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Abstract: We carried out fully-atomistic reactive molecular dynamics simulations to study the elastic
properties and fracture patterns of transition metal dichalcogenide (TMD) MoX2 (X = S, Se, Te)
membranes, in their 2H and 1T phases, within the framework of the Stillinger–Weber potential.
Results showed that the fracture mechanism of these membranes occurs through a fast crack
propagation followed by their abrupt rupture into moieties. As a general trend, the translated
arrangement of the chalcogen atoms in the 1T phase contributes to diminishing their structural
stability when contrasted with the 2H one. Among the TMDs studied here, 2H-MoSe2 has a higher
tensile strength (25.98 GPa).

Keywords: transition metal dichalcogenides; molybdenum-based TMDs; elastic properties;
fracture patterns; reactive molecular dynamics

1. Introduction

Transition metal dichalcogenide (TMD) monolayers are atomically thin semiconductors that
belong to the family of 2D nanosheets [1,2]. They present an MX2 arrangement, where M is a transition
metal, and X is a chalcogen. The combination of chalcogen (e.g., S, Se, or Te) and transition metal atoms
(typically Mo, W, Nb, Re, Ni, or V) yields more than 40 different materials [3,4]. Each monolayer has
a thickness of 6–7 Å and is hexagonally-packed by transition metal atoms sandwiched between two
layers of chalcogen atoms [3]. TMDs are graphene cognate and possible to be synthesized by applying
the same chemical methods usually employed in producing the latter [5,6]. These materials have
received much attention in the fields of biomedicine [7,8], optoelectronics [9,10], and energy conversion
and storage [11,12]. Particularly, MoS2 and MoTe2 monolayers—direct bandgap semiconductors with
bandgaps about 1.9 eV [13] and 1.0 eV [14], respectively—have emerged as promising candidates
in replacing gapless graphene to develop novel applications in which semiconducting materials are
desired [15]. MoSe2, in turn, is an indirect bandgap semiconductor (with a bandgap about 1.58 eV [16])
that has also been widely employed in developing new applications in flat electronics [17,18]. To further
explore the potential of these TMDs species in boosting new advances in the research fields mentioned
above, their mechanical properties should be deeply understood.
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TMD nanostructures have three different structural arrangements, named 2H, 1T, and 1T’ [19].
2H and 1T refer to the hexagonal and trigonal structures, respectively. The 1T’ phase is a distorted form
of 1T. The octahedral phase 1T can be spontaneously converted into its distorted octahedral phase
1T’. The 1T and 1T’ phases have metallic and semiconducting characteristics, respectively [19,20].
Significant theoretical and experimental efforts have been employed in understanding the mechanical
properties of layered MoS2 [21–35], MoSe2 [36–39], and MoTe2 [14,40–45] on both 2H and 1T forms.
In these investigations, they experimentally studied a few layers (5–25) of these TMDs species,
and Young’s modulus obtained ws approximately 330 GPa [22], 117 GPa [39], and 110 GPa [43]
for MoS2, MoSe2, and MoTe2, respectively. By using density functional theory and reactive molecular
dynamic simulations, theoretical studies have predicted Young’s modulus values for single-layer
MoS2, MoSe2, and MoTe2 ranging in the intervals 170–250 GPa [21,25,34], 165–185 GPa [39,46],
and 60–115 GPa [42,44,45], respectively. These works promoted substantial advances in understanding
the mechanical properties of TMDs. However, an overall description of their elastic properties and
fracture dynamics is still missing.

Herein, we carried out extensive fully-atomistic reactive molecular dynamics simulations
to study the elastic properties and fracture dynamics of MoX2 (X = S, Se, Te) membranes in
their 2H and 1T phases. The elastic properties were obtained from the stress–strain relationship.
Only recently, 1T phases of these materials were experimentally realized [19]. In this sense, a detailed
description of the mechanical properties of these nanostructures considering both 2H and 1T phases is
highly attractive.

2. Details of Modeling

We performed fully-atomistic molecular dynamics (MD) simulations using the Stillinger–Weber
(SW) [26,27] potential as implemented by LAMMPS [47]. Differently from regular MD simulations,
in the reactive MD ones, the breaking and formation of bonds are described. Figure 1 illustrates the
model TMD’s monolayers studied here in their 2H and 1T phases. The left, middle, and bottom panels
illustrate the MoS2, MoSe2, and MoTe2 monolayers, respectively, in the H (top panels) and T phases
(bottom panels). Their atomistic structure contains 3456, 3348, and 2688 atoms, respectively, and they
were built intended in yielding 2D membranes with dimensions of about 100 × 100 Å2, with periodic
boundary conditions. It is worthwhile to stress that the simulation results are not sensitive to the
selected computational cell size (as can occur when studying 2D materials using density functional
theory calculations [48,49]), which has been checked using a system with larger dimensions. In this
sense, the periodic boundary condition was applied to remove the lateral boundary effect and simulate
the intrinsic properties of the MoX2 membranes.

