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Resumo

Nas tentativas de phishing, o criminoso finge ser uma pessoa ou entidade confiável e, por
meio dessa falsa representação, tenta obter informações confidenciais de um alvo. Um
exemplo típico é aquele em que golpistas tentam passar por uma instituição conhecida,
alegando a necessidade de atualização de um cadastro ou de uma ação imediata do lado
do cliente e, para isso, são solicitados dados pessoais e financeiros. Uma variedade de
recursos, como páginas da web falsas, instalação de código malicioso ou preenchimento
de formulários, são empregados junto com o próprio e-mail para executar esse tipo
de ação. Geralmente uma campanha de phishing começa com um e-mail. Portanto, a
detecção desse tipo de e-mail é crítica. Uma vez que o phishing pretende parecer uma
mensagem legítima, as técnicas de detecção baseadas apenas em regras de filtragem,
como regras de listas e heurística, têm eficácia limitada, além de potencialmente poderem
ser forjadas.

Desta forma, através de processamento de texto, atributos podem ser extraídos do
corpo e do cabeçalho de e-mails, por meio de técnicas que expliquem as relações de
semelhança e significância entre as palavras presentes em um determinado e-mail, bem
como em todo o conjunto de amostras de mensagens. A abordagem mais comum para
este tipo de engenharia de recursos é baseada em Modelos de Espaço Vetorial (VSM),
mas como o VSM derivada da Matriz de Documentos por Termos (DTM) tem tantas
dimensões quanto o número de termos utilizado em um corpus, e dado o fato de que
nem todos os termos estão presentes em cada um dos emails, a etapa de engenharia de
recursos do processo de detecção de e-mails de phishing tem que lidar e resolver questões
relacionadas à "Maldição da Dimensionalidade", à esparsidade e às informações que
podem ser obtidas do contexto textual.

Esta tese propõe uma abordagem que consiste em quatro métodos para detectar
phishing. Eles usam técnicas combinadas para obter recursos mais representativos
dos textos de e-mails que são utilizados como atributos de entrada para os algoritmos
de classificação para detectar e-mails de phishing corretamente. Eles são baseadas
em processamento de linguagem natural (NLP) e aprendizado de máquina (ML), com
estratégias de engenharia de features que aumentam a precisão, recall e acurácia das
previsões dos algoritmos adotados, e abordam os problemas relacionados à representação
VSM/DTM.

O método 1 usa todos os recursos obtidos da DTM nos algoritmos de classificação,
enquanto os outros métodos usam diferentes estratégias de redução de dimensionalidade
para lidar com as questões apontadas. O método 2 usa a seleção de recursos por meio das
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medidas de qui-quadrado e informação mútua para tratar esses problemas. O Método 3
implementa a extração de recursos por meio das técnicas de Análise de Componentes Prin-
cipais (PCA), Análise Semântica Latente (LSA) e Alocação Latente de Dirichlet (LDA).
Enquanto o Método 4 é baseado na incorporação de palavras, e suas representações são
obtidas a partir das técnicas Word2Vec, Fasttext e Doc2Vec. Foram empregados três
conjuntos de dados (Dataset 1 - o conjunto de dados principal, Dataset 2 e Dataset 3).

Usando o Dataset 1, em seus respectivos melhores resultados, uma pontuação F1 de
99,74% foi alcançada pelo Método 1, enquanto os outros três métodos alcançaram uma
medida notável de 100% em todas as medidas de utilidade utilizadas, ou seja até onde
sabemos, o mais alto resultado em pesquisas de detecção de phishing para um conjunto
de dados credenciado com base apenas no corpo dos e-mails.

Os métodos/perspectivas que obtiveram 100% no Dataset 1 (perspectiva Qui-quadrado
do Método 2 - usando cem features, perspectiva LSA do Método 3 - usando vinte e cinco
features, perspectiva Word2Vec e perspectiva FastText do Método 4) foram avaliados
em dois contextos diferentes. Considerando tanto o corpo do e-mail quanto o cabeçalho,
utilizando o primeiro dataset adicional proposto (Dataset 2), onde, em sua melhor nota,
foi obtido 99,854% F1 Score na perspectiva Word2Vec, superando o melhor resultado
atual para este dataset. Utilizando apenas os corpos de e-mail, como feito para o Dataset
1, a avaliação com o Dataset 3 também se mostrou com os melhores resultados para
este dataset. Todas as quatro perspectivas superam os resultados do estado da arte, com
uma pontuação F1 de 98,43%, através da perspectiva FastText, sendo sua melhor nota.
Portanto, para os dois conjuntos de dados adicionais, esses resultados são os mais elevados
na pesquisa de detecção de phishing para esses datasets.

Os resultados demonstrados não são apenas devido ao excelente desempenho dos
algoritmos de classificação, mas também devido à combinação de técnicas proposta,
composta de processos de engenharia de features, de técnicas de aprendizagem apri-
moradas para reamostragem e validação cruzada, e da estimativa de configuração de
hiperparâmetros. Assim, os métodos propostos, suas perspectivas e toda a sua estraté-
gia demonstraram um desempenho relevante na detecção de phishing. Eles também se
mostraram uma contribuição substancial para outras pesquisas de NLP que precisam lidar
com os problemas da representação VSM/DTM, pois geram uma representação densa e
de baixa dimensão para os textos avaliados.

Palavras-chave: Detecção de Phishing, Processamento de Linguagem Natural, Word
Embedding, Feature Engineering, Feature Extraction, Feature Selection
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Abstract

In phishing attempts, the attacker pretends to be a trusted person or entity and, through
this false impersonation, tries to obtain sensitive information from a target. A typical
example is one in which a scammer tries to pass off as a known institution, claiming
the need to update a register or take immediate action from the client-side, and for this,
personal and financial data are requested. A variety of features, such as fake web pages,
the installation of malicious code, or form filling are employed along with the e-mail
itself to perform this type of action. A phishing campaign usually starts with an e-mail.
Therefore, the detection of this type of e-mail is critical. Since phishing aims to appear
being a legitimate message, detection techniques based only on filtering rules, such as
blacklisting and heuristics, have limited effectiveness, in addition to being potentially
forged.

Therefore, with the use of data-driven techniques, mainly those focused on text
processing, features can be extracted from the e-mail body and header that explain the
similarity and significance of the words in a specific e-mail, as well as for the entire set
of message samples. The most common approach for this type of feature engineering is
based on Vector Space Models (VSM). However, since VSMs derived from the Document-
Term Matrix (DTM) have as many dimensions as the number of terms in used in a corpus,
in addition to the fact that not all terms are present in each of the e-mails, the feature
engineering step of the phishing e-mail detection process has to deal with and address
issues related to the "Curse of Dimensionality"; the sparsity and the information that can
be obtained from the context (how to improve it, and reveal its latent features).

This thesis proposes an approach to detect phishing that consists of four methods.
They use combined techniques to obtain more representative features from the e-mail
texts that feed ML classification algorithms to correctly detect phishing e-mails. They are
based on natural language processing (NLP) and machine learning (ML), with feature
engineering strategies that increase the precision, recall, and accuracy of the predictions
of the adopted algorithms and that address the VSM/DTM problems.

Method 1 uses all the features obtained from the DTM in the classification algorithms,
while the other methods use different dimensionality reduction strategies to deal with
the posed issues. Method 2 uses feature selection through the Chi-Square and Mutual
Information measures to address these problems. Method 3 implements feature extraction
through the Principal Components Analysis (PCA), Latent Semantic Analysis (LSA), and
Latent Dirichlet Allocation (LDA) techniques. Method 4 is based on word embedding,
and its representations are obtained from the Word2Vec, Fasttext, and Doc2Vec techniques.
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Our approach was employed on three datasets (Dataset 1 - the main dataset, Dataset 2,
and Dataset 3).

All four proposed methods had excellent marks. Using the main proposed dataset
(Dataset 1), on the respective best results of the four methods, a F1 Score of 99.74% was
achieved by Method 1, whereas the other three methods attained a remarkable measure
of 100% in all main utility measures which is, to the best of our knowledge, the highest
result obtained in phishing detection research for an accredited dataset based only on the
body of the e-mails.

The methods/perspectives that obtained 100% in Dataset 1 (perspective Chi-Square of
Method 2 - using one-hundred features, perspective LSA of Method 3 - using twenty-five
features, perspectiveWord2Vec and perspective FastText of Method 4) were evaluated
in two different contexts. Considering both the e-mail bodies and headers, using the
first additional proposed dataset (Dataset 2), a 99.854% F1 Score was obtained using the
perspective Word2Vec, which was its best mark, surpassing the current best result. Using
just the e-mail bodies, as done for Dataset 1, the evaluation employing Dataset 3 also
proved to reach the best marks for this data collection. All four perspectives outperformed
the state-of-the-art results, with an F1 Score of 98.43%, through the FastText perspective,
being its best mark. Therefore, for both additional datasets, these results, to the best
of our knowledge, are the highest in phishing detection research for these accredited
datasets.

The results obtained by these measurements are not only due to the excellent perfor-
mance of the classification algorithms, but also to the combined techniques of feature
engineering proposed process such as text processing procedures (for instance, the lemma-
tization step), improved learning techniques for re-sampling and cross-validation, and
hyper-parameter configuration estimation. Thus, the proposed methods, their perspectives,
and the complete plan of action demonstrated relevant performance when distinguishing
between ham and phishing e-mails. The methods also proved to substantially contribute
to this area of research and other natural language processing research that need to address
or avoid problems related to VSM/DTM representation, since the methods generate a
dense and low-dimension representation of the evaluated texts.

Keywords: Phishing Detection, Natural Language Processing, Word Embedding, Fea-
ture Engineering, Feature Extraction, Feature Selection
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1
Introduction

Any man who afflicts the human race with ideas must be prepared to

see them misunderstood.

—HENRY LOUIS MENCKEN

The internet plays a crucial role in industries and societies worldwide by providing
a wide variety of services. According to [94, 18], 62% of the world´s population are
internet users, and, in 2023, this percentage will increase to 66%.

According to [38], in 2019, the total number of e-mails transacted every day exceeded
half-trillion, and about 80% of this e-mail traffic were spam messages. Although some
of these spam messages are legitimate marketing e-mails, there are also malicious e-
mails through which sensitive information can be exposed or subtracted. A successful
malicious e-mail can lead to critical incidents such as financial frauds and hacked or
hijacked systems, accounts, or profiles. These malicious messages are known as phishing
e-mails.

In this type of fraud attempt, the attacker pretends to be a trusted person or entity, and
through this false impersonation, tries to obtain sensitive information from a target [55, 3].
A typical example is one in which a scammer tries to pass off as a known institution,
claiming the need to update a register or for immediate action from the client-side and,
for this, personal and financial data are requested. A variety of features, such as fake web
pages, malicious code installation, or form filling are employed along with the e-mail
itself to perform this type of action [16].

Phishing, as well as other cybercrimes, is constantly evolving and becoming more
crafty and refined. According to [6], in the first quarter of 2020, 75% of all phishing sites
used secure sockets layer (SSL). Also according to [6], many Coronavirus Disease of
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2019 (COVID-19)- themed phishing attacks have been launched as of mid-March, 2019.
In order to convince their targets, phishing approaches employ all available information,
ranging from internet and security technologies to the new coronavirus pandemic.

Much research has aimed to develop applications that can correctly detect phishing
cases [16, 92, 3, 4]. Some of this research focuses on phishing site detection [93, 9, 109,
113], whereas other lines focus on phishing e-mail detection [1, 76, 45]. This thesis
concentrated on phishing e-mail detection. Most of these studies utilize natural language
processing (NLP) techniques combined with machine learning techniques to perform
such detection activities based on classification tasks. These are effective mechanisms of
defense against this type of threat, since such approaches exploit the morphology and
semantics of the text. Information such as the text body and header of e-mail messages,
URLs, and tags are processed and used as input data to be employed by the classification
algorithms [110].

Traditionally, a phishing campaign starts with an e-mail [16, 92, 3, 4], and therefore
the detection of this type of e-mail is critical. Since phishing aims to appear as a legitimate
message, detection techniques based only on filtering rules, such as blacklisting and
heuristic, have limited effectiveness [4], in addition to being potentially forged.

Thus, with data-driven techniques [74], features can be extracted from the e-mail
body and header texts using techniques that explain relations of similarity and meaning
between the words present in a specific e-mail, as well as for entire sets of message
samples.

The most common approach to this type of feature engineering is based on Vector
Space Models (VSMs) [37]. In this type of representation, each message uses numerical
values to represent each of its terms (words, for instance) as symbols in a vector space,
i.e., each term in each text in the entire corpus1 is a dimension in which each e-mail is
denoted by its term ranking.

As explained in [100], since the VSM derived from the Document-Term Matrix
(DTM) has as many dimensions as the number of terms in a used corpus, and the fact
that not all terms are present in each of the e-mails, the feature engineering step of the
phishing e-mail detection process has to deal with and address questions related to the
"Curse of Dimensionality" and sparsity [90], [104], [59]. Additional crucial aspects
regard the information that can be obtained from the context to embed in the VSM, how
to improve it, and explicit its latent features [28] [100].

The first problem, the "Curse of Dimensionality", refers to the high number of

1Corpus is a computer-readable collection of text or speech [49].
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dimensions in which a text is represented by its word ranking. The second refers to
the fact that as data dimensionality increases, data sparsity also increases. These two
problems require the processing and storage of large corpus, besides potentially causing
overfitting due to some features being rarely observed. Finally, the third problem regards
the few context properties of the text incorporated in this VSM representation type.

In order to overcome the three main problems mentioned above, statistical measures,
feature extraction, and distributed models based on word embedding are the three most
commonly-used techniques in the literature.

Statistical measures can be used to select fewer features, a subset of original features,
that are supposed to be more representative than the other features [102].

It is also possible to use feature extraction techniques [44] [57] [82], which, starting
from the initial high-dimensional matrix, obtain more discriminative features from the
original features extracted from the text.

Instead of selecting more representative features, or performing mathematical transfor-
mations or probabilistic calculations on the VSM representation to extract more distinctive
features, representing such texts in a fixed shared low-dimensional space, word embed-
ding [45] [101] [8, 108], is also an approach. In this paradigm, a vector and its pre-fixed
dimensions represent a word and its contextual information (such as relations with other
words and semantic and syntactic similarities).

This thesis concentrates on phishing e-mail detection, mainly on propositions based
on the processing of text of the e-mail bodies or/and headers to obtain the necessary
feature attributes for the ML algorithms and improved strategies to provide better results
training these classification algorithms.

We present an approach that consists of four methods to detect phishing. The first
that does not address these VSM issues, and uses all the features obtained from the words
used in the e-mail texts. The second that uses feature selection statistic measures to
handle this landscape. The third that extracts new features when projecting the initial
attributes derived from the term occurrences. And the fourth that is not based on the rank
of the terms, but generates a fixed low-dimensional vector representation for each e-mail.

The remainder of this chapter is organized as follows. The problem statement is stated
in Section 1.1, and the proposals are outlined in Section 1.2. In Section 1.3, the main
general and specific objectives of this thesis are presented. In Section 1.4, we introduce
the adopted methodology and, lastly, the contributions of this thesis are presented in
Section 1.5. The organization of this thesis for the subsequent chapters is described in
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1.1. PROBLEM STATEMENT

Section 1.6, and the notation employed throughout this work is described in Section 1.7.

1.1 Problem Statement

Although natural language processing and machine learning have been largely utilized in
phishing e-mail detection, methods that, together with these techniques, are also based
on semantic and similarity enrichment, and established training techniques for machine
learning algorithms have not been appropriately employed in this context. Approaches
that produce more distinctive features to improve phishing detection and prediction rates
for this problem successively are suitable for this scenario.

The following research question then arises: Can a phishing detection approach that
addresses the issues related to a VSM derived from a DTM improve the identification of
this type of cybercrime?

1.2 Proposals

Our proposal provides and analyzes methods, through the use of combined techniques, to
obtain more representative feature attributes from the e-mail texts to feed ML classification
algorithms to correctly detect phishing e-mails.

This thesis presents an approach based on feature engineering and enhanced learn-
ing techniques for phishing detection. Through a set of text processing, representation
methods, and training phases, the approach provides strategies to supply more distinc-
tive/characteristic features for this classification problem from certain robust representa-
tion perspectives.

Differently from previous works, we aim to propose a solution to correctly detect
phishing e-mails to prevent them from reaching the target user, through a comprehensive
process for this landscape. It is based on natural language processing (NLP) and machine
learning (ML), with feature engineering strategies that increase the precision, recall, and
accuracy of the predictions of the adopted algorithms, and that address the problems
posed in Section 1.1, i.e., the "Curse of Dimensionality", the sparsity, and the information
that can be obtained from the context.

1.3 Objectives

The broad objective of this thesis is to present a holistic, structured architecture and
approach for phishing detection, with methods, based on NLP and ML, that address
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1.4. METHODOLOGY

the problems related to VSM representation derived from DTM so as to improve threat
identification predictions.

Toward this end, the following specific objectives are defined:

• Review of the fundamental theoretical framework and concepts related to phishing
detection, natural language processing and machine learning.

• Development of pre-processing procedures to provide suitable and correct data
cleansing.

• Design structured strategies to handle issues of VSM representation derived from a
DTM.

• Development of methods to provide effective and low-dimensional text representa-
tion, more specifically for e-mail texts.

• Gathering of optimized features able to typify structures, similarities, and other
relevant information for classification problems, such as phishing detection.

• Performing of classification tasks to sort phishing against legitimate e-mails, using
ML algorithms fed with these optimized features and trained using an established
plan of action.

1.4 Methodology

The proposed approach consists of four methods, each with a different course of action to
obtain the desired features.

The methods start from a common stage and then specialize within each method
scheme. This common stage refers to the parsing and the pre-processing steps, where the
first refers to the process of extraction from the datasets, and the second to the operations,
such as lowercasing the text, and passing it through the tokenization, part-of-speech (POS)
tagging, and lemmatization phases, using certain databases as a dictionary structure.

From this step onwards, the methods follow different flows. The first three methods
are based on the DTM, which is extracted from these processed texts, and represents each
e-mail as a ranking of its words in a VSM. Method 1 does not manipulate this structure
to control these VSM issues; Method 2 does this by selecting a subset of the original
feature set; and Method 3 extracts new features from those of the original feature set.
The fourth method, Method 4, does not use the DTM. It associates a fixed vector to each
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remaining word in an e-mail, that represents it, from which the features are generated
(word embedding). Lastly, each of the different sets of features obtained through these
methods feeds the same eight ML classification algorithms, using improved learning
techniques, concluding each method.

Figure 1.1 outlines the general architecture and methodology of the proposed ap-
proach.

Figure 1.1 The general architecture and methodology of the proposed approach

1.5 Publications

This thesis research covers the phishing detection scenario and proposes methods to
improve the identification of this type of threat through NLP and ML techniques. The
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proposed approach is not only an answer to the above-mentioned problems, but also
demonstrate an optimal representation capacity, since it uses a number of features that is
much smaller than the original amount of features, but with better performance measures.
It shows that these features provide an enhanced distinction of messages from the selected
datasets (phishing or legitimate e-mails).

These achieved results also produced the following publications:

• E. S. Gualberto, R. T. De Sousa, T. P. D. Vieira, J. Da Costa, and C. G. Duque,
"From Feature Engineering and Topics Models to Enhanced Prediction Rates in
Phishing Detection", IEEE Access, vol. 8, pp. 76368-76385, 2020. [40]

– We proposed an approach based on machine learning to detect phishing
e-mail attacks. The methods that compose this approach are performed
through a feature engineering process based on natural language processing,
lemmatization, topics modeling, improved learning techniques for resampling
and cross-validation, and hyperparameters configuration. The first proposed
method uses all the features obtained from the Document-Term Matrix (DTM)
in the classification algorithms. The second one uses Latent Dirichlet Allo-
cation (LDA) to deal with the already listed VSM problems. The proposed
approach reached marks with an F1-measure of 99.95% success rate using the
XGBoost algorithm fed with just ten features. It employed an accredited data
set and is based only on the body of the e-mails, without using other e-mail
features such as its header, IP information, or number of links in the text.

• E. S. Gualberto, R. T. De Sousa, T. P. D. Vieira, J. Da Costa, and C. G. Duque,
"The Answer is in the Text: Multi-Stage Methods for Phishing Detection based on
Feature Engineering", IEEE Access, vol. 8, pp. 223529-223547, 2020. [39]

– In this paper, a multi-stage approach is proposed to detect phishing e-mail
attacks based on natural language processing and machine learning. It is
performed through a feature engineering process based on natural language
processing, lemmatization, feature selection, feature extraction, improved
learning techniques for resampling and cross-validation, and hyperparameters
configuration. We present two methods of the proposed approach: the first one
exploiting the Chi-Square statistics and the Mutual Information to improve
the dimensionality reduction and the second one based on the Principal
Component Analysis (PCA) and Latent Semantic Analysis (LSA). Both
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methods handle the problems of the "curse of dimensionality", the sparsity,
and the information that must be obtained from the context in the Vector
Space Model (VSM) representation. The proposed approach, combined with
XGBoost and Random Forest algorithms, achieves marks with an F1-measure
of 100% success rate employing reduced feature sets, using the SpamAssassin
Public Corpus and the Nazario Phishing Corpus as datasets sources. Even
based only on the text of the e-mail bodies, it outperforms state-of-the-art
phishing detection research for an accredited dataset, using a much smaller
number of features and a lower computational cost.

1.6 Thesis Organization

This thesis is organized as follows:

• In Chapter 2, we describe the main theories and concepts concerning natural
language processing and machine learning techniques employed in this research
problem. Also, the related works are discussed.

• In Chapter 3, a detailed explanation of the architecture, the methodology, and the
procedures employed in each of the approach methods is presented.

• In Chapter 4, the performance measures used to evaluate the proposed work are
described, and the obtained results are presented and analyzed.

• In Chapter 5, we conclude the thesis, summarize the main achievements and
contributions, and suggest future research.

1.7 Notation

The notations used in this thesis are defined as follows: vectors are denoted by lowercase
boldface letters (for instance: a, b and c), and matrices are described by uppercase
boldface letters (such as A, B and C). The matrix elements are denoted by this shape: ai, j,
i.e., the element of matrix A located in line i column j).
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2
Theoretical Framework

The creator of the universe works in mysterious ways. But he uses a

base ten counting system and likes round numbers.

—SCOTT ADAMS

As already mentioned, this approach proposed in this thesis for phishing detection
is mainly focused on natural language processing (NLP) and machine learning (ML)
techniques.

Natural Language Processing is an Artificial Intelligence subarea, and its object of
study is the acquisition of knowledge by machine agents, using language models from
human language (natural language), with the objective of performing activities related
to the search for information (text classification, information retrieval, and information
extraction) [87].

Machine Learning is also an Artificial Intelligence (AI) subarea concerned with the
question of how to build computer programs that automatically improve with experience
[71]. The purpose of these algorithms is understanding the example data or the under-
lying structure of past experiences, modeling the underlying phenomena/processes (the
performance criterion is optimized with this experience), and providing an algorithm for
this task. A model that is a useful and good enough approximation of the data is expected
[5].

We aim to generate more expressive features from the existing terms/words in e-mails
(documents) and to subject them to different machine learning algorithms, using enhanced
techniques to obtain improved results in classification tasks.

To generate more distinctive attributes, the e-mail texts were submitted to pre-
processing in order to: eliminate words/terms that do not add much to the semantics of
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the documents; strengthen and enrich relationships of synonymy and polysemy; and, in
some perspectives of our approach, assign a higher weight to words/terms that better
reveal the respective class of document.

Since the classifying of e-mails as phishing or as legitimate messages, as well as other
NLP activities in general, must address the problem of sparse and high-dimensionality
feature matrices, these pre-processing steps, though they embed more information into
the features and make them more meaningful, do not address these problems directly or
at least do not do so at a necessary level. It is thus needed to use dimensionality reduction
techniques, which can select, extract, or generate more instructive and discriminative
features from the pre-processed texts, allowing a low-rank representation of the data.

The features can then be submitted to classification algorithms. The choices of which
machine learning algorithms to use, as well as of the dataset, were based on previous
works related to phishing detection for comparison purposes, and also on the performance
power of the algorithms, in order to obtain the best possible results. This way, it was
possible to measure not only the effectiveness of the techniques used in this proposed
approach, concerning the results of previous works, but also to introduce more robust
algorithms in this research area in order to obtain state-of-the-art marks.

To ensure a good understanding of the techniques used in the research problem
proposed in this thesis, this chapter presents the main related concepts and associated
theories. The remainder of this chapter is organized as follows: The pre-processing
related techniques and concepts are exposed in Section 2.1. The Bag-of-Words and
Document-Term Matrix models are introduced in Section 2.2. The techniques employed
to promote reduced amount of features are outlined in Section 2.3, and those related
to feature selection, feature extraction and word embedding are presented, respectively,
in Sections 2.4, 2.5 and 2.6. In Section 2.7, we introduce certain concepts related to
supervised learning, and some details about the chosen ML classification algorithms. The
related works and the state of the art are discussed in Section 2.8.

