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Abstract
A performance analysis of the literature of diffuser-augmented horizontal-axis turbines
is presented. A collection of 155 articles in the area is analyzed and classified. The
work sample is divided into 16 main research branches for discussion. Power assessment
metrics are proposed based on power coefficient and tip-speed-ratio, to quantify and
compare all diffuser-augmented turbines in a unified, meaningful manner. Design sug-
gestions for the development of diffuser-augmented turbines are pointed out based on the
analysis of 73 cases. A power coefficient assessment on the work sample presented that,
in 58% of the cases, the diffuser-augmented turbines surpassed the power coefficient
of scaled bare turbines of the same diameter. A tip-speed-ratio assessment presented
that almost 90% of the diffuser-augmented turbines developed a narrower operational
interval. Five high-performing diffuser-augmented turbines are discussed, highlighting
their methodologies and contributions. Caution is advised when coupling a diffuser to
a bare turbine with an already high power coefficient; the diffuser-augmented turbine,
especially in those cases, should be designed employing a simultaneous diffuser-rotor
optimization.

Keywords: Performance Analysis. Systematic analysis. Diffuser-augmented turbines.
Wind turbines. Hydrokinetic turbines. Tidal turbines. Renewable energy. Horizontal-axis
turbines. Power coefficient.



Resumo
O trabalho apresenta uma análise do desempenho de turbinas de eixo horizontal equipadas
com difusores. Um conjunto de 155 artigos na área é analisado e classificado. A amostra
de trabalho é dividida entre as 16 principais linhas de pesquisa para discussão. Métricas
de análise de desempenho são propostas baseadas em coeficiente de potência e velocidade
de ponta de pá, para quatificar e comparar todas as turbinas de eixo horizontal com difusor
em uma métrica unificada. Sugestões de projeto para o desenvolvimento de um difusor
para turbinas de eixo horizontal são apresentadas com base na análise de 73 casos. A
análise de coeficiente de potência sobre a amostra apresenta que, em 58% dos casos, as
turbinas com difusor apresentaram um coeficiente de potência maior que a turbina sem
difusor ampliada para o mesmo diâmetro. A análise sobre a velocidade de ponta de pá
mostra que em quase 90% dos casos as turbinas apresentaram uma diminuição no seu
intervalo operacional após a adição do difusor. Cinco turbinas de alto desempenho são
discutidas, realçando suas metodologias e contribuições. Cuidado é necessário ao utilizar
difusores com turbinas de alto desempenho; especialmente nesses casos, o conjunto
turbina-difusor deve ser projetado simultâneamente levando em consideração que vão
operar juntos.

Palavras-chave: Análise de desempenho. Análise sistemática. Turbinas com difusor.
Turbinas eólicas. Turbinas hidrocinéticas. Turbinas de maré. Energia renovável. Turbinas
de eixo horizontal. Coeficiente de potência.
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Nomenclature

Geometry

Ad Diffuser’s maximum cross-sectional area m2

Ai Diffuser’s inlet area m2

Ar Rotor’s spanning area m2

Dd Diffuser’s maximum diameter m

Di Diffuser’s inlet diameter m

Dr Rotor’s diameter m

Ln Nozzle’s length m

Le Diffuser’s expansion length m

L Total diffuser length m

s Multi-turbine system’s gap m

θ Diffuser’s expansion angle ◦

Performance and flow

Cb
p Bare turbine’s power coefficient -

Cp Diffuser-augmented turbine’s power coefficient -

Cd
p Diffuser-augmented turbine’s actual power coefficient -

Ed Diffuser enhancement -

Pbare Power generated by bare turbine W

Pdi f f user Power generated by diffuser-augmented turbine W



T SR Tip-speed-ratio -

U Unperturbed flow’s mean speed m/s

u Flow’s axial velocity -

ω Rotor’s angular speed rad/s

ρ Fluid density kg/m3
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1 Introduction

The increased demand for a more renewable energy grid has motivated the
development of the research on wind, tidal, and hydrokinetic turbines technology. For
long, prevailed the thought that increasing the rotor diameter was the only feasible way
to increase the turbine’s power output. Disproving that, research on diffuser-augmented
turbines has been gaining popularity in recent years as an alternative and promising
method. Due to this sudden surge in the area, the literature developed in a non-uniform
and spread way.

In recent years, many authors, explored the subject. They classified and provided
examples on different types of diffuser-augmented turbines, presenting an idea of the
state-of-the-art [5]. Nevertheless, they were mostly concerned about explaining the
subject broadly, with several examples of different technologies, lacking a summarized
collection approaching all results achieved in the field. More cohesive guidance is needed
for ease of finding what was already tested and what research path one should take. The
present work uses data from already published works. This data is analyzed to gather
results over several different areas that wouldn’t be possible otherwise, when performing
an analysis of a single article. This macro approach permits the deduction of several
unanswered or unverified questions, for example: What are the effects of the diffuser on
the turbine’s tip-speed-ratio? Which is the better option: increasing the rotor diameter or
using a diffuser? What areas are open and interesting for research?

In that manner, the present work provides the following content:

• discussion of the systematic methodology employed in the literature;

• bibliometric data on topic;

• presentation of relevant parameters;

• main research branches and their most important findings;

• performance assessment of diffuser-augmented turbines found in the literature.
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2 Source mining

The present work aims to swift through all relevant works published on diffuser-
augmented horizontal turbines, or as close as possible to that. From there, it presents all
of these works’ information in a retraceable form. Further, a study is performed, not only
over isolated samples but also over the whole collection of articles gathered.

A systematic approach to the bibliography is adopted. The present chapter sum-
marizes the method, but the interested reader may obtain more information from Cronin
et al. [34] and Pagani et al. [117].

The step-by-step method performed is presented below:

• Determination of the research topics and database.

• Selection of proper search keywords and filtering of all relevant data.

• Classification, reading, and analysis of articles.

• Sorting of the gathered data and presentation of findings.

The research topic is defined as “Diffuser-augmented horizontal-axis turbines."
Availability and content are two important factors to be considered about the database;
different areas will be better evaluated in different databases, with different aims. One
can also opt for using more than one database and joining all information together. The
primary database of choice here was the Scopus [46]: vast and with an outstanding
advanced search engine. It does not limit itself to Elsevier but also contemplates more
than 5000 other publishers, a large part of its content coming from Elsevier, Springer,
Wiley-Blackwell, Taylor & Francis, and IEEE [45].

Due to the developing nature of the topic, the initial search has to be as broad
as possible. The literature of diffuser-augmented turbines often mixes with the one
of hydrokinetic turbines, wind turbines, tidal turbines, along with others. Table 2.1
summarizes the keywords employed to perform the search. The full set of keywords
are presented in Appendix A, that includes the used wildcards, boolean operators, and
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proximity operators. The search resulted in 426 documents on the English language, of
which 155 were used in the elaboration of the present work.

Table 2.1 – Summary of database search keywords.

Any of those terms Along with any of those sets

Diffuser Hydro, wind, tidal, current or marine turbine
Shroud Horizontal-axis turbine
Concentrator Augmented turbine
Ducts
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3 Bibliometric data

Bibliometric data can be compiled from the work sample to show the state of the
research in the area. The analysis covers data about co-authorship networks, publishing
trends, most relevant journals and word occurrence analysis.

Figure 3.1(a) presents the main publication types in the subject, where 60% are
journal articles. Due to the amount of articles published, Figure 3.1(b) highlights the
journals with most articles published in the field, along with their CiteScore in 2019.

0 5 10 15 20 25 30

Energies
Energy

Wind engineering
Energy conversion and management

Journal of wind eng. and ind. aerodynamics
Ocean engineering
Renewable energy

Number of published ar�cles

CiteScore

3.8
9.9
1.8

13.6
4.9
4.8

11.2

60%

40%

Ar�cle
Conference paper(a) (b)

Figure 3.1 – Publication trends. (a) Distribution of work sample by type. (b) Journals
with most articles published in the field, along with their CiteScore in 2018.

There is a trend of publications being spread out between different journals. The
main published journals consist of only 36% of all journal published articles. No correla-
tion was found between the CiteScore and the number articles published in that specific
journal. That information points to the fact that authors tend to seek more fitting journals
for their topic. This is evident on Ocean Engineering, with only articles on hydrokinetic
and Tidal turbines; Journal of Wind Engineering and Industrial Aerodynamics and Wind
Engineering, with most of the recent wind-focused technologies on diffuser-enhanced
turbines.

Figure 3.2 introduces how the number of publications on diffuser-enhanced
turbines changed through the years. It is noticeable that the area received relatively few
attention from researchers until 2010, when its growth began. Works from 1972 to 1991
were mostly from Igra, Foreman, Gilbert and Fletcher, whom have done exhaustive
numerical and experimental works on different diffuser designs.
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Figure 3.2 – Number of published works on diffuser-enhanced horizontal-axis turbines
per year from 1970 to 2020.

The effects of the significant rise in the field after 2010 can be better observed
during a co-authorship analysis, done on VOSviewer, software version 1.6.10 [148]. For
that, two time intervals will be analyzed: before the rise, between 2000 and 2010, and
right after the rise, between 2011 and 2014. In that manner we can observe the immediate
implications of this sharp rise in the field.

Figure 3.3 presents an author network on those two time periods: between 2000
and 2010, on Figure 3.3(a), and between 2011 and 2014, on Figure 3.3(b). Each circle
size indicates the number of published articles by an author. The connecting lines indicate
an article published by the two authors. In Figure 3.3, we can observe different research
groups, each of those groups isolated in their respective clusters. The focus point is on
how the people working in the area changed between the two time periods.

In the first time period, most of the research papers published on the topic of
diffuser-enhanced turbines, are due to the Japanese group working from the Research
Institute for Applied Mechanics, in Kyushu University (red network of Ohya et al.).
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In the period between 2011 and 2014, despite the most active group still remaining
the same, several different research groups, in different countries, have published on
diffuser-enhanced turbines. Above that, none of the researchers marked in green, who
published between 2000 and 2010, had any publications in the area between 2011 and
2014. Nevertheless, the increase on publications on the field as a whole is evident when
comparing the big circles’ diameters.

Figure 3.3 – Change of research groups after 2010 based on co-authorship analysis,
highlighting groups whom remained and those who changed. (a) Research
groups between 2000 and 2010. (b) Research groups between 2011 and
2014. Made with VOSviewer [148].

