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A teoria de potência instantânea tem um importante papel para a análise de sistemas de potência. Entre

as ferramentas matemáticas utilizadas no desenvolvimento dessa teoria, quatérnions têm sido emprega-

dos para descrever grandezas elétricas em trabalhos recentes. Neste contexto, este estudo tem por objetivo

modelar cargas trifásicas por meio de quatérnions. Considerando esse objetivo, os conceitos de impedância

e potência quaterniônicas são generalizados, considerando o regime permanente e o regime transitório. Us-

ando esses conceitos e considerando fontes de tensão equilibradas, cargas trifásicas lineares são analisadas.

No caso de cargas balanceadas, realiza-se a análise de diversos tipos de impedâncias conectadas na con-

figuração estrela. Mais especificamente, em cada caso são considerados resitores, indutores, capacitores,

além das suas combinações. O caso desbalanceado é modelado considerando o estado permanente de car-

gas genéricas em sistemas de três e quatro fios. As configurações delta e estrela são analisadas em sistemas

de três fios. Nos sistemas de quatro fios, considera-se a estrela aterrada e a estrela aterrada por impedância.

Mostra-se que é simples se obter as correntes ou a potência quaterniônicas utilizando as expressões obtidas

para a admitância quaterniônica, desde que as tensões trifásicas sejam conhecidas. A expressão obtida para

a admitância quaterniônica também torna natural a introdução em sistemas a três fios da decomposição da

carga trifásicas desbalanceada em termos de um componente balanceado e um componente desbalanceado

com potência média nula. Obtém-se também uma decomposição para a estrela aterrada por impedância,

mostrando que ela é equivalente à combinação em paralelo de uma carga em delta e de uma estrela aterrada.

Os resultados obtidos estendem a teoria de sistemas de potência no domínio dos quatérnions e enfatizam

as vantagens dessa representação. Particularmente, o modelo desenvolvido permite a representação das

grandezas trifásicas numa notação compacta e prática.
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Instantaneous power theory has an important role in power systems analysis. Among mathematical

settings used for the development of this theory, quaternion algebra has been used for describing electrical

variables in recent works. In this context, this study aims to model three-phase loads in a quaternion

framework. Having in view this goal, the concepts of quaternionic power and impedance are generalized,

considering steady and transient states. Using these concepts and considering balanced three-phase voltage

sources, three-phase loads are analyzed. In the balanced case, several types of impedance are considered

in the wye configuration. More specifically resistive, inductive, and capacitive impedances as well as their

combinations are considered in each case. The unbalanced case is modeled considering the steady-state

of generic loads in three and four-wire systems. In three-wire systems, both delta and wye configurations

are analyzed. In four-wire systems, the solidly grounded and the grounded wye loads are examined. The

expressions obtained for the admittance quaternion make it easy to obtain the three-phase current or the

power quaternion if the three-phase voltages are known. The admittance quaternion expression obtained

also makes it natural to introduce a decomposition of the three-wire unbalanced load in terms of a balanced

load and an unbalanced load with null average power. It is also observed from the admittance quaternion of

the grounded wye load that this configuration can be decomposed in a delta load in parallel with a solidly

grounded wye load. The results obtained extend the power systems theory in the quaternion domain and

emphasize the advantages of using this framework. Particularly, it is noteworthy that the model developed

allows for a compact and practical representation of three-phase quantities.
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1 INTRODUCTION

The use of power electronics devices has risen in recent years, as the technologies are improved and

renewable sources become more prominent in the market [1]. In this context, the importance of the com-

pensation of harmonics and load unbalance is highlighted with several dedicated studies [2–5]. To mitigate

these effects, accurate mathematical models need to be employed in order to correctly design compen-

sators. However, phasors, the main tool used for evaluating power systems, have limitations when such

non-ideal conditions are considered [6].

Originally, phasors were introduced to electrical circuit theory to simplify differential equations involv-

ing sinusoidal functions into algebraic equations. Since alternating current systems voltages and currents

in ideal conditions consist of sinusoidal functions with a single frequency, phasors were a natural choice

for modeling them. Other definitions such as electrical power and impedance could also be introduced in

this framework, in which products and sums of sines became basic operations between complex numbers.

In practical applications, it was observed that power definitions via phasors occurred in some inconsis-

tencies [7]. The presence of harmonics caused issues in the measurements of apparent, active, and reactive

powers [6]. It was also observed that pure resistive loads present reactive power, which is not accounted

for by phasors complex power [8]. Moreover, it is desirable to interpret three-phase systems as one entity,

instead of a group of three individual systems [6, 9].

The analysis of power systems under unbalanced conditions is mainly classified into two different

domains: the time-domain and the frequency domain. Particularly, the time-domain characterization has

been utilized to develop powerful analysis tools [10–12]. In [10], the instantaneous p-q power theory

was proposed employing the Clark transformation of instantaneous voltages and currents of a three-phase

system. This theory allows the compensation of reactive power without energy storage components. The

theory was extended by [11]. The author presented another interpretation that allows instantaneous reactive

power characterization without the need of performing a Clark transformation. It makes possible analysis

of polyphase networks. In [12], a generalized theory of instantaneous reactive power was proposed and

analyzed for its physical meaning.

All the above-mentioned authors considered instantaneous space vectors to represent voltages and cur-
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rents. More recently, some researchers have investigated instantaneous power quantities using a more

general mathematical setting such as geometric algebra [13, 14], tensor analysis [15, 16], and quaternion

algebra [17–20].

A framework based on quaternions seems to be promising for analysis of several problems in power

systems and has already produced some interesting results [17–20]. The representation of three or four-

dimensional quantities is an ideal scenario for employing them, making them an excellent tool for rep-

resenting power systems [17–20]. Although they were applied in several problems, the foundations of

three-phase circuit theory in this framework were not completely investigated in the literature.

1.1 QUATERNIONS IN ELECTRICAL ENGINEERING PROBLEMS

In this section, the literature on the application of quaternions in electrical engineering problems will

be discussed.

Quaternions are a four-dimensional generalization of complex numbers [21]. They were discovered

by Sir William Rowan Hamilton, who was searching for an algebra that represented three-dimensional

rotations in the same way that complex numbers are employed to represent two-dimensional rotations. The

solution found was to define three imaginary units, forming numbers with a real part and three mutually

orthogonal imaginary parts. The established algebra was denoted H in honor of its creator.

Quaternions have been traditionally used for the problem of modeling three-dimensional rotations in a

computationally efficient manner [22–24]. The invertibility property of nonzero quaternions allows concise

and mathematically tractable solutions with fewer restrictions than those obtainable in the real domain and

also avoids problems associated with gimbal lock [22,23]. Additionally, higher-quality computer graphics

is obtained by the smooth interpolations of rotations that quaternions produce [25].

For power systems, the usage of quaternion seems promising due to the possibility of i) operating

the three phases as one entity and ii) representing electrical quantities in the time-domain, following the

tendency of developing tools in this domain. Quaternion-based algorithms have been shown to be compu-

tationally efficient and accurate [26–29]. Consequently, a diverse niche of applications has been found for

quaternions in power systems.

An algebraic approach was employed by the authors of [30] for defining three-phase quantities. Ac-
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cording to the authors, this approach is more convenient for the quantitative analysis of the electric system

behavior than the geometrical approach discussed in [31]. In this quaternionic framework, instantaneous

line voltage and currents were defined. Instantaneous hypercomplex power was also defined and using this

concept, the three-phase current is separated into “real” and “imaginary” components. It was shown that

this decomposition generates the same currents as those discussed by Willems’ power theory [11]. The

author also generalizes the notion of impedance and admittance, defining instantaneous impedance and

admittance. However, the authors only suggested the definitions for these quantities, not using them for

further analysis.

The authors of [17] analyzed the electromagnetic transients in a three-phase squirrel-cage induction

motor employing quaternions. The author used Pauli spin matrices representation of quaternions for calcu-

lating the linear transformations. This approach showed the advantage of using only 4 kinematic Caylen-

Klein parameters instead of 9 direction cosines necessary in the traditional way. The method also allows

performing the separate compensation of “active” and “reactive” losses in the induction motor, according

to the author.

The authors of [32,33] designed an active power filter for compensating harmonics and reactive power.

Quaternions were employed for obtaining the compensating currents. The filter was used for compensating

the power of unbalanced non-linear three-phase loads in computational simulations, decreasing the total

harmonic distortion from 37.45% to 8.24%. It was concluded that the generation of compensating reference

on a quaternion basis is about ten times faster than the control operation based on the original Akagi-

Nabae p-q theory [10]. This method for designing active power filters was revisited in [34], in which a

shunt active power filter was projected and simulated for compensating currents of an unbalanced non-

linear three-phase load. This paper also explored the properties of the instantaneous power definition in

the hypercomplex space. The control laws of the active power filter presented in [32–34] were summarized

in [35].

The authors of [36] developed a frequency estimation algorithm for three-phase systems based on

quaternions. According to the authors, the algorithm developed is robust to noise and distortions. The

H calculus was employed to derive a state-space estimator based on the quaternion extended Kalman

filter proposed in [28]. The quaternion-valued state-space model was compared to the complex-valued

state-space model in simulations. The simulations consisted of a balanced system that suffered a voltage
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sag, an unbalanced system experiencing a frequency rise, and real-world data recorded at a 110/20/10

kV transformer station. The performance of this algorithm outperformed conventional complex linear

estimators.

In [37], the author summarized the results achieved in [19] and [38]. In this paper, a single-phase

RLC circuit was analyzed using quaternions. The differential equation of this circuit was written in terms

of two orthogonal axes. Then, the power vector was represented in the remaining two quaternion axis,

enlightening that these quantities are in quadrature with each other. The author also applied quaternions

to analyze a direct current motor circuit. The Lorenz’s force was computed for several cases with varying

relative positions of flux and current.

The authors of [39] proposed harmonic distortion detection in three-phase power systems employing

of quaternions. The frequency sweeping vector was rewritten considering a hypercomplex axis. Using this

vector, the well-known processing algorithms MVDR and MUSIC were applied. Simulations showed that

the model can detect all-order harmonics effectively and has similar estimation accuracy with the complex-

valued model. Additionally, it can detect the zero-sequence voltages that are ignored by traditional Clarke’s

transformation.

A dynamic model of an induction motor with a squirrel-cage rotor in a quaternion framework was pre-

sented in [40]. Clark and Park’s transformations were described in the hypercomplex space by quaternion

rotations. These transformations were employed to obtain voltage differential equations and flux equations

in dq coordinates. Afterward, instantaneous power and electric torque quaternions were found. The au-

thors concluded that their model allows to split up the vector control design in sub-tasks and ensures the

high-performance of speed response as well as reduction of active losses.

A quaternion quantitative analysis on harmonics of three-phase systems was carried out in [41]. Differ-

ent compensation objectives were formulated based on this analysis, showing which terms of instantaneous

power should be addressed by the active power filter for full compensation. These objectives permit to pro-

vide balanced or/and sinusoidal source currents with the desired phase shift relative to the corresponding

voltage.

In 2018, [18] modeled three-phase circuits using quaternions. The voltage locus was analyzed for

both balanced and unbalanced situations. It was shown that in the unbalanced case, it describes an ellipse

while in the balanced case, it describes a circle. A three-phase series RLC balanced wye load was also
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studied. Expressions for impedance and power of this load were obtained and it was shown that they are

analogous to the representation of a single-phase RLC load using phasors. Additionally, it was pointed

out that quaternion characterization of three-phase quantities serves as a link between the usual time and

frequency domains. More specifically, with quaternions, it is possible to define three-phase electrical

quantities analogously to single-phase definitions with phasors.

A hyper-impedance model was defined using quaternions in [42]. This hyper-impedance differed from

the impedance model proposed in [18] by the inclusion of voltage and temperature in the formulation. A

hypercomplex impedance model was also presented, using the octonion algebra. It added time, length,

mass, amount of matter, and intensity of light in the hyper-impedance model, besides considering a dy-

namic parameter of the object. The use of these models made it possible to expand the capabilities of

the Sawyer-Tower method for indirect measurements of the electrophysical parameters of ferroelectrics.

According to the authors, their model opens up the possibility of taking into account the influence of

heterogeneous factors on the object of study.

A control strategy for a four-leg full-bridge inverter using quaternions was proposed in [20]. It was

based on the decomposition of three-phase voltages into balanced sinusoidal and unbalanced multi-harmonic

components in the H-domain. The quaternion representation of Clark and Park transformations was em-

ployed for modeling the feedback controller. Computational simulations showed that the quaternion control

strategy provided the expected steady-state accuracy and fast-response transient behavior in the three-phase

four-wire system. The control strategy presented in this work makes possible full characterization of volt-

age source inverter operations under unbalanced and/or non-sinusoidal load conditions.

A unified framework for filtering and controlling quaternion-valued state vector processes through

multi-agent networked systems is presented in [43]. A distributed quaternion Kalman filter algorithm is

introduced, as well as a decentralized quaternion-valued widely-linear quadrature regulator algorithm. The

derived framework’s performance is evaluated by computational simulations, comparing traditional cen-

tralized approaches to the distributed approaches proposed by the authors. It was observed that the devel-

oped framework reaches comparable performance levels to that of its centralized counterpart. According

to the authors, the advantages of modeling three-dimensional signals with quaternions were demonstrated

by simulations.

In synthesis, quaternions have been used for
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1. representing three-phase electrical quantities (voltage, current, impedance, admittance) [18, 30, 44];

2. representing linear transformations in induction motors models [17, 38, 40];

3. analyzing single phase systems [18, 19, 37];

4. designing compensators [20, 32–35];

5. estimating electrical frequency [36];

6. treating harmonics [39, 41];

7. algorithms for distributed filter and control [43].

Although linear loads have been studied before in a quaternion framework, the transients were not

analyzed. Also, the expression for the admittance of three-phase unbalanced loads was not presented in

the literature. Considering the aforementioned facts, a comprehensive analysis of linear loads would be a

useful study for quaternion’s flourishing literature.

1.2 OBJECTIVES

This study aims to present the evaluation of voltage, current, instantaneous power, and admittance in

the time domain, using quaternions. In other words, the objective of this dissertation is to extend the three-

phase circuit theory based on quaternions, making feasible the application of this theory in the various

problems studied in power systems. The analysis of the various load configurations is the approach chosen

to accomplish this goal.

1.3 CONTRIBUTIONS

The contributions of this dissertation are

1. Modelling and analysis of current, admittance and power of three-phase balanced loads composed

of resistors, inductors, capacitors and their combinations in a quaternion framework, considering

transient and steady-states in the time domain;
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2. Modelling and analysis of current, admittance and power of unbalanced three-phase delta and wye

loads in a quaternion framework, considering the steady-state;

3. Modelling and analysis of current, admittance and power of unbalanced solidly grounded and grounded

wye loads in a quaternion framework, considering the steady-state;

4. Decomposition of the unbalanced delta load into a balanced load in parallel with an unbalanced load

with null average power;

5. Decomposition of the unbalanced grounded wye load into a delta load in parallel with a solidly

grounded wye load.

The parts of these results related to the analysis of current and power of delta loads in the steady-state

and the decomposition of delta loads were also published in [44].

