al. (1995) and many 

other confirm it. In reality, for large and complex structures, the frequency band may be 

defined through experimental testing. But there are a few indicators on how to proceed. 

Small damages, like cracks, can be better identified at higher frequencies (hundreds of kHz), 

and higher the frequency shorter the range of sensing of the PZT, Rabelo, et al. (2017). 

  As an example, consider the experiment proposed by Bitencourt and Steffen Jr.  

(2009) with the aluminum beam illustrated in Figure 5. There are two ceramic PZT patches, 

PZT1 and PZT2, bonded to that beam and a rivet inserted on the right side. The removal of 

the rivet was used to simulate damage on the beam. Besides the damage, this example also 

illustrates the attempt to “repair” the beam with the insertion of another rivet at the same 

position. Each PZT patch had there IS measured over arbitrary and different frequency 

bands. The experimental procedure is described as follows: 

(1) – Measure the IS, of each PZT, with no change on the instrumented structure 

[BASELINE]; 

(2) – Remove de rivet and measure the IS of each PZT again [STATE1]; 

(3) – Insert a new rivet in the same position that it was removed. 

(4) – Measure the IS of each PZT for the last time. [STATE 2].  

 

Figure 5: Aluminum beam (a) with ceramic PZT patches and a rivet used to simulate 

damage by its removal. The dimensions are presented at (b). Source: Bitencourt and 

Steffen Jr.  (2009). 

 

  The collected IS for this experiment are presented in Figure 6. But, before trying to 

interpret the IS for the 3 states together, it is important to understand the IS by itself. The 

characteristics of the quality of an IS are presented as follows: 

I. From Equation 01, it is well known that the EMI is a complex quantity (real part plus 

imaginary part). The imaginary part includes the reactive capacitance of the PZT and 

it is very influenced by temperature changes. So, to mitigate this effect, the IS are 

limited to only the real part of ZE. 

 “Good” IS are the ones that present high and steep transitions in their values over 

their frequency range. This can be understood as a “reasonable” number of peaks and 

vales on the IS.  
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II. The defined frequency band should be related to the kind of damage/changes that are 

expected to happen on the target structure.  Determining the frequency range, for a 

complex structure requires a set of experiments to better understand the EMI 

structure’s behavior over the frequency. Nevertheless, studies are using mathematical 

models to help define the frequency range, Bhalla S., Soh (2004). 

 

 

 

 

Figure 6: IS for PZT1 (a) and PZT2 (b) considering the three states [BASELINE, 

STATE 1, AND STATE 2]. Source: Bitencourt and Steffen Jr.  (2009). 

 Taking into account those characteristics of quality, the following preliminary 

analysis can be done: 

• All collected IS from Figure 6 are in accordance with (I) and (II). A “good” IS and 

only the real part of ZE is considered; 

• The differences in each of the three states, for PZT1, can be clearly visualized. For 

PZT2, this difference is more difficult to see. 

• Even though a new rivet is inserted to replace that on it was removed, neither PZT 

presented an IS (for STATE 3) that was visually identical to their respective 

BASELINE. It must be understood that even a so-called “identical repair” is 

employed on the target structure the correspondent IS will never be the same as 

before de damage [Chaudhry et al (1995, 1996), Finzi Neto et al. (2010), Liang et al. 

(1994), Moura et al. (2004) Park et al. (1999, 2000, 2001, 2003), Sun et al. (1995)]; 

 From the preliminary analysis, it became clear that only the visual inspection of the 

collected IS, in each state, is not enough to quantify the structural modifications (damage) 

on the aluminum beam.  

  A better way to analyze the IS is to mathematically quantify the difference between 

each state into a single number. A damage index is a mathematical way to quantify the 

difference between two IS obtained from the same bonded PZT. Palomino and Steffen Jr 

(2009) have evaluated several damage indexes for simulated damage on an aircraft 

aluminum panel. From those, the most commonly used ones are described as follows. 

  For every damage index described here, consider these definitions: 
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- 𝑅𝑒(𝑍1,𝑖)
 is the array of impedance (resistance) points measured under “healthy 

conditions” (baseline); 

-  𝑅𝑒(𝑍2,𝑖)
 is the array of the real part impedance points measured in any other mechanical 

state than the baseline; 

- 𝑅𝑒(�̄�1)  mean value of the real part impedance points measured under “healthy 

conditions” (baseline); 

- 𝑅𝑒(�̄�2) mean value of the real part impedance points measured in any other mechanical 

state than the baseline; 

- 𝑆𝑍1,𝑖
 for a set of k IS collected at the baseline state, this is an array of standard deviation 

values, calculated with the k values, at each of the n array indexes; 

- n is the number of impedance points. 

RMSD – Root Mean Square Deviation. 

𝑅𝑀𝑆𝐷 = √∑(
(𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(𝑍2,𝑖))

2

𝑛
)

𝑛

𝑖=1

 

(02) 

  This is the most common damage index in the scientific literature. The RMSD 

number will always be positive and its magnitude shall not be influenced by the number of 

impedance points in the IS. 

RMSD1 – Root Mean Square Deviation (alternative 1). 

  This is the first variant of the RMSD. Grisso (2005) has presented the RMSD1 as an 

alternative that is less sensitive to the amplitude of the impedance’s amplitude. This variant, 

equation (03), presented good results on quantifying damages associated with variation in 

quantity and location of the impedance peaks and valleys in the IS for each state.  

𝑅𝑀𝑆𝐷1 = √∑(
(𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(𝑍2,𝑖))

2

𝑅𝑒(𝑍1,𝑖)
2

)

𝑛

𝑖=1

 

(03) 

RMSD2 – Root Mean Square Deviation (alternative 2). 

  The damage index presented in equation (04) has been used in a few studies 

comparing the sensibility of damage detection, Tseng et al (2002) and Giurgiutiu et al 

(2005). It presents a slightly different mathematical definition from the RMSD1. 

𝑅𝑀𝑆𝐷2 = √
∑ (𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(𝑍2,𝑖))

2𝑛
𝑖=1

∑ 𝑅𝑒(𝑍1,𝑖)
2𝑛

𝑖=1

 

(04) 

RMSD3 – Root Mean Square Deviation (alternative 3). 

  Park et al provided another alternative for the original RMSD. In equation (05), the 

sum is outside the root mean square sign, unlike the definitions previously given. The authors 
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claim that this version of the RMSD is more robust and less sensitive to impedance peaks 

variations. 

𝑅𝑀𝑆𝐷3 =∑√
(𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(𝑍2,𝑖))

2

𝑅𝑒(𝑍1,𝑖)
2

𝑛

𝑖=1

 

(05) 

RMSD4 – Root Mean Square Deviation (alternative 4). 

 This alternative includes the mean values of each IS analyzed. The authors claim that 

equation (06) is less sensitive to external effects, like temperature variations, that result in 

different kinds of variations in the IS. 

𝑅𝑀𝑆𝐷4 = √∑(
((𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(�̄�1)) − (𝑅𝑒(𝑍2,𝑖) − 𝑅𝑒(�̄�2)))

2

𝑛
)

𝑛

𝑖=1

 (06) 

RMSD5 – Root Mean Square Deviation (alternative 5). 

  External effects, like temperature variations, are always present in industrial 

applications and must be mitigated with specific techniques that will be later described in 

this chapter. Meanwhile, the RMSD5 tries to mitigate this problem with a set of k IS collected 

at each state of interest (baseline, state1, …). Those differences, due to the external effects, 

will be mitigated in the damage index value. 

𝑅𝑀𝑆𝐷5 =

√
  
  
  
  
  

∑

(

 
 
(
𝑅𝑒(�̄�1,𝑖) − 𝑅𝑒(𝑍2,𝑖)

𝑆𝑍1,𝑖
)

2

𝑛

)

 
 

𝑛

𝑖=1

 

(07) 

CCD – Correlation Coefficient Deviation.  

  A more statistical approach is presented by the CCD damage index described by 

Giurgiutiu (2014). It measures the linear relationship between two IS from different states 

and it is defined in equation (08).  

𝐶𝐶𝐷 = 1 −
∑ (𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(�̄�1))
𝑛
𝑖=1 (𝑅𝑒(𝑍2,𝑖) − 𝑅𝑒(�̄�2))

√∑ (𝑅𝑒(𝑍1,𝑖) − 𝑅𝑒(�̄�1))
2𝑛

𝑖=1
∑ (𝑅𝑒(𝑍2,𝑖) − 𝑅𝑒(�̄�2))

2𝑛
𝑖=1

 

(08) 

  The main advantage of this damage index is that its values are always normalized, 

which could be helpful to verify the progression of the damage in some types of structures. 

  There are many others damage indexes (MAPD, ASD, M, etc.) but they are less 

present in the literature than those aforementioned in equations (02) to (08), Palomino 

(2009). 

  Returning to the evaluation of the IS presented in Figure 06, the RMSD damage index 

was used to quantify the difference between a baseline IS and the IS for STATE 1 and 

STATE 2, for each PZT. The following bar graphs illustrate the results. 
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Figure 7: RMSD damage indexes for PZT1 (a) and PZT2 (b), considering the three 

states [BASELINE, STATE 1, AND STATE 2]. Source: Bitencourt and Steffen Jr.  

(2009). 

  What is most interesting, from the results illustrated in Figure 7, is that the RMSD 

values from PZT2 are lower than the ones from PZT1. Since PZT2 is nearer the location of 

the removed bolt (STATE 1), one would expect that those RMSD values should be higher 

for this PZT. Nevertheless, the difference in the band frequency applied to each PZT can 

help to explain these results. Another set of factors that can describe these results are the 

thickness of glue bonding each PZT and differences in PZT polarization due to the 

fabrication process. 

  In laboratory experiments, it is most common to use specialized equipment, like the 

expensive and bulky impedance analyzer HP4194A. This instrument can analyze only one 

connected PZT at a time but provides a rich set of information about the PZT’s impedance. 

Industrial applications it is required a less costly solution that is capable of using many PZT 

transducers at the same time. The next section describes how the PZT´s impedance can be 

measured to build low-cost circuits capable of operating dozens of PZTs. 

1.3. Modeling the electrical portion of the EMI. 

Only the electrical portion of the EMI can be directly measured using conventional or more 

specialized instrumentation systems. It expresses a complex valued function dependent on 

the excitation frequency. For each corresponding frequency, the electrical part of the EMI 

can be represented in terms of the real and imaginary parts, or magnitude and phase in its 

polar form.  Defining the sinusoidal excitation 𝑣(𝜔, 𝑡), with angular frequency 𝜔 = 2𝜋𝑓,  

Figure 08(a) describes a PZT impedance as a simple resistor-capacitor circuit. In Figure 

08(b) the waveforms of voltage and current are illustrated.  

  

Figure 8: EMI equivalent circuit under sinusoidal excitation (a) and the waveforms of 

𝒗(𝝎, 𝒕) and 𝒊(𝝎, 𝒕). Source: Maruo et al (2015). 

BASELINE       STATE 1               STATE 2 

(a) 

BASELINE       STATE 1               STATE 2 

(b) 

(a) (b) 
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 Knowing that the more specialized impedance analyzers continually optimize the 

voltage amplitude applied to a DUT (Device Under Test) and amplitude of the resulting 

current is dependent on the EMI, equations (09) and (10) mathematically describe those 

waveforms. 

𝑣(𝜔, 𝑡) = 𝑉(𝜔) 𝑠𝑖𝑛(𝜔𝑡) (09) 

𝑖(𝜔, 𝑡) =  𝐼(𝜔) 𝑠𝑖𝑛(𝜔𝑡 +  𝜃) (10) 

  Applying the well-known Ohm´s Law, the 𝑍𝐸𝑀𝐼(𝜔) can be calculated measuring 

𝑖(𝜔, 𝑡)  and 𝜃 . Equations (11), (12) and (13) calculate the EMI and its complex/polar 

decomposition. 

𝑍𝐸𝑀𝐼(𝜔) =
𝑣(𝜔,𝑡)

𝑖(𝜔,𝑡)
=

ℱ(𝑣(𝜔,𝑡))

ℱ(𝑖(𝜔,𝑡))
=

𝑉(𝜔)

𝐼(𝜔)
= 𝑅(𝜔)− 𝑖𝑋𝐶(𝜔) = |𝑍𝐸𝑀𝐼(𝜔)|∠𝜃

 (11) 

𝑅𝑒(𝑍𝐸𝑀𝐼(𝜔), 𝜃) = 𝑍𝐸𝑀𝐼(𝜔) cos(𝜃) = 𝑅(𝜔)   (12) 

𝐼𝑚(𝑍𝐸𝑀𝐼(𝜔), 𝜃) = 𝑍𝐸𝑀𝐼(𝜔) sin(𝜃) = 𝑋𝑐(𝜔)   (13) 

 For ISHM applications, it has already been stated that the resistive part of the EMI, 

equation (12), is more stable when temperature variations are taken into account. 

Nevertheless, there are cases where the reactive part of the EMI, equation (13), brings 

information about the PZT bonding, Grisso and Inman (2009). 

1.4. The EMI measurement problem. 

If you can use the impedance analyzer HP4194A your only problem is the space required to 

accommodate that bulky machine. Nevertheless, for industrial application, a less costly, 

smaller, and the lighter solution must be employed. 

  Through the years, the literature has presented different types of instrumentation 

systems capable of measuring and digitalizing the electrical impedance of a bonded PZT 

transducer, Finzi Neto et al (2011) and Baptista et al (2009). But, in all of them, the problem 

remains on measuring 𝑖(𝜔, 𝑡) and 𝜃. 

  Measuring 𝑖(𝜔, 𝑡) is really simple and uses a well-known analog electronic circuit 

based on an operational amplifier. The electronic circuit illustrated in Figure 9 is a low-cost 

and simple solution. Using a precise and low value shunt resistor (Rshunt ≈ 100Ω), 𝑖(𝜔, 𝑡) can 

be calculated from 𝑉𝑟(𝜔, 𝑡) after being acquired by a data acquisition card (DAq). 

 

Figure 9: Electronic circuit used to measure 𝒊(𝝎, 𝒕). Source Maruo et al (2015). 
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  From figure 9, V(ω,t) is any sinusoidal voltage source that can vary its frequency 

over an arbitrary frequency band. In most cases, the same DAq used to acquire Vr(ω,t) can 

generate V(ω,t), Baptista (2009).  

  After acquiring V(ω,t) and Vr(ω,t), it is required to transpose both of them to the 

frequency domain. A Fast Fourier Transform (FFT) can be easily applied to V(ω,t) and 

Vr(ω,t), allowing for the use of equations (11) and (12) to calculate R(ω). 

  Even though a DAq associated with one or more analogic circuits is less costly than 

the HP4194A, the ISHM will always be limited to the data acquisition rate of that card. There 

is some controversy about the use of the Nyquist Theorem as the time-domain requisite to 

process a time-domain signal in the frequency domain, Finzi Neto (2010) and Baptista 

(2009). The problem that arises is related to how accurate is θ, from equations (11) and (12), 

calculated near the upper limit of the Nyquist’s frequency signal. Experimental results 

presented and discussed on the works of Finzi Neto et al (2010), Maruo et al (2015), Martins 

et al (2013) and Tsuruta et al (2017) shows and or discuss the deterioration of R(ω) near the 

upper limit of the signal’s data acquisition frequency. Of course, there are plausible 

arguments that the so-called deterioration of R(ω) is neglectable, Baptista (2011). 

  There are other architectures of electronic circuits where DAq’s acquisition 

frequency and FFTs are no longer a limiting factor for ISHM applications. Maruo et al 

(2015) propose an architecture based on the digital signal controller (DSC) and specialized 

circuits for analog frequency processing. Beyond that, their architecture can monitor a large 

number of PZTs using analog multiplexed electronics. Figure 10 illustrates the proposed 

hardware. 

   

 

Figure 10: Architecture of a multiplexed sensor array for ISHM applications. Source: 

Maruo et al (2015). 
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No DAq is employed to acquire Vr(ω,t) and or to generate V(ω,t). The sinusoidal signal is 

generated by an integrated circuit, the AD9850, which is digitally programmed by the DSC. 

To avoid the use of temporal signals, the authors employed the dedicated integrated circuit 

AD536, from Analog Devices, to generate voltages proportional to the Root Mean Square 

(RMS) value of each sinusoidal waveform. To be able to calculate R(ω), the author proposes 

to analogically calculate the mean power drained by the PZT using the proposed topology 

in Figure 11. The dedicated integrated circuit, AD633, multiply Vr(ω,t)  and i(ω,t) to 

produce an analog waveform representing the apparent power, S(ω,t) consumed by the PZT. 

A Second-Order Low Pass Filter (SOLPF) is used to separate the mean power P(ω).  

 

 

  

Figure 11: Topology to obtain the mean power 𝑷(𝝎) (a). Equivalent waveforms (b). 

Source: Maruo et al (2015). 

 

Finally, the authors state that 𝑅(𝜔) is easily calculated from equation (14). 

𝑅𝜔 =
𝑃𝜔

𝐼𝑅𝑀𝑆(𝜔)
2
      (14) 

  Since 𝑃(𝜔) and 𝐼𝑅𝑀𝑆(𝜔)  ideally have little to no alternating component, the authors 

states that an acquisition frequency as low as 1000 samples per second may be used to rapidly 

acquire PZT responses. The only operational limitation is related to the frequency band 

response of the integrated circuits AD633, AD536 and AD9850. 

  There are lots of other so-called low-cost topologies for the IEM measurement 

problem. It is up to the reader to choose the one that best suits the intended industrial 

application.  

  After collecting the IS for each state (baseline, state 1, …) it is important to pre-

process each IS to identify and separate the influences of external effects, like temperature 

variations and static loading, from the real information in each IS. The next section will 

describe how these effects modify the IS and a few ways to mitigate this problem. 