Another relevant point to present is the main publishing authors in the field.
Figure 3.4 summarizes the authors with most publications. As an added reference, the
works with most citations published in the field are listed in Table 3.1; the recent works
with most citations (from 2010 to 2020) are listed in Table 3.2.
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Figure 3.4 – Authors with most works published on diffuser-enhanced turbines, with
added time period in which those publications occurred.
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Table 3.1 – Most cited works on diffuser enhanced turbines

Authors Year Title Source #Citations #Reference

Ohya et al. 2008 Development of a shrouded wind turbine with a
flanged diffuser

Journal of Wind Eng. and Ind.
Aerodynamics

180 [106]

Ohya and Karasudani 2010 A shrouded wind turbine generating high output
power with wind-lens technology

Energies 178 [105]

Abe et al. 2005 Experimental and numerical investigations of
flow fields behind a small wind turbine with a
flanged diffuser

Journal of Wind Eng. and Ind.
Aerodynamics

137 [3]

Igra, O. 1981 Research and development for shrouded wind
turbines

Energy Conversion and Man-
agement

133 [65]

Van Bussel 2007 The science of making more torque from wind:
Diffuser experiments and theory revisited

Journal of Physics: Confer-
ence Series

130 [146]

Abe and Ohya 2004 An investigation of flow fields around flanged
diffusers using CFD

Journal of Wind Eng. and Ind.
Aerodynamics

118 [4]

Gilbert and Foreman 1983 Experiments with a diffuser augmented model
wind turbine

Journal of Energy Resources
Technology, Transactions of
the ASME

100 [51]

Matsushima et al. 2006 Characteristics of a highly efficient propeller
type small wind turbine with a diffuser

Renewable energy 82 [97]

Grant et al. 2008 Urban wind energy conversion: The potential of
ducted turbines

Renewable energy 77 [1]

Howey et al. 2011 Design and performance of a centimetre-scale
shrouded wind turbine for energy harvesting

Smart Materials and Struc-
tures

68 [62]

Lawn, C. J. 2003 Optimization of the power output from ducted
turbines

Journal of Power and Energy 67 [87]

Foreman et al. 1978 Diffuser augmentation of wind turbines Solar energy 62 [49]
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Table 3.2 – Most cited recent works on diffuser enhanced turbines, from 2010 to 2020.

Authors Year Title Source #Citations #Reference

Ohya and Karasudani 2010 A shrouded wind turbine generating high output
power with wind-lens technology

Energies 178 [105]

Howey et al. 2011 Design and performance of a centimetre-scale
shrouded wind turbine for energy harvesting

Smart Materials and Struc-
tures

68 [62]

Gaden et al. 2010 A numerical investigation into the effect of dif-
fusers on the performance of hydro kinetic tur-
bines using a validated momentum source tur-
bine model

Renewable energy 56 [50]

Jafari and Kosasih 2014 Flow analysis of shrouded small wind turbine
with a simple frustum diffuser with computa-
tional fluid dynamics simulations

Journal of Wind Engineering
and Industrial Aerodynamics

54 [67]

Bontempo and Manna 2014 Performance analysis of open and ducted wind
turbines

Applied Energy 53 [19]

Kosasih and Tondelli 2012 Experimental study of shrouded micro-wind tur-
bine

Procedia Engineering 48 [81]

Bontempo and Manna 2016 Effects of the duct thrust on the performance of
ducted wind turbines

Energy 47 [20]

Vermillion et al. 2014 Model-based plant design and hierarchical con-
trol of a prototype lighter-than-air wind energy
system, with experimental flight test results

IEEE Transactions on Control
Systems Technology

46 [152]

Kishore et al. 2013 Small-scale wind energy portable turbine
(SWEPT)

Journal of Wind Engineering
and Industrial Aerodynamics

46 [79]

Aranake et al. 2015 Computational analysis of shrouded wind tur-
bine configurations using a 3-dimensional
RANS solver

Renewable energy 42 [11]

Vaz et al. 2015 An extension of the Blade Element Momentum
method applied to Diffuser Augmented Wind
Turbines

Energy Conversion and Man-
agement

38 [10]
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The results of a word occurrence analysis are shown in Figure 3.5, which brings
the most recurrent author-keywords. It is worth to point out an inclination to wind
turbines in the area, but also the growing trend in the last years of applying the diffuser
technology to hydrokinetic turbines. Some of the most studied designs also appear, such
as flanges, airfoils and optical diffusers (An explanation on those will follow on Chapter
5). It can also be noted how the topic of multi-rotor system and design optimization
started to grow, while the topic of airfoil design declined.
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Figure 3.5 – Number of occurrences of main author keywords on three time periods.
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4 Parameters introduction

The parameters description is separated into two parts:

• The current chapter—Parameters introduction. The parameters presented are often
employed in the literature of diffuser-augmented turbines and referred to in the
discussion of the main research branches.

• Chapter 6—Metrics of assessment. Parameters are proposed to analyze the perfor-
mance of several diffuser-augmented turbines under a unified metric.

To better discuss the results found across several studies, Figure 4.1 illustrates
commonly employed parameters on a diffuser-augmented turbine schematic.

Figure 4.1 – Illustration of parameters on a diffuser-augmented turbine; cross-section
view.
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Concerning geometry: D stands for diameter, L for total length, Ln for nozzle
length, Le for expansion length, h for flange height, and θ for expansion angle. The
equation that describes the relevant areas is defined as

Ak = π(Dk/2)2, (4.1)

where k = i,r,d, standing for inlet, rotor and diffuser’s maximum cross-section, respec-
tively.

The flow’s axial velocity, u, is the flow’s velocity profile at the turbine’s center-
line; it is parameterized by U , the flow’s mean speed. The Multi-turbine system’s gap,
s, is used when discussing the arrangement of several diffuser-augmented turbines; it
represents the distance between two diffusers in the arrangement and will be illustrated
further on Section 5.12.

The bare turbine’s power coefficient, Cb
p, is the ratio between the power generated

by the bare turbine and the power available to it,

Cb
p =

Pbare
1
2ρU3Ar

. (4.2)

where ρ represents the working fluid’s density and U represents the flow’s mean speed.

The diffuser-augmented turbine’s power coefficient, Cp, is the metric which
most authors adopt. It represents the ratio between the power generated by the diffuser-
augmented turbine and the power available to the bare turbine,

Cp =
Pdi f f user
1
2ρU3Ar

. (4.3)

The present work proposes an analysis of diffuser-augmented turbines that takes
into consideration the diffuser size. To achieve that, the diffuser-augmented turbine’s
actual power coefficient, Cd

p, is defined. That parameter is the ratio between the power
generated by the diffuser-augmented turbine and the power available to the diffuser’s
area,

Cd
p =

Pdi f f user
1
2ρU3Ad

. (4.4)

The tip-speed-ratio, T SR, is defined as

T SR =
ωR
U

, (4.5)
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where ω is the rotor’s angular speed and R is the rotor’s radius.

The power coefficient and tip-speed-ratio are the two main dimensionless pa-
rameters to the study of horizontal-axis turbines. Nonetheless, the full-scale Reynolds
number is essential to a complete description of the framework in terms of dimensionless
parameters.

The maximum amount of energy that an extraction device in an open flow can
gather is quantified as approximately 59.3% of the available energy. This is commonly
known as the Betz Limit [17], meaning that a bare turbine would never achieve a Cb

p

value higher than 0.593.

Instead of “Betz limit", the term “Betz limit for bare turbines" will be used
throughout the present work. The specification is made because, when applied to systems
with elements that alter the flow field but do not extract energy themselves, the energy
extraction limit is higher than 0.593 [69]. Such systems, for example, are diffuser-
augmented turbines. Due to that, each turbine will present a different limit than the
established for bare turbines. This information is presented earlier so that the reader does
not feel uncomfortable with reported Cd

p values that may seem illogical.
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5 Research branches

The presented articles focused on different subjects, all aiming to increase the
diffuser-augmented turbine’s power coefficient or change its characteristics. Table 5.1
lists some of the most relevant, recent or frequent topics researched. The following
sections discuss each one of those entries and the findings in that field.

Table 5.1 – Research branches of interest with their respective reference page.

Topic Reference page

Theoretical framework 30

Acoustics 33
Airfoil-shaped diffuser 34
Blade-tip effects 36
Building-augmented wind turbines 37
Curved diffuser 39
Diffuser length 41
Flanges 42
Flow mixers 43
Frontal nozzles 46
Multi-slots 47
Multi-turbine system 49
Simultaneous diffuser-rotor design 50
Twin-rotors on diffusers 51
Yaw and shear flow effects 52

Other diffuser concepts 53

5.1 Theoretical framework
The pioneering work on the theoretical aspects of diffuser-augmented turbines is

due to Lilley and Rainbird [89]. In 1956, they used the one-dimensional flow theory to
evaluate the performance and design of diffuser-augmented turbines, or ducted windmills,
as called on the article. They concluded that there is no increase in the power coefficient
if the diffuser’s exit area is used instead of the rotor’s swept area in the Cp definition.



Chapter 5. Research branches 31

Foreman et al. [49], in 1978, and their other previous works [52, 116], presented a simpler
model to be used, in comparison with the one from Lilley and Rainbird. All the authors
mentioned above corroborated their models with experimental results.

De Vries [37], in 1979, discussed several concepts for diffusers and the theory
behind horizontal-axis wind turbines. He coupled numerical analysis to one-dimensional
theory to evaluate the effects of a diffuser around a turbine, not considering wake rotation.

A common feature in models of [89, 49, 52, 116, 37] was the necessity of
empirical parameters. Experimental data are necessary to provide information on the
parameters for each geometry and situation. Only then it is feasible to predict the
diffuser’s power coefficient and efficiency parameters.

5.1.1 Analytical models

Jamieson [68, 69], in 2008 and 2009, and Van Bussel et al. [146], in 2007, based
themselves on a modified version of the standard actuator disk model [23] to account
for the presence of a diffuser influencing the flow field. Those models led to a new limit
theory, not constraining themselves to the open-flow case of the Betz limit, showing
that diffuser-augmented turbines can reach power coefficients higher than 0.593. Van
Bussel et al. [146] developed a model to work only on ideal scenarios to evaluate the
performance of diffuser-augmented turbines. Their model assumes continuity between
the velocities upstream and downstream of the diffuser, as in conventional wind turbines.
That assumption makes the model restricted to compact diffusers. Jamieson [68, 69]
included the expansion angle and a factor to account for base pressure at the rotor’s
zero thrust condition. The diffuser efficiency term was provided for non-ideal systems,
considering flow separation, viscous loss, and base pressure variations through the
diffuser.

Both articles [146, 68, 69] reported that, in an ideal system, 8/9 would be the
optimal loading factor. However, for non-ideal systems, Lawn [87] and Foreman et al.
[49] concluded that the optimal loading factor changes based on the loading coefficient,
back pressure coefficient, and diffuser performance. The zero-thrust and compact diffuser
assumptions are often not desired, and thus semi-analytical models are used to rectify
those shortcomings.
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5.1.2 Semi-analytical models

Gaden and Bibeau [50], in 2010, proposed a momentum source model and
validated it against the Betz theory. They investigated the diffuser size and expansion
angle, defining the point that marks the decrease in power production due to the flow
separation.

Shives and Crawford [136, 137], in 2011, used the model proposed by Lawn [87]
and developed an empirical method to evaluate the performance of diffuser-augmented
turbines using RANS-CFD. Khamlaj and Rumpfkeil [77], in 2017, extended on the same
model to provide a semi-empirical method that can be used to decide a preliminary
design for a diffuser-augmented turbine.

Bontempo and Manna [18, 19, 20], from 2013 to 2016, extended on the non-linear
actuator disk theory of Conway [33]. They worked with diffuser-augmented turbines
and provided an exact solution for the inviscid axisymmetric flow generated, using a
superposition of ring vortices arranged over the diffuser surface and on the wake. They
presented a semi-analytical solution to the problem that takes into account the diffuser-
rotor non-linear interaction and can handle wake rotation, radial load distributions, and
single-body diffuser shapes.