1.4 DISSERTATION ORGANIZATION

In chapter 2, some basic theoretical background on the quaternion non-commutative algebra is pre-

sented. Several operations and properties necessary for working with quaternion three-phase circuit theory

are shown. Afterward, in the chapter 3, the modeling of three-phase linear loads in the quaternion domain

is presented. The modeling considers three and four-wire systems, balanced and unbalanced loads, and

transient and steady-states. Finally, conclusions and guidelines for future works are addressed in chapter

4.

7



2 THEORETICAL BACKGROUND

In this chapter, the theoretical background of this dis-
sertation is presented. First, quaternions are defined.
Then, quaternion algebra is detailed, providing the
mathematical foundation necessary for the construc-
tion of the hypercomplex three-phasic concepts of this
monograph.

2.1 QUATERNION ALGEBRA

Quaternions were discovered by the Irish mathematician Sir William Rowan Hamilton (1805-1865).

His initial motivation was inventing a set of numbers that related to the three-dimensional space in the

same way as the complex numbers relate to the plane. This set would make it possible to represent three-

dimensional rotations in the same way that complex numbers can represent two-dimensional rotations. His

first conjecture proposed to add a second imaginary component to complex numbers for defining these

numbers. However, after about 10 years of researching this subject, he still had not accomplished any

success defining hypercomplex numbers. His struggle was even known by his children, who would ask

if he already could multiply his “triplets”, to which he would deny, due to the inconsistency of his initial

idealized algebra. But on 16th of October, in 1843, as he was walking along the Royal Canal in Dublin

with his wife, came the inspiration: using three imaginary components instead of two, he could define

an algebra that had the properties he was looking after. Thus, the quaternions were born (from Latin,

quaternio, meaning "set of four"). He was so excited with his discovery that he drew his pocketknife and

carved into the stone of Broome Bridge the famous formulas

i2 = j2 = k2 = ijk = −1. (2.1)

Unfortunately, the carvings faded with time. Nevertheless, even nowadays the Mathematics Department of

the National University of Ireland, Maynooth, organizes a Hamilton Walk to Broome Bridge every year on

October 16, in honor of his discovery [21].

Putting aside history, quaternions are an excellent tool for problems involving three dimensions, espe-

cially when rotations are involved. In this dissertation, instead of using i, j and k, a, b and c are used for

representing the imaginary units of the quaternion domain, in allusion to the phases in three-phase systems.

In the subsections that follow, quaternions definitions and properties will be presented. The theory
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discussed here is based in [21].

2.1.1 The standard Quadrinomial Form

Quaternions are a set of numbers denoted by H, in honor of its discoverer. Since this set is one of

the possible generalizations of complex numbers, its elements are considered hypercomplex numbers. An

element of H can be defined in the quadrinomial form as

Q = q0 + q1a + q2b + q3c, (2.2)

where q0, q1, q2 and q3 are real numbers and a, b and c form, along with 1, the orthonormal basis of their

hypercomplex space. The quaternion Q can be unequivocally associated to an ordered quadruple of real

numbers (q0, q1, q2, q3), so every point in R4 has a corresponding quaternion.

2.1.2 Scalar and vectorial parts

Analogously to complex numbers real and imaginary parts, quaternions can be separated into real (or

scalar) and imaginary (or vectorial) parts. Considering the quaternion presented in (2.2), its real part Re(Q)

and vectorial part ~Q are, respectively, given by

Re(Q) = q0, (2.3)

~Q = q1a + q2b + q3c. (2.4)

If a quaternion has its real part equal to 0, it is said to be a purely vectorial quaternion. Notice that the

vectorial part of a quaternion is always a purely vectorial quaternion. In the same way that quaternions

are related to vectors in R4, purely vectorial quaternions can be unequivocally associated to vectors in R3

which are represented by the ordered triplet (q1, q2, q3). From this point on, the terms purely vectorial

quaternion and vector will be used as synonyms.

2.1.3 Sum and Subtraction

Considering two quaternions Q and P where Q = q0 + q1a + q2b + q3c and P = p0 +p1a +p2b +p3c,

their sum and subtraction can be calculated respectively as

Q + P = (q0 + p0) + (q1 + p1)a + (q2 + p2)b + (q3 + p3)c, (2.5)
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Q− P = (q0 − p0) + (q1 − p1)a + (q2 − p2)b + (q3 − p3)c. (2.6)

It is noteworthy that these operations are equivalent to the sum and subtraction of vectors in R4. Fur-

thermore, the addition of quaternions is associative and commutative, i.e.

(Q + P) + R = Q + (P + R), (2.7)

Q + P = P + Q. (2.8)

2.1.4 Basic Units

The imaginary units of H are related according to the famous expression

a2 = b2 = c2 = abc = −1. (2.9)

Using these relations it can be shown that

ab = c = −ba, (2.10)

bc = a = −cb, (2.11)

ca = b = −ac. (2.12)

It is observed from eqs. (2.10) to (2.12) that a, b and c pairwise anti-commute. As a consequence,

quaternion product is non-commutative, as will be presented next.

2.1.5 Product

In quaternion algebra, the product of two quaternions Q and P is defined by

QP = (q0p0 − q1p1 − q2p2 − q3p3) + (q0p1 + q1p0 + q2p3 − q3p2)a

+ (q0p2 − q1p3 + q2p0 + q3p1)b + (q0p3 + q1p2 − q2p1 + q3p0)c. (2.13)

The quaternion product can be rewritten in terms of the inner product and the cross product of the

vectorial parts of the operands. The inner product between ~Q and ~P is defined as

~Q · ~P = q1p1 + q2p2 + q3p3 (2.14)
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and the cross product is given by the following determinant

~Q× ~P =

∣∣∣∣∣∣∣
a b c
q1 q2 q3

p1 p2 p3

∣∣∣∣∣∣∣ .
Notice that the definition of these operations is the same regardless if the vectorial part of quaternions

or vectors in R3 are considered. Using these definitions, the product between Q and P can be rewritten as

QP = (Re(Q) Re(P)− ~Q · ~P) + (Re(Q)~P + Re(P)~Q + ~Q× ~P). (2.15)

In particular, if Q and P are purely vectorial quaternions, then their product can be simplified to

QP = −~Q · ~P + ~Q× ~P. (2.16)

The product of quaternions is associative, but not commutative. This comes from the cross product

found on eq. (2.15) being non-commutative. More specifically, the cross-product is anti-commutative, i.e.

~Q× ~P = −~P× ~Q. (2.17)

There is an exception to the non-commutativity of the product between quaternions. If the vectorial

part of two quaternions is co-linear, their cross product is 0 and their product is commutative. In this case,

it is said that these quaternions commute. Naturally, real numbers also commute with every quaternion.

2.1.6 Conjugate

Analogously to complex numbers, quaternions also have a conjugate. The conjugate of the quaternion

Q is the quaternion

Q∗ = Re(Q)− ~Q. (2.18)

Its noteworthy that, if the quaternion is purely vectorial, the conjugate is equivalent to multiplying it to−1,

i.e.

Q∗ = −Q. (2.19)

Another important property of the conjugate of a product between quaternions is that

(QP)∗ = P∗Q∗. (2.20)
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2.1.7 Norm

The norm of a quaternion Q is equivalent to the Euclidean distance of their correspondent point on R4

to the origin. It is defined as

|Q| =
√
q2

0 + q2
1 + q2

2 + q2
3. (2.21)

Particularly, the norm of a purely vectorial quaternion is

|~Q| =
√
q2

1 + q2
2 + q2

3. (2.22)

Naturally, eq. (2.21) can also be expressed in terms of the norm of the vectorial part of the quaternion

|Q| =
√
q2

0 + |~Q|2. (2.23)

The norm can also be defined in terms of quaternion conjugate

QQ∗ = Q∗Q = |Q|2. (2.24)

2.1.8 Inverse

The inverse of a non zero quaternion Q is defined in terms of its conjugate and norm according to

Q−1 =
Q∗

|Q|2
. (2.25)

Using this definition, the division between quaternions can also be defined. The right division of Q

by P is defined as QP−1 and the left division of Q by P is defined as P−1Q. In general, QP−1 6= P−1Q,

unless Q and P commute. The inverse applied to a product of quaternions follows the property

(QP)−1 = P−1Q−1. (2.26)

2.1.9 Polar Form

The polar form (or trigonometric representation) of a quaternion Q similarly to complex numbers is

defined in terms of its norm and an angle θ. The polar form is defined as

Q = |Q|edθ = |Q|(cos(θ) + d sin(θ)), (2.27)

where d is given by

d =
~Q
|~Q|

(2.28)
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and θ is the angle between Q and the real axis. The quaternion |Q|d sin(θ) is equivalent to the projection

of Q to R3.

2.1.10 Rotation Quaternion

Considering a purely vectorial quaternion q, the clockwise rotation in the H domain of this vector

around an axis p by an angle θ is calculated as

qrot = RqR∗, (2.29)

where R is a unity quaternion defined as

R = cos

(
θ

2

)
+ p sin

(
θ

2

)
= ep θ

2 . (2.30)

The axis p is a unity purely vectorial quaternion.

It is noteworthy that if q is rotated along an perpendicular axis, the rotation can be rewritten as

qrot = epθq = qe−pθ. (2.31)

This is a consequence of the inner product between two perpendicular vectors being null and the cross

product being anticommutative.

2.1.11 H calculus

In this dissertation, H calculus is applied in relation to a scalar. This implies that quaternion derivatives

and integrals will be discussed only with respect to a real number. In the quaternion domain, these operands

are also linear. Considering Q(t) = q0(t) + q1(t)a + q2(t)b + q3(t)c, then

dQ(t)

dt
=
dq0(t)

dt
+
dq1(t)

dt
a +

dq2(t)

dt
b +

dq3(t)

dt
c, (2.32)

∫
Q(t) dt =

∫
q0(t) dt+

(∫
q1(t) dt

)
a +

(∫
q2(t) dt

)
b +

(∫
q3(t) dt

)
c. (2.33)

Derivatives of quaternions rotating in circular motions are mapped into products between them, their

rotation axis and their angular momentum. Assuming a quaternion is represented in its polar form as

Q(t) = |Q(t)|enθ(t), then
dQ(t)

dt
=
dθ(t)

dt
nQ(t). (2.34)
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In particular, if the angle is a proportional to time, i.e., θ(t) = ωt, then its derivative is

dQ(t)

dt
= ωnQ(t) (2.35)

and its integral is ∫
Q(t) dt = − 1

ω
nQ(t). (2.36)

If the quaternion describes a uniform circular motion around an perpendicular axis, it can be written

according to eq. (2.31) as

Q(t) = enωtQ0, (2.37)

where Q0 = Q(0). In this case, it can be shown that

dQ(t)

dt
= ωnQ(t), (2.38)∫

Q(t) dt = − 1

ω
nQ(t). (2.39)

In other words, the derivatives and integrals map quaternions to products, analogously as phasors.

2.1.12 Exponential

Considering the quaternion Q as defined by eq. (2.2), the quaternion natural exponential function is

defined as

eQ = eq0
(

cos |~Q|+ n sin |~Q|
)
, (2.40)

where n is given by

n =
~Q
|~Q|

. (2.41)

The product of two exponential of commuting quaternions follows the property

eQeP = eQ+P. (2.42)

2.1.13 Isomorphic subsets of H

Through the development of the quaternionic three-phase power theory in this study, quaternions writ-

ten in a particular form are found. More specifically, a subset of quaternions isomorphic to C is especially

useful.
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For defining this subset, consider the equation Q2 + 1 = 0. In the H domain, it has infinite solutions.

To solve this equation, the square is expanded, obtaining four equations

q2
0 − q2

1 − q2
2 − q2

3 = −1, (2.43)

2q0q1 = 0, (2.44)

2q0q2 = 0, (2.45)

2q0q3 = 0. (2.46)

From eqs. (2.44) to (2.46), q1 = q2 = q3 = 0 or q0 = 0. If we substitute the first case in eq. (2.43), we

obtain q2
0 = −1, which has no solution since q0 is a real number. Then, we conclude that q0 = 0. Using

this in eq. (2.43)

q2
1 + q2

2 + q2
3 = 1. (2.47)

Since there is no other restriction, this implies that every unity purely vectorial quaternion is a solution to

the equation.

The complex numbers C are isomorphic to the subsets of H in the form S = {q ∈ H | q = w +

nx, w and x ∈ R, n ∈ H, n2 = −1}. Additionally, the quaternion in these subsets commute. In fact,

considering the quaternions p = w + nx and q = y + nz with the same unity purely vectorial quaternion

n. Notice that

pq = qp = (wy − xz) + n(wz + xy). (2.48)

2.2 FINAL CONSIDERATIONS

In this chapter, the quaternion algebra H, its properties, and its calculus operators were presented. The

theoretical background presented in this chapter, particularly the quaternion description of rotation, will

help analyze balanced and unbalanced three-phase loads in the next chapter.
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3 QUATERNION CHARACTERIZATION OF
THREE-PHASE LOADS

In this chapter voltage and current quaternions are
presented. Initially, considering a balanced source,
these definitions are used to obtain an expression
for power, impedance, and admittance quaternions.
The balanced case is investigated for resistive, induc-
tive, and capacitor three-phase loads, as well as their
combinations. After that, expressions are obtained
for the admittance quaternion of delta and wye loads
for the unbalanced case. The admittance quaternions
of unbalanced solidly grounded and grounded wye
loads are obtained. Lastly, the power quaternions of
balanced loads, unbalanced delta load, and solidly
grounded load are analyzed

3.1 QUATERNION QUANTITIES IN THREE-PHASE SYSTEMS

In three-phase systems, balanced phase voltages can be written in the time-domain as

va(t) =
√

2Vo cos(ωt), (3.1)

vb(t) =
√

2Vo cos(ωt− 120◦), (3.2)

vc(t) =
√

2Vo cos(ωt+ 120◦), (3.3)

where va(t), vb(t) and vc(t) are phase to ground voltages, Vo is the RMS voltage in V, t is the time in s,

and ω is the electrical frequency in deg/s.

Using eqs. (3.1) to (3.3), the voltage quaternion (Q-voltage) can be defined according to [30] by

V(t) = va(t)a + vb(t)b + vc(t)c. (3.4)

Analogously, the three-phase current quaternion (Q-current) is defined by

I(t) = ia(t)a + ib(t)b + ic(t)c, (3.5)

in which ia(t), ib(t) and ic(t) are line currents flowing through phases A, B and C, respectively.
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In [18], it is shown that, in steady-state, the Q-voltage and Q-current describe elliptical movements.

Particularly, a circular motion is traced in the balanced case. The balanced Q-voltage defined by eq. (3.4),

for example, can be written in terms of quaternion rotations using eq. (2.31) as

V(t) =
√

3Voe
nωtqp, (3.6)

where qp is an unity quaternion in the same direction of V(0) and is given by

qp =
V(0)

|V(0)|
=

2a− b− c√
6

, (3.7)

and n is an unity quaternion perpendicular to Q-voltage’s plane and given by

n =
a + b + c√

3
. (3.8)

Figs. 3.1 and 3.2 show, respectively, the components and the locus of the Q-voltage for Vo = 220 V

and ω = 2π60 rad/s.
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Figure 3.1: Balanced three-phase voltages.

