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Abstract The COVID-19 pandemic (SARS-CoV-2 virus) is the global crisis of our time. The

absence of mass testing and the relevant presence of asymptomatic individuals causes the available

data of the COVID-19 pandemic in Brazil to be largely under-reported regarding the number of

infected individuals and deaths. We develop an adapted Susceptible-Infected-Recovered (SIR)

model, which explicitly incorporates the under-reporting and the response of the population to pub-

lic health policies (confinement measures, widespread use of masks, etc). Large amounts of uncer-

tainty could provide misleading predictions of the COVID-19 spread. In this paper, we discuss the

role of uncertainty in these model-based predictions, which is illustrated regarding three key

aspects: (i) Assuming that the number of infected individuals is under-reported, we demonstrate

anticipation regarding the infection peak. Furthermore, while a model with a single class of infected

individuals yields forecasts with increased peaks, a model that considers both symptomatic and

asymptomatic infected individuals suggests a decrease of the peak of symptomatic cases. (ii) Con-

sidering that the actual amount of deaths is larger than what is being registered, we demonstrate an

increase of the mortality rates. (iii) When we consider generally under-reported data, we demon-

strate how the transmission and recovery rate model parameters change qualitatively and quantita-

tively. We also investigate the ‘‘the uncertainty tripod”: under-reporting level in terms of cases,

deaths, and the true mortality rate of the disease. We demonstrate that if two of these factors
-Rico).
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are known, the remainder can be inferred, as long as proportions are kept constant. The proposed

approach allows one to determine the margins of uncertainty by assessments on the observed and

true mortality rates.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic is definitely the global crisis of our

time. A Chinese scientist first identified the SARS-CoV-2 virus
in humans in Wuhan, in the province of Hubei, China by
December 2019. This virus causes severe acute respiratory syn-
dromes which can become potentially fatal. By the end of June

2020, the World Health Organization (WHO) estimated that
the number of confirmed cases was already reaching the order
10; 000; 000, with over 490; 000 confirmed deaths.

Much more than presenting drastic effects on health sys-
tems, social and economical backlashes are already felt by
many countries. This phenomenon is especially evident in

countries with larger social inequalities, such as Brazil. The
effects of the virus on populations with poorer access to health
systems and sanitation facilities are strikingly harder

[21,45,25]. The city of São Paulo shows a very illustrative
example of these differences: the city hall released a technical
note by the end of April1 stating that the observed mortality
rate is 10 times larger in neighborhoods of the city with worse

social conditions and precarious housing.
In this paper, we consider the context of the spread of the

SARS-CoV-2 virus in Brazil, as detailed in [51]. Brazil is fac-

ing many issues since the beginning of the contagion, such as
the advance of the virus to farthest western cities, away from
urban areas, where medical care is somehow less present. The

country has 26 federated states, which have been choosing
different social distancing measures since mid-March.2 Even
though a strong public health system is available in Brazil,
many states have been exhibiting near-collapsing conditions

since May, with over 95% of Intense Care Unit (ICU) hospi-
tal beds occupied with COVID-19 patients [9]. Furthermore,
we note that the SARS-CoV-2 is currently posing a great

threat to indigenous communities, such as the Yanomami
and Ye’kwana ethnicities3. Clearly, the situation is border-
lining.

The first official death due to the SARS-CoV-2 virus in Bra-
zil was registered in March 17, while the first case was officially
notified in February 26; 2020. Through inferential statistics,

[12] acknowledge the fact that community transmission has
ão Paulo. Boletim Quinzenal
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been ongoing in the state of São Paulo since the beginning
of February (over one month before the first official reports).
This points to empirical evidence that the true amount of

infected individuals, and possibly registered deaths, are actu-
ally very under-reported.

Due to the absence of mass testing in the majority of cities,

Brazil has basically only accounted for moderate to severe
COVID-19 cases. People with mild or no symptoms are being
oriented by the Ministry of Health to stay home. Added to this

fact, the SARS-CoV-2 virus shows itself as an asymptomatic
contagion for a large number of individuals. For these reasons,
the scientific community has been warning for a possibly huge
margin of underestimated cases in Brazil [47,42,12]. Some

studies, such as [4], point out to the presence of over 700%
of under-reported cases. Furthermore, the daily reports
(‘‘datasets”) disclosed by the Brazilian Ministry of Health,4

only give an impression of the virus contagion in the past,
since, on average, a person exhibits acute symptoms only
20 days of the moment of infection. Through statistical proce-

dures, [35] have recently confirmed the empirical evidence that
the margin of under-reported cases is quite large in the major-
ity of Brazilian states. The state of São Paulo seems to be the

one with less uncertainty regarding the number of deaths
because the data also partially incorporates those deceased
due to severe acute respiratory syndromes even without
COVID-19 testing.

Therefore, it seems evident that uncertainty plays a signifi-
cant role in this contagion in Brazil. This issue should be
directly taking into account in the formulation of nation-

wide public health policies. With respect to this context, this
paper investigates the role of uncertainty in such a way that
decision-makers are able to plan more coherent, and adherent

to reality, policies. It is worth mentioning that propositions to
address the pandemic through recurrent social isolation peri-
ods has been recently assessed through optimal control in
[31,32].

Table 1 summarizes the estimates available in the literature
regarding the under-reporting levels and true mortality rates
for Brazil. In this Table, we evidence the percentage increase

of under-reports w.r.t. to reported deaths and cases, as evalu-
ated by prior studies. Most of these works show that, on aver-
age, the number of infected individuals could be 3 to 14 times

higher. Some studies from other countries point out that this
number could reach up to 30.5 According to technical
news-pieces disclosed by [49,19], the amount of under-reports

in terms of deaths due to the SARS-CoV-2 virus ranges from
4 These datasets comprise the number of infected and deceased

patients on the given day.
5 Naomi Martin. Mass. official coronavirus count is 218, but experts

say that the true number could be as high as 6,500. The Boston Globe.

March 17, 2020. Available at: https://www.bostonglobe.com/2020/03/

17/metro/mass-official-coronavirus-count-is-197-experts-say-true-

number-could-now-be-high-6000/.
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Table 1 Estimates of COVID-19 sub-report levels in Brazil and true mortality rates.

Infected Deaths True

Source Reported � more Reported � more Mortality rate

[1,17] 6.55% 14.2 100% 0 1.08% to 1.11%

[38] 7.8% to 8.1% 11.8 to 12.3 100% 0 1.3%

[34] 26.9% to 37.5% 1.67 to 2.72

[19] 85.5% 0.17

[49] 67.5% 0.48

[15] 10% (5.9% to 20%) 9 (4 to 16) 0.42% (0.23% to 0.87%)

[14] 25% (13.9% to 41.7%) 3 (1.4 to 6.2) 0.97% (0.84% to 1.12%)

[4] 12.5% 7

[10] 7.4% 12.5
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17% to 122%. [1,17] estimate the real mortality rate estimated
for Brazil to be approximately 1.08% to 1.11%, but estimates

from the research group [15,14] from random samples of the
Brazilian population point out that this mortality could be
ranging from 0.42% to 0.97%. Studies from other countries,

such as [26,6] show that this true mortality rate varies roughly
from 1 to 5%, but [30] states that recent research is converging
to the estimation of the true mortality rate to be between 0.5 to

1%. [37] find the true mortality rate to be approximately
0.64% for Geneva, Switzerland.

Bearing in mind the previous discussion, the main moti-
vation of this paper is to present an adapted Susceptible-

Infected-Recovered (SIR) model which inherently takes
into account these uncertainty levels, considering the
Brazilian COVID-19 context. Furthermore, the motivation

is also to assess the role of uncertainty in the predictions
cast with such models. We denote uncertainty as the
amount of sub-notification with respect to infected and

deceased individuals. Our approach comprises the follow-
ing ingredients:

� Firstly, we propose a new modeling scheme that incorpo-

rates a dynamic decaying parameter for the viral transmis-
sion rate. The dynamic decaying parameter for the
transmission rate, adapted from [31], considers that the

government applies contagion mitigation measures (such
as social isolation and incentives to use masks, which we
refer to as ‘‘pandemic policies” henceforth), which decreases

the contagion spread dynamics.
� Secondly, we develop an uncertainty measure with respect
to infected and deceased individuals. The uncertainty is

embedded in the optimization procedures used to determine
the epidemiological parameters, in order to correct underes-
timates of infected and deceased individuals.