Vaz et al. [43], in 2014, extended on the Blade Element Momentum Method
to propose a one-dimensional model that takes into account the blade geometry at
low computational costs. Vaz and Wood [149], in 2016, developed a model for rotor
optimization considering the diffuser’s presence.

Liu and Yoshida [93], in 2015, extended on the generalized actuator disk model
proposed by Jamieson [68]. They included the effective diffuser efficiency, Glauert
corrections, and established an empirical model to predict the axial velocity profile to
include an approximation of the axial velocity at the rotor plane.

Michał et al. [101, 102], in 2016, compared the fully resolved rotor model with the
actuator disk model in the rotor design point. They verified the results using experimental
tests. The actuator disk model worked as an approximation for rotor-diffuser geometry
optimization.

Baratchi et al. [15], in 2019, modified the actuator line method to account for
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diffuser-augmented turbines, corroborating the results with experimental tests. The
method is based on the so-called projection factor, an ad hoc parameter which has to be
calibrated. The same authors [16], in 2020, coupled the blade element method with the
actuator disk theory. The method did not capture vortex related phenomena, as expected
by the authors, but provided accurate measurements of the diffuser-augmented turbine’s
power and thrust coefficients.

Bontempo and Manna [21], in 2020, used axial momentum theory to model an
ideal diffuser-augmented turbine, taking into account the 2D nature of the flow and
the blade-tip gap. Using the model corrections, they also verified the optimum loading
factor of 8/9 for a diffuser-augmented turbine. The power coefficient of an actuator disk
in a simple convergent-divergent duct was proven to have the same limit as the Betz
disk: 16/27, or 0.593. However, for diffuser-augmented turbines, the power coefficient
obtained can exceed not only a bare turbine of the same size but also the Betz limit for
bare turbines. They found that taking into consideration the effects of blade-tip gaps with
1% of the rotor diameter did not significantly alter the results.

Several other works used the actuator disk model, coupled with a diffuser to
evaluate various parameters through numerical analysis and could be used as a reference
for the interested reader on further applications of the technique [8, 39, 40, 85, 107, 139,
153].

5.2 Acoustics
Wind turbines are an environmental noise source, and the addition of a diffuser is

still an open topic for discussion. The effects of the blade tip vortices and the wide-array
of geometries are still to be evaluated.

Hashem et al. [58], in 2017, performed an aero-acoustic computational study to
investigate the noise produced by ‘Wind-Lens’ turbines, referring to the set of experiments
performed by Ohya et al. [105] in 2010. They analyzed results in terms of the Overall
Sound Pressure Level, OASPL. They reported lower sound pressure for the bare wind
turbine, an averaged OASPL of 53 dB, when compared to their diffuser-augmented
counterparts, ranging from an averaged OASPL of 62 to 78 dB. The Ci shape being the
one reported for 62 dB. Those results were measured at a distance of 0.9m.
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Avallone et al. [12, 13], in 2019 and 2020, studied the effects of tip-clearance ratio
on the aeroacoustics of diffuser-augmented turbines. They reported a strong correlation
between tip clearance ratio and the sound pressure on the far-field, reaching up to a 10
dB increase.

Dighe et al. [42], in 2020, made experiments on diffuser-augmented turbines in
yawed conditions and measured their sound pressure with a circular array of microphones
normal to the plane of rotation. They reported varying sound pressure at different radial
points, but no significant difference due to the yawed condition.

Some articles reported noise reduction from the addition of diffuser around a
turbine due to the weakening of blade-tip vortices but did not provide measurements
[2, 108].

5.3 Airfoil-shaped diffuser
As often thought, the primary way to increase a diffuser’s potential is to increase

its outlet area. To reduce the diffuser’s length and keep the same outlet area, higher
expansion angles are employed. A usual problem in this situation is the boundary
layer separation from the inner diffuser’s surface, due to the high adverse pressure
gradients. This phenomenon decreases the diffuser-augmented turbine’s power coefficient.
A common technique employed, to avoid this separation, is changing the diffuser shape
from conical to an airfoil one, as illustrated in the transition of Figures 5.1(a) and 5.1(c)
to 5.1(b) and 5.1(d). The following items discuss the main findings on airfoils applied to
diffuser-augmented turbines by different authors.
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(a) (b)

(c) (d)
Figure 5.1 – Characteristics of conical and airfoil-shaped diffusers in cross-section views.

Conical diffuser in (a) and airfoil-shaped diffuser in (b). Illustration of
conical and airfoil-shaped diffuser velocity distributions in (c) and (d).

5.3.1 Influence of the airfoil shape on the power coefficient

Fletcher [47], in 1981, performed wind tunnel experiments to compare the effects
of three different high-lift airfoil profiles: NACA 4418 and two LIEBECK variations,
L1003 and LA2566. No increase in the maximum Cp was found, although the NACA
4418 airfoil presented a smoother Cp curve with a wider operation interval. Aranake et al.
[9, 11], from 2013 to 2015, compared the following airfoils: E423, S1223, NACA 0006
and FX 74-CL5-140MOD. The S1223 high lift airfoil attained a significant amplification
of mass flow, proportional to the increase in radial-lift force, evidencing the usefulness
of diffusers at low flow speeds.
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5.3.2 Influence of the airfoil shape on the pressure distribution

Civalier et al. [30], in 2011, tested the effects of different airfoils on a floating,
lighter than air, diffuser-augmented turbine. They tested four different variations of the
NACA profile. The study concluded with two main shapes for different purposes: one
for generating a higher lift and the other for a higher power coefficient. Venters et al.
[150], in 2013, compared the following airfoils: CH 10-48-13 CLmax, E423 and FX
74-CL5-140MOD. They opted for the E423, which resulted in the highest lift coefficient.

5.3.3 Influence of the airfoil shape on the axial velocity distribution

Mehmood et al. [99, 98], in 2012, studied the NACA 0016 and NACA 0018 at
different lengths and expansion angles. They reported the velocity distribution obtained
for each setup, together with optimal lengths and angles.

5.3.4 Optimization of the airfoil profile

Coiro et al. [32, 35, 36], from 2013 to 2016, conducted a numerical airfoil shape
optimization. They obtained a 6.1% increase in the Cp over the turbine using the original
diffuser shape. Another optimization was proposed by Song et al. [138], in 2019, working
on the DT0814 hydrofoil. They evaluated how the profile’s thickness affected the Cp and
found varied increases or decreases depending on the associated expansion angle.

Leloudas et al. [88], in 2020, developed a modular optimization for a diffuser
with an aerodynamic shape. The numerical analysis had as fixed parameters the throat
diameter and volume of the baseline diffuser design. The optimization resulted in a
diffuser named SD1, which produced a mean-velocity speed-up ratio of 1.9, a 23%
increase over the baseline diffuser.

5.4 Blade-tip effects
Blade-tip vortices have been of great concern when designing wind turbines. For

proper rotor design, it is useful to know the behavior of those vortices in the presence of
a diffuser encasing the turbine; also how the blade-tip gap affects the Cd

p.
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Takashi et al. [142], in 2012, used three-dimensional large-eddy simulations
with moving boundary techniques. They observed that the blade-tip vortices induce
counter-rotating vortices on the diffuser’s inner surface, which helps to weaken them. For
compact diffusers, with a length of approximately 0.2 Dr, the blade-tip vortices produced
were stronger than those of the bare wind turbine. That occurred due to accelerated inflow,
especially near the inner surface of the diffuser. The same was qualitatively evidenced on
experimental tests [2].

Saleem and Kim [129], in 2019, performed three-dimensional numerical analysis
at multiple flow speeds for tip gaps ranging from 1 to 5% of the diffuser’s throat radius.
They observed a decrease in the Cd

p at higher tip gaps for flow speeds ranging from 10 to
20 m/s. For 25 m/s flow speeds, an 2.5% increment in Cd

p was observed as the tip gap
increased from 1 to 3%.

Lipian et al. [91], in 2020, analyzed velocity fields on the rotor plane, and how the
diffuser modifies blade-tip losses. They developed a tip loss correction, using empirical
parameters, for models based on the blade element theory. This correction modifies the
circulation distribution in the wake by adjusting the rotor solidity.

5.5 Building-augmented wind turbines
Horizontal-axis wind turbines are often employed in urban environments sur-

rounded by buildings that generate similar effects to a diffuser encasing, increasing the
turbine’s power coefficient. Figure 5.2 illustrates two cases of building-augmented wind
turbines.
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(b)(a)

Figure 5.2 – Illustration of building-augmented horizontal-axis turbines. Bahrain Towers
on (a) and The Strata on (b).

Mertens [100], in 2002, went through several wind turbine designs and their
feasibility to be installed around buildings. He reminded of the concern about noise
emissions those turbines created and addressed the turbine’s positioning, which should
be ideally on top or sides of the building.

Watson et al. [158], in 2007, performed a numerical analysis of a turbine inside a
long diffuser and compared with one-dimensional theory predictions, showing agreement
of both. They furthered their work with a numerical analysis of the same setup mounted
on a rooftop, which could not be replicated by the same analytical theory. Heo et al. [60],
in 2016, performed a numerical analysis on a 110 kW turbine between two buildings.
The tests considered varying wind speeds and inflow angles. The buildings presented the
same increase in inflow that is observed on a conventional diffuser-augmented turbine.
Higher aerodynamic power was reported for inflow angles between -30◦ and 20◦ for the
building-augmented turbine, when compared to its bare counterpart. For more extreme
inflow angles, the performance of the building-augmented turbine sharply decreased. The
methodology employed on both of those works might be useful for those with similar
goals.

Grant et al. [55, 1], in 2004 and 2008, developed a mathematical model to
study the performance of turbines inside a duct to be installed on rooftops. The concept
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presented directional sensitivity. They evaluated the energy output of two ducted turbines
and compared them with the one from a bare turbine. The data was gathered over a year,
accounting for seasonal variation. The bare turbine’s annual total was 156 kWh while the
two ducted modules generated 147 and 219 kWh.

Petkovic et al. [118], in 2014, performed a numerical analysis using an adaptive
neuro-fuzzy method. They designed two buildings with a wind turbine between them
and reported the effects of the building’s shape on the turbine’s power coefficient.

5.6 Curved diffuser
On most diffuser designs, there is no need to prioritize lift generation. Due to

that, an airfoil-shaped diffuser can be simplified into a curved thin shape, as from Figure
5.3(a) to 5.3(b). Those curved diffusers (or sometimes called lens/optical diffusers) are
often easier to manufacture and attain similar results.

The recirculation zone, detailed in Figure 5.3(d), makes the curved diffuser
hydrodynamic-similar to an airfoil. However, that is not always the case, as depending on
the curve shape, the recirculation zone may be inexistent. Nonetheless, the upper surface
of the curve does not disrupt the flow in an unwanted manner.



Chapter 5. Research branches 40

(a) (b)

(c) (d)

Recirculation zone

Figure 5.3 – Characteristics of curved diffuser in cross-section views. Airfoil-shaped
diffuser in (a) and curved diffuser in (b). Illustration of airfoil-shaped and
curved diffuser velocity profiles in (c) and (d), with detail to the recirculation
zone that makes the curve shape hydrodynamic-similar to an airfoil profile;
reused and edited with permission [41].

