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Resumo

A revolução dos smartphones em 2007 iniciou a um processo de crescimento exponencial
da demanda por serviços de telefonia móvel. O aumento da demanda sem contrapartida
da oferta, dependente do espectro disponível provoca uma queda na qualidade dos serviços
prestados. As técnicas que usam Rádios cognitivos e acesso dinâmico ao espectro são con-
sideradas fundamentais para otimizar a utilização do espectro e aumentar a quantidade de
banda disponível para as redes 5G, ao permitir acesso oportunístico ao espectro licenciado
ocioso.

Diversos estudos apontam a subutilização de bandas, especialmente longe das grandes
cidades, em que há menor demanda e menor incentivo econômico para a instalação de
infraestrutura por parte das operadoras. Esse comportamento é incentivado devido ao
processo de licenciamento de bandas em blocos e alocação estática do espectro, em que
uma operadora licencia uma banda e junto a ela fica encarregada por dar cobertura a
uma área atrelada à licença, enquanto pequenas operadoras locais ficam completamente
de