� Thirdly, we use these adapted SIR models to make predic-

tions for the Brazilian scenario regarding several different
uncertainty sets, with short and long-term forecast spans.
By this, we are able to illustrate the role of under-

reporting in the model response curves. Specifically, we
study its effect upon the peak of infections (in terms of
amplitude and time shift), upon the total number of deaths,

observed mortality rate, and model epidemiological
parameters.

� Finally, considering the uncertainty tripod, i.e., the strong

link between under-reporting of infected and deaths and
the true mortality rate, we extrapolate and suggest an align-
ment of the observed and the true mortality rate to infer on
the level of uncertainty present on the measurements.

This paper relates to a previous paper by the Authors [5],

wherein SIR-like models present short and long-term outlooks
for Brazil. The previous work covered only the data from an
early stage of the contagion, until March 30, 2020. Further-

more, the Authors used parametric variations of the parame-
ters to introduce the uncertainty in the identified model,
differing from the approach proposed herein. In this paper,

we consider the data available until June 2020.
Fig. 1 shows the SIR model forecasts back on March 17,

with respect to real data, considering variations for the trans-

mission parameter b. We note that parametrically changing the
transmission parameter is not enough to make the model fit
the real data. Therefore, a time-varying parameter is added
to model the effect of pandemic policies, which meddle with

the viral transmission rates. Such an adapted model is able
to account for the population response to governmental
enacted policies. In practice, the pandemic policy can be

understood as feedback of endogenous variables, also depend-
ing on non-observed time-varying factors (people can simply
decide to relax quarantine measures, even if the social isolation

policy is still enacted). Through our simulations, we are able to
replicate the real data with a fair amount of similarity, as
shown in the sequel.

We must note that one could argue that the large amount of

data from other countries could serve as a potential thread to
quantify the level of uncertainty regarding the datasets avail-
able in Brazil. Nevertheless, this is not exactly true, since many

social and local factors play a significant role in the spread of
COVID-19. We point to the recent spread event in the city of
Manaus, at the beginning of 2021, where the spread drastically

increases despite local seroprevalence, which is unaccounted
for elsewhere [44].

This paper is organized as follows. Section 2 presents the

proposed SIR-adapted epidemiological model, which incorpo-
rates a new dynamic variable that describes the response of the
population to enacted pandemic policies. In this section, we
also discuss uncertainty modeling, in terms of the available

datasets. Section 3 details the parameter estimation procedure,
which inherently includes uncertainty. Section 4 shows the
results in terms of parameter estimation and forecasts for the

COVID-19 pandemic in Brazil. We present a thorough discus-
sion on the achieved results and concluding remarks in
Section 5.



Fig. 1 Cumulative number of infected.

6 We note, with respect to previous works [5], that the w parameter

used in this work represents for 1� w in the prior. We believe the

current representation is easier to grasp. Furthermore, in [32,31], this

parameter is taken as a ”control input” of the system, since model-

based social distancing policies are synthesized. In this paper, we

consider ”open-loop” data, meaning that w is known or estimated, but

no based on any feedback action.
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2. SIR epidemiological models

Recent literature [36,28] has demonstrated how the infection
rate and evolution dynamics of the SARS-CoV-2 virus can
be adequately described by Susceptible-Infected-Recovered

kind models. In this Section, we present the classical SIR
model due to [24], the new dynamic variable which models
the population’s response to isolation policies (enacted by local

governments) and discuss some remarks on data uncertainty.

2.1. Epidemiological model

The SIR describes the spread of a given disease with respect to

a population split into three non-intersecting classes, which
stand for:

� The total amount of susceptible individuals, that are prone
to contract the disease at a given moment of time t, denoted
through the dynamic variable S tð Þ;

� The individuals that are currently infected with the disease
(active infections at a given moment of time t), denoted
through the dynamic variable I tð Þ;

� The total amount of recovered individuals, that have
already recovered from the disease, from an initial time
instant 0 until the current time t, denoted through the
dynamic variable R tð Þ

Due to the evolution of the spread of the disease, the size of
each of these classes change over time and the total population

size N is the sum of these three classes, as follows:

N tð Þ ¼ S tð Þ þ I tð Þ þ R tð Þ: ð1Þ
In the SIR model, the parameter b stands for the

average number of contacts that are sufficient for transmission

of the virus from one individual, per unit of time t. Therefore,
bI tð Þ=N tð Þ determines the average number of contacts that are
sufficient for transmission from infected individuals, per unit

of time, to one susceptible individual; and bI tð Þ=N tð Þð ÞS tð Þ
determines the number of new cases per unit of time due to

the amount of S tð Þ susceptible individuals (they are ‘‘available
for infection”).

Furthermore, the parameter c stands for the recovery rate,

which is the rate that each infected individual recovers (or
dies). This parameter characterizes the number of individuals
that ‘‘leaves” the infected class, considering a constant proba-

bility quota per unit of time. We model the number of deceased
individuals due to a SARS-CoV-2 infection following the lines
of [22], where D tð Þ is the dynamic variable that describes the

number of deaths and q is the observed mortality rate.
The ‘‘SIRD” (Susceptible-Infected-Recovered-Dead) model

is expressed as follows:

dS tð Þ
dt

¼ � 1� w tð Þð Þ bI tð ÞS tð Þ
N tð Þ

dI tð Þ
dt

¼ 1� w tð Þð Þ bI tð ÞS tð Þ
N tð Þ � cI tð Þ

1�q

dR tð Þ
dt

¼ cI tð Þ
dD tð Þ
dt

¼ q
1�q cI tð Þ

SIRD½ � ð2Þ

In this model, w represents a transmission rate mitigation
factor6: for w ¼ 0, there is ”no control” of the viral spread,

while for w ¼ 1, the contagion is completely controlled, with
no more social interactions (a complete lockdown with no
social mobility would represent this scenario, which is imprac-

ticable in reality). It holds that N tð Þ ¼ N0 �D tð Þ, where N0 is
the initial population size. Remark that, in SIR kind models,
I tð Þ represents the active infections at a given moment, while

D tð Þ represents the total amount of deaths until this given

moment; for this reason, it follows that dD tð Þ
dt

is proportionally

dependent to I tð Þ.Since the SIR model is used herein to
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describe a short-term pandemic outbreak, we do not consider
the effects of demographic variations. Despite recent discus-
sion regarding the possibilities of reinfection [11], we assume

that a recovered individual does not contract the disease twice
in the short period of time of this pandemic. Since, in the case
of the SARS-CoV-2 virus, there is a relevant percentage of the

infected individuals that are asymptomatic, we progress by
splitting the class of infected individuals into the classes of
symptomatic (ISÞ and asymptomatic individuals (IAÞ, as sug-

gested by [41,2,29]. This yields the ‘‘SIRASD” model7:

dS
dt

¼ � 1� wð Þ bAIA tð Þ þ bSIS tð Þð Þ S
N tð Þ

dIA tð Þ
dt

¼ 1� wð Þ 1� pð Þ bAIA tð Þ þ bSIS tð Þð Þ S
N tð Þ � cAIA tð Þ

dIS tð Þ
dt

¼ 1� wð Þp bAIA tð Þ þ bSIS tð Þð Þ S
N tð Þ � cSIS tð Þ � qS

1�qS
cSIS tð Þ

dRA tð Þ
dt

¼ cAIA tð Þ
dRS tð Þ

dt
¼ cSIS tð Þ

dD tð Þ
dt

¼ qS
1�qS

cSIS tð Þ

SIRASD½ �

ð3Þ

In this model, qS denotes the actual observed mortality rate
for the symptomatic class only, while q stands for the total
observed mortality rate (for both symptomatic and asymp-

tomatic classes).

Remark 1. There are alternative, more attractive description
models to describe the COVID-19 contagion, rather than the

SIRASD model. The ‘‘SIDARTHE” model, as proposed by
[18], provides much more detailed dynamics.8 Nevertheless,
these ”complex” models cannot be considered in the Brazilian
setting, due to insufficient data. The country-wide data

disclosed by the Ministry of Health only represents the total
amount of infections and the total amount of deaths, per day.
Since there is no pool sample testing in the country, there is a

lack of data regarding detected asymptomatic individuals, for
instance, as it is available in Italy, where the SIDARTHE
model was conceived. If more complex models than SIRASD

were considered in this work, the truthfulness/validity of the
identification and forecast results could be largely over-
corrupted, which would result in worse estimates for param-

eters and uncertainty assessments.