Ohya and Karasudani [105], in 2010, analyzed four different curved diffuser
configurations. The configuration C achieved better results over the others, presenting a
Cd

p of 0.54. All tests were experimental, and the proposed Cii configuration was chosen
to be manufactured and tested on a wind farm.

Nasution and Purwanto [103], in 2011, used numerical tools to compare diffusers
with a conical, curved, and an optimized shape. The cross-sections were shaped following
the upper surface of the NACA 5807 airfoil. They analyzed the local velocity curves along
the diffuser’s axis, showing an increase of 65% in the axial velocity of the optimized
shape over the conical one. It is essential to remember, when reading the article, that
those values are overrated since the curve induces a reduction in the diffuser throat area.
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Foote and Agarwal [48], in 2012, proposed a method of curve optimization based
on the position displacement of several control points. They analyzed 13 different shapes
of different sizes and lengths. On the same line, Amer et al. [6], in 2013, proposed a set
of parameters to be changed to create a range of diffuser shapes to be tested. Results
revealed that values of Dd/Dr between 1.5 and 2 produced the highest increases in axial
velocity. They also evaluated that convex diffuser shapes are more efficient than conical
or concave ones. In both analyses [48, 6], only numerical tools were used.

5.7 Diffuser length
To increase the diffuser-augmented turbine’s performance, it is common to search

for ways to increase the Ad/Ar ratio.

The most direct method to do that is by increasing the diffuser’s expansion length,
Le. This method does not generate an impact on the expansion angle, thus lessening the
possibility of flow separation.

Multiple authors performed numerical analyses to evaluate the effects of the
diffuser’s length. While maintaining the same expansion angle and inlet diameter, they
observed how the diffuser’s length influenced the flow’s maximum axial velocity, umax, in
a standalone diffuser. Matsushima et al. [97] and Ohya et al. [109], both in 2006, observed
a 30% increase on umax when increasing the Le/Di ratio from 0.5 to 2; increasing the
length further produced only marginal results.

In the same manner, Buehrle et al. [22], in 2013, and Shi et al. [135], in 2015,
performed tests on diffuser-augmented turbines. Buehrle et al. [22] verified a 10%
increase on umax when increasing the Le/Di ratio from 0.25 to 0.75. Shi et al. [135]
verified increases lower than 10% on umax, but not properly specified by the authors;
those changes were evaluated for the 0.5−2.0 Le/Di ratio interval.

On a diffuser-augmented turbine with a curved diffuser, Ohya and Karasudani
[105], in 2010, observed a 20−25% increase in the Cp for an increase in L/Dr from 0.1
to 0.2; those gains stabilized for lengths above 0.2Dr.
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5.8 Flanges
Flanges (or sometimes called brims), as illustrated by Figure 5.4(a), disrupt the

flow above the diffuser, increasing the turbulence in its wake. It creates recirculation
zones, illustrated by Figures 5.4(b) and 5.4(c), that promote a decrease of pressure behind
the diffuser, thus increasing the mass flow through the inlet.

Flange

1
2

Recirculation
 zones

(a)

(c)

(b)

Figure 5.4 – Illustration of flange aspects in cross-section views. Detail to flange on
curved diffuser in (a). Illustration of velocity field and recirculation zones
from axisymmetric numerical analysis in (b), reused and edited with permis-
sion [78]. Particle-image velocimetry of recirculation zones in (c), reused
with permission [25].

The flange’s usefulness, and the influence of its length on the Cd
p, has been a

topic studied in experimental works by several authors [105, 82, 61]. They all reported
increases in the power coefficient at varying degrees. Numerical analyses have been
performed to observe the effect of the flange’s height in more detail [4, 38, 67, 97]. The
power coefficient increased for flange height intervals between 0−0.15Dr, whereafter, it
only decreased or increased marginally.
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Setoguchi et al. [131], in 2004, studied the static pressure distributions inside
the diffuser in different configurations for varying flange’s heights. Lipian et al. [92], in
2015, performed a study in the same vein but observing axial velocity profiles.

Olasek et al. [115], and Kulak et al. [84], in 2016, used PIV techniques to observe
the flow inside three diffusers with flanges that had the same geometry but differed in size.
The obtained velocity distribution in the radial direction was compared with numerical
analysis results and pneumatic measurements.

Kardous et al. [73, 72] and Chaker et al. [25], in 2013 and 2016, observed two
counter-rotating vortices at the diffuser’s wake, created due to the presence of a flange.
This phenomenon is illustrated on Figure 5.4(c). They observed how those vortices
changed according to the flange height. Toshimitsu et al. [145], in 2008, observed two
vortices at their flanged diffuser-augmented turbine’s wake. They reported that one vortex
near the flange acts to increase the inlet flow while another vortex further downstream
acts as a blockage.

Another topic that has been receiving recent attention is the flange’s inclination.
Heikal et al. [59], in 2018, achieved a Cd

p of 0.57 at a flange inclination angle of 10
degrees, about 28% higher when compared to the Cd

p of the diffuser-augmented turbine
with a vertical flange. Kale et al. [70], in 2013, reported the changes in the diffuser’s
exit pressure due to a flange inclination of 10 degrees. El-Zahaby et al. [44], in 2017,
evaluated the maximum axial velocity for flange inclination angles ranging from -25 to
25 degrees.

One other innovation, in 2015, was Hu and Wang’s [63] self-adaptive flanges,
which promoted a controlled re-energization of the flow inside the diffuser. No improve-
ments in the Cd

p were observed when compared to a rigid flange. However, self-adaptive
flanges reduced the wind load acting on the diffuser by 34.5%.

5.9 Flow mixers
Flow mixers are classified as features applied to the diffuser to modify the flow

in the diffuser-augmented turbine’s wake. Arguably flanges would also be considered
flow mixers. However, due to the research interest on flanges, a separate section was
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dedicated to them.

5.9.1 Control plates

Figure 5.5 – Illustration of control plates on diffuser, reused with permission [108].

Ohya [108], in 2014, proposed the use of control plates, Figure 5.5, coupled
to the body of the diffuser to create a more structured vortex flow. Based on a study
on rectangular bodies, it was evidenced that the flow between those controlled plates
created a stronger vortex shedding. In opposition to the usual practices on aerodynamic
machinery, this effect is desirable to diffuser-augmented turbines. The low-pressure
region it creates behind the turbine increases the mass flow that passes through the
rotor. The effects of a different number of control plates and their influence in the power
coefficient were analyzed. The configuration with six control plates achieved the highest
increase in the Cd

p.

Watanabe et al. [157], in 2019, tested using numerical analysis and experiments
several configurations of more practical control plates. They verified the same results as
Ohya. The configuration with six control plates achieved a maximum increase in the Cd

p

of 3.8% over the configuration without control plates.
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5.9.2 Lobed diffusers

Flow

(a) (b)

Lobe

Figure 5.6 – Lobed diffusers viewed from the back. Scheme in (a), reused and edited
with permission [57]. Lobed diffuser by FloDesign, in (b), courtesy of Ewan
O’Sullivan [123].

Lobed diffusers, or lobed ejectors, as illustrated in Figure 5.6, apply the tech-
nology of lobe forced mixers, commonly seen on nozzle turbofans engines, to diffuser-
augmented turbines. The lobes create counter-rotating vortices, which are then expanded
inside the diffuser. This effect promotes a lower pressure gradient behind the diffuser
and delays the boundary layer separation. Han et al. [57], in 2015, studied the effect
of this type of diffuser, focusing on the vortices’ structures that were created due to it.
The maximum vorticity lowered about 75% in the axial region of 0−0.5Dr, decreasing
slowly after.
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5.9.3 Vortex generators

Vortex generators

Figure 5.7 – Illustration of vortex generators on diffuser-augmented turbine [144].

Vortex generators, as illustrated in Figure 5.7, are triangular additions to the
diffuser that possess the same purpose as gurney flaps when used on diffuser-augmented
turbines. However, the area occupied and size are smaller, facilitating the manufacture,
installation, and reducing the diffuser projected area.

Ten Hoopen [144], in 2009, performed an experimental and numerical study on
vortex generators for diffuser-augmented turbines. They observed a maximum increase
of 9% on the Cd

p due to the addition of 37 vortex generators to the diffuser. The author
also compared the vortex generators with flanges. In comparison with their projected
areas, the vortex generators outperformed flanges by 10% in the Cd

p increase.

5.10 Frontal nozzles
Frontal nozzles, as illustrated in Figure 5.8, are an expansion on the inlet opening

of the diffuser, that act as a concentrator of the mass flow. Even though most of the
diffuser designs include nozzles to a certain extent, few works studied the effects of the
nozzle with a clear comparison of the same design with and without this feature.
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(a) (b) (c)

Frontal nozzles

Figure 5.8 – Detail to frontal nozzles in cross-section view of diffuser-augmented tur-
bines. Frontal nozzles in: airfoil-shaped diffuser in (a), curved diffuser in
(b), conical diffuser in (c).

Kosasih and Tondelli [82], in 2012, tested diffuser-augmented turbines with and
without nozzles. Results showed negligible improvements due to the nozzle addition.
However, the nozzles’ employment allowed the diffuser-augmented turbine to operate at
higher yaw angles without considerable decreases in the Cp.

Anzai et al. [7], in 2004, and Amer et al. [6], in 2013, focused their study on
the effects of the geometry of the nozzle. Anzai et al. [7] performed experimental tests
to study how different ratios of nozzle diameter affected the power coefficient. Amer
et al. [6] conducted a numerical analysis and studied how different shapes of nozzles
influenced the axial velocity profile inside of it.

5.11 Multi-slots
Multi-slots diffusers, as seen in Figure 5.9, are designed with the purpose of

re-energizing the expanded flow inside the diffuser, enabling higher expansions while
preventing the flow separation from the diffuser’s inner surface.
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(b)(a)

Figure 5.9 – Multi-slots diffusers. Cross-section view in (a). Commercial design by
FloDesign, in (b) [71, 56].

Several authors tested multi-slots diffusers and reported their results in terms of
axial velocity, pressure distribution, and power coefficient [65, 94, 119, 121, 128, 140].
Oman et al. [116], in 1977, carried out detailed experiments studying the influence of
different parameters of a multi-slots diffuser-augmented turbine, such as the expansion
angle and each slot’s radial distance from the axis.

Dighe et al. [39], in 2019, performed a numerical analysis to evaluate the effects
of the radial gap length, the space between the secondary slot and the diffuser, and the
slot’s angle. They reported increased thrust on the diffuser-augmented turbine at higher
radial gap lengths and decreased thrust at higher slot angles. Koç and Yavuz [80], in 2019,
performed a numerical analysis to optimize the secondary slot based on measurements
of the flow’s maximum axial velocity. The parameters included in the study were the
secondary slot’s length, angle, and distance to the diffuser exit. They observed an increase
in umax of 9% over the diffuser without a secondary slot. Those results were obtained for
a secondary slot with a length of 40% of the diffuser’s chord length.

Keramat Siavash et al. [75], in 2020, developed a multi-slots modular diffuser that
could be compartmentalized in different configurations. They verified not only changes
in the power coefficient but also some configurations that allowed the diffuser-augmented
turbine to operate at a wider TSR range.
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A gap in knowledge remains when discussing multi-slots diffuser-augmented
turbines. A comparison between a multi-slots diffuser and a conventional one, of similar
shape, at the same Ad/Ar ratio, is worthy, along with a study comparing their respective
Cd

p for varying Ad/Ar ratios, to investigate the re-energizing effect.