2.1 Pre-processing related techniques and concepts

This process starts with all the e-mails of the chosen datasets undergoing a parsing
process, in which the text (body and/or header) of all the e-mails is extracted (from which
all the necessary features are obtained), keeping their associated labels indicating in each
whether it is a phishing e-mail or a legitimate (ham) e-mail.

The e-mail bodies are submitted to pre-processing in order to: eliminate words/terms
that do not add much to the semantics of the documents; strengthen and enrich semantics
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and relationships of synonymy and polysemy; and assign a higher weight to words/terms
that better reveal the respective class of document. Some important concepts/discussions
related to this step are explored in this Section, such as stopwords, tokenization, part-of-
speech tagging, lemmatization, WordNet database, and Stanza database.

2.1.1 Stopwords

Stopwords refer to a class of words that usually have little lexical content or that do
not contribute much to the meaning of a sentence. Although there is no universal list
representing all stopwords, most cases take prepositions and articles as such.

2.1.2 Tokenization

The tokenization process is performed on the remaining texts, on a term level, i.e., using
white spaces (space, tab, and newline) as delimiters, with each text divided into terms
(tokens). The tokenization step is critical, not only to create a vocabulary for the corpus
under analysis [62] [49], but also to perform other required NLP actions for the proposed
approach, such as removing stopwords.

2.1.3 Part-of-Speech (POS) tagging

The Part-of-Speech (POS) tagging process annotates the grammatical class of each token
(such as ADJ, for an adjective, ADV for an adverb, NOUN for a noun, PRON for a
pronoun, or VERB for a verb [24]).

2.1.4 Lemmatization

To promote the correct understanding of what occurs in a lemmatization process, some
concepts need to be explained. They refer to morpheme, stem, affixes, lemma, and
lexeme.

Morphemes refer to the smaller meaning-bearing units that comprise a word; stem
refers to the morpheme that concentrates the word’s primary meaning; affixes refer to the
morphemes that offer additional meanings of various types to a word [49]; lemma is a
word or expression, a particular form, that is chosen to represent a lexeme, which in turn
is the basic meaning of a stem [62].

The aim of lemmatization is to transform a word into its common base form. To
reduce the inflectional forms and the derivationally related forms of a word, lemmatization

11



2.2. THE BAG-OF-WORDS MODEL AND THE DOCUMENT-TERM MATRIX (DTM)

typically involves the use of a vocabulary and a morphological parsing. A word is
analyzed on a morpheme level in order to separate its root morpheme (stem) from its
accessory morphemes (affixes), returning it to a lemma shape, i.e., obtaining the stem in
dictionary form.

2.1.5 WordNet

WordNet refers to a large lexical database of the English Language [70]. With its synsets
(sets of cognitive synonyms), it tries to express the meaning of a concept. These sets
include words from the noun, verb, adjective, and adverb grammatical classes. The
interlink among the synsets provides a network of meaningfully related words and
concepts that can be used to obtain better results in natural language processing.

2.1.6 Stanza

Stanza is an NLP toolkit that supports 66 human languages [80]. From a raw text as
input, it delivers useful annotations such as tokenization, Multi-Word Token (MWT)
expansion (expanding a raw token into multiple syntactic words), POS and morphological
feature tagging (the latter works as an extension of POS tagging, through which it is
possible to annotate words with features that distinguish their additional lexical and
grammatical properties, not covered by the POS tags [23]), and lemmatization. It also
produces annotations related to dependency parsing and named entity recognition.

2.2 The Bag-of-words model and the Document-Term
Matrix (DTM)

Bag-of-words (BoW) refers to a model in which a text is represented as a list of words or
other n-gram (a continuous sequence of n items of a sample, such as characters, syllables,
or words) and their respective multiplicity (how many times each of these occurs in the
text under the feature extraction process). It embeds no contextual information, such as
grammatical class and order of occurrence of those words [26].

In our approach, from this model, we obtained the Document-Term Matrix that
represents each text or document in a row, and each term in a column. Its elements
are the ranking of each term and document. This ranking is usually represented by its
occurrence count, or by the TF-IDF calculus over the DTM [62]. It is also a type of
feature extraction.
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2.2.1 Feature weighting through Term Frequency-Inverse Document
Frequency (TF-IDF)

Term Frequency-Inverse Document Frequency (TF-IDF) is a statistical measure that
assigns weights to the importance of a term for a document (or for a text sample, such as
an e-mail body), which is inserted in a corpus [84]. Expressed by eq. 2.1:

wi, j = t fi, j · log
(

N
d fi

) �
 �	2.1

where: tfi,j is the number of occurrences of the term i in document j, N is the total
number of documents, and dfi is the number of documents containing i.

Thus, when the term i occurs many times in a small number of dfi documents, given
the equation

�
 �	2.1 , a high weight is assigned to the term i in the dfi documents in which it
occurs. Likewise, a lower weight is assigned to the term i, if this term occurs few times
in a document or if it occurs in many documents (an even smaller weight is assigned to a
term i if it occurs in all N documents) [62].

2.3 Dimensionality Reduction Methods

In the next sections, the techniques used for dimensionality reduction will be described in
detail, in order to elucidate their respective procedures and to allow a clear understanding
of the obtained results.

2.4 Feature Selection

The main objective of the feature selection method is to select a subset of original features
[21]. For this purpose, the features are ordered by a utility measure, whereby those
with the highest values will be selected according to the desired number of features.
Unselected features, those with values less than the threshold value, are removed and no
longer used in the following activities (classification tasks in this thesis case).

Chi-Square and Mutual Information measures are used. They are both univariate
feature selection methods. The first one, Chi-Square, aims to measure the linear depen-
dency between two random variables (an input feature and the target), whereas the second
one, Mutual Information, also captures non-linear relationships between the input feature
under analysis and the target.
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2.4.1 Chi-Square

Chi-square is a statistical test used to calculate the relationship degree between the feature
variables and the target variable in a dataset [27]. In this proposed approach, it is used to
calculate how dependent the e-mail class (phishing mail or ham mail) is on each of the
incoming features.

This test score is given by the equation 2.2:

χ̃
2 =

n

∑
k=1

(Ok−Ek)
2

Ek

�
 �	2.2

where Ok is the number of observations of class k (observed frequency) and Ek the
number of expected observations of class k if there is no relationship between the feature
variable and the target variable (expected frequency). If the chi-square test is 0 (the null
hypothesis), there is no association between both variables. They are independent. On
the other hand, the higher the chi-square value, the greater the relationship between the
two variables (the alternative hypothesis).

2.4.2 Mutual Information

Mutual information is a measure for quantifying the mutual dependence between two
variables, based on the entropy (from the information theory) of a random variable. It
calculates what amount of information is reached in a random variable from another
random variable. That is, in the context of this work proposal, to identify how much
information each feature provides to determine if an e-mail is a phishing or a legitimate
mail [10].

The mutual information of two jointly continuous random variables is given by the
double integral expressed in the equation 2.3:

I(X ,Y ) =
∫

Y

∫
, p(X ,Y )(x,y) log

(
p(X ,Y )(x,y)
pX(x)pY (y)

)
dxdy

�
 �	2.3

where pX(x) is the probability density of x, pY(y) is the probability density of y, and
p(X,Y)(x,y) is the joint probability density, with X being the feature variable and Y being
the target variable, or vice versa [41].
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2.5 Feature Extraction

The feature extraction methods obtain new features (of lower dimensionality) from the
original features set. Some transformations do it over the original feature space, that is, the
new reduced feature space dimensions are combinations of the original high dimensional
data. These new features are intended to be more representative, concentrating relevant
information from the underlying data in a non-redundant shape, with less noise [36].

PCA, LSA, and LDA techniques are used. For the first two, the input data is the DTM
based on the TF-IDF measure. For LDA, the initial DTM is used.

2.5.1 Principal Component Analysis (PCA)

Principal Component Analysis is a technique that, according to [5], focuses on finding a
mapping from the inputs in the original dimensional space to a new smaller dimensional
space, always seeking the minimum loss of information.

The principal components can be understood as the underlying structure in the data.
They are found by searching for eigenvectors and eigenvalues that maximize the variance
of projected data and make them more spread out in the new dimensional space. This
technique’s basic idea consists of converting variables, potentially correlated, into linearly
uncorrelated variables, the principal components, by an orthogonal transformation, as
[10] exposes. A pair of eigenvectors and eigenvalues represent each of these. The
eigenvector represents a principal component’s direction, and the eigenvalue represents
how much variance this direction contains. Then, the first principal component contains
more variance from the original data than the second; the second principal component
contains more variance than the third; and so on. All the principal components are
orthogonal to each other.

PCA is based on covariance matrix [19] [107]. Although the code implementation of
this technique uses different calculations in order to be more computationally efficient,
the PCA steps consist basically of: First, the sample is standardized (centered). To do
this, for each feature, the feature column mean is subtracted from each of the values of
that particular feature, and is divided by the standard deviation. Next, the covariance
matrix is calculated. This is done to detect any relationship between variables, which
may mean that these variables contain redundant information. Then, from the covariance
matrix, the eigenvectors and the respective eigenvalues, the principal components, are
obtained by an eigendecomposition. Thereon, it is decided how many components to
work with and finally, the original data matrix is projected onto the axes of the principal

15



2.5. FEATURE EXTRACTION

component [91]. More details can be found in [48].
PCA can also be calculated through the use of SVD (explained in Subsection 2.5.2).
One of the most commonly used criteria for selecting a quantity of the obtained

principal components is to select a Cumulative Percentage of Total Variation (CPTV)
[77] [85] [48], which is a percentage of variance, given by the sum of the variances of
the first n principal components. It is typically indicated for working with an amount of
approximately eighty to ninety percent (depending of the practical details of the dataset
under analysis) of the initial variance [48].

2.5.2 Latent Semantic Analysis (LSA)

LSA refers to a mathematical technique in natural language processing, whose purpose
is to make explicit (latent) topics/concepts embedded in the input data (the documents),
from the analysis of the relationships between these documents and the terms contained
therein. Documents and terms are expressed as vectors of elements that correspond to
these concepts. Thus, the elements in these vectors indicate the degree of participation of
a document or term in the represented topic/concept [54] [22].

This technique is based on a factorization through Singular Value Decomposition
(SVD) [62] [53]. The SVD technique and its settings for this study are explained as
follows:

Suppose an array Md,t, which expresses the BoW model and relates documents to the
terms found in them (the DTM), where its lines are the documents d, and its columns are
the terms t. The SVD stipulates that this matrix M can be factored into the form [63]:

Md,t = Bd,mΣm,mCT
t,m

�
 �	2.4

where: Bd,m is the eigenvectors matrix of Dt,t = MTM, Ct,m is the eigenvectors matrix
of Td,d = MMT. Σm,m is the diagonal matrix of the singular values σ i of M (for i = 1, ...,
min (d x t)), which are the square roots of the nonzero eigenvalues of B and C.

In the particular case of the problem discussed in this study, matrix D is a matrix that
expresses relation between the texts of the e-mail bodies and/or headers (our documents).
So, if e-mail j and k have x terms in common, then dj,k = x, while in matrix T, which
expresses relation between the terms, if the terms l and m occur together in y e-mail
bodies, then cT

l,m = y [62]. Similarly, as explained in [53], Bd,m maps terms to topics (bi,j

is the weight of term i in the topic j) and Σm,mC47,107,m = S maps topics to documents
(si,j is the weight of the topic i in the documents j). Thus, LSA would be used in a similar
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way as Latent Dirichlet Allocation (LDA), explained in Subsection 2.5.3, is used in [40].
To work with k singular values, this decomposition of M is truncated with k elements,

as expressed in
�
 �	2.5 .



m1,1 m1,2 m1,3 · · ·m1,t

m2,1 m2,2 m2,3 · · ·m2,t

m3,1 m3,2 m3,3 · · ·m3,t

...
...

... . . . ...
md,1 md,2 md,3 · · ·md,t


=



b1,1 · · · b1,k · · · b1,n

b2,1 · · · b2,k · · · b2,n

b3,1 · · · b3,k · · · b3,n

...
...

... . . . ...
bd,1 · · · bd,k · · · bd,n


·



σ1,1 · · · σ1,k · · · σ1,n

σ2,1 · · · σ2,k · · · σ2,n

σk,1 · · · σk,k · · · σk,n

... . . . ... . . . ...
σd,1 · · · σd,k · · ·σd,n


·



c1,1 c1,2 c1,3 · · · c1,t

...
...

... . . . ...
ck,1 ck,2 ck,3 · · · ck,t

...
...

... . . . ...
cn,1 cn,2 cn,3 · · · cn,t


�
 �	2.5

It maintains only the first k columns of Bd,m, the first k lines and the first k columns
of Σm,m and the first k lines of CT

t,m. That is, the coefficients of these matrices perform a
projection onto a k-dimensional Space. This process is portrayed in Figure 2.1.

Figure 2.1 The SVD truncage process in LSA.

For LSA, the definition of the number of dimensions to select was presented as a
decision based on empiricism since the objective is to find an optimal dimensionality that
produces similar or better results for the process using it (through the correct induction of
underlying similarity relations) [52].

Some details about PCA and LSA are particularly noteworthy. The main difference
between PCA, when using SVD, and LSA is the feature-wise normalization. PCA per-
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forms it over the DTM (after TF-IDF) before executing SVD, whereas LSA executes
SVD directly, without this normalization. Thus while PCA tries to reproduce the highest
amount of variance of the original data, LSA tries not to scale up the weight of rarely
occurring terms. Both techniques aim to remove some of the noise of the data, pro-
vide improved similarity measures among the instances (documents), and reduce the
dimensionality [48] [22].

Another relevant point refers to the DTM transformation proposed by the SVD. It
considers the underlying process as a process defined by a normal distribution. While the
word occurrence count in a text, as well as phishing in a set of incoming e-mails, may
be better explained as a process governed by a Poisson distribution this, depending on
the paradigm followed, would be an inconsistency [61]. The point here is that although
the elements of DTM are derived from the term occurrence count in the texts, they are
not used as such, but rather as the weights of its discriminative features in document
similarities [100], and this weight can be ranked based on the term occurrence count, its
frequency, TF-IDF or other measures. The other perspectives based on VSM (such as
the Chi-Square used in Method 2) follow the same conception since their methods are
designed for normally-distributed data.

2.5.3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative probabilistic model, from the topic model class,
in which the documents may be represented as random mixtures of topics, and each topic
may be modeled as a distribution over words/terms present in the dataset (vocabulary)
[12]. This means that the latent topics probabilities provide an explicit representation of
the entire collection of documents (in our case, all the e-mails of the dataset). From the
dataset, the probability distributions are estimated, and from them, the latent topics are
inferred. Then, the extracted topics may be used as input features, since each e-mail can
be represented as a vector that indicates the probability distribution of this document over
the selected topics.

The basic idea is that to write a text, there are some pre-defined topics to use in the
texts set. Their distributions obey the Dirichlet distribution. It is assumed that during
the process of drafting the text, its generation process, the author exchanges these topics,
using the words belonging to each. That is, the words from different topics are allocated
by the result of the Dirichlet distribution sample result, and, through this process, the
document is populated. It is important to note that documents may have the same topics
but still be different because they contain different proportions of these topics.
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According to [11], to draft a document, first a distribution is chosen, then, for each
position of the document terms, a topic assignment is chosen and, finally, the word from
the corresponding topic is chosen.

Thus, considering the generative process explained above, and making α the priori
Dirichlet probability distribution parameter, related to term-document distribution, β

the priori Dirichlet probability distribution parameter, related to topic-term distribution,
z the topic distribution associated to the terms in the documents, w all the terms of
the vocabulary, φ the topic distribution over all the terms of vocabulary, θ the topic
distribution over the documents, the probability distribution of all the hidden and observed
variables is given by equation 2.6.

p(z,w,φ ,θ |α,β ) =

K

∏
k=1

p(φk|β )
M

∏
m=1

p(θm|α)
V

∏
v=1

p(zm,v|θm)p(wm,v|zm,v,φm,k)
�
 �	2.6

In equation 2.6, K is the number of topics, φ k is a vector with the vocabulary terms
proportion for the topic k, M is the number of documents, θ m is a vector with the topic
proportion for the document dm, V is the number of words in the vocabulary, zm,v is the
topic distribution associated to term wm,v in the document dm, wm,v is the term wv in the
document dm. While K varies from 1 to K, m varies from 1 to M, and V varies from 1 to
V.

Given the words observed for the proposed vocabulary, w, and using Bayes’ theorem,
the hidden structure, that is, the assignments of topics for documents, the document
distributions by topics, and the topics distributions by terms can be obtained by the
posterior distribution of the latent variables, given the words observed. This relation is
expressed in equation 2.7.

p(z,φ ,θ |w,α,β ) =
p(z,w,φ ,θ |α,β )

p(w|α,β )

�
 �	2.7

This equation is intractable to compute, due to its denominator [11] [12]. It is the
marginal probability of the observations, and can be expressed as equation 2.8.

p(w|α,β ) =
∫

φ

∫
θ

p(w|α,β )
�
 �	2.8

Equation 2.8 is computationally intractable because summing the joint distribution

19



2.5. FEATURE EXTRACTION

over all the terms found in the collection vocabulary is exponentially large. In this
sense, the LDA algorithms provide an approximate inference to this posterior distribution,
disclosing its related topics φ , its topic proportions θ , and its topic assignments z, that is,
the documents latent structure.

The number of desired topics is also necessary. Setting the number of topics to work
on can be based on the perplexity [12] or coherence measures [95].

Perplexity refers to a metric that gives the model’s average uncertainty for each word
in the dataset [79] [97]. In general terms, the idea is that the lower the model’s perplexity
score, the better its generalization performance. Equation 2.9 gives the perplexity score.

Perplexity = exp
(
−∑

M
d=1 log p(wd)

∑
M
d=1 Nd

) �
 �	2.9

In equation 2.9, p (wd) is the likelihood denoted by equation 2.8 to our corpus of
e-mails D, and Nd is the total number of keywords in d-th document of D.

According to [14], perplexity is not aligned with human interpretability. This study
showed that these perspectives of the topic models are not correlated. In this context,
to obtain a measure that is closer to human judgment, the topic coherence measures are
discussed. These measures offer a score that helps to assess how much the obtained
topics are semantically interpretable, while perplexity is a score that assesses the topics
as artifacts of statistical inference. Two measures of coherence are adopted: CUCI and
CUMass. While the first refers to a measure that compares all words, through all possible
combinations of pairs, an extrinsic measure, the second refers to an intrinsic measure, a
measure that compares a word not with all the other words, but with its preceding and
succeeding words [96].

CUCI coherence measure is calculated over all the word pairs of the given top words.
It is a measure based on a sliding window, and the Pointwise Mutual Information (PMI)
[88].

The Pointwise Mutual Information is a utility measure to assess the associativity
between two words. Equation 2.10 gives PMI:

PMI(wi,w j) = log
(

P(wi,w j)+ ε

P(wi) ·P(w j)

) �
 �	2.10

where P(wi, wj) is the probability of the words wi and wj occurring in the same
word window, P(wi) and P(wj) are, respectively, the probabilities of wi and wj occurring
individually, and ε is an added value to avoid a logarithm of zero.
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The CUCI score is given by equation 2.11:

CUCI =
2

N · (N−1)
·

N−1

∑
i=1

N

∑
j=i+1

PMI(wi,w j)
�
 �	2.11

In equation 2.11, N refers to the N-top words of a topic, and the remaining terms, as
indicated in equation 2.10.

The CUMass coherence measure is based on document co-occurrence counts, which is
the document frequencies of the original documents from which the topics are learned. It
is an asymmetrical measure based on segmentation, and logarithmic conditional probabil-
ity [86]. The CUMass score is given by equation 2.12.

CUMass =
2

N · (N−1)
·

N

∑
i=2

i−1

∑
j=1

log
(

P(wi,w j)+ ε

P(w j)

) �
 �	2.12

2.6 Word Embedding

Word Embedding refers to distributed representations of words, phrases, or documents
in a vector space. It is done by mapping words from a context to a distributed, dense,
continuous, fixed vector. This vector, with its dimensions, provides a meaningful repre-
sentation for words, because it captures and expresses the word context, its relations with
other words, as well as its semantic and syntactic similarity[67] [68] [37].

Instead of the words being mapped to discrete dimensions according to their quan-
tity and, as is done in the Bag-of-Words (BoW) and Document-Term Matrix (DTM)
approaches, they are mapped to a shared pre-fixed low dimensional space. Each of these
dimensions does not necessarily coincide with specific concepts, but a distribution over
which they can express a specific aspect, and one dimension may also concur for more
than one aspect of word meaning. It also contributes to a lower dimensionality that,
coupled to the pre-fixed size, allows words to be projected on the same space to be com-
pared, and also decreases the computational complexity required. These Neural Language
Models have presented great results in many natural language processing experiments.

Three word embedding techniques were used: Word2Vec, FastText, and Doc2Vec.

2.6.1 Word2Vec

Word2Vec is a method that, through a two-layer neural network, provides a representation
of words from a large corpus of text (such as a large number of e-mails) as vectors [37].
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This representation captures the relationships between words, their meanings, as well as
their respective uses in similar contexts with other words. The vectors of words used in
similar scopes are close to each other in the Word2Vec vector space.

As presented in [67], the Word2Vec method is implemented through two approaches:
Continuous Bag-of-Words (CBOW), in which the main idea is to predict a target word
using a context, and Skip-gram, that works inversely to CBOW, predicting surrounding
context words from the target words.

In the CBOW approach, the input is the surrounding words, its architecture has a
projection layer shared by all words in the input (which allows all words to be projected
in the same space position), and the output is the target word [67]. The model trains
weights for a softmax hidden layer, using stochastic gradient descent and the gradients
obtained through back-propagation. The name of this approach comes from the fact that
it uses a continuous distributed representation of the context, and the order of words in
their source text does not influence this projection. In the Skip-gram approach, the input
is the current word, and the output are the nearby words within a certain range before and
after the current word [67] [66].

2.6.2 FastText

FastText refers to a technique that, through a neural network, allows the learning of word
embeddings. The FastText approach is different from the Word2Vec since it does not
associate a distinct vector for each word. It represents each word as a bag of character n-
grams (does not treat it as an atomic entity), each of these character n-grams is represented
by a vector, and the words are represented as the sum of these representations [13]. That
is, it considers the morphology of the words. It also works with the CBOW and Skip-gram
methods.

By considering each word as a characters n-gram composition, FastText allows gener-
ating better word embeddings for rare words, and also constructing vector representations
for words out of the vocabulary (that do not appear in the training corpus), by the sum of
the characters n-gram that compose them.

2.6.3 Doc2Vec

Doc2Vec is an unsupervised learning algorithm that implements distributed represen-
tations of sentences and documents proposed. It learns a fixed-length dense vector
representation for any variable-length pieces of texts (such as a phrase, a sentence, a
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document, or, in our case, an e-mail body and/or header).
As presented in [56], the Doc2Vec method is implemented through two approaches:

Distributed Memory version of Paragraph Vector (PV-DM) and a Distributed Bag-of-
Words version of Paragraph Vector (PV-DBOW). Since this method is an extension of the
Word2Vec approach towards pieces of texts, it uses the CBOW model (for the PV-DM
approach) and the Skip-gram model (for the PV-DBOW approach) with the addition of a
new vector for the entire piece of text in the target.

In the PV-DM approach, this new vector (Paragraph ID) is also used to predict the
next word (in conjunction with the other input words). At the same time, the word vectors
w is trained at each window, the D document vector is also, and, when the training ends,
it represents the document. This document vector works as a memory that makes latent
what is missing from the current window.

The PV-DBOW approach trains the paragraph vector to predict words in a small
window. At each iteration of stochastic gradient descent, it samples a text window, then
samples a random word from the text window and forms a classification task given the
Paragraph Vector.

2.7 Classification

Classification is a supervised learning activity whose objective is to obtain a discriminat-
ing function that separates the samples into different classes. In this type of learning, the
goal is to learn a mapping from the input data for a given output. The correctness, the
labels, is provided along with the input data (i.e., there is supervision). For the purposes
of this study, there are two classes: Phishing e-mail and Ham e-mail (the term used for
legitimate e-mails).

For the classification activities, as well as for comparison purposes, eight classification
algorithms were used, namely: Support Vector Machines (SVM), Naive Bayes Classifier,
Logistic Regression for classification, k-Nearest Neighbor, Decision Trees, Random
Forest, Extreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP). Their
main characteristics are described in the next subsections.

2.7.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) refers to a supervised learning algorithm, in which the
objective is to find a hyperplane in the input variable space to best separate the data points
into two classes. This choice is based on the hyperplane with the most significant margin,
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which is the hyperplane that presents the maximum distance between both the data points
of both classes. By doing this, new data points can be sorted with more accuracy and
precision.

The points that are closer to the hyperplane are named Support Vectors. They influence
the position and orientation of the hyperplane, as well as the number of features that
influence the dimension of the hyperplane [5].