1.5. Influence of external effects on the IS. 

 When a new monitoring system is proposed it is necessary to evaluate the possibility of 

external influences deteriorating the signals collected from the transducers. External 

influences like temperature variations (TR), magnetic interference (MI), electromagnetic 

interferences (EMI), radio frequency interferences (RFI), mechanical static loads (MSL), 

mechanical dynamic loads (MDL), and an ionic environment (IEnv) may contaminate the 
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electrical signal provided by the transducer or may alter the mechanical properties of the 

monitored structure. In any case, there are several ways to mitigate every external effect that 

is mentioned here. 

  Palomino et al (2012) examined the influence of electromagnetic radiation, 

temperature and pressure variations, and the ionic environment under laboratory conditions. 

In this context, the major concern was to determine if the impedance responses are affected 

by these influences.  In addition, the sensitivity of the method concerning the shape of the 

PZT patches was also evaluated. For this aim, two shapes of piezoelectric patches of the 

same size, namely circular and squared, have been tested in the laboratory. They were 

bonded to two different types of structures, namely a plate and a beam so that the impedance 

response was measured both for pristine and damaged conditions. Similar results were 

obtained for the two shapes of PZT patches tested. The results are summarized in Table 1, 

in which it can be observed that temperature is a major environmental issue in the context of 

ISHM. 

Table 1 – Sensor shape and environmental influences. Source: Palomino et al (2012). 

 

  The temperature influence brings the most undesirable effect for industrial 

applications: false positives of damage detection. Under temperature variations changes in 

the stiffness and dampening, on the monitored structure, will be presented on the IS. 

Therefore, IS collected in different temperatures will be so different that any damage index 

would indicate severe damage on the monitored structure. 

 Before devising ways to mitigate the temperature effect problem, it is important to 

understand how the IS is altered due to those temperature variations. Consider the 

experiment performed by Rabelo et al  (2017b). The authors have bonded a PZT in the center 

of an aluminum 2024-T3 plate measuring 305mmx305mmx2mm and used an environmental 

controlled chamber, ESPEC EPL-4H, to control the temperature, Figure 12(a). The authors 

varied the temperature inside the chamber from 0oC to 50oC, in steps of 10oC. At each 

temperature step, an IS was collected. All the IS, at each temperature step, are presented in 

Figure 12(b). 
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Figure 12: Temperature variation effects on impedance signatures: (a) 

instrumented Aluminium plate of 305 mm x 305mm x 3mm and (b) impedance 

signals shifted with temperature changes. Source: Rabelo (2017b) 

The authors stated that the frequency band, 63kH to 66kHz, as defined by trial and error, 

looked for the already mentioned characteristics of quality. By analyzing Figure 12(b), the 

effects of temperature can be observed predominantly as horizontal shifts due to changes in 

the resonance frequencies of the system. Vertical shifts can also be seen, as well as changes 

in some peak amplitudes. The more temperatures get higher, the more shift horizontally to 

the left and vertically down can be seen. Analogous thinking can be done when temperatures 

get lower. 

There are several ways to mitigate the temperature effect on the IS. Rabelo et al proposed 

a method based on horizontal frequency shifts to mitigate the most predominant effect of 

temperature variations. Figure 13 presents the compensated IS. Although the horizontal 

shifts were compensated, differences in peak values are still visible. These differences will 

limit the sensibility of the IEM method and the so-called statistical threshold of detection 

is proposed by the authors. 
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Figure 13: Impedance Signatures, from Figure 12, after the temperature 

compensation algorithm was applied. Source: Rabelo et al (2017b). 

 

  The fundaments behind the statistical process control allow for establishing limits in 

a control chart so that a threshold can be established using the upper control limit. These 

limits can be defined so that 95.45 or 99.73% of data from a normally distributed population 

remains if these control limits are established as expressed in equation (15), where x is the 

sample mean and s is the sample standard deviation. 

�̅� ± 2𝑠 −  𝑓𝑜𝑟 95,45% 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

�̅� ± 3𝑠 − 𝑓𝑜𝑟 99,73% 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

   (15) 

  From equation (15), it is the upper limit that must be considered to identify the so-

called threshold of damage detection with a certain level of confidence. The authors 

continue to the argument that the sampled mean and sampled standard deviation are 

inferences from the population parameters (i.e., unknown values). Therefore, a more robust 

methodology should be proposed by using the upper limits of the confidence intervals for 

the population mean and standard deviation according to equations. (16) and (17), 

respectively. 

[�̅� −
𝑠𝑡𝑣;𝛼 2⁄

√𝑁
≤ 𝜇𝑥 ≤ �̅� +

𝑠𝑡𝑣;𝛼 2⁄

√𝑁
] 𝑣 = 𝑁 − 1

   (16) 

[
𝑣𝑠2

𝑥
𝑣;𝛼 2⁄
2 ≤ 𝜎𝑥

2 ≤
𝑣𝑠2

𝑥
𝑣;1−𝛼 2⁄
2

𝑣 = 𝑁 − 1]
    (17) 
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where N is the sample size, μx and σx
2 are the population mean and variance, respectively, x 

and s2 are the sample mean and variance, respectively, tv;α/2 has a Student t distribution with 

v degrees of freedom, α is the significance level and x2
v;α/2 has a Chi-Square distribution. 

  Hence, the upper limit of the confidence intervals was used and the threshold for 

each PZT transducer was determined according to equation (18). 

𝑃𝑍𝑇𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑 = 𝜇𝑥 𝑚𝑎𝑥 + 3𝜎𝑥 𝑚𝑎𝑥    (18) 

Where μx max is the upper limit for the population mean and σx max is the upper limit for the 

population standard deviation, both obtained by choosing 5% of significance level α. 

  In practical terms, equation (18) will be applied to the damage indexes calculated for 

each temperature compensated IS, at the central temperature. Those sets of calculated 

damage indexes will have a mean value μx max a standard deviation of σx max. The threshold, 

a starting damage index value at which damage has the confidence of 99,73%, will be 

calculated with equation (18). Rabelo et al (2017b) present a set of experiments to prove the 

efficiency of the temperature effect compensation method and the threshold calculation. A 

more in-depth analysis may be found in their paper. 

1.6. Final remarks 

  ISHM has been used in different industries over the years. The aircraft industry has 

been the pioneer. In Brazil, EMBRAER and many federal Universities have been developing 

new hardware and processing techniques for real-time and in-service applications. 

  The civil construction industries are following the same steps. Research works like 

the one developed by Silva, R.N et al (2020) are proving that ISHM is a low-cost alternative 

for monitoring aging and in-service concrete-based structures. 

  Several new alternatives have emerged to deal with the temperature compensation 

problem. Freitas et al (2021) propose a neuro-fuzzy model and Ferreira de Rezende et al 

(2020) propose a deep learning approach with convolutional neural networks. In this last 

approach, it is proposed that the temperature compensation in the pre-processing is not 

carried out like the other approaches. Thus, the identification and classification model must 

be able to understand different types of signatures as a baseline, as well as different 

possibilities for the same damage signature. 

  Effects like dynamic loading are not a factor to disregard ISHM, anymore. Research 

works like the ones developed by Rabelo et al (2017a and 2017b) and Cavalini, A. A. et al 

(2014) proved that there are efficient ways to mitigate these influences for in-service 

structure monitoring. 

  Finally, as an indication for future and innovative applications, Menegaz et al (2019) 

studied the application of ISHM in the detection of mammary inclusions (tumors). 

Furthermore, some mathematical-statistical approaches have emerged to complement the 

damage location capability as described by Golçalves et al (2021) who use geostatistical 

kriging techniques associated with the ISHM. 
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  There are lots of paths to follow with the research in ISHM. The industry will decide 

which ones will become final products. But it is up to the researchers to present these many 

alternatives. 

 

1.7. Experimental Example 

 To illustrate the procedure of the Impedance-based SHM Methodology and its main 

aspects, an experimental test was proposed as follows. 

 In this experiment, the specimens used were four aluminum beam structures 

monitored inside a Platinous EPL-4H series climatic chamber for temperature and humidity 

control, as shown in Figure 14. This chamber is installed in the Structural Mechanics 

Laboratory (LMEst) of the School of Mechanical Engineering (FEMEC) at the Federal 

University of Uberlandia (UFU). 

 In this experiment, aluminum beams measuring 500 mm in length, 38 mm in width, 

and 3.2 mm in thickness were used. In each of them, a PZT patch measuring 1 mm thick and 

20 mm in diameter was glued at 100 mm from the edge of the structure. 

 

 

Figure 14: Platinous EPL-4H series climatic chamber used in this test. 

 

  First, after selecting the specimens, the PZT patches are bonded to each one. In this 

case study, epoxy glues with temperature tolerance up to 60-70 oC were used. Right after the 

patches were bonded to the structure, the measuring terminals were soldered. In this PZT 

patch type, it was necessary to use copper tape on the lower surface to make a better 

connection. This can be observed in Figure 15. 
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Figure 15: Specimen and PZT patch. 

 

  In this test, aluminum beams 500 mm in length, 38 mm in width, and 3.2 mm in 

thickness were used. In each of them, a PZT patch measuring 1 mm thick and 20 mm in 

diameter was bonded at 100 mm from the edge of the structure. Also, ABS plastic printing 

supports were designed to position the structures inside the chamber. Such structures have 

rounded bases to reduce the interference of the chamber floor with the structures and made 

it possible to adapt connectors to the samples. This type of connector embedded in the 

support structures allowed for less interference and noise addition to the cables during 

several removals of specimens from the chamber. Figure 16 illustrates one specimen, the 

support structure with the connector at the right end as well the PZT patch and damage 

position. 

 

 

Figure 16: Specimen used in the test illustrating the PZT patch and damage position. 

 

  The simulated damage that was inserted into the structures was superficial and 

caused by grinding in a defined region. This machined region was 30mm wide at 70mm from 

the opposite end of the PZT patch. Thus, nine levels of damage were performed throughout 

the experiment, considering two reference levels and seven levels of gradual thickness 

removal. Throughout the experiment, only specimen 4 was kept without any changes for 

monitoring and controlling the process. However, specimen 4 was removed from the 

chamber together with the others at each machining process. 

  Figure 17 shows in better detail the connector attached to the structural support 

printed in ABS. This type of connector facilitates the process of removing and reinserting 

specimens for machining. 
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Figure 17: Specimen and connector. 

 

  In Figure 18, the test specimens are presented in the bi-supported condition. The 

support structures were designed to keep the specimens in this position because, during the 

thickness removal process, especially the terminal stages, the loss of structural stiffness 

could cause some kind of flexion at the two extreme support points. 

 

 

Figure 18: All specimens used in the test. 

 

  Since the temperature has a significant impact on the impedance monitoring process, 

this factor was controlled in this case study through the climate chamber. Figure 19 illustrates 

the specimens positioned inside the chamber. It is important to note that the specimens must 

be positioned inside the chamber in such a way that the effects of convection flows (blowing) 

on some specimens are reduced, causing fluttering or measurement noise. 
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Figure 19: Specimens inside the chamber. 

 

  All specimens were monitored in ascending cycles of 3 oC for a total of 11 

temperature cycles. The impedance analyzer used for the acquisition and storage of 

signatures was connected externally to the chamber. 

  The temperature range used was from 10 to 40 oC with levels of 3 oC. As this level 

variation can be considered small for control and thermal stability purposes, a procedure was 

adopted. After the acquisition of each cycle of impedance signatures, the chamber increased 

its temperature by 3 oC and remained for 30 minutes to stabilize the internal temperature and 

obtain the thermal balance between specimens and the environment. 

  For each configuration: specimen, temperature, and damage condition, 30 samples 

of impedance signatures were taken for process repeatability. Thus, in 11 temperature cycles, 

9 damage levels, 4 specimens, and 30 repetitions, 11880 impedance signatures were 

acquired. 

  Considering that the process of reducing thicknesses by grinding is a manual task, 

two response variables of each specimen were selected for damage monitoring. The first 

response considered was the mass, considering the loss of mass about the previous state of 

integrity. In this case, a scale with two decimal places of the gram of precision was used. In 

addition, eight measurements were taken to obtain the average. 

  The second response variable was the thickness in the ground region, considering the 

loss of thickness from the previous condition. In this second answer, a micrometer with a 

resolution of 0.01mm was used and the average of 10 random measurements of thickness in 

the machined region was recorded. Figure 20 shows the ground region of one of the 

specimens during the thickness loss process. 
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Figure 20: Specimen and ground position. 

 

  Next, Tables 1 and 2 are presented, which correspond, respectively, to the response 

variables of the experiment, with the results of the measurements of mass and thickness for 

each specimen. 

 

Table 1: Results of beam mass losses (in g). 

Condition Specimen #1 Specimen #2 Specimen #3 Specimen #4 

Baseline 191.36 192.42 192.86 195.89 

Damage #1 191.2 192.27 192.69 - 

Damage #2 191.16 192.02 192.58 - 

Damage #3 190.95 191.82 192.39 - 

Damage #4 190.41 191.48 192.02 195.87 

Damage #5 189.96 190.54 191.33 - 

Damage #6 189.16 189.42 189.78 - 

Damage #7 187.44 188.57 188.37 195.83 

 

Table 2: Results of beam thickness losses (in mm). 

Condition Specimen #1 Specimen #2 Specimen #3 Specimen #4 

Baseline 3.17 3.17 3.19 3.18 

Damage #1 3.09 3.11 3.09 - 

Damage #2 3.01 2.96 2.99 - 

Damage #3 2.97 2.93 2.95 - 

Damage #4 2.85 2.85 2.89 3.17 

Damage #5 2.72 2.49 2.63 - 

Damage #6 2.44 2.23 2.09 - 

Damage #7 1.93 1.92 1.83 3.18 

 

  As can be seen in Table 2, the damage inserted in the three specimens did not exceed 

50% of the thickness. Furthermore, the evolution between damage levels occurred more 

severely in the last two stages. This variation has a specific purpose of evaluating greater 

variations in damage models the greater the damage severities. 
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  Another observation can be seen by comparing Tables 1 and 2 in specimen column 

#4. From this comparison, it can be said that based on the case study in question and on the 

measuring devices used, the measurement of thickness loss can be a more rigorous 

measurement criterion. 

  Considering the impedance-based structural integrity monitoring of the aluminum 

beams, Figure 21 presents the impedance signatures for specimen #1. Since this case study 

focuses on observing the basic principles of the technique, results are presented for this 

specimen only, but similar results were obtained for specimens #2 and #3. It is believed that 

repetitive presentation of other specimens would increase the volume of information 

unnecessarily to present the technique. 

 

Figure 21: Specimen #1 and repetitive baseline signatures. 

 

  Figure 21 illustrates four impedance signatures from the experiment. There are 

presented the first and last impedance signature measured (head and tail) from the first 

temperature for the first and second group of baselines (Baseline #1 and #2). Explaining the 

objective of two sets of baseline measurements, a first group was measured, completing 30 

repetitions for each of the 11 temperature levels, corresponding to 330 series. Then, all of 

the four beams were removed from the climate chamber, and it was transported along some 

buildings in the university to increase potential noise factors in a new measurement. Then, a 

few minutes later, the four structures were reinserted into the climate chamber and measured 

another set of baseline with 330 signatures. 

  According to Figure 21, it is possible to verify the repeatability of the signatures even 

with the potential insertion of small bending, small strains in the beams, and wired 

connections variations. This is one of the characteristics that make the use of the method 

applicable and reliable in real monitoring cases. 

  Figure 22, as described throughout the chapter, shows the temperature variation in 

the impedance signature under the same undamaged condition. The 11 temperature levels 

are not illustrated to facilitate an understanding of the phenomenon. However, the 

intermediate values between the ranges illustrated in the graph, present similar behavior. 
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Figure 22: Specimen #1 and temperature changes for Baseline #1. 

 

  Since the frequency range in this experiment is wide, with 4000 sampling points, the 

effect of temperature in this figure may not be clear. In Figure 23, only the second region 

with the highest frequency peaks, around 54-60 kHz, is presented. 

 

 

Figure 23: Specimen #1 and temperature changes for Baseline #1- shorter frequency 

range. 

 

  According to the detail in this frequency region, the displacement behavior in the 

frequency of the impedance peaks is more evident due to the temperature effect. Since the 

damage metrics work with the comparative calculation between the baseline signal and the 

monitoring signature, false positives and negatives can occur if there is no such concern with 
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temperature. This can get worse if the threshold on the damage metric is small and 

measurements take place in very sudden temperature changes. 

  Figure 24 presents the final objective of monitoring the integrity of a structure, which 

is to visualize the variations in the impedance curve that are generated due to the process of 

loss of thickness located in the beam. 

 

Figure 24: Specimen #1 in the same temperature but different damage conditions. 

  Again, only a few damage conditions are presented to support understanding of the 

phenomenon. However, it is possible to see from the image that the variations introduced by 

the damage are subtle and in specific regions. 

  Then, for metric calculations, only the set of 30 signatures from Baseline #1 was 

used. Figure 25 shows the RMSD damage metric for some individual subscriptions under 

the listed conditions. 

 

Figure 25: Specimen #1 and some RMSD damage metrics. 
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  According to the figure, it is possible to see a non-null value for Baseline #1 because 

the comparative calculation of each signature is performed with the median of the 30 

signatures of Baseline #1. So, while Baseline #1's damage metric value represents the 

deviation from the first measurement with its 30-repeat set, Baseline #2 presents the 

deviation between a measurement from the second reference group and the median of the 

first reference group. 

  Figure 26 presents the CCD damage metric. In it, it is possible to see better robustness 

making the Baseline #1 value practically null. In cases where a greater influence of 

temperature is perceived, this damage metric has been preferred over other damage metrics. 

 

Figure 26: Specimen #1 and some CCD damage metrics. 