5.12 Multi-turbine system
Instead of changing further their diffuser designs, some authors opt for studying

the effects of the arrangement of multiple turbines, and how each diffuser-augmented
turbine influenced the other. Figure 5.10 illustrates an arrangement of five diffuser-
augmented turbines, with detail to the system gap parameter, s. The objective is to attain
a mean power coefficient higher than the one of standalone turbines.

s

s

2 set

3 set

Figure 5.10 – Illustration of five diffuser-augmented turbine’s arrangement, with detail
to Multi-turbine system’s gap parameter. Distinction of two and three
turbine’s arrangement.

Most studies seek the optimum distance between two diffuser-augmented turbines,
which generates the maximum mean Cp. The following results compare the mean Cp of
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the diffuser-augmented turbine arrangement with the Cp of a single diffuser-augmented
turbine of the same type. Results for a system of two diffuser-augmented turbines showed
an improvement of 8% in the Cp [110], for a gap ratio, s/Dd , of 0.20; different gap
ratios attained lower improvements. In systems of three diffuser-augmented turbines,
improvements ranging from 9% to 12% in the Cp were reported for gap ratios of 0.20
[54, 110, 156]. Five diffuser-augmented turbines’ systems showed an improvement of
21% in the Cp at gap ratios of 0.20 [155, 161].

Research opportunity exists for turbine arrangements in the same horizontal
plane, following configurations similar to Figure 5.11. Such configurations are already
studied on bare wind turbines [29, 86]: on the influence of the wake flow on the turbines
downstream, especially concerning wind farms setups.

Figure 5.11 – Alternative turbine arrangement proposed for research.

5.13 Simultaneous diffuser-rotor design
It is common to change the rotor’s shape to increase the bare turbine’s power

coefficient. When designing a diffuser, most works do not change their already existing
rotor project and try to adapt the diffuser to it. This process is not optimal, as the rotor
was not planned to operate with a diffuser enhancing it.

Van Dorst [147], in 2011, performed an optimization for the rotor blades consid-
ering an already defined diffuser design. They defined the optimal rotor loading through
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a one-dimensional analysis and used that as a basis for the strength of a vortex cylinder
in the actuator disk model. The model resulted in the velocity distribution for the optimal
loading factor, which was used to design a new rotor though the blade element momen-
tum method. Experimental tests on the new rotor showed an improvement of 15% in the
Cd

p over the previous rotor employed on the same diffuser.

Oka et al. [111, 112, 113], from 2013 to 2015, and Khamlaj et al. [77, 76,
78], in 2017 and 2018, applied numerical algorithms to design both the diffuser and
rotor simultaneously, considering that they would be operating as a diffuser-augmented
turbine. The algorithms employed were based on multi-objective genetic methods. The
method process the variation of several parameters regarding the diffuser’s or the blades’
shape, testing thousands of design points for diffuser-augmented turbines. Pareto optimal
solutions [162] were applied to define the best geometries for further study. The chosen
geometries were the ones that maximized Cd

p and minimized size. Oka et al. [113] also
validated their numerical analysis through experiments and obtained a Cd

p of 0.62.

5.14 Twin-rotors on diffusers
The addition of a diffuser to a turbine increases the rotor’s axial load as a side

effect of increasing the power coefficient. Wang et al. [154], in 2015, observed increases
ranging from 2.0 to 3.5 on the maximum tensile strain of the blade roots, when comparing
the situation with and without a diffuser.

Twin rotors, as illustrated by Figure 5.12, are proposed to distribute the increased
turbine load and increase the turbine’s power coefficient by making use of the remaining
kinetic energy in the wake. They are a set of two counter-rotating rotors on the same
turbine axis.
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Figure 5.12 – Illustration of diffuser-augmented twin-rotor turbine, and its counter-
rotating aspect.

Lipian et al. [90, 91], in 2019 and 2020, tested a set of twin-rotors with a conical
diffuser. They compared the results of a bare turbine, diffuser-augmented turbine, twin-
rotor bare turbine, and diffuser-augmented twin-rotor turbine. The diffuser-augmented
turbine presented a 28% increase in the maximum Cd

p over its bare turbine counter-
part. The addition of twin-rotors provided no changes on Cd

p, but it reduced the thrust
coefficient from the upstream rotor, distributing the load more evenly.

Kumar et al. [85], in 2019, established a theoretical model to evaluate the power
output of diffuser-augmented twin-rotor turbines. The results depend on a parameter
governed by the area-weighted sum of the loading coefficients of both rotors. The model
considers diffuser geometry, back pressure, and flow-efficiency parameters.

5.15 Yaw and shear flow effects
Horizontal-axis turbines, and, as a consequence, diffuser-augmented turbines,

present a reduction in their Cp when under effects of yaw or shear. Those motions quicken
the boundary layer separation at the rotor and at one of the diffuser’s surfaces, raising
new concerns in diffuser-augmented turbines. However, Kosasih and Tondelli [82], in
2012, verified that at low yaw angles, 5 degrees, this misalignment in the flow might be
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mitigated by the employment of nozzles.

Igra [66, 64, 65], from 1977 to 1981, reported the effects of a range of yaw angles,
from 0 to 30 degrees, on a diffuser-augmented turbine. He evaluated how the yaw angle
affected the drag, lift, diffuser’s outlet pressure, and diffuser’s performance. The results
were compiled for eight different diffuser models. The Cii, and Ci models attained a
higher Cp at higher yaw angles, 30 degrees, than at lower ones.

On the topic of hydrokinetic turbines, Scherillo et al. [130], in 2011; Shahsavari-
fard and Bibeau [133, 132, 134], in 2015 and 2020; and Coiro et al. [31], in 2017, tested
several diffuser-augmented turbine’s designs at yawing conditions in towing tanks and
circulating water channels. They reported variations in the Cp smaller than 5% up to yaw
angles of 10 degrees.

Ke et al. [74], in 2020, performed a numerical analysis to study a diffuser-
augmented turbine under different yaw and shear flow effects. Under higher shear flow
conditions, they reported more severe fluctuations on the turbine’s load, which were
only amplified by the diffuser; a more significant concern for fatigue design on diffuser-
augmented turbines under those conditions is necessary. Yawed conditions reduced the
diffuser-augmented turbines optimum operation point to lower tip-speed-ratios, also
reducing its Cp.

5.16 Other diffuser concepts
Beyond those mentioned here, other less studied diffuser’s geometries exist, such

as the vorticity based diffuser, aiming to reduce the wake pressure and prevent flow
separation [95, 114]; the mixer-ejector diffuser, which uses a pump and a ring of rotating
blades to mix the low energy flow that exits the turbine with the high energy flow the
enters through a secondary slot [122]; the dynamic diffusers, which rotates along with
the rotor on its axis [160]; lighter-than-air diffusers made for floating with lightweight
materials [151, 152, 159]; and the vortex enhancer diffuser, which creates a rotating flow
on the diffusers’ wake [14]. The reader may gather more information on different diffuser
designs through the work of Agha et al. [5], where they introduce and discuss several
different patented diffuser technologies.
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6 Metrics of assessment

The current chapter complements Chapter 4 in the presentation of parameters
related to diffuser-augmented turbines. The objective is to propose metrics that will
enable a unified evaluation of several diffuser-augmented turbines.

As many authors try to progress in favor of the diffuser technology applied to
horizontal-axis turbines, an overflow of outstanding performance enhancement reports
has appeared in the literature on the last years. Despite the results shown, it is still unclear
whether the addition of a diffuser is preferred instead of increasing the rotor’s diameter.
Several factors would have to be evaluated to assess this problem, such as size, material,
and manufacturing limitations. Also, all those factors need to be evaluated for each
specific case.

To try to shed some light on this discussion, a performance assessment of several
diffusers reported in the literature will be presented. The performance assessment will
follow the metrics proposed in the present chapter, divided into power coefficient and
tip-speed-ratio metrics. Those metrics are rather conservative ones, downgrading the
diffusers’ enhancement but showcasing its actual potential nonetheless.

6.1 Power coefficient metrics
The most common metric used by authors to report their diffusers’ performance is

the maximum Cp for a given interval of tip-speed-ratios; parameters defined on Equations
(4.3) and (4.5) respectively. Those are the two main parameters to define the turbine’s
working conditions. However, this metric compares the power generated by the diffuser-
augmented turbine to the power available to the rotor, even though the power available to
the diffuser-augmented turbine is higher than the one available to the rotor.

To consider the diffuser’s size and make a fairer assumption of the diffuser’s
worth, the comparison should be made between the generated power and the power
available to the turbine. This comparison was defined as the diffuser-augmented turbine’s
actual power coefficient, Cd

p, on Equation (4.4), which takes into consideration the
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diffuser’s maximum cross-sectional area;

Cd
p =

Pdi f f user
1
2ρU3Ad

. (4.4)

To go one step further, a comparison is made between the Cd
p and a baseline: the

power coefficient of its bare turbine, Cb
p,

Cb
p =

Pbare
1
2ρU3Ar

. (4.2)

The diffuser-enhancement parameter, Ed , is defined as

Ed =
Cd

p

Cb
p
−1. (6.1)

The diffuser-enhancement parameter intends to provide a measure of the actual
hydrodynamic improvement for power conversion associated with the diffuser. To do
that, it is assumed that the bare turbine scaled up to the diffuser’s diameter of its shrouded
version does not alter its maximum power coefficient. Therefore, Ed , as defined by Eq.(6),
is the relative difference between the maximum power converted by a diffuser-augmented
turbine and the maximum power converted by a bare turbine with the same diameter of
the diffuser. In this sense, Ed = 0 means that installing the diffuser or simply scaling
the rotor up to the diffuser’s diameter has the same effect in terms of power production.
Conversely, Ed > 0 means that simply increasing the area swept by the rotor to match
the diffuser area does not elevate the power conversion as the diffuser-enhancing does. In
other words, Ed is related to a more effective diffuser enhancing.

As stated, the diffuser-enhancement parameter makes a comparison similar to
the one illustrated in Figure 6.1(b), whereas previous power coefficient metrics were
more akin to Figure 6.1(a). It evaluates how much the diffuser increased the original bare
turbine’s potential, no matter whether it was high or low before. It is crucial to notice
that Ed is a metric that judges how well designed the diffuser is for its size. If the reader
has no concern about the diffuser’s size in their design, the metrics E and Cd

p will be of
less use to them.
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Figure 6.1 – Power coefficient comparison between diffuser-augmented turbine and bare
turbine. Comparison on usual Cp metric in (a). Comparison on proposed Ed
metric in (b).

6.2 Tip-speed-ratio metrics
In practice, it is usual to seek the optimum T SR interval, i.e., the interval in which

the power coefficient is maximum, or close enough to it. The interval width and position
may vary for each turbine. As a start, two parameters are defined to characterize the T SR

and its variations during situations with or without a diffuser: T SRwidth and T SRcenter, as
illustrated in figure 6.2.
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Figure 6.2 – T SRwidth and T SRcenter illustration on a power coefficient curve. Data ob-
tained from previous work [104].

The T SRwidth represents the size of the turbine’s optimum operation interval,
the T SR interval where the Cp is at its maximum. Turbines with a higher T SRwidth are
desirable by their wider operation interval and smaller fluctuations due to environmental
changes.