Two important issues should be highlighted: i) the mortal-

ity for asymptomatic individuals is extremely low; for simplic-
ity, it is taken as null in the SIRASD model; and ii) the
observed (real) mortality rates also includes all those individu-
als that died from the contagion, while not being accounted for

in the available data sets. This is, if there is a number of sub-
reported deaths, these should also influence the mortality rate
parameters.The instantaneous values for the morality rates are

evaluated as follows:

qS tð Þ ¼ D tð Þ
IS tð Þ þ RS tð Þ þD tð Þ ð4Þ

q tð Þ ¼ D tð Þ
IA tð Þ þ RA tð Þ þ IS tð Þ þ RS tð Þ þD tð Þ ð5Þ
7 SIRASD stands for Susceptible-Infected-Recovered-Asympto

matic-Symptomatic-Deaths.
8 This model splits the infections into (symptomatic, asymptomatic)

detected, undetected, recovered, threatened and extinct classes.
Therefore, when the COVID-19 spread ceases, it follows
that qS ¼ limt!1qS tð Þ ¼ D 1ð Þ= RS 1ð Þ þD 1ð Þð Þ and q ¼
limt!1q tð Þ ¼ D 1ð Þ= RA 1ð Þ þ RS 1ð Þ þD 1ð Þð Þ. Due to this

fact, it holds that qS
q ¼ 1

p
, i.e. q ¼ pqS. The parameter p is

included to represent the percentage of infected individuals

who present symptoms; 1� pð Þ denotes the percentage of
those without symptoms.9 In order to take into account the
effect of public health policies (that are enacted by local gov-

ernments to ‘‘control” and mitigate the effects of the
COVID-19 pandemic), such as social isolation, incentives to
use of masks, etc., we include the dynamic equation for w tð Þ
to the SIRD and SIRASD models:

dw tð Þ
dt

¼ a w1 � w tð Þð Þ if under the pandemic policies effect;

0 otherwise:

�
ð6Þ

Note that w tð Þ converges to w1 with a settling time10 of 3
a. It

follows that w1 is a factor which stands for the maximal
observed effect of pandemic policies. Note that for larger val-
ues of w1 (closer to 1), the spread of the SARS-CoV-2 virus

gets slower, with smaller peak of infections and number of
deaths. The condition of w ¼ 1 represents a total isolation
condition, where the amount of contacts is reduced to zero.
In the recent papers by the Authors [31,32], these new models

were used to conceive model-based optimal control policies,
under a Predictive Control optimization formalism. Through
the sequel, we refer to these extended models as SIRDþw
and SIRASDþw models, respectively.

Remark 2. The time-varying social distancing parameter w is
theoretically conceived within the interval 0; 1½ �, being w ¼ 1

the case of a total lockdown. Nevertheless, we stress that very
high values of w (near 1, close to total lockdown with no social
mobility) are not possible in practice. In Brazil, for instance,
the maximal social distancing factor observed was near 50%
(e.g. Fig. 2, in the sequel). We also note that the identification
procedures regarding w1 (upper-bound to wÞ set this param-
eter freely within 0; 1½ �, but the results coincide with practical

observations, i.e. near 50%. As a result, we do not consider
situations of complete lockdown. More importantly, we
emphasize the time varying nature of the transmission rate,

which opens opportunities for identification procedures or
even the proposal of other epidemiological models for the
COVID-19 dynamics.
2.2. Uncertainty

As discussed in the Introduction, the sub-notification regard-
ing the number of infected and deceased individuals, due to
COVID-19, has been pointed out as rather elevated in Brazil,

as brought to focus by a number of recent papers
[7,48,47,42,43,31]. These studies discuss that the amount of
under-reported cases regarding infected individuals could be
up to 30 times the reported values. Furthermore, the sub-
9 We note that RS 1ð Þ þ D 1ð Þ result from all the symptomatic

infections, while RA 1ð Þ results from the asymptomatic cases, since

these do not lead to deaths.
10 Considering that w tð Þ ¼ w1 1� e�atð Þ and

w1�ws
w1

¼ e�as ¼ d )
s ¼ � ln d

a , if d ¼ 0:05 then s � 3
a.



11 If more restrictive bounds are used, we mention them explicitly.

Fig. 2 Estimation of w tð Þ for the SIRDþw model using the data

provided by the Ministry of Health (~qI ¼ ~qD ¼ 0), which we get

a ¼ 0:186353 and w1 ¼ 0:494027.

4368 S.B. Bastos et al.
notification in terms of deaths due to the SARS-CoV-2 virus
might be over 120 % of the mortality disclosed by the Ministry

of Health.Therefore, we proceed by modeling these uncer-
tainty margins as follows:

IrealS tð Þ ¼Imeasured
S tð Þ þ IunknownS tð Þ ; ð7Þ

Dreal tð Þ ¼Dmeasured tð Þ þDunknown tð Þ ; ð8Þ
where the super-index ”measured” denotes the values as pre-
scribed by the Ministry of Health (data), ”unknown” as the
sub-notified values, and ”real” for total value, including uncer-
tainty.It follows that the amount of uncertainty in any of these

variables, generically referred to as X, can be described by a
concentrated multiplicative parameter, this is:

Xmeasured tð Þ ¼ qXX
real tð Þ

Xunknown tð Þ ¼ 1� qXð ÞXreal tð Þ

)
) Xmeasured tð Þ

Xunknown tð Þ ¼
qX

1� qX
;

ð9Þ
with X representing either D or IS and qX denoting the respec-

tive uncertainty parameter. Such concentrated parameter
qj 2 0; 1½ � gives a measure for the amount of sub-notification.

For instance, if we consider qD ¼ 1, it means that there is no
sub-notification with respect to the disclosed datasets for the

number of deaths. For qD ¼ 0:5, we observe that the actual
number of deaths is twice the reported amount.Using the same
notation, through the sequel, we present our results using the

following transformation, for understanding simplicity:

~qX ¼ 1

qX
� 1 ; ð10Þ

which holds for Xunknown tð Þ ¼ ~qXX
measured tð Þ ) Xreal tð Þ ¼

1þ ~qXð ÞXmeasured tð Þ. This notation concatenates the following
idea: as an example, if we consider ~qI ¼ 0, it means that the

reported amount of infections is equal to the real amount.
Consequently, for ~qI ¼ 0:25, for instance, it means that the
real amount of infections is 25% bigger than the number

reported cases.With respect to the uncertainty modeling, we
are concerned with the exposure of the effects simulation/pre-
diction procedure when using uncertainty-embedded identifi-
cation applied to SIR-like models in order to forecast the
COVID-19 pandemic dynamics in Brazil. The discussion

resides in the following key points:

(a) the influence of uncertainty in these forecasts;

(b) the temporal shift of the peak of infections according to
the level of uncertainty (which would also impact
directly in the enacted pandemic policies);

(c) the temporal aspect of the mortality rate;

(d) the under-reporting tripod.Furthermore, we must
emphasize that the predictions for the number of deaths
is very dependent on the level of uncertainty. This hap-

pens since the uncertainty parameters qD and qI directly
impact on the dynamics of D tð Þ in the SIRASD+w
model. It seems reasonable that, as time progresses

and the pandemic contagion gets ”controlled” (i.e. stabi-
lizes), the amount of uncertainty tends to decrease. Any-
how, we are concerned with forecasting phenomena that
will irrevocably take place (the peak of infections and a

possible second peak), if the enacted pandemic policies
remain the same.
3. Estimation procedure

The Brazilian Ministry of Health provides (daily) two useful
data time-series which are used to evaluate (i.e. identify) the
SIR model parameters: i) the total number of infected individ-

uals, denoted

Itotal tð Þ ¼ I tð Þ þ R tð Þ þD tð Þ
and ii) the total number of deaths, which is D tð Þ. In this paper,
we use data from February 25, 2020, to May 31, 2020.

Parameters b; c, and q are computed according to the pro-

cedure adapted from [5], considering that the period for which
pandemic policies had not yet been formally implemented (this
period comprises the weeks from February 25, 2020, until

March 22, 2020). We find that the recovery rate c is found
to be roughly constant at 0:150876, which is consistent with
other findings in the literature [40,33]. We maintain this value
for c throughout the following identification steps.