 

  It is important to note that the threshold value in fault detection needs to be 

considered around a safety margin. Likewise, the survey of a baseline signature must 

consider several measurement cycles, not just one with several repetitions. This expands the 

generalizability. Still, as seen, it is necessary to have baseline measurements at different 

temperature levels so that it is possible to apply adjustment techniques and make the fault 

identification more accurate. Several temperature compensation techniques have been 

studied over the last decades and recently some techniques based on Deep Learning have 

successfully managed to process data without temperature adjustment. However, even in 

these cases, the collection of baselines at different temperature levels is of paramount 

importance. 
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Abstract 

This chapter presents the basic concepts for implementing the guided Lamb Wave method for damage 

monitoring in mechanical structures. This is one of the structural health monitoring techniques that have 

been employed in recent years using a network of transducers in order to inspect thin structures. 

Basically, the methodology allows damage monitoring by comparing the reference signals with the test 

signals. However, the acquisition systems commonly used in this technique have a high added cost and 

also require a better level of technical knowledge on the part of the analyst. Thus, this contribution aims 

to present the development of a low-cost and easy instrumentation system for monitoring structural 

integrity using Lamb Waves, enabling the use of the technique in field studies, as well as in the context 

of incipient research in schools. 

1.  Introduction 

Several types of mechanical systems in use in engineering are subjected to critical work 

regimes in which, combined with possible design errors, can lead to failures, cracks, or 

damage (Moura Jr, 2008). In this way, the ability to monitor the useful lifetime in which 

these systems can maintain their operability has been emphasized in the field of structural 

engineering in recent years. These aspects concern economic, environmental, health, and 

safety factors. 

Thus, in this chapter, we seek to carry out the evaluation of problems related to the scope of 

structural integrity monitoring, usually defined in the literature as Structural Health 

Monitoring (SHM). Such methods have the ability to detect and interpret changes in 

mechanical properties of the structures under study, in order to facilitate the management of 

the structural life cycle. These generally include steps of data acquisition, filtering, 

validation, and analysis (Kudela et al., 2018). 

The basic principle used by the SHM methodology is that the presence of damage influences 

the physical and/or geometric properties of the structures, such as stiffness, mass, energy 

dissipation patterns, boundary conditions and system connectivity. All these elements can 

negatively affect the final performance of the structure, causing a change in the dynamic 
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response of the system. To do so, it is necessary to compare the two fundamental states of 

the analyzed structure, that is, the healthy state condition and the damaged state condition 

(Saravanan; Gopalakrishnan; Rao, 2015). 

In carrying out the process of monitoring the states of a mechanical structure, SHM 

techniques make use of so-called intelligent or adaptive materials, mechanically coupled to 

these structures (Cui; Liu; Soh, 2014). 

Piezoelectric materials are among the main types of intelligent semi structures present in the 

literature, which are currently used with great efficiency both as sensors and actuators. 

These, added to a power source and subsequent fault assessment algorithms, allow the 

continuous monitoring of a given mechanical system over time (Santos, 2004). 

In the same way as other non-destructive testing (NDT) techniques, the sensing employed 

by SHM methods preserve the primary characteristics of the structure after its completion 

(Soleimanpour; NG, 2017). Sensing can be performed passively, evaluating a certain state 

of a structure using passive sensors, which are continuously monitored in time and 

subsequently fed back into the structural system, or active, which employs actuators in order 

to interact with the interface of the mechanical system. 

Piezoelectric wafers (PZT - Plumbum Zirconate Titanate) currently represent the main 

materials used in the active monitoring of SHM (Venugopal; Wang, 2015). 

According to Franco (2009), the main challenge of monitoring structural integrity is the fact 

that changes in the dynamic response of the systems actually come from the presence of 

damage, as well as how to identify them. In this context, one of the main SHM 

methodologies in the time domain that has recently been shown to be efficient in predictive 

studies is the method based on the so-called Lamb Waves (Pohl et al., 2012). 

Although its theoretical basis was founded in the 1920s by Horace Lamb, the Lamb Wave 

monitoring method has re-emerged in the last three decades as one of the most reliable 

methods for damage identification (Dalton, 2000). This event is due to the recent 

technological development of instrumentation systems as well as the need to develop low-

cost integrity analysis techniques. 

It should also be noted among the characteristics of the SHM technique by Lamb Waves, 

which is non-destructive, simple instrumentation, and has a broad perspective of 

applicability with intelligent control systems. These reasons attract their use in regions of 

difficult access and high implementation cost, such as in naval, automotive, space, and/or 

aeronautical structures (Leucas, 2009). 

However, the physical experimentation of this monitoring technique is often reduced due to 

the process of building the scientific base. Such a situation often makes its understanding 

and application deficient. Therefore, the main objective of this chapter is to apply concepts 

already widespread in the scope of integrity analysis and a few practical details in SHM in 

an attempt to build a low-cost experimentation model of the structural integrity monitoring 

technique by Lamb Waves. (Moura Jr, 2008; Ledesma, 2015). 

2. Smart Materials and Lamb Waves Technique 

 Piezoelectric transducers from their conception stage to modern times have been widely used 

in different types of electronic devices. This fact is due to that these semi structures have a 
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low manufacturing cost and reduced dimensioning, combined with low operational energy 

consumption that makes them attractive in engineering applications (Kobayashi et al., 2009). 

According to Afshari (2012), the piezoelectricity effect was developed at the end of the 19th 

century by Jacques and Pierre Curie. In their work, they identified that certain types of 

materials, when subjected to electric fields at high temperatures, showed a relative 

deformation of their dimensions. This property was later called Curie Temperature and is 

the temperature at which the material spontaneously loses its initial polarization and, 

consequently, its piezoelectric property. Thus, it has been called piezoelectric material any 

material that has the ability to relate different electrical potentials in mechanical efforts 

applied to it, or inversely, measure deformations generated in the material from subjected 

electrical potentials (Lu et al., 2017). The direct effect is the process of formation of a 

potential difference between the dipoles of a piezoelectric transducer when they are 

subjected to mechanical deformation. On the other hand, the inverse effect consists of the 

mechanical deformation of the transducer by imposing a potential difference (Lu et al., 

2017). This relationship obtained between the applied electric field and the subsequent 

mechanical deformation of a given structure can be quantified according to equation (1). 

 

 
(1) 

where ϵij is the piezoelectric modulus, i is the direction of the applied electric field, and j is 

the direction resulting from the normal strain; v is the voltage applied to the PZT patch in 

the electric field direction i and l is the patch thickness. 

Through an initial formulation proposed by Devonshire, he determined that the characteristic 

relationships of dielectric materials precede the total energy of the system. This means that 

it is possible to understand the phenomenological relationships of the direct and inverse 

piezoelectric effects of a given electromechanical system (Fu; Cohen, 2000). Still, even 

considering the responses of these structural applications very close to linearity, when 

performing procedures with high levels of excitation, at high frequencies, the piezoelectric 

elements still showed non-linearity characteristics, making the modeling complex. Thus, 

applications involving piezoelectricity effects are generally restricted to the linear laws 

formulated by Voigt, where the direct and inverse effects follow, respectively, equations (2) 

and (3) (Franco, 2009). 

 

 (2) 

 (3) 

where, D and E(n/m) represent, respectively, the displacement vector and the electric field 

vector of the PZT patch; ϵT
mn and d represent the material's dielectric tensor and the 

piezoelectric voltage tensor; the ceramic material strain and the sigma stress are related by 

the applied longitudinal tensor s. 

At this moment, it is possible to understand that characteristics of the direct effect of 

piezoelectric materials allow their use as sensors, as the property resulting from the inverse 
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effect allows the description of the device as an actuator (Islam; Huang, 2016). However, to 

perform an efficient fault identification, the electromechanical coupling of such structures 

must be designed in a way that does not significantly influence the dynamic response of the 

structural system. 

Among the main types of piezoelectric materials presented in the literature that have 

subsequently been used efficiently in fault diagnosis are: 

• lead titanate-zirconate (PZT) patches: ceramic material that generally has greater 

stiffness than the holding structure, allowing an effective electromechanical coupling 

to identify damage. 

• Polyvinylidene Fluoride (PVDF) polymers: greater ductility compared to PZT 

patches and also greater elasticity than common engineering structures, making their 

use as actuators inefficient. 

In the literature, there are two possible approaches that correlate the Lamb Waves technique 

to the use of piezoelectric materials for the fault identification process, especially in relation 

to the use of PZT patches. Such approaches are called pulse-echo and pitch-catch (Mei; 

Giurgiutiu, 2018), and both are respectively represented in Figure 1. 

 

 

Figure 1: Pulse-echo and pitch-catch approaches in Lamb Waves techniques. 

 

The pulse-echo approach employs only a single patch in order to interact with the host 

structure and receive its dynamic response. The pitch-catch, on the other hand, employs two 

or more piezoelectric transducers, interacting alternately (one as sensor and the other as 

actuator) in the gathering process (Zhang et al., 2016). 

However, some noise can be acquired during the data collection procedure due to intrinsic 

(electronic components) and environmental (temperature) aspects that involve the 

experimental procedure. These noises can interfere to indicate false positives in the damage 

inference process. Thus, it is necessary to apply extraction methods to obtain information 

from the wave propagation medium in the structures under study. In this context, Wavelet 

Transforms have been shown to be very useful for the analysis of non-stationary signals, 

making their use widespread in the most diverse areas, including the analysis of structural 

integrity. 
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3. Continuous Wavelet Transform (CWT) 

Wavelets are representations of wave functions of short duration with sudden changes in 

amplitude, proportional to their fast decay in time. This feature of signal energy limitation 

gives Wavelets a compact aspect in their use, being useful to signal processing, especially 

to non-stationary signals (Park et al., 2007). 

The wavelet transform mathematical approach is based on scalar representation and maps 

the signal into the resolution-scale domain, alternatively to the frequency domain of classical 

Fourier analysis. Thus, all scales in the resolution-scale domain, without exception, have 

their frequency equivalence in the time-frequency domain (Debnath; Shah, 2002). 

One of the main tools that make up the Wavelet theory, the Continuous Wavelet Transform 

(CWT) describes the union of a set of base functions resulting from different displacement 

and dilation operations of the main Wavelet in the scale resolution domain. This main 

Wavelet is called Mother Wavelet Ψ(a,b) and is described by equation (4). 

 

 
(4) 

where a is the scale parameter that are compressed or extended versions of the Mother 

Wavelet function and b is the displacement parameter, positioning the function in the 

temporal domain (Domingues et al., 2016). These compressed and extended versions of the 

Mother Wavelet function can be obtained by convoluting functions belonging to Wavelets 

families in time. 

Therefore, the decomposition of a signal f(t) resulting from the application of CWT at 

different frequencies allows us to obtain a family of scales in the Wavelet Domain. This 

decomposition is carried out according to equation (5). 

 

 
(5) 

As the displacement parameter changes, the signal is analyzed locally around it. This means 

that the Wavelet function molds itself to different parts of the signal in order to allow 

detection of the characteristic frequencies of each region. 

Figure 2 illustrates the relationship between the multiple scales of the Wavelet domain and 

their subsequent equivalence in the power spectrum. Furthermore, in this image, the process 

of abstraction of a time-varying signal by the CWT technique is also conceptually presented. 
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Figure 2: the process of abstraction of a time-varying signal by the CWT technique. 

In general, the most used continuous wavelets in the signal analysis are the functions of the 

Complex Morlet family. These functions provide information about the phase, modulus, and 

discontinuous periods of the signal. Morlet Wavelets can be obtained by multiplying a 

complex exponential with a modeling Gaussian window, according to equation (6). 

 

(6) 

where σ is the Gaussian standard deviation correlated to the Heisenberg uncertainty principle 

present in the Wavelet function. This parameter provides information on the quality of the 

time-frequency relationship of the signal analysis windows. High values for σ allow 

obtaining better resolutions in the frequency domain, while small values lead to better 

temporal resolutions of the signal (Debnath; Shah, 2002). Figure 3 illustrates Morlet's 

Wavelet function ranging from 0 to 1000 seconds. It can be seen in Figure 3 that the Morlet 

function presents a sudden scalar variation in a short period of time (around -2 and 2) and 

null at other moments. 

 

Figure 3: Morlet's Wavelet function. 
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The Wavelet approach differs from the Fourier methodology because it is locally restricted 

to a single region, while Fourier uses infinite oscillatory functions obtained from families of 

sine and cosine. Thus, the approach using CWT suggests being able to extract different 

frequency bands, as well as their respective energy contributions in the formation of the 

vibration signal of a given structure (Domingues et al., 2016). Thus, the application of CWT 

with integrity monitoring techniques based on Lamb Waves allows monitoring failure 

behaviors. 

4. Fundamentals of Lamb Waves 

Recently seen as one of the most widely used methods in identifying damage in structural 

dynamics, Lamb waves use a system composed of transducers, usually piezoelectric. This 

system sends mechanical voltage waves in the host structure and, based on the comparison 

of variations between the received signals, it monitors the presence of damage (Rocha, 

2017). 

Based on the movement of the structure, the Lamb Wave method can be understood as the 

superposition of two basic modes of vibration. These are the longitudinal wave propagation 

mode and the transverse wave propagation mode. 

In longitudinal propagation, the movement applied to the material particles is defined as 

parallel to the direction of the force that runs through the structure. In transverse propagation, 

this movement is perpendicular to its direction. Thus, the coupling of such basic vibration 

modes enables the method the possibility of inspecting a large coverage area, making it 

attractive to several engineering applications (Sun; Zhang; Rose, 2005). 

There are several mathematical equations capable of obtaining the modes: longitudinal and 

transverse wave propagation, each with its own particularity (Possani et al., 2017; Santos, 

2004). However, among the main methods used efficiently in the literature, there is one 

based on scalar and vector potential fields of the wave. These are expressed according to 

equations (7) and (8), respectively: 

 

 
(7) 

 
(8) 

 

 where φ and Ψ represent the potential displacement functions; vL and vT are, respectively, 

the longitudinal and transverse propagation velocities of the wave in the material; x is the 

coordinates of the wave propagation direction, z is the coordinates of the normal direction 

on the surface of the structure, and t is the propagation time. The longitudinal and transverse 

propagation velocities can be obtained, respectively, according to equations (9) and (10) 

(Santos, 2004). 
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(9) 

 
(10) 

 

where E is the modulus of elasticity, μ is the shear modulus, σ is the Poisson's coefficient 

and ρ is the density of the material that constitutes the structure. 

Using the Euler formula and subsequent simplification processes, the sinusoidal solutions 

found for the potentials expressed in equations (7) and (8) are given by equations (11) and 

(12). 

 

 (11) 

 (12) 

where A1, A2, B1, and B2 are constants defined according to the boundary conditions of the 

system under study, k represents the number of pulses that, as well as the parameters p and 

q, are obtained by equations (13), (14) and (15), respectively. 

 

 
(13) 

 
(14) 

 

(15) 

 

where λ represents the wavelength and ω the angular frequency obtained by 2πf, where f is 

the cutoff frequency. 

In this scenario, the literature describes two patterns for the combination of these propagation 

modes in an isotropic material, simultaneously, correlating them to the structural 

characteristic movement, called symmetric and anti-symmetric patterns. 

Considering an isotropic plate as propagation material, the system boundary conditions can 

be easily obtained using the Rayleigh-Lamb equations (Corrêa, 2014). The Rayleigh-Lamb 

equations for symmetric and antisymmetric modules are expressed as equations (16) and 

(17), respectively. 

 

 
(16) 

 
(17) 
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In symmetrical modules, the elements that move in the material have a certain conformity in 

relation to the median plane of the structure, and these are commonly used for failure analysis 

in metallic structures. In antisymmetric modules, the elements interact alternately in relation 

to the median plane of the structure, being used in composite structures (Shen, 2014). Both 

patterns can be graphically visualized in Figure 4. 

 

 

Figure 4: Symmetric and anti-symmetric patterns. 

 

There are infinite wave propagation modes, symmetric and anti-symmetric, able to traverse 

structural materials. They can be obtained by different cutoff frequencies while becoming 

dependent on the specific properties of the materials that compose them (Qiao; Fana, 2014). 

The propagation modes are commonly represented in the literature by Si (symmetric) and Aj 

(anti-symmetric), where i and j are the orders of each module. 

Cardoso et al. (2012) used the A1 and S0 propagation modes in order to inspect possible 

corrosion in carbon steel tubes and aluminum plates. Therefore, the displacement curves of 

the propagation modes in these two structures and the groups of longitudinal propagation 

modules in the tubes were qualitatively evaluated. In addition, a quantitative analysis of 

phase velocities was performed, using a difference factor. Oliveira (2015) compared the 

same symmetric S0 mode of Lamb Waves to the quasi-Scholte mode in studies of metallic 

plates submerged in a viscous fluid. Both described that the Lamb Wave integrity monitoring 

method is more effective than the frequency domain-based methods in terms of location, 

severity, and type of damage. 

However, it is important to note that the abstraction of information from the waves obtained 

in the execution of experimental processes becomes the main hesitation in applying the 

method. This is due to its assessment, which is a complex task, as Lamb's guided waves are 

relatively influencing of the wavelength and cut-off frequency (Mechbal; Rebillat, 2017). In 

this sense, in order to abstract characteristics regarding the propagation medium, signal 

processing algorithms can be used, such as the Fast Fourier Transform (FFT) and the CWT. 

The use of this type of algorithm enhances the capabilities of the Lamb Waves fault 

identification method, enabling the extraction of characteristic frequencies in the case of 
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FFT, or even finding signal energy scales in the time domain for CWT (Franco, 2009). Also, 

it should be noted that the current data acquisition systems used in monitoring by Lamb 

Waves have a high operational cost added to a robustness that complicates its use in field 

analysis, as well as its large-scale evaluation. 

5. Damage Index for Lamb Waves 

In this section, we will briefly discuss the measurement of structural integrity using lamb 

waves. Initially, it is considered that the mechanical system is properly instrumented with 

piezoelectric transducers (actuator-sensor) with adequate electromechanical coupling. The 

experimental procedure of integrity inspection by Lamb Waves starts with the determination 

of the waveform to be used for system excitation (Leão et al., 2012). 