The T SRcenter is the optimum operational interval center. It represents the center
point of this operational interval. This parameter will help track changes in the operational
interval positioning. A turbine with a high T SRcenter operates at lower open flow speeds
if compared to ones with smaller T SRcenter. If the purpose is, for example, to utilize
low-grade wind energy, a turbine with a high T SRcenter is desirable.

The parameter T SRwidth is defined by two T SR points, T SR1 and T SR2, such that

T SRwidth = T SR2 −T SR1 (6.2)

and
Cp(T SR1) = max(Cp)−0.01, (6.3)
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Cp(T SR2) = max(Cp)−0.01, (6.4)

T SR2 > T SR1. (6.5)

The value 0.01 was chosen as a defining constant to create a standard for T SRwidth where
the associated Cp is always kept close to the maximum. It adequated well to most of the
data investigated.

The parameter T SRcenter is defined as

T SRcenter =
T SR2 +T SR1

2
. (6.6)

To evaluate the performance of a diffuser, comparisons are necessary between
the tip-speed-ratios of turbines with and without the addition of diffusers.

The T SR∗
width is a comparison between the operational interval of the diffuser-

augmented turbine and the bare turbine, defined as

T SR∗
width = T SRd

width −T SRb
width, (6.7)

where T SRd
width and T SRb

width represent the diffuser-augmented turbine’s and the bare
turbine’s T SRwidth, respectively.

The T SR∗
center is how much the center of the operational interval changed in posi-

tion, comparing the diffuser-augmented turbine with its bare counterpart. The T SR∗
center

is defined as
T SR∗

center = T SRd
center −T SRb

center, (6.8)

where T SRd
center and T SRb

center represent the diffuser-augmented turbine’s and the bare
turbine’s T SRcenter, respectively.
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7 Performance assessment

Data was gathered from the work sample of 155 articles, and the characteristics
of 73 diffuser-augmented turbines were registered. Geometric and performance data on
each diffuser-augmented turbine was collected. The data is summarized in Appendix B,
for performance parameters, and Appendix C, for geometry.

The present chapter analyzes the recorded diffuser-augmented turbines based on
the metrics proposed in Chapter 6. The results presented showcase not only details about
specific designs but also essential characteristics of diffuser-augmented turbines.

Comparisons are presented between the Cp metric, the Cd
p metric, and how those

results translate based on Ed . A more in-depth analysis is performed over tip-speed-
ratio, diffuser diameter, diffuser-augmented turbine’s power coefficient, and diffuser-
enhancement.

7.1 Power coefficient distribution
An analysis based on the power coefficient informs us about the initial idea of

a diffuser’s value. The power coefficient was evaluated based on the metrics proposed
in Equations (4.3), (4.4) and (6.1). The aim is to present to the reader what is to be
expected of diffuser-augmented turbines in terms of the power coefficient. This section
analyzes a collective of 60 diffuser-augmented turbine designs. Figure 7.1(a) presents
the distribution of the maximum Cp achieved, reported by their authors. Figure 7.1(b),
on the other hand, presents how those values translate when evaluating in terms of Cd

p,
i.e., considering the diffuser maximum cross-sectional area.
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Figure 7.1 – Distribution of diffuser-augmented turbines found on the literature based on
power coefficient. (a) Based on Cp metric. (b) Based on Cd

p metric.

A total of 52 diffuser-augmented turbines achieved a Cp higher than the Betz
limit for bare turbines; only 8 reported a lower Cp. The reported maximum Cp presented
a mean value of 0.75. On the other hand, only one diffuser-augmented turbine achieved
a Cd

p higher than the Betz limit for bare turbines; 59 of them reported a lower Cd
p. The

achieved maximum Cd
p presented a mean value of 0.37.

That one design beyond the Betz limit for bare turbines is the one by Oka et al.
[113], in 2015. It achieved a Cd

p of 0.62. This design will be commented further on Section
7.3. It is important to remember that, as mentioned in Chapter 4, the energy extraction
limit for diffuser-augmented turbines is different from the Betz limit established for bare
turbines.

A total of 51 diffuser-augmented turbines had enough data to be analyzed in
terms of diffuser-enhancement, i.e., the gain that a diffuser-augmented turbine has over a
bare turbine of the same size. Figure 7.2 presents the Ed distribution of those designs.
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Figure 7.2 – Distribution of diffuser-augmented turbines found on the literature based on
Ed .

Results showed that, in 58% of the evaluated cases, the power coefficient of a
diffuser-augmented turbine was higher than that of a bare turbine of the same size.

From those 51 designs, 22 presented Ed values lower than 0. In those cases, the
alternative of increasing the turbine’s diameter might have been a better choice than
employing the diffuser. However, 29 designs presented Ed values higher than 0. For
those, the diffuser not only increased the turbine’s power coefficient, but it was also the
better option to increase its power for the given area.

The sole design that presented a Ed of 1.04 was the one by Kosasih and Saleh
[83], in 2016; this design will be commented further on Section 7.4. In comparison, the
design by Oka et al. [113], commented previously in Figure 7.1(b), does not achieve
such distinction when analyzed based on Ed . That is because Ed evaluates the increase in
Cd

p in comparison to the original bare turbine’s Cb
p. In the case of the design proposed

by Oka et al. [113], the original bare turbine already had a high power coefficient; even
though it achieved the highest Cd

p, the diffuser-enhancement was not as pronounced.
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7.2 Diffuser influence on tip-speed-ratio
Along with the power coefficient, the tip-speed-ratio defines the turbine’s opera-

tion. How the diffuser influences this parameter is an important analysis that the present
section discusses. To achieve that, the metrics proposed on Section 6.2 are employed to
evaluate changes to the optimum T SR interval.

The dispersion of the T SR∗
width and T SR∗

center for 34 diffuser-augmented turbines
is presented on Figure 7.3. Each of those points refers to a turbine, comparing the
situation with and without the diffuser.

Figure 7.3 – Influence of diffuser on T SR. Comparison of changes between bare tur-
bine and diffuser-augmented turbine. Two design points of interest are
highlighted.

Figure 7.3 is divided in quadrants. The top ones, populated by 4 turbines, repre-
sent those turbines that developed a plateau in their power coefficient curve after being
coupled with a diffuser; they gained a wider operational range. The bottom quadrants,
with 26 turbines, represent those that developed sharper power coefficient curves; their
operational range became smaller. To the right, 19 turbines now operate at higher rotation.
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To the left, after being enhanced with diffusers, 13 turbines now operate at lower rotation.

It is noticeable that the use of diffuser-enhancing technology modified the turbines
towards a smaller operational range. However, it also provided flexibility on the range
of the operational speed. Based on the diffuser design employed, it is possible to push
diffuser-augmented turbines to operate at lower or higher flow speeds. The turbines at
the top-right quadrant possess two desirable characteristics: a wider operational range
and the possibility to work at lower flow speeds.

The first design point highlighted in Figure 7.3, represents a diffuser-augmented
turbine designed by Riglin et al. [126], in 2014. They worked with hydrokinetic turbines
and proposed an optimization on conical diffusers with flange, reporting the results of
their numerical analysis. The maximum Cb

p achieved for the bare turbine was at the TSR
interval of 1.20−2.00. The diffuser-augmented turbine achieved its maximum Cd

p at the
TSR interval of 2.20−3.40. The T SR∗

width obtained was of 0.4 and the T SRcenter shifted
from 1.60 to 2.80. The Cd

p achieved was 0.22, lower than the average observed in Section
7.1. Concerning the experiments, data points reported were few, and no similar results,
with regards to T SR, were found in other works by the same authors [125, 127], even
though new proposed designs by the authors achieved higher Cd

p values.

The second highlighted design point was proposed by Tampier et al. [143], in
2017. They performed a numerical analysis over an airfoil-shaped diffuser coupled to the
hydrokinetic turbine. Results for the bare turbine presented an T SR optimum interval
of 3.50−4.25. The diffuser-augmented turbine optimum TSR interval was 4.25−5.25.
The T SR∗

width achieved was of 0.25 and the T SRcenter shifted from 3.92 to 4.75. The Cd
p

achieved was of 0.19, lower than the average observed in Section 7.1.

Both design points reported high Cp values. However, since the size of their
designs was much larger than the rotor, the attained Cd

p was lower than the average
Cd

p of 0.37, reported on Section 7.1. No correlation was found between Cd
p and the

corresponding T SR∗
center.
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7.3 Well designed diffuser-augmented turbines
A diffuser expands the flow inside it, increasing the mass flow in the inlet. That

expansion correlates to the difference in area between the inlet and the outlet. Studying
the effects of the expansion can help identify good diffusers’ designs, even though Ed

has no regard for this area ratio.

In the following analysis, the area ratio is described as Ad/Ar, where, as men-
tioned in Chapter 4, Ad is the diffuser’s maximum cross-sectional area, and Ar is the
rotor spanning area.

To point the traits of the highest achieving designs, Figure 7.4 shows a dispersion
of 52 diffuser-augmented turbines by their Cd

p and Ad/Ar.
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Figure 7.4 – Dispersion of the diffuser-augmented turbines respective to Cd
p and Ad/Ar.

Five design points of interest are highlighted.

Of those diffuser-augmented turbines presented, 27 may be classified as ‘low
standard’ and 25 as ‘high standard.’ Table 7.1 lists the usual traits of each of those types,
where high standard traits can be taken as design suggestions for the interested reader.
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Table 7.1 – Common traits of a low and high standard diffusers.

Common low standard traits

Conical diffusers
High Ad , resulting in lower evaluation in the current metric
Expansion angles smaller than 10 degrees
Sharp flow expansion, resulting in boundary layer separation
Addition of unnecessary, size increasing, parts
Rotor out of optimum position inside the diffuser
Low Cb

p for associated bare turbine
Large gaps between diffuser throat and rotor blade’s tip

Common high standard traits

Curved diffusers
Well designed flange height
Geometry optimization
Rotor designed considering the diffuser
Expansion angle optimization
Compact design
Rotor positioned at the section which induces highest mass flow
High Cb

p of associated bare turbine

It is important to notice the lack of diffuser-augmented turbines on the top-right
corner of Figure 7.4. Diffusers with Ad/Ar higher than 2.5 are more susceptible to
flow separation and the creation of recirculation zones inside them. This phenomenon is
independent of the expansion angle adopted and detrimental for the diffuser enhancement.
A balance is needed on the diffuser’s design to achieve optimal results.

Five diffuser designs are worth pointing out. Each one presented results beyond
average and are compact in their designs, i.e., have high values of Cd

p and low Ad/Ar.
They also show value in their adopted methodology, experimental procedures, or novelty
of their designs.

• Design 1

Oka et al. [113], in 2015, reported a diffuser design that goes beyond the power
generation limit of bare wind turbines. This design is based on the simultaneous
optimization of the aerodynamic of the rotor and a curved diffuser with flange.
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They also published two other works that build-up to this method [112, 111].
In all three articles, they discuss their methods and the multi-objective genetic
algorithm employed. The Pareto optimal solutions found are compared to wind-
tunnel experimental data. Results show power coefficients values above those of
the Betz limit for bare turbines, reaching a Cd

p of 0.62. However, it is important to
note that the energy extraction limit, when applied for diffuser-augmented turbines,
is different for each case, as explained in Chapter 4 [69].