In order to estimate the parameters of the SIRD+w and
SIRASD+w models, considering the remainder of the avail-
able data (from March 22, 202 onward), we proceed by per-

forming a Least-Squares identification procedure, with
respect to different levels of uncertainty (~qD and ~qI). These
uncertainty levels are directly embedded in the datasets prior

to the actual identification. Minimizing the square-error
between the integrated variables and their real values is in
accordance with regular identification methodologies [3,8].
Then, we proceed by following a hierarchical procedure, as

done in [5]: firstly, we estimate parameters of the SIRD model,
then, assuming that the infected individuals in the SIRD model
are the symptomatic individuals in the SIRASD model, we

estimate the remaining parameters of the SIRASD model.
Our identification procedure also includes constraints11 to

the possible parameter values: b; bS; bA 2 1=20; 2½ �; c; cS; cA 2
1=14; 1=2½ �; q; qS 2 0:001; 0:2½ �; a 2 0; 1½ � and w1 2 0:0; 1:0½ �.
These limits are in accordance with those presented by [51,5].

Globally, the identification procedure for the SIRD+w
model resides in solving the following minimization problem:



12 To ease the Reader’s interpretation, we transformed qI and qD in ~qI
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min
b;q;a;w1

1

2

X
t

L2
I þL2

D

� � ð11Þ

LI ¼ log 1þ Itotal tð Þ �D tð Þ=qD
qI

� �
1

Imax

� �
� log 1þ

bI tð Þ þ bR tð Þ
Imax

 !
ð12Þ

LD ¼ log 1þ D tð Þ
qD

� �
1

Dmax

� �
� log 1þ

bD tð Þ
Dmax

 !
ð13Þ

where bI tð Þ; bR tð Þ and bD tð Þ are estimated values of the infected,
recovered and deaths, respectively, and

Imax ¼ maxt
Itotal tð Þ�D tð Þ=qD

qI

	 

;Dmax ¼ maxt

D tð Þ
qD

	 

. We decided to

normalize the each series by its maximum value and take the
logarithm as an approach to balance different exponential
characteristics of the infected and deaths series. The initial con-

ditions for the identification procedures are D0 ¼ D 0ð Þ=qD;
I 0ð Þ ¼ Itotal 0ð Þ �D 0ð Þ; R 0ð Þ ¼ 0;S 0ð Þ ¼ N0 � I 0ð Þ � R 0ð Þ�
D 0ð Þ, where N0 ¼ 210147125 is the initial population accord-
ing to Brazilian Institute of Geography and Statistics (IBGE).

We estimate a and w1 only in the simulation without any
uncertainty, and use these values on the other minimization
procedures because we believe that these parameters (a

response of the society) should be the same, regardless of the
uncertainty level.

We stress that the nonlinear map La is increasing in its
domain and normalized within 0; 1½ �. This function is used to

further weight the last values of the identification data series
w.r.t. to the first data steps. This logarithmic correction is
implied to compensate for the exponential characteristics of

the COVID-19 spread. Moreover, the cost formulations in
Eqs. (12) and (13) are coherent with regular Least-Square iden-
tification procedures, minimizing the squared difference

between model and data. It is implied that Itotal tð Þ �D tð Þ ¼
I tð Þ þ R tð Þ.

Equivalently, the identification procedure for the
SIRASDþ w follows through the minimization problem

below:

min
bA;cA ;q

1

2

X
t

L2
IS
þL2

D

	 

ð14Þ

LIS ¼ log 1þ Itotal tð Þ �D tð Þ=qD
qI

� �
1

Imax

� �
� log 1þ

bIS tð Þ þ bRS tð Þ
Imax

 !
ð15Þ

where bIS tð Þ and bRS tð Þ are estimated values of the symptomatic

infected and recovered, respectively, and the initial conditions

are D 0ð Þ ¼ D 0ð Þ=qD; IS 0ð Þ ¼ Itotal 0ð Þ �D 0ð Þ; IA 0ð Þ ¼ IS 0ð Þ
1� qIð Þ=qI;RS 0ð Þ ¼ RA 0ð Þ ¼ 0;S 0ð Þ ¼ N0 �D 0ð Þ � IS 0ð Þ�
IA 0ð Þ� RS 0ð Þ � RA 0ð Þ. For this model, we begin the identifica-

tion procedure with bS ¼ b; cS ¼ c, where b and c are the val-
ues directly taken from the identification procedure regarding
the SIRDþ w. Hence, we denote the procedure as hierarchical.

We stress, once again, that a large number of different

SIRD+w and SIRASD+w models are obtained through the
identification procedures detailed in the prequel. Each one of
these models is identified for different levels of uncertainty

(qD and qI).
4. Results

In this Section, we present the main results of our paper, which
comprise the role that sub-notification uncertainty plays in the

model-based predictions of the COVID-19 contagion, harshly
affecting the outlooks for its evolution spread in Brazil. To
have the available data with such large amounts of uncertainty

is a very troublesome issue, since public health policies are cur-
rently derived through the available datasets, meaning that
these policies may be equivocating, such as reducing social iso-
lation policies before adequate time, and thus lead to possibly

unwanted phenomena.
The following results comprise predicted forecasts with the

SIRD+w and SIRASD+w models; they have been obtained

using Python software.

4.1. SIRD+w model

We begin by depicting the results achieved with the SIRDþw
model.

Fig. 2 shows the estimation of the w tð Þ variable, which

models the population’s response to pandemic policies using
Eq. (6), considering no uncertainty (qI ¼ qD ¼ 1, only for the
moment). In this Figure, the orange dots represent the identi-
fication results found directly through the SIRD model, as if w
was a parameter estimated for each sample. The solid blue line
represents the time-varying w tð Þ curve. Evidently, we can
notice that the estimation of the proposed w tð Þ model absorbs

a great deal of error. Consequently, the forecasts derived from
such models (SIRD+w, SIRASD+w) can vary quite signifi-
cantly from one day to the next (considering the identification

procedure performed daily), while the main trend is followed.
Some recent studies [31,27] discuss that the re-estimation (re-
identification) should be performed each week, in such a way

that these daily errors get dynamically absorbed and are thus
represented through the mean behavior. We must re-stress that
the following forecasts are extremely sensitive to the available
datasets (and to the uncertainties) and, thus, to re-perform the

identification as time progresses is essential. This is: one cannot
use the derived models as if their parameters would not change
over time. The forecasts only offer qualitative insights.

We note that the social distancing parameter w is embedded
in the first-order dynamics of Eq. (6). Consequently, the iden-
tification procedure is performed to estimate a and w1 in order

to best match the ‘‘average” tendency of social distancing mea-
sures, as presented in Fig. 2. In previous works (see [31,32], we
consider that w is analytically related to a control input which
models the social distancing measures.

We consider several different values for the uncertainty
parameters ~qI and ~qD in the following simulation runs.12 Any-
how, for exhibition lightness purposes, we will only explicitly

explore the ones that found to be more likely scenarios for Bra-
zil (coherent with prior discussion in the literature). Our base-
line uncertainty parameters are ~qI ¼ ~qD ¼ 0 (nominal

condition), corresponding to the Ministry of Health datasets.
We explore ~qI 2 7; 14; 30f g and ~qD 2 0:25; 0:5; 1f g, in conso-
nance with previous references. These uncertainty margins

relate to the percentage increase regarding infections and
and ~qD, respectively, by the use of the transformation in Eq. (10).



Fig. 3 Short-term simulation for the SIRDþw model using different values of uncertainty.

4370 S.B. Bastos et al.
deaths, respectively. The gray area presented in the short
and long term predictions of Figs. 3 and 4 correspond to
uncertainty over the region ~qI; ~qDð Þj~qI 2 0; 30½ �f and
~qD 2 0; 1½ �g.

Based on these uncertainty values, we simulate the
SIRDþwmodel along time. We show short and long-term per-
spectives in Figs. 3 and 4. Detailed values that arise in these

simulations are concatenated in Table 2. With respect to these
Figures, we remark the following key points:
Fig. 4 Long-term simulation for the SIRDþw
1. The long-term forecast of the infected cases suggests that
greater uncertainty of the number of infected has the effect

of anticipating the peak in time and also increase its ampli-
tude. That is if we have 7, 14, and 30 times more infected,
then the peak on September 4 will be anticipated to July 28,

17, and 4, respectively, and also the peak amplitude will
increase from 3.9% to approximately 4.6%, 4.7%, and
4.8%, respectively. We note that this peak percentage is

given w.r.t. to the total population size.
model using different values of uncertainty.