There are some different definitions of the power quaternion (Q-power) in the literature. In [33] and

subsequent works [34, 35, 40, 41], the Q-power was defined by the product of Q-voltage and Q-current.

However, [18] showed that it is more appropriated to define the Q-power as

S(t) = V(t)I∗(t). (3.9)

The definition in eq. (3.9) will also be used in this work since the direction of the Q-power has a physical

meaning using this definition. With this expression, the scalar part’s sign and vectorial part direction of
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Figure 3.2: Balanced three-phase Q-voltage.

Q-power indicates active and reactive power consumption, respectively [18]. Other possible definitions,

e.g. I(t)V(t) fails to preserve this property.

In [18] it is also shown that the Q-power can be written as

S(t) = pabc(t)− ~Q(t), (3.10)

where pabc(t) is the instantaneous three-phase active power and ~Q(t) is

~Q(t) = qa(t)a + qb(t)b + qc(t)c, (3.11)

qa(t) = vb(t)ic(t)− vc(t)ib(t), (3.12)

qb(t) = vc(t)ia(t)− va(t)ic(t), (3.13)

qc(t) = va(t)ib(t)− vb(t)ia(t). (3.14)

The instantaneous reactive Q-power ~Q(t) is equivalent to instantaneous reactive power representation

via vectors [12, 18].

The three-phase impedance quaternion (Q-impedance) [30] is defined as

Z = VI−1. (3.15)

It is defined as Q-voltage right divided by Q-current instead of other combinations for consistency with

the geometrical interpretation of Q-power. Using eq. (3.15), Q-power eq. (3.9) can be rewritten in terms of

Q-impedance as shown in [18].

S = Z|I|2, (3.16)
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S = (Z−1)∗|V|2. (3.17)

Another concept that comes naturally considering the definition of the Q-impedance is the three-phase

admittance quaternion (Q-admittance). It was defined by [30] as

Y = Z−1 = IV−1. (3.18)

Naturally, Q-power can also be written in terms of Q-admittance using eq. (3.18) in eq. (3.9).

S = Y−1|I|2, (3.19)

S = Y∗|V|2. (3.20)

A parallel association rule can be obtained from the definition of Q-admittance eq. (3.18). If two three-

phase loads are connected to the line, they share the same Q-voltage V and the Q-current supplied to them

I is the sum of the current of each load, so

Y1 + Y2 = I1V−1 + I2V−1 = IV−1 = Yeq, (3.21)

where Y1 and Y2 are the Q-admittances of both loads, I1 and I2 are their Q-currents, Yeq is the Q-

admittance of their parallel association.

In the rest of this chapter, different combinations of loads and their response to Q-voltage will be

analyzed in detail.

3.2 THREE-PHASE BALANCED LOADS

Having defined the quaternionic electrical quantities in three-phase systems, the next natural step is

to study simple loads in this framework. Nevertheless, the formulation of Q-admittance of basic loads is

missing from the literature. In [18], the Q-impedance of a three-phase RLC balanced load in the wye con-

figuration was presented. However, the authors presented the formulation exclusively for the steady-state,

despite doing a time-domain analysis. In this sense, a novel formulation of balanced loads is presented in

this section, considering the transient and steady states. The expression of Q-admittance is obtained instead

of Q-impedance since its relation to Q-power is more straightforward. The choice of Q-admittance is also

justified by the transient and steady-state components being independent, as will be discussed later in this

chapter.
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For analyzing three-phase balanced loads, first, the formulation of a generic load in the steady-state

will be presented. Next, a systematic analysis of different configurations is made, considering the transient

state of each kind of load. The Q-voltage is considered the input of each circuit and is given by eq. (3.4).

The Q-current is then obtained using circuit analysis and utilizing it, the Q-admittance is calculated.

Starting this analysis, consider a balanced three-phase load with admittances connected in each phase

equal to Y e−jθ. This load is shown in Fig. 3.3.

va(t)

vb(t)

vc(t)

Ŷ

ŶŶ

Figure 3.3: Balanced three-phase load.

Assuming a balanced source with Q-voltage described by eq. (3.4), steady-state Q-current is given by

I(t) =
√

2VoY (cos(ωt− θ)a + cos(ωt− 120◦ − θ)b + cos(ωt+ 120◦ − θ)c) (3.22)

It is noteworthy that, if the Q-voltage is dislocated by an angle α, eq. (3.6) can be written as

V
(
t+

α

ω

)
=
√

3Voe
n(ωt+α)qp. (3.23)

As a consequence, the Q-current can also be written in terms of quaternion rotations using eq. (3.23)

I(t) =
√

3VoY e
n(ωt−θ)qp. (3.24)

Since Q-voltage is given by
√

3Voe
nωtqp, it is observed that, in the steady-state, the Q-current rotates in

circular motion with a θ rad delay in relation to voltage. Also, the radius of the circumference is multiplied
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by Y . The Q-current considering a RLC balanced load with R = 100 Ω, C = 100µF and L = 1 H is

presented in Fig. 3.4.

Figure 3.4: Steady-state Q-current in the balanced load.

The steady-state Q-admittance can be calculated as well. First, computing V−1(t)

V−1(t) =
1√
3Vo

q−1
p e−nωt. (3.25)

Then, using eqs. (3.24) and (3.25) in eq. (3.18)

Y = IV−1 = Y e−nθ. (3.26)

It is noteworthy that the expression obtained is equivalent to the expression of the single-phase admit-

tance, substituting the j for n. For the balanced case in the steady-state, the quaternion representation is

similar to the single-phase equivalent circuit using phasors. Since quaternions are more computationally

expensive, it would make an argument for sticking with the phasor representation. Nevertheless, as a time-

domain representation, quaternions allow the inclusion of transients in a unique formulation. This fact is

explored in the next subsections, where different combinations of loads are analyzed.

3.2.1 R load

For the first case, a pure resistive three-phase load is considered. This load is shown in Fig. 3.5.

The voltage in each phase is simply

va(t) = Ria(t), (3.27)

vb(t) = Rib(t), (3.28)
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vc(t)
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R

R

Figure 3.5: Resistive three-phase load.

vc(t) = Ric(t), (3.29)

which can be written as the Q-voltage

V(t) = RIT (t). (3.30)

From eq. (3.30) it is observed that the resistive balanced load can be described by the steady-state

model of eqs. (3.24) and (3.26), with Y = 1/R and θ = 0.

3.2.2 L load

Next, a pure inductive three-phase load is considered. This load is shown in Fig. 3.6.

The voltage in each phase is given by

va(t) = L
dia(t)

dt
, (3.31)

vb(t) = L
dib(t)

dt
, (3.32)

vc(t) = L
dic(t)

dt
, (3.33)

which can be written as the Q-voltage

V(t) = L
dIT (t)

dt
. (3.34)
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Figure 3.6: Inductive three-phase load.

Solving for IT (t)

IT (t) =
1

L

∫ t

0
V(τ)dτ + IT (0). (3.35)

Since V(t) is given by eq. (3.6)

IT (t) = −n
√

3Vo
ωL

enωtqp + n
√

3Vo
ωL

qp + IT (0), (3.36)

The Q-current can be simplified to

IT (t) =

√
3Vo
ωL

en(ωt−π
2

)qp −
√

3Vo
ωL

e−n(π
2

)qp + IT (0). (3.37)

Defining

k = IT (0)−
√

3Vo
ωL

e−n(π
2

)qp, (3.38)

the Q-current eq. (3.37) can be written as

IT (t) =

√
3Vo
ωL

en(ωt−π
2

)qp + k. (3.39)

The Q-admittance of this load can be calculated as well using eqs. (3.25) and (3.39) in eq. (3.18)

YT =
1

ωL
e−nπ

2 +
1√
3Vo

kq−1
p e−nωt. (3.40)
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It is observed that the initial value of the Q-current is relevant in the behavior of a purely inductive load,

adding a constant term in the steady model of eqs. (3.24) and (3.26). Nevertheless, if k = 0, eqs. (3.39)

and (3.40) are equivalent to eqs. (3.24) and (3.26). In this case, from eqs. (3.39) and (3.40) it is observed

that the inductive balanced load can be described by the steady-state model of eqs. (3.24) and (3.26), with

Y = 1/ωL and θ = π/2.

3.2.3 C load

In this case, a pure capacitive three-phase balanced load is considered. This load is shown in Fig. 3.7.

va(t)

vb(t)

vc(t)

C

C

C

Figure 3.7: Capacitive three-phase load.

The voltages in each phase are given by

va(t) =
1

C

∫ t

−∞
ia(τ) dτ, (3.41)

vb(t) =
1

C

∫ t

−∞
ib(τ) dτ, (3.42)

vc(t) =
1

C

∫ t

−∞
ic(τ) dτ, (3.43)

which can be written with quaternions as

V(t) =
1

C

∫ t

−∞
IT (τ) dτ. (3.44)
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Solving for IT (t)

C
dV(t)

dt
= IT (t). (3.45)

Since V(t) is given by eq. (3.6)

IT (t) = nωC
√

3Voe
nωtqp, (3.46)

which can be written as

IT (t) =
√

3VoωCe
n(ωt+π

2
)qp, (3.47)

From eq. (3.47) it is observed that the capacitive balanced load can be described by the steady-state

model of eqs. (3.24) and (3.26), with Y = ωC and θ = −π/2.

3.2.4 RL load

In this case, an RL wye load, as presented in Fig. 3.8 is analyzed. The phase loads are series connected

resistors and inductors.

va(t)

vb(t)

vc(t)

L

L

L

R

R

R

Figure 3.8: RL three-phase load.

The voltage in each phase could be described by a set of differential equations

va(t) = Ria(t) + L
dia(t)

dt
, (3.48)

vb(t) = Rib(t) + L
dib(t)

dt
, (3.49)
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vc(t) = Ric(t) + L
dic(t)

dt
. (3.50)

Rewriting eqs. (3.48) to (3.50) in the quaternion form

V(t) = RIT (t) + L
dIT (t)

dt
. (3.51)

Solving the differential equation eq. (3.51) is equivalent to solving eqs. (3.48) to (3.50) separately. The

solution is given by the combination of homogeneous and particular solutions, which means

IT (t) = Ih(t) + Ip(t). (3.52)

The particular solution represents the steady-state of the Q-current. It is given by eq. (3.24) where

Y =
1√

R2 + (ωL)2
, (3.53)

θ = tan−1

(
ωL

R

)
. (3.54)

The homogeneous solution represents the transient state and is given by

Ih(t) = kae
−R
L
ta + kbe

−R
L
tb + kce

−R
L
tc = e−

R
L
tk, (3.55)

where

k = kaa + kbb + kcc. (3.56)

The constants ka, kb and kc are determined by the initial value of IT (t). The solution for the differential

equation eq. (3.51) is then given by

IT (t) =
√

3VoY e
n(ωt−θ)qp + e−

R
L
tk. (3.57)

It is noteworthy that the second term in eq. (3.57) is a quaternion with constant direction and decreasing

modulus. The Q-current in this situation is given by the composition of an escalated, delayed Q-voltage

with this modulus decreasing transient Q-current.

Fig. 3.9 presents the components of the Q-current in the time domain, considering R = 100 Ω, L = 1

H and IT (0) = 0. It is observed that the currents have different amplitudes in the transient state and in

the steady state, they are balanced. In Fig. 3.10 the transient state of the components of the Q-current are

presented separately.
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Figure 3.9: Currents of the RL three-phase load.
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Figure 3.10: Transient state currents of the RL three-phase load.

The transient part of Q-current represents the center of its locus circumference. As observed in Fig.

3.10, the center dislocates until it stabilizes in the origin. The resultant motion is a spiral-like movement

that approaches a perfect circular motion as time increases. Fig. 3.11 presents the Q-current locus. The

Q-current starts at the initial value and then circles around in a spiral shape until it reaches the steady-state.

It is noteworthy that, in this case, the Q-current is in a single plan in the H domain. As such, it can be

represented as presented in Fig. 3.12. In Fig. 3.12, qr is a unity quaternion perpendicular to qp and n and

given by

qr = e−n(π
2

)qp. (3.58)
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Figure 3.11: Currents of the RL three-phase load in abc space.
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Figure 3.12: Currents of the RL three-phase load.

The instantaneous Q-admittance can be defined as

YT = ITV−1 = Ih(t)V−1 + Ip(t)V−1. (3.59)

Using eq. (3.25), eq. (3.59) can be computed as

YT (t) = Y e−nθ +
e−

R
L
t

√
3Vo

kq−1
p e−nωt, (3.60)

where Y e−nθ is the steady-state part and (e
−R
L
t
/
√

3Vo)kq−1
p e−nωt is the transient part of the Q-admittance.

3.2.5 RC load

In this case, it is considered that the three-phase wye load is formed by resistors and capacitors con-

nected in series, as shown in Fig. 3.13.
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Figure 3.13: RC three-phase load.

The voltage in each phase is described by the differential equations

va(t) = Ria(t) +
1

C

∫ t

−∞
ia(τ) dτ, (3.61)

vb(t) = Rib(t) +
1

C

∫ t

−∞
ib(τ) dτ, (3.62)

vc(t) = Ric(t) +
1

C

∫ t

−∞
ic(τ) dτ, (3.63)

which can be written with quaternions as

V(t) = RIT (t) +
1

C

∫ t

−∞
IT (τ) dτ. (3.64)

Applying the derivative in both sides

dV(t)

dt
= R

dIT (t)

dt
+

IT (t)

C
. (3.65)

The solution to eq. (3.65) is the sum of homogeneous and particular solutions eq. (3.52) where the particular

solution is given by eq. (3.24) where

Y =
1√

R2 + 1
(ωC)2

, (3.66)

θ = − tan−1

(
1

ωCR

)
. (3.67)

29



On the other hand, the natural response is given by

Ih(t) = kae
− t
RC a + kbe

− t
RC b + kce

− t
RC c = e−

t
RC k. (3.68)

The constants ka, kb and kc are determined by the initial value of IT (t). The solution for the differential

equation eq. (3.65) is then given by

IT (t) =
√

3VoY e
n(ωt−θ)qp + e−

t
RC k. (3.69)

It is noteworthy that the second term in eq. (3.69) is a quaternion with constant direction and decreasing

modulus.

Fig. 3.14 presents the Q-current transients considering R = 100 Ω, C = 100µF and IT (0) = 0.
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Figure 3.14: Transient state currents of the RC three-phase load.

Fig. 3.15 presents the Q-current locus. As the RL case, the Q-current resultant motion is a spiral-like

movement that approaches an circular motion as time increases. The center of the circumference, repre-

sented by the transient term of Q-current, has the same behaviour observed in the RL case, the difference

being that it starts at a different point in the H domain.

Using the definition eq. (3.59), the instantaneous admittance is calculated as

YT (t) = Y e−nθ +
e−

t
RC

√
3Vo

kq−1
p e−nωt, (3.70)

where Y e−nθ is the steady-state part and (e
− t
RC/
√

3Vo)kq−1
p e−nωt is the transient part of the Q-admittance.
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Figure 3.15: Currents of the RC three-phase load.