The design presented by Oka et al. [113] lacks details on the methodology em-
ployed in the numerical analysis and experimental tests for the claims the article
hold. However, the concept presented still holds ground. Therefore, the readers are
pointed to design point 2: a more thorough and detailed numerical analysis of a
similar methodology.

• Design 2

Khamlaj and Rhumpfkeil [78], in 2018, also employed a multi-objective genetic
algorithm to improve their rotor and diffuser design simultaneously. Their work
was purely numerical, but with a broad explanation of the methodology. They also
discuss the effects of drag on the structure based on different geometries, pointing
in the direction of more compact diffuser designs as a priority.

Figure 7.5(a) illustrates the design analysis, that had three parameters as a basis:
power coefficient, thrust coefficient, and drag coefficient. The designs are classified
by an objective function, where the objectively best are colored in black. Figure
7.5(b) illustrates one of the selected cases by the authors, Profile H (design point
2), that presented a Cd

p of 0.50.
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Figure 7.5 – Diffuser-augmented turbine optimization. Analyzed cases in (a), with objec-
tively best ones in black. Selected profile H illustration in (b), referred as
design point 2. Reused and edited with permission [78]

It is important to notice that all cases analyzed by the authors were of curved
diffusers with flange. Several more opportunities exist to study several other shapes
with the same technique.

• Design 3

Heikal et al. [59], in 2018, developed a diffuser model based on the wind lens design
[105]. They employed two concepts on their flanged design: flange inclination
angle and inner flange depth. Results presented a Cd

p of 0.57, at a positive angle of
10 degrees, an improvement of 28% over the original lens Cii version. The T SR

operation point also shifted to higher intervals of rotor rotation. Figure 7.6 shows
the differences between the flow streamlines due to the flange inclination. It can
be observed how the reversed flange angle shifted the diffuser flow expansion to a
higher degree.

(a) (b)
Figure 7.6 – Diffuser-augmented turbine with flange inclination. Flange with positive

10◦ angle in (a), referred design point 3, and 0◦ angle in (b). Reused and
edited with permission [59].



Chapter 7. Performance assessment 68

• Design 4 and 5

Ohya and Karasudani [105] proposed, in 2010, a series of diffuser designs, while
studying flange height and their curve shape. Some of those designs are illustrated
in Figure 7.7.

(a) (b) (c) (d)

Figure 7.7 – Several diffuser-augmented turbines with varying lengths, experiments made
with the same rotor [105]. Diffuser C0 - 0.100L/Dr in (a), Ci - 0.137L/Dr
in (b), Cii - 0.221L/Dr in (c), Ciii - 0.371L/Dr in (d).

The diffuser shape Cii, with a flange height of 0.1Dr, is pointed as the one with
the highest performance. Through the analysis in terms of the Cd

p, more efficient
and compact designs are preferred. The proposed Ci diffuser, design point 4, with
flange height of 0.05Dr, attained a Cd

p of 0.51. The proposed C0 diffuser, design
point 5, with flange height of 0.05Dr, attained a Cd

p of 0.49. In comparison, the
reported Cii attained a Cd

p of 0.47. It is crucial to notice that an increase in flange
height from 5% to 20% of the rotor diameter is impactful, especially when the
diffuser design without flange has a diameter only 14% bigger than the rotor.

7.4 Diffuser enhancement
Diffusers are often designed as standalone projects from their rotors. Although

not optimal, this method shows satisfactory results. Figure 7.8 relates the diffuser en-
hancement achieved, Ed , and the power coefficient, Cb

p, of their respective bare turbines.
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Figure 7.8 – Relation between the diffuser-enhancement achieved, Ed , and the power
coefficient, Cb

p, of their respective bare turbines. Three areas of interest are
highlighted.

Figure 7.8 shows three interesting areas to discuss. The first is the design point 1,
illustrated by Figure 7.9, a diffuser design already mentioned in Section 7.1. Kosasih and
Saleh [83], in 2016, designed a diffuser for a rotor with a power coefficient much lower
than the standard, with a Cb

p of 0.11. The diffuser enhancement is noticeable, of 1.05,
doubling the initial rotor power coefficient. Notwithstanding, the diffuser-augmented
turbine’s power coefficient, Cd

p, falls much lower than the average bare turbine’s power
coefficient, at 0.22.
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Figure 7.9 – Conical diffuser-augmented turbine by Kosasih and Saleh [83].

Area number 2 is a series of experiments made by Ohya and Karasudani [105].
The series of experiments pointed in Area 2 were all made using the same rotor, testing it
with different curved diffusers with flange, some of them illustrated in Figure 7.7. Since
the starting point was the same Cb

p, it became evident how the diffuser design directly
affects the diffuser enhancement. Since the criterion of analysis is Ed , the enhancement
cannot be achieved by simply making a steeper contraption. This enhancement has to be
implemented in a well planned and executed manner.

Area number 3 alerts us to be cautious when coupling a rotor of a high power
coefficient with a diffuser. A common trend is observed: the lower the original turbine
power coefficient, the easier it is to obtain a substantial diffuser enhancement; an extreme
case being design point 1. On the other hand, rotors with a high power coefficient need a
diffuser designed to be used with it to show any enhancement. To achieve the highest
enhancement, planning the diffuser and rotor together is advised, as mentioned in Section
5.13.
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8 Conclusions

A collection of 155 articles on diffuser-augmented horizontal-axis turbines was
analyzed using a systematic approach to the literature. The work sample was classified
into the 16 most prominent research branches. The most important findings in each of
those branches were presented and discussed. As an addendum, research comparing
the Cd

p of multi-slots diffusers with conventional ones at different Ad/Ar ratios, and of
different multi-turbine arrangements on the same plane was identified as a promising
avenue.

An evaluation of several diffuser-augmented turbines was carried out based on
the actual power coefficient, Cd

p, taking into consideration the maximum cross-sectional
area of the diffuser. To consider diffuser size and make a fair assumption on the diffuser-
augmented turbine’s worth, a power coefficient metric was proposed for inter-comparison:
the diffuser-enhancement parameter, Ed . Population distribution of 60 diffuser-augmented
turbines showed an average value of 0.75 on the maximum Cp, while an analysis based on
the maximum Cd

p returned an average of 0.37. That points to a previous overestimation of
the diffuser’s worth. The diffuser-enhancement parameter was used to compare diffuser-
augmented turbines to their bare turbines scaled to the same size. Data revealed that an
enhancement happened on 58% of the diffuser-augmented turbines evaluated, where
using a diffuser was the better option over making a bigger rotor. In terms of power
conversion, a diffuser may enhance a turbine or be detrimental to it; on the proposed
metrics, a diffuser’s value depends entirely on design.

An analysis based on the tip-speed-ratio followed. To compare the diffuser-
augmented turbine with its bare counterpart, two parameters were proposed: the shift in
the optimum operation point, T SR∗

center, and the change in operation interval, T SR∗
width.

Through the analysis, on 34 turbines, it was observable that diffusers tend to narrow the
power coefficient curves, reducing their optimum operational interval.

Diffuser-augmented turbines were classified into two groups based on their Cd
p.

The common traits of the high standard and low standard groups were presented. Five
high achieving diffuser designs were pointed out with their most relevant achievements.
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It was found that diffusers with Ad/Ar > 2.5 did not achieve high Cd
p. An analysis based

on Ed revealed a trend that diffusers more easily improve bare turbines with lower power
coefficient. Care is advised when using a diffuser on high-performance bare turbines;
it is ideal to design the rotor and diffuser together, with previous forethought on the
diffuser-augmented turbine.
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APPENDIX A – Database search
keywords

The full set of keywords employed in the current work is presented below. The
formatting is maintained in raw text without tables so the interested reader may directly
copy and paste the search terms on the Scopus database using the advanced search feature.
Figure A.1

shroud*
di�user*
concentrator*
duct* W/3 turbine*

Any of those terms

And any of those three sets

Any of those terms

centrifug*
pump
darrieus
radial W/2 turbine*
pelton
kaplan
savonius

archimedes
combust*
steam
gas
cooling holes
francis W/1 turbine*
rail

train
“stress concentrator”
“geometric concentrator”
ductil*
“duct* fan”
invelox
solar

cascade
“oscilating water column”
compressor
cross W/2 turbine*
axias W/2 turbine*
wind W/1 tower
“heat transfer”

Any of those terms

hydro W/1 turbine*
wind W1 turbine*
tidal W/1 turbine*
current W/1 turbine*
marine W/1 turbine*

vertical W/2 turbine*
VAWT
vertical W/1 axis
cross W/2 turbine*

And none of those terms

Set 1 Set 2

Any of those terms

vertical W/2 turbine*
VAWT
vertical W/1 axis
cross W/2 turbine*

And none of those terms

Set 3

And none of those terms

“horizontal axis” turbine*
HAWT turbine*

augmented turbine*
enhanced turbine*

Figure A.1 – Keywords for advanced search in Scopus database.
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(TITLE-ABS-KEY ( shroud* ) OR TITLE-ABS-KEY ( diffuser* ) OR TITLE-
ABS-KEY ( concentrator* ) OR TITLE-ABS-KEY ( duct* W/3 turbine* )) AND ( (
(TITLE-ABS-KEY ( hydro* W/1 turbine* ) OR TITLE-ABS-KEY ( wind W/1 turbine*
) OR TITLE-ABS-KEY ( tidal W/1 turbine* ) OR TITLE-ABS-KEY ( current W/1
turbine* ) OR TITLE-ABS-KEY ( marine W/1 turbine* )) AND NOT (TITLE-ABS-
KEY ( vertical W/2 turbine ) OR TITLE-ABS-KEY (VAWT) OR TITLE-ABS-KEY
( vertical W/1 axis ) OR TITLE-ABS-KEY (cross W/2 turbine)) ) OR ( (TITLE-ABS-
KEY ( "horizontal axis" ) OR TITLE-ABS-KEY ( HAWT )) AND TITLE-ABS-KEY (
turbine* ) ) OR ( (TITLE-ABS-KEY ( augmented ) OR TITLE-ABS-KEY ( enhanced
)) AND TITLE-ABS-KEY ( turbine* ) AND NOT (TITLE-ABS-KEY ( vertical W/2
turbine ) OR TITLE-ABS-KEY (VAWT) OR TITLE-ABS-KEY ( vertical W/1 axis ) OR
TITLE-ABS-KEY (cross W/2 turbine)) ) ) AND NOT ( TITLE-ABS-KEY (centrifug*)
OR TITLE-ABS-KEY (pump) OR TITLE-ABS-KEY (darrieus) OR TITLE-ABS-KEY
(radial W/2 turbine) OR TITLE-ABS-KEY (pelton) OR TITLE-ABS-KEY (kaplan) OR
TITLE-ABS-KEY (savonius) OR TITLE-ABS-KEY (archimedes) OR TITLE-ABS-KEY
(combust*) OR TITLE-ABS-KEY (steam) OR TITLE-ABS-KEY (gas) OR TITLE-ABS-
KEY ("cooling holes") OR TITLE-ABS-KEY (francis W/1 turbine) OR TITLE-ABS-
KEY (rail) OR TITLE-ABS-KEY (train) OR TITLE-ABS-KEY ("stress concentrator*")
OR TITLE-ABS-KEY ("geometric concentrator*") OR TITLE-ABS-KEY (ductil*)
OR TITLE-ABS-KEY ("duct* fan") OR TITLE-ABS-KEY (invelox) OR TITLE-ABS-
KEY (solar) OR TITLE-ABS-KEY (cascade) OR TITLE-ABS-KEY ("oscillating water
column") OR TITLE (compressor) OR TITLE (cross W/2 turbine) OR TITLE (axial W/2
turbine) OR TITLE (wind W/1 tower) OR KEY ("heat transfer") ) AND ( LIMIT-TO (
LANGUAGE,"English" ) )
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APPENDIX B – Diffuser-augmented
turbine’s data