2.7.2 Naive Bayes Classifier

This classifier assumes that features are independent of each other when applying Bayes’
Theorem (conditional probability). The expression ’naive’ comes from the fact that it
assumes that all the features independently contribute to the given class’ probability,
which is a strong assumption and unrealistic for real data.

Mathematically, this algorithm assumes the off-diagonal values of the covariance
matrix to be 0, that is, they are independent. The joint distribution is the product of
individual univariate densities (assuming that they have Gaussian distribution) [10].

2.7.3 Logistic Regression

This classifier, which is similar to linear regression to classification tasks, is based on
finding the values for the coefficients (B0, B1, B2, ..., Bn) that weigh each feature (X0,
X1, X2, ..., Xn), after that, it performs its predictions transforming the output through
the logistic function [5]. Thus, the probability of an e-mail being considered a phishing
e-mail (class 1) or a legitimate e-mail (class 0), may be given by:

P(Class = 1) =
1

1+ e−g(x)

�
 �	2.13

where:

g(x) = B0 +B1X1 +B2X2 + ...+BnXn
�
 �	2.14

These weights are estimated from the e-mails dataset, by the Maximum Likelihood
method. If P(Class = 1)> 0.5, then the e-mail is phishing, and if P(Class = 1)< 0.5,
the the e-mail is legitimate.
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2.7.4 K-Nearest Neighbors - KNN

This algorithm is based on the idea that similar data points are arranged nearby in an
n-dimensional space. This similarity is measured by the distance between the points
(usually the Euclidean Distance, or the Mahalanobis Distance) [10]. Thus, for a new data
point, its classification is predicted by validating the local posterior probability of each
existing class by the average of the class membership over its K-nearest neighbors.

This algorithm is susceptible to the curse of dimensionality, since it is based on the
distance between data points and its dimensions.

2.7.5 Decision Trees

Decision Tree algorithms are built over the binary tree representation, in which each node
corresponds to a single input variable and, given a split point on it, there are branches
that bind to new nodes, according to the instance data point values for this feature, that
will be below or above of this split point value (for a numeric variable). This procedure is
performed until the path arrives at a leaf node, in which the algorithm predicts the output
variable class. At any of these nodes, the input set is split into subsets for the next nodes.
When analyzing e-mails to check whether they are phishing or ham mail, the amount of
times the words present in them, the weights of this amount, or the vectors representing
theses e-mails are analyzed according to several split points (to find an optimal one,
by information gain or Gini index criteria, for example), and at a leaf node level, it is
predicted whether it is a phishing or a legitimate e-mail [5].

2.7.6 Random Forest

Random forest is an ensemble algorithm based on Bootstrap Aggregation (bagging
technique). Ensemble is a machine learning technique that combines several base learning
algorithms in order to produce a better predictive performance model. Bagging is a
technique that uses the bootstrap algorithm to obtain a random sample from a given
dataset with a replacement, so it trains the base learners and aggregates their outputs to
provide a lower variance model.

This ML classification algorithm creates a set of decision trees on randomly multiple
samples of the training set, gets a prediction from each tree, and, utilizing voting of these
trees results, gives a better estimation for the test object’s final class. In its approach,
instead of getting optimal split points for trees, by the randomness of the selected subset
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of the training set, it selects suboptimal splits. Due to this, different models are created,
which will be aggregated by combining their results [5].

2.7.7 XGBoost

Extreme Gradient Boosting (XGBoost) refers to an ensemble that implements (using
the boosting technique) a scalable and accurate version of gradient boosting on decision
trees. Boosting is a technique that trains models in succession, with each new base
learner being trained to correct the errors made by the previous learners. Through the
use of weighted versions of the data, more weight is increasingly given to misclassified
examples. Learners are included sequentially until no further improvements can be made.
The final predictions are obtained by weighted majority voting.

This algorithm offers high speed, performance, portability, and flexibility. It can
optimize the loss function through three methods: gradient boosting, stochastic gradient
boosting, or regularized gradient boosting. Its default base learners are tree ensembles, in
which each is a set of classification trees (CART). As explained for the boosting technique,
these trees are added sequentially, and each of them tries to reduce the misclassification
of themselves from previous learners [15].

2.7.8 Multilayer Perceptron (MLP)

Refers to an artificial neural network based on perceptrons (a learning algorithm for
binary classifiers, which is able to solve only linearly separable problems) as artificial
neurons. Artificial Neurons are the essential components of an artificial neural network,
in which a process that simulates a biological neuron working occurs. There are input
connections that emulate the synapses and their forces, by assigning a weight to each input
signal. These input values are summed by a linear combiner, which is also responsible
for generating an activation potential (the network internal activation), by comparing this
sum with an activation threshold. Thus, a non-linear activation function (a sigmoidal
function, in MLP case) provides the neuron output signal.

In this ML classification algorithm, each row of these neurons is a layer. The Multi-
layer Perceptron (MLP) neural networks have three layers of nodes. The first, the input
layer, is responsible for receiving the external stimuli. Then, there is a hidden layer that
may be composed of one or more layers. Its function is to extract the environment’s
behavior, approximating any continuous function. Lastly, in this topology, the output
layer provides the answers to the received stimuli.
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This structure utilizes the back-propagation technique for training, which, by the
gradient descent, fits the network parameters (including with non-linear activation func-
tions) to better express a training set with its labels, iteratively reducing its error. It works
in two steps: in the forward pass, the stimuli are passed from layer to layer until the
output layer, which provides predictions. These results are compared with the expected
output provided by the training set. The prediction errors and its function are then used
in the second step called the backward pass, in which the weights and biases of the
model are updated by the partial derivatives of the error function, the back-propagation
algorithm doing these operations. This process is done until the network converges, or
for a predetermined number of epochs (in which case the network will not necessarily
converge) [5]. An epoch indicates how many times all the training vectors are used once
to update the weights. This measure varies according to the type of learning, i.e, whether
it is in online or in batch mode.

2.8 Related works

Machine learning and data-driven approaches have been increasingly employed to solve
cybersecurity-related problems [74], [64] [32] [98]. The phishing detection research land-
scape shows that robust results have been obtained through natural language processing
techniques. Most of this research is centered on how to extract, from the text and the
metadata of the e-mail, highly distinctive features that allow identifying differences and
similarities between these messages, in order to separate them into phishing or legitimate
e-mails.

One of the first approaches for phishing e-mail detection based on machine learning
was proposed by Fette et al. [31]. It generates features based on e-mail texts and
properties, such as whether these e-mails contain javascript code, the number of links
in the e-mail, or the number of dots in the present Uniform Resource Locators (URLs).
It detected over 96% of the phishing e-mails when submitting the best ten features they
found to the Random Forest classification algorithm. Also proposing to select a set of
content-based and behavior-based features, Hamid et al. [43] achieved a 94% accuracy
rate through the use of the Bayes Net Algorithm, which was fed with eight features.

Similarly in [20], from forty-eight features selected from the specialized literature
(related to the e-mail body and header, Javascript and URLs), Daeef et al. proposed a
phishing e-mail classification based on two stages, extracting features and submiting
them to three ML classification algorithms. They attained an accuracy rate of 99.40%.
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Also, using hand-crafted features extracted from the e-mail body and header (twenty-
one features), Islam and Abawajy [47] proposed a 3-tier model classification, based on
well-known ML algorithms. They obtained an accuracy rate of 97%, when distinguishing
phishing and legitimate e-mails.

In [99], with 40 features extracted from the body, subject, and sender e-mail fields,
and from the presence/absence of any script and URL, Toolan and Carthy proposed an
analysis based on entropy and information gain measures. It utilized the C5.0 decision
tree algorithm for classification, reaching an 84.6% success rate when classifying phishing
against ham e-mails. Also, based on information gain to select features for phishing
detection, Yasin and Abuhasan [110] used text stemming and a WordNet database to
preprocess and enrich their e-mails representation. Through this approach, they obtained
an accuracy mark of 99.1%, while the proposal PhishNet-NLP, presented by Verma et
al. [105], achieved a phishing e-mail detection rate of 97%. The proposal of Verma et al.
was based on NLP techniques to check whether e-mails were informative or actionable
and other features extracted from the body and header of the e-mails. Developing an
improved phishing e-mail classifier with better prediction accuracy and fewer numbers of
features was the objective of Akinyelu and Adewumi [2]. They used a set of 15 phishing
e-mail features, identified from the literature, and fed the random forest machine learning
algorithm. An accuracy of 99.7% was achieved.

An analysis of techniques to promote feature reduction for phishing detection was
detailed in [111]. Four techniques (Chi-Square, Information Gain, Latent Semantic
Analysis - LSA, and Principal Component Analysis - PCA) were compared. In this
approach, the use of these techniques was preceded by stemming, and the features were
based on header contents and eventual URLs, besides the body of the e-mails. This
proposal reached an accuracy rate of almost 98%. L’Huillier et al. [57] proposed an
approach whose features are extracted three ways: structural features extracted directly
from the text, features based on keywords, and features obtained through the application
of LSA and Latent Dirichlet Allocation (LDA) techniques over the TF-IDF Matrix,
which is generated from the corpus texts. It attained an F1-score mark of 99.58%, using
1,017 features to feed the SVM classification algorithm. Likewise, using NLP methods,
Ramanathan and Wechsler presented phishGILLNET [82]. It is a 3-layer approach
based on a topics model. Through the use of techniques such as Probabilistic Latent
Semantic Analysis (PLSA) and Co-training, it obtained an F1-measure of 100% for
200 topics, and 98.3% for 25 and 10 topics (these topics were employed to express
the features input to the AdaBoost classification algorithm). In [83], Ramanathan and
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Wechsler proposed another phishing detection approach. This method also attempted to
discover the entity/organization that the attackers impersonate during phishing attacks.
This proposal employed Conditional Random Field (CRF), Latent Dirichlet Allocation
(LDA), and the AdaBoost in its best variation, identifying the impersonated entity from
messages classified as phishing with a discovery rate of 88.1%.

In [102], using the text as its primary features source, and also incorporating the
domain knowledge and lexical features, an approach was presented that reached an
F1-measure of 98%. It was based on DTM and TF-IDF, and its best mark was obtained
through the use of the Logistic Regression classification algorithm. [44] and [103]
proposed methods for phishing detection based on Singular Value Decomposition (SVD)
and Non-negative Matrix Factorization (NMF), also considering DTM and TF-IDF. The
obtained features were submitted as input for several classifications algorithms, achieving,
respectively, its best marks of 94.6% (using k-Nearest Neighbor - KNN classification
algorithm) and 95.3% (using SVM with 30 features).

Unnithan et al. [76] compared the TF-IDF matrix’s employment and the Doc2Vec
representation to phishing e-mail detection. They used seven different classification
algorithms to assess these two approaches, achieving their best mark (an 88.95% accuracy
rate) through the SVM classifier fed by the Doc2Vec representation. Also, a word
embedding approach, the proposal presented in [8] was based on the FastText technique.
Through the syntactic and semantic similarity of e-mails extracted by the techniques
employed, it attained an accuracy rate of 99%. The same authors proposed another
approach [108], based on Word2Vec and Neural Bag-of-Ngrams, for phishing e-mails
detection. The obtained representations fed some classifiers such as Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),
and Multi-Layer Perceptron (MLP), reaching in its best variation a 99.1% F1 Score (using
Word2Vec and LTSM).

The strategy employed in [72] was based on content and behavior-based features and
also on word embedding (Word2Vec) techniques. The obtained features were imputed to
a Neural Network classification algorithm, achieving an accuracy of 92.2%. In [33], using
240 features, 200 from Doc2Vec representation (to capture the syntax and semantics
of the e-mails) and 40 content- and behavior-based features, Gangavarapu and Jaidhar
introduced a hybrid metaheuristic to obtain a discriminative and informative feature
subset crucial to Unsolicited Bulk E-mails (UBEs). When classifying e-mails as phishing
or legitimate e-mail, this study achieved an accuracy of 99.4% employing the Multi-Layer
Perceptron (MLP) for the classification task. Also proposing an approach to select the
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most discriminative feature set among 40 extracted features, [34] presented a structured
procedure to extract and select content and behavior-based features to detect UBEs.
Employing 27 of these 40 features (selected through a low variance filter) and the Randon
Forest algorithm, the procedure obtained an F1-measure of 99.2 separating phishing and
legitimate e-mails.

Chin et al. presented a deep packet inspection (DPI) in [17]. It was based on two
components: phishing signature classification and real-time DPI, and its best mark
was 98.39% accuracy (using an Artificial Neural Network - ANN) when detecting and
mitigating phishing attacks. Based on Recurrent Neural Network (RNN), the approach
proposed in [42] took sequences of integer values as inputs for this classification algorithm.
These values were obtained abstracting the computer-native copy of an e-mail as a
sequence of bytes into the high-level representation (unigrams), represented as unique
integers. It attained an F1-measure of 98.63% and an accuracy rate of 98.91%. Through
the use of Recurrent Convolutional Neural Networks (RCNN), Fang et al. [30] proposed
THEMIS, that employed Word2Vec models e-mails at four levels, simultaneously (header,
body, character and word). Its best mark was a F1-Score of 99.31% and an accuracy of
99.84%.

Considering this landscape, this study concentrated on generating more expressive
features from the existing terms/words in e-mails (documents), and subjecting them to
different machine learning algorithms, using enhanced techniques, in order to obtain
improved results in classification tasks. It aimed to assess the performance of features
obtained from these robust representation perspectives. Our interest went beyond showing
an optimal accuracy (or other isolated metrics) for the models, but rather aimed to present
the obtained results in the various utility measures (that are complementary [89]) in order
to demonstrate the overall performance of the proposed approach not just its capabilities
in one of the classes of this classification problem.

The datasets of most of the works listed in this section were obtained from the
PhishingCorpus [75], and from the Spamassassin PublicCorpus [29], which are the main
dataset (Dataset 1) adopted to evaluate the proposed approach. As exceptions, some
of them, such as [83], [82], [8], [108], [30] and [17], used a clustered dataset in which
PhishingCorpus and Spamassassin were part.
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3
The Proposed Approach

Those who dream by day are cognizant of many things which escape

those who dream only by night.

—EDGAR ALLAN POE

3.1 Detailing the proposed approach

Through the use of natural language processing and machine learning techniques, the
proposed approach aimed to achieve refined predictions in phishing e-mail classification
using the smallest possible number of features. The proposal is based on a multi-stage
methodology, as expressed in Fig. 3.1, where the central purpose orbits around deriving
more informative features, and feeds the chosen ML algorithms, training them using
established strategies of folding.

The process begins by parsing the text from the e-mail to a vector structure. For each
e-mail text, the corresponding label is assigned according to the e-mail collection of the
dataset from which it originates (phishing or legitimate e-mail).

After this parsing process, the feature engineering phase starts, and these texts un-
dergo a pre-processing step, where the texts are transformed into lowercase, and the
punctuation marks, special characters, possible accents, and stopwords are removed.
The terms obtained are then exchanged for their common base form, by reducing their
respective inflectional forms and derivationally related forms (tokenization, POS tagging,
and lemmatization tasks). This process also allows a moderate feature dimensionality
reduction through the semantics of the terms and their synonyms.

These common base forms of the obtained terms were used on two fronts. In the first,
based on the term/word count present in e-mails texts after the pre-processing step, a
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matrix (Document-Term Matrix - DTM), that relates these terms to the pre-processed
e-mails texts, is obtained. In the second, fixed-size features are generated from the
pre-processed texts through processes based on word embedding, which provides a
representation in a fixed shared low-dimensional space for each e-mail.

Figure 3.1 The main Architecture of the proposed approach

From the DTM, three methods are followed. All the terms obtained, arranged in
DTM as features, that is, without acting directly on the high dimensionality and sparsity
problems, are used (Method 1). Some of the input features from two criteria, Chi-Square
or Mutual Information, are selected (Method 2). Alternatively, new features from this
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Matrix are extracted by Principal Component Analysis, Latent Semantic Analysis, or
Latent Dirichlet Allocation (Method 3).

The Method based on word embedding, Method 4, is also implemented in three
perspectives. In the first case, the word vector representation is obtained by the inter-
actions and similarities among words (Word2Vec). In the second case (FastText), this
representation is also derived from these relations among words, but conceiving the
word not as an atomic item, but as a sum of characters (that also has its own vector
representation). In these two approaches, the vector representation for each e-mail in the
dataset is obtained by the mean of the vectors representing the words present in them.
Finally, in the latter case, the vector representation for the e-mail body text is obtained
directly from the process that generates the vectors representing its words (Doc2Vec). It
works as an auxiliary vector in generating the representative vectors of words and, at the
end of the process, it contains a general representation of the submitted text.

The outputs of these four methods to represent the dataset e-mails are then submitted
to classification algorithms which, after a learning process with enhanced techniques,
provide models that can predict if an e-mail is phishing or ham mail, with excellent
results. These global approach settings, stages, steps and details are presented in the next
sections.

The remaining of this chapter is organized as follows. The main dataset (Dataset 1)
and the data modeling process proposed in this thesis are exposed in Section 3.2, and the
parsing and pre-processing phases are outlined in Section 3.3. The proposed methods are
introduced in Section 3.4, and, from Section 3.5 to Section 3.8, each of these methods is
presented in detail. Finally, the overall strategy for classification is described in Section
3.9.

3.2 Dataset 1 and Data Modeling

Two sources of raw data were considered for the main dataset of this thesis: the SpamAs-
sassin Public Corpus [29] and the Nazario Phishing Corpus [75]. Respectively, they are
assumed as the Ham Dataset and as the Phishing Dataset. These two compilations of
e-mails are both public datasets and their use in evaluating phishing detection approaches
is a widespread practice [42], [73]. The studies presented in [40], [35], [42], [33], [2],
[110], [57], [60], [31], [20], [47] and [43] are examples of papers that employed the
SpamAssassin Public Corpus and the Nazario Phishing Corpus as dataset sources.

The chosen dataset (Dataset 1) has 6,429 e-mails. From these, 4,150 were labeled
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as ham e-mails from the SpamAssassin Public Corpus (specifically from easy and hard
ham, that represent legitimate e-mails in this collection of e-mail), and 2,279 labeled as
phishing e-mails from the Nazario Phishing Corpus (specifically from phishing3.mbox).

Two other datasets were used in this thesis, Dataset 2 and Dataset 3. These are
presented in Section 4.3.1 of Chapter 4.

Figure 3.2 presents the data modeling workflow for our approach.

Figure 3.2 The data modeling workflow

As illustrated, in the proposed approach, the data modeling starts from these two
collections of e-mails (the raw data), selecting the e-mail files from the subsets of interest.
From these files, the texts of the e-mail bodies were extracted.

Then, initiating our feature engineering process, these texts underwent a pre-processing
step and then were folded into two sets, training and test sets, with 4,500 and 1,929 sam-
ples, respectively. This split was done here to avoid any information leakage from the test
set that would lead to biased results. From this stage onwards, the proposed operations
were fitted over the training set, and the proposed transformations carried out over the
training set and the test set.

Afterwards, according to the strategy of each method of the proposed approach, these

34



3.3. PARSING AND PRE-PROCESSING

texts were treated in different ways. Their words were associated with word embeddings
to obtain a representation (in Method 4). Also, from a term vectorization step, a DTM
was generated that was used directly in Method 1, where each remaining term stands for
a feature of the e-mails. Over this DTM representation, a dimensionality reduction was
also performed, where we selected the best features (Method 2) or extracted new ones
(Method 3).

For each Method strategy and technique, the training set fed the machine learning
algorithms, and the test set fed their resulting models, classifying the e-mails as phishing
or ham e-mails.

The modeling data assumed varied vector and matrix shapes along with the proposed
approach. These shapes, the methods, and the architecture of the proposed approach are
presented in detail in the next Sections, using Dataset 1 as the modeling instance.

3.3 Parsing and Pre-Processing

From all the e-mail files, the text of the e-mail bodies was extracted and arrayed in a
vector structure. That is, from 6,429 e-mail files, we generated a vector e with the same
number of rows:

e =



e1

e2

e3
...

e6429


.

�
 �	3.1

The corresponding labels of these e-mails were also vectorized. They were set
according to the collection from which e-mail originated (from the phishing e-mail set or
the legitimate e-mail set). This vector is delineated as l, thus:

l =



l1
l2
l3
...

l6429


.

�
 �	3.2

Next, our approach underwent a the pre-processing phase. After being arranged in
an array structure, the texts of the e-mails bodies were transformed into lowercase and
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the punctuation marks, special characters, and any accents were removed. After this,
the structure underwent a tokenization process, in which the terms/words of the texts
were separated with white spaces (space, tab, and newline) used as delimiters. Then, the
stopwords were removed. Finally, the terms underwent through a lemmatization process.

The pre-processing stage used e as input. All the letters of the texts in e were converted
into lowercase. Then, punctuation marks (sentence endings; commas, semicolons, and
colons; dashes and hyphens; brackets, braces and parentheses; and apostrophes, quotation
marks, and ellipsis), special characters, and any accents were excluded.

Then, tokenization was performed over the remaining texts, the stopwords were
removed, and POS tagging and lemmatization were executed. To conduct these last steps,
we employed the WordNet and the Stanza databases. Some differences between these
databases included WordNet performs POS tagging just over nouns, verbs, adjectives,
and adverbs classes, while Stanza performed it over all the grammatical classes, besides
providing Multi-Word Token (MWT) expansion and morphological feature tagging.
Also, WordNet offered the synsets resource, while Stanza did not. However, Stanza
offered other features such as annotations related to dependency parsing and named entity
recognition (that were not used in this study, since they were tested, but did not improve
the prediction results).

Considering these differences, both were tested in all our methods, each once, and the
one with better results was established as the default for that method.

When using Wordnet, the remaining number of terms, our potential number of features,
was 48,435 (48,435 out of 56,523 in the entire e - training and test portions) after the
pre-processing stage. This was the initial number of features used in Method 4, and also
in the LDA perspective of Method 3 in this thesis. When employing Stanza, this number
of potential features was 47,107 (47,107 out of 54,774 in the entire e - training and test
portions), which was used in Method 1, Method 2, and in the PCA and LSA perspectives
of Method 3.

To elucidate the similarity and semantic-based reduction, we now detail some results.
Using WordNet, if POS tagging had not been performed, the number of initial features

would have been 51,736 and if, in addition, the synsets and lemmatization had not been
performed, the number of initial features would have been 54,413. Besides the feature
joins (which correspond to words with the same synonym/lemma) made possible by
WordNet synsets, it was also used to select only those features corresponding to words
present in it. With the addition of this WordNet utilization, the number of features would
increase to around 18,000, but the obtained results were not better than those already
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available in the related works. Similar behavior was observed when using Stanza for this
last purpose.

If Stanza had been used just for tokenization, i.e., if lemmatization, MWT expansion,
and POS and morphological feature tagging had not been performed, this number would
have been 54,680. Furthermore, if punctuation marks, special characters, and any accents
had not been removed, this number would have reached 80,311.

Thus, for both databases, the pre-processing steps also provided a potential dimen-
sionality reduction.

At this point, each element of the vector e was pre-processed (two versions, processed
with WordNet or with Stanza), and the data in it still had the same shape, namely 6,429
rows.

3.4 The proposed Methods

In general, except for Method 1, which directly submits the DTM (with its ranking based
on the occurrence count) to the classification step, the entire discussion of this study up
until now has been aimed at detailing the actions/implementations used to prepare and
promote robust data to be submitted to the methods that will obtain the features for the
classification activity.

The dimensionality reduction carried out by these methods can potentially provide
benefits such as reducing computational complexity, processing time, and variance, as
well as preventing overfitting, gaining a better understanding of the process that underlies
the data, and also allowing better visual analysis of said data [62] [5]. These methods are
detailed in the following sections.

3.5 Method 1 - features without dimensionality reduc-
tion

As already mentioned, the pre-processed texts present in e are divided in two sets: the
training and test sets. Through the use of these two sets of e in a Bag-of-Words (BoW)
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model, a Document-Term Matrix (DTM) was constructed, represented by F:

F =



f1,1 f1,2 f1,3 · · · f1,t

f2,1 f2,2 f2,3 · · · f2,t

f3,1 f3,2 f3,3 · · · f3,t
...

...
... . . . ...

f6429,1 f6429,2 f6429,3 · · · f6429,t


�
 �	3.3

where t can be 48,435, when using WordNet, or 47,107, when using Stanza, in Dataset 1.
For Method 4 and the LDA perspective of Method 3, the prediction results using WordNet
were better than using Stanza, thus t was 48,435. For Method 1, Method 2 and for PCA
and LSA perspectives of Method 3, improved marks are found using Stanza rather than
Wordnet, thus t was 47,107.

The architecture of Method 1 is expressed in Figure 3.3.

Figure 3.3 The Method 1 Architecture

This method submitted 47,107 features to the classification algorithms, which is the
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number of features that was provided by Lemmatization and Stanza-based processing.
Matrix F was obtained using the terms present in the training portion of e (47,107

out of 54,774 in the entire e - training and test portions) which were its columns index,
through which the e-mail texts from the training and the test sets of e are represented
(being F rows) indicating how many times each of these terms occurred in each e-mail
text. F was also divided into two portions (training and test sets, with 4,500 and 1,929
samples, respectively).