3.2.6 RLC load

Considering a RLC wye load, as presented in Fig. 3.16.

va(t)

vb(t)

vc(t)

L

L

L

C

C

C

R

R

R

Figure 3.16: RLC three-phase load.

This load is described by the equations

va(t) = L
dia(t)

dt
+Ria(t) +

1

C

∫ t

−∞
ia(τ) dτ, (3.71)

vb(t) = L
dib(t)

dt
+Rib(t) +

1

C

∫ t

−∞
ib(τ) dτ, (3.72)

vc(t) = L
dic(t)

dt
+Ric(t) +

1

C

∫ t

−∞
ic(τ) dτ, (3.73)
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which can be written using quaternion as

V(t) = L
dIT (t)

dt
+RIT (t) +

1

C

∫ t

−∞
IT (τ) dτ. (3.74)

Applying the derivative on both sides and dividing by L

1

L

dV(t)

dt
=
d2IT (t)

dt2
+
R

L

dIT (t)

dt
+

IT (t)

LC
. (3.75)

The solution of eq. (3.75) is in the form eq. (3.52). The particular solution in given by eq. (3.24) where

Y =
1√

R2 + (ωL− 1
ωC )2

, (3.76)

θ = tan−1

(
1

R

(
ωL− 1

ωC

))
. (3.77)

Next, the natural response of this load is obtained. Considering that R
L = 2ζω0 and 1

LC = ω2
0 , then

eq. (3.75) can be written as

1

L

dV(t)

dt
=
d2IT (t)

dt2
+ 2ζω0

dIT (t)

dt
+ ω2

0IT (t). (3.78)

The natural response depends on the value of ζ. In the next subsections, it will be discussed.

3.2.6.1 ζ > 1

This case is known as overdamped. The natural response is given by

Ih(t) = (ka1e
−s1t + ka2e

−s2t)a + (kb1e
−s1t + kb2e

−s2t)b + (kc1e
−s1t + kc2e

−s2t)c, (3.79)

Ih(t) = e−s1tk1 + e−s2tk2. (3.80)

where s1 = ζω0 − ω0

√
ζ2 − 1 and s2 = ζω0 + ω0

√
ζ2 − 1. The constants ka1, ka2, kb1, kb2, kc1 and kc2

are determined by initial values. The solution to eq. (3.78) is then given as

IT (t) =
√

3VoY e
n(ωt−θ)qp + e−ζω0t(eω0

√
ζ2−1tk1 + e−ω0

√
ζ2−1tk2). (3.81)

In this case, unlike the first-order systems, the transient part does not have a constant direction. Given

that, the spiral motion is irregular. Nevertheless, as the steady-state is reached, it becomes a circular motion,

like the first-order circuits. Fig. 3.17 presents the transient part of the Q-current considering R = 100 Ω,

L = 50 mH, C = 100µF and IT (0) = 0.
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Figure 3.17: Transient state currents of the RLC three-phase load (overdamped).

In Fig. 3.18 the locus of Q-current is presented. The behaviour of Q-current has a subtle difference

when compared to first order circuits, due to the transient part increasing in the beginning, as observed in

Fig. 3.17.
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Figure 3.18: Currents of the RLC three-phase load (overdamped).

The instantaneous Q-admittance can be calculated using eq. (3.59) and is computed as

YT (t) = Y e−nθ +
e−ζω0t

√
3Vo

(eω0

√
ζ2−1tk1 + e−ω0

√
ζ2−1tk2)q−1

p e−nωt, (3.82)

where Y e−nθ is the steady-state part and (e−ζω0t/
√

3Vo)(eω0

√
ζ2−1tk1 + e−ω0

√
ζ2−1tk2)q−1

p e−nωt is the

transient part of the Q-admittance.
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3.2.6.2 ζ = 1

This case is known as critically damped. The natural response is given by

Ih(t) = (ka1e
−ζω0t + ka2te

−ζω0t)a + (kb1e
−ζω0t + kb2te

−ζω0t)b + (kc1e
−ζω0t + kc2te

−ζω0t)c, (3.83)

Ih(t) = e−ζω0t(k1 + tk2). (3.84)

The constants ka1, ka2, kb1, kb2, kc1 and kc2 are determined by initial values. The solution to eq. (3.78) is

then given as

IT (t) =
√

3VoY e
n(ωt−θ)qp + e−ζω0t(k1 + tk2). (3.85)

Fig. 3.19 presents the transient components of the Q-current considering R = 200Ω, L = 1 H,

C = 100µF and IT (0) = 0.
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Figure 3.19: Transient state currents of the RLC three-phase load (critically damped).

In Fig. 3.20 the locus of Q-current is presented. It is observed that Q-current oscillates more than in

overdamped case. This is a consequence of a more prominent increase of the Q-current transient compo-

nent, as observed in Fig. 3.19. As the steady-state approaches, it also stabilizes in a circular motion.

The instantaneous Q-admittance can be calculated using eq. (3.59) and is computed as

YT (t) = Y e−nθ +
e−ζω0t

√
3Vo

(k1 + tk2)q−1
p e−nωt, (3.86)

where Y e−nθ is the steady-state part and (e−ζω0t/
√

3Vo)(k1 + tk2)q−1
p e−nωt is the transient part of the

Q-admittance.
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Figure 3.20: Currents of the RLC three-phase load (critically damped).

3.2.6.3 0 < ζ < 1

This case is known as underdamped. The natural response is given by

Ih(t) = e−ζω0t[(ka1 cos(ω0

√
1− ζ2t) + ka2 sin(ω0

√
1− ζ2t))a + (kb1 cos(ω0

√
1− ζ2t)+

kb2 sin(ω0

√
1− ζ2t))b + (kc1 cos(ω0

√
1− ζ2t) + kc2 sin(ω0

√
1− ζ2t))c], (3.87)

Ih(t) = e−ζω0t[cos(ω0

√
1− ζ2t)k1 + sin(ω0

√
1− ζ2t)k2]. (3.88)

The constants ka1, ka2, kb1, kb2, kc1 and kc2 are determined by initial values. The solution to eq. (3.78) is

then given as

IT (t) =
√

3VoY e
n(ωt−θ)qp + e−ζω0t[cos(ω0

√
1− ζ2t)k1 + sin(ω0

√
1− ζ2t)k2]. (3.89)

Fig. 3.21 presents the transient components of the Q-current considering R = 100 Ω, L = 1 H,

C = 100µF and IT (0) = 0.

In Fig. 3.22 the locus of the Q-current is presented. The shape described is similar to other RLC cases,

but with more oscillations. The center of the circles also oscillate back and forth through the origin as the

Q-current approaches the steady state. This is observed in the Q-current locus of Fig. 3.22 by the rightmost

part of the curve, which comes from a center with component in the qp direction greater than zero.

The instantaneous Q-admittance can be calculated using eq. (3.59) and is computed as

YT (t) = Y e−nθ +
e−ζω0t

√
3Vo

[cos(ω0

√
1− ζ2t)k1 + sin(ω0

√
1− ζ2t)k2]q−1

p e−nωt, (3.90)
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Figure 3.21: Transient state currents of the RLC three-phase load (underdamped).
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Figure 3.22: Currents of the RLC three-phase load (underdamped).

where Y e−nθ is the steady-state part and (e−ζω0t/
√

3Vo)[cos(ω0

√
1− ζ2t)k1+sin(ω0

√
1− ζ2t)k2]q−1

p e−nωt

is the transient part of the Q-admittance.

3.2.7 LC load

For the last case, a three-phase wye load consisting of capacitors and inductors connected in series will

be considered, as presented in Fig. 3.23.

The voltage in each phase is described by the differential equations

va(t) = L
dia(t)

dt
+

1

C

∫ t

−∞
ia(τ) dτ, (3.91)
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Figure 3.23: LC three-phase load.

vb(t) = L
dib(t)

dt
+

1

C

∫ t

−∞
ib(τ) dτ, (3.92)

vc(t) = L
dic(t)

dt
+

1

C

∫ t

−∞
ic(τ) dτ. (3.93)

which can be simplified in the quaternion format to

V(t) = L
dIT (t)

dt
+

1

C

∫ t

−∞
IT (τ) dτ. (3.94)

Applying the derivative on both sides and dividing by L

1

L

dV(t)

dt
=
d2IT (t)

dt2
+

IT (t)

LC
. (3.95)

The solution to eq. (3.95) is also in the form eq. (3.52) where the particular solution is eq. (3.24) where

Y =
1

|ωL− 1
ωC |

, (3.96)

θ = sgn

(
ωL− 1

ωC

)
90◦. (3.97)

On the other hand, the natural response is given by

Ih(t) = ka cos(ω0t+ φa)a + kb cos(ω0t+ φb)b + kc cos(ω0t+ φc)c. (3.98)
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Using cos(α+ β) = cos(α) cos(β)− sin(α) sin(β), eq. (3.98) can be written as

Ih(t) = cos(ω0t)(ka cos(φa)a + kb cos(φb)b + kc cos(φc)c)

− sin(ω0t)(ka sin(φa)a + kb sin(φb)b + kc sin(φc)c), (3.99)

Ih(t) = cos(ω0t)k1 − sin(ω0t)k2. (3.100)

The constants ka, φa, kb, φb, kc and φc are determined by the initial values. The solution for the differential

equation eq. (3.95) is then given by

IT (t) =
√

3VoY e
n(ωt−θ)qp + cos(ω0t)k1 − sin(ω0t)k2. (3.101)

It is observed that, as expected from an LC circuit, the transient term is not damped, resulting in a com-

position of oscillating motions. Fig. 3.24 presents the transient components of the Q-current considering

L = 1 H, C = 1µF and IT (0) = 0.
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Figure 3.24: Transient state currents of the LC three-phase load.

In Fig. 3.24 the locus of the Q-current is presented. Naturally, the motion does not stabilize in a circular

shape, since the steady-state is never reached.

The instantaneous Q-admittance can be calculated using eq. (3.59) and is computed as

YT (t) = Y e−nθ +
1√
3Vo

(cos(ω0t)k1 − sin(ω0t)k2)q−1
p e−nωt, (3.102)

where Y e−nθ is the steady-state part and (1/
√

3Vo)(cos(ω0t)k1− sin(ω0t)k2)q−1
p e−nωt is the transient part

of the Q-admittance.
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Figure 3.25: Currents of the LC three-phase load.

3.3 INSTANTANEOUS POWER, ADMITTANCE, AND IMPEDANCE

The expressions obtained for current, admittance, and power in the section 3.2 considered the complete

response in time for these quantities, representing both steady and transient states for some load types.

Here, these definitions are generalized, defining instantaneous quantities.

In three-phase systems, usually, it is assumed that the voltage of loads connected to the line is known.

Then, currents are a consequence of voltage and load characteristics. In this context, assuming that a source

with Q-voltage V(t) is connected to an arbitrary three-phase load. Instantaneous Q-current can be defined

as the sum of the transient and steady-state quantities.

IT = I + ι, (3.103)

where I is the steady-state Q-current, ι is the transient Q-current and IT is the instantaneous Q-current.

Applying the instantaneous Q-current in eqs. (3.9) and (3.18)

ST = VI∗ + Vι∗ = S + ς, (3.104)

YT = IV−1 + ιV−1 = Y + υ. (3.105)

where S, Y, ς , υ, ST and YT are, respectively, Q-power and Q-admittance in steady-state, transient state

and time-domain (instantaneous). These expressions are in agreement with those found in section 3.2,

where it was observed that Q-current, Q-admittance, and Q-power can be separated in steady and transient

states.
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An analogous expression would not be found for the impedance. If eq. (3.15) is used, the expression

obtained is

ZT =
VI∗

|IT |2
+

Vι∗

|IT |2
, (3.106)

and it is observed that I∗/|IT |2 6= I−1. As a consequence, the instantaneous Q-impedance is not the sum

of our previous definition for steady-state Q-impedance with a transient Q-impedance. For this reason,

the admittance notation is focused on in this work. It is important to notice that eqs. (3.59) and (3.106)

are consequences of choosing voltage as the input and would appear reverted if the input was current.

Nevertheless, in power systems, voltage is usually used as the input, as stated previously. Additionally, the

definitions of instantaneous Q-impedance and Q-admittance using eqs. (3.15) and (3.18) do not depend on

whether voltage or current are chosen as input.

3.4 THREE-PHASE UNBALANCED LOADS

In this section, the quaternion representation of three-phase unbalanced loads is discussed. Voltages

and currents are assumed to be in the steady-state. In the unbalanced case, there are numerous possible

combinations of impedances connected in each phase, e.g. an RLC impedance in the first phase, an RC

impedance in the second, and an RL impedance in the last. Additionally, there are several load configura-

tions to consider, such as delta, ungrounded wye, solidly grounded wye, and grounded wye. Given these

facts, an exhaustive analysis of the expressions of Q-current, Q-admittance, and Q-power is beyond the

scope of this work. For obtaining these quantities for a specific case, three differential equations need to be

solved separately, since each phase is decoupled. Here the steady-state formulation is focused on, in view

of the fact that it can be easily generalized and is the main focus of most of the studies.

3.4.1 Three-wire systems

3.4.1.1 Delta load

An unbalanced Delta load, as presented in Fig. 3.26, is analyzed in this subsection. The admittances

of this load can be written as Yabe−jθab ,Ybce−jθbc and Ycae−jθca , where Ymne−jθmn is the complex repre-

sentation of the admittance between phases m and n.
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Figure 3.26: Unbalanced Delta three-phase load.

The phase to phase Q-voltage is given by

Vpp(t) =
√

6Vo(cos(ωt+ 30◦)a + cos(ωt− 90◦)b + cos(ωt+ 150◦)c). (3.107)

The phase to phase Q-current can be written as

Ipp(t) =
√

6Vo(Yab cos(ωt+30◦−θab)a+Ybc cos(ωt−90◦−θbc)b+Yca cos(ωt+150◦−θca)c). (3.108)

To obtain the three-phase Q-current, the relations between phase currents and line currents in a ∆ load

are used, i.e., ia = iab − ica, ib = ibc − iab and ic = ica − ibc. Since Ipp(t) = iaba + ibcb + icac,

I(t) = iaa + ibb + icc, (3.109)

where

ia(t) =
√

6Vo(Yab cos(ωt+ 30◦ − θab)− Yca cos(ωt+ 150◦ − θca)), (3.110)

ib(t) =
√

6Vo(Ybc cos(ωt− 90◦ − θbc)− Yab cos(ωt+ 30◦ − θab)), (3.111)

ic(t) =
√

6Vo(Yca cos(ωt+ 150◦ − θca)− Ybc cos(ωt− 90◦ − θbc)). (3.112)

The Q-admittance is given by

Y = IV−1, (3.113)
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where V−1 is given by

V−1 = −
√

2

3Vo
(cos(ωt)a + cos(ωt− 120◦)b + cos(ωt+ 120◦)c) . (3.114)

Using eq. (3.113), the scalar and vectorial part of the Q-admittance for this case is obtained. Calculating

its scalar part

Re(Y) =
2√
3

(Yab cos(ωt+ 30◦ − θab)− Yca cos(ωt+ 150◦ − θca)) cos(ωt)

+ (Ybc cos(ωt− 90◦ − θbc)− Yab cos(ωt+ 30◦ − θab)) cos(ωt− 120◦)

+ (Yca cos(ωt+ 150◦ − θca)− Ybc cos(ωt− 90◦ − θbc)) cos(ωt+ 120◦)). (3.115)

Using that cos(α)− cos(α− 120◦) =
√

3 cos(α+ 30◦),

Re(Y) = 2(Yab cos(ωt+ 30◦ − θab) cos(ωt+ 30◦) + Ybc cos(ωt− 90◦ − θbc) cos(ωt− 90◦)

+ Yca cos(ωt+ 150◦ − θca) cos(ωt+ 150◦)). (3.116)

The scalar part of Y is then obtained using the identity cos(α) cos(α−β) = 1/2 (cos(2α− β) + cos(β)))

Re(Y) =
[
Yab cos(θab) + Ybc cos(θbc) + Yca cos(θca) + Yab cos (2ωt+ 60◦ − θab)

+ Ybc cos(2ωt− 180◦ − θbc) +Yca cos (2ωt− 60◦ − θca)] . (3.117)

Next, the vectorial part of Q-admittance ~Y is calculated.