Therefore, to configure the waveform to be used in the mechanical excitation process, three 

main factors of the wave must be taken into account, namely: amplitude, frequency, and 

propagation period. The first factor is defined considering that the insertion of energy into 

the system allows the propagation of the signal throughout the evaluated structure, without 

its complete attenuation (Leucas, 2009). 

It should be noted that the material used in PZT patches has a relative linearity limit, thus 

making the signal amplitude typically lower than 5Vpp. For the other wave parameters, 

although there are optimization methods to define them, in practice these are obtained by 

trial-and-error processes. 

Having performed the mechanical excitation of the evaluated structure, the response signals 

are then measured by the sensor transducer and subsequently processed by data extraction 

or processing tools, such as CWT. This treatment leads to obtaining a signal energy 

scalogram, in which the scale with the greatest contribution is directly associated with the 

structural characteristic movement. 

From the wavelet scale with the greatest contribution to the composition of the signal, it is 

possible to abstract several characteristics such as signal energy, phase and group velocities, 

propagation period, and peaks of maximum and minimum of the wave. Therefore, using 

such tools, it is possible to relate the different states of the structure from the variation of 

these wave aspects (Palmos, 2009). 

However, to perform a quantitative analysis of these aspects of the signal, failure indexes 

called damage metrics are commonly used. The most common metric for the Lamb Waves 

method is the Damage Index (DI) as presented by equation (18) (Cheraghi; Taheri, 2007). 

 
(18) 

where a is the scale with the greatest contribution to signal composition, D index represents 

the signal to be evaluated and B index represents the baseline signal. 

According to the equation, it can be seen that the DI metric performs a comparison of the 

propagated energy variation between the different states of the structure. In this way, the 

Finzi Neto, Roberto M, et al. (2022) Guided Lamb Wave-based Structural Health Monitoring pp. 472-501

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 482



 

 

metric values will vary between 0 and 1, with values close to 1 meaning the presence of 

damage. 

6. Lamb Waves Experimental Setup 

In recent decades, there has been a growing search for new instrumental approaches (portable 

and with lower added cost) for monitoring structural integrity. However, alternative systems 

that are currently described in the literature still require a great deal of technical knowledge 

on the part of analysts and researchers, as well as on the areas related to the maintenance and 

set of electronic systems (Moura Jr, 2008; Wang et al., 2018). In the following section, some 

works developed in the last decade will be presented to illustrate some possible experimental 

approaches. 

This section will clarify the process of structural health monitoring using the Lamb Wave 

method, covering all the necessary tools for its application. Since there are different possible 

equipment setups for the application of the technique, this section will present an elementary 

and low-cost approach, easy to implement by the user, without the need for great 

technological knowledge. 

Initially, it is necessary a source of energy generation to promote the excitation of the 

structure, an analyzer to measure the sensor signal, and a computational interface to store it. 

This approach will also require PZT patches such as sensors and actuators. Aiming at the 

aspects of low cost and ease of implementation mentioned above, the following items were 

used in this work:  

• UDB11008S wave generator;  

• 2530 B&K Precision digital oscilloscope;  

• 2 PZT patches (20 mm in diameter by 3 mm thick);  

• computer (Software: EasyScope) for data collection, storage, and processing. 

The UDB110x (S) series consists of frequency generators up to 8MHz with an integrated 

circuit in the FPGA category. They are direct digital synthesis (DDS) alternating voltage 

generators with standard sine, square, triangle, and sawtooth waveforms. These generators 

are characterized by having high stability and low distortion, in addition to being able to 

regulate the amplitude and DC polarization of the output signal. 

The UDB11008S generator has a sweep function, allowing you to freely define the interval 

and the sweep time (sweep). The output signal amplitude can reach a maximum of 9Vpp and 

a minimum of 10mVpp. However, because the PZT patches used in this example have high 

stiffness and small thickness, this function was set to a minimum output (10mVpp) (Tsuruta 

et al., 2008). 

In the measurement step, the B&K Precision 2530 oscilloscope combines characteristics 

such as high performance and low cost. Since this part of the system in the literature shows 

itself as the one with the highest aggregate cost, this should be the item with the most careful 

choice. This equipment is capable of reading signals with a relative bandwidth of up to 

25MHz, with a sampling of 500 MSa/s. 

In the acquisition step, the integration between the oscilloscope and the EasyScope software 

allows you to explore functionalities such as collection, filtering, and storage (up to 32 

automatic measurements) of signals with sizes of 500 (high-pass) or 32000 (low-pass) 
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points. It is still possible to perform an FFT on the sample signal with different 

decomposition windows in order to perform both time and frequency domain analysis. 

In this next step, the generator and the analyzer are connected to the two PZT inserts coupled 

to the structure. In the case under study, the pitch-catch configuration is used, as presented 

in section 2 (YU et al., 2012). With the connection of the acquisition system to the computer 

through a USB port, full manipulation of the system via software is possible. 

An important feature of the UDB11008S generator is that it operates with a 5V supply, 

allowing its use in-field analysis. Figure 5 presents the scheme of the acquisition system 

developed in this work, where the monitored structure is illustrated by a plate. 

 

Figure 5: Low-cost Lamb Waves Experimental Setup. 

The first instrumentation step of the acquisition system developed in this work consists of 

the electromechanical coupling between the piezoelectric chips and the structure to be 

monitored. For this, both PZT ingots must be bonded to the structure with a thin layer of 

epoxy adhesive, taking approximately 24 hours for effective curing. A simplified description 

of the piezoelectric patch bonding process can be seen in Figure 6. 

 

Figure 6: Piezoelectric patch bonding process. 
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The epoxy adhesive was used due to its mechanical properties such as 1) high stiffness 

compared to other types of glue, allowing an efficient electromechanical coupling; 2) 

resistance to high temperatures, remaining unchanged up to 70º C (Overly; Park; Farrar, 

2007). Furthermore, the adhesion of the transducers to the structure must be performed in a 

way that does not significantly interfere with the dynamic response of the system, thus 

ensuring that the presence of damage is the only factor for the variation of Lamb Waves. 

The definition of the best coupling positions of the transducers in the structure takes into 

account its geometry, dimensions, contour shapes, the excitation capacity of each PZT patch, 

and the prerogatives of the pitch-catch configuration, that is, linear positioning between the 

actuator and sensor. 

After the step of bonding the patches, two wires must be soldered to the electrodes of each 

piezoelectric component. Then, the PZT patch actuator wires are connected to the probes of 

the UDB11008S wave generator, which are connected to its output terminal (OUT). Now, 

the PZT patch sensor wires are connected to one of the channels (CH1 or CH2) of the digital 

oscilloscope, and this is also done with the aid of probes. Figure 7 presents the schematic 

representation of the connections of the transducers to the electronic components. 

After the acquisition system is properly connected, the process of calibration and 

configuration of its electronic components begins, that is, the configuration of the wave 

generator and digital oscilloscope. 

 

 

Figure 7: Graphic representation of the process of connections between PZT inserts and 
acquisition system equipment. 

Wave generators currently play an important role in the study of electronic measurement 

circuits. They make it possible to analyze and manipulate the parameters of interest from 

previously generated reference signals. Also, with the development of digital technology, 

analog-to-digital converters began to create high-precision signals, mainly through the use 

of DDS technology. In this context, the frequency generators belonging to the UDB110x (S) 

series have shown great applicability in engineering and computing studies (Chen; Chen, 

2011). 

The UDB11008S signal generator, belonging to the commented series, allows creating 
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alternating voltage waves in standard sine, square, triangular and sawtooth waveforms with 

high stability and low distortion. Figure 8 presents the schematization of the features of this 

generator, and each feature is described later. 

 

 

Figure 8: Function Generator - UDB11008S model. 

The Sel key carries out the selection procedure between the function menu and the output 

frequency, in which the chosen functionality is represented by the * operator on the display. 

When the selected operation is the output frequency setting, the left and right arrows allow 

scrolling between the chosen frequency numbers. Here, the Adjust menu allows the increase 

or decrease of this value. 

Pressing the OK button switches between the frequency measurement scales that the signal 

generator is able to generate (Hz, kHz, and MHz). It is worth mentioning that the 

UDB11008S generator is capable of generating waves with a frequency of up to 8MHz. 

When the functions menu is chosen, the left and right arrows allow switching between 

functions previously stored in the generator's memory. Then they modify the control 

characteristics of the output wave and the external measurement. The functions available in 

the generator's memory are: 

• WAVE – allows modifying the generated wave pattern by selecting and pressing the 

OK button. The UDB110x (S) series is capable of generating standard sine (SIN), 

square (SQR) and triangular (TRI) waveforms; 

• DUTY – adjusts the duty cycle of square and triangle waveforms. When the triangle 

waveform is chosen, imposition values greater than 50% cause the waveform to 

change to a rising sawtooth, while values less than 50% cause the waveform to 

change to a descending sawtooth; 

• COUNTER – represents a counter that starts from an external pulse being measured 

by the Ext.IN input terminal. The value starts to be shown on the display, while the 

OK button allows resetting the counter; 
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• EXT.FREQ – allows measurement of external frequencies from the Ext.IN input 

terminal; 

• SAVE – allows the storage of base parameters. The stored data is the current 

frequency value, waveform, and duty cycle. The UDB11008S model has 10 memory 

storage positions, which can be changed and loaded at any time. For data storage, the 

following steps must be followed: 

1. Choose the current frequency and data (WAVE and DUTY); 

2. Choose the memory location to store the data; 

3. Press OK button to save. 

 

It is worth mentioning that the memory position M0 is the wave generator's default, 

being called at all times during its initialization. Furthermore, the memory variables 

M1 and M2 (frequencies stored in the same way as described) are the frequency 

values used in the sweep (without using the WAVE and DUTY data). 

 

• LOAD – loads the data stored in a given memory by the SAVE function; 

• TIME – sets the sweep time to be used in the sweep; 

• SWEEP – performs a sweep, adding the frequency value gradually over time. The 

start frequency value is delimited by the variable M1 while the stop frequency value 

is delimited by the variable M2. These are obtained according to the SAVE submenu. 

The increment frequency value is defined according to the scan time previously 

defined in the TIME function of the submenu. To generate a single pulse, the values 

of variables M1 and M2 must be the same, and if these variables are not defined in 

memory, the standard sweep will be performed starting from 0kHz to 10kHz with a 

step of 0.1Hz; 

 

The Wave key on the function generator allows direct switching between the different 

waveforms (sine, square, and triangle). Meanwhile, the OFFSET and AMPLITUDE 

adjustment menus allow, respectively, to adjust the DC polarization and amplitude of the 

output signal. The -32 dB button attenuates the output signals to values below 10mVpp. 

 

Based on the physical instrumentation process of the developed system, the generator 

calibration will depend on the wave properties to be studied. This by itself can be (also 

known as time-of-flight - TOF), or by means of a frequency sweep, in order to check the 

variation of resonant frequencies. 

 

Figure 9 presents a flowchart for carrying out the wave generator configuration in each 

particular case. However, in both cases, frequencies higher than 10kHz and lower than 

40kHz are chosen, since in this frequency range it is possible to assess incipient damage 

(MOURA JÚNIOR, 2008). 
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Figure 9: flowchart for setting up the UDB11008S wave generator. 

During the studies of Lamb Waves, the standard sine wave format is generally used, since it 

makes it possible to obtain the phase and period of the wave more easily compared to other 

patterns. 

After a reference signal is sent by the function generator and subsequently propagated 

through the structure under study, it will be captured by the PZT patch sensor coupled 

directly to the channels of the digital oscilloscope. This oscilloscope will graphically display 

the measured signal and then store it. Therefore, it is necessary to configure and define the 

parameters of this other device. 
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The Digital Storage Oscilloscope (DSO) is a flexible instrument that aims to measure 

measurements and data regarding wave aspects. This makes it possible to graphically 

analyze the electrical signals in the time domain and later store them in external memory 

(USB) (Cardoso; Silva; Segundo, 2017). 

In most applications, the DSO acquires signal samples and represents them virtually on the 

display, where the vertical axis expresses the measured signal amplitude (Volts/Div) and the 

horizontal axis the wave scan time (Sec/Div). Figure 10 presents a schematic of the digital 

oscilloscope parts while the functions are given in Table 1. 

 

Figure 10: B&K Precision Oscilloscope – measurement of the sensor. 

Table 1: B&K Precision Oscilloscope functions 

Item Function Name 

1 On/Off Menu 

2 Selection Buttons 

3 Print 

4 Universal Menu 

5 
Measurement and Acquisition 

Functions 

6 Vertical Controls (CH1 and CH2) 

7 Horizontal Control 

8 Trigger Menu 

9 Channel for External Calibration 

10 Input Channels (CH1 and CH2) 

11 Compensation terminal 

12 Acquisition Control 

13 Default and Help Buttons 

14 LCD Display 

15 USB input 
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The first step to be adopted, before any measurement test, is the calibration of the system to 

be used. This procedure can be performed by pressing the Default Setup button, located at 

13, and later, by adjusting the signal obtained by the probe, which must be connected to the 

Compensation Terminal. 

Vertical Controls modify both the magnification of the waveforms, which are obtained by 

the Input Channels and their positioning on the vertical axis. Also, the CH1 and CH2 buttons 

allow the visualization and application of digital filters on the sampled signals. The 

relationship between different filter types and menu options is shown in Table 2. 

Table 2: B&K Precision Oscilloscope filters 
Menu icon Filter type 

  Low-pass 

  High-pass 

  Band-pass 

  Notch/Band-reject 

 

The choice of filter type is directly linked to the frequency range to be used in the experiment. 

Thus, because SHM methods commonly work at high frequencies, this functionality must 

be set to the high-pass filter type (Leucas, 2009). 

In addition, the MATH button allows the use of mathematical operations between the 

multiple channels of the oscilloscope, one of which is the fast Fourier transform. The REF 

submenu displays up to two reference signals for the data to be measured, thus enabling a 

direct qualitative comparison between the states of the structure, with and without damage. 

The Horizontal Control provides temporal manipulation of the sampled data on the LCD 

display. Here, the Time/Div and Position buttons allow, respectively, the definition of the 

sampling rate of the signal and its subsequent positioning in the time domain. 

The Menu Trigger is responsible for synchronizing the acquisition of waveforms when they 

exceed a given threshold amplitude value. Such functionality allows the sampling of periodic 

signals, as well as their stabilization in the data acquisition process. Among the forms of 

synchronization in the Menu Trigger are: 

• Trigger Edge – represents the process of acquiring a given signal when one of its 

points exceeds the threshold value in a specific direction, be it rising edge or falling 

edge. The deflection edge Trigger mode is the most used in Lamb Wave SHM 

studies. 

• Trigger Pulse Width – delimits the measurement process based on the data collection 

trigger time with the width of the sampled wave pulse. 

• Trigger Video – uses NTSC (525 lines of resolution) or PAL (625 lines of resolution) 

video standards to carry out the data verification process. 

• Trigger Slope – relates the data acquisition process to the ascent or slope velocity of 

the measured signal. 

When the SET TO 50% key is pressed, the digital oscilloscope will perform a quick wave 
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stabilization process based on the measured voltage midpoint. However, such functionality 

only becomes applicable when a signal is emitted in the Channel for External Calibration. 

The FORCE button allows the direct acquisition of waveforms, without the need to detect a 

trigger threshold value. 

The set of buttons present in Measurement and Acquisition Functions enable analytical 

manipulation of the signals sampled on the display, as well as data storage on a flash drive. 

To carry out the storage process via physical device, the following steps must be performed 

on the instrument: 

Initially, the flash drive, to be used for storage, must be plugged into the USB Input of the 

digital oscilloscope and wait until it is recognized. If recognition does not take place, a quick 

audible alert will be emitted by the DSO and, later, the message “USB Flash Drive is not 

connected!” will appear in the lower corner of the display. 

With the flash drive recognized by the DSO, as a second step, press the SAVE/RECALL key 

in 5. This is responsible for displaying the storage functions menu. 

Different storage options can be performed by DSO B&K Precision from this step, having 

different peculiarities. Table 3 briefly presents the relationship between the storage options 

and the subsequent steps that must be taken to save the data. 

Table 3: B&K Precision Oscilloscope storage options. 
Option Details Next Steps 

Config 

This option stores data in the DSO's 
internal memory. The B&K Precision 
oscilloscope has up to 20 positions 
available for data storage. 

1. Select the Device option; 
2. Choose the memory option 
to be stored; 
3. Select the Save option. 

Waveform 

This option stores the signal image in 
the DSO's internal memory. The B&K 
Precision oscilloscope has up to 10 
positions available for image storage. 

1. Select the Device option; 
2. Choose the memory option 
to be stored; 
3. Select the Save option. 

Image 
This option stores the image of the 
signal sampled on the display in a 
flash drive memory. 

1. Press Save. image. 

CSV 
This option stores the wave data 
(amplitude, time and others) on the 
flash drive with .csv extension 

1. Set the data length option 
to Display; 
2. Press the Save option; 
3. Choose the name and 
directory on the flash drive; 
4. Press Save. 

Factory 

This option restores the factory 
parameters of the DSO's internal 
memory, that is, the option performs 
the cleaning of the internal memory. 

1. Press Restore. 
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Assuming that Lamb Waves use feature extraction methods (CWT) and subsequent damage 

quantification algorithms, the most used storage form in SHM procedures is the CSV option. 

This enables the physical storage of the points that compose the signals for further analysis 

in a computational environment. 

When pressing the CURSORS key on the DSO panel, the Selection Buttons allow the 

transition between the different cursor options available. With these buttons, it is possible to 

measure both the signal amplitude variation and the wave periods. 

The MEASURE, DISPLAY, and UTILITY buttons allow, respectively, the visualization of the 

current wave data, the format of displaying the equipment interface, and the configuration 

of the firmware and system utilities (language, audio, and others). 

Figure 11 shows the flowchart for performing the B&K Precision digital oscilloscope 

configuration via physical equipment. 