In Method 1, F was used directly in the classification step.

3.6 Method 2 - Feature Selection

The utility measures order the terms obtained from texts according to their contribution
in distinguishing one class from the other (those conveying more information regarding
the process underlying the data). In this proposed approach, the terms/words obtained
from the e-mails were ordered by their importance in the e-mail classification as either
ham mail or phishing mail.

For this separation, in Method 2, two tests were used: the chi-square measure and
the mutual information measure. Its architecture is presented in Figure 3.4. These two
utility measures, respectively, were calculated between each feature and the target class.
Then, the desired number of features was selected according to their best scores in these
utility measures. In our approach, feature selection through the Chi-Square perspective
was used to select between two and a hundred features out of the total number of features.
The same number of features was selected by Method 2 through the Mutual Information
perspective.

Thus, this method is used in this work with the following mode: after obtaining F
(training and test sets), the TF-IDF weighting was performed over it. It is expressed by
G:

G =



g1,1 g1,2 g1,3 · · · g1,47107

g2,1 g2,2 g2,3 · · · g2,47107

g3,1 g3,2 g3,3 · · · g3,47107
...

...
... . . . ...

g6429,1 g6429,2 g6429,3 · · · g6429,47107


�
 �	3.4

G was also divided into two portions (training and test sets, with 4,500 and 1,929
samples, respectively). Then, we chose the number of features to work on and performed
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the feature selection through each cited utility measure. This was done by fitting the
chosen measure over the training set, and the proposed selections carried out over the
training set and the test set.

Figure 3.4 The Method 2 Architecture

For instance, our best setting, of the two perspectives of Method 2, was with Chi-
Square, which employed one hundred selected features. The matrix H represents this
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setting for 6,429 instances of Dataset 1:

H =



h1,1 h1,2 h1,3 · · · h1,100

h2,1 h2,2 h2,3 · · · h2,100

h3,1 h3,2 h3,3 · · · h3,100
...

...
... . . . ...

h6429,1 h6429,2 h6429,3 · · · h6429,100


�
 �	3.5

H was also divided into two portions (training and test sets).

3.7 Method 3 - Feature Extraction

The architecture of Method 3 is presented in Figure 3.5.

Figure 3.5 The Method 3 Architecture
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The feature extraction method obtained new features from the original features set,
generally features of lower dimensionality. Some transformations do it over the original
feature space, i.e., the new feature space dimensions are combinations of the original
high dimensional data. These new features are intended to be more representative,
concentrating relevant information from the underlying data in a non-redundant shape.

For the purposes of this study, three feature extraction techniques were used in Method
3: the Principal Component Analysis, the Latent Semantic Analysis, and the Latent
Dirichlet Allocation. In our approach, the feature extraction through these perspectives
was used to extract between two and a hundred new features from those in the original
features set. Thus, Method 3 was used in this work with the following mode: for the PCA
and LSA perspectives, we chose the number of new features to work on and performed
each proposed operation over G. However, for LDA, this was done over F.

For instance, our best setting, among the three perspectives of Method 3, was found
using LSA, employing twenty-five extracted features. The matrix J represents this setting
for 6,429 instances of Dataset 1:

J =



j1,1 j1,2 j1,3 · · · j1,25

j2,1 j2,2 j2,3 · · · j2,25

j3,1 j3,2 j3,3 · · · j3,25
...

...
... . . . ...

j6429,1 j6429,2 j6429,3 · · · j6429,25


�
 �	3.6

J was also divided into two portions (training and test sets, with 4,500 and 1,929
samples, respectively).

3.8 Method 4 - Word Embedding

In Method 4, we used three techniques to embed words or documents (in our case, e-mails)
into a vector space: Word2Vec [67], FastText [13] and Doc2Vec [56]. Its architecture is
presented in Figure 3.6.

In the first perspective, the word vector representation was obtained by the interactions
and similarities among words (Word2Vec). However, in the second case (FastText), this
representation was also derived from these relations among words, but conceiving the
word not as an atomic item, but as a sum of characters (which also has its own vector
representations). In these two approaches, the vector representation for each e-mail in the
dataset was obtained averaging all the vectors representing the words present in them.
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Finally, in the latter case, the vector representation for the e-mail body text was obtained
directly from the process that generated the vectors representing its words (Doc2Vec). It
works as an auxiliary vector in generating the representative vectors of words and, at the
end of the process, it contained a general representation of the submitted text.

Figure 3.6 The Method 4 Architecture

In our approach, these three word-embedding perspectives were used to obtain a fixed
300-dimension dense vector representation for each e-mail, 300 features, from the terms
present in e after the pre-processing step.

Thus, Method 4 was used in this work with the following mode: after extracting
the texts from the e-mail bodies, passing them through the pre-processing steps, each
word from this corpus in e was associated to a vector representation. For each of these
techniques, these word vector representations were obtained in two ways: using pre-
trained models based on external corpora or training a new model based on a vocabulary
constructed from the text data of the e-mails in the training set.

43



3.8. METHOD 4 - WORD EMBEDDING

These external corpus were:

• Word2Vec:

– Word2Vec pre-trained word vector model, with a fixed-length of 300 dimen-
sions, which contains 3 million 300-dimension English word vectors trained
on Google News corpus, of about 100 billion words;

• FastText:

– FastText pre-trained word vector model [69], with a fixed-length of 300
dimensions, which contains 1 million 300-dimension English word vectors
trained with subword information (and without it) on Wikipedia 2017, UMBC
web-based corpus and statmt.org news dataset, of about 16 billion tokens.

– FastText pre-trained word vector model [69], with a fixed-length of 300
dimensions, which contains 2 million 300-dimension English word vectors
trained with subword information (and without it) on the Common Crawl
dataset, of about 600 billion tokens.

• Doc2Vec:

– a Doc2Vec document vector model (using both DBOW and DM), with a
fixed-length of 300 dimensions, trained by the authors over a corpus con-
structed from a dump of all Wikipedia articles, dated January 7, 2020, with a
vocabulary of about 1 million words.

Regarding the variations based on new word-embedding models constructed from the
e-mail datasets, for the three techniques employed, they were trained over the training
set of e, where each word/token from this portion of the corpus was associated with a
300-dimension dense vector representation. For instance, our best setting, among the
three perspectives of Method 4, was found using Word2Vec or FastText, using pre-trained
models based on external corpus, employing a 300-dimension feature representation. The
matrix K represents this setting for 6,429 e-mail samples of Dataset 1:

K =



k1,1 k1,2 k1,3 · · · k1,300

k2,1 k2,2 k2,3 · · · k2,300

k3,1 k3,2 k3,3 · · · k3,300
...

...
... . . . ...

k6429,1 k6429,2 k6429,3 · · · k6429,300


�
 �	3.7
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K was also divided into two portions (training and test sets).

3.9 Classification

As explained previously, several techniques were used to obtain the features from the
dataset e-mails used in this study. Thus, we have tested:

• Method 1 - that obtained these features, matrix F, without a reduction of dimen-
sionality, from the BoW model (the most traditional and straightforward of these,
expressed by the DTM with term occurrence count ranking);

• Method 2 - that obtained its features, matrix H, using perspectives that reduced
dimensionality by feature selection through the Chi-square measure and Mutual
Information measures over DTM with the TF-IDF ranking, matrix G;

• Method 3 - that obtained its features, matrix J, using perspectives that reduced
dimensionality through feature extraction: PCA and LSA over DTM with TF-IDF
ranking, matrix G, and LDA over DTM with term occurrence count ranking, matrix
F;

• Method 4 - that obtained its features, matrix K, using perspectives that generated or
associated fixed low dimensional vector representations (through word embedding,
using Word2Vec, FastText, and Doc2Vec) of the words/texts in e.

Thus, all the classification algorithms used in this study were trained using features
from all the methods perspectives and variations, which tried to feed them the most
distinctive representation from their respective feature sets.

The proposal also established a course of action for the classification to provide
a holistic approach to phishing detection, extracting the most suitable setting from
each of the proposed stages. During the classifications tasks, many experiments were
performed to find the best configuration of the hyper-parameters of each ML classification
algorithm, as well as to implement the proposed strategies for dividing and folding the
training/validation dataset before performing the obtained models on the test set.

This stage strategy started by separating the two portions (the training and test sets,
already folded since e is pre-processed) of the feature set of each Method perspective.
For Method 1, the training set referred to 70% of F, and the test set the remaining 30%;
for the Method 2 perspectives, it referred to matrix H; for the Method 3 perspectives, it
referred to matrix J; and for the Method 4 perspectives, it referred to matrix K.

45



3.9. CLASSIFICATION

In order to estimate the hyper-parameters of each classification algorithm, the folding
plan presented in [25] was adopted. It suggests dividing the training/validation set (which
corresponds to 70% of the entire dataset) into two subsets (folds), each with 50% of the
samples. They were used as the training and validation sets, respectively, and then the
inverse. This process was repeated five times (ten runs in total) for each combination of
the various parameters of the running classification algorithm, using the cross-validation
technique. At the end of each run, a new random sampling of 2 folds was performed on
the samples, with the restriction of maintaining the proportion of the classes observed in
the total training/validation set in each of the two subsets, that is, a proper stratification.

Also, in the training step, a wide variety of hyper-parameter settings were tested to
estimate the befitting configuration to the proposed e-mail data. The specified folding
and cross-validation plan was executed for each of these configuration sets, in each of the
chosen ML algorithms, in order to evaluate their respective results.

After this training process, the ML models for the phishing classification problem
were obtained from each of the employed ML algorithms. These models were then tested
using unseen data, those in the test set (that corresponds to the remaining 30% of the
entire dataset).

The training set consisted of 4,500 e-mails (70% of 6,429, as explained in Section
3.2), e-mails represented by their body text, 2,916 ham e-mails, and 1,584 phishing
e-mails. The test set consisted of 1,929 e-mails (30% of 6,429), 1,251 ham e-mails, and
678 phishing e-mails, also called support. This split was performed over e, before the
DTM construction. In this sense, e, F, G, H, J and K were already divided into training
and test portions to properly fit the proposed operations to the training set, and to perform
these transformations on both sets.

This classification strategy, integrated with the entire proposed architecture, is pre-
sented in Fig. 3.7.

Eight ML algorithms were used to perform the proposed classification (phishing
detection task): Support Vector Machines (SVM) [78] [5], Naive Bayes Classifier [10],
Logistic Regression for classification [5], k-Nearest Neighbor [10], Decision Trees
[5], Random Forest [5], Extreme Gradient Boosting (XGBoost) [15] and Multilayer
Perceptron (MLP) [5].
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Figure 3.7 The main Architecture and the Dataflow of the proposed Approach
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4
Results and Approach Evaluation

I often say that when you can measure what you are speaking about,

and express it in numbers, you know something about it; but when you

cannot express it in numbers, your knowledge is of a meagre and

unsatisfactory kind; it may be the beginning of knowledge, but you

have scarcely, in your thoughts, advanced to the stage of science,

whatever the matter may be.

—SIR WILLIAM THOMSON, LORD KELVIN

In this Chapter, we provided a detailed evaluation of the proposed approach through its
prediction results. The utility measures used to assess our methods’ results are presented
in Subsection 4.1. The results are described in Section 4.2 and Section 4.3. In Section
4.4, pertinent observations are discussed. Certain performance comparisons with related
works are discussed in Section 4.5, and, in Section 4.6, the final considerations are
presented.

4.1 Measures

To evaluate the performance of the classification algorithms in each perspective of the
proposed methods, the following measures were used: accuracy, precision, recall, false
positive rate, specificity and F1 score. Their equations are expressed in function of the
true positive (tp), false positive ( fp), false negative ( fn), and true negative (tn) rates.

Accuracy (a):

a =
tp + tn

tp + fp + tn + fn

�
 �	4.1
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Precision p:

p =
tp

tp + fp

�
 �	4.2

Recall (r), True Positive Rate (tpr) or Sensitivity:

r =
tp

tp + fn

�
 �	4.3

False Positive Rate (fpr):

fpr =
fp

fp + tn

�
 �	4.4

Specificity or True Negative Rate (tnr):

tnr = 1− fpr
�
 �	4.5

F1 Score (f1):

f1 = 2 · p · r
p+ r

�
 �	4.6

4.2 Results

Initially, the number of features to be worked on with feature selection- and feature
extraction-based methods was three hundred in order to establish a basis for comparison
with the word embedding-based method. In this thesis, in all its perspectives, Method
4 was constructed over a fixed 300-dimension vector space, the size usually employed
to construct this type of model. However, it was observed that the obtained results were
slightly lower than the results for one-hundred features or fewer.

The feature amount choices for Method 2 and Method 3 and their perspectives are
defined as follows:

For Method 2, the techniques used in its two perspectives were based on a ranking
of the highest values that each feature provides according to a certain measure of utility
(Chi-Square or Mutual Information), i.e, a measure that captures relationships between
variables [21]. In this sense, they also followed the feature quantity settings employed in
the Method 3 perspectives.

For Method 3, in the case of the PCA perspective, the Cumulative Percentage of Total
Variation (CPTV) [77] [85] [48] was employed to define its feature amount, whereas, for
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LSA perspective, this decision was made based on empirism [52], as already mentioned
in Subsections 2.5.1 and 2.5.2 of Chapter 2.

Thus, since, in PCA, working with an amount of around eighty and ninety percent
(depending on the practical details of the dataset under analysis) of the initial variance
[48] is typically indicated, amounts of principal components between 2 and 100 were
chosen as the number of features, which respectively represent about 86.29% and 98.70%
of the variance. The results for these feature amounts were better than for those shown
when 160 features were selected (99.00% of the initial variance), possibly because this
last variance percentage also captured, along with the tendency of the underlying process,
a certain amount of noise. For LSA, we also tested several quantities of singular values
between 2 and 100, trying to achieve the best classification predictions with the least
amount of features. Therefore, variations obtaining 2, 3, 5, 10, 25, 50, and 100 features
from these perspectives of Method 2 and Method 3 were tested.

For the LDA perspective of Method 3, the number of features to extract through this
process was chosen based on two utility measures, perplexity, equation 2.9, and coher-
ence (given by the CUCI and CUMass scores, equations (2.11) and (2.12), respectively),
explained in Subsection 2.5.3 of Chapter 2. Given the values obtained, the three best
scores of each measure were chosen as the number of topics for the LDA models, and
also, for comparison, the worst score of each was also chosen.

Figure 4.1 The log Perplexity of the proposed LDA models

Fig. 4.1 shows the log perplexity for some amounts of topics between 2 and 100.
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Except for the variations with two and with three topics, for all others, the more topics, the
lower the value of log perplexity. The three best scores for log perplexity were obtained
for five, two, and three topics, while the worst mark was achieved for 100 topics.

Regarding the coherence scores presented in Fig. 4.2, there were many oscillations in
these measures when the number of topics in the LDA model was increased, and it was
observed that the two highest scores obtained in the CUCI were for 10, 2 and 35 topics,
and in the CUMass these were for 2, 35 and 95 topics, while the worst marks of these
measures were found for 5 and 100 topics, respectively.

Figure 4.2 The Coherence measures of the LDA perspective models

Therefore, the number of topics chosen for the LDA models to be used in Method
3 were two, three, five, ten, thirty-five, ninety-five, and one-hundred. Thus, the four
proposed methods were used in this thesis as follows:

• Method 1 used all features present in F, i.e., 47,107 features;

• Method 2 perspectives used the features present in H, that selected from two to
one-hundred features from G;

• Method 3 perspectives used the features present in J, that extracted two to one-
hundred features from those in G for PCA and LSA, and extracted from two to
one-hundred features from those in F for LDA;

• Method 4 perspectives used the features in K, that generated 300-dimension vector
representations from the terms in e.
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The results expressed in this Section and Section 4.3 are the weighted measures
obtained from both the phishing detection classes (phishing e-mail or ham e-mail) and
their respective samples. The proposed measures were computed for each label, and then
an average was computed considering the proportion of the true response for each label
in the test set, i.e., weighted by support (the number of true instances for each label). In
this sense, this type of average took label imbalance into account.

To illustrate how the weighted averages work for these measures, suppose that for a
given ML algorithm, the confusion matrices, presented in Fig. 4.3, were obtained for the
test set of Dataset 1.

Figure 4.3 Confusion Matrices - Example

It is observed that the first confusion matrix used the ham class as the reference class
(positive), and the second confusion matrix used the phishing class as positive. This way,
the scores indicated in Table 4.1 were obtained for the chosen evaluation measures.

Table 4.1 Measure Values for both Classes and the Weighted Average
Reference tp tn fp fn total Accuracy Precision Recall F1

score

Ham Class 1248 677 3 1 1929 0.9979 0.9976 0.9992 0.9984

Phishing Class 677 1248 1 3 1929 0.9979 0.9985 0.9956 0.9971

Weighted Average 0.9979 0.9979 0.9979 0.9979

The weighted average was calculated using the true instances for each reference class
(support) as the proposed weight of the scores available for both classes. The scores for
these weighted averages are also available in Table 4.1. For the measurement of the F1
Score, for instance, the value of 99.79% was obtained from the calculation expressed in
equation 4.7.

1,251 · f1(HamClass)+678 · f1(PhishingClass)

1,929
= 0.9979

�
 �	4.7

In the following subsections, the best results of the proposed approach are presented.
The tables with the complete results of all the variations and perspectives analyzed, as
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well as additional descriptions about them, are shown in Appendix A.

4.2.1 Method 1 - Approach based on Document-Term Matrix with-
out feature reduction techniques

The values arranged in Table 4.2 refer to the perspective based on the Document-Term
Matrix (F) that used all the terms obtained from the Bag-of-Words model as features.

Table 4.2 Method 1: Bag-of-Words and Document-Term Matrix - 47,107 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9963 0.9964 0.9963 0.9963

Naive Bayes 0.9562 0.9565 0.9562 0.9563

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9948 0.9948 0.9948 0.9948

Decision Trees 0.9917 0.9917 0.9917 0.9916

Random Forest 0.9937 0.9938 0.9937 0.9937

XGBoost 0.9963 0.9964 0.9963 0.9963

MLP 0.9969 0.9969 0.9969 0.9969

As stated earlier, this method did not address the high dimensionality (47,107 dimen-
sions), sparsity (roughly 0.9982, that is, only about 0.18% of the data were non-zero
values), and the represented context portion in the vector space model issues of the
obtained matrix. However, it was also measured to serve as a baseline/benchmark for the
other methods proposed in this thesis. Thus, due to these problems, it demanded more
processing capacity and time than a method that addresses these questions (due to its
higher complexity), although this perspective reached an F1-score of 99.74% as its best
rate. This measure was achieved through the Logistic Regression classification algorithm,
with the inverse of regularization - C as 10, penalty as l2, and the rest of its parameters in
the default setting.

This method, which only uses the e-mail bodies, performed better than similar
approaches, with features derived from the headers, bodies, and links in the e-mails,
described in [105], and [110], which obtained respectively 97% and 99.1% as their best
phishing detection rate. It also outperformed other classical approaches based on e-mail
properties, such as [31], that achieved a measure of 96% in identifying phishing e-mails.

If Stanza had not been employed to perform the lemmatization process, the best result
would be a F1-Score of 99.37%, also using the Logistic Regression algorithm. Except for
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the Naive Bayes algorithm, which was slightly larger in this setting with no lemmatization,
all the classification algorithms presented poor performance for their prediction results
(Table A.3 in Appendix A).

4.2.2 Method 2 - the perspective based on the Chi-Square measure

For this Method 2 perspective, the Chi-Square measure was used as a dimensionality
reduction approach. Its prediction assessment values are available in Tables 4.3 and 4.4.
From the original features in the DTM (F) columns weighted through the use of TF-IDF
(G, a desired number of features was selected (H) based on this measure.

Table 4.3 Results of the Chi-Square Perspective of Method 2 - feature set with 100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9974 0.9974 0.9974 0.9974

Naive Bayes 0.9703 0.9708 0.9703 0.9700

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9984 0.9984 0.9984 0.9984

Decision Trees 0.9922 0.9922 0.9922 0.9922

Random Forest 1.0000 1.0000 1.0000 1.0000

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9984 0.9984 0.9984 0.9984

The results attained through this perspective, with one-hundred features, are presented
in Table 4.3. In this setting, we obtained accuracy, precision, recall, F1 score, and
Specificity rates of 100%, which is, to the best of our knowledge, the highest result
for phishing detection research using only 100 features. It is the best mark using the
Chi-Square measure in Method 2. This highly prized measure was achieved using the
Random Forest ML classification algorithm, with entropy as a function to measure the
quality of a split, log2100 as the number of features to consider when looking for the best
split, ten as the minimum number of samples required to split an internal node, and the
rest of the parameters in the default setting.

The results expressed in Table 4.4 refer to the best marks attained in the remaining
proposed variations using this perspective.
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Table 4.4 Results of the Chi-Square perspective of Method 2 - all feature set variations

features Algorithm Accuracy F1 Score

2 KNN 0.9708 0.9707

3 KNN 0.9734 0.9733

5 KNN 0.9744 0.9743

10 XGBoost 0.9896 0.9895

25 Random Forest 0.9958 0.9958

50 Random Forest and XGBoost 0.9995 0.9995

100 Random Forest 1.0000 1.0000

4.2.3 Method 2 - Feature Selection: the perspective based on the
Mutual Information measure

For this Method 2 perspective, the Mutual Information measure was used as a dimen-
sionality reduction approach. Its prediction assessment values are available in Tables 4.5
and 4.6. From the original features inj the DTM (F) columns weighted with the use of
TF-IDF (G), a desired number of features was selected (H) based on this measure.

Table 4.5 Results of the Perspective Mutual Information of Method 2 - feature set with 25 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9844 0.9844 0.9844 0.9843

Logistic Regression 0.9969 0.9969 0.9969 0.9969

KNN 0.9979 0.9979 0.9979 0.9979

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9969 0.9969 0.9969 0.9969

The results attained through this perspective with twenty-five features are presented
in Table 4.5. This setting obtained accuracy, precision, recall, F1 score, and Specificity
rates of 99.90%. It was the best mark using the Mutual Information measure in Method 2.
This measure was achieved using the Random Forest ML classification algorithm, with
entropy as a function to measure the quality of a split, five as the number of features to
consider when looking for the best split, two as the minimum number of samples required
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to split an internal node, and the rest of the parameters in the default setting.
The best marks reached by Method 2 through the Mutual Information measure, in the

remaining proposed variations, are presented in Table 4.6.

Table 4.6 Results of the Perspective Mutual Information of Method 2 - all feature set variations

features Algorithm Accuracy F1 Score

2 KNN 0.9797 0.9796

3 Decision Trees 0.9838 0.9838

5 Decision Trees 0.9932 0.9932

10 K-Nearest Neighbors 0.9974 0.9974

25 Random Forest 0.9990 0.9990

50 Random Forest and XGBoost 0.9984 0.9984

100 Random Forest and XGBoost 0.9984 0.9984

4.2.4 Method 3 - Feature Extraction: the perspective based on an
Principal Component Analysis

For this Method 3 perspective, Principal Component Analysis was used as a dimension-
ality reduction approach. Its prediction assessment values are available in Tables 4.7
and 4.8. From the original features in the DTM (F) columns weighted through the use
of TF-IDF (G), a desired number of features was extracted (J) based on the principal
components, projecting the original feature set in a reduced low-dimension space.

Table 4.7 Results of the PCA perspective of Method 3 - feature set with 10 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9760 0.9764 0.9760 0.9759

Logistic Regression 0.9969 0.9969 0.9969 0.9969

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9969 0.9969 0.9969 0.9969
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The results attained through this perspective, with ten features, are presented in Table
4.7. This setting obtained accuracy, precision, recall, F1 score, and Specificity rates of
99.95%. It is the best mark using PCA in Method 3. This measure was achieved by
using the XGBoost classification algorithm, with the subsample as 0.6, the minimum
split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum
of instance weight needed in a child as 1, and the rest of the parameters in the default
setting.

The results expressed in Table 4.8 refer to the best marks attained in the remaining
proposed variations using this perspective.

Table 4.8 Results of the PCA Perspective of Method 3 - all feature set variations

features Algorithm Accuracy F1 Score

2 K-Nearest Neighbors 0.9953 0.9953

3 K-Nearest Neighbors 0.9974 0.9974

5 Decision Trees 0.9984 0.9984

10 XGBoost 0.9995 0.9995

25 XGBoost 0.9995 0.9995

50 Logistic Regression 0.9995 0.9995

100 XGBoost 0.9995 0.9995

4.2.5 Method 3 - Feature Extraction: the perspective based on La-
tent Semantic Analysis

For this Method 3 perspective, Latent Semantic Analysis was used as a dimensionality
reduction approach. Its prediction assessment values are available in Tables 4.9 and 4.10.
From the original features in the DTM (F) columns weighted through the use of TF-IDF
(G), a desired number of features was extracted (J) based on singular values, projecting
the original feature set in a reduced low-dimension space.