~Y =

∣∣∣∣∣∣∣
a b c
ia ib ic

(V−1)a (V−1)b (V−1)c

∣∣∣∣∣∣∣ .

~Y = Ya + Yb + Yc, (3.118)

in which the components of ~Y are given by

Ya =
2√
3

[− cos(ωt+ 120◦)(Ybc cos(ωt− 90◦ − θbc)− Yab cos(ωt+ 30◦ − θab))

+ cos(ωt− 120◦)(Yca cos(ωt+ 150◦ − θca)− Ybc cos(ωt− 90◦ − θbc))]a, (3.119)

Yb =
2√
3

[− cos(ωt)(Yca cos(ωt+ 150◦ − θca)− Ybc cos(ωt− 90◦ − θbc))

+ cos(ωt+ 120◦)(Yab cos(ωt+ 30◦ − θab)− Yca cos(ωt+ 150◦ − θca))]b, (3.120)

42



Yc =
2√
3

[− cos(ωt− 120◦)(Yab cos(ωt+ 30◦ − θab)− Yca cos(ωt+ 150◦ − θca))

+ cos(ωt)(Ybc cos(ωt− 90◦ − θbc)− Yab cos(ωt+ 30◦ − θab))]c. (3.121)

Using that cos(α) + cos(α+ 120◦) = cos(α+ 60◦)

Ya =
2√
3

[−Ybc cos(ωt+ 180◦) cos(ωt− 90◦ − θbc) + Yab cos(ωt+ 120◦) cos(ωt+ 30◦ − θab))

+ Yca cos(ωt− 120◦) cos(ωt+ 150◦ − θca)]a, (3.122)

Yb =
2√
3

[−Yca cos(ωt+ 60◦) cos(ωt+ 150◦ − θca)− Ybc cos(ωt− 90◦ − θbc))

+ Yab cos(ωt+ 120◦) cos(ωt+ 30◦ − θab)]b, (3.123)

Yc =
2√
3

[−Yab cos(ωt− 60◦) cos(ωt+ 30◦ − θab) + Yca cos(ωt− 120◦) cos(ωt+ 150◦ − θca))

+ Ybc cos(ωt) cos(ωt− 90◦ − θbc)]c. (3.124)

Given that − cos(α) = cos(α+ 180◦), it is noticed that all components are equal

|Ya| = |Yb| = |Yc| =
2√
3

[Yab cos(ωt+ 120◦) cos(ωt+ 30◦ − θab)) + Ybc cos(ωt) cos(ωt− 90◦ − θbc)

+ Yca cos(ωt− 120◦) cos(ωt+ 150◦ − θca)]. (3.125)

It follows that the vectorial part of Y can be written as

~Y = 2n[Yab cos(ωt+ 120◦) cos(ωt+ 30◦ − θab) + Ybc cos(ωt) cos(ωt− 90◦ − θbc)

+ Yca cos(ωt− 120◦) cos(ωt+ 150◦ − θca)], (3.126)

where

n =
1√
3

(a + b + c). (3.127)

Using the trigonometric identity cos(α) cos(β) = 1/2(cos(α+ β) + cos(α− β))

~Y = n[Yab cos(θab + 90◦) +Yab cos(2ωt+ 150◦− θab) +Ybc cos(θbc + 90◦) +Ybc cos(2ωt− 90◦− θbc)

+ Yca cos(θca + 90◦) + Yca cos(2ωt+ 30◦ − θca)]. (3.128)
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Finally, the cosines are substituted by sines using that cos(α+ 90◦) = − sin(α)

~Y = −n[Yab sin(θab) + Ybc sin(θbc) + Yca sin(θca) + Yab sin(2ωt+ 60◦ − θab)

+ Ybc sin(2ωt− 180◦ − θbc) + Yca sin(2ωt− 60◦ − θca)]. (3.129)

Comparing eqs. (3.117) and (3.129), Y can be rewritten as a sum of 6 quaternions in polar form as

Y = Yabe
−nθab + Ybce

−nθbc + Ycae
−nθca + Yabe

−nφab(t) + Ybce
−nφbc(t) + Ycae

−nφca(t), (3.130)

where φab(t) = 2ωt+ π
3 − θab, φbc(t) = 2ωt− π − θbc, and φca(t) = 2ωt− π

3 − θca.

Analyzing eq. (3.130), it is observed that the Q-admittance of an unbalanced three-phase load is equiv-

alent to the sum of the admittances of six different balanced three-phase loads: three balanced consisting

of the admittances between each phase and three balanced with varying in time phases.

Summing the three constant quaternions, eq. (3.130) can be rewritten as

Y = Yple
−nθpl + Yabe

−nφab(t) + Ybce
−nφbc(t) + Ycae

−nφca(t), (3.131)

where

Y 2
pl = Y 2

ab + Y 2
bc + Y 2

ca + 2YabYbc cos (θab − θbc) + 2YbcYca cos (θbc − θca)

+ 2YcaYab cos (θca − θab) , (3.132)

θpl = kplπ + tg−1

(
Yab sin(θab) + Ybc sin(θbc) + Yca sin(θca)

Yab cos(θab) + Ybc cos(θbc) + Yca cos(θca)

)
, (3.133)

in which kpl = 1 if the denominator is negative and kpl = 0 otherwise.

These values of Ypl and θpl correspond to the association of the admittances in parallel, that is,

Yple
−jθpl = Yabe

−jθab + Ybce
−jθbc + Ycae

−jθca .

The other terms can be simplified as well, which is equivalent to two associate the three balanced loads

with varying in time phases in parallel. The Q-admittance can then be written as

Y = Yple
−nθpl + Yωe

−nφω(t), (3.134)

where

φω = kωπ + tg−1

(
Yab sin(φab) + Ybc sin(φbc) + Yca sin(φca)

Yab cos(φab) + Ybc cos(φbc) + Yca cos(φca)

)
, (3.135)
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in which kω = 1 if the denominator is negative and kω = 0 otherwise.

Y 2
ω = Y 2

ab + Y 2
bc + Y 2

ca + 2YabYbc cos

(
θab − θbc +

2π

3

)
+ 2YbcYca cos

(
θbc − θca +

2π

3

)
+ 2YcaYab cos

(
θca − θab +

2π

3

)
. (3.136)

Notice that, if the three-phase load is balanced, Yω = 0.

The result in eq. (3.131) can also be interpreted as the Q-admittance of one balanced three-phase load

and three unbalanced loads with admittances between phases A-B, B-C, and C-A, respectively

Yab
3
e−jθab ,

Yab
3
e−j(

2π/3+θab) and
Yab
3
ej(

2π/3−θab)

for the first three-phase load,

Ybc
3
ej(

2π/3−θbc),
Ybc
3
e−jθbc and

Ybc
3
e−j(

2π/3+θbc)

for the second and
Yca
3
e−j(

2π/3+θca),
Yca
3
ej(

2π/3−θca) and
Yca
3
e−jθca

for the third. This can easily be proven calculating Q-admittance for each of these loads. Fig. 3.27 shows

these admittances connected in parallel.
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Figure 3.27: Equivalent admittances.

Associating these admittances in parallel, a three-phase load with the followings admittances is ob-

tained

Y ′abe
−jθ′ab =

Yab
3
e−jθab +

Ybc
3
ej(

2π/3−θbc) +
Yca
3
e−j(

2π/3+θca), (3.137)
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Y ′bce
−jθ′bc =

Yab
3
e−j(

2π/3+θab) +
Ybc
3
e−jθbc +

Yca
3
ej(

2π
3
−θca), (3.138)

Y ′cae
−jθ′ca =

Yab
3
ej(

2π/3−θab) +
Ybc
3
e−j(

2π/3+θbc) +
Yca
3
e−jθca . (3.139)

It is noticeable that eqs. (3.137) to (3.139) are not the unique possible representation of the unbalanced

term of the three-phase load. Another representation would be obtained if the balanced admittance is

subtracted from the original unbalanced three-phase load. For obtaining all equivalent representations of

the unbalanced term, the generic unbalanced load with admittances between phases A-B, B-C, and C-A,

respectively,Me−jθM ,Ne−jθN andOe−jθO is considered. The line current of this load in parallel with the

balanced load should have line currents equal to line currents of the initial unbalanced load, which implies

Me−jθM −Oej(
2π
3
−θO) +

√
3

3
Yple

−j(π
6

+θpl) = Yabe
−jθab − Ycaej(

2π
3
−θca), (3.140)

Ne−j(
2π
3

+θN ) −Me−jθM +

√
3

3
Yple

−j( 5π
6

+θpl) = Ybce
−j( 2π

3
+θbc) − Yabe−jθab , (3.141)

Oej(
2π
3
−θO) −Ne−j(

2π
3

+θN ) +

√
3

3
Yple

j(π
2
−θpl) = Ycae

j( 2π
3
−θca) − Ybce−j(

2π
3

+θbc). (3.142)

Since eq. (3.142) is a linear combination of eqs. (3.140) and (3.141), this equation can be eliminated.

Solving in terms of Me−jθM

Ne−jθN = Mej(
2π
3
−θM ) −

√
3

3
Yabe

j(π
2
−θab) +

√
3

3
Ybce

j(π
6
−θbc) −

√
3

3
Ycae

−j(π
6

+θca), (3.143)

Oe−jθO = Me−j(
2π
3

+θM ) −
√

3

3
Yabe

−j(π
2

+θab) +

√
3

3
Ybce

−j( 5π
6

+θbc) +

√
3

3
Ycae

j(π
6
−θca). (3.144)

The admittance Me−jθM can be chosen arbitrarily, which implies that there are infinite equivalent

unbalanced loads to the admittances shown in eqs. (3.137) to (3.139). As a consequence, any unbalanced

delta load connected to a balanced voltage source has infinite equivalents. The derivation of the existence of

infinite equivalents presented in this work is an alternative to that [45], which followed a different approach

without quaternions. Furthermore, the unbalanced three-phase load represented by eqs. (3.143) and (3.144)

has also the propriety of null average three-phase power. This is a consequence of the expression of Q-

admittance eq. (3.134), where the first term accounts for the average three-phase power of the load.

Returning to eq. (3.134), the expression can be simplified summing both quaternions. This sum results

in the shortest version of Q-admittance, analogous to the balanced case presented in eq. (3.26)

Y = Yδ(t)e
−nφδ(t), (3.145)
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where

Yδ(t)
2 = Y 2

pl + Y 2
ω + 2YplYω cos (θpl − φω(t)) , (3.146)

φδ(t) = kδπ + tg−1

(
Ypl sin(θpl) + Yω sin(φω(t))

Ypl cos(θpl) + Yω cos(φω(t))

)
, (3.147)

in which kδ = 1 if the denominator is negative and kδ = 0 otherwise.

Analyzing eq. (3.145), it is possible to conclude that the three-phase unbalanced load can be represented

by a three-phase balanced load, with modulus and phase varying in time.

3.4.1.2 Wye load

In this subsection, an unbalanced wye load as presented in Fig. 3.28 is analyzed. Its admittances are, re-

spectively, Yae−jθa ,Ybe−jθb and Yce−jθc , where Yme−jθm is the complex representation of the admittance

connected to phase m.

va(t)

vb(t)

vc(t)

Ŷa

ŶcŶb

Figure 3.28: Balanced three-phase load.

To determine the line currents of this load the phasorial notation is employed. It is noteworthy that

phasors are used separately of quaternions, since the first represent individual electrical quantities in the

frequency domain and the latter three-phase electrical quantities in the time domains.

The source voltage V(t) is given by eq. (3.4). The voltage on the central node can be written with
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phasors as

Vwe
jθw =

Vae
j0Yae

−jθa + Vbe
j 2π

3 Ybe
−jθb + Vce

−j 2π
3 Yce

−jθc

Yae−jθa + Ybe−jθb + Yce−jθc
, (3.148)

and the line currents can be computed as

Iae
jΘa = (Vae

j0 − Vwejθw)Yae
−jθa , (3.149)

Ibe
jΘb = (Vbe

−j 2π
3 − Vwejθw)Ybe

−jθb , (3.150)

Ice
jΘc = (Vce

j 2π
3 − Vwejθw)Yce

−jθc , (3.151)

which results in

Iae
jΘa =

(Vabe
j π

6 Ybe
−jθb − Vcaej

5π
6 Yce

−jθc)Yae
−jθa

Yae−jθa + Ybe−jθb + Yce−jθc
, (3.152)

Ibe
jΘb =

(Vbce
−j π

2 Yce
−jθc − Vabej

π
6 Yae

−jθa)Ybe
−jθb

Yae−jθa + Ybe−jθb + Yce−jθc
, (3.153)

Ice
jΘc =

(Vcae
j 5π

6 Yae
−jθa − Vbce−j

π
2 Ybe

−jθb)Yce
−jθc

Yae−jθa + Ybe−jθb + Yce−jθc
. (3.154)

The Y-∆ transformation, represented by the Fig. 3.29, is given by the formulas

Ŷp Ŷx

ŶyŶz

Ŷm

Ŷn

Figure 3.29: Y-∆ transformation.

Ŷm =
ŶxŶy

Ŷx + Ŷy + Ŷz
, (3.155)

Ŷn =
ŶyŶz

Ŷx + Ŷy + Ŷz
, (3.156)
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Ŷp =
ŶzŶx

Ŷx + Ŷy + Ŷz
. (3.157)

Applying eqs. (3.155) to (3.157) to eqs. (3.152) to (3.154)

Iae
jΘa = Vabe

j π
6 Yabe

−jθab − Vcaej
5π
6 Ycae

−jθca , (3.158)

Ibe
jΘb = Vbce

−j π
2 Ybce

−jθbc − Vabej
π
6 Yabe

−jθab , (3.159)

Ice
jΘc = Vcae

j 5π
6 Ycae

−jθca − Vbce−j
π
2 Ybce

−jθbc , (3.160)

which can be written in the time-domain as

ia(t) = Vab(Yab cos(ωt+ 30◦ − θab)− Yca cos(ωt+ 150◦ − θca)), (3.161)

ib(t) = Vbc(Ybc cos(ωt− 90◦ − θbc)− Yab cos(ωt+ 30◦ − θab)), (3.162)

ic(t) = Vca(Yca cos(ωt+ 150◦ − θca)− Ybc cos(ωt− 90◦ − θbc)). (3.163)

Notice that Vab = Vbc = Vca =
√

6Vo, implying that eqs. (3.161) to (3.163) and eqs. (3.110) to (3.112)

are the same line currents. This result is expected, since the wye load is a transformed version of the delta

load. As a consequence, all development made for the delta case is also valid in the wye case. In particular,

the expression for the Q-admittance eq. (3.130) can be used for representing the wye load. The expression

is rewritten here for the sake of the demonstration.