 

Figure 11: flowchart for B&K Precision Oscilloscope configuration. 

 

7. Experimental Case Study 

The experimental procedure adopted in this case study aimed to identify the presence of 

damage in an aluminum plate with 2 mm thickness and geometry as shown in Figure 12. To 

monitor this structure, three buzzer-type PZT patches were used, with a geometry of 20 mm 

in diameter and 0.35 mm in thickness, considering the pitch-catch coupling configuration 

(Figure 1). 
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Figure 12: flowchart for B&K Precision Oscilloscope configuration. 

The structure was hung vertically by thin fishing lines so that there was no greater 

interference from boundary conditions and the weight of the structure (holes 20 mm from 

the top edge). The type of virtual damage applied to the structure was by adding mass to the 

system in different positions. Thus, three cubic neodymium magnets (10 mm side) were 

mechanically coupled to the structure, two of them being coupled stacked on one side and 

the third on the opposite surface of the plate, in order to generate an increase in local stiffness 

in the two simulated positions. 

The different positions used for the damage simulation aimed to visualize the potential of 

the Lamb Wave SHM method regarding the physical location of the damage. Thus, the 

position was defined with the objective of carrying out a process of triangulation of the 

position of the damage, contributing to the understanding of the results. The positions 

considered for the fault conditions can also be seen in Figure 12. 

It should be noted that the weight of each magnet used is 2.1g, thus representing an increase 

in mass of about 1.24% compared to the total weight of the whole mechanical system. This 

configuration was adopted in order to verify the potential of the method in terms of 

identifying incipient damages. 

In general, two inspection paths were adopted for the acquisition of Lamb Waves during the 

experiment, the PZT-1 patch was considered as an actuator in both cases and the other 

transducers were used as sensors in each particular path. 
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Then, the PZT-1 transducer was connected to the OUT-output terminal of the function 

generator and the other patch (PZT-2 and PZT-3) was connected to one of the channels of 

the 2530 B&K Precision digital oscilloscope. The connection of the transducers to the 

electronic equipment was made according to Figure 6.3, with the aid of probes. 

The way of excitation of the PZT-1 actuator was based on a sweep of frequencies whose 

used range was 20-30kHz with a step of 33Hz. In all, 20 samples from each state were 

collected for each inspection path, thus totaling a population of 120 signal samples. Thus, 

40 signatures were collected for a baseline: 20 samples PZT-1/PZT-2 and 20 samples PZT-

1/PZT-3. Likewise, 40 signatures for damage 1 and 40 for damage 2. 

After the acquisition step, CWT and DI algorithms were used in order to abstract the 

characteristics of the signals and later quantify the presence of damage in this structure. Such 

steps were applied in order to validate the acquisition system developed in this work. 

Through the analysis of the Lamb Wave sets obtained by the experimental procedure, it was 

verified the need to apply an algorithm that allows the abstraction and separability of the 

states of the structure. This is because incipient or light damage promotes a very subtle 

variation in the vibration signature. Therefore, CWT was applied to the set of signals in order 

to extract the different characteristic frequency scales. 

Figures 13 and 14 illustrate the average frequency scales obtained by applying the CWT in 

the different data sets, taking into account their respective inspection path. 

 

Figure 13: Averages of the characteristic wavelet scales of the states of the structure - Path 
PZT-1/PZT-2. 
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Figure 14: Averages of the characteristic wavelet scales of the states of the structure - Path 
PZT-1/PZT-3. 

It can be seen that with the application of the CWT algorithm in the different data sets, it 

was possible to define the different state conditions of the structure, as well as the qualitative 

evaluation of the presence and severity of the damage. 

However, the process of graphical analysis of the averages of the signals (performed 

previously) only allows the verification of the presence of damage and not its quantification 

and characterization in terms of severity. Therefore, an algorithm in Python was developed 

and applied, as a second evaluation step, of the Damage Index as a damage metric, as 

previously described. The DI metric values obtained as a result of the developed algorithm 

are presented in the box plots of Figure 15. 

 

Figure 15: Boxplot of DI metric values for inspection path PZT-1/PZT-2. 
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Figure 16: Boxplot of DI metric values for inspection path PZT-1/PZT-3. 

From the boxplots shown in Figures 15 and 16, it can be seen that the proposed method was 

able to efficiently identify the presence of damage in the structure under study. Still, it can 

also be evaluated through the first graph that, although they are not linearly separable, the 

severity of Damage #1 is, in general, greater than that of Damage #2. This condition suggests 

that the location of this damage state is closer to the sensor than the Damage #2 state. Also, 

in an automatic system with a sensor network, it is possible to exploit this information 

through the inverse measures PZT-2/PZT-1. 

The metric values obtained for the second inspection path (PZT-1/PZT-3) define that both 

damages are linearly equal or that their severity in relation to the inspection path is, 

reasonably, indifferent. This is due to the fact that the Lamb Waves are linearly influenced 

by the insertion mode, that is, their efficiency is more considerable in a perpendicular path 

between the actuator and the sensor. 

Therefore, with this experiment, the applicability of the acquisition system can be evidenced, 

as well as the potential of the Lamb Wave SHM method in structural integrity analysis. 

However, it is necessary to remember that the applicability of the technique it depends on: 

an integrated sensor/actuator network, statistical or AI-based models for locating and 

quantifying the severity, and monitoring being focused on thin structures. 

7.1. Final remarks – Brief State of the Art 

This section presents a brief state of the art of acquisition systems used in the Structural 

Health Monitoring by Lamb Waves considering values in BRL in the year 2019. The 

currency presented is due to the high number of Brazilian colleagues who have acquired an 

interest in the technique. 

At first, the literature describes several works that employ different fault acquisition systems 

by ultrasonic inspection. However, these systems usually have a high aggregate cost (over 

BRL 30,000) in addition to being robust compared to frequency domain acquisition systems 

(LEDESMA, 2015). Thus, although they have high precision, their characteristics make 

them a limiting factor regarding the use of these systems in-field analysis, as well as their 
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use by schools with few financial resources. As a result, in order to develop practical and 

portable systems for integrity analysis by Lamb Waves, new instrumental configurations 

have been studied in recent decades (Farias et al., 2011; Asadi et al., 2017). 

In this sense, Table 4 presents the recent instrumentation setups of the guided Lamb Waves 

inspection technique, linking them to their respective authors and the year of publication. 

 

Table 4: Different authors and respective setups. 
Setup Authors Cost 

Wave Generator: PXI-5421 Module, 
Oscilloscope: PXI-5105 module, 
Signal Amplifier: Module A-303 A.A.  
Transducers: PZT (7.56 mm diameter per 
1mm wide) 

Keulen, Yildiz and Suleman (2014)  BRL 56,590 

Wave Generator: PXI-5412 Module, 
Oscilloscope: PXI-5122 Module, 
Signal Amplifier: Falco WMA-320 
Transducers: P-876 Patch DuraAct 

Hettler et al. (2015) BRL 60,302 

Wave Generator: PXI-5412 Module, 
Oscilloscope: PXI-5105 Module,  
Transducers: PZT 5H (15 mm diameter 
per 0.5mm wide) 

Rocha, Finzi Neto and Steffen Jr (2017) BRL 43,415 

PSV-400-3D-M Doppler Vibrometer 
Soleimanpour (2016) 
Ji et al. (2018) 

On-demand  

 

In the work developed by Keulen, Yildiz and Suleman (2014), a network of PZT sensors 

was used to identify laminations in a carbon fiber-epoxy composite panel. For that, a PXI-

5421 wave generator module and an A-303 A.A. signal amplifier were used in order to 

transmit Lamb Waves in the structure at a cutoff frequency of 265 kHz. Subsequently, the 

dynamic responses were collected on the PXI-5105 oscilloscope and a process of 

triangulation of the damaged region was performed using the RAPID (Reconstruction 

Algorithm for Probabilistic Inspection of Damage) tomographic reconstruction algorithm. 

Hettler et al. (2015) used a system consisting of a PXI-5412 modular function generator and 

an NI PXI-5122 digital oscilloscope module to generate guided Lamb Waves on carbon fiber 

polymer (CFRP) reinforced plates. This function generator can generate standard waveforms 

(sine, triangle, square, and ramp) with bandwidths up to 20 MHz and amplitude ranging from 

-6V to 6V. The signals imposed on the actuator network were amplified through a WMA-

320 laboratory amplifier and later captured through the sensor, both actuators and sensors 

are PVDF P-876 patches. Subsequently, a RAPID tomographic reconstruction algorithm was 

applied in order to obtain the parameters of location and extent of impact damage. 

Rocha, Finzi Neto and Steffen Jr (2017) studied the influence of physical uncertainties 

(electronic components) of data acquisition systems, as well as environmental factors 

(temperature) on the integrity analysis procedure by Lamb Waves. For this, a 2024-T3 
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aluminum plate was instrumented in the pitch-catch configuration, that is, using two PZT 

transducers at different ends of the structure. A PXI-5412 function generator was used to 

apply a sine wave with a frequency of 30kHz and an amplitude of 10 Vpp. The dynamic 

response was measured with the PXI-5105 module with a sampling rate of 30MSa/s, with 

30 thousand samples in total. It was observed that the temperature variation is a limiting 

factor for the damage inference process. Santos et al. (2016), observed the same relationship 

in the study of beams. Furthermore, it can be observed in the literature the use of this 

configuration in other works, such as (Moura Jr, 2008; Leucas, 2009). 

Soleimanpour (2016) investigated the nonlinearity of Lamb Waves in composite beams. For 

this, experimental results were compared with the results obtained in a three-dimensional 

finite element model. The PSV-400-3D-M laser optical system was used to perform a 

triangulation of the surface modal nodes. This was possible through the variation of 

frequencies resulting from the lights of the three lasers that compose it. This configuration 

was replicated by Ji et al. (2018) for thin structures. 

Still, alternative systems for inspection of structural integrity by Lamb Waves can be cited 

in the literature, which has lower cost instrumentation. The WSHM system developed by 

Ledesma (2015) uses transducers remotely controlled through a ZigBee network. However, 

there is greater complexity in using this system due to greater technical expertise in 

instrumentation. 
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Abstract 

Structural Health Monitoring (SHM) is a problem that can be addressed at many levels. One of 

the most promising approaches used in damage assessment problems is based on pattern 

recognition. The idea is to extract features from data that characterize only the normal condition 

and to use them as a template or reference. During structural monitoring, several data are 

measured, and appropriate features need to be extracted and compared to a baseline. Any 

significant deviations could be considered as structural novelty or possible damage. This chapter 

presents a collection of novelty detection approaches where the concept of Symbolic Data 

Analysis (SDA) is used to manipulate raw vibration data (i.e., acceleration measurements). 

These quantities (transformed into symbolic data) are combined to unsupervised - hierarchy-

agglomerative, dynamic clouds, and soft c-means clustering – and supervised classification 

techniques - Bayesian decision trees, artificial neural networks, and support vector machines 

applied to SHM. To attest the robustness of these approaches, experimental tests are performed 

on a simply supported beam considering different damage scenarios, and on a motorway bridge, 

in France, where thermal variation effects also played a major role. The results obtained confirm 

the efficiency of the proposed methodologies. Finally, the authors present some practical 

recommendations about the discussed techniques. 
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1. Introduction 

Studies related to early damage detection are of special concern for civil engineering 

structures. It is common knowledge that if a damage process is not identified in time, 

structural systems may undergo serious safety and economic consequences. Traditional 

methods of damage detection and health monitoring are often based on the variation of 

structural vibration characteristics, i.e., natural frequencies, damping ratios and mode 

shapes. Any modification of mechanical properties must be detectable through changes 

in the modal parameters (Moughty and Casas [2017]). Research in vibration-based 

damage identification has been rapidly expanding over the last few years. In their survey, 

Doebling et al. [1996] have addressed several critical issues for future research in damage 

identification and health monitoring. Although this literature survey is now almost 30 

years old, most of the conclusions are still valid despite the large research work done 

since then. 

As previously mentioned, most of the techniques used for damage identification 

are essentially based on the determination of modal properties through an identification 

process (Cury et al. [2011]; Hakim and Razak [2014]). Nevertheless, the identification of 

modal parameters is a sort of filtering process, leading to a loss of information compared 

to raw data (acceleration measurements). This compression process can erase any small 

changes due to a structural modification. Furthermore, and this is certainly the major 

drawback when using modal parameters, modal components are essentially describing an 

equivalent linear behavior, a feature which may be not exact for the analysis of specific 

degraded systems (Finotti et al. [2019]). In turn, using raw dynamic measurements 

(especially if high sampling frequencies are used) leads to the storage of large data sets. 

Dynamic measurements can easily contain over thousands of values, making an analysis 

process extensive and prohibitive. Few damage detection methods present in the literature 

are based on signature principles, but they usually fail when making them practical. In 

this sense, despite the current processing power of computers, the necessary 

computational effort to manipulate large datasets remains a problem. A lot of effort has 

been put in the development of new procedures of damage detection involving not only 

engineers, but also researchers of different areas such as mathematics, physics, statistics, 

among others, to improve formulations of well-known techniques or to develop new ones 

(Cardoso et al. [2019]; Santos et al. [2020]; Zhou et al. [2019]). 

The arising problem often faced by structural engineering when it comes to health 

monitoring is the great amount of data acquired through dynamic tests. More important 

than gather this information is, of course, the interpretation of these data. It is difficult, 

however, to analyze this type of (raw) information although extremely important in some 

cases where the engineer/stakeholder needs to know, in real time, the condition of a given 

structure. Thus, it would be imperative to assess structural information directly from raw 

data i.e., accelerations measured in situ.  
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The development of high-performance sensors, precision signal conditioning, 

analog-to-digital converters, optical or wireless networks, global positioning systems and 

so on, has drastically changed the vision of structural monitoring, giving engineers a large 

amount of data and consequently performance indicators. In connection with advanced 

software for a structural analysis, significant developments can be expected regarding the 

detection of deterioration mechanisms. These developments have opened the way for a 

wide range of applications dedicated to efficient operation and maintenance of civil 

engineering structures.  

Detecting structural changes in a timely manner and understanding the mechanical 

behavior are critical to ensure that the resulting disruption and the economic management 

issues are optimized. This explains why many expectations have been placed in vibration-

based monitoring for structural behavior characterization and novelty detection 

(diagnosis of abnormal behavior) (Cury and Crémona [2012]). Many novelty techniques 

have been proposed in the last few years to detect structural damage. The use of most of 

these techniques yielded interesting and encouraging results. In fact, in some applications, 

it was possible to identify several structural conditions correctly i.e., to discriminate 

undamaged conditions from damaged behaviors using modal parameters (natural 

frequencies, mostly) (Alvandi and Cremona [2006]; Wang [2013]). However, the use of 

these techniques applied to raw data (accelerations) remains a challenge. To overcome 

these limitations, this chapter presents the use of a special set of data manipulation 

techniques. Data mining is the process of extracting hidden patterns or features from data. 

As more data are gathered in monitoring, data mining is becoming an increasingly 

important tool to transform these data into information and is being used in a wide range 

of profiling practices, such as marketing, fraud detection and scientific discovery. 

Different types of data can be employed and manipulated in data mining, such as 

single quantitative or categorical values, interval-valued data, multi-valued categorical 

data, and modal multi-valued (histograms) (Cury and Crémona [2012]). These types of 

data are generally called “symbolic data” and they allow representing the variability and 

uncertainty present in each variable. The development of new methods for data analysis 

suitable for treating this type of data is the main issue of Symbolic Data Analysis (SDA). 

This chapter shows how the combination of SDA with classification methods can be used 

to separate different structural states. The major advantage of such combined approach is 

that enhanced - yet raw - information is used, i.e., histograms, intervals, etc. and they can 

be applied to manipulate vibration data (acceleration measurements, for example). When 

these quantities are converted into symbolic data, this piece of information will be applied 

to three clustering methods: hierarchy-agglomerative, dynamic clouds and soft c-means 

clustering and three supervised classification techniques: Bayesian decision trees, 

artificial neural networks, and support vector machines. The main objective here is to 

assess structural modifications due to damage or any other abnormal event, such as 

reinforcement procedures, different types of traffic loads, among others. However, when 

applying vibration-based damage detection to SHM, changes in vibration signatures are 
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not only based on changes in any physical property. Environmental changes, notably 

temperature variations, can have a significant effect and it is necessary to take this into 

account for the evaluation of structural integrity (Martins et al. [2014]; Xia et al. [2013]). 

Encouraging results are obtained and they show strong evidence that environmental 

effects play an important role in the field of SHM. 

This chapter is organized as follows: Section 1 presents a brief state-of-art about 

SHM techniques in the framework of civil engineering structures. Section 2 delves into 

some thoughts on machine learning techniques. Initially, it explains the idea behind the 

concept of Symbolic Data Analysis. Then, it presents a contextualized explanation about 

unsupervised and supervised classification methods applied to structural novelty 

detection. Section 3 focuses on the applications and the results obtained using the 

proposed approach. Finally, Section 4 presents the final remarks and some 

recommendations about the practical use of the techniques discussed in this chapter. 

2. Machine Learning Techniques Overview 

This section intends to give the reader a general perspective about how vibration data can 

be compressed while keeping their intrinsic characteristics necessary to provide enough 

information about the structure’s dynamic behavior. Next, it explains how these 

condensed data is inputted to classification techniques, which ultimately will discriminate 

abnormal structural conditions. 

2.1 Symbolic Data Analysis 

In general, data acquisition campaigns in civil engineering structures gather thousands of 

accelerations values measured by several sensors. Consequently, analyzing all these data 

(classical data) directly may usually be time-consuming or even prohibitive. In this sense, 

transforming this massive quantity of data into a compact but also rich descriptive type 

of data (symbolic data) becomes an attractive approach. Let us consider, for instance, a 

signal X (which is part of a dynamic test) containing 5,000 acceleration values measured 

by one single sensor (see Fig.1 on the left). There are several ways to transform classical 

data into symbolic data. 