The results attained through this perspective with twenty-five features are presented
in Table 4.9. In this setting, accuracy, precision, recall, F1 score, and Specificity rates of
100% were obtained, which is, to the best of our knowledge, the highest result in phishing
detection research using just 25 features. It is the best mark using the LSA measure in
Method 3. This highly prized measure was achieved through the XGBoost classification
algorithm, with the subsample as 0.6, the minimum split loss reduction - gamma as 0.5,
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Table 4.9 Results of the LSA perspective of Method 3 - feature set with 25 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9734 0.9734 0.9734 0.9733

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9984 0.9984 0.9984 0.9984

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 1.0000 1.0000 1.0000 1.0000

MLP 0.9995 0.9995 0.9995 0.9995

the maximum depth of a tree as 4, the minimum sum of instance weight needed in a child
as 1, and the rest of the parameters in the default setting.

The best marks attained by Method 3 through the Latent Semantic Analysis, in the
remaining proposed variations, are presented in Table 4.10.

Table 4.10 Results of the LSA Perspective of Method 3 - all feature set variations

features Algorithm Accuracy F1 Score

2 XGBoost 0.9953 0.9953

3 KNN and Random Forest 0.9963 0.9963

5 XGBoost and Randon Forest 0.9979 0.9979

10 Random Forest 0.9995 0.9995

25 XGBoost 1.0000 1.0000

50 Random Forest and XGBoost 0.9995 0.9995

100 XGBoost 0.9995 0.9995

4.2.6 Method 3 - Feature Extraction: the perspective based on La-
tent Dirichlet Allocation

The Method 3 had yet another perspective to extract features, which was based on the
use of Latent Dirichlet Allocation (LDA), whose prediction assessment values are in
Tables 4.11 and 4.12. From the topics extracted from the e-mail texts available in F,
representations of the e-mails (J) were obtained in terms of the probability distribution of
these topics, specific feature vectors for each of these messages.
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Table 4.11 Results of the LDA perspective of Method 3 - feature set with 10 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9943 0.9943 0.9943 0.9943

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9974 0.9974 0.9974 0.9974

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9974 0.9974 0.9974 0.9974

Table 4.11 presents the marks achieved by Method 3 through LDA with ten topics.
This approach obtained accuracy, precision, recall, and F1 score measures of 99.95%,
FPR of 0%, and a neat specificity of 100%. It was the best mark using LDA in Method 3.
This highly prized measure was achieved through the XGBoost classification algorithm,
with the subsample as 0.6, the minimum split loss reduction - gamma as 0.5, the maximum
depth of a tree as 4, the minimum sum of instance weight needed in a child as 1, the rest
of the parameters in the default setting. For this variation of LDA perspective, with ten
topics, all the classification algorithms used had marks equal to or higher than 99.43%,
the best measure presented by Method 1 (F1 score of 99.43% for MLP).

The marks obtained by Method 3 through the LDA with thirty-five topics were also the
best for this perspective, as well as those present in Table 4.11, with the same accuracy,
precision, recall and F1 score measures of 99.95% with the XGBoost classification
algorithm.

The best marks reached by Method 3 through the LDA, in the remaining proposed
variations, are presented in Table 4.12.

4.2.7 Method 4 - Feature Generation: the perspective based on Word2Vec

Table 4.13 presents the marks achieved by Method 4 through the Word2Vec perspective
with vocabulary sourced from the pre-trained Google News corpus word vector model.
As shown in Table 4.13, this approach attained accuracy, precision, specificity, sensitivity,
and F1 score measures of 100%, which is, to the best of our knowledge, the highest
result obtained in phishing detection research. This highly prized measure was achieved
through the K-Nearest Neighbors classification algorithm, with the number of neighbors
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Table 4.12 Results of the LDA Perspective of Method 3 - all feature set variations

features Algorithm Accuracy F1 Score

2 Decision Trees 0.9958 0.9958

3 Decision Trees 0.9974 0.9974

5 XGBoost 0.9969 0.9969

10 XGBoost 0.9995 0.9995

35 XGBoost 0.9995 0.9995

95 XGBoost 0.9990 0.9990

100 XGBoost and KNN 0.9984 0.9984

as 1, the weight function as uniform, and the rest of the parameters in the default setting.
Except for the Naive Bayes algorithm, all other algorithms achieved marks above 99%,
three of which reached a 99.90% precision rate (Logistic Regression, XGBoost, and
Multilayer Perceptron).

Table 4.13 Method 4: Feature Generation through the Word2Vec perspective - Vocabulary Source:
pre-trained Google News corpus word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9650 0.9654 0.9650 0.9648

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 1.0000 1.0000 1.0000 1.0000

Decision Trees 0.9901 0.9901 0.9901 0.9901

Random Forest 0.9979 0.9979 0.9979 0.9979

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9990 0.9990 0.9990 0.9990

Although it did not reach 100% accuracy, Method 4 through Word2Vec with a
vocabulary built from the dataset obtained excellent results in the prediction assessments,
Table 4.14. It achieved a F1 score of 99.95% (FPR of 0%, that is 100% of specificity) in
4 out of 8 classification algorithms used, and 99.9% in 3 out of 8 of these. The four best
results were obtained from the Logistic Regression, K-Nearest Neighbors, Random Forest,
and Multilayer Perceptron algorithms. Due to vocabulary construction, this approach
spent more time and consumed more processing power than the one implemented from
the pre-trained Google News corpus word vector model.
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Table 4.14 Method 4: Feature Generation through the Word2Vec perspective - Vocabulary Source:
built from the Dataset

Algorithm Accuracy Precision Recall F1 score

SVM 0.9990 0.9990 0.9990 0.9990

Naive Bayes 0.9666 0.9666 0.9666 0.9666

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9995 0.9995 0.9995 0.9995

Decision Trees 0.9990 0.9990 0.9990 0.9990

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9995 0.9995 0.9995 0.9995

4.2.8 Method 4 - Feature Generation: the perspective based on Fast-
Text

The marks of Method 4 through FastText with vocabulary sourced from the pre-trained
Common Crawl word vector model are presented in Table 4.15. This variation achieved a
F1 score of 100% (as well as for sensitivity, specificity, accuracy, and precision measures),
which was the best measurement attained in Method 4, together with the Word2Vec
perspective with vocabulary sourced from the pre-trained Google News corpus word
vector model. This highly prized measure was achieved through the Support Vector
Machine algorithm, with the penalty parameter of the term - C as 100, the kernel type as
linear, and the rest of the parameters in the default setting.

Furthermore, concerning the results of Table 4.15, it may be seen that of the seven
remaining classification algorithms, two achieved 99.95% precision measurements (K-
Nearest Neighbors and Multilayer Perceptron), and the other two reached 99.90% (Lo-
gistic Regression and XGBoost) and its worst result, in the Naive Bayes classification
algorithm, obtained a 99.32% accuracy rate.

Method 4 through FastText with a vocabulary built from the dataset also obtained
significant results in the prediction assessments, Table 4.16. It did not reach an accuracy
rate of 100%, but it was very close to this. It attained a F1 score of 99.95% in 5 out of the 8
classification algorithms used (four of them with a specificity of 100%), and its worst mark
was 99.37% in the Naive Bayes classification algorithm. Its five best results were obtained
from the Support Vector Machine, Logistic Regression, K-Nearest Neighbors, XGBoost,
and MultLayer Perceptron algorithms. Due to vocabulary construction, this perspective
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Table 4.15 Method: Feature Generation through the FastText perspective - Vocabulary Source:
pre-trained Common Crawl word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 1.0000 1.0000 1.0000 1.0000

Naive Bayes 0.9932 0.9932 0.9932 0.9932

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9995 0.9995 0.9995 0.9995

Decision Trees 0.9974 0.9974 0.9974 0.9974

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9995 0.9995 0.9995 0.9995

spent more time and consumed more processing power than those implemented from the
pre-trained Wikipedia (Table 4.17) and Common Crawl (Table 4.15) word vector models.

Table 4.16 Method: Feature Generation through the FastText perspective - Vocabulary Source:
built from the Dataset

Algorithm Accuracy Precision Recall F1 score

SVM 0.9995 0.9995 0.9995 0.9995

Naive Bayes 0.9937 0.9938 0.9937 0.9937

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9995 0.9995 0.9995 0.9995

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9995 0.9995 0.9995 0.9995

The last of these variations for the FastText perspective had its vocabulary sourced
from the pre-trained Wikipedia word vector model. Its marks are exhibited in Table 4.17.
From these results, it can be observed that all algorithms obtained accuracy values equal
to or higher than 99.58%. Its best results (F1 Score of 99.90%) were reached using the
Logistic Regression and Random Forest algorithms.
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Table 4.17 Method 4: Feature Generation through the FastText perspective - Vocabulary Source:
pre-trained Wikipedia word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9974 0.9974 0.9974 0.9974

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9984 0.9984 0.9984 0.9984

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9984 0.9984 0.9984 0.9984

4.2.9 Method 4 - Feature Generation: the perspective based on Doc2Vec

Doc2Vec was the last perspective used in Method 4. It was developed in two ways. The
first variation obtained its vocabulary from pre-trained text vectors (Table 4.18).

Table 4.18 Method 4: Feature Generation through the Doc2Vec perpective - Vocabulary Source:
pre-trained Wikipedia document vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9979 0.9979 0.9979 0.9979

Naive Bayes 0.9223 0.9229 0.9223 0.9212

Logistic Regression 0.9984 0.9984 0.9984 0.9984

KNN 0.9718 0.9720 0.9718 0.9719

Decision Trees 0.9536 0.9535 0.9536 0.9535

Random Forest 0.9917 0.9918 0.9917 0.9916

XGBoost 0.9937 0.9938 0.9937 0.9937

MLP 0.9979 0.9979 0.9979 0.9979

The first variation (shown in Table 4.18) achieved better results, with its best mark
being a F1 score of 99.84%. This measure was achieved through the Logistic Regression
classification algorithm, with the inverse of regularization - C as 10, penalty as l2, and
the rest of its parameters in the default setting. This variation had its vectors trained by
the authors over a corpus constructed from a dump of Wikipedia articles.

The second variation was built over the dataset (Table 4.19). Its best result was a F1
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Score of 99.48%, with a FPR of 0.24%. This measure was obtained through the XGBoost
classification algorithm, with the subsample as 0.6, the minimum split loss reduction -
gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of instance weight
needed in a child as 1, and the rest of its parameters in the default setting.

Table 4.19 Method 4: Feature Generation through the Doc2Vec perspective - Vocabulary Source:
built from the Dataset

Algorithm Accuracy Precision Recall F1 score

SVM 0.9823 0.9823 0.9823 0.9823

Naive Bayes 0.9619 0.9639 0.9609 0.9611

Logistic Regression 0.9896 0.9896 0.9896 0.9895

KNN 0.9948 0.9948 0.9948 0.9948

Decision Trees 0.9906 0.9906 0.9906 0.9906

Random Forest 0.9927 0.9927 0.9927 0.9927

XGBoost 0.9948 0.9948 0.9948 0.9948

MLP 0.9917 0.9917 0.9917 0.9916

4.3 Additional Results

This Section provides an additional analysis of the proposed methods for the perspectives
that presented the best results (F1 scores and accuracy of 100%) for Dataset 1, described
in Section 3.2 of Chapter 3. They are the Chi-Square Perspective of Method 2, the
LSA Perspective of Method 3, the Word2Vec Perspective of Method 4, and the FastText
Perspective of Method 4.

The performance of these perspectives was evaluated on two additional datasets
(Dataset 2 and Dataset 3). They are described in Subsection 4.3.1.

4.3.1 Dataset 2 and Dataset 3

The IWSPA-AP e-mail dataset was initially built for the Anti-Phishing task of the In-
ternational Workshop on Security and Privacy Analytics, and since then, it has been
maintained and improved. According to [112] and [106], this dataset collects recent
and historical e-mails from as many sources as possible, and provides different types of
phishing and legitimate e-mails, as well as samples of new and classical attacks.

It is also public and has been used in [102], [103], [44], [76], [8], [108] and [30].
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It has two subsets: the full-header subset and the no-header subset which, in this study,
were used as Dataset 2 and Dataset 3, respectively. Both subsets have samples from the
phishing and ham classes. This thesis employed the IWSPA-AP e-mail dataset version 2,
whose full-header subset contains 503 phishing e-mails and 4,082 legitimate e-mails, and
its no-header subset contains 629 phishing e-mails and 4,642 legitimate e-mails.

Based on the classification strategy proposed in Section 3.9 of Chapter 3, Dataset 2
and Dataset 3 were folded in two sets (training and test sets) for each of their subsets:

• Dataset 2 - for the full-header subset, the training set contained 3,209 samples, and
the test set, 1,376 samples. The training set consisted of 2,859 ham e-mails and 350
phishing e-mails, and the test set comprised 1,223 ham e-mails and 153 phishing
e-mails.

• Dataset 3 - for the no-header subset, the training set contained 3,209 samples, and
the test set, 1,376 samples. The training set consisted of 2,859 ham e-mails and 350
phishing e-mails, and the test set comprised 1,223 ham e-mails and 153 phishing
e-mails.

4.3.2 Prediction Results employing Dataset 2

In Table 4.20, the best marks achieved by the proposed method through its perspectives
using Dataset 2 are presented.

Table 4.20 Best Marks Achieved by the Proposed Methods though each of their best perspectives
for Dataset 2

Perspective Embeddings Algorithm Accuracy F1 Score

M2 - Chi-Square - D. Tree and R. Forest 0.9971 0.9971

M3 - LSA - SVM 0.9964 0.9964

Word2Vec Dataset 2 SVM, Log Reg and MLP 0.9985 0.9985

Word2Vec Google News Log Reg and MLP 0.9971 0.9971

FastText Dataset 2 SVM and Log Reg 0.9978 0.9978

FastText Common Crawl MLP 0.9971 0.9971

One of the four perspectives of the proposed Method obtained accuracy, precision,
recall, F1 score, and Specificity rates of 99.854%, which are, to the best of our knowledge,
the best results in phishing detection research with this dataset, higher than the results
presented in [30]. It failed to classify only two phishing e-mails, pointing them out
as legitimate e-mails. These highly prized measures were achieved through the SVM,
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Logistic Regression, or MLP algorithms in the Word2Vec perspective with a vocabulary
built from Dataset 2. These marks were obtained using the following configurations:

• SVM - the penalty parameter of the term - C as 100, the kernel type as linear, and
the rest of the parameters in the default setting.

• Logistic Regression - the inverse of regularization - C as 1000, penalty as l2, and
the rest of the parameters in the default setting.

• MLP - with mini-batch size as 40 and the maximum number of iterations as 100
(hyperparameters), and the rest of the parameters in the default setting.

For Dataset 2, the other perspectives/variations obtained the following marks: the
FastText perspective of Method 4 using a vocabulary built over the Dataset 2 achieved an
accuracy and F1 score of 99.78%; the FastText and Word2Vec perspectives of Method
4 when using pre-trained models based on external corpus, as well as the Chi-Square
perspective of Method 2 (using a hundred features), attained an accuracy and F1 score of
99.71%; and the LSA perspective of Method 3 (using twenty-five features) reached an
accuracy and F1 score of 99.64%.

4.3.3 Prediction Results employing Dataset 3

In Table 4.21, the best marks achieved by the proposed method through its perspectives
using Dataset 3 are presented.

Table 4.21 Best Marks Achieved by the Proposed Methods through each of their best perspectives
for Dataset 3

Perspective Embeddings Algorithm Accuracy F1 Score

M2 - Chi-Square - Random Forest 0.9755 0.9751

M3 - LSA - XGBoost 0.9773 0.9771

Word2Vec Dataset 3 XGBoost 0.9814 0.9812

Word2Vec Google News MLP 0.9825 0.9828

FastText Dataset 3 KNN 0.9790 0.9788

FastText Common Crawl SVM 0.9843 0.9843

One of the four perspectives of the proposed Method obtained accuracy, precision,
recall, F1 score, and Specificity rates of 98.43%, which is, to the best of our knowledge,
the best result in phishing detection research with this dataset, higher than the results
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presented in [8]. These highly prized measures were achieved through the SVM algorithm
in the FastText perspective based on pre-trained vectors trained on the Common Crawl
dataset. These marks were obtained using the following configurations: the penalty
parameter of the term - C as 100, the kernel type as linear, and the rest of the parameters
in the default setting.

For Dataset 3, the other perspectives/variations obtained the following marks: the
Word2Vec perspective of Method 4 achieved an accuracy of 98.25% and 98.14% in
variations using a vocabulary built from the Google News dataset and from Dataset 3,
respectively; the FastText perspective of Method 4 using a vocabulary built over Dataset 3
reached an accuracy of 97.88%; the Chi-Square perspective of Method 2 (using a hundred
features), attained accuracy and F1 score of 97.75%; and the LSA perspective of Method
3 (using twenty-five features) reached accuracy of 97.73% and F1 score of 97.71%.

It is important to note that, although the performance differences between the use of
the two databases in the pre-processing stage were minimal, for Dataset 1, as already
mentioned in Chapter 3, Method 4 had better results using WordNet, whereas for Dataset
2 and Dataset 3, the best results were found using Stanza.

4.4 Discussion

Based on the proposed approach’s prediction results when using Dataset 1, expressed in
Section 4.2, a chart was plotted with the best performance marks in each variation of the
proposed Method perspectives. Here, we focus on the F1 Score, displayed in Fig 4.4. A
chart that expresses this consolidation for accuracy is available in Appendix A.

In Figure 4.4, Method 1 is represented by a gray color, Method 2 perspectives by
shades of yellow, Method 3 perspectives by shades of green, and Method 4 perspectives
by shades of blue, in which the perspective variations based on vectors obtained from the
dataset are always presented before those obtained from external corpora.

It was observed that Methods 2, 3, and 4, for at least one of the perspectives, achieved
100% in accuracy, precision, recall, and F1 score, i.e., the best performance of the
proposed approach. For Method 2, this was attained through the Chi-Square perspective,
using one hundred features, for Method 3, through the LSA perspective, using twenty-five
features, and for Method 4, through the Word2Vec (employing word vectors trained on
the Google News corpus) and through the FastText (employing word vectors trained on
Common Crawl dataset), both using 300-dimension English word vectors as features. For
Method 1, the best result was an F1 Score of 99.74%.
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Figure 4.4 F1 Score of the proposed methods in their respective perspectives in each tested
feature amount variation.

When analyzing the results of the Method 2 perspectives and their variations, it was
observed that the Mutual Information perspective had better results for fewer features
than the Chi-Square perspective, which, in turn, was slightly more accurate when using
fifty and a hundred features. The worst results were 97.07% (Chi-Square) and 97.96%
(Mutual Information) when using two features. The Chi-Square perspective nevertheless
attained an F1 score of 99.95%, using fifty features. Mutual information perspective
achieved its best mark (F1 score of 99.90%) using twenty-five features.

Method 3 had an outstanding performance overall: with all the variations and all
marks above or equal to 99.53%. PCA and LSA had 4 out of 7 feature set variations
reaching above or equal 99.95%, LDA presented this performance in two variations.
Using two features, LDA reached better results, namely an F1 Score of 99.58%, whereas
PCA and LSA had the same result: an F1 accuracy of 99.53%. Subsequently, PCA and
LDA had better results than LSA when employing three features, and when five features
were used, PCA presented the best marks of these three perspectives. For ten features,
they presented the same mark of 99.95% for the F1 Score. PCA maintained these results
for twenty-five features, whereas LSA reached a 100% success rate for all marks. LDA
repeated its best mark when using thirty-five features. PCA and LSA also attained an F1
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score of 99.95% for the variations with fifty and one-hundred features. LDA attained
99.90% and 99.84% for ninety-nine and one-hundred features variations, respectively.

All Method 2 and Method 3 perspectives had their worst marks sets of two, three, and
five features were used, respectively.

The representation based on two features was particularly valuable for enabling
visualization of the sample scattering and how each perspective established the frontier
between the classes. This is portrayed in Fig. 4.5, in a pair plot manner, i.e., creating
a grid of axes, where each feature is shared in the y-axis across a single row and in the
x-axis across a single column, displaying pairwise relationships in the dataset.

For Method 2, in the Chi-Square perspective, the two selected features were the
tokens “be" and “pic", whereas in the Mutual Information, they were the tokens “be" and
“http". For Method 3, in the PCA and LSA perspectives, the two features were obtained
projecting portions of the original feature set in a 2-dimensional space, whereas in LDA,
they were portions of the obtained topics.

From Figures 4.4 and 4.5, and the results presented in Subsection 4.2, it is possible to
infer that the arrangement of the samples in the perspectives based on feature extraction
techniques better separated the proposed classes when dealing with a reduced feature
set, and that the similarities between the samples of the same class became more evident
in the perspectives based on the feature selection measures as the amount of features
became larger.

Method 4, as well as Method 3, had excellent performance. Except for the Doc2Vec
variation based on vectors trained in the dataset of this study (F1 Score of 99.48%), all the
variations attained results above or equal to 99.84%. When analyzing only the Method 4
perspectives that obtained the respective text representations averaging all words in each
text, Word2Vec, and FastText perspectives, this minimum was 99.90%. For the variations
employing vectors constructed from the dataset, the best marks were found for Word2Vec
and FastText (99.95%), and the worst for Doc2Vec (99.84%).

As described for Word2Vec and FastText, this vector was obtained by the averages
of the word vectors present in each e-mail body, whereas the Doc2Vec used the vector
representation generated by the word embedding process. According to [56], because
the sense of word order inside the documents is lost, this technique, based on its word
embedding averages of all words in a text, did not perform well in recognizing many types
of sophisticated linguistic phenomena. In contrast, Kenter et al. 2016, with the model
proposed in [51], reported that this technique may produce good results in a wide variety
of scenarios, for instance, short text representation issues. Not surprisingly, Method 4
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Figure 4.5 Method 2 and Method 3 perspectives using 2 features.
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attained marks showing that Word2Vec and FastText perspectives had better results than
the Doc2Vec based implementation, even for the approaches based on a vocabulary built
over the dataset. However, an implementation that considers pre-trained text embedding
on a more substantial basis, as done for Word2Vec and FastText, would be necessary for
a more conclusive analysis.

4.5 Performance Comparison

In Table 4.22, this proposal performance, using the marks displayed in Subsection 4.2
for Dataset 1, is confronted with state-of-the-art research aimed at detecting phishing,
as described in the baseline study (Section 2.8). They are ordered according to their F1
Scores and the amount of features.

According to these criteria, our best performances were the LSA perspective of
Method 3 (with 25 features), followed by the Chi-Square perspective of Method 2 (with
100 features). They were the highest among those compared. In [82], an F1 score of
100% was also attained, but it was done using 200 features, a feature set 8 times greater
than ours. As already mentioned, two other variations of our perspectives achieved 100%
in F1 Score and accuracy: Word2Vec (employing word vectors trained on the Google
News corpus) and the FastText (employing word vectors trained on the Common Crawl
dataset), both using three-hundred features.

If this performance comparison were performed considering only the works that used
the same datasets, we would then have three comparison contexts, one for each dataset
(Dataset 1, Dataset 2, and Dataset 3).

In Table 4.23, this comparison is presented for Dataset 1. It may be observed that
our proposed methods obtained the best marks, occupying the first seven positions. For
Dataset 1, this thesis proposed methods/perspectives that employ only the bodies of the
e-mails.