Table B.1 – Power coefficient and tip-speed ratio data of diffuser-augmented turbines -
Part I

Id. Type Power coefficient Tip-speed-ratio

Cb
p Cp Cd

p Ed T SR∗
center T SR∗

width

[104] Experimental 0.39 0.58 0.42 0.07 0.75 0.00
[104] Experimental 0.39 0.70 0.42 0.08 0.85 -0.20
[138] Experimental 0.42 0.67 0.38 -0.08 0.00 -0.50
[24] Numerical 0.29 0.49 0.07 -0.76 -0.50 0.00
[96] Experimental 0.30 0.75 0.43 0.42 0.00 0.00
[28] Numerical 0.41 0.78 0.28 -0.32
[28] Numerical 0.41 0.90 0.32 -0.21
[124] Numerical 0.59 1.44 0.30 -0.50
[59] Numerical 0.37 0.57 0.54 0.38 0.25
[143] Numerical 0.44 0.61 0.19 -0.57 0.88 0.25
[53] Experimental 0.36 0.37 0.25 -0.29 -0.20 0.60
[53] Experimental 0.36 0.45 0.26 -0.29 -0.38 -0.25
[115] Experimental 0.22 0.37 0.20 -0.08 0.68 0.05
[32] Experimental 0.39 0.76 0.44 0.14 0.25 -0.50
[31] Experimental 0.39 0.78 0.44 0.14 -0.20 -1.00
[130] Experimental 0.37 0.71 0.43 0.16 -0.88 -0.25
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Table B.2 – Power coefficient and tip-speed ratio data of diffuser-augmented turbines -
Part II

Id. Type Power coefficient Tip-speed-ratio

Cb
p Cp Cd

p Ed T SR∗
center T SR∗

width

[83] Experimental 0.11 0.23 1.05 0.43 -0.05
[135] Experimental 0.42 0.70 0.25 -0.40 0.73 -1.25
[135] Experimental 0.42 0.82 0.30 -0.30 1.53 -0.85
[132] Experimental 0.38 0.54 0.34 -0.11 -0.05 -0.50
[132] Experimental 0.38 0.71 0.45 0.17 0.43 -0.55
[126] Numerical 0.32 0.48 0.22 -0.32 1.20 0.40
[127] Experimental 0.42 0.59 0.33 -0.21 0.85 -0.50
[127] Experimental 0.42 0.68 0.26 -0.38 0.75 -0.70
[113] Experimental 0.62
[113] Numerical 0.99 0.57
[113] Numerical 1.05 0.59
[26] Experimental 0.43 0.93 0.32 -0.26 1.43 0.05
[108] Experimental 0.74 0.68 0.15
[82] Experimental 0.26 0.41 0.58 0.68 0.15
[82] Experimental 0.26 0.43 0.63 0.73 0.05
[82] Experimental 0.26 0.46 0.77 1.13 0.05
[82] Experimental 0.26 0.43 0.65 1.45 0.10
[82] Experimental 0.26 0.44 0.69 0.75 0.70
[82] Experimental 0.26 0.44 0.69 1.55 0.30
[82] Experimental 0.26 0.52 1.00 0.55 -0.20
[27] Experimental 0.22 0.45 0.23 0.06 0.50 0.00
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Table B.3 – Power coefficient and tip-speed ratio data of diffuser-augmented turbines -
Part III

Id. Type Power coefficient Tip-speed-ratio

Cb
p Cp Cd

p Ed T SR∗
center T SR∗

width

[27] Experimental 0.24 0.58 0.30 0.26 0.28 -0.15
[27] Experimental 0.32 0.64 0.33 0.04 0.43 -0.05
[27] Experimental 0.36 0.66 0.34 -0.05
[27] Experimental 0.61 0.32
[27] Experimental 0.67 0.35 -0.40 -0.20
[105] Experimental 0.37 0.77 0.45 0.22 -0.15 -0.30
[105] Experimental 0.37 0.88 0.47 0.28 -0.30 0.00
[105] Experimental 0.37 0.88 0.47 0.28 -0.35 -0.10
[105] Experimental 0.37 0.70 0.43 0.15 0.00 0.00
[105] Experimental 0.37 0.74 0.44 0.20 -0.08 -0.35
[105] Experimental 0.37 0.79 0.45 0.23 0.25 -0.10
[105] Experimental 0.37 0.91 0.42 0.13
[105] Experimental 0.37 0.70 0.49 0.34
[105] Experimental 0.37 0.77 0.40 0.07
[105] Experimental 0.37 0.79 0.35 -0.05
[105] Experimental 0.37 0.75 0.51 0.37
[105] Experimental 0.37 0.83 0.41 0.11
[105] Experimental 0.37 0.85 0.37 -0.01
[105] Experimental 0.37 0.78 0.49 0.32
[105] Experimental 0.37 0.95 0.44 0.19
[105] Experimental 0.37 0.97 0.39 0.07
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Table B.4 – Power coefficient and tip-speed ratio data of diffuser-augmented turbines -
Part IV

Id. Type Power coefficient Tip-speed-ratio

Cb
p Cp Cd

p Ed T SR∗
center T SR∗

width

[105] Experimental 0.37 0.81 0.43 0.16
[105] Experimental 0.37 0.96 0.39 0.04
[105] Experimental 0.37 1.02 0.36 -0.02 1.28 -0.05
[3] Experimental 0.26 1.15 0.17 -0.34 0.85 -0.30
[141] Experimental 0.36 0.88 0.46 0.29
[78] Numerical 0.82 0.47
[78] Numerical 0.95 0.45
[78] Numerical 0.83 0.48
[78] Numerical 0.92 0.50 1.35 0.10
[120] Numerical 0.32 1.45
[57] Numerical 0.72 0.27 -0.35 -0.30
[47] Numerical 0.44 0.95 0.32 -0.28 -0.75 -0.50
[47] Numerical 0.44 1.13 0.28 -0.36 -0.60 -0.80
[47] Numerical 0.44 1.20 0.24 -0.45 -0.75 -1.10
[47] Numerical 0.44 1.25 0.21 -0.53
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APPENDIX C – Diffuser-augmented
turbine’s geometry

Table C.1 – Geometry data of diffuser-augmented turbines - Part I

Id. Type Geometry

Dr [mm] Di [mm] Dd [mm] Ad/Ar θ [◦] L [mm]

[104] Experimental 224 246 264 1.39 10 49
[104] Experimental 224 240 289 1.66 49
[138] Experimental 500 661 1.75 250
[24] Numerical 800 1772 4243 28.13 2053
[96] Experimental 1190 1181 1578 1.76 15 739
[28] Numerical 1360 1496 2281 2.81 680
[28] Numerical 1360 1496 2281 2.81 680
[124] Numerical 200 440 4.84 300
[59] Numerical 1160 1262 1609 1.92 261
[143] Numerical 2000 2382 3605 3.25 2282
[53] Experimental 265 288 318 1.43
[53] Experimental 265 282 352 1.76
[115] Experimental 320 335 437 1.86 335
[32] Experimental
[31] Experimental 612 620 812 1.76 26 180
[130] Experimental 620
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Table C.2 – Geometry data of diffuser-augmented turbines - Part II

Id. Type Geometry

Dr [mm] Di [mm] Dd [mm] Ad/Ar θ [◦] L [mm]

[83] Experimental 190 195 249 1.72 12 120
[135] Experimental 300 302 500 2.78 220
[135] Experimental 300 302 500 2.78 220
[132] Experimental 198 226 250 1.59 25 77
[132] Experimental 198 201 250 1.59 25 52
[126] Numerical 457 457 677 2.19 4 914
[127] Experimental 533 610 711 1.78 152
[127] Experimental 533 610 864 2.63 152
[113] Experimental 1000 1269 1.61 211
[113] Numerical 1000 263
[113] Numerical 1000 263
[26] Experimental 400 440 684 2.92 4 706
[108] Experimental
[82] Experimental 190 195 241 1.61 12 120
[82] Experimental 190 241 1.61 12
[82] Experimental 190 195 269 2.00 11 186
[82] Experimental 190 195 289 2.31 11 232
[82] Experimental 190 195 309 2.64 12 279
[82] Experimental 190 195 283 2.22 12 120
[82] Experimental 190 195 327 2.96 12 120
[27] Experimental 300 300 416 1.92 30 100
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Table C.3 – Geometry data of diffuser-augmented turbines - Part III

Id. Type Geometry

Dr [mm] Di [mm] Dd [mm] Ad/Ar θ [◦] L [mm]

[27] Experimental 300 300 416 1.92 30 100
[27] Experimental 300 300 416 1.92 30 100
[27] Experimental 300 300 416 1.92 30 100
[27] Experimental 300 300 416 1.92 30 100
[27] Experimental 300 300 416 1.92 30 100
[105] Experimental 1000 1120 1309 1.71 230
[105] Experimental 1000 1080 1362 1.85 225
[105] Experimental 1000 1120 1364 1.86 225
[105] Experimental 1000 1080 1283 1.65 12 230
[105] Experimental 1000 1292 1.67 102
[105] Experimental 1000 1318 1.74 140
[105] Experimental 1000 1476 2.18 378
[105] Experimental 1000 1190 1.42 102
[105] Experimental 1000 1394 1.94 102
[105] Experimental 1000 1496 2.24 102
[105] Experimental 1000 1216 1.48 140
[105] Experimental 1000 1420 2.02 140
[105] Experimental 1000 1522 2.32 140
[105] Experimental 1000 1120 1262 1.59 225
[105] Experimental 1000 1120 1466 2.15 225
[105] Experimental 1000 1120 1568 2.46 225



APPENDIX C. Diffuser-augmented turbine’s geometry 105

Table C.4 – Geometry data of diffuser-augmented turbines - Part IV

Id. Type Geometry

Dr [mm] Di [mm] Dd [mm] Ad/Ar θ [◦] L [mm]

[105] Experimental 1000 1374 1.89 378
[105] Experimental 1000 1578 2.49 378
[105] Experimental 1000 1680 2.82 378
[3] Experimental 388 456 1013 6.81 12 617
[141] Experimental 300 413 1.89 68
[78] Numerical 1000 1088 1314 1.73 185
[78] Numerical 1000 1116 1452 2.11 295
[78] Numerical 1000 1096 1316 1.73 253
[78] Numerical 1000 1072 1360 1.85 300
[120] Numerical 457
[57] Numerical 3000 4900 4370 2.67
[47] Numerical 3.00
[47] Numerical 4.00
[47] Numerical 5.00
[47] Numerical 6.00
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