This signal can be represented by: 

• a k-category histogram: X={1(0.0025), 2(0.0721), 3(0.8546), 4(0.0626), 

…, k(0.0082)}; 

• an interquartile interval: X = [-0.012; 0.015]; 

• a min/max interval: X = [-0.025; 0.025]. 

Figure 1 (on the right) shows how a classical signal (one sensor) is converted to a 

symbolic representation. In this case, all acceleration values are projected to the y-axis of 

coordinates and a 20-category histogram is constructed. In fact, it must be noted that the 

same representation could be applied to modal parameters, i.e., natural frequencies and 
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mode shapes. In other words, both quantities can be represented by intervals or histograms. 

Transforming classical data to symbolic data is carried out almost instantaneously, which 

does not prohibit or make difficult the use of this methodology for a large ensemble of 

dynamic tests. 

 

Figure 1 – Example of transforming classical signal to symbolic signal (20-
category histogram). 

In fact, when this transformation procedure is carried out, two important aspects 

must be considered. The first one relies on the conservation of some statistical properties 

of the original data, i.e., the moments of first order (mean value) and second order 

(variance). Higher order moments (skewness and kurtosis) are not considered here. The 

second aspect refers to the number of nonzero categories. It is not of interest to keep 

categories with values equal to zero since they will not contribute to the classification 

procedures. Thus, in this chapter, 10-category histograms are used in the SDA process, 

since it has proven to be the most efficient transformation for this type of analysis (Alves 

et al. [2015]. 

2.2 Unsupervised classification methods 

Data clustering is a common technique for statistical data analysis, which is used in many 

fields, including machine learning, data mining, pattern recognition, image analysis and 

bioinformatics (Madhulatha [2012]). A clustering procedure can be defined as a way of 

classifying several objects into different groups. More precisely, it can be described as 

the partitioning of a data set into subsets (clusters), so that the data in each subset share 

some common properties. For an appropriate clustering, it is necessary to minimize the 

within-cluster variation to obtain the most homogeneous clusters as possible and, as a 

natural consequence, to maximize the between-cluster variation to obtain the most 

dissimilar clusters among each other. To define these clusters and determine the 

proximity (or similarity) among tests, it is necessary to define suitable dissimilarity 

measures. In a common sense, the lower these values are the more similar the objects are 

and thus, they are gathered in the same cluster. Conversely, the objects allocated into 

different clusters are the ones that have greater distances between them. Dissimilarity 
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measures can take a variety of forms and some applications might require specific ones. 

More details can be found in (Billard and Diday [2006]).  

In this chapter, three clustering methods are used to discriminate structural 

conditions: hierarchy-agglomerative, dynamic clouds and fuzzy c-means. The first two 

are briefly described here since reference (Finotti et al. [2019]) contains additional details. 

Thus, their formulations are omitted in this chapter. The third method, since it is less 

documented in this field of research, is described later. 

2.2.1 Hierarchy-Agglomerative 

Hierarchy-Agglomerative is a bottom-up clustering process, i.e. the process starts with q 

clusters containing one single test, and proceeds by merging two sub-clusters ( 1C  and 
2C  , say) into one new cluster C  . The sub-clusters are merged according to similar 

criteria for minimizing the within-cluster variation and for maximizing the between-

cluster variation. More details can be found in (Billard and Diday [2006]; Finotti et al. 

[2019]). This clustering method provides a measure of proximity between clusters when 

using the “difference in height” between them. Fig. 2 illustrates a hierarchy-

agglomerative clustering procedure. In this example, clusters 1, 2 and 3 are highlighted. 

The heights “H(1,2)” and “H(2,3)” represent the distances among them. As “H(1,2)” is 

greater than “H(2,3)”, clusters 2 and 3 are closer (or more similar) than clusters 1 and 2. 

For this method, the categorical symbolic distance (Billard and Diday [2006]) and the 

centroid linkage clustering were adopted. These parameters were chosen after adequate 

results obtained by (Alves et al. [2015]). 

 

Figure 2 – Example of a hierarchy-agglomerative clustering. 

2.2.2 Dynamic Clouds 

This clustering method is based on a generalization of the classical dynamical clusters’ 

method (Billard and Diday [2006]). This method consists in minimizing a general 

optimized criterion that measures the adequacy between the partition and the 

representation of the clusters, denoted prototype. A prototype is a symbolic description 
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model representing a cluster or, in other words, the “average” concept of a cluster. It is 

used as a reference to calculate the distances among the concepts and to define each 

cluster.  

The algorithm initiates with a set of k random prototypes and iteratively applies 

an allocation phase to place each concept in the cluster where the proximity between 

concept and prototype is minimal. In this process, a representation phase is performed 

where the prototypes are updated according to the allocation phase results. This is realized 

by computing and storing the total sum of the distances between concepts and the 

prototype in one cluster. The new cluster prototype is the one minimizing this sum. These 

two phases procedure is repeated until convergence, that is, when the adequacy criterion 

reaches a stationary value (or at least when reaching a maximum number of iterations). 

In general, the dynamic cluster algorithm converges in a few iterations. To 

improve the quality of the clustering, the algorithm is executed with different initial 

partitions, and the best configuration is chosen among all the results. Fig. 3 shows a 

simplified scheme of this clustering method. For this method, the categorical symbolic 

distance (Billard and Diday [2006]) was adopted. These parameters were chosen after 

adequate results obtained by (Alves et al. [2015]). 

 

Figure 3 – Scheme representing the dynamic clouds algorithm. 

2.2.3 Fuzzy c-means method (FCM) 

A fuzzy set is a class of objects that has a continuum of grades of membership. Such a set 

is characterized by a membership (characteristic) function that assigns a grade of 

membership that ranges between zero and one to each object (Kroszynski and Zhou 
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[1998]; Song et al. [2006]). The FCM is an iterative algorithm clustering method that 

produces optimal c-partitions by minimizing the weighted dissimilarity function (Bezdek 

[1981]). 

Let iT ),...,2,,1( ni = , which represents a m-dimensional vector (m is the number 

of categories of each dynamic test transformed into symbolic data). This notation is used 

to determine the cluster centers CCqr   for the 
thq   cluster and its thr   dimension by 

using the expression given below: 
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where C is the number of the cluster to be made )2( NC  , and f is an appropriate 

level of cluster fuzziness 1f  . U  is the membership matrix, which has the size 

mCn    and is first initialized randomly such that  10,U iqr   and 
=

=
C

q

iqrU
1

1  , for 

each i  and a fixed value of r. 

Then, the Euclidean distance is evaluated between the thi data point and the 
thq

cluster with respect to the thr  dimension with the equation below: 
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In the following step, CCqr   is updated in Eq.(1) by recalculating the fuzzy 

membership matrix U according to Diqr (if 0Diqr ), as follows: 
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This updating iteration is repeated until the changes in U are sufficiently small 

(such that )( U , where is a predefined termination criterion. 

The main difference between hard (hierarchy agglomerative and dynamic clouds) 

and soft-clustering (FCM) relies on the fact that hard-clustering methods can only assign 

a given object to a unique cluster. Conversely, soft-clustering methods allow classifying 

a given object as a part of different the clusters. This allows defining the so-called 

pertinence values. The higher these values are, more likely a given object is to be 

classified into a cluster. In this chapter, the aforementioned procedure was coupled with 

symbolic data transformation within Matlab® software framework. In fact, fuzzy c-

means procedures are built-in in the Fuzzy Toolbox. The Euclidian distance was used, 

and the level of fuzziness was set to 2.  
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2.2.4 Determination of the optimal number of clusters 

A common limitation of the clustering methods cited before is the necessity of predefining 

the number of clusters. In practice, however, this number is usually unknown. To 

circumvent this drawback, many different stopping rules for determining the optimal 

number of clusters have been published in the scientific literature. The most detailed and 

complete comparative study has been carried out by (Milligan and Cooper [1985]). They 

performed a Monte Carlo evaluation of thirty indexes for the determination of the optimal 

number of clusters and they investigated the extent to which these indexes were able to 

detect the correct number of clusters in a series of simulated data sets containing a known 

structure. In this section, the three best indexes are presented: the CH index, the *C index 

and the index (Billard and Diday [2006]). 

The general methodology for the evaluation of these three indexes is based on 

calculating each one of them for a partition ),,( 1 q

q CCP =  containing a different 

number of clusters. The number of clusters q is arbitrarily chosen, but it is usually greater 

than the number of clusters considered in the analysis. Since 1=q   represents the 

partition 1P , which only contains the initial cluster, the indexes are not considered in this 

case.  

The CH index is given by: 

qj
j

jn

PW

PB
PCH

j

j

j ,...,2,
)1(

)(

)(

)(
)( =

−

−
=          (4) 

where )( jPB is the between-cluster variation, )( jPW  is the total within-cluster variation, 

n is the total number of tests and j is the number of clusters in the partition jP . Further 

details can be found in (Finotti et al. [2019]). When CH  has its maximal absolute value, 

then the optimal partition (i.e., the optimal number of clusters) is obtained. 

The *C  index can be calculated as: 
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where n is the total number of tests, nk is the number of tests of a cluster kC  , 
kS

represents the sum of distances among the k tests within a cluster
kC ,

kSmin is the sum of 

the k smallest distances among all tests, 
kSmax  is the sum of the k largest distances among 

all tests. The optimal partition is given for *C  minimal absolute value. 

The   index is given by: 
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where )( jP+ represents the number of within-cluster distances smaller than the between-

cluster distances and )( jP−  is the number of within-cluster distances larger than the 

between-cluster distances. The optimal partition is given for 4 maximal absolute value. 

2.3 Supervised classification methods 

This section presents an overview of three supervised classification methods. Firstly, 

some concepts regarding Bayesian Decision Trees (BDT) and its applicability are 

explained, followed by a brief discussion about how Neural Networks (NN) are used in 

this study. Finally, a general idea of Support Vector Machines (SVM) applied to 

classification problems is presented. These methods were selected following the works 

of Martins et al. [2014] and Xia et al. [2013]. In those references, several supervised 

classification techniques coupled with SDA were tested using either artificial or real 

controlled (labeled) data. In general, BDT, NN and SVM achieved the best correct 

classification ratios. 

2.3.1 Bayesian Decision Trees 

Bayesian Decision Trees (BDT) are a decision procedure that can solve classification 

problems (Billard and Diday [2006]). The general idea of this method is to classify a 

particular object (dynamic test, in this case) into one of the classes (groups) previously 

defined i.e., in the training set. For instance, let 1 2{ , ,..., }nT T T =  be a set of n dynamic 

tests and C a class variable containing values varying within {1,..., }m  where m is the 

number of classes. This discriminant analysis tries to predict the unknown value C for a 

given test T  according to its p features (the symbolic representations of sensors) and a 

training set. The steps of this symbolic classification procedure are to represent a given 

partition in the form of a BDT and create a rule capable of assigning a new test to one 

class of a prior partition. 

Now, let us consider that each test iT   is described by two types of variables, 

considering symbolic signals: 

− p sensors described as k-category histograms; 

− a class variable C: this variable specifies the class of a test in the training set 

in the form of a unique value (1, 2,…, m). 

Let T1 denote a test belonging to class 1 and T2 a test belonging to class 2 within 

the training set. The goal is to classify a test T  into one of these two classes. In this 

example, all tests are described by two sensors only 1 2( , )s s . 

In the framework of the recursive algorithm, each node division step is performed 

according to a single variable (suitably chosen) and to “yes/no” answers to specific binary 
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questions. The set of binary questions that will be useful for the recursive partition 

procedure is based on the Bayesian rule (Billard and Diday [2006]). This rule can be 

enounced as follows: suppose that for a set of tests  , the test T is distributed with 

density functions: 

 ( ),jf T  1,...,j m=  (7) 

Density functions are generally unknown and need to be estimated. One way to 

solve this issue is to use the Kernel method (Kroszynski and Zhou [1998]), which can 

reasonably approximate density functions. The Kernel estimator is defined as: 

 
, ,

1 1 1
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where jn  is the number of tests within the class j, 0h   is a smoothing parameter and K 

is called kernel, which is symmetric, continuous and can be evaluated by: 
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where 
,r q

sT is the qth category of the rth sensor corresponding to the sth test of a given class 

j. 

By definition, the Bayesian rule assigns T  to the class with the largest value of 

( )i jP f T  , where ( 1,..., )jP j m=   represent the prior probabilities of each class. For the 

previous example introducing two classes, the following question is considered (Billard 

and Diday [2006]): 

 1 1 2 2Is  ( ) ( )  ?P f T P f T    (10) 

If the first term is greater than the second one, then the test T  is considered to 

belong to class 1; otherwise, the test is assigned to class 2. Although this example contains 

only two groups, this procedure can easily be extended to problems which have several 

classes. In fact, if there are m possible classes, one will have 1m −  questions to assign a 

new test to a given class. 

In addition, if prior probabilities are unknown, two choices are available to 

determine them: 

− uniform prior probabilities based on the number of classes: 

 
1

,          1,...,jp j m
m

= =  (11) 

− prior probabilities based on the proportions observed in the training set: 

 
1

   with   
m

j

j j

j

n
p n n
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where n is the number of tests in the training set. 

As already mentioned, tests are classified into different nodes according to “cut 

rules” and splitting criteria. To define each split, the most discriminant feature (sensor) 

must be used, that is, the feature capable to optimally separate tests into different classes. 

This “optimal” feature is called cut variable and it leads to the “purest” nodes of the 

Bayesian tree. The purity of a node is the number of tests that are correctly classified in 

it (by leave-one-out and/or bootstrap methods), where the classification is verified in 

relation to the class variable C. This number can be obtained by the Bayesian rule 

computed for each feature. The choice of the most discriminant cut variable will result in 

selecting the feature that minimizes the impurity measure i.e., the number of misclassified 

tests. Finally, the cut variable and its associated cut value will form the cut rule, which 

will be used to properly classify a new test (Song et al. [2006]). 

2.3.2 Artificial Neural Networks 

Neural networks have proven themselves as proficient classifiers and are particularly well 

suited for addressing non-linear problems. Given the non-linear nature of real-world 

phenomena, like the classification of dynamic tests, neural networks are a potential 

approach for dealing with this problem. Commonly, neural networks are adjusted or 

trained, so that a particular input leads to a specific target output (supervised learning). 

In this case, the network is adjusted based on a comparison of the output and the target, 

until the network output matches the target. Supervised learning is a machine learning 

technique for deducing mapping functions from a training dataset consisted of input-

output pairs. The goal is to predict output values of the mapping function for any valid 

input after having seen some training examples (i.e., pairs of inputs and target outputs). 

To achieve this, the network must generalize from the training data to unseen situations 

in a "reasonable" way. 

Mapping functions are obtained through an optimization scheme based on the 

evaluation of the mean-squared error (explained later). This scheme tries to minimize the 

average squared error between the network's output and the target value over all the 

training dataset pairs. In this chapter, a feed-forward multilayer perceptron neural network 

is used for classifying dynamic tests. Multilayer networks use a variety of learning 

techniques, the most popular being back-propagation. In this case, the output values are 

compared with the correct answer to compute the value of some predefined error-function 

and the error is then fed back through the network (Bezdek [1981]). Using this 

information, the algorithm adjusts the weights of each connection to reduce the value of 

the error function by some small amount. In this study, training automatically stops when 

generalization stops improving, which is indicated by an error increase in the validation 

samples. At this point, it is said that the network is “trained”.  

Let us consider, a one-hidden-layer MLP with N hidden neurons where the inputs 

are the dynamic tests iT ( 1,..., )i n=   which are symbolic representations of signals as 
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described in section 2. They are defined by p k  matrices, where p is the number of 

sensors and k is the number of categories. Like the BDT method, outputs are set to 

represent the target vectors (labels) corresponding to each class i.e.,{1,2,..., }m  . These 

outputs are transformed into a binary notation according to the number of classes used. 

Target vectors have m elements, where for each target vector, one element is 1 and the 

others are 0. This defines a problem where inputs are to be classified into m different 

classes. 

The general formulation for a neural network can be written as follows: each input 

xi (which can either be an input of the network or of a layer) is multiplied by adjustable 

weights denoted ilw   before being fed to the lth neuron in the hidden/output layers, 

yielding (Milligan and Cooper [1985]): 

 







+= 

=

N

i

iiilj bxwfo
1

  nj ,...,1=  (13) 

where oj, ib  and f represents the output (either from a layer or from the network), the 

bias of each perceptron and the activation function, respectively. 

To adjust weights properly, a general method for non-linear optimization called 

gradient descent is applied (Milligan and Cooper [1985]). Briefly, the derivative of the 

error function with respect to the network weights is calculated and the weights are then 

changed such that the error decreases (thus going downhill on the surface of the error 

function). Eq. 14 shows the expression to evaluate the updated weights of this network: 
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where is the learning rate, t is the iteration step and J is mean error for a perceptron, 

written as: 
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where 
jC  represent the desired outputs (targets) and jy  the observed outputs 

(evaluated by the neural network). For the simulations presented in this chapter, a free 

Matlab toolbox named Netlab developed by Bezdek [1981] was used. This toolbox allows 

performing several types of supervised multi-class classifications. The architecture of the 

NN consisted of a 20-neuron, one hidden-layer network using sigmoid activation function 

(hidden-layer) and linear function (output layer). 

2.3.3 Support Vector Machines 

Support Vector Machines (SVM) are a useful technique for data classification problems. 

As usual, the objective is to separate two different classes by a function which is induced 

from available examples (training dataset). SVMs were first suggested in the 1960s for 
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classification and have recently become an area of intense research due to developments 

in the techniques and theory coupled with extensions to regression and density estimation 

(Alves et al. [2015b]; van Overschee and de Moor [1996]). This technique came up from 

statistical learning theory and is based on the structural risk minimization principle. 