In Table 4.24, it may be observed that the method proposed here reached an F1 score
of 99.85%, which is, to the best of our knowledge, the highest result in phishing detection
research using Dataset 2. It is higher than the measurements presented in [30]. It is
relevant to mention that the proposed method used version 2.0 of Dataset 2, while in
[30], version 1.0 was used. On that occasion, Fang et al. [30] misclassified four samples,
one false positive and three false negatives. In our approach for Dataset 2, only two
samples were misclassified (two false negatives). For Dataset 2, this thesis proposed
methods/perspectives employing the headers and bodies of the e-mails.
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Table 4.22 Overall Performance Comparison
Reference Best Result Amount of Features Dataset Sources

M3 - LSA 100% 25 [29] and [75]

M2 - Chi-Square 100% 100 [29] and [75]

Ramanathan and Wechsler [82] 100% 200 cluster

M4 - Word2Vec and FastText - External 100% 300 [29] and [75]

M3 - LDA 99.95% 10 and 35 [29] and [75]

M3 - LSA 99.95% 10, 50 and 100 [29] and [75]

M3 - PCA 99.95% 10, 25, 50 and 100 [29] and [75]

M2 - Chi-Square 99.95% 50 [29] and [75]

M4 - Word2Vec and FastText - dataset 99.95% 300 [29] and [75]

M2 - Mutual Info 99.90% 25 [29] and [75]

M3 - LDA 99.90% 95 [29] and [75]

M4 - FastText - External 99.90% 300 [29] and [75]

Fang et al. [30] 99.85% 256 cluster

M3 - PCA 99.84% 3 and 5 [29] and [75]

M2 - Mutual Info 99.84% 50 and 100 [29] and [75]

M3 - LDA 99.84% 100 [29] and [75]

M4 - Doc2Vec - External 99.84% 300 [29] and [75]

M3 - LDA 99.74% 3 [29] and [75]

M3 - LSA 99.74% 5 [29] and [75]

M2 - Mutual Info 99.74% 10 [29] and [75]

M1 99.74% 47107 [29] and [75]

Akinyelu and Adewumi [2] 99.70% 15 [29] and [75]

M3 - LDA 99.69% 5 [29] and [75]

M3 - LSA 99.63% 3 [29] and [75]

M3 - LDA 99.58% 2 and 10 [29] and [75]

M2 - Chi-Square 99.58% 25 [29] and [75]

L’Huillier et al. [57] 99.58% 1017 [29] and [75]

M3 - LSA and PCA 99.53% 2 [29] and [75]

M4 - Doc2Vec - dataset 99.48% 300 [29] and [75]

Gangavarapu et al. [34] 99.40% 21 [29] and [75]

Daeef et al. [20] 99.40% 48 [29] and [75]

M2 - Mutual Info 99.32% 5 [29] and [75]

Vinayakumar et al. [81] 99.10% 200 cluster

Yasin and Abuhasan [110] 99.10% 16 [29] and [75]

Barathi Ganesh et al. [8] 99% 100 cluster

Gangavarapu and Jaidhar [33] 99% 240 [29] and [75]

M2 - Chi-Square 98.95% 10 [29] and [75]

Halgas et al. [42] 98.63% 5000 [29] and [75]

Chin et al. [17] 98.39% 30 cluster

M2 - Mutual Info 98.38% 3 [29] and [75]

Ramanathan and Wechsler [83] 98.30% 10 cluster

M2 - Mutual Info 97.96% 2 [29] and [75]

Fette et al. [31] 97.64% 10 [29] and [75]

M2 - Chi-Square 97.07% - 97.43% 2, 3 and 5 [29] and [75]

Islam and Abawajy [47] 97.00% 21 [29] and [75]
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Table 4.23 Dataset 1 - Performance Comparison
Reference Best Metric

Value
Amount of
Features

M3 - LSA 100% 25

M2 - Chi-Square 100% 100

M4 - FastText 100% 300

M4 - Word2Vec 100% 300

M3 - LDA 99.95% 10

M3 - PCA 99.95% 10

M2 - Mutual Information 99.90% 95

Akinyelu and Adewumi [2] 99.70% 15

L’Huillier et al. [57] 99.58% 1017

Gangavarapu et al. [34] 99.40% 21

Daeef et al. [20] 99.40% 48

Vinayakumar et al. [81] 99.10% 200

Yasin and Abuhasan [110] 99.10% 16

Gangavarapu and Jaidhar [33] 99% 240

Halgas et al. [42] 98.63% 5000

Fette et al. [31] 97.64% 10

Islam and Abawajy [47] 97.00% 21

Table 4.24 Dataset 2 - Performance Comparison
Reference Best Metric

Value
Amount of
Features

M4 - Word2Vec 99.85% 300

Fang et al. [30] 99.84% 830

M4 - FastText 99.78% 300

M2 - Chi-Square 99.71% 100

M3 - LSA 99.64% 25

Barathi Ganesh et al. [8] 99.00% 100

Unnithan et al. [102] 98.00% 40

Vazhayil et al. [103] 95.30% 30

Harikrishnan et al. [44] 94.10% 30

Vinayakumar et al. [108] 92.80% 200
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In Table 4.25, it may be observed that the best results of the proposed methods reached
an F1 score of 98.43%. It is, to the best of our knowledge, the highest result in phishing
detection research using Dataset 3.

It may be observed that the proposed methods obtained the best marks, occupying the
first four positions. They are higher than the measurements presented in [8].

For Dataset 3, this thesis proposed methods/perspectives employing only the bodies
of the e-mails.

Table 4.25 Dataset 3 - Performance Comparison
Reference Best Metric

Value
Amount of
Features

M4 - FastText 98.43% 300

M4 - Word2Vec 98.28% 300

M2 - Chi-Square 97.75% 100

M3 - LSA 97.71% 25

Barathi Ganesh et al. [8] 97.00% 100

Unnithan et al. [102] 97.00% 40

Harikrishnan et al. [44] 94.60% 30

Vazhayil et al. [103] 93.70% 30

Vinayakumar et al. [108] 92.20% 200

4.6 Final Considerations

It is essential to note that each of the proposed methods in this approach obtained optimal
results in their respective categories, as observed when compared with the related works.
These marks highlight that the proposed models and their associated techniques made
significant contributions to the performance of phishing detection approaches. When the
variations of the methods with and without the lemmatization and other resources offered
by the dictionary databases (WordNet and Stanza) were compared, it was observed, in all
cases, that the results obtained without this step were, in general terms, slightly lower
than those that employed it. In addition, two other factors influenced the achievement of
these remarkable results. They were the pre-processing steps and the resampling/cross-
validation techniques employed in this study. The proposed architecture components,
jointly with the dimensionality reduction perspectives, fed the adopted ML algorithms
with suitable features. The employment of these algorithms, optimally set, resulted in
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models that obtained better results than those described in the baseline study.
Regarding the effectiveness of the approach in obtaining the most distinctive features

proposed by this thesis, the methods not only presented better results in this feature-
based text classification, but also mitigated the posed obstacles related to VSM/DTM
representation, providing a dense and low-dimension representation that compressed the
data in the proposed texts with reduced noisy information. These problems are related to
high dimensionality, sparsity, and contextual information that may be integrated into the
proposed representation. For Dataset 1, without the proposed dimensionality reduction
and the lemmatization step, for instance, considering all the DTM features in this setting
(54,680), the best result would be an F1 score of 99.74%. This is a good result, but at the
cost of much greater computational complexity and processing time. Thus, the proposal
provides a dense and low-dimension feature set in many size variations that addresses
these issues and increases the prediction results of the original feature set. When all the
proposed stages of the architecture were implemented before the method perspectives
were applied over the DTM weighted by the TF-IDF measure, the sparsity of the M
matrix was around 99,77%, and after this implementation, the sparsity reached 33%
(feature set of 2 attributes) to 50.35% (feature set of 100 attributes) in S.

In addition to being among the ML algorithms that achieved an F1 score of 100%,
Random Forest and XGBoost frequently achieved the best mark in each variation of
Method 2 and Method 3. Random Forest in Method 2, and XGBoost in Method 3. These
measures indicate a pattern of great prediction for their use (optimally set) in phishing
detection, using features based on the e-mail body texts.

Although the LSA perspective of Method 3 and the Chi-Square perspective of Method
2 also achieved measures of 100% with fewer features using Dataset 1, Method 4, not
only for its performance for the three chosen datasets, but also for its paradigm, proved to
be a promising line of representation for similarity and classification problems of texts
and their respective terms, since it was able to best address and avoid questions such as
the curve of dimensionality, high sparsity, and the low amount of contextual information
that the classical VSM representation carries. These issues are problematic not only for
phishing detection, but also for most natural language processing research. Solutions
based on word embedding can still generalize better in unseen events, according to [37].
Once its training occurs on large amounts of unannotated data (as was done with the
pre-trained vectors in the textual basis of Google News, Wikipedia, and Common Crawl),
words that do not occur in the task training set also have vector representations, and these
representations are similar to those of related words that occur in the task training set.
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Comparing with other implemented methods as regards the learning mode, Method 4
also presented itself as a better alternative for text representation in phishing detection
issues, once it was suitable not only for this learning in batch mode as evidenced in
this thesis, but also its approach in online mode appeared to be more promising and
flexible. Many alternatives for dealing with the dynamic vocabulary building and adaptive
unigram distribution issues have been presented, such as [65], [50], and [58], where good
performance and no accuracy drops were observed.

Furthermore, concerning Method 4, another advantage presented was the possibility
of further improving the results obtained through the fine-tuning of the word embeddings
used, and making the pre-trained models more portable to better fit other uses, avoiding
the construction of these word embeddings from scratch. As in [46], a method named
Universal Language Model Fine-tuning (ULMFiT) was proposed for transferring learning
for any task for NLP, which also introduced some novel technologies to retain previous
knowledge and avoid catastrophic forgetting during fine-tuning.
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5
Conclusions and Future Work

If I have seen further it is by standing on the shoulders of giants.

—ISAAC NEWTON

Phishing has been a persistent cybercrime problem for all e-mail users, not only in
corporate environments where the security measures adopted to deal with this type of
incident have been increasingly refined and specialized, but also because this fraudulent
practice seems to become even more insightful.

Among the proposed phishing detection techniques, those based on natural language
processing and machine learning, in a data-driven approach, demonstrated greater effec-
tiveness and higher accuracy than those based on filtering rules. To perform this category
of technique, the required input features for ML classification algorithms, derived from
e-mails texts, are represented in VSM. Three main problems are discussed regarding the
representation proposed by VSM/DTM: the "Curse of Dimensionality", the sparsity, and
the information that must be obtained from the context.

Given this scenario, the primary objective of this thesis was to present a holistic,
structured architecture approach for phishing detection, with methods based on NLP
and ML, that address the problems related to VSM/DTM representation, thus improving
threat identification predictions. Toward this end, the following research question was
posed: "Can a phishing detection approach that addresses issues related to vector space
models improve the identification of this type of cybercrime?".

By combining established text processing techniques, feature engineering, dimension-
ality reduction, training, and improved classification algorithms, the proposed approach
propounded four Methods.

• The first, used as a baseline result that did not address these VSM issues.
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• The second, based on feature selection through statistic measures (Chi-Square and
Mutual information).

• The third, based on feature extraction techniques (PCA, LSA, and LDA).

• The fourth, based on word embedding techniques (Word2VEc, FastText, and
DOc2Vec).

The remainder of this chapter is organized as follows: The main conclusions are
presented in Section 5.1. The contributions of this thesis are outlined in Section 5.2.
Finally, future work is suggested in Section 5.3.

5.1 Conclusions

All four proposed methods had excellent marks. Using the main dataset proposed (Dataset
1), its best respective result was an F1 Score of 99.74% with Method 1, whereas the
other three methods attained a remarkable measure of 100% for all main utility measures,
which is, to the best of our knowledge, the highest result in phishing detection research
for an accredited data set based only on the body of e-mails.

The methods/perspectives that obtained 100% in Dataset 1 (perspective Chi-Square of
Method 2 - using one-hundred features, perspective LSA of Method 3 - using twenty-five
features, perspective Word2Vec, and perspective FastText of Method 4) were evaluated
in two different contexts. Using both the bodies and headers of the e-mails of the first
additional dataset proposed (Dataset 2), the best mark was a 99.854% F1 Score, which
was obtained using the perspective Word2Vec, surpassing the current best result. Also,
using just the e-mail bodies, as done for Dataset 1, the evaluation employing Dataset
3 also proved to obtain the best marks for this data collection. All four perspectives
outperformed the state-of-the-art results, with an F1 Score of 98.43%, the best mark being
through the FastText perspective. Therefore, for both additional datasets, these results
were, to the best of our knowledge, the highest in phishing detection research for these
accredited datasets.

Method 4, besides having the best performance in all proposed datasets, also demon-
strated avoiding "the curve of the dimensionality" and the high sparsity, as well as
providing relevant contextual information to the document vector representation through
its text embedding.

The results produced by these measurements were not only due to the excellent
performance of the classification algorithms, but also to the combined techniques of
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the feature engineering proposed process such as the text processing procedures (for
instance, the lemmatization step), improved learning techniques for resampling and
cross-validation, and hyper-parameter configuration estimation.

Thus, the proposed methods, their perspectives, and the entire plan of action demon-
strated a relevant performance when distinguishing between ham and phishing e-mails.
They also proved to be a substantial contribution to this area of research and to other
natural language processing research that need to address or avoid problems related to
VSM/DTM representation, once they generate a dense and low-dimension representation
for the evaluated texts.

5.2 Contributions

As presented, to properly detect phishing e-mails, we employed natural language process-
ing and machine learning techniques through feature engineering and text representation
actions, and strategies to perform division/folding during the classification algorithms
training, as well as to promote their performance tests.

Overall, this holistic approach proposed here aims to provide methods that obtain
relevant representations for each of the analyzed e-mails and uses them to correctly
identify them as legitimate or phishing e-mails. These representations are based on dense
vectors of reduced size, and they are used as input features for the chosen classification
algorithms which, in turn, train over them and generate models capable of performing
such detection. In this sense, from the results detailed in this thesis, the following
contributions are highlighted:

• We implemented pre-processing procedures to provide suitable and correct data
cleansing for text, together with structured strategies to handle the issues derived
from DTM representation.

• We proposed methods to provide effective and low dimensional text representation,
employed as optimized features able to typify structures, similarities, and other
relevant information for machine learning problems.

• We performed classification tasks to sort phishing against legitimate e-mails, using
ML algorithms fed with those features and trained using an established plan of
action, from which the models to duly detect phishing e-mails, or other sample
classes, are obtained.
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• Specifically for the area of phishing detection research, we presented a holistic
approach to identify this type of threat, extracting the most suitable settings from
each of the stages of our proposed methods.

5.3 Future Works

Future works will focus on approaches that propose the use of enhanced techniques for
online learning problems, namely phishing detection, addressing critical issues, such as
dynamic vocabulary building and the relationship among the terms in this dynamism, as
well as combining word embedding with techniques, such as Latent Dirichlet Allocation,
that can provide and structure more information about the text under analysis.

Another research question that is expected to be addressed in the context of phishing
detection with regard to word embedding refers to a better fit of pre-trained models for
new NLP tasks (database sharing among organizations), as well as actions regarding the
maintenance of prior knowledge contained in the representations employed.

We also aim to implement approaches to detect phishing based on deep learning,
language models, and transformers, considering that their employment can provide
advantages, for instance, using pre-trained models in other languages (different from the
initial database language).
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A
Methods Results

The cost of a thing is the amount of what I will call life which is

required to be exchanged for it, immediately or in the long run.

—HENRY DAVID THOREAU

In this Appendix, a detailed consolidation of the obtained results are described for
each of the chosen datasets.

The attained marks for Dataset 1 are presented from Section A.1 to Section A.10. The
attained marks for Dataset 2 and Dataset 3 are presented in Section A.11 and Section
A.12 respectively.

A.1 Method 1 - Approach based on Document-Term Ma-
trix without feature reduction techniques

This Method did not address the VSM/DTM posed problems. However, it was measured
to serve as a baseline/benchmark for the other method proposed in this thesis. Thus, due
to these problems, it demanded more processing capacity and time than a method that
attend to this questions (due to its higher complexity). Tables A.1 and A.2 express the
results achieved when using Stanza and WordNet, respectively, in Method 1. Table A.3
expresses the results attained when neither is used.
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A.1. METHOD 1 - APPROACH BASED ON DOCUMENT-TERM MATRIX WITHOUT
FEATURE REDUCTION TECHNIQUES

Table A.1 Method 1: BoW and DTM - using Stanza - 47,107 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9963 0.9964 0.9963 0.9963

Naive Bayes 0.9562 0.9565 0.9562 0.9563

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9948 0.9948 0.9948 0.9948

Decision Trees 0.9917 0.9917 0.9917 0.9916

Random Forest 0.9937 0.9938 0.9937 0.9937

XGBoost 0.9963 0.9964 0.9963 0.9963

MLP 0.9969 0.9969 0.9969 0.9969

Table A.2 Method 1: BoW and DTM - using WordNet - 48,435 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9593 0.9592 0.9593 0.9592

Naive Bayes 0.9635 0.9635 0.9635 0.9635

Logistic Regression 0.9937 0.9937 0.9937 0.9937

KNN 0.8675 0.8986 0.8675 0.8704

Decision Trees 0.9817 0.9818 0.9817 0.9818

Random Forest 0.9901 0.9901 0.9901 0.9901

XGBoost 0.9875 0.9876 0.9875 0.9874

MLP 0.9943 0.9943 0.9943 0.9943

Table A.3 Method 1: BoW and DTM without Lemmatization - 63,448 features
Algorithm Accuracy Precision Recall F1 score

SVM 0.8263 0.8614 0.8263 0.8084

Naive Bayes 0.9598 0.9598 0.9598 0.9598

Logistic Regression 0.9937 0.9937 0.9937 0.9937

KNN 0.8565 0.8927 0.8565 0.8598

Decision Trees 0.9750 0.9751 0.9750 0.9750

Random Forest 0.9849 0.9850 0.9849 0.9848

XGBoost 0.9817 0.9821 0.9817 0.9816

MLP 0.9943 0.9943 0.9943 0.9943
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A.2. METHOD 2 - THE PERSPECTIVE BASED ON CHI-SQUARE MEASURE

A.2 Method 2 - the perspective based on Chi-Square mea-
sure

For this Method 2 perspective, Chi-Square measure was used as dimensionality reduction
approach. Its prediction assessment values are available in Tables from A.4 to A.10. From
the original features in DTM columns weighted through the use of TF-IDF, a desired
number of features was selected based on this measure. The obtained marks to 2, 3, 5, 10,
25, 50, and 100 features are presented in descending order of their respective best scores.
They were obtained using Stanza in their pre-processing step.

The results attained through this perspective with one-hundred features are presented
in Table A.4. In this setting, it was obtained accuracy, precision, recall, F1 score, and
Specificity rates of 100%, which was, to the best of our knowledge, the highest result in
phishing detection researches using just 100 features. It was the best mark using Chi-
Square measure in Method 2. This highly prized measure was achieved using Random
Forest ML classification algorithm, with the entropy as function to measure the quality
of a split, ten as the number of features to consider when looking for the best split, ten
as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

Table A.4 Results of the Chi-Square Perspective of Method 2 - feature set with 100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9974 0.9974 0.9974 0.9974

Naive Bayes 0.9703 0.9708 0.9703 0.9700

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9984 0.9984 0.9984 0.9984

Decision Trees 0.9922 0.9922 0.9922 0.9922

Random Forest 1.0000 1.0000 1.0000 1.0000

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9984 0.9984 0.9984 0.9984

The results expressed in Table A.5 refer to those results attained when selecting fifty
features through the Chi-Square perspective. It achieved a percentage of 99.95% in
accuracy, precision, recall (sensitivity) and F1 Scores measures, using Random Forest1

1This measure was achieved using Random Forest ML classification algorithm, with the entropy as
function to measure the quality of a split, log250 as the number of features to consider when looking for
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and XGBoost2 algorithms.

Table A.5 Results of the Chi-Square Perspective of Method 2 - feature set with 50 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9963 0.9964 0.9963 0.9963

Naive Bayes 0.9755 0.9760 0.9755 0.9753

Logistic Regression 0.9969 0.9969 0.9969 0.9969

KNN 0.9969 0.9969 0.9969 0.9969

Decision Trees 0.9932 0.9932 0.9932 0.9932

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9990 0.9990 0.9990 0.9990

This perspective achieved the marks presented in Table A.6, when the classification
algorithms were fed with twenty-five features attributes. It attained a percentage of
99.58% in Precision, Recall, and F1 Score measures. These marks were also found using
Random Forest algorithm3.

Table A.6 Results of the Chi-Square Perspective of Method 2 - feature set with 25 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9927 0.9927 0.9927 0.9927

Naive Bayes 0.9703 0.9702 0.9703 0.9703

Logistic Regression 0.9922 0.9922 0.9922 0.9922

KNN 0.9948 0.9948 0.9948 0.9948

Decision Trees 0.9927 0.9927 0.9927 0.9927

Random Forest 0.9958 0.9958 0.9958 0.9958

XGBoost 0.9948 0.9948 0.9948 0.9948

MLP 0.9937 0.9938 0.9937 0.9937

the best split, 2 as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

2This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

3This measure was achieved using Random Forest ML classification algorithm, with the Gini as function
to measure the quality of a split, 2 as the minimum number of samples required to split an internal node,
and the rest of its parameters in the default setting.

84



A.2. METHOD 2 - THE PERSPECTIVE BASED ON CHI-SQUARE MEASURE

Using XGBoost4 algorithm, the variation with ten features reached an F1 Score of
98.95%. These results are expressed in Table A.7.

Table A.7 Results of the Chi-Square Perspective of Method 2 - feature set with 10 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9864 0.9865 0.9864 0.9864

Naive Bayes 0.9598 0.9598 0.9598 0.9597

Logistic Regression 0.9875 0.9876 0.9875 0.9874

KNN 0.9875 0.9875 0.9875 0.9875

Decision Trees 0.9875 0.9875 0.9875 0.9875

Random Forest 0.9864 0.9864 0.9864 0.9864

XGBoost 0.9896 0.9896 0.9896 0.9895

MLP 0.9854 0.9855 0.9854 0.9853

The tables A.8, A.9, and A.10 express the marks achieved selecting 5, 3 and 2 features
respectively. Using five features, the best mark (F1 score of 97.43%) was obtained
through the use of the KNN5 algorithm. Using three features, the best measure (an F1
score of 97.33%) was attained also employing the KNN6 algorithm. Using two features,
the best result (an F1 score of 97.07%) was attained through the use of KNN algorithm7.

In Table A.11, it is presented the results if the input features did not undergo a
lemmatization process. It is done selecting one-hundred features, since this setting of
Chi-Square perspective reached the best results for Method 2. It was noted that these
results were consistently lower than those in Table A.4.

4This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

5This measure was achieved through the use of KNN algorithm, with the number of neighbors as
one-hundred, the distance as weight, and the rest of its parameters in the default setting.

6This measure was achieved through the use of KNN algorithm, with the number of neighbors as
one-hundred, the distance as weight, and the rest of its parameters in the default setting.

7This measure was achieved through the use of KNN algorithm, with the number of neighbors as fifty,
the distance as weight, and the rest of its parameters in the default setting.
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Table A.8 Results of the Chi-Square Perspective of Method 2 - feature set with 5 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9744 0.9750 0.9744 0.9743

Naive Bayes 0.9426 0.9438 0.9426 0.9419

Logistic Regression 0.9724 0.9729 0.9724 0.9721

KNN 0.9744 0.9746 0.9744 0.9743

Decision Trees 0.9718 0.9719 0.9718 0.9717

Random Forest 0.9739 0.9743 0.9739 0.9737

XGBoost 0.9739 0.9743 0.9739 0.9738

MLP 0.9718 0.9724 0.9718 0.9716

Table A.9 Results of the Chi-Square Perspective of Method 2 - feature set with 3 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9718 0.9722 0.9718 0.9716

Naive Bayes 0.9619 0.9625 0.9619 0.9616

Logistic Regression 0.9729 0.9734 0.9729 0.9727

KNN 0.9734 0.9736 0.9734 0.9733

Decision Trees 0.9692 0.9694 0.9692 0.9691

Random Forest 0.9697 0.9702 0.9697 0.9695

XGBoost 0.9687 0.9691 0.9687 0.9685

MLP 0.9718 0.9725 0.9718 0.9716

Table A.10 Results of the Chi-Square Perspective of Method 2 - feature set with 2 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9687 0.9692 0.9687 0.9685

Naive Bayes 0.9656 0.9667 0.9656 0.9652

Logistic Regression 0.9703 0.9709 0.9703 0.9700

KNN 0.9708 0.9708 0.9708 0.9707

Decision Trees 0.9682 0.9684 0.9682 0.9680

Random Forest 0.9687 0.9691 0.9687 0.9685

XGBoost 0.9692 0.9695 0.9692 0.9690

MLP 0.6484 0.5963 0.6484 0.5111
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Table A.11 Results of the Chi-Square Perspective of Method 2 - without Lemmatization

Algorithm Accuracy Precision Recall F1 score

SVM 0.9724 0.9726 0.9724 0.9722

Naive Bayes 0.9426 0.9442 0.9426 0.9418

Logistic Regression 0.9724 0.9726 0.9724 0.9722

KNN 0.9593 0.9613 0.9593 0.9596

Decision Trees 0.9687 0.9687 0.9687 0.9686

Random Forest 0.9812 0.9813 0.9812 0.9812

XGBoost 0.9744 0.9749 0.9744 0.9743

MLP 0.9718 0.9719 0.9718 0.9717

A.3 Method 2 - Feature Selection: the perspective based
on Mutual Information measure

For this Method 2 perspective, Mutual Information measure was used as dimensionality
reduction approach. Its prediction assessment values are available in Tables from A.12 to
A.18. From the original features in DTM columns weighted through the use of TF-IDF, a
desired number of features was selected based on this measure. The obtained marks to 2,
3, 5, 10, 25, 50, and 100 features are presented in descending order of their respective
best scores. They were obtained using Stanza in their pre-processing step.

The results attained through this perspective selecting twenty-five features are pre-
sented in Table A.12. In this setting, it was obtained accuracy, precision, recall, F1 score,
and Specificity rates of 99.90%. It was the best mark using Mutual Information measure
in Method 2. This measure was achieved using Random Forest ML classification algo-
rithm, with the entropy as function to measure the quality of a split, two as the minimum
number of samples required to split an internal node, and the rest of its parameters in the
default setting.

The marks reached by Method 2 through the Mutual Information measure selecting
fifty features (Table A.13 attained measures of 99.84% for accuracy, precision, recall, and
F1 score. They were obtained using Random Forest8 and XGBoost9 algorithms.