Y = Yabe
−nθab + Ybce

−nθbc + Ycae
−nθca + Yabe

−n(2ωt+π
3
−θab) + Ybce

−n(2ωt−π−θbc)+

Ycae
−n(2ωt−π

3
−θca). (3.164)

Since this expression consists only of quaternions in the form a+ nb, which form a commutative subset of

H, the Y-∆ transform expressions eqs. (3.155) to (3.157) can be applied to eq. (3.164). First, eq. (3.164)

can be written as

Y = Yabe
−nθab + Ybce

−nθbc + Ycae
−nθca + (Yabe

−nθab)∗e−n(2ωt+π
3

)

+ (Ybce
−nθbc)∗e−n(2ωt−π) + (−Ycaenθca)∗e−n(2ωt−π

3
). (3.165)

Them, applying eqs. (3.155) to (3.157)

Y = (Yσe
−nθσ)−1(YaYbe

−n(θa+θb) + YbYce
−n(θb+θc) + YcYae

−n(θc+θa))+

(Yσe
nθσ)−1(YaYbe

−n(2ωt+π
3
−θa−θb) + YbYce

−n(2ωt−π−θb−θc) + YcYae
−n(2ωt−π

3
−θc−θa)), (3.166)
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where Yσ and θσ are defined by

Yσe
−nθσ = Yae

−nθa + Ybe
−nθb + Yce

−nθc , (3.167)

which implies that it is equivalent to the admittance of the loads in each phase in parallel.

Comparing eqs. (3.130) and (3.166), it is observed that the expression for the Delta load is more

compact and easier to analyze. Nevertheless, if the load is given by its wye parameters, eq. (3.166) may be

used to obtain the corresponding Q-admittance. It is observed that

YaYb
Yσ

= Yab, (3.168)

YbYc
Yσ

= Ybc, (3.169)

YcYa
Yσ

= Yca, (3.170)

θa + θb − θσ = θab, (3.171)

θb + θc − θσ = θbc, (3.172)

θc + θa − θσ = θca, (3.173)

as expected from the ∆-Y transform. Using eqs. (3.168) to (3.173), eq. (3.134) can be obtained in terms of

wye parameters.

3.4.2 Four-wire systems

3.4.2.1 Solidly grounded wye load

In this case, the Q-admittance of the three-phase load presented in Fig. 3.30 will be analyzed. Its

admittances are, respectively, Yae−jθa ,Ybe−jθb and Yce−jθc , where Yme−jθm is the complex representation

of the admittance connected to phase m. Since the connection to the ground isolates each phase, the Q-

current is easily determined.

I(t) =
√

2Vo[Ya cos(ωt− θa)a + Yb cos(ωt− 120◦ − θb)b + Yc cos(ωt+ 120◦ − θc)c]. (3.174)

Using eq. (3.18) and eq. (3.114), the Q-admittance can be determined. First, calculating its real part

Re(Y) =
2

3
(Ya cos(ωt) cos(ωt− θa) + Yb cos(ωt− 120◦) cos(ωt− 120◦ − θb)

+ Yc cos(ωt+ 120◦) cos(ωt+ 120◦ − θc)). (3.175)
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vb(t)

vc(t)
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Ŷc

Ŷb

Figure 3.30: Solidly grounded three-phase load.

Applying the trigonometric relation cos(α) cos(α− β) = 1/2(cos(2α− β) + cos(β))

Re(Y) =
1

3
[Ya cos(θa) + Ya cos(2ωt− θa) + Yb cos(θb) + Yb cos(2ωt+ 120◦ − θb)

+ Yc cos(θc) + Yc cos(2ωt− 120◦ − θc)]. (3.176)

Next, the vectorial part of the Q-admittance ~Y is determined by eq. (3.118). Determining its compo-

nents as in eq. (3.118)

Ya =
2

3
[Yc cos(ωt− 120◦) cos(ωt+ 120◦ − θc)− Yb cos(ωt+ 120◦) cos(ωt− 120◦ − θb)]a, (3.177)

Yb =
2

3
[Ya cos(ωt+ 120◦) cos(ωt− θa)− Yc cos(ωt) cos(ωt+ 120◦ − θc)]b, (3.178)

Yc =
2

3
[Yb cos(ωt) cos(ωt− 120◦ − θb)− Ya cos(ωt− 120◦) cos(ωt− θa)]c. (3.179)

Using cos(α) cos(β) = 1/2[cos(α+ β) + cos(α− β)]

Ya =
1

3
[Yc cos(θc + 120◦) + Yc cos(2ωt− θc)− Yb cos(θb − 120◦)− Yb cos(2ωt− θb)]a, (3.180)

Yb =
1

3
[Ya cos(θa + 120◦) + Ya cos(2ωt+ 120◦ − θa)

− Yc cos(θc − 120◦)− Yc cos(2ωt+ 120◦ − θc)]b, (3.181)
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Yc =
1

3
[Yb cos(θb + 120◦) + Yb cos(2ωt− 120◦ − θb)

− Ya cos(θa − 120◦)− Ya cos(2ωt− 120◦ − θa)]c. (3.182)

Then, the Q-admittance of this load can be expressed as

Y = Re(Y) + Ya + Yb + Yc (3.183)

Alternatively, grouping the terms that are associated to the same admittance, it can be rewritten as

Y = YA + YB + YC , (3.184)

where

YA =
Ya
3

[(cos(θa) + cos(2ωt− θa)) + (cos(θa + 120◦) + cos(2ωt+ 120◦ − θa))b

− (cos(θa − 120◦) + cos(2ωt− 120◦ − θa))c], (3.185)

YB =
Yb
3

[(cos(θb) + cos(2ωt+ 120◦ − θb))− (cos(θb − 120◦) + cos(2ωt− θb))a

+ (cos(θb + 120◦) + cos(2ωt− 120◦ − θb))c], (3.186)

YC =
Yc
3

[(cos(θc) + cos(2ωt− 120◦ − θc)) + (cos(θc + 120◦) + cos(2ωt− θc))a

− (cos(θc − 120◦) + cos(2ωt+ 120◦ − θc))b]. (3.187)

It is noteworthy that each of the components of this Q-admittance relates two imaginary axis and the

real axis. A further simplification can be achieved using the missing basic quaternion in each component.

aYA =
Ya
3

[(cos(θa) + cos(2ωt− θa))a + (cos(θa + 120◦) + cos(2ωt+ 120◦ − θa))c

+ (cos(θa − 120◦) + cos(2ωt− 120◦ − θa))b], (3.188)

bYB =
Yb
3

[(cos(θb) + cos(2ωt+ 120◦ − θb))b + (cos(θb − 120◦) + cos(2ωt− θb))c

+ (cos(θb + 120◦) + cos(2ωt− 120◦ − θb))a], (3.189)

cYC =
Yc
3

[(cos(θc) + cos(2ωt− 120◦ − θc))c + (cos(θc + 120◦) + cos(2ωt− θc))b

+ (cos(θc − 120◦) + cos(2ωt+ 120◦ − θc))a]. (3.190)
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The expressions eqs. (3.188) to (3.190) are similar to eq. (3.4), except for the fact that the first refers to

Q-admittance and the latter to Q-voltage. Nevertheless, eq. (3.23) can be used for simplifying even further.

aYA =
Ya√

6
(en(θa)qp + en(2ωt−θa)qp), (3.191)

bYB =
Yb√

6
(en(θb+

2π
3

)qp + en(2ωt− 2π
3
−θb)qp), (3.192)

cYC =
Yc√

6
(en(θc− 2π

3
)qp + en(2ωt+ 2π

3
−θc)qp). (3.193)

Finally, the Q-admittance of the unbalanced grounded wye load is expressed as

Y = a−1 Ya√
6

(en(θa)qp + en(2ωt−θa)qp) + b−1 Yb√
6

(en(θb+
2π
3

)qp + en(2ωt− 2π
3
−θb)qp)

+ c−1 Yc√
6

(en(θc− 2π
3

)qp + en(2ωt+ 2π
3
−θc)qp). (3.194)

Since the ground isolates each phase, the Q-admittance is made up of three independent components.

Each component represents a rotating circle, but the three circles are in different spaces. As a conse-

quence, the geometric representation of the composition lies in the hyper-complex space. However, this

decomposed form already produces interesting results. It is noticeable, e.g., that

YAV(t) = ia(t)a =
√

2VoYa cos(ωt− θa)a, (3.195)

YBV(t) = ib(t)b =
√

2VoYb cos(ωt− 120◦ − θb)b, (3.196)

YCV(t) = ic(t)c =
√

2VoYc cos(ωt+ 120◦ − θc)c, (3.197)

that is, the expression allows obtaining each current separately, which is expected with the addition of the

ground wire.

The Q-admittance of the solidly grounded wye can also be written in terms of a constant part and a

varying in time part. Using eqs. (3.176) and (3.180) to (3.182), eq. (3.183) can be written as

Y =
1

3
[Ya cos(2ωt− θa) + Yb cos(2ωt+ 120◦ − θb) + Yc cos(2ωt− 120◦ − θc)

+ (Yc cos(2ωt− θc)− Yb cos(2ωt− θb))a

+ (Ya cos(2ωt+ 120◦ − θa)− Yc cos(2ωt+ 120◦ − θc))b

+ (Yb cos(2ωt− 120◦ − θb)− Ya cos(2ωt− 120◦ − θa))c + Yo], (3.198)
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where

Yo = Ya cos(θa) + Yb cos(θb) + Yc cos(θc) + (Yc cos(θc + 120◦)− Yb cos(θb − 120◦))a

+ (Ya cos(θa + 120◦)− Yc cos(θc − 120◦))b + (Yb cos(θb + 120◦)− Ya cos(θa − 120◦))c, (3.199)

Then, applying the trigonometric identity cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

Y =
1

3
[cos(2ωt)Yϕ + sin(2ωt)Yψ + Yo], (3.200)

where

Yϕ = Ya cos(θa) + Yb cos(θb − 120◦) + Yc cos(θc + 120◦) + (Yc cos(θc)− Yb cos(θb))a

+ (Ya cos(θa − 120◦)− Yc cos(θc − 120◦))b + (Yb cos(θb + 120◦)− Ya cos(θa + 120◦))c, (3.201)

Yψ = Ya sin(θa) + Yb sin(θb − 120◦) + Yc sin(θc + 120◦) + (Yc sin(θc)− Yb sin(θb))a

+ (Ya sin(θa − 120◦)− Yc sin(θc − 120◦))b + (Yb sin(θb + 120◦)− Ya sin(θa + 120◦))c. (3.202)

From eq. (3.200) it is observed that the Q-admittance locus is a circumference in the H space, with

center in Yo/3 and radius Yr/3 determined by

Y 2
r = | cos(2ωt)Yϕ + sin(2ωt)Yψ|2 =

3

2
(Y 2
a + Y 2

b + Y 2
c ) +

√
3(YaYbcos(θa − θb + 150◦)

+ YbYccos(θb − θc + 150◦) + YcYacos(θc − θa + 150◦)). (3.203)

It is also noteworthy that Yϕ and Yψ are orthogonal, that is, their dot product is null.

3.4.2.2 Grounded wye load

In this subsection, an unbalanced grounded wye load as presented in Fig. 3.31 is analyzed. Its phase

admittances are, respectively, Yae−jθa ,Ybe−jθb and Yce−jθc , where Yme−jθm is the complex representation

of the admittance connected to phase m. Additionally, the central node is connected to the ground with

and admittance Yne−jθn

The source voltage V(t) is given by eq. (3.4). The voltage on the central node can be written with

phasors as

Vne
jθn =

Vae
j0Yae

−jθa + Vbe
j 2π

3 Ybe
−jθb + Vce

−j 2π
3 Yce

−jθc

Yae−jθa + Ybe−jθb + Yce−jθc + Yne−jθn
, (3.204)
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Figure 3.31: Grounded three-phase load.

and the line currents can be computed as

Iae
jΘa = (Vae

j0 − Vnejθn)Yae
−jθa , (3.205)

Ibe
jΘb = (Vbe

−j 2π
3 − Vnejθn)Ybe

−jθb , (3.206)

Ice
jΘc = (Vce

j 2π
3 − Vnejθn)Yce

−jθc , (3.207)

which results in

Iae
jΘa =

(Vabe
j π

6 Ybe
−jθb − Vcaej

5π
6 Yce

−jθc + Vae
j0Yne

−jθn)Yae
−jθa

Yςe−jθς
, (3.208)

Ibe
jΘb =

(Vbce
−j π

2 Yce
−jθc − Vabej

π
6 Yae

−jθa + Vbe
−j 2π

3 Yne
−jθn)Ybe

−jθb

Yςe−jθς
, (3.209)

Ice
jΘc =

(Vcae
j 5π

6 Yae
−jθa − Vbce−j

π
2 Ybe

−jθb + Vce
j 2π

3 Yne
−jθn)Yce

−jθc

Yςe−jθς
, (3.210)

where

Yςe
−jθς = Yae

−jθa + Ybe
−jθb + Yce

−jθc + Yne
−jθn . (3.211)

In the time-domain, each current can be written as

ia(t) =

√
2Vo
Yς

[YaYb
√

3 cos(ωt+ 30◦ − θa − θb + θς)

− YcYa
√

3 cos(ωt+ 150◦ − θc − θa + θς) + YaYn cos(ωt− θa − θn + θς)], (3.212)
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ib(t) =

√
2Vo
Yς

[YbYc
√

3 cos(ωt− 90◦ − θb − θc + θς)

−
√

3YaYb cos(ωt+ 30◦ − θa − θb + θς) + YbYn cos(ωt− 120◦ − θb − θn + θς)], (3.213)

ic(t) =

√
2Vo
Yς

[YcYa
√

3 cos(ωt+ 150◦ − θc − θa + θς)

− YbYc
√

3 cos(ωt− 90◦ − θb − θc + θς) + YcYn cos(ωt+ 120◦ − θc − θn + θς)]. (3.214)

The Q-current is given by

I(t) = ia(t)a + ib(t)b + ic(t)c, (3.215)

which can also be written in the form

I(t) = I∆(t) + IΥ(t), (3.216)

where

I∆(t) =

√
6Vo
Yς

[(YaYb cos(ωt+ 30◦ − θa − θb + θς)− YcYa cos(ωt+ 150◦ − θc − θa + θς))a

+ (YbYc cos(ωt− 90◦ − θb − θc + θς)− YaYb cos(ωt+ 30◦ − θa − θb + θς))b

+ (YcYa cos(ωt+ 150◦ − θc − θa + θς)− YbYc cos(ωt− 90◦ − θb − θc + θς))c], (3.217)

IΥ(t) =

√
2YnVo
Yς

[Ya cos(ωt− θa − θn + θς)a + Yb cos(ωt− 120◦ − θb − θn + θς)b

+ Yc cos(ωt+ 120◦ − θc − θn + θς)c]. (3.218)

As a consequence, Q-admittance can also be decomposed in two components

Y = IV−1 = I∆(t)V−1 + IΥ(t)V−1 = Y∆(t) + YΥ(t). (3.219)

It can be noticed that IΥ(t) is similar to the Q-current obtained in eq. (3.174). The difference is that

each angle is added θς − θn and I(t) is multiplied by Yn/Yς . Considering these adjustments, eq. (3.218) can

be rewritten using eq. (3.194) as

YΥ(t) =
Yn
Yς

[a−1 Ya√
6

(en(θa+θn−θς)qp + en(2ωt−θa−θn+θς)qp)

+ b−1 Yb√
6

(en(θb+θn−θς+ 2π
3

)qp + en(2ωt− 2π
3
−θb−θn+θς)qp)

+ c−1 Yc√
6

(en(θc+θn−θς− 2π
3

)qp + en(2ωt+ 2π
3
−θc−θn+θς)qp)], (3.220)
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which can also be written as

YΥ(t) = (a−1 Ya√
6

qpe
−n(θa) + b−1 Yb√

6
qpe
−n(θb+

2π
3

)

+ c−1 Yc√
6

qpe
−n(θc− 2π

3
))Yne

−n(θn)(Yςe
−n(θς))−1 + (a−1 Ya√

6
qpe
−n(2ωt−θa)

+ b−1 Yb√
6

qpe
−n(2ωt− 2π

3
−θb) + c−1 Yc√

6
qpe
−n(2ωt+ 2π

3
−θc))Yne

n(θn)(Yςe
n(θς))−1, (3.221)

where

Yςe
−nθς = Yae

−nθa + Ybe
−nθb + Yce

−nθc + Yne
−nθn . (3.222)

Next, Y∆(t) is calculated. Computing its real part

Re(Y∆(t)) =
2√
3

[
cos(ωt)

Yς
(YaYb cos(ωt+ 30◦− θa− θb + θς)− YcYa cos(ωt+ 150◦− θc− θa + θς))

+
cos(ωt− 120◦)

Yς
(YbYc cos(ωt− 90◦ − θb − θc + θς)− YaYb cos(ωt+ 30◦ − θa − θb + θς))

+
cos(ωt+ 120◦)

Yς
(YcYa cos(ωt+ 150◦ − θc − θa + θς)− YbYc cos(ωt− 90◦ − θb − θc + θς))]

(3.223)

Using that cos(α)− cos(α− 120◦) =
√

3 cos(α+ 30◦),

Re(Y∆(t)) = 2[
1

Yς
(YaYb cos(ωt+ 30◦) cos(ωt+ 30◦ − θa − θb + θς))

+
1

Yς
(YbYc cos(ωt− 90◦) cos(ωt− 90◦ − θb − θc + θς))

+
1

Yς
(YcYa cos(ωt+ 150◦) cos(ωt+ 150◦ − θc − θa + θς))]. (3.224)

Applying the trigonometric relation cos(α) cos(α− β) = 1/2(cos(2α− β) + cos(β))

Re(Y∆(t)) =
1

Yς
[YaYb cos(θa + θb − θς) + YbYc cos(θb + θc − θς) + YcYa cos(θc + θa − θς)

+ YaYb cos(2ωt+ 60◦ − θa − θb + θς) + YbYc cos(2ωt− 180◦ − θb − θc + θς)

+ YcYa cos(2ωt− 60◦ − θc − θa + θς)]. (3.225)

The vectorial part of the Q-admittance ~Y∆(t) is determined by eq. (3.118). Determining its compo-

nents.

Y∆a =
2√
3

[
cos(ωt)

Yς
(YcYa cos(ωt+ 150◦ − θc − θa + θς)− YbYc cos(ωt− 90◦ − θb − θc + θς))

− cos(ωt+ 120◦)

Yς
(YbYc cos(ωt− 90◦ − θb − θc + θς)− YaYb cos(ωt+ 30◦ − θa − θb + θς))]a,

(3.226)
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Y∆b
=

2√
3

[
cos(ωt− 120◦)

Yς
(YaYb cos(ωt+ 30◦ − θa − θb + θς)

− YcYa cos(ωt+ 150◦ − θc − θa + θς))−
cos(ωt)

Yς
(YcYa cos(ωt+ 150◦ − θc − θa + θς)

− YbYc cos(ωt− 90◦ − θb − θc + θς))]b, (3.227)

Y∆c =
2√
3

[
cos(ωt+ 120◦)

Yς
(YbYc cos(ωt− 90◦ − θb − θc + θς)

− YaYb cos(ωt+ 30◦ − θa − θb + θς))

− cos(ωt− 120◦)

Yς
(YaYb cos(ωt+ 30◦ − θa − θb + θς)

− YcYa cos(ωt+ 150◦ − θc − θa + θς))]c. (3.228)

Using that cos(a) + cos(a+ 120◦) = − cos(a− 120◦)

Y∆a =
2√
3

[
cos(ωt)

Yς
YcYa cos(ωt+ 150◦ − θc − θa + θς)

+
cos(ωt− 120◦)

Yς
YbYc cos(ωt− 90◦ − θb − θc + θς)

+
cos(ωt+ 120◦)

Yς
YaYb cos(ωt+ 30◦ − θa − θb + θς)]a, (3.229)

Y∆b
=

cos(ωt+ 120◦)

Yς
YaYb cos(ωt+ 30◦ − θa − θb + θς)

+
2√
3

[
cos(ωt)

Yς
YcYa cos(ωt+ 150◦ − θc − θa + θς)

+
cos(ωt− 120◦)

Yς
YbYc cos(ωt− 90◦ − θb − θc + θς)]b, (3.230)

Y∆c =
cos(ωt− 120◦)

Yς
YbYc cos(ωt− 90◦ − θb − θc + θς)

+
cos(ωt+ 120◦)

Yς
YaYb cos(ωt+ 30◦ − θa − θb + θς)

+
2√
3

[
cos(ωt)

Yς
YcYa cos(ωt+ 150◦ − θc − θa + θς)]c. (3.231)

It is observed that |Y∆a | = |Y∆b
| = |Y∆c |. So, ~Y∆(t) =

√
3|Y∆a |n. Using cos(α) cos(β) =

1/2[cos(α+ β) + cos(α− β)] to calculate Y∆a

Y∆a =
1√
3Yς

[YcYa cos(θc + θa − θς + 90◦) + YbYc cos(θb + θc − θς + 90◦)

+ YaYb cos(θa + θb − θς + 90◦) + YcYa cos(2ωt+ 30◦ − θc − θa + θς)

+ YbYc cos(2ωt− 90◦ − θb − θc + θς) + YaYb cos(2ωt+ 150◦ − θa − θb + θς)]a, (3.232)
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Applying cos(α+ 90◦) = − sin(α)

Y∆a =
1√
3Yς

[YcYa sin(θc + θa − θς) + YbYc sin(θb + θc − θς) + YaYb sin(θa + θb − θς)

+ YcYa sin(2ωt− 60◦ − θc − θa + θς) + YbYc sin(2ωt− 180◦ − θb − θc + θς)

+ YaYb sin(2ωt+ 60◦ − θa − θb + θς)]a, (3.233)

The polar form of Y∆ can by written as

Y∆(t) =
1

Yς
[YcYae

−n(θc+θa−θς) + YbYce
−n(θb+θc−θς) + YaYbe

−n(θa+θb−θς)

+ YcYae
−n(2ωt−π

3
−θc−θa+θς) + YbYce

−n(2ωt−π−θb−θc+θς) + YaYbe
−n(2ωt+π

3
−θa−θb+θς)], (3.234)

Alternatively

Y∆(t) = (Yςe
−n(θς))−1(YaYbe

−n(θa+θb) + YbYce
−n(θb+θc) + YcYae

−n(θc+θa))

+ (Yςe
n(θς))−1(YaYbe

−n(2ωt+π
3
−θa−θb) + YbYce

−n(2ωt−π−θb−θc) + YcYae
−n(2ωt−π

3
−θc−θa)). (3.235)

Next, the replacement of the neutral impedance by an short-circuit is considered. Since

lim
Yn→∞

(Yae
−nθa + Ybe

−nθb + Yce
−nθc + Yne

−nθn)−1 = 0, (3.236)

lim
Yn→∞

Yne
−n(θn)(Yae

−nθa + Ybe
−nθb + Yce

−nθc + Yne
−nθn)−1 =

lim
Yn→∞

e−n(θn)

(
Ya
Yn
e−nθa +

Yb
Yn
e−nθb +

Yc
Yn
e−nθc + e−nθn

)−1

= 1, (3.237)

it can be concluded that

lim
Yn→∞

Y = lim
Yn→∞

Y∆(t) + lim
Yn→∞

YΥ(t) = lim
Yn→∞

YΥ(t), (3.238)

lim
Yn→∞

Y = a−1 Ya√
6

(en(θa)qp + en(2ωt−θa)qp) + b−1 Yb√
6

(en(θb+
2π
3

)qp + en(2ωt− 2π
3
−θb)qp)

+ c−1 Yc√
6

(en(θc− 2π
3

)qp + en(2ωt+ 2π
3
−θc)qp). (3.239)

It is observed that eqs. (3.194) and (3.239) are the same expressions. This result is expected since an

infinite admittance is equivalent to a short-circuit. So, the Q-admittance of the grounded wye becomes

equal to the Q-admittance of the solidly grounded wye if the neutral impedance is substituted by a short-

circuit.
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Afterwards, the replacement of the neutral impedance by an open circuit is considered. Since

lim
Yn→0

(Yae
−nθa + Ybe

−nθb + Yce
−nθc + Yne

−nθn)−1 =

(Yae
−nθa + Ybe

−nθb + Yce
−nθc)−1 = Yσe

−nθσ , (3.240)

lim
Yn→0

Yne
−n(θn)(Yae

−nθa + Ybe
−nθb + Yce

−nθc + Yne
−nθn)−1 = 0, (3.241)

it can be concluded that

lim
Yn→0

Y = lim
Yn→0

Y∆(t) + lim
Yn→0

YΥ(t) = lim
Yn→0

Y∆(t), (3.242)

lim
Yn→0

Y = (Yσe
−nθσ)−1(YaYbe

−n(θa+θb) + YbYce
−n(θb+θc) + YcYae

−n(θc+θa))+

(Yσe
nθσ)−1(YaYbe

−n(2ωt+π
3
−θa−θb) + YbYce

−n(2ωt−π−θb−θc) + YcYae
−n(2ωt−π

3
−θc−θa)). (3.243)

It is observed that eqs. (3.166) and (3.243) are the same expressions. This result is also expected, since

removing the admittance, the load loses the connection to the neutral, becoming an ungrounded wye load.

In this case, the four-wire system becomes a three-wire system.

From the results of eqs. (3.239) and (3.243). it is observed that the grounded wye load is a combination

of the solidly grounded wye load and the ungrounded wye load. More specifically, these expressions

indicate that the grounded wye load is a parallel combination of the aforementioned loads. Consider YΥ(t)

as presented in eq. (3.220). Defining

Yα =
YaYn
Yς

, (3.244)

Yβ =
YbYn
Yς

, (3.245)

Yγ =
YcYn
Yς

, (3.246)

θα = θa + θn − θς , (3.247)

θβ = θb + θn − θς , (3.248)

θγ = θc + θn − θς , (3.249)

the Q-admittance eq. (3.220) can be written as

Y = a−1 Yα√
6

(en(θα)qp + en(2ωt−θα)qp) + b−1 Yβ√
6

(en(θβ+ 2π
3

)qp + en(2ωt− 2π
3
−θβ)qp)

+ c−1 Yγ√
6

(en(θβ− 2π
3

)qp + en(2ωt+ 2π
3
−θγ)qp). (3.250)
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According to eq. (3.194), eq. (3.250) represents the Q-admittance of a solidly grounded wye load with

admittances Yαe−jθα ,Yβe−jθβ and Yγe−jθγ , connected to phases A, B and C, respectively.

Next for the delta load, Y∆(t) as presented in eq. (3.234) is considered. Defining.

Y∆ab
=
YaYb
Yς

, (3.251)

Y∆bc
=
YbYc
Yς

, (3.252)

Y∆ca =
YcYa
Yς

, (3.253)

θ∆ab
= θa + θb − θς , (3.254)

θ∆bc
= θb + θc − θς , (3.255)

θ∆ca = θc + θa − θς , (3.256)

the Q-admittance in eq. (3.234) can be written as

Y∆(t) = Y∆ab
e−nθ∆ab + Y∆bc

e−nθ∆bc + Y∆cae
−nθ∆ca + Y∆ab

e−n(2ωt+π
3
−θ∆ab )

+ Y∆bc
e−n(2ωt−π−θ∆bc ) + Y∆cae

−n(2ωt−π
3
−θ∆ca ), (3.257)

It is observed comparing eq. (3.257) and eq. (3.130) that Y∆(t) is the Q-admittance of an delta load with

admittances Y∆ab
e−jθab ,Y∆bc

e−jθ∆bc and Y∆cae
−jθ∆ca between phases A-B, B-C and C-A, respectively.

Considering eq. (3.250) and eq. (3.257), it is observed that the grounded wye load can be decomposed

into a delta load and a solidly grounded wye load. The neutral impedance acts as an converting factor that

relates these loads. Fig. 3.32 shows the decomposition of the grounded load.
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Figure 3.32: Equivalent of the grounded three-phase load.

3.5 Q-POWER ANALYSIS

In this section, the Q-power of some of the loads studied in this chapter is analyzed. In the balanced

case, the RL, RC, RLC, and LC loads are considered. In the unbalanced case, only the delta and solidly

grounded wye are evaluated. The analysis of an ungrounded wye load is equivalent to the analysis of the

delta load, due to ∆-Y transform, so it is not presented here. On the other hand, the grounded wye load

was shown to be equivalent to the parallel association of a delta load and a solidly grounded wye. For this

reason, the Q-power of the grounded wye load is also not shown.

Starting the analysis, a balanced three-phase load in the steady-state is considered. The Q-power of

this load can be calculated using eq. (3.26) in eq. (3.20)

Y enθ|V|2 = 3V 2
o Y e

nθ. (3.258)

It is noteworthy that eq. (3.258) is equivalent to the definition of three-phase power of the same load

using phasors. If the n in eq. (3.258) is substituted by j, the complex power would be obtained. In this

sense, a representation of Q-power in a plane, denoted by NR, formed by the real axis and the axis in

the direction of n is possible. Considering three three-phase balanced loads in the wye configuration with

admittances connected to each phase equal to 1 for the first load, e−j
π
2 for the second and ej

π
6 for the third.
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The Q-admittance of these loads is Y1 = en0, Y2 = e−nπ
2 and Y3 = enπ

6 , for the first, second and third

load, respectively. Using the admittance of these loads, the Q-power is calculated applying eq. (3.258),

with Vo = 220V . The representation of the Q-power in the NR plane is presented in Fig. 3.33.
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Figure 3.33: Q-power of loads Y1, Y2 and Y3.

It is observed in Fig. 3.33 that the Q-power lies in the real axis for the pure resistive load Y1 as

expected. Analogously, it is located under the real axis for capacitive loads and above it for inductive

loads, as observed from the Q-power of pure capacitive load Y2 and inductive load Y3. The Q-power

is represented in Fig. 3.33 by a vector, since it is a single point in the NR plane in the steady-state for

balanced loads. Nevertheless, it varies in time if the transient state is considered or if the load is unbalanced.

Considering this fact, in the rest of this section, the Q-power is represented by its locus.

3.5.1 RL and RC balanced loads

The Q-power can be determined considering the transient and the steady-states using eq. (3.104). Ap-

plying eqs. (3.60) and (3.70) in eq. (3.104) the Q-power for RL and RC loads, respectively, can be written

as

ST (t) = 3V 2
o Y e

nθ +
√

3Voe
−R
L
tenωtqpk

∗. (3.259)

ST (t) = 3V 2
o Y e

nθ +
√

3Voe
− t
RC enωtqpk

∗. (3.260)

Figs. 3.34 and 3.35 present the Q-power of three-phase RL and RC loads, respectively. In the RL load,
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R = 100 Ω and L = 1 H and, in the RC load, R = 100 Ω and C = 100µF. In both cases, I(0) = 0 and

Vo = 220 V.
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Figure 3.34: Q-power of a three-phase RL load.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Re(S)

-1400

-1200

-1000

-800

-600

-400

-200

0

200

S
n

Figure 3.35: Q-power of a three-phase RC load.

It is observed from Figs. 3.34 and 3.35 that the Q-power starts at 0, since the initial value of Q-current

is null, and then varies until it stabilizes in the steady-state. In the case of the RC load, for a short period

of time, the Q-power is above the real axis, indicating an inductive characteristic. It is concluded that in

the transient state, loads can alternate between capacitive and inductive characteristics. Naturally, as time

increases, the Q-power stabilizes at its steady-state, as discussed in the previous section.
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3.5.2 RLC balanced loads

As discussed in section 3.2, RLC loads can be divided into overdamped, critically damped, and un-

derdamped cases. Applying eqs. (3.82), (3.86) and (3.90) in eq. (3.104) the Q-power for overdamped,

critically damped and underdamped RLC loads, respectively, can be written as

ST (t) = 3V 2
o Y e

nθ +
√

3Voe
−ζω0tenωtqp(e

ω0

√
ζ2−1tk∗1 + e−ω0

√
ζ2−1tk∗2). (3.261)

ST (t) = 3V 2
o Y e

nθ +
√

3Voe
−ζω0tenωtqp(k∗1 + tk∗2). (3.262)

ST (t) = 3V 2
o Y e

nθ +
√

3Voe
−ζω0tenωtqp[cos(ω0

√
1− ζ2t)k∗1 + sin(ω0

√
1− ζ2t)k∗2]. (3.263)

Figs. fig. 3.36, 3.37 and 3.38 present the Q-power of three-phase RLC loads for the overdamped,

critically damped and underdamped cases, respectively. The impedances connected to each phase are

R = 100 Ω, L = 50 mH and C = 100µF for the overdamped load, R = 200 Ω, L = 1 H, C = 100µF

for the critically damped load and R = 100 Ω, L = 1 H, C = 100µF for the underdamped load. In both

cases, I(0) = 0 and Vo = 220 V.
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Figure 3.36: Q-power of a three-phase RLC load (overdamped).

It is observed from Figs. 3.36, 3.37 and 3.38 that as in the case of first-order loads, the Q-power of

quaternion loads varies in time in a spiral shape, converging to the steady-state value. The Q-power also

crosses the real axis, indicating that Q-power alternates between capacitive and inductive behavior. From

Figs. 3.37 and 3.38 it is also observed that the Q-power crosses the n axis, which indicates that the instan-

taneous power is negative for a short period of time. So, in the critically damped and the underdamped

cases, the load has behaved as a source during part of the transient state.
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Figure 3.37: Q-power of a three-phase RLC load (critically damped).
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Figure 3.38: Q-power of a three-phase RLC load (underdamped)

3.5.3 LC balanced load

The Q-power of the three-phase balanced LC load is also determined. Applying eq. (3.102) in eq. (3.104)

the Q-power for LC loads can be written as

ST (t) = 3V 2
o Y e

nθ +
√

3Voe
nωtqp(cos(ω0t)k∗1 − sin(ω0t)k∗2). (3.264)

Fig. 3.39 present the Q-power of a three-phase LC load, considering L = 1 H, C = 1µF, I(0) = 0 and

Vo = 220 V.

As observed from Fig. 3.39, the Q-power does not converge to the steady-state, as expected. Addition-

ally, the Q-power locus oscillates between the n axis, so that the average active power consumption of this

load is null.
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Figure 3.39: Q-power of a three-phase LC load.

3.5.4 Unbalanced delta load

In this subsection, the Q-power of unbalanced delta loads is analyzed. The expressions for Q-power of

the delta load are obtained from eqs. (3.134) and (3.145) using eq. (3.20).

S = 3YplV
2
o e

nθpl + 3YωV
2
o e

nφω(t), (3.265)

S = 3Yδ(t)V
2
o e

nφδ(t). (3.266)

For analyzing the behavior of Q-power, several loads will be considered. Table 3.5.4 presents the

admittance connected to each pair of phases of these loads, as well as Q-admittance terms.

Table 3.1: Three-phase delta load admittances.
Yabe

−jθab Ybce
−jθbc Ycae

−jθca Ypl θpl Yω

Y1 3 2 2 7 0 1

Y2 4 2 2 8 0 2

Y3 5 2 2 9 0 3

Y4 4 3 3 10 0 1

Y5 5 3 2 10 0 2.65

Y6 6 3 1 10 0 4.36

Y7 2ej
π
6 2e−j

π
12 2e−j

π
12 5.60 −0.36◦ 1.53

Y8 2ej
π
2 2e−j

π
12 2e−j

π
12 4.91 −38.15◦ 3.17

Y9 2e−j
π
2 2e−j

π
12 2e−j

π
12 3.98 14.02◦ 2.44

The loads in Table 3.5.4 are separated into three groups. The first group consist of the Q-admittances

Y1, Y2 and Y3. It consists of a set of resistive loads in which the resistance connected to phases A and B
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is decreased. The second group consists of the Q-admittances Y4, Y5 and Y6. This group is also a set of

resistive three-phase loads, but in this case, the Yab is increased and Yca is decreased by the same value.

The third group consists of the Q-admittances Y7, Y8 and Y9. In this group, the admittances have the same

absolute value, but the argument θab is varied.

Fig. 3.40 presents the Q-power of the first group of loads.
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Figure 3.40: Q-power of Q-admittances Y1, Y2 and Y3.

From Fig. 3.40 it is observed that the Q-power of resistive unbalanced delta loads describes a circle

centered in the real axis. As one of the admittances is increased, the center of this circle moves away from

the origin. The radius of the circle is increased as well.

Fig. 3.41 presents the Q-power of the second group of loads.

From Fig. 3.41 it is observed that if one of the admittances is increased by the same amount that

a second is decreased, the center of the Q-power locus does not change. However, as the load is more

unbalanced, the radius of the circle increases.

Fig. 3.42 presents the Q-power of the third group of loads.

From Fig. 3.42 it is observed that as the argument of one of the admittances is varied, the center of

Q-power locus also varies. The radius also varies depending on the difference between the arguments of

the admittances in each phase.

Analyzing eq. (3.265), it is observed that the center of the Q-power locus is its constant part, 3YplV
2
o e

nθpl .

It indicates the Q-power of the balanced load obtained by the decomposition of the delta load. The radius
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Figure 3.41: Q-power of Q-admittances Y4, Y5 and Y6.
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Figure 3.42: Q-power of Q-admittances Y7, Y8 and Y9.

of the circle is given by 3YωV
2
o . In this sense, Yω is a measure of load unbalance, since it increases if

the unbalances between phases are increased as observed from Figs. 3.40, 3.41 and 3.42. It accounts for

absolute values and arguments of each admittance, as described in eq. (3.136).

3.5.5 Unbalanced solidly grounded wye load

In this subsection, the Q-power of a three-phase solidly grounded wye load is analyzed. The Q-power

of this load can be obtained applying eq. (3.184) in eq. (3.20)

S = 3V 2
o (Y∗A + Y∗B + Y∗C), (3.267)
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or alternatively using eq. (3.194)

S =
3V 2

o√
6

[Ya(e
n(θa)q∗p + en(2ωt−θa)q∗p)a + Yb(e

n(θb+
2π
3

)q∗p + en(2ωt− 2π
3
−θb)q∗p)b

+ Yc(e
n(θc− 2π

3
)q∗p + en(2ωt+ 2π

3
−θc)q∗p)c]. (3.268)

which can be written analogously to eq. (3.184) as

S = SA + SB + SC . (3.269)

Next, the Q-power a solidly grounded wye load is obtained. It has admittances Yae−jθa = 100,

Ybe
−jθb = 2j

π
6 and Yce−jθc = e−j

π
2 connected to phases A, B and C, respectively is obtained.

Figs. 3.43, 3.44 and 3.45 presents the components SA, SB and SC of Q-power of this load.

Figure 3.43: SA component of the Q-power of a solidly-grounded unbalanced wye.

Figure 3.44: SB component of the Q-power of a solidly-grounded unbalanced wye.
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Figure 3.45: SC component of the Q-power of a solidly-grounded unbalanced wye.

From Figs. 3.43, 3.44 and 3.45 it is observed that each component of the Q-power is in a space lacing

one of the three basic quaternion units. Moreover, each component is an ellipse with parameters determined

by its constant and varying in time components.

The Q-power of the three-phase load is them obtained summing these three components. It has all four

quaternionic components and its vectorial part is not restricted to a direction as in the case of the delta load.

To represent the Q-power, another expression for this quantity is used. Substituting eq. (3.200) in eq. (3.20)

S = V 2
o [cos(2ωt)Y∗ϕ + sin(2ωt)Y∗ψ + Y∗o]. (3.270)

For representing the Q-power in a three-dimensional space, the axis direction have to be chosen ac-

cordingly to eq. (3.270). Since Y∗ϕ and Y∗ψ are orthogonal, their directions can be defined as two of the

space axis, that is

q1 =
Y∗ϕ
|Y∗ϕ|

, (3.271)

q2 =
Y∗ψ
|Y∗ψ|

. (3.272)

The third direction is defined by the direction of Y∗o subtracted by its projections in q1 and q2. This

method used to normalizing vectors is known as Gram-Schmidt process.

q3 =
Y∗o − (Y∗o · q1)q1 − (Y∗o · q2)q2

|Y∗o − (Y∗o · q1)q1 − (Y∗o · q2)q2|
(3.273)

Fig. 3.46 presents the Q-power in the space formed by the direction q1, q2 and q3

It is observed from Fig. 3.46 that the locus of the Q-power of the solidly grounded load is a circum-

ference. In this case, differently than in the delta load, the axis directions depend on load parameters. So,

71



0

2

4

6

8

10
S

q1

106

-5

0

5S
q2

106

1.78202

1.78203

1.78204

S
q

3

105

Figure 3.46: Q-power of a solidly-grounded unbalanced wye.

it is not possible to represent different loads in the same subspace of H. Nevertheless, the radius of the

Q-power circumference is also related unbalance levels.

3.6 FINAL CONSIDERATIONS

In this chapter, three-phase linear loads were modeled in the time-domain using a quaternion frame-

work. Initially, the definitions of Q-voltage, Q-current, instantaneous Q-power, Q-impedance, and Q-

impedance were shown. The definition of Q-admittance was presented and the power expressions were

rewritten in terms of this definition. Then, three-phase balanced loads were analyzed in terms of Q-

admittance and power. Resistive, inductive, and capacitive loads, as well as their combinations, were con-

sidered in the time-domain. Afterward, unbalanced loads in three-wire systems were analyzed. The delta

and wye configurations were evaluated considering the steady-state. It was shown that in the quaternion

framework, the unbalanced load expressions for admittance and power resemble those of a combination of

balanced loads. It was concluded that the unbalanced three-phase load is equivalent to a time-varying bal-

anced three-phase load. Expressions for the steady-state Q-admittance of solidly grounded and grounded

wye were obtained. It was shown that the grounded wye is a parallel combination of the solidly grounded

wye and the delta load. All expressions obtained for these loads are not obtainable with the usual time-

domain theory. Nevertheless, these expressions provide simple rules for obtaining the Q-admittance if

the admittance of each phase is known. Furthermore, the proposed formulation is a novel and compact

representation of three-phase loads.
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In the following chapter, conclusions and suggestions of future works are addressed.
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4 CONCLUSIONS

In this study, three-phase balanced and unbalanced linear loads were analyzed in a quaternion frame-

work. Expressions for Q-admittance and Q-power were obtained considering transient and steady-states

in the balanced case. The Q-current locus was described for several types of three-phase loads. Several

formulas were derived for Q-admittance and Q-power of unbalanced delta loads in the steady-state. It was

shown that the Y-∆ transform allows for accounting for the Q-admittance and the Q-power of wye loads

as well. Additionally, Q-power and Q-admittance of grounded and solidly grounded wye loads were pre-

sented. With the model proposed, Q-power and Q-current can easily be obtained if the three-phase voltages

and parameters of load are known.

The definitions of impedance and admittance are normally introduced in the frequency domain. Nev-

ertheless, their generalization to the time domain in the presented quaternion framework provides useful

information about loads. It also allows for considering impedance and admittance in scenarios in which

phasorial theory was not able to, e.g. in the presence of harmonics.

For three-wire loads, it was shown that the Q-admittance can be expressed with two terms: one that is

equivalent to the usual complex admittance and other that accounts for the time-variant contribution of the

load imbalance on the power. The second component of the Q-admittance can be used as a measure of the

load unbalance level. It is an unbiased measure in the sense that for a balanced load this second term is

zero. This decomposition also makes it natural to introduce the idea of decomposition of the unbalanced

load in terms of a balanced load in parallel with an unbalanced load with null average power.

The Q-admittance can be expressed as well in a form that makes clear that any unbalanced delta load

can be represented as a time-varying balanced load. It is noteworthy that the Q-admittance of this load is

restricted to a plane in the hypercomplex space. As a consequence, operating this quantity uses the same

computational effort as operating with complex numbers.

In four-wire systems, it was shown that the Q-admittance of the solidly grounded load is composed of

three linearly independent parts due to the direct connection to the ground. Given this, the quaternionic

analysis of this case is analogous to considering each phase separately. The Q-admittance of the grounded

load is shown to be equivalent to the Q-admittance of delta load plus the Q-admittance of the solidly
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grounded load. Thus, it can be decomposed into a parallel combination of these loads.

For future works, the investigation of the proposed formulation in an environment with harmonics is

suggested. In this sense, the modeling of non-linear three-phase loads is a possible guideline. The quater-

nion framework allows for the unification of the transient and the steady-state in a compact and consistent

algebra. So, the development of power system algorithms based on the proposed model is encouraged. The

use of Yω and Yr as indicators of load unbalance also needs further investigations. Proposed formulations

of three-phase loads also indicate the possibility of designing compensators in the H domain.
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