Commonly, SVMs are used for two-class classification problems. However, this can be 

extended from 2-class classifications to m-class classification problems by constructing 

m two-class classifiers. Thus, for multi-class SVM methods, either several binary 

classifiers must be constructed, or a larger optimization problem is needed. In the work 

of Hsu et al. [2002], a decomposition implementation for “all-together” methods, “one-

against-all”, “one-against-one” and Directed Acyclic Graph Support Vector Machines 

(DAG-SVM) were tested and compared. 

In this section, a very brief review of SVM classification is given; further 

information can be found in references (Alves et al. [2015b]; van Overschee and de Moor 

[1996]). Let us consider {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛  a training dataset, where 𝑥𝑖 are the input samples 

(symbolic representations of signals) and 𝑦 ∈ {+1, −1} the labels of classes and n the 

number of samples, respectively. According to Vapnik’s original formulation, the 

hyperplane (𝐻𝑃) is defined as 𝑤𝑥 + 𝑏 = 0, where 𝑥 is a point lying on the 𝐻𝑃, 𝑤 

determines the orientation of the 𝐻𝑃, and 𝑏 is the bias of the distance of the 𝐻𝑃 from 

the origin. If this 𝐻𝑃 maximizes the margin, then the following inequality is valid for all 

input data: 

(𝑏 + 𝑤𝑇𝑥𝑖)𝑦𝑖 ≥ 1, for all 𝑥𝑖, 𝑖 = 1,2, … , 𝑛 (16) 

The margin of the HP is equal to 2/‖𝑤‖, any training turples that fall on 𝐻𝑃1 or 

𝐻𝑃2 (i.e., the sides defining the margin) are called support vectors. Thus, the problem is 

the maximization of the margin by minimizing ‖𝑤‖/2 subject to Eq.(16). 

Lagrange multipliers 𝛼𝑖(𝛼𝑖 > 0,1 = 1, … , 𝑛)  are used to solve 𝐽𝑝 =

− ∑ 𝛼𝑖[(𝑏 + 𝑤𝑇𝑥𝑖)𝑦𝑖 − 1] + ‖𝑤‖2/2𝑛
𝑖=1  . After minimizing 𝐽𝑝  with respect to both 𝒘 

and 𝑏, the optimal values are given by: 𝑤∗ = ∑ 𝛼𝑖
∗𝑦𝑖𝑥𝑖

𝑛
𝑖=1 . The so-called dual problem 

can be described as: 

𝐽𝑝(𝛼) = −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗 + ∑ 𝛼𝑖

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

 (17) 

Thus, the linear decision function is created by solving the dual optimization 

function, which can be obtained by: 

𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝛼𝑖
∗𝑦𝑖𝑥𝑖𝑥𝑇 + 𝑏∗

𝑛

𝑖=1

) (18) 

where 𝑎𝑖
∗ are the optimal Lagrange multipliers. 
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For input data with a high noise level, SVM uses soft margins that can be 

expressed as follows with the introduction of non-negative slack variables 𝜉𝑖 , 𝑖 =

1, … , 𝑛: 

(𝑏 + 𝒘∗𝑇𝑥𝑖)𝑦𝑖 ≥ 1 − 𝜉𝑖, for 𝑖 = 1,2, … , 𝑛 (19) 

To obtain the optimum separation 𝐻𝑃 , it should be minimized the 𝜓 =

∁ ∑ 𝜉𝑖 +
1

2
‖𝑤‖2𝑛

𝑖=1   subject to Eq. (19), where ∁  is the penalty parameter. In the 

nonlinearly separable cases, the SVM maps the training points, nonlinearly, to a high 

dimensional feature space using kernel function 𝐾(𝑥𝑖, 𝑥) = 𝜑(𝑥𝑖). 𝜑(𝑥) , where linear 

separation may be possible. The kernel function, 𝐾(𝑥, 𝑥𝑖) , typically has multiple 

alternatives. In this chapter, the Radial Basis Function (RBF) is considered: 

𝐾(𝑥𝑖, 𝑥) = exp (−‖𝑥𝑖 − 𝑥‖2/2𝑔2) (20) 

where  𝑔 𝜖 𝑅+ is a constant. 

After a kernel function is selected, Eq. (20) becomes: 

𝑓(𝑥) = 𝑠𝑔𝑛 [∑ 𝑎𝑖
∗𝑦𝑖𝐾(𝑥𝑖, 𝑥)

𝑛

𝑖=1

+ 𝑏∗] 

 

 

(21) 

In general, RBF kernel is a reasonable first choice in training SVM, thus this 

kernel was used in this study. The selection of parameters ∁ (the penalty term) and g (the 

basis width of the kernel) for the SVM model influences the classification accuracy 

significantly. In this work, an iterative algorithm was used during the validation phase to 

determine their optimal values. The SVM model in this chapter was implemented using 

the software LibSVM developed by Chang and Lin [2021]. 

3. Experimental applications and results 

3.1 Simply supported beam 

This section presents the experimental tests conducted at COPPE/UFRJ laboratory on a 

simply supported steel beam depicted in Figure 4.  

 

Figure 4: Instrumented steel beam. 
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The beam is 1.46 m long with rectangular cross-section (76,2 x 8,0 mm) and was 

instrumented with six piezoelectric accelerometers (PCB, 336C31). Data acquisition was 

carried out using Lynx ADS2002 equipment, which essentially is a 

conditioning/amplifier regulating system.  

The present study considered two types of dynamic excitation: impact tests (using 

an impact hammer) and random vibration tests (using a shaker). For the impact tests, an 

impact hammer was used at each 10 seconds of the dynamic tests. The random excitation 

was applied throughout the duration of the tests. Six acquisition campaigns were 

performed, and, for each campaign, three tests were conducted. Thus, 18 dynamic tests 

recorded in total. Each one of them lasted for about 10 minutes with a sampling rate of 

0,00025s (4000 Hz). This means that, for each test, 2.4 million values were recorded per 

sensor. Figure 5 shows an example of the dynamic tests performed under impact 

excitation (left) and random vibration (right). 

 

Figure 5: Example of vibration tests performed in laboratory: impact (left) and 
random (right). 

The first campaign comprised the beam without damage. For the second campaign 

(Level 1), an eccentric mass (0.5 kg) was positioned at 102.7cm from the left support of 

the beam (between accelerometers AC5 and AC6). In fact, this second campaign was 

conducted so it could produce a reversible, non-permanent, “damage scenario”. The third 

campaign (Level 2) considered a small damage inflicted to the beam (a 12 mm round 

hole) imposed at the same position of the mass, which was removed beforehand. The 

fourth campaign (Level 3) consisted in increasing the hole to 16 mm. During the fifth and 

sixth campaigns (Levels 4 and 5), the hole was increased to 22.5 mm and 32 mm diameter, 

respectively. Figure 6 depicts the 12 mm hole imposed to the beam. It should be noted 

that these campaigns simulated very small structural damage, which makes this study 

even more challenging. 
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Figure 6: 12-mm hole imposed to the beam. 

Modal identification was performed using Stochastic Realization Method 

algorithm (van Overschee and de Moor [1996]). Tables 1 and 2 present the mean values 

and respective standard deviations for the first five natural frequencies identified under 

impact and random vibration. Standard deviation values were rather low, which 

corroborates the overall quality of the modal identification procedure. In general, it is 

possible to observe a slight decrease of all five natural frequencies as damage increases. 

Exceptions occur and may be due to the modal identification procedure, mainly in the 

higher vibration modes where the signal/noise ratio is low. This agrees with results 

commonly presented in the literature. If one considers, however, confidence intervals i.e., 

mean values ± standard deviation, the values for natural frequencies from all damage 

scenarios would superpose themselves. Thus, from a statistical point-of-view, it is not 

possible to state that the deviation of these frequencies indicates a structural change. 

These results show that a more detailed analysis is necessary, but also considering a 

probabilistic approach, such as SDA. 

Table 1. Frequency deviation according to each damage level (mean value and 
standard deviation - impact vibration). 

Damage 

Level 

Freq.#1 Freq. #2 Freq.#3 Freq.#4 Freq.#5 

Undamaged 8,30 ± 

0,170 

33,31 ± 

0,025 

73,99 ± 

0,011 

134,90 ± 

0,219 

205,83 ± 

0,135 

Level 1 7,90 ± 

0,196 

31,40 ± 

0,036 

73,56 ± 

0,062 

131,63 ± 

0,054 

195,20 ± 

0,023 

Level 2 8,26 ± 

0,060 

33,24 ± 

0,025 

74,30 ± 

0,013 

136,23 ± 

0,091 

205,10 ± 

0,041 

Level 3 8,25 ± 

0,064 

33,21 ± 

0,026 

74,31 ± 

0,0106 

135,63 ± 

0,158 

205,57 ± 

0,148 

Level 4 8,25 ± 

0,078 

33,23 ± 

0,056 

74,66 ± 

0,044 

132,63 ± 

0,112 

205,90 ± 

0,099 

Level 5 8,23 ± 

0,098 

33,01 ± 

0,064 

74,19 ± 

0,077 

134,07 ± 

0,165 

204,30 ± 

0,107 
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Table 2. Frequency deviation according to each damage level (mean value and 
standard deviation - random vibration). 

Damage 

Level 

Freq.#1 Freq. #2 Freq.#3 Freq.#4 Freq.#5 

Undamaged 8,30 ± 

0,170 

33,31 ± 

0,025 

73,99 ± 

0,011 

134,90 ± 

0,219 

205,83 ± 

0,135 

Level 1 7,90 ± 

0,196 

31,40 ± 

0,036 

73,56 ± 

0,062 

131,63 ± 

0,054 

195,20 ± 

0,023 

Level 2 8,26 ± 

0,060 

33,24 ± 

0,025 

74,30 ± 

0,013 

136,23 ± 

0,091 

205,10 ± 

0,041 

Level 3 8,25 ± 

0,064 

33,21 ± 

0,026 

74,31 ± 

0,0106 

135,63 ± 

0,158 

205,57 ± 

0,148 

Level 4 8,25 ± 

0,078 

33,23 ± 

0,056 

74,66 ± 

0,044 

132,63 ± 

0,112 

205,90 ± 

0,099 

Level 5 8,23 ± 

0,098 

33,01 ± 

0,064 

74,19 ± 

0,077 

134,07 ± 

0,165 

204,30 ± 

0,107 

Mode shapes are omitted, since their study is not the focus of this chapter, but they 

followed a series of sinusoidal curves, as one should expect for simply supported beams. 

3.1.1 – Results (unsupervised classification methods) 

The procedure conducted henceforth in this chapter follows these steps:  

1. Convert acceleration measurements into symbolic data (10-category 

histograms) as explained in section 2;  

2. Use symbolic histograms (step 1) as inputs for the clustering techniques 

(hierarchy-agglomerative, dynamic clouds and FCM) considering 

different number of clusters (greater than 2); 

3. Evaluate the optimal number of clusters using indexes CH, *C  and

applied to dynamic clouds and FCM methods (these are the only 

clustering methods in this chapter that require an initial number of 

clusters); 

4. Retrieve partition of clusters obtained considering the optimal number of 

clusters (step 3). 

Furthermore, it is important to emphasize that this entire procedure strongly 

depends on the quality of the input data. In this case, if accelerations measurements 

present any type of problem (bad sampling, missing data, incorrect measurement, etc.), 

the results obtained from the clustering methods will be compromised. Thus, it is 

imperative to assure, in firsthand, that the data used in the analysis is adequate. 

The proposed approach is thus applied to accelerations measured during the 

experimental tests carried out in laboratory. Let us recall that the main objective here is 

to try to separate the six structural conditions (undamaged and damaged levels 1, 2, 3, 4 
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and 5) into six different clusters, using raw data (signals) only. Moreover, each type of 

forced vibration is considered separately. 

The first simulations comprehend dynamic tests obtained under impact vibration 

only. As explained at the beginning of section 3, the proposed approach follows four steps. 

Once the clustering procedure is performed considering different number of clusters (in 

this case, it varied from 2 to 10), the indexes are evaluated.  

Table 3 contains the first results. The last column shows the optimal number of 

clusters according to each index. It can be observed that both CH and indicate 6 clusters 

( *C , however, indicates 7). It can also be seen that all tests corresponding to structural 

conditions “undamaged”, “damaged – level 1” and “damaged – level 3” are correctly 

classified. However, for the cluster “damaged – level 2”, only one third of tests is 

classified properly. In general, results are very good and show that it is possible to extract 

information from raw data. Moreover, all clustering methods performed quite similarly. 

This does not mean, however, that all techniques will always yield the same results. 

To attest the efficiency of the fuzzy c-means method, it is possible to evaluate the 

pertinence values, which quantify the certainty of the classification. If this index is 1, it 

means that the method is completely sure about its classification (which does not imply 

that the result is correct). Otherwise, if the pertinence value is close to 0, the method is 

“not sure” about its classification. In this sense, it is possible to observe that pertinence 

values for the classification showed in Table 3 are relatively high, validating the clustering 

procedure and, in this case, the results obtained. 

Table 3: Percentages of correct classification (impact vibration). 

(%) Dynamic 

Clouds 

Hierarchy 

Agglomerative 

FCM Pertinence 

value 

Indexes 

Undamaged 100 100 100 0,72 CH = 6 

Level 1 100 100 100 0,92 *C = 7 

Level 2 33 33 33 0,79 = 6 

Level 3 100 100 100 0,83 

Level 4 100 0 100 0,81 

Level 5 66 66 66 0,74 

Average 83 67 83 - 

When it comes to random vibration tests, results are not as adequate as observed 

with impact vibration tests. Table 4 shows the percentages of correct classification for the 

six clusters and the respective pertinence values for the fuzzy c-means method. Once 
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more, both CH and Γ indicate 6 clusters but 𝐶∗, however, indicates 9. This latter tends 

to indicate a higher number of clusters, as observed in references (Billard and Diday 

[2006]; Cury and Crémona [2012]; Finotti et al. [2019]). 

Table 4: Percentages of correct classification (random vibration). 

(%) 
Dynamic 

Clouds 

Hierarchy 

Agglomerative 
FCM 

Pertinence 

value 
Indexes 

Undamaged 66 66 66 0,69 CH = 6 

Level 1 33 33 66 0,63 *C = 9 

Level 2 33 100 33 0,58 = 6 

Level 3 66 33 66 0,67 

Level 4 100 100 100 0,77 

Level 5 33 33 33 0,61 

Average 55 61 61 - 

 In this case, only one cluster is pure (for damage level 4). All other clusters are 

mixed, showing a difficulty for those methods to discriminate these structural states under 

random vibration. Although the classification ratios are lower, it is interesting to notice 

that the pertinence values also yield low scores (except for the cluster corresponding to 

level 4). 

As a further analysis of this experimental application, the clustering procedures 

are carried out considering only damage levels 2, 4 and 5 (which corresponds to holes 

with 12, 22.5 and 32mm diameter). Once again, it should be noted that these campaigns 

simulated very small structural damage, which makes this study even more challenging. 

Table 5 presents the classification ratios obtained considering impact vibration 

tests. It can be observed that the results improve significantly. Now, almost all 

classifications are perfect, except for the last cluster where only one third of the tests were 

classified incorrectly. In this analysis, all indexes indicated 4 clusters as the optimal 

partition. 

Table 5: Percentages of correct classification (impact vibration). 

(%) 
Dynamic 

Clouds 

Hierarchy 

Agglomerative 
FCM 

Pertinence 

value 
Indexes 

Undamaged 100 100 100 0,74 CH = 4 

Level 2 100 100 100 0,91 *C = 4 

Level 4 100 100 100 0,84 = 4 

Level 5 66 66 66 0,74 

Average 92 92 92 - 

Similarly, even when random vibration tests are considered, classification results 

improved as well (see Table 6). In this case, however, index *C has again pointed out a 

higher number of optimal clusters (5). 
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Table 6: Percentages of correct classification (random vibration). 

(%) 
Dynamic 

Clouds 

Hierarchy 

Agglomerative 
FCM 

Pertinence 

value 
Indexes 

Undamaged 66 33 33 0,68 CH = 4 

Level 2 100 100 66 0,76 *C = 5 

Level 4 100 100 100 0,77 = 4 

Level 5 66 66 66 0,74 

Average 83 75 77 - 

These last results can be partially explained by the fact that all these damage 

levels represent a more discriminative sequence of structural degradation. If damage 

levels are too similar, the proposed approach might not yield perfect classification scores. 

Nonetheless, it must be kept in mind that these results were obtained using raw data with 

no signal processing procedure whatsoever. 

In general, better classification ratios were achieved when the structure was 

under impact vibration. In fact, when random vibration is considered, the transformation 

procedure to symbolic data (histograms) carries the noise from the excitation, thus 

misrepresenting the description of the dynamic test. Then, these “noisy” descriptions may 

mislead the clustering procedures into wrong classifications. 

3.1.2 Results (supervised classification methods) 

The procedure conducted henceforth follows two steps: i) transformation of acceleration 

measurements into symbolic data (10-category histograms) as explained in section 2; ii) 

use of these symbolic representations of acceleration measurements as inputs for the 

classification techniques (BDT, NN and SVM). 

As previously mentioned, each dynamic test has 2.4 million points recorded per 

sensor. To make the classification analysis more robust, each test is subdivided into 24 

‘subtests’ having 1.0 million points per sensor. Thus, instead of employing the 18 original 

dynamic tests for classification, now there are 18x24 = 432 tests to classify. This is 

important because all classification methods use training, validation and testing groups. 

If these groups are small or poorly rep-resented, the classification results may be affected. 

The architecture of the NN consisted of a 20-neuron, one hidden-layer network 

using sigmoid activation function (hidden-layer) and linear function (output layer). This 

architecture was chosen after previous simulations, considering different numbers of 

layers and neurons. The learning rate was set to 0.001. For SVM classifier, the RBF kernel 

was used, and its parameters were chosen via an iterative algorithm during the validation 

phase.  

The first simulations correspond to the impact excitation case and use only 30% 

of the set of dynamic tests for training, 10% for validation and 60% for testing. This 

means that the 432 tests are distributed over three groups: 130 tests for the training dataset, 

43 tests for the validation dataset and 259 tests for the testing dataset. Since this 
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distribution can be randomly performed, 10000 simulations (10000 different groups of 

training, validation, and testing) are generated. This strategy was used following the work 

of references (Billard and Diday [2006]; Milligan and Cooper [1985]). Table 6 

summarizes the results, showing the best, average, and worst classification ratios for each 

simulation. Considering the first column of this table, for example, it is possible to 

observe that the BDT has its best performance with 89% of correct classification. In 

average, it classifies 76% of tests correctly. Its worst performance occurs when it 

classifies only 51% of tests correctly among the 10000 simulations.  

When the training dataset increases to 40%, the testing dataset reduces to 50%. 

Now, the probabilities of true detection improve significantly (average and worst ratios). 

Finally, when 50% of tests are used for training, all methods achieve their best results. It 

can be observed that the SVM reaches better results than the other two techniques. This 

might be because the SVM could better adjust “separation thresholds” for each damage 

state. Also, the BDT yield slightly worse probabilities of true detection compared to the 

NN. This could be explained by the fact that the BDT are not a true learning procedure. 

In fact, new tests are classified according to logical questions. If the six groups 

(corresponding to the damage levels) do not provide a meaningful representation of each 

structural state, the classification may be compromised. 

In summary, what is important to extract from these simulations is the average 

values of true classification. Thus, both NN and SVM yield very satisfactory results. This 

shows that the pro-posed approach can classify structural conditions using only raw data 

recorded in situ. 

Similarly, the simulations are performed using tests recorded under random ex-

citation. Once again, as the training dataset increases, correct classification rates also 

improve. Moreover, both NN and SVM methods yield higher classification ratios.  

In general, better classification ratios are obtained when the structure was under 

impact vibration. In fact, when random vibration is considered, the transformation 

procedure to symbolic da-ta (histograms) carries the noise from the excitation, thus 

misrepresenting the description of the dynamic test. Then, these “noisy” descriptions may 

mislead the classification procedures into wrong classifications. The authors 

acknowledge this drawback and further research are pointing into this direction. 

Tables 7 and 8 omit, however, an important information: the number of 

occurrences for “worst” and “best” classification ratios. In all simulations, considering 

the impact excitation, the number of occurrences for worst ratios is lower than 10% of the 

total (967 simulations). This means that from all the 10000 simulations, less than 1000 

reach their worst result. For the best ratios, 1654 simulations reach their best ratio (16,5%). 

The remaining simulations yield results between worst and best ratios with the 

corresponding average value presented in Table 6. Regarding the random excitation tests, 

results are slightly worse. In that case, 12,7% (1275) of the simulations yield the worst 
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ratio as only 9,8% (982) produce the best ratios. Again, the remaining results oscillate 

between worst and best ratios with the corresponding average value presented in Table 7. 

Table 7. Probabilities of true classification using raw dynamic measurements 
(impact excitation). 

 30% Tr., 10% V, 60% T 40% Tr., 10%V, 50% T 50% Tr., 10%V, 40% T 

Method BDT NN SVM BDT NN SVM BDT NN SVM 

Best (%) 89 100 100 94 100 100 94 100 100 

Average 

(%) 

76 85 88 68 90 91 67 93 95 

Worst (%) 51 57 64 60 56 65 58 68 73 

Table 8. Probabilities of true classification using raw dynamic measurements 
(random excitation). 

 30% Tr., 10% V, 60% T 40% Tr., 10%V, 50% T 50% Tr., 10%V, 40% T 

Method BDT NN SVM BDT NN SVM BDT NN SVM 

Best (%) 88 96 96 90 99 99 91 100 100 

Average 

(%) 

65 83 84 65 89 89 64 91 94 

Worst (%) 45 47 54 41 50 57 58 60 69 

3.2 PI-57 motorway bridge 

The PI-57 Bridge is a double-deck bridge located near the town of Senlis in France, 

crossing the Oise River, and carrying the A1 motorway, which connects Paris to Lille (Fig. 

7). The bridge, a 116.50 m long, cast-in-place, post-tensioned segmental structure built in 

1965, consists of three continuous spans of 18.00 m, 80.50 m, 18.00 m (Fig. 8).  

 

Figure 7. PI-57 Bridge. 
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Figure 8. Bridge elevation. 

The two lateral spans play the role of counterweights. This slender and elegant 

structure experienced various problems and distresses during and after its construction, 

resulting in localized cracking and increasing deflection in the central part. These 

problems were mainly due to insufficient prestressing because of lowering shrinkage and 

creep effects and a limited knowledge regarding thermal stresses at the time of 

construction. Because of the potential risk of cracking in the deck, numerical studies 

showed that the long-term integrity could be affected if corrective measures were not 

immediately taken. Based on these technical evaluations and considering the structure’s 

importance, the concessionary motorway company (SANEF) decided to strengthen the 

two decks. Additional longitudinal prestressing (32,000 kN) would correct the lack of 

sufficient prestressing. The reinforcement works took place during the summer of 2009 

(Alves et al. [2015b]). The strengthening consisted in reducing the tensile stresses under 

live loads to 1.5 MPa at the bottom part of the bridge cross-sections. These tensile stresses 

could reach 5.10 MPa at the mid-span cross-section. The external pre-stressing should 

induce at least 6.60 MPa compressive stresses (with a straight profile for the external 

prestressing cables). The anchorages were placed on the backside of the cross-girders 

located on the bridge piles. The total prestressing force has been evaluated to 32,000 kN 

corresponding to eight 19T15S cables (Fig. 9).  

 

Figure 9. General view of the external prestressing cables installed in the bridge 
deck. 
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With this strengthening, the displacement at midspan decreased from 2.44 cm to 

0.69 cm under SLS dead and live load effects. A small longitudinal displacement was 

expected (4.02 mm). No extra displacements occurred on the piles. To check on one hand 

the variability of the structural behavior due to thermal effects and on the other hand, to 

evaluate the efficiency of the strengthening procedure, a vibration-based monitoring was 

conducted: it consisted in installing accelerometers before and after reinforcement. The 

first campaign of measurements took place between October 15, 2008, and April 3, 2009. 

The second campaign, after reinforcement, started on October 15, 2009, and ended on 

April 3, 2010. Dynamic tests were performed under ambient excitation: the traffic was 

used as a source of excitation. Sixteen piezo-electric accelerometers (Bruel & Kjaer 

4507B-005 with sensitivity 1 V/g, frequency range from 0.4 to 6000 Hz, maximum 

operational level 75g, temperature range from 54 to 100ºC) and seven temperature sensors 

(Pt100 class B) have been installed on the most deficient bridge deck (Lille/Paris – Figs. 

10 and 11).  

 

Figure 10. Plane view of the bridge with monitoring system. 

 

Figure 11. Location of the temperature sensors. 

The data acquisition system was com-posed of two separate data acquisition 

systems. For the acceleration recording, a data programmable controller Gantner E-PAC 

DL was used and connected to an 8 GB USB flash drive. Data was transferred by a TCP/IP 

modem. For the temperature recording, a data logger Gantner IDL100 was used, and data 

was transferred by a GSM modem. Accelerations were filtered within the 0–30 Hz 

frequency range and sampling was set to 0.004 s during 5 min. To make the data 

processing amenable, structural data were only recorded every 3 h over a 24-h period and 

stored on a buffer hard disk. For the first campaign, 1174 tests have been recorded. The 

second campaign has had a total of 1316 tests recorded. Sixteen accelerometers were 

measuring vertical accelerations and three longitudinal accelerations (Fig. 10). The 
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instrumentation scheme allowed identifying flexural vertical modal shapes, torsional and 

longitudinal vibration modes. Temperature was measured on seven different locations 

across a bridge deck cross-section (Fig. 11). Table 9 regroups the first five natural 

frequencies, showing mean values and respective standard deviations before and after 

reinforcement. Standard deviation values were rather low, which corroborates the overall 

quality of the modal identification procedure. Once again, if one considers confidence 

intervals i.e., mean values ± standard deviation, the values for natural frequencies from 

the first and second campaigns would superpose themselves. Thus, from a statistical 

point-of-view, it is not possible to state that the deviation of these frequencies indicates a 

structural change. Again, these results show that a more detailed analysis is necessary, but 

also considering a probabilistic approach, such as SDA. 

Table 9. Frequency deviation according to each damage level (mean value and 
standard deviation). 

Structural 

condition 
Freq.#1 Freq. #2 Freq.#3 Freq.#4 Freq.#5 

Before 

reinforcement 

2,23 ± 

0,053 

4,89 ± 

0,173 

6,84 ± 

0,111 

8,48 ± 

0,173 

11,00 ± 

0,165 

After 

reinforcement 

2,29 ± 

0,067 

4,95 ± 

0,088 

6,93 ± 

0,161 

8,51 ± 

0,135 

11,08 ± 

0,176 

Fig. 12 depicts a typical set of temperature data for the gauges located in the mid-

span section. These data were collected every hour, over a 24-h period, before the bridge 

strengthening (from November 2008 to April 2009). In this figure, the two lower curves 

are for temperature gauges located on the side of the bridge close to the other bridge deck 

(east) and outside the instrumented deck. As expected, this later temperature gauge has a 

larger variability than the other gauges. The highest curve is for the air temperature inside 

the girder box; T5 (lateral west) sensor is very close to the evolution of the inside air 

temperature with a time lag of 2–3 h. Sensors T1 and T2 are very close and the gauge 

depth in the concrete deck does not appear to be significant. There is also a time lag of 

approximately 2–3 h between the peak air temperature outside and the peaks for the inside 

and lateral west temperatures. Gauges T1, T2 and T3 are following very closely the time 

history of the inside temperature. In this study, the temperatures are used as a basis for 

comparison with the vibration information. 
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Figure 12. Time history of temperatures (before strengthening). 

3.2.1 Results (unsupervised classification methods) 

The procedure conducted henceforth in this section follows the steps described in section 

3.1.1. Initially, the proposed approach is applied to all tests transformed into symbolic 

data (10-category histograms). The first campaign recorded 1284 tests as the second one 

collected 1476 tests. The objective of this study is to classify each test according to its 

campaign (before and after prestressing works). Thus, the target value must be intuitively 

‘‘2’’ since two states (before and after strengthening) are expected to occur. 

Table 10 shows the results obtained. In general, the percentages of correct 

classification are rather low for both dynamic clouds and hierarchy-agglomerative 

methods. Fuzzy c-means yield better results with moderate pertinence values. It must be 

noted that the proposed approach is being applied to the entire raw dataset of 

measurements, mixing dynamic tests registered upon different temperatures. This is 

directly reflected by the results of the indexes: in this analysis, all indexes indicate more 

than two clusters as the optimal partition. In fact, it turns out that some clusters might 

comprehend groups with similar profiles of temperature or traffic, for instance. 

Table 10: Percentages of correct classification. 

(%) 
Dynamic 

Clouds 

Hierarchy 

Agglomerative 
FCM 

Pertinence 

value 
Indexes 

Before 54 52 63 0,66 CH = 4 

After 61 45 67 0,67 *C = 5 

 = 3 
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Thus, a more detailed analysis can be conducted. Instead of using the entire dataset 

of tests from both campaigns, only data recorded during the same month are used. The 

objective now is to compare tests recorded in a month in 2008 with those registered at the 

same month in 2009 (for the months of January, February, March and April, the results 

correspond to the years of 2009 and 2010). The idea is to reduce, in some way, the 

uncertainties related to changes in temperature and due to traffic indirectly. For the month 

of October 2008 and 2009, 182 tests were recorder; for November 2008/2009, 444 tests; 

458 in December 2008/2009; 455 in January 2009/2010; 386 in February 2009/2010; 439 

in March 2009/2010 and 126 in April 2009/2010. Table 11 gathers the results obtained. 

Table 11: Percentages of correct classification. 

 
Dynamic 

Clouds 

Hierarchy-

agglomerative 
FCM Indexes 

 Before After Before After Before After 
Pertinence 

Value 
CH *C    

Oct08/Oct09 100 100 100 100 100 100 0,88 2 2 2 

Nov08/Nov09 56 58 54 75 67 67 0,65 3 4 3 

Dec08/Dec09 65 69 59 52 62 70 0,71 3 3 2 

Jan09/Jan10 63 54 53 62 67 67 0,64 2 3 3 

Feb09/Feb10 59 63 63 55 65 69 0,60 2 4 2 

Mar09/Mar10 61 57 74 61 70 69 0,70 2 4 3 

Apr09/Apr10 57 58 67 58 67 68 0,60 2 3 2 

Average 66 66 67 66 71 73 0,68 - - - 

Overall, the classification results for the monthly-basis analysis are adequate and 

significantly better than those obtained using all tests concomitantly (Table 8). It is 

important to notice that for the months of October all tests were classified correctly. This 

result shows that it is indeed possible to extract useful information from raw vibration 

data. For the further months, the percentages are not as high. The fuzzy c-means method 

achieves better results with higher pertinence values compared to those of Table 8. It can 

also be observed that the average percentages of correct classification are also higher than 

those obtained in the previous simulation. Finally, indexes indicate optimal partitions 

equal or closer to two clusters. This corroborates the idea that the temperature variation 

plays an important role when it comes to the classification of structural behaviors. 

3.2.2 Results (supervised classification methods) 

The procedure carried out in this section mirrors the steps described in section 3.1.2.  

The results show that both NN and SVM are again more robust for classifying 

tests compared to BDT. In general, NN achieves higher rates of correct classification 

(greater than 85%). In this study, it is noted that increasing the number of tests in the 

training group did not significantly alter the rates of correct classification. This may 
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indicate that the proposed approach is sufficiently discriminative, even if few tests are 

used in the learning phase. 

Like the previous study, Table 12 does not show the number of occurrences for 

the most extreme classification ratios (worst and best). In this case, 14,8% (1483) of the 

simulations yield the worst ratio and 7,3% (734) produce the best ratios. Again, the 

remaining results oscillate be-tween worst and best ratios with the corresponding average 

value presented in Table 12. 

Table 12. Probabilities of true classification using signals for all dynamic tests. 

 30% Tr., 10% V, 60% T 40% Tr., 10%V, 50% T 50% Tr., 10%V, 40% T 

Method BDT NN SVM BDT NN SVM BDT NN SVM 

Best (%) 74 87 86 80 89 90 85 92 92 

Average 

(%) 

65 75 74 69 75 76 74 78 77 

Worst (%) 31 46 749 45 58 46 52 60 55 

However, a more detailed analysis can be conducted. Instead of using the entire 

dataset of tests from both campaigns, only data recorded during the same month are used. 

The objective now is to compare tests recorded in a month in 2008 with those registered 

at the same month in 2009 (for the months of January, February, March and April, the 

results correspond to the years of 2009 and 2010). The idea is to reduce, in some way, the 

uncertainties related to changes in temperature and due to traffic. For the month of 

November 2008 and 2009, 444 tests were record-ed; 458 in December 2008/2009; 455 in 

January 2009/2010; 386 in February 2009/2010; 439 in March 2009/2010 and 126 in 

April 2009/2010. 

Figure 13(a) summarizes the results obtained when only 30% of the tests (each 

month, separately) are retained in the training group. Once more, both NN and SVM are 

the most efficient classification methods. Indeed, the coupling of these methods to the 

symbolic representation of signals (histograms) is more sensitive to external effects 

(traffic, temperature, wind, etc.). However, using a monthly basis analysis, one observes 

the reduction of these effects, yielding better classification ratios. Figures 13(b) and 13(c) 

show the mean values obtained for each classification method considering the training 

groups with 40% and 50% of the tests, respectively. In general, the average classification 

rates are in the range of 80-90% considering the three methods and the three 

configurations of testing/training groups. 
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Figure 13. Average rates of correct classification. a) 30% training, 10% validation, 
60% testing; b) 40% training, 10% validation, 50% testing; c) 50% training, 10% 
validation, 40% testing. 

4. Final remarks and recommendations 

This chapter presented a collection of approaches based on the coupling of Symbolic Data 

Analysis with three unsupervised and supervised classification methods. The main goal 

was to discriminate different structural behaviors using only raw information for feature 

extraction. 

To attest the robustness of the proposed approaches, an experimental application 

performed at COPPE Structural Laboratory was studied. This application comprised a 

simply supported beam instrumented with six accelerometers, tested under two different 

excitation conditions: impact and random vibration. Moreover, six damage scenarios 

were considered: one undamaged scenario and five others corresponding to holes with 

different diameters. The main objective was to discriminate those structural states using 

only measured accelerations. Results obtained showed that the SDA methods were quite 

efficient to classify and discriminate structural modifications, even when raw data are 

used. In addition, better results were obtained when impact excitation was considered.  

Furthermore, this chapter presented an experimental application concerning 

reinforcement works performed at a motorway bridge in France. Dynamic tests were 
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registered under two structural states – before and after reinforcement. The results 

obtained showed that the SDA methods were efficient to classify and to discriminate 

structural modifications considering raw vibration data. To consider the effects of 

temperature variation, a more detailed study was conducted: instead of using the entire 

dataset of tests from both campaigns, only data recorded during the same month were 

used. In that case, results have improved significantly, showing evidence that this 

environmental effect plays an important role in the field of SHM. 

In summary, the proposed combined approaches can be applied to continuous 

structural monitoring analyses when: 

• reference behaviors are unknown → unsupervised learning methods. This 

is major advantage when SHM are performed over the years and a constant 

attention is necessary when it comes to structural safety. The main 

drawback might be the number of false positive alarms due to the lack of 

proper “learning” of the structure’s behavior. 

• one (or more) reference behaviors are known → supervised learning 

techniques. The main advantage is to provide the machine learning 

techniques a comprehensive database about the structure’s dynamic 

behavior. Then, it allows mitigating the number of false positive alarms. 

The main drawback, on the other hand, is that it is not always possible to 

know the structure’s actual (or former) condition a priori. 
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