8This measure was achieved through the Random Forest classification algorithm, with the entropy as
function to measure the quality of a split, log2 as the number of features to consider when looking for the
best split, three as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

9This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
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Table A.12 Results of the Mutual Information Perspective of Method 2 - feature set with 25
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9844 0.9844 0.9844 0.9843

Logistic Regression 0.9969 0.9969 0.9969 0.9969

KNN 0.9979 0.9979 0.9979 0.9979

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9969 0.9969 0.9969 0.9969

Table A.13 Results of the Mutual Information Perspective of Method 2 - feature set with 50
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9974 0.9974 0.9974 0.9974

Naive Bayes 0.9838 0.9839 0.9838 0.9838

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9974 0.9974 0.9974 0.9974

Table A.14 Results of the Mutual Information Perspective of Method 2 - feature set with 100
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9974 0.9974 0.9974 0.9974

Naive Bayes 0.9739 0.9743 0.9739 0.9738

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9969 0.9969 0.9969 0.9969

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9974 0.9974 0.9974 0.9974
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For one-hundred features, it was achieved an F1 Score of 99.84% through the use of
Random Forest10 and XGBoost11 algorithms.

Selecting ten features, the best mark of this perspective was an F1 score of 99.74%
through the use of KNN12 algorithm as exposed in Table A.15.

Table A.15 Results of the Mutual Information Perspective of Method 2 - feature set with 10
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9943 0.9943 0.9943 0.9943

Naive Bayes 0.9870 0.9871 0.9870 0.9869

Logistic Regression 0.9943 0.9943 0.9943 0.9943

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9943 0.9943 0.9943 0.9943

Random Forest 0.9963 0.9964 0.9963 0.9963

XGBoost 0.9953 0.9953 0.9953 0.9953

MLP 0.9943 0.9943 0.9943 0.9943

The tables A.16, A.17, and A.18 express the marks achieved through the variations
selecting 5, 3 and 2 features respectively. Using five features, the best result (an F1 score
of 99.32%) was attained through the use of the Decision Tree13 algorithm. Using three
features, the best result (an F1 score of 98.38%) was achieved through the use of the
Decision Tree14 algorithm. Using two features, the best result (an F1 score of 97.96%)
was reached employing the KNN15 algorithm.

the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

10This measure was achieved through the Random Forest classification algorithm, with the gini as
function to measure the quality of a split, one as the number of features to consider when looking for the
best split, two as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

11This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

12This measure was achieved through the use of KNN algorithm, with the number of neighbors as three,
the distance as weight, and the rest of its parameters in the default setting.

13This measure was achieved through the use of Decision Tree classification algorithm, with the entropy
as function to measure the quality of a split, one-hundred and twenty as the maximum depth, and the rest
of its parameters in the default setting.

14This measure was achieved through the use of the Decision Tree classification algorithm, with the
entropy as function to measure the quality of a split, eleven as the maximum depth, and the rest of its
parameters in the default setting.

15This measure was achieved through the use of the KNN algorithm, with the number of neighbors as
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Table A.16 Results of the Mutual Information Perspective of Method 2 - feature set with 5
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9917 0.9917 0.9917 0.9916

Naive Bayes 0.9849 0.9851 0.9849 0.9848

Logistic Regression 0.9911 0.9912 0.9911 0.9911

KNN 0.9917 0.9917 0.9917 0.9916

Decision Trees 0.9932 0.9932 0.9932 0.9932

Random Forest 0.9927 0.9928 0.9927 0.9927

XGBoost 0.9917 0.9917 0.9917 0.9916

MLP 0.9834 0.9834 0.9834 0.9834

Table A.17 Results of the Mutual Information Perspective of Method 2 - feature set with 3
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9760 0.9763 0.9760 0.9759

Naive Bayes 0.9656 0.9655 0.9656 0.9655

Logistic Regression 0.9755 0.9757 0.9755 0.9754

KNN 0.9833 0.9834 0.9833 0.9833

Decision Trees 0.9838 0.9839 0.9838 0.9838

Random Forest 0.9823 0.9823 0.9823 0.9822

XGBoost 0.9823 0.9826 0.9823 0.9822

MLP 0.9833 0.9836 0.9833 0.9832

Table A.18 Results of the Mutual Information Perspective of Method 2 - feature set with 2
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9760 0.9764 0.9760 0.9759

Naive Bayes 0.9765 0.9770 0.9765 0.9764

Logistic Regression 0.9739 0.9746 0.9739 0.9737

KNN 0.9797 0.9798 0.9797 0.9796

Decision Trees 0.9776 0.9781 0.9776 0.9774

Random Forest 0.9791 0.9792 0.9791 0.9791

XGBoost 0.9770 0.9776 0.9770 0.9769

MLP 0.9760 0.9765 0.9760 0.9758
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A.4 Method 3 - Feature Extraction: the perspective based
on Principal Component Analysis

For this Method 3 perspective, Principal Component Analysis was used as dimensionality
reduction approach. Its prediction assessment values are available in Tables from A.19 to
A.25. From the original features in DTM columns weighted through the use of TF-IDF, a
desired number of features was extracted based on principal components, projecting the
original feature set in a reduced low-dimension space. The obtained marks to 2, 3, 5, 10,
25, 50, and 100 features are presented in descending order of their respective best scores.
They were obtained using Stanza in their pre-processing step.

The results attained through this perspective selecting ten features are presented in
Table A.19. In this setting, it was obtained accuracy, precision, recall, F1 score, and
Specificity rates of 99.95%. It was the best mark using PCA in Method 3. This measure
was achieved employing the XGBoost classification algorithm, with the subsample as
0.6, the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4,
the minimum sum of instance weight needed in a child as 1, and the rest of its parameters
in the default setting.

Table A.19 Results of the PCA Perspective of Method 3 - feature set with 10 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9760 0.9764 0.9760 0.9759

Logistic Regression 0.9969 0.9969 0.9969 0.9969

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9969 0.9969 0.9969 0.9969

The mark of 99.95% in accuracy, precision, recall, and F1 score was also the best
mark of the variations using the PCA technique to extract 25, 50, and 100 features as
displayed in Tables A.20, A.21 and A.22, respectively. Extracting twenty-five features,
it was obtained using XGBoost16 algorithm. Extracting fifty features, it was reached

ten, the distance as weight, and the rest of its parameters in the default setting.
16This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
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through the use of the Logistic Regression17 algorithm. Extracting one-hundred features,
it was arrived employing the XGBoost18 algorithm.

Table A.20 Results of the PCA Perspective of Method 3 - feature set with 25 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9661 0.9670 0.9661 0.9663

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9990 0.9990 0.9990 0.9990

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9990 0.9990 0.9990 0.9990

Table A.21 Results of the PCA Perspective of Method 3 - feature set with 50 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9677 0.9683 0.9677 0.9678

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9979 0.9979 0.9979 0.9979

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9990 0.9990 0.9990 0.9990

The results presented in Tables A.23, A.24, and A.25 refer to the marks of the
variations using the PCA technique to extract 5, 3 and 2 features respectively. Extracting
five features, the best value was an F1 score of 99.84%. It was attained employing

the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

17This measure was achieved through the use of the Logistic Regression algorithm, with the inverse of
regularization strength as 1000, the norm used in the penalization as l2, and the rest of its parameters in the
default setting.

18This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.
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Table A.22 Results of the PCA Perspective of Method 3 - feature set with 100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9990 0.9990 0.9990 0.9990

Naive Bayes 0.9744 0.9751 0.9744 0.9745

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9979 0.9979 0.9979 0.9979

Decision Trees 0.9990 0.9990 0.9990 0.9990

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9990 0.9990 0.9990 0.9990

Decision Tree19 algorithm. Extracting three features, the best value was an F1 score of
99.74%. It was attained using KNN20 algorithm. Extracting two features, the best value
was an F1 score of 99.74%. It was attained through the use of the KNN21 algorithm.

Table A.23 Results of the PCA Perspective of Method 3 - feature set with 5 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9922 0.9922 0.9922 0.9922

Naive Bayes 0.9729 0.9738 0.9729 0.9726

Logistic Regression 0.9885 0.9885 0.9885 0.9885

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9984 0.9984 0.9984 0.9984

Random Forest 0.9979 0.9979 0.9979 0.9979

XGBoost 0.9974 0.9974 0.9974 0.9974

MLP 0.9927 0.9927 0.9927 0.9927

19This measure was achieved through the use of the Decision Tree classification algorithm, with the
entropy as function to measure the quality of a split, fifteen as the maximum depth, and the rest of its
parameters in the default setting.

20This measure was achieved through the use of the KNN algorithm, with the number of neighbors as
ten, the distance as weight, and the rest of its parameters in the default setting.

21This measure was achieved through the use of the KNN algorithm, with the number of neighbors as
ten, the distance as weight, and the rest of its parameters in the default setting.
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Table A.24 Results of the PCA Perspective of Method 3 - feature set with 3 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9828 0.9830 0.9828 0.9827

Naive Bayes 0.9515 0.9514 0.9515 0.9513

Logistic Regression 0.9828 0.9830 0.9828 0.9827

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9911 0.9911 0.9911 0.9911

Random Forest 0.9937 0.9937 0.9937 0.9937

XGBoost 0.9911 0.9912 0.9911 0.9911

MLP 0.9833 0.9834 0.9833 0.9833

Table A.25 Results of the PCA Perspective of Method 3 - feature set with 2 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9828 0.9830 0.9828 0.9827

Naive Bayes 0.9760 0.9766 0.9760 0.9758

Logistic Regression 0.9828 0.9830 0.9828 0.9827

KNN 0.9953 0.9953 0.9953 0.9953

Decision Trees 0.9911 0.9911 0.9911 0.9911

Random Forest 0.9937 0.9937 0.9937 0.9937

XGBoost 0.9901 0.9901 0.9901 0.9901

MLP 0.9880 0.9881 0.9880 0.9880
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A.5 Method 3 - Feature Extraction: the perspective based
on Latent Semantic Analysis

For this Method 3 perspective, Latent Semantic Analysis was used as dimensionality
reduction approach. Its prediction assessment values are available in Tables from A.26 to
A.32. From the original features in DTM columns weighted through the use of TF-IDF, a
desired number of features was extracted based on singular values, projecting the original
feature set in a reduced low-dimension space. The obtained marks to 2, 3, 5, 10, 25, 50,
and 100 features are presented in descending order of their respective best scores. They
were obtained using Stanza in their pre-processing step.

The results attained through this perspective with twenty-five features are presented
in Table A.26. In this setting, it was obtained accuracy, precision, recall, F1 score, and
Specificity rates of 100%, which was, to the best of our knowledge, the highest result
in phishing detection researches using just 25 features. It was the best mark using LSA
measure in Method 3. This highly prized measure was achieved through the XGBoost
classification algorithm, with the subsample as 0.6, the minimum split loss reduction -
gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of instance weight
needed in a child as 1, and the rest of its parameters in the default setting.

Table A.26 Results of the LSA Perspective of Method 3 - feature set with 25 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9734 0.9734 0.9734 0.9733

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9984 0.9984 0.9984 0.9984

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 1.0000 1.0000 1.0000 1.0000

MLP 0.9995 0.9995 0.9995 0.9995

The mark of 99.95% in accuracy, precision, recall and F1 score was the best mark
of the variations using LSA technique to extract 10, 50 and 100 features as displayed in
Tables A.27, A.28 and A.29, respectively. Extracting ten features, it was attained using the
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Random Forest22 and MLP23 algorithms. Extracting fifty features, it was reached through
the use of the Random Forest24 and XGBoost25 algorithms. Extracting one-hundred
features, it was achieved employing the XGBoost26 ML classification algorithm.

Table A.27 Results of the LSA Perspective of Method 3 - feature set with 10 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9870 0.9870 0.9870 0.9870

Logistic Regression 0.9969 0.9969 0.9969 0.9969

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9984 0.9984 0.9984 0.9984

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9995 0.9995 0.9995 0.9995

The results stated in Tables A.30, A.31 and A.32 refer to the marks attained using the
PCA technique to extract 5, 3 and 2 features respectively. Extracting five features, the
best mark (an F1 score of 99.79%) was obtained using Random Forest27 and XGBoost28

algorithms. Extracting three features, the best result (F1 score of 99.63%) was attained

22This measure was achieved using Random Forest ML classification algorithm, with the entropy as
function to measure the quality of a split, log2 as the number of features to consider when looking for
the best split, 10 as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

23This measure was achieved MLP classification algorithm, with the size of mini-batches as 20 and the
maximum number of iterations as 100, and the rest of its parameters in the default setting.

24This measure was achieved using Random Forest ML classification algorithm, with the entropy as
function to measure the quality of a split, log2 as the number of features to consider when looking for
the best split, 3 as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

25This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

26This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

27This measure was achieved using Random Forest ML classification algorithm, with the entropy as
function to measure the quality of a split, 2 as the minimum number of samples required to split an internal
node, and the rest of its parameters in the default setting.

28This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.
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Table A.28 Results of the LSA Perspective of Method 3 - feature set with 50 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9990 0.9990 0.9990 0.9990

Naive Bayes 0.9760 0.9761 0.9760 0.9760

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9979 0.9979 0.9979 0.9979

Decision Trees 0.9979 0.9979 0.9979 0.9979

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9990 0.9990 0.9990 0.9990

Table A.29 Results of the LSA Perspective of Method 3 - feature set with 100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9990 0.9990 0.9990 0.9990

Naive Bayes 0.9838 0.9839 0.9838 0.9838

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9984 0.9984 0.9984 0.9984

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9990 0.9990 0.9990 0.9990
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using KNN29 and Random Forest30 algorithms. Extracting two features, the best measure
(F1 score of 99.53%) was reached employing the XGBoost31 algorithm.

Table A.30 Results of the LSA Perspective of Method 3 - feature set with 5 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9943 0.9943 0.9943 0.9942

Naive Bayes 0.9817 0.9821 0.9817 0.9816

Logistic Regression 0.9948 0.9948 0.9948 0.9948

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9979 0.9979 0.9979 0.9979

XGBoost 0.9979 0.9979 0.9979 0.9979

MLP 0.9948 0.9948 0.9948 0.9948

Table A.31 Results of the LSA Perspective of Method 3 - feature set with 3 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9885 0.9886 0.9885 0.9885

Naive Bayes 0.9776 0.9782 0.9776 0.9774

Logistic Regression 0.9911 0.9912 0.9911 0.9911

KNN 0.9963 0.9963 0.9963 0.9963

Decision Trees 0.9937 0.9937 0.9937 0.9937

Random Forest 0.9963 0.9964 0.9963 0.9963

XGBoost 0.9953 0.9953 0.9953 0.9953

MLP 0.9901 0.9902 0.9901 0.9901

In Table A.33, it is presented the results if the input features did not undergo a
lemmatization process. It is done selecting twenty-five features, since this setting of LSA
perspective reached the best results for Method 3. It was noted that these results were
consistently lower than those in Table A.26.

29This measure was achieved through the use of KNN algorithm, with the number of neighbors as three,
the distance as weight, and the rest of its parameters in the default setting.

30This measure was achieved using Random Forest ML classification algorithm, with the gini as function
to measure the quality of a split, 2 as the minimum number of samples required to split an internal node,
and the rest of its parameters in the default setting.

31This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.
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Table A.32 Results of the LSA Perspective of Method 3 - feature set with 2 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9890 0.9892 0.9890 0.9890

Naive Bayes 0.9781 0.9788 0.9781 0.9779

Logistic Regression 0.9911 0.9912 0.9911 0.9911

KNN 0.9943 0.9943 0.9943 0.9943

Decision Trees 0.9906 0.9906 0.9906 0.9906

Random Forest 0.9948 0.9948 0.9948 0.9948

XGBoost 0.9953 0.9953 0.9953 0.9953

MLP 0.9917 0.9918 0.9917 0.9916

Table A.33 Results of the LSA Perspective of Method 3 - without Lemmatization

Algorithm Accuracy Precision Recall F1 score

SVM 0.9729 0.9728 0.9729 0.9728

Naive Bayes 0.9249 0.9287 0.9249 0.9231

Logistic Regression 0.9734 0.9734 0.9734 0.9733

KNN 0.9828 0.9828 0.9828 0.9828

Decision Trees 0.9739 0.9739 0.9739 0.9739

Random Forest 0.9880 0.9881 0.9880 0.9880

XGBoost 0.9917 0.9917 0.9917 0.9916

MLP 0.9765 0.9767 0.9765 0.9764
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A.6 Method 3 - Feature Extraction: the perspective based
on Latent Dirichlet Allocation

For this perspective of Method 3, Latent Dirichlet Allocation (LDA) was used as feature
extraction approach. Their prediction assessment values are displayed in Tables from
A.34 to A.40. From the topics extracted from the e-mails bodies, representations of the
e-mails were obtained in terms of the probability distribution of these topics, specific
feature vectors for each of them. The obtained marks to 2, 3, 5, 10, 35, 95, and 100
features are presented in descending order of their respective best scores. They were
obtained using WordNet in their pre-processing step.

Table A.34 presents the marks achieved through the LDA perspective extracting ten
topics. This approach obtained accuracy, precision, recall, and F1 score measures of
99.95%, FPR of 0%, and a neat specificity of 100%, which was the highest result attained
through this perspective. This highly prized measure was achieved through the XGBoost
classification algorithm, with the subsample as 0.6, the minimum split loss reduction -
gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of instance weight
needed in a child as 1, the rest of its parameters in the default setting.

Table A.34 Results of the LDA Perspective of Method 3 - feature set with 10 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9969 0.9969 0.9969 0.9969

Naive Bayes 0.9943 0.9943 0.9943 0.9943

Logistic Regression 0.9974 0.9974 0.9974 0.9974

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9974 0.9974 0.9974 0.9974

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9974 0.9974 0.9974 0.9974

The marks reached through this pespective selecting thirty-five topics (Table A.35)
were also the best attained by this perspective, as well as those presented in the Table
A.34. It obtained the same accuracy, precision, recall and F1 score measures of 99.95%
through the XGBoost32 classification algorithm.

32This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
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Table A.35 Results of the LDA Perspective of Method 3 - feature set with 35 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9844 0.9847 0.9844 0.9843

Naive Bayes 0.9650 0.9651 0.9650 0.9651

Logistic Regression 0.9896 0.9897 0.9896 0.9895

KNN 0.9974 0.9974 0.9974 0.9974

Decision Trees 0.9984 0.9984 0.9984 0.9984

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9844 0.9846 0.9844 0.9843

The results expressed in Table A.36 refer to the marks obtained when extracting
ninety-five input features attributes from the LDA model with 95 topics. It reached a
percentage of 99.90% in precision, recall (sensitivity) and F1 score measures, employing
the XGBoost 33 algorithm.

Table A.36 Results of the LDA Perspective of Method 3 - feature set with 95 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9958 0.9958 0.9958 0.9958

Naive Bayes 0.9744 0.9746 0.9744 0.9745

Logistic Regression 0.9984 0.9984 0.9984 0.9984

KNN 0.9979 0.9979 0.9979 0.9979

Decision Trees 0.9974 0.9974 0.9974 0.9974

Random Forest 0.9969 0.9969 0.9969 0.9969

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9979 0.9979 0.9979 0.9979

Extracting 100 features from the LDA model with 100 topics, it was achieved an F1
score of 99.84% through the use of the XGBoost34 and KNN35 algorithms.

An F1 score of 99.74% was attained when extracting three features from the LDA

instance weight needed in a child as 1, and the rest of its parameters in the default setting.
33This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,

the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

34This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
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Table A.37 Results of the LDA Perspective of Method 3 - feature set with 100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9948 0.9948 0.9948 0.9948

Naive Bayes 0.9713 0.9718 0.9713 0.9714

Logistic Regression 0.9958 0.9958 0.9958 0.9958

KNN 0.9984 0.9984 0.9984 0.9984

Decision Trees 0.9963 0.9964 0.9963 0.9963

Random Forest 0.9963 0.9964 0.9963 0.9963

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9901 0.9901 0.9901 0.9901

model with three topics. It was reached using the Decision Trees36 and Random Forest37

algorithms.

Table A.38 Results of the LDA Perspective of Method 3 - feature set with 3 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9922 0.9922 0.9922 0.9922

Naive Bayes 0.9859 0.9859 0.9859 0.9859

Logistic Regression 0.9880 0.9880 0.9880 0.9880

KNN 0.9969 0.9969 0.9969 0.9969

Decision Trees 0.9974 0.9974 0.9974 0.9974

Random Forest 0.9974 0.9974 0.9974 0.9974

XGBoost 0.9969 0.9969 0.9969 0.9969

MLP 0.9963 0.9964 0.9963 0.9963

For the variation obtained from the LDA model with five topics, it was achieved
a 99.69% F1 Score (0.24% of FPR, which was a specificity of almost 99.76%) in

instance weight needed in a child as 1, and the rest of its parameters in the default setting.
35This measure was achieved through the K-Nearest Neighbors classification algorithm, with the number

of neighbors as 100, the weight function as distance, and the rest of its parameters in the default setting.
36This measure was achieved through the Decision Trees classification algorithm, with the entropy as

function to measure the quality of a split, four as the depth maximum, and the rest of its parameters in the
default setting.

37This measure was achieved through the Random Forest classification algorithm, with the entropy as
function to measure the quality of a split, log22 as the number of features to consider when looking for the
best split, three as the minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.
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XGBoost38.

Table A.39 Results of the LDA Perspective of Method 3 - feature set with 5 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9870 0.9870 0.9870 0.9870

Naive Bayes 0.9833 0.9838 0.9833 0.9834

Logistic Regression 0.9870 0.9870 0.9870 0.9869

KNN 0.9958 0.9958 0.9958 0.9958

Decision Trees 0.9963 0.9963 0.9963 0.9963

Random Forest 0.9958 0.9958 0.9958 0.9958

XGBoost 0.9969 0.9969 0.9969 0.9969

MLP 0.9906 0.9906 0.9906 0.9906

For the variation obtained from the LDA model with two topics, it had achieved an
F1 Score of 99.59% using the Decision Tree algorithm.

Table A.40 Results of the LDA Perspective of Method 3 - feature set with 2 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9812 0.9812 0.9812 0.9812

Naive Bayes 0.9823 0.9823 0.9823 0.9822

Logistic Regression 0.9844 0.9845 0.9844 0.9843

KNN 0.9937 0.9938 0.9937 0.9937

Decision Trees 0.9958 0.9959 0.9958 0.9958

Random Forest 0.9937 0.9938 0.9937 0.9937

XGBoost 0.9948 0.9948 0.9948 0.9948

MLP 0.9812 0.9813 0.9812 0.9812

A.7 Method 4 - the perspective based on Word2Vec

For this perspective of Method 4, Word2Vec was used as feature generation approach.
Its prediction assessment values are displayed in Tables A.41, A.42 and A.43. From the

38This measure was obtained through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.
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remaining terms resulting after the pre-processing phase, representations of the e-mails
were expressed in a fixed vector space of 300 dimensions. They were obtained using
WordNet in their pre-processing step.

Table A.41 presents the marks achieved through the Word2Vec perspective with
vocabulary sourced from the pre-trained Google News corpus word vector model. This
approach attained accuracy, precision, specificity, sensitivity and F1 score measures of
100%, which was, to the best of our knowledge, the highest result in phishing detection
researches. This highly prized measure was achieved through the K-Nearest Neighbors
classification algorithm, with the number of neighbors as 1, the weight function as
uniform, and the rest of its parameters in the default setting. Except for the Naive Bayes
algorithm, all other algorithms achieved marks above 99%, of which three reached 99.90%
of precision rate (Logistic Regression, XGBoost, and Multilayer Perceptron).

Table A.41 Results of the Word2Vec Perspective of Method 4 - Vocabulary Source: pre-trained
Google News corpus word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9650 0.9654 0.9650 0.9648

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 1.0000 1.0000 1.0000 1.0000

Decision Trees 0.9901 0.9901 0.9901 0.9901

Random Forest 0.9979 0.9979 0.9979 0.9979

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9990 0.9990 0.9990 0.9990

Although it had not reached 100% accuracy, Method 4 through Word2Vec with vocab-
ulary built from the Dataset obtained excellent results in prediction assessments, Table
A.42. It achieved an F1 score of 99.95% (FPR of 0%, that is 100% of specificity) in four
out of eight used classification algorithms and 99.9% in 3 out of 8 of them. The four
best results are obtained from: Logistic Regression39, K-Nearest Neighbors40, Random

39This measure was achieved through the Logistic Regression classification algorithm, with the inverse
of regularization - C as 10, penalty as l1, and the rest of its parameters in the default setting.

40This measure was achieved through the K-Nearest Neighbors classification algorithm, with the number
of neighbors as 3, the weight function as distance, and the rest of its parameters in the default setting.
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Forest41 and MultLayer Perceptron42 algorithms. Due to vocabulary construction, this ap-
proach spent more time and consumed more processing power than the one implemented
from the pre-trained Google News corpus word vector model.