Table 2 Observed mortality, peak percentage and its respective date of occurrence and number of deaths after 360 days for the

SIRDþw model for different values of uncertainty.

~qD ~qI q Peak (%) Peak Forecast Number of Deaths

0 0 8.8569% 3.9405% September 4, 2020 9,226,000

0 7 1.2086% 4.6651% July 28, 2020 1,316,778

0 14 0.6447% 4.7508% July 17, 2020 706,295

0 30 0.3090% 4.8573% July 4, 2020 341,003

0.5 7 1.8597% 4.5681% July 29, 2020 2,012,722

0.5 14 0.9958% 4.6793% July 18, 2020 1,085,310

0.5 30 0.4785% 4.7992% July 5, 2020 525,776

1 7 2.5450% 4.4673% July 30, 2020 2,735,068

1 14 1.3683% 4.6049% July 18, 2020 1,483,225

1 30 0.6594% 4.7390% July 5, 2020 721,160
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2. The peak of infections gets shifted for at least one month for

larger uncertainties. This could be quite troublesome, since
public health policies concerning ICU beds, for instance,
maybe accounting for erroneous data and hospitals may

be surprised by a larger demand of ICUs than what is
expected when disregarding uncertainties. Further analysis
is necessary since we cannot separate who are asymp-
tomatic from the ones that are symptomatic and, therefore,

would actually demand health care.
3. The amplitude of the peak of infections shows small variations,

despite uncertainties. This suggests that the SARS-CoV-2 will

infect the same amount of people. Moreover, the virus does
not distinguish between asymptomatic or symptomatic individ-
uals, only aiming to spread its genetic material.

4. The mortality rate obtained from the Brazilian Ministry of
Health datasets does not reflect reality because it differs sig-
nificantly from the true mortality rate (see Table 1). The
long-term deaths forecast suggests that the number of

infected uncertainty drastically decreases the true mortality
rate, while increases in the death uncertainty increase the
true mortality rate.

We proceed by exploring how the infected uncertainty influ-
ences the mortality rate for a given death uncertainty level, as

shows Fig. 5. In this Figure, we present the estimated values
Fig. 5 The number of times more infected than reported (~qI) vs.

the observed mortality rate (q) for the SIRDþw model. The blue,

orange and green curves represent simulations using data from the

Ministry of Health (~qD ¼ 0), 50% more deaths (~qD ¼ 0:5) and

100% more deaths (~qD ¼ 1).
for the mortality rate (q) from Eq. (2) as a function of the
infected uncertainty (~qI) for a given (fixed) death uncertainty
(~qD) amount. The values used in this graph and some estimated

epidemiological parameters are in Tables 4 and 6 in Appendix
A.1. We must stress that the observed mortality rate decreases
with respect to the increase of infected uncertainty ~qI; this is

shown directly in Fig. 5. The reason for this phenomenon resides
in the fact that more uncertainty over the infected individuals
while keeping the number of deaths constant, implies that the

mortality rate will decrease see Eq. (5).
Fig. 6 provides the uncertainty paths for infected and

deaths considering specific mortality rates.

4.2. SIRASDþw model

With respect to the uncertainty-embedded identification proce-
dure in Section 3, Figs. 7 and 8 show, respectively, short and

long term predictions using the SIRASDþw model. Table 3
collects the essential information of these forecasts. Regarding
the long-term forecast, we call attention to the infected cases.

An increase in the infected uncertainty anticipates the peak
in time, just as in the SIRD+w model, but the symptomatic
peak amplitude decreases.

With respect to the simulated mortality rate, Fig. 9 shows the
relationship between q and the uncertainties qD and qI; these val-
ues are detailed in Table 5 of Appendix A.1. Results differ only
slightly from those obtained with the SIRD+w model and, thus,

the same conclusions can be inferred. Furthermore, Fig. 10 gives
an insight on the possible ‘‘trajectories” of q with respect to these
uncertainty margins, i.e. showing the static gain between qD; qI
and q, for different levels of mortality.

The identified epidemiological parameters for the
SIRASDþw model are presented in Table 7, in the Appendix.

There are two interesting phenomena regarding bA: (i) in all
simulations we have bA > bS, meaning that asymptomatic
individuals are more likely to transmit the disease since they

probably do not know they are infected; and (ii) increasing
the infected uncertainty causes a decrease in the parameter
bA, meaning that the probability to transmit the disease also
decreases. As for cA, we notice that: (i) it is greater than cS
in all cases, meaning that asymptomatic individuals have a
smaller infectious period (1=cA); and (ii) it decreases as the
infected uncertainty increases, meaning that the average infec-

tious period increases with the increases of asymptomatic indi-
viduals, i.e. it is more likely to find more asymptomatic
individuals spreading the disease for a longer period.



Fig. 6 Mortality rate paths using the number of times more infected than reported (~qI) versus the number of times more deaths than

reported (~qD) for the SIRDþw model.

Fig. 7 Short-term simulation for the SIRASDþw model using different values of uncertainty.
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We must point out that analogous results to those achieved
with the SIRDþw model are found, as expected due to the

equivalence between the nonlinear differential equations of
these two models. We stress some key points:

� An increase in the sub-notification with respect to infected
individuals directly implies in the reduction of the peak of
symptomatic infections: essentially, the virus ‘‘does not

care” if it causes symptoms or not on the infected individual
(its only goal is to infect and replicate);
� Assuming that the virus infects the same amount of people
(despite the margins of the sub-reports), and as it infects
(faster) more individuals without causing symptoms, we
observe a smaller percentage peak of symptomatic infec-

tions for larger sub-notification.
� The uncertainty margins upon the infected (qI ) and the
death count (qD) influence both infected and death curves,

I tð Þ and D tð Þ, respectively. The infected curve is directly
and mostly influenced by the infected uncertainty, but the
death uncertainty affects this curve more modestly through



Fig. 8 Long-term simulation for the SIRASDþw model using different values of uncertainty.

Fig. 9 The number of times more infected than reported (~qI) vs.

the observed mortality rate (q) for the SIRDþw model. The blue,

orange and green curves represent simulations using data from the

Ministry of Health (~qD ¼ 0), 50% more deaths (~qD ¼ 0:5) and

100% more deaths (~qD ¼ 1).
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the total number of the population, N tð Þ, on the transmis-

sion channel (see Eq. (2) and Fig. 4). Additionally, we
emphasize that the death curve also depends on both uncer-
tainty parameters, qD and qI . The smallest death count fore-

cast is found with an elevated under-reporting of
asymptomatic infections and small sub-report margins
regarding deaths. This fact seems empirically reasonable,
once an unaccounted increase in the number of deceased

individuals should increase the number of deaths.
� The instantaneous mortality rates, as of Eqs. (4) and (5), are
show in Fig. 11. These instantaneous values indeed con-

verge to those presented in Table 3. Anyhow, it is imperious
to recall that the mortality rate, in practice, varies according
to the amount of testing. Since the dynamics for symp-
tomatic and asymptomatic infections evolve differently over
time, the mortality rate also depends on the stage of the
pandemic evolution. If the local epidemic scenario is an
ending stage, the mortality rate tends to increase and stabi-

lize. Note that if the margins of uncertainty are known (or
roughly estimated), we can forecast quite accurately what
will be the observed rates of mortality in the country.

� The real mortality rate, measured with population samples,
can be quite misleading since it shows only an instantaneous
snippet of the pandemic at a given moment (much like a

”photograph”). Fig. 11 shows that the real mortality rate
evolves in an asymptotic-like behavior, converging to some
steady-state value. Therefore, if one computes the mortality
rate of a sample population in a country with mass testing

(unlike Brazil), and this country is not yet in an ending stage
of its COVID-19 epidemic, one can observe values that are
not the steady-state ones. In other words, there would still

be symptomatic and asymptomatic to-be individuals which
would alter the real mortality rate. And, as shows Fig. 11,
this real rate tends to be greater than in the beginning stages

of the SARS-CoV-2 spread.

5. Discussion and conclusions

In this paper, we discussed the Brazilian COVID-19 pandemic
scenario, the effects of under-reporting regarding the number

of infections and deaths due to the SARS-CoV-2 virus in the
country. Through two SIR-like adapted models, which include
the population’s response to measures of control of the pan-
demic (such as social isolation, the use of masks, etc.) and

deaths due to the disease. Furthermore, we make a set of pos-
sible forecasts and evaluate how uncertainty meddles with the
COVID-19 pandemic prediction curves. Specifically, we ana-

lyzed how uncertainty affects the infection peak displacement



Fig. 10 Mortality rate paths using the number of times more infected than reported (~qI) versus the number of times more deaths than

reported (~qD) for the SIRASDþw model.

Fig. 11 Symptomatic and overall mortality rate over time for the SIRASDþw model.
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in time and its amplitude, epidemiological parameters, the
observed and real mortality rate evolution, and how infection

and death uncertainty and the true mortality rate could be
related.

We used two SIR-like models, SIRDþw and SIRASDþw,
which differ in two aspects. First, the SIRDþw model consid-
ers that asymptomatic and symptomatic parameters are equal,
that is, bS ¼ bA ¼ b and cS ¼ cA ¼ c and that the mortality
rate is applied in the whole infected population, while the

SIRASDþw model distinguishes symptomatic and asymp-
tomatic parameters and applies the mortality rate to the symp-
tomatic only. Second, the initial condition of the SIRDþw
model suggests that the infected class of individuals is actually
split as 100qI% symptomatic and 100 1� qIð Þ% asymptomatic,



Table 5 Observed mortality rates (q ¼ pqS) for different

simulations of the SIRASD+w model under infected (~qI) and

death (~qD) uncertainty.

Times more

infected (~qI)
Mortality rate (q)

~qD ¼ 0 ~qD ¼ 0:25 ~qD ¼ 0:5 ~qD ¼ 1

0.1 7.9411% 9.8027% 11.6102% 15.2003%

1 4.2743% 5.3126% 6.3393% 8.3585%

2 2.8489% 3.5411% 4.2255% 5.5716%

3 2.1364% 2.6554% 3.1687% 4.1782%

4 1.7089% 2.1241% 2.5346% 3.3422%

5 1.4239% 1.7698% 2.1119% 2.7848%

6 1.2203% 1.5168% 1.8100% 2.3867%

7 1.0676% 1.3270% 1.5836% 2.0881%

8 0.9489% 1.1794% 1.4074% 1.8559%

9 0.8539% 1.0614% 1.2665% 1.6701%

10 0.7761% 0.9647% 1.1513% 1.5181%

11 0.7114% 0.8842% 1.0552% 1.3915%

12 0.6566% 0.8161% 0.9739% 1.2843%

13 0.6096% 0.7578% 0.9043% 1.1924%

14 0.5689% 0.7072% 0.8439% 1.1128%

15 0.5333% 0.6629% 0.7910% 1.0431%

16 0.5018% 0.6238% 0.7444% 0.9817%

17 0.4739% 0.5891% 0.7030% 0.9270%

18 0.4489% 0.5580% 0.6659% 0.8781%

19 0.4264% 0.5300% 0.6325% 0.8341%

20 0.4061% 0.5048% 0.6024% 0.7943%

21 0.3876% 0.4818% 0.5749% 0.7581%

22 0.3707% 0.4608% 0.5499% 0.7251%

23 0.3552% 0.4415% 0.5269% 0.6948%

24 0.3409% 0.4238% 0.5058% 0.6670%

25 0.3278% 0.4075% 0.4862% 0.6412%

26 0.3156% 0.3923% 0.4682% 0.6174%

27 0.3043% 0.3783% 0.4514% 0.5953%

28 0.2938% 0.3652% 0.4358% 0.5747%

29 0.2840% 0.3530% 0.4212% 0.5555%

30 0.2749% 0.3416% 0.4076% 0.5375%

Table 3 Observed mortality (qS and q), peak percentage and its respective date of occurrence and number of deaths after 360 days for

the SIRDþw model for different values of uncertainty.

Both Symptomatic Asymptomatic

~qD ~qI qS q Peak (%) Peak Forecast Peak (%) Peak Forecast Peak (%) Peak Forecast Deaths

0 7 8.5408% 1.0676% 3.0667% 2020–07-31 0.3856% 2020-08-01 2.4267% 2020-07-31 939,784

0 14 8.5335% 0.5689% 4.2421% 2020-07-18 0.2149% 2020-07-18 2.7655% 2020-07-18 512,176

0 30 8.5208% 0.2749% 4.7137% 2020-07-03 0.1155% 2020-07-03 3.3167% 2020-07-03 262,242

0.25 7 10.6162% 1.3270% 3.0667% 2020-07-31 0.3791% 2020-08-01 2.4505% 2020-07-31 1,172,135

0.25 14 10.6073% 0.7072% 4.2421% 2020-07-18 0.2111% 2020-07-18 2.7858% 2020-07-18 638,423

0.25 30 10.5882% 0.3416% 4.7137% 2020-07-03 0.1130% 2020-07-03 3.3205% 2020-07-03 325,994

0.5 7 12.6686% 1.5836% 3.0761% 2020-07-31 0.3726% 2020-07-31 2.4751% 2020-07-31 1,403,689

0.5 14 12.6580% 0.8439% 4.2421% 2020-07-18 0.2073% 2020-07-18 2.8063% 2020-07-18 764,006

0.5 30 12.6358% 0.4076% 4.7117% 2020-07-03 0.1109% 2020-07-03 3.3414% 2020-07-03 390,023

1 7 16.7050% 2.0881% 3.0761% 2020-07-31 0.3596% 2020-07-31 2.5249% 2020-07-31 1,864,283

1 14 16.6919% 1.1128% 4.2494% 2020-07-18 0.1998% 2020-07-18 2.8485% 2020-07-18 1,013,367

1 30 16.6639% 0.5375% 4.7117% 2020-07-03 0.1068% 2020-07-03 3.3830% 2020-07-03 516,959

Table 4 Observed mortality rates (q) for different simulations

of the SIRD+w model under infected (~qI) and death (~qD)

uncertainty.

Times more

infected (~qI)
Mortality rate (q)

~qD ¼ 0 ~qD ¼ 0:25 ~qD ¼ 0:5 ~qD ¼ 1

0 8.8569% 10.9324% 12.9481% 16.7947%

1 4.6676% 5.8437% 7.0219% 9.3818%

2 3.1651% 3.9819% 4.8088% 6.4925%

3 2.3932% 3.0183% 3.6543% 4.9602%

4 1.9233% 2.4292% 2.9457% 4.0113%

5 1.6070% 2.0318% 2.4663% 3.3658%

6 1.3798% 1.7458% 2.1207% 2.8988%

7 1.2086% 1.5300% 1.8597% 2.5450%

8 1.0750% 1.3614% 1.6555% 2.2677%

9 0.9678% 1.2261% 1.4915% 2.0446%

10 0.8799% 1.1151% 1.3568% 1.8612%

11 0.8066% 1.0224% 1.2444% 1.7079%

12 0.7444% 0.9438% 1.1490% 1.5777%

13 0.6911% 0.8764% 1.0671% 1.4658%

14 0.6447% 0.8177% 0.9958% 1.3683%

15 0.6042% 0.7664% 0.9335% 1.2830%

16 0.5684% 0.7211% 0.8784% 1.2077%

17 0.5365% 0.6807% 0.8293% 1.1405%

18 0.5080% 0.6446% 0.7854% 1.0803%

19 0.4824% 0.6121% 0.7459% 1.0263%

20 0.4591% 0.5826% 0.7100% 0.9771%

21 0.4380% 0.5559% 0.6775% 0.9325%

22 0.4187% 0.5315% 0.6478% 0.8917%

23 0.4010% 0.5090% 0.6204% 0.8542%

24 0.3847% 0.4884% 0.5953% 0.8198%

25 0.3697% 0.4693% 0.5721% 0.7879%

26 0.3557% 0.4517% 0.5507% 0.7585%

27 0.3428% 0.4353% 0.5307% 0.7311%

28 0.3307% 0.4200% 0.5121% 0.7055%

29 0.3195% 0.4057% 0.4948% 0.6817%

30 0.3090% 0.3924% 0.4785% 0.6594%
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while the initial condition of the SIRASDþw model considers

that the proportion of one symptomatic per 1�qIð Þ
qI

asymp-

tomatic individual (as gives Eq. (9)).

It is a fact (and heavily discussed by recent literature) that
the available datasets disclosed by the Brazilian Ministry of
Health have large sub-notification margins. Brazil currently
conducts roughly 4000 tests per million inhabitants, which is

one of the lowest rates in the world [50]. Likewise, the number
of deaths may be underestimated for the same reason. Accord-
ing to [10], only 8% of infections are reported; the real number

of infected individuals is possibly up to 30 times bigger than
what is being disclosed by the authorities [46,50].

Herein, we have tried to expose some essential insights

regarding sub-notification and how to incorporate them into
pandemic models; below, we summarize the main findings of
this paper, enlightening the key points:

� Since the spread of the SARS-CoV-2 virus is inherently
complex and varies according to multiple factors (some of
which are possibly unmodelled and external), exact fore-

casts of the pandemic dynamics are not viable. Therefore,
the correct procedure should be based on a recurrent model
tuning (via identification), always taking into account the

uncertainty margins. This measure would allow presenting
more coherent forecasts as time goes since the uncertainty
margins tend to decrease as the pandemic ceases (and as

more testing is done). We remark that, in this paper, the
uncertainty margins are assumed constant along the fore-
cast horizons in order to tune/estimate the model parame-
ters. In future works, the Authors plan in exploring the

possible differences obtained when implying a dynamic
behavior for the uncertainty margins (asymptotic and
decreasing).

� The simulation forecasts indicate that the amount of uncer-
tainty influences directly on the date of the infection peak,
on the number of deaths, and on the mortality rate of the

decease.Higher levels of infection uncertainty anticipate
the infected peak in time. Considering no death uncertainty,
the symptomatic peak at July 31, 2020, for ~qI ¼ 7 is antici-

pated to July 3, 2020, for ~qI ¼ 30 (see Table 3), almost a
month difference. This is followed by the corresponding
decrease (increase) in the peak amplitude of symptomatic
(asymptomatic) individuals.Higher levels of death uncer-

tainty cause increase in the observed and true mortality
rates. Considering a fixed amount of infected uncertainty
(qI or ~qI is constant), the number of deaths and the mortal-

ity rate are higher if the death uncertainty is higher (see
Figs. 8 and 11). Also, considering a fixed amount of death
uncertainty (qD or ~qD is constant), the number of deaths

and the mortality rate are lower if the infected uncertainty
is higher.Furthermore, there is a direct relationship between
the uncertainty level and the observed mortality rates,
which are in fact time-varying (Fig. 11). The instant mortal-

ity rates are calculated using the number of deaths and the
cumulative number of infected, while the true mortality rate
is its asymptotic value. So depending on which stage of the

epidemic we are at, estimations using population samples
could vary, not only by the method itself but also due to
the natural evolution of the proportions of infected and

deaths.
� Higher uncertainty levels of asymptomatic individuals

cause a decrease in the epidemiological parameters bA and
cA (Table 7). There are two possible interpretations for
the transmission parameter: (i) according to [23], asymp-

tomatic individuals presumably have more contacts, since
they do not have any symptoms and, therefore, do not do
a self-induced quarantine; and (ii) according to [41], the
transmission of the infection is more readily on symp-

tomatic individuals due to physical signs of illness (cough-
ing, sneezing, etc.), which outweighs this first factor. Since
bA > bS , our results support the first hypothesis.That said,

the transmission parameter bA is approximately 0.47 for
~qI ¼ 5 and 0.45 for ~qI ¼ 30, corresponding to 2.3% to
6.8% higher than the symptomatic transmission parame-

ter,13 meaning that asymptomatic individuals could possi-
bly transmit the disease in a greater extent, since the
greater number of contacts may over-weights the probabil-
ity of transmitting the disease due to physical signs of ill-

ness. Of course, the viral load in these cases is smaller,
which is a relevant transmission factor not accounted for
in our analysis.The duration of the infection 1=cA is approx-
imately 1=0:21 � 4:8 days for ~qI ¼ 5 and 1=0:17 � 5:9 days
for ~qI ¼ 30, corresponding to 12% to 28.4% less than the
average time to recovery of symptomatic individuals

(1=cS ¼ 1=0:15 � 6:7 days), meaning that the infectious per-
iod of the asymptomatic is smaller than the symptomatic
one. This is consistent with other pandemic, such as the

H1N1 pandemic (see Table 1 from [41] for cA and cS , and
corresponding references).

� We find that the effect of under-reporting of the number of
infected and deaths is related to the true mortality rate,

which we call ‘‘COVID-19 under-reporting tripod”. Con-
sidering that there are three variables with uncertainty
(the under-reporting of infected individuals, under-

reporting of deaths, and the true mortality rate) if two of
them are known (or measured empirically), the other can
be inferred assuming a constant amount of uncertainty.

Alternatively, if one is known, it is possible to infer a path
for the other two. This is shown in Fig. 10.
This approach allows aligning the observed to the true mor-
tality rate in order to find the population uncertainty. [30]

mentions that many studies are estimating the true mortal-
ity rate to be in the range of 0.5–1%. Assuming that this is
the true mortality rate, the number of times more infected

than reported is about: 8–16 considering the deaths
reported by the Ministry of Health; 10–20.5 considering
25% more deaths than reported; 12–24.5 considering 50%

more deaths than reported; and 15.5–30 considering 100%
more deaths than reported. Alternatively, considering 9
times more infected than reported, the true mortality rate

varies from 0.87% to 1%, resulting in 0 to 13% more
deaths than reported; if we consider 12 times more deaths
than reported, the true mortality rate range is 0.67%-1%,
and the death uncertainty range is 0–50%. Other analyses

can be inferred directly from Fig. 10. These results are con-
sistent with estimated and empirical findings presented in
Table 1.
Consider ing bS ¼ 0:44, then bA ¼ 0:47 corresponds to

0:03=0:44 � 6:8% and bA ¼ 0:45 corresponds to 0:01=0:44 � 2:3%.



Table 6 Estimated values of the epidemiological parameters

for the SIRDþw model. We used c ¼ 0:150876 provided by [5],

and a ¼ 0:186353 and w1 ¼ 0:494027 (calculated with the data

from the Ministry of Health, without any uncertainty) in all

simulations.

Number of deaths provided by the Ministry of Health (~qD ¼ 0)

~qI b q

0 0.441881 0.088569

5 0.424779 0.016070

10 0.423526 0.008799

15 0.423275 0.006042

20 0.423254 0.004591

25 0.423415 0.003697

30 0.423607 0.003090

25% more deaths (~qD ¼ 0:25)

~qI b q

0 0.447062 0.109324

5 0.425398 0.020318

10 0.423706 0.011151

15 0.423286 0.007664

20 0.423174 0.005826

25 0.423276 0.004693

30 0.423427 0.003924

50% more deaths (~qD ¼ 0:5)

~qI b q

0 0.452330 0.129481

5 0.426041 0.024663

10 0.423897 0.013568

15 0.423304 0.009335

20 0.423098 0.007100

25 0.423139 0.005721

30 0.423247 0.004785

100% more deaths (~qD ¼ 1)

~qI b q

0 0.463086 0.167947

5 0.427405 0.033658

10 0.424317 0.018612

15 0.423359 0.012830

20 0.422956 0.009771

25 0.422871 0.007879

30 0.422889 0.006594
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� We note that the level of uncertainty plays a significant role

in shifting the Susceptible-Infected transmission curves of
the contagion. Uncertainty not only influences the effective
transmission rate per infectious contact, but also the recov-

ery and mortality rates associated with the virus. It is pos-
sible to make a parallel between this paper and the recent
study by [20], which investigates how macroscopic patterns
and social reinforcement of interacting contagions through

SIR-like models; it is shown how social reinforcement can
directly meddle with the contagion transmission rate along
with the spreading regime. The results point to very similar

behaviors of the SIR curves as to the influence of the uncer-
tainty levels. We note, nonetheless, that uncertainty also
shifts and increases the peak of these curves, which does

not happen in the demonstrations presented in [20].
� We provide different relationships between the ”uncertainty
level” w.r.t. infections and deaths (namely parameters qI
and qD, respectively) with the epidemiological status of

the COVID-19 disease spread in Brazil. We correlate these
margins of sub-reports with mortality rates, asymptomatic/
symptomatic ratios, and so forth. One key issue is that to

estimate and quantify the actual level of sub-reports
(through qI and qD), pool sample testing and statistical pro-
cedures should be performed. Such analyses have been done

for some regions of the country [35,13], and also for other
nations [39].

� A possible guide to plan adequate public health policies is

the following: perform tests in statistically chosen groups
of the population and, then, conclude on the level of uncer-
tainty of the available datasets (regarding the number infec-
tions and deaths). With the level of uncertainty at hand, one

can better quantify the dynamics of the COVID-19 spread
within that sampled group with the framework provided
in our paper. Knowing the ongoing stage/transmission rate

of the contagion, better containment measures can be
planned.

� Lastly, we mention that we are not necessarily suggesting to

perform mass testing in Brazil, which can be impractical for
many reasons. The use of pool sampling (and the tests avail-
able from some regions of the country) could serve to infer/
estimate the uncertainty level in the datasets disclosed by

the Ministry of Health. Then, relying on this, we can better
quantify and interpret the effects of the ongoing pandemic.
The effects of the divergence in forecasts with regard to dif-

ferent levels of uncertainty are very significant and must be
taken into account, as we have been shown in this work.

We must stress, once again, that the used models have a ser-
ies of limitations (such as unmodelled phenomena and disre-
garded transient behaviors), the available datasets are very

imprecise, and also that the forecasting/ model-based predic-
tion problem has a lot of associated sensibility: it is composed
of several coupled nonlinear differential equations, which
heavily rely on initial conditions (and also contour factors

due to the time-series behavior implied via w tð Þ). Furthermore,
the pandemic dynamics may vary abruptly if more intense
health policies are adopted (or dropped) in the future. There-

fore, we must recall that the results presented in this paper
are qualitative. Our intention in showing long-term predictions
is not to provide perfect accurateness regarding the number of

infections and deaths, but to show relevant phenomena regard-
ing the levels of uncertainty. If more testing is performed, for
example, the uncertainty levels tend to decrease and, thus, the

forecast should also change. Also, if the elderly people were to
be isolated from the virus in a more effective way, we would
expect to see a decrease in death rate, even if the number of

infected is increasing, since the mortality rate for this group
of people is considerably higher than for people younger than
65 years, as shown by [37].



Table 7 Estimated values of the epidemiological parameters for the SIRASDþw model. We used a ¼ 0:186353 and w1 ¼ 0:494027 in

all simulations.

Number of deaths provided by the Ministry of Health (~qD ¼ 0)

~qI bA bS cA cS q p

0.1 0.596899 0.441881 0.286665 0.150876 0.087352 0.909091

1 0.495901 0.441881 0.206414 0.150876 0.085485 0.500000

5 0.469934 0.441881 0.186263 0.150876 0.085431 0.166667

10 0.464844 0.441881 0.182116 0.150876 0.085377 0.090909

15 0.462002 0.441881 0.179598 0.150876 0.085324 0.062500

20 0.459022 0.441881 0.177151 0.150876 0.085274 0.047619

25 0.456489 0.441881 0.174976 0.150876 0.085225 0.038462

30 0.453604 0.441881 0.172562 0.150876 0.085208 0.032258

25% more deaths (~qD ¼ 0:5)

~qI bA bS cA cS q p

0.1 0.595876 0.447062 0.286665 0.150876 0.107830 0.909091

1 0.488607 0.447062 0.200907 0.150876 0.106252 0.500000

5 0.468361 0.447062 0.185085 0.150876 0.106190 0.166667

10 0.463912 0.447062 0.181421 0.150876 0.106122 0.090909

15 0.461257 0.447062 0.179043 0.150876 0.106060 0.062500

20 0.458375 0.447062 0.176669 0.150876 0.105999 0.047619

25 0.455899 0.447062 0.174537 0.150876 0.105939 0.038462

30 0.453410 0.447062 0.172425 0.150876 0.105882 0.032258

50% more deaths (~qD ¼ 0:5)

~qI bA bS cA cS q p

0.1 0.594797 0.452330 0.286665 0.150876 0.127712 0.909091

1 0.481588 0.452330 0.195552 0.150876 0.126786 0.500000

5 0.466812 0.452330 0.183913 0.150876 0.126715 0.166667

10 0.462976 0.452330 0.180717 0.150876 0.126638 0.090909

15 0.460515 0.452330 0.178486 0.150876 0.126566 0.062500

20 0.457731 0.452330 0.176187 0.150876 0.126494 0.047619

25 0.455307 0.452330 0.174095 0.150876 0.126425 0.038462

30 0.452822 0.452330 0.171994 0.150876 0.126358 0.032258

100% more deaths (~qD ¼ 1)

~qI bA bS cA cS q p

0.1 0.496673 0.463086 0.208421 0.150876 0.167203 0.909091

1 0.468433 0.463086 0.185298 0.150876 0.167170 0.500000

5 0.463762 0.463086 0.181556 0.150876 0.167088 0.166667

10 0.461252 0.463086 0.179352 0.150876 0.166994 0.090909

15 0.459041 0.463086 0.177363 0.150876 0.166901 0.062500

20 0.456445 0.463086 0.175211 0.150876 0.166811 0.047619

25 0.454125 0.463086 0.173201 0.150876 0.166724 0.038462

30 0.451705 0.463086 0.171152 0.150876 0.166639 0.032258
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The Authors truly hope that the proposition herein formal-
ized can serve to help to determine adequate public health poli-

cies for Brazil.
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mortes do que dado oficial, 2020. https://noticias.uol.com.br/

saude/ultimas-noticias/redacao/2020/04/09/covid-19-

declaracoes-de-obito-apontam-48-mais-mortes-do-que-dado-

oficial.htm.

[50] D.T. Volpatto, A.C.M. Resende, L. Anjos, J.V.O. Silva, C.M.

Dias, R.C. Almeida, S.M.C. Malta, Spreading of COVID-19 in

brazil: Impacts and uncertainties in social distancing strategies,

medRxiv, 2020, https://www.medrxiv.org/content/early/2020/

06/03/2020.05.30.20117283.

[51] G.L. Werneck, M.S. Carvalho, The COVID-19 pandemic in

brazil: chronicle of a health crisis foretold, 2020.

http://refhub.elsevier.com/S1110-0168(21)00159-9/h0185
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0185
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0185
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0185
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0185
https://sites.google.com/view/nois-pucrio/publica%C3%A7%C3%B5es#h.au6kdlkrdotc
https://sites.google.com/view/nois-pucrio/publica%C3%A7%C3%B5es#h.au6kdlkrdotc
https://www.medrxiv.org/content/early/2020/01/28/2020.01.23.20018549
https://www.medrxiv.org/content/early/2020/01/28/2020.01.23.20018549
https://www.medrxiv.org/content/early/2020/01/28/2020.01.23.20018549.full.pdf
https://www.medrxiv.org/content/early/2020/01/28/2020.01.23.20018549.full.pdf
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0205
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0205
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0205
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0220
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0220
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0220
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0220
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0220
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0225
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0225
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0225
http://refhub.elsevier.com/S1110-0168(21)00159-9/h0225
http://www.sciencedirect.com/science/article/pii/S0140673620310953
http://www.sciencedirect.com/science/article/pii/S0140673620310953
https://noticias.uol.com.br/saude/ultimas-noticias/redacao/2020/04/09/covid-19-declaracoes-de-obito-apontam-48-mais-mortes-do-que-dado-oficial.htm
https://noticias.uol.com.br/saude/ultimas-noticias/redacao/2020/04/09/covid-19-declaracoes-de-obito-apontam-48-mais-mortes-do-que-dado-oficial.htm
https://noticias.uol.com.br/saude/ultimas-noticias/redacao/2020/04/09/covid-19-declaracoes-de-obito-apontam-48-mais-mortes-do-que-dado-oficial.htm
https://noticias.uol.com.br/saude/ultimas-noticias/redacao/2020/04/09/covid-19-declaracoes-de-obito-apontam-48-mais-mortes-do-que-dado-oficial.htm
https://www.medrxiv.org/content/early/2020/06/03/2020.05.30.20117283
https://www.medrxiv.org/content/early/2020/06/03/2020.05.30.20117283

	The COVID-19 (SARS-CoV-2) uncertainty tripod in Brazil: Assessments on model-based predictions with large under-reporting
	1 Introduction
	2 SIR epidemiological models
	2.1 Epidemiological model
	2.2 Uncertainty

	3 Estimation procedure
	4 Results
	4.1 SIRD+[$] \psi [$] model
	4.2 SIRASD[$]+ \psi [$] model

	5 Discussion and conclusions
	Notes
	Declaration of Competing Interest
	Acknowledgment
	Appendix A 
	A.1 Observed mortality rates
	A.2 Simulation parameters

	References