The equations of motion were solved using the velocity-Verlet integrator with a time-step of 0.1 fs.
The tensile stress was considered in the system by applying a uniaxial strain along the periodic h
and v directions, using an engineering strain rate of 10−6 fs−1. The TMD membranes were stressed
up to their complete rupture. To eliminate any residual stress within the membranes, they were
equilibrated within an NPT ensemble at constant temperatures (1K and 300K) and null pressures using
the Nosé–Hoover thermostat during 200 ps. By adopting this simulation protocol, Young’s modulus
(YM), fracture strain (FS), and ultimate strength (US) are the elastic properties derived from the
stress–strain curves. The fracture dynamics, in turn, are studied through MD snapshots and the von
Mises stress (VM) per-atom values, calculated at every 100 fs [50]. The VM values provide useful local
structural information on the fracture mechanism, once they can determine the region from which the
structure has started to yield the fractured lattice. The MD snapshots and trajectories were obtained by
using free visualization and analysis software VMD [51].
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Figure 1. Schematic representation of the model transition metal dichalcogenide (TMD) monolayers
in their 2H and 1T phases. The v and h red arrows highlighted in the 2H-MoS2 panel denote the
structure directions.

To better analyze the outcomes from the stretching dynamics, we calculated the von Mises stress
(VM) per-atom values [52]. The VM values provide useful local structural information on the fracture
mechanism, once they can determine the region from which the structure has started to yield the
fractured lattice. In this way, the VM equation can be written as

σk
v =
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where σk
xx, σk

yy, and σk
zz are the components of the normal stress and σk

xy, σk
yz, and σk

zx are the components
of the shear stress. The MD snapshots and trajectories were obtained by using free visualization and
analysis software VMD [51].

In Equation (1), the elements of the per-atom stress tensor (computed by LAMMPS) are used.
The tensor for each atom is symmetric with 6 components: xx, yy, zz, xy, xz, and yz. The computed
quantity is in units of pressure*volume. It would need to be divided by a per-atom volume to have
units of stress (pressure), but an individual atom’s volume is not well defined or easy to compute in a
deformed solid or a liquid. Therefore, if the diagonal components of the per-atom stress tensor are
summed for all atoms in the system and the sum is divided by D × V, where D is the dimension and
V the volume of the system, respectively, the result should be −P, where P is the total pressure of the
system [53–56].
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3. Results

We begin our discussions by showing representative MD snapshots of the fracture dynamics
for the 2H-MoS2 (top sequence of panels) and 1T-MoS2 (bottom sequence of panels) monolayers at
300K and considering a uniaxial strain applied along the h-direction, as shown in Figure 2. In the
2H-MoS2 case, one can note an abrupt rupture followed by a fast propagation of the fracture along
the v−direction is accomplished at 11.60% of strain. The membrane is considered fractured at 11.68%
of strain, once the atoms in the edges of the two fractures moieties are not interacting. A different
fracture trend is realized for a 1T-MoS2 membrane. The very first striking outcome obtained here,
when contrasting the fracture dynamics of 2H-MoS2 and 1T-MoS2, is the considerably higher degree of
fragility of the latter case. In Figure 2, one can observe that the critical strain for the beginning of the
fracture in the 1T-MoS2 (5.44%) is almost two times smaller than the one for 2H-MoS2. Another clear
trend showed in this figure is that the fracture dynamics of 1T-MoS2 leads to a brittle lattice structure.
This rupture trend is different from the one obtained for the 2H-MoS2 case, in which two well concise
MoS2 fragments were produced as a final stage of the fracture process. This brittle signature for the
1T-MoS2 case is obtained for 5.60% of strain. These results suggest that the translated arrangement of
the chalcogen atoms in the 1T phase is crucial in diminishing the structural stability of TMDs.
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Å
3
]

x

y

Figure 2. Representative molecular dynamics (MD) snapshots of the fracture dynamics for the
2H-MoS2 (top sequence of panels) and 1T-MoS2 (bottom sequence of panels) monolayers at 300K
and considering a uniaxial strain applied along the h-direction.

An interesting result arises when a uniaxial strain is applied along the v-direction, as depicted
in Figure 3. This figure shows the cases related to Figure 2. When the tensile stretching is applied in
the v-direction, the critical strain to realize the beginning of the fracture of 2H-MoS2 and 1T-MoS2

membranes is considerably higher than the ones presented in Figure 2. The difference between
the fracture strains for these species is smaller when the stretching is applied along the v-direction.
As illustrated in Figure 3, the fracture (critical) strains for the beginning of the rupture are 14.08%
and 9.84% for the 2H-MoS2 and 1T-MoS2 membranes, respectively. After that critical value, the crack
propagation takes place for 14.16% and 9.92% for the 2H-MoS2 and 1T-MoS2 cases, respectively.
Interestingly, the brittle trend for the 1T-MoS2 fracture, obtained for the v-direction stretching, does not
occur when it comes to the v-direction stretching. After 14.24% and 10.0%, a fast crack propagation
occurs for the 2H-MoS2 and 1T-MoS2 monolayers, respectively.
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Figure 3. Representative MD snapshots of the fracture dynamics for the 1T-MoS2 (top sequence of
panels) and 1T-MoS2 (bottom sequence of panels) monolayers at 300K and considering a uniaxial
strain applied along the v-direction.

Figure 4 illustrates the representative MD snapshots for the 2H/1T-MoSe2 and 2H/1T-MoTe2

membranes. For the sake of convenience, we presented just the snapshots that show the crack
propagation and the fractured form of these TMD species. The top and bottom panels depict the
results when the uniaxial strain is applied along the h and v directions, respectively. In the top panels,
one can note that the critical strain for the membrane rupture is 17.60%, 7.52%, 18.56%, and, 8.24% for
the 2H-MoSe2, 1T-MoSe2, 2H-MoTe2, and 1T-MoTe2, respectively. In the bottom panels, we can
observe that the critical strain for the membrane rupture is 19.84%, 8.56%, 20.48%, and, 9.44% for the
2H-MoSe2, 1T-MoSe2, 2H-MoTe2, and 1T-MoTe2, respectively. A comparison of the tensile strength
among the TMDs studied here is presented below with Table 1. As for the MoS2 cases, in the MoSe2

and MoTe2 cases, the fracture propagation undergoes in the direction opposite to the stretching. It is
worthwhile to stress that both MoSe2 and MoTe2 present a fracture mechanism defined by a fast crack
propagation followed by an abrupt rupture of the membranes into parts with a good degree of integrity
(i.e., no brittle structures were observed). Theses results suggest that MoSe2 and MoTe2 monolayers
may present greater structural stability than the MoS2 ones.

Finally, we present the elastic properties obtained from the simulations discussed above.
These properties are Young’s modulus (YM, in units of GPa), fracture strain (FS (%)), and the maximum
stress US (which is called ultimate tensile strength US (GPa)). They were estimated considering
stretching regimes before mechanical failure (fracture) of the TMD membranes. These stretching
regimes can be inferred from Figure 5, which illustrates the calculated stress–strain curves for all TMD
membranes when subjected to 10K and 300K, considering a uniaxial strain applied in both h and v
directions. Recently, the impact of temperature on the elastic properties of 2H-MoS2 was studied by
using the SW potential as implemented in LAMMPS [57]. The highest temperature simulated was
600K. It was concluded that Young’s modulus decreased with increasing temperature. In addition,
the 2H-MoS2 has smaller fracture strain at a higher temperature. These behaviors were related to
stronger thermal vibrations at higher temperatures, which resulted in longer extensions of atomic
bonds. Figure 5a–f are describing the stress–strain relationship for the 2H/1T-MoS2, 2H/1T-MoSe2,
and 2H/1T-MoTe2 membranes, respectively. Table 1 presents a summary of the mechanical properties
of the TMD monolayers studied in this work. In our simulation protocol, these monolayers were
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stretched at a constant rate until their total rupture. The stress–strain curves show the two following
common regions: a non-linear elastic region that is observed up to the ultimate strength value and a
region of null stress (after a critical fracture strain) in which the TMD membranes ultimately break.
In Figure 5, one can see that the US values are slightly higher for the cases in which the tensile
stretching was applied in the v-direction. This trend occurs since the bond angle variations in h−
and v−direction are different, and they govern the fracture strain. The fracture strains range from
5.44% (1T-MoS2 at 300K) up to 29.86% (2H-MoTe2 at 10K). As expected, increasing the temperature to
300K, there is a decrease in the critical tensile strain (fracture strain) values for all TMD membranes
(see Table 1). The highest Young’s modulus was obtained for 2H-MoSe2 monolayer at 10K (154.65 GPa).
The TMD of the higher tensile strength (highest ultimate stress value) is the 2H-MoSe2 membrane at
10K (25.98 GPa). As discussed above, generally, the translated arrangement of the chalcogen atoms
in the 1T phase can contribute to diminishing their structural stability when compared with TMD
membranes in the 2H phase. Importantly, Table 1 summarizes the elastic properties (YM, FS, and US)
that were obtained by fitting the stress–strain curves for the TMD monolayers investigated here. It is
worthwhile to stress that the fracture is a random process. The scatter for the elastic property values
obtained using different MD trajectories is useful to estimate the precision of our calculations. In this
way, we performed ten additional simulations for the 2H-MoS2 case by changing the initial seed for
the random number generation. In these simulations, the strain was applied in the h-direction at 300 K.
We obtained the following values for the elastic properties: YM = 135 ± 13 GPa, FS = 12 ± 2%, and the
US = 14 ± 3 GPa.
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Figure 4. Representative MD snapshots of the fracture dynamics for the 2H/1T-MoSe2 and
2H/1T-MoTe2 monolayers at 300K. The top and bottom sequence of panels refer to the simulations
considering a uniaxial strain applied along the h and v directions, respectively.
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Table 1. Elastic properties (YM, in units of GPa), fracture strain (FS (%)), and the maximum stress
US (which is called ultimate tensile strength US (GPa)) that were obtained by fitting the stress–strain
curves for the TMD monolayers investigated here.

Temperature [K]

2H-MoS2

Strain-h Strain-v

YM [GPa] FS [%] US [GPa] YM [GPa] FS [%] US [GPa]

10 K 145 19 19 139 22 17
300 K 135 12 14 130 14 14

Temperature [K]

2H-MoSe2

Strain-h Strain-v

YM [GPa] FS [%] US [GPa] YM [GPa] FS [%] US [GPa]

10 K 160 23 26 155 27 25
300 K 154 17 22 149 20 21

Temperature [K]

2H-MoTe2

Strain-h Strain-v

YM [GPa] FS [%] US [GPa] YM [GPa] FS [%] US [GPa]

10 K 125 25 23 122 30 21
300 K 121 18 19 118 20 18

Temperature [K]

1T-MoS2

Strain-h Strain-v

YM [GPa] FS [%] US [GPa] YM [GPa] FS [%] US [GPa]

10 K 124 13 12 120 14 11
300 K 133 5 7 110 8 8

Temperature [K]

1T-MoSe2

Strain-h Strain-v

YM [GPa] FS [%] US [GPa] YM [GPa] FS [%] US [GPa]

10 K 127 12 11 124 15 12
300 K 114 7 8 112 8 8

Temperature [K]

1T-MoTe2

Strain-h Strain-v

YM [GPa] FS [%] US [GPa] YM [GPa] FS [%] US [GPa]

10 K 118 13 11 114 16 11
300 K 107 8 8 103 9 8
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Figure 5. Calculated stress–strain curves for all TMD membranes studied here when subjected to
10K and 300K, considering a uniaxial strain applied in both h and v directions. (a,d), (b,e), and (c,f)
are describing the stress–strain relationship for the 2H/1T-MoS2, 2H/1T-MoSe2, and 2H/1T-MoTe2

membranes, respectively.

4. Discussion

In summary, we carried out fully-atomistic reactive molecular dynamics simulations to perform a
comparative study on the elastic properties and fracture patterns of MoX2 (X = S, Se, Te) membranes,
in the 2H and 1T phases, within the framework of the Stillinger–Weber potential. The results showed
that the fracture mechanism of a 2H-MoS2 monolayer occurs through an abrupt rupture followed by
fast crack propagation. A different fracture trend is realized for a 1T-MoS2 membrane. The fracture
dynamics of this material leads to a brittle structure. Both MoSe2 and MoTe2 presented a fracture
mechanism defined by a fast crack propagation followed by an abrupt rupture of the membranes
into parts with a good degree of integrity (i.e., no brittle structures were observed). These results
suggest that these monolayers may present greater structural stability than the MoS2 ones. The highest
Young’s modulus was obtained for 2H-MoSe2 monolayer at 10K (154.65 GPa). The TMD of higher
tensile strength is the 2H-MoSe2 membrane at 300 K (21.88 GPa). Generally, the critical strain to
realize the TMD membranes fracture is considerably higher when the strain was applied along
the v-direction. It was also obtained here as a general trend that the translated arrangement of
the chalcogen atoms in the 1T phase can contribute to diminishing their structural stability when
compared with TMD membranes in the 2H phase. As a consequence, among the 2H and 1T phases,
the 1T presented lower tensile strength. For instance, Young’s modulus value for single-layer graphene
is about 2.4 ± 0.4 TPa [58], which is almost ten times higher than the ones obtained here for the
MoX2 membranes. As it is well known, the lack of a bandgap in pristine graphene hampers its
application in semiconducting devices. Since MoS2 has a semiconducting bandgap (about 1.8 eV [22])
and possesses comparable tensile strength, it can be an alternative to substitute/complement graphene
in semiconducting applications, mostly when it comes to the field of flat nano-electronics.
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