Table A.42 Results of the Word2Vec Perspective of Method 4 - Vocabulary Source: built from
the Dataset

Algorithm Accuracy Precision Recall F1 score

SVM 0.9990 0.9990 0.9990 0.9990

Naive Bayes 0.9666 0.9666 0.9666 0.9666

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9995 0.9995 0.9995 0.9995

Decision Trees 0.9990 0.9990 0.9990 0.9990

Random Forest 0.9995 0.9995 0.9995 0.9995

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9995 0.9995 0.9995 0.9995

In Table A.43, it is presented the results if the input features did not undergo a
lemmatization process. It is done with vocabulary sourced from the pre-trained Google
News corpus word vector model, since this setting of Word2Vec perspective reached the
best results for Method 4. Except for Naive Bayes and XGBoost, that had the same results,
the measurements obtained without Lemmatization and WordNet-based processing are
consistently lower than those in Table A.41.

A.8 Method 4 - the perspective based on FastText

For this perspective of Method 4, FastText was used as feature generation approach.
Its prediction assessment values are displayed in Tables 4.17, 4.15 and 4.16. From the
remaining terms resulting after the pre-processing phase, representations of the e-mails
were expressed in a fixed vector space of 300 dimensions. They were obtained using
WordNet in their pre-processing step.

41This measure was achieved through the Random Forest classification algorithm, with the entropy as
function to measure the quality of a split, log22 as the number of features to consider when looking for the
best split, 3 as minimum number of samples required to split an internal node, and the rest of its parameters
in the default setting.

42This measure was achieved through the Multilayer Perceptron (MLP) classification algorithm, with
the size of mini-batches as 20 and maximum number of iterations as 100 (hyperparameters), and the rest of
its parameters in the default setting
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Table A.43 Results of the Word2Vec Perspective of Method 4 - Vocabulary Source: built from
the Dataset - without Lemmatization

Algorithm Accuracy Precision Recall F1 score

SVM 0.9979 0.9979 0.9979 0.9979

Naive Bayes 0.9650 0.9655 0.9651 0.9648

Logistic Regression 0.9984 0.9984 0.9984 0.9984

KNN 0.9990 0.9990 0.9990 0.9990

Decision Trees 0.9885 0.9885 0.9885 0.9885

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9974 0.9974 0.9974 0.9974

For Method 4 through the FastText perspective, three variations were used: two of
them based on a vocabulary from pre-trained word vector models, and a third, whose
vocabulary was built directly from the Dataset 1 and its relations.

The first variation had its vocabulary sourced from the pre-trained Wikipedia word
vector model. These marks are exhibited in the table A.44. All algorithms obtained
accuracy values equal to or higher than 99.58%. The best results of this variation were
attained employing Logistic Regression43 and Random Forest44 algorithms.

The second variation had its vocabulary obtained from pre-trained Common Crawl
word vector model. Its marks are presented in the table A.45. Through this variation,
it was achieved an F1 score of 100% (as well as sensitivity, specificity, accuracy and
precision measures), which was the best measurement attained in our entire approach,
together with: the Method 4 through Word2Vec with vocabulary sourced from pre-trained
Google News corpus word vector model, the LSA perspective of Method 3, using twenty-
five features, and the Chi-Square perspective of Method 2, using one-hundred features.
This highly prized measure was achieved through the Support Vector Machine algorithm,
with the penalty parameter of the term - C as 100, the kernel type as linear, and the rest of
its parameters in the default setting.

The third variation had its vocabulary built from the Dataset 1. This approach also

43This measure was achieved through the Logistic Regression classification algorithm, with the inverse
of regularization - C as 1000, penalty as l1, and the rest of its parameters in the default setting.

44This measure was achieved through the Random Forest classification algorithm, with the entropy as
function to measure the quality of a split, sqrt as the number of features to consider when looking for the
best split, 3 as minimum number of samples required to split an internal node, and the rest of its parameters
in the default setting.
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Table A.44 Results of the FastText Perspective of Method 4 - Vocabulary Source: pre-trained
Wikipedia word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9984 0.9984 0.9984 0.9984

Naive Bayes 0.9974 0.9974 0.9974 0.9974

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9984 0.9984 0.9984 0.9984

Decision Trees 0.9958 0.9958 0.9958 0.9958

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9984 0.9984 0.9984 0.9984

MLP 0.9984 0.9984 0.9984 0.9984

Table A.45 Results of the FastText Perspective of Method 4 - Vocabulary Source: pre-trained
Common Crawl word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 1.0000 1.0000 1.0000 1.0000

Naive Bayes 0.9932 0.9932 0.9932 0.9932

Logistic Regression 0.9990 0.9990 0.9990 0.9990

KNN 0.9995 0.9995 0.9995 0.9995

Decision Trees 0.9974 0.9974 0.9974 0.9974

Random Forest 0.9984 0.9984 0.9984 0.9984

XGBoost 0.9990 0.9990 0.9990 0.9990

MLP 0.9995 0.9995 0.9995 0.9995
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obtained significant results in prediction assessments, expressed in Table A.46. It did not
reach an accuracy rate of 100%, but it was very close to this performance. It attained an
F1 score of 99.95% in 5 out of 8 classification algorithms (4 of them with a specificity of
100%), and its worst mark was 99.37%, in the Naive Bayes classification algorithm. Its
five best results were obtained from: Support Vector Machine45, Logistic Regression46,
K-Nearest Neighbors47, XGBoost48 and MultLayer Perceptron49 algorithms. Due to
vocabulary construction, this approach spent more time and consumed more processing
power than those implemented from pre-trained Wikipedia and Common Crawl word
vector models.

Table A.46 Results of the FastText Perspective of Method 4 - Vocabulary Source: built from the
Dataset

Algorithm Accuracy Precision Recall F1 score

SVM 0.9995 0.9995 0.9995 0.9995

Naive Bayes 0.9937 0.9938 0.9937 0.9937

Logistic Regression 0.9995 0.9995 0.9995 0.9995

KNN 0.9995 0.9995 0.9995 0.9995

Decision Trees 0.9969 0.9969 0.9969 0.9969

Random Forest 0.9990 0.9990 0.9990 0.9990

XGBoost 0.9995 0.9995 0.9995 0.9995

MLP 0.9995 0.9995 0.9995 0.9995

45This measure was achieved through the Support Vector Machine algorithm, with the penalty parameter
of the term - C as 100, the kernel type as rbf, the kernel coefficient - gamma as 0.001, and the rest of its
parameters in the default setting.

46This measure was achieved through the Logistic Regression classification algorithm, with the inverse
of regularization - C as 10, penalty as l2, and the rest of its parameters in the default setting.

47This measure was achieved through the K-Nearest Neighbors classification algorithm, with the number
of neighbors as 1, the weight function as uniform, and the rest of its parameters in the default setting.

48This measure was obtained through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

49This measure was achieved through the Multilayer Perceptron (MLP) classification algorithm, with
the size of mini-batches as 10 and maximum number of iterations as 50 (hyperparameters), and the rest of
its parameters in the default setting
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A.9 Method 4 - the perspective based on Doc2Vec

For this perspective of Method 4, Doc2Vec was used as feature generation approach.
Its prediction assessment values are displayed in Tables A.48 and A.47. From the
remaining terms resulting after the pre-processing phase, representations of the e-mails
were expressed in a fixed vector space of 300 dimensions. They were obtained using
WordNet in their pre-processing step.

Table A.41 presents the marks achieved through the Word2Vec perspective with
vocabulary sourced from pre-trained texts vectors, trained by the authors over a corpus
constructed from a dump of Wikipedia articles. This approach attained an F1 score of
99.84% in its best mark. This measure was achieved through the Logistic Regression
classification algorithm, with the inverse of regularization - C as 10, penalty as l2, and
the rest of its parameters in the default setting.

Table A.47 Results of the Doc2Vec Perspective of Method 4 - Vocabulary Source: pre-trained
Wikipedia document vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9979 0.9979 0.9979 0.9979

Naive Bayes 0.9223 0.9229 0.9223 0.9212

Logistic Regression 0.9984 0.9984 0.9984 0.9984

KNN 0.9718 0.9720 0.9718 0.9719

Decision Trees 0.9536 0.9535 0.9536 0.9535

Random Forest 0.9917 0.9918 0.9917 0.9916

XGBoost 0.9937 0.9938 0.9937 0.9937

MLP 0.9979 0.9979 0.9979 0.9979

The second variation of this perspective had its vocabulary built from the Dataset 1.
The results of this variation are expressed in Table A.48. Its best result was an F1 Score
of 99.48%, with an FPR of 0.24%. This measure was obtained through the XGBoost
classification algorithm, with the subsample as 0.6, the minimum split loss reduction -
gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of instance weight
needed in a child as 1, and the rest of its parameters in the default setting.
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Table A.48 Results of the Doc2Vec Perspective of Method 4 - Vocabulary Source: built from the
Dataset

Algorithm Accuracy Precision Recall F1 score

SVM 0.9823 0.9823 0.9823 0.9823

Naive Bayes 0.9619 0.9639 0.9609 0.9611

Logistic Regression 0.9896 0.9896 0.9896 0.9895

KNN 0.9948 0.9948 0.9948 0.9948

Decision Trees 0.9906 0.9906 0.9906 0.9906

Random Forest 0.9927 0.9927 0.9927 0.9927

XGBoost 0.9948 0.9948 0.9948 0.9948

MLP 0.9917 0.9917 0.9917 0.9916

A.10 consolidation

As stated in Chapter 4, based on the proposed approach’s prediction results when using
Dataset 1, expressed in Section 4.2 and in Appendix A, the charts presented in Fig 4.4 and
Fig A.1 were plotted to express the best perfomance marks, respectivelly the F1 Score
and the accuracy, in each variation of the proposed Method perspectives.

In these figures, Method 1 is represented by a gray color, Method 2 perspectives by
shades of yellow, Method 3 perspectives by shades of green, and Method 4 perspectives
by shades of blue, in which the perspective variations based on vectors obtained from the
dataset are always presented before those obtained from external corpora.

It was observed that Methods 2, 3, and 4, for at least one of the perspectives, achieved
100% in accuracy, precision, recall, and F1 score, i.e., the best performance of the
proposed approach. For Method 2, this was attained through the Chi-Square perspective,
using one hundred features, for Method 3, through the LSA perspective, using twenty-five
features, and for Method 4, through the Word2Vec (employing word vectors trained on
the Google News corpus) and through the FastText (employing word vectors trained on
Common Crawl dataset), both using 300-dimension English word vectors as features. For
Method 1, the best result was an F1 Score of 99.74%.

A.11 Obtained Results for Dataset 2

As stated in Chapter 4, we propounded an additional analysis of the proposed methods
for the perspectives that presented the best results for Dataset 1. It was performed using
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Figure A.1 Accuracy of the proposed methods in their respective perspectives in each tested
feature amount variations - Dataset 1.

Figure A.2 Accuracy of the proposed methods in their respective perspectives in each tested
feature amount variations - Dataset 1.
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Dataset 2 and Dataset 3. Section A.11 presents the results for Dataset 2.
The perspectives/methods used in this analysis were Chi-Square Perspective of

Method 2, the LSA Perspective of Method 3, the Word2Vec Perspective of Method
4, and the FastText Perspective of Method 4, since they attained F1 scores and accuracy
of 100%.

The Chi-square perspective of Method 2 attained the results expressed in Table A.49.
It best mark was an F1 score of 99.71%, employing the Decision Tree50 and Random
Forest51 algorithms.

Table A.49 Results for Dataset 2 - Employing Method 2 through the Chi-Square perspective with
100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9964 0.9964 0.9964 0.9964

Naive Bayes 0.9724 0.9775 0.9724 0.9736

Logistic Regression 0.9956 0.9956 0.9956 0.9956

KNN 0.9927 0.9927 0.9927 0.9927

Decision Trees 0.9971 0.9971 0.9971 0.9971

Random Forest 0.9971 0.9971 0.9971 0.9971

XGBoost 0.9964 0.9964 0.9964 0.9964

MLP 0.9956 0.9956 0.9956 0.9956

The LSA perspective of Method 3 reached the results expressed in Table A.50. It best
mark was an F1 score of 99.64%, employing the SVM52 algorithm.

The Word2Vec perspective of Method 4 (with its vocabulary built from the Dataset 2)
reached the results expressed in Table A.58. This approach obtained accuracy, precision,
recall, F1 score, and Specificity rates of 99.854%, which are, to the best of our knowledge,
the best results in phishing detection research employing Dataset 2. These highly prized

50This measure was achieved through the Decision Trees classification algorithm, with the gini as
function to measure the quality of a split, four as the depth maximum, and the rest of its parameters in the
default setting.

51This measure was achieved through the Random Forest classification algorithm, with the gini as
function to measure the quality of a split, auto as the number of features to consider when looking for the
best split, 2 as minimum number of samples required to split an internal node, and the rest of its parameters
in the default setting.

52This measure was achieved through the Support Vector Machine algorithm, with the penalty parameter
of the term - C as 1,000, the kernel type as linear, the kernel coefficient - gamma as 0.001, and the rest of
its parameters in the default setting.
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Table A.50 Results for Dataset 2 - Employing Method 3 through the LSA perspective with 25
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9971 0.9964 0.9964 0.9964

Naive Bayes 0.9782 0.9788 0.9782 0.9784

Logistic Regression 0.9956 0.9956 0.9956 0.9956

KNN 0.9956 0.9956 0.9956 0.9956

Decision Trees 0.9906 0.9906 0.9906 0.9906

Random Forest 0.9956 0.9957 0.9956 0.9956

XGBoost 0.9956 0.9957 0.9956 0.9956

MLP 0.9956 0.9957 0.9956 0.9956

measures were achieved through the SVM53, Logistic Regression54, or MLP55 algorithms.

Table A.51 Results for Dataset 2 - Employing Method 4 through the Word2Vec perspective with
word vector built over Dataset 2

Algorithm Accuracy Precision Recall F1 score

SVM 0.9985 0.9985 0.9985 0.9985

Naive Bayes 0.9433 0.9533 0.9433 0.9465

Logistic Regression 0.9985 0.9985 0.9985 0.9985

KNN 0.9964 0.9964 0.9964 0.9964

Decision Trees 0.9906 0.9905 0.9906 0.9905

Random Forest 0.9956 0.9956 0.9956 0.9956

XGBoost 0.9949 0.9949 0.9949 0.9949

MLP 0.9971 0.9971 0.9971 0.9971

The Word2Vec perspective of Method 4 (with its vocabulary sourced from the pre-
trained Google News corpus word vector model) reached the results expressed in Table
A.52. This approach obtained F1 score of 99.71%. This measure were achieved through

53This highly prized measure was achieved through the Support Vector Machine algorithm, with the
penalty parameter of the term - C as 100, the kernel type as linear, and the rest of its parameters in the
default setting.

54This highly prized measure was achieved through the Logistic Regression algorithm, with the inverse
of regularization - C as 1000, penalty as l2, and the rest of the parameters in the default setting.

55This highly prized measure was achieved through the MLP algorithm, with mini-batch size as 40 and
the maximum number of iterations as 100 (hyperparameters), and the rest of the parameters in the default
setting.

113



A.11. OBTAINED RESULTS FOR DATASET 2

the Logistic Regression56 and MLP57 algorithms.

Table A.52 Results for Dataset 2 - Employing Method 4 through the Word2Vec perspective with
vocabulary Source from pre-trained Google News corpus word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9964 0.9964 0.9964 0.9964

Naive Bayes 0.9157 0.9427 0.9157 0.9237

Logistic Regression 0.9971 0.9971 0.9971 0.9971

KNN 0.9935 0.9934 0.9935 0.9934

Decision Trees 0.9680 0.9675 0.9680 0.9677

Random Forest 0.9876 0.9878 0.9876 0.9873

XGBoost 0.9913 0.9914 0.9913 0.9911

MLP 0.9971 0.9971 0.9971 0.9971

The FastText perspective of Method 4 (with its vocabulary built from the Dataset 2)
reached the results expressed in Table A.53. This approach obtained accuracy, precision,
recall, F1 score, and Specificity rates of 99.78%, which are, to the best of our knowledge,
the best results in phishing detection research employing Dataset 2. This measure were
achieved through the SVM58 and Logistic Regression59 algorithms.

The FastText perspective of Method 4 (with its vocabulary sourced from pre-trained
Common Crawl word vector model) reached the results expressed in Table A.54. This
approach obtained F1 score of 99.71%. This measure were achieved through the MLP60

algorithm.

56This highly prized measure was achieved through the Logistic Regression algorithm, with the inverse
of regularization - C as 1000, penalty as l2, and the rest of the parameters in the default setting.

57This highly prized measure was achieved through the MLP algorithm, with mini-batch size as 10 and
the maximum number of iterations as 100 (hyperparameters), and the rest of the parameters in the default
setting.

58This measure was achieved through the Support Vector Machine algorithm, with the penalty parameter
of the term - C as 1,000, the kernel type as rbf, and the rest of its parameters in the default setting.

59This measure was achieved through the Logistic Regression algorithm, with the inverse of regulariza-
tion - C as 100, penalty as l2, and the rest of the parameters in the default setting.

60This highly prized measure was achieved through the MLP algorithm, with mini-batch size as 10 and
the maximum number of iterations as 100 (hyperparameters), and the rest of the parameters in the default
setting.
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Table A.53 Results for Dataset 2 - Employing Method 4 through the FastText perspective with
word vector built over Dataset 2

Algorithm Accuracy Precision Recall F1 score

SVM 0.9978 0.9978 0.9978 0.9978

Naive Bayes 0.9157 0.9441 0.9157 0.9239

Logistic Regression 0.9978 0.9978 0.9978 0.9978

KNN 0.9956 0.9956 0.9956 0.9956

Decision Trees 0.9891 0.9891 0.9891 0.9891

Random Forest 0.9949 0.9949 0.9949 0.9949

XGBoost 0.9949 0.9949 0.9949 0.9949

MLP 0.9956 0.9956 0.9956 0.9956

Table A.54 Results for Dataset 2 - Employing Method 4 through the FastText perspective with
word vector sourced from Common Crawl word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9949 0.9949 0.9949 0.9949

Naive Bayes 0.9542 0.9580 0.9542 0.9556

Logistic Regression 0.9964 0.9963 0.9964 0.9964

KNN 0.9920 0.9921 0.9920 0.9919

Decision Trees 0.9767 0.9764 0.9767 0.9765

Random Forest 0.9869 0.9870 0.9869 0.9866

XGBoost 0.9920 0.9921 0.9920 0.9919

MLP 0.9971 0.9971 0.9971 0.9971
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A.12 Obtained Results for Dataset 3

As stated in Chapter 4, we propounded an additional analysis of the proposed methods
for the perspectives that presented the best results for Dataset 1. It was performed using
Dataset 2 and Dataset 3. Section A.12 presents the results for Dataset 3.

The perspectives/methods used in this analysis were Chi-Square Perspective of
Method 2, the LSA Perspective of Method 3, the Word2Vec Perspective of Method
4, and the FastText Perspective of Method 4, since they attained F1 scores and accuracy
of 100%.

The Chi-square perspective of Method 2 attained the results expressed in Table A.55.
It best mark was an F1 score of 97.51%, employing the Random Forest61 algorithm.

Table A.55 Results for Dataset 3 - Employing Method 2 through the Chi-Square perspective with
100 features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9744 0.9742 0.9744 0.9734

Naive Bayes 0.9540 0.9571 0.9540 0.9552

Logistic Regression 0.9726 0.9720 0.9726 0.9720

KNN 0.9586 0.9586 0.9586 0.9554

Decision Trees 0.9610 0.9602 0.9610 0.9605

Random Forest 0.9755 0.9750 0.9755 0.9751

XGBoost 0.9651 0.9641 0.9651 0.9636

MLP 0.9720 0.9714 0.9720 0.9715

The LSA perspective of Method 3 reached the results expressed in Table A.56. It best
mark was an F1 score of 97.71%, employing the XGBoost62 algorithm.

The Word2Vec perspective of Method 4 (with its vocabulary built from the Dataset
3) reached the results expressed in Table A.57. This approach obtained an F1 score of
98.12%. This measure was achieved through the XGBoost63 algorithm.

61This measure was achieved through the Random Forest classification algorithm, with the gini as
function to measure the quality of a split, log2 as the number of features to consider when looking for
the best split, 10 as minimum number of samples required to split an internal node, and the rest of its
parameters in the default setting.

62This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
instance weight needed in a child as 1, and the rest of its parameters in the default setting.

63This measure was achieved through the XGBoost classification algorithm, with the subsample as 0.6,
the minimum split loss reduction - gamma as 0.5, the maximum depth of a tree as 4, the minimum sum of
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Table A.56 Results for Dataset 3 - Employing Method 3 through the LSA perspective with 25
features

Algorithm Accuracy Precision Recall F1 score

SVM 0.9720 0.9714 0.9720 0.9712

Naive Bayes 0.7065 0.9156 0.7065 0.7597

Logistic Regression 0.9674 0.9665 0.9674 0.9662

KNN 0.9761 0.9761 0.9761 0.9761

Decision Trees 0.9645 0.9634 0.9645 0.9636

Random Forest 0.9773 0.9769 0.9773 0.9769

XGBoost 0.9773 0.9770 0.9773 0.9771

MLP 0.9726 0.9720 0.9726 0.9718

Table A.57 Results for Dataset 3 - Employing Method 4 through the Word2Vec perspective with
word vector built on Dataset 3

Algorithm Accuracy Precision Recall F1 score

SVM 0.9790 0.9788 0.9790 0.9789

Naive Bayes 0.9016 0.9378 0.9016 0.9120

Logistic Regression 0.9703 0.9699 0.9703 0.9701

KNN 0.9668 0.9676 0.9668 0.9671

Decision Trees 0.9616 0.9627 0.9616 0.9621

Random Forest 0.9785 0.9781 0.9785 0.9781

XGBoost 0.9814 0.9811 0.9814 0.9812

MLP 0.9738 0.9732 0.9738 0.9733
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The Word2Vec perspective of Method 4 (with its vocabulary sourced from pre-trained
Common Crawl word vector model) reached the results expressed in Table A.54. This
approach obtained F1 scoreof 98.28%. This measure was achieved through the MLP64

algorithm.

Table A.58 Results for Dataset 3 - Employing Method 4 through the Word2Vec perspective with
its vocabulary sourced from pre-trained Google News word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9796 0.9799 0.9796 0.9797

Naive Bayes 0.8008 0.9107 0.8008 0.8330

Logistic Regression 0.9808 0.9808 0.9808 0.9808

KNN 0.9808 0.9808 0.9808 0.9808

Decision Trees 0.9418 0.9418 0.9418 0.9418

Random Forest 0.9738 0.9734 0.9738 0.9729

XGBoost 0.9808 0.9805 0.9808 0.9804

MLP 0.9825 0.9832 0.9825 0.9828

The FastText perspective of Method 4 (with its vocabulary built from the Dataset 3)
reached the results expressed in Table A.59. This approach obtained F1 score of 97.88%.
This measure was achieved through the KNN65 algorithm.

The FastText perspective of Method 4 (with its vocabulary sourced from pre-trained
Common Crawl word vector model) reached the results expressed in Table A.60. This
approach obtained accuracy, precision, recall, F1 score, and Specificity rates of 98.43%,
which are, to the best of our knowledge, the best results in phishing detection research
employing Dataset 3. These highly prized measures were achieved through the the
SVM66 algorithm.

instance weight needed in a child as 1, and the rest of its parameters in the default setting.
64This measure was achieved through the MLP algorithm, with mini-batch size as 10 and the maximum

number of iterations as 100 (hyperparameters), and the rest of the parameters in the default setting.
65This measure was achieved through the use of KNN algorithm, with the number of neighbors as one,

the weights as uniform, and the rest of its parameters in the default setting.
66This measure was achieved through the Support Vector Machine algorithm, with the penalty parameter

of the term - C as 100, the kernel type as linear, and the rest of its parameters in the default setting.
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Table A.59 Results for Dataset 3 - Employing Method 4 through the FastText perspective with
word vector built over Dataset 3

Algorithm Accuracy Precision Recall F1 score

SVM 0.9779 0.9776 0.9779 0.9777

Naive Bayes 0.6605 0.8955 0.6605 0.7219

Logistic Regression 0.9773 0.9770 0.9773 0.9771

KNN 0.9790 0.9788 0.9790 0.9788

Decision Trees 0.9441 0.9454 0.9441 0.9447

Random Forest 0.9668 0.9665 0.9668 0.9650

XGBoost 0.9755 0.9751 0.9655 0.9749

MLP 0.9750 0.9757 0.9750 0.9753

Table A.60 Results for Dataset 3 - Employing Method 4 through the FastText perspective with
its vocabulary sourced from pre-trained Common Crawl word vector model

Algorithm Accuracy Precision Recall F1 score

SVM 0.9843 0.9843 0.9843 0.9843

Naive Bayes 0.6045 0.8864 0.6045 0.6744

Logistic Regression 0.9843 0.9842 0.9843 0.9842

KNN 0.9732 0.9732 0.9732 0.9732

Decision Trees 0.9458 0.9465 0.9458 0.9461

Random Forest 0.9715 0.9710 0.9715 0.9703

XGBoost 0.9819 0.9817 0.9819 0.9817

MLP 0.9808 0.9819 0.9808 0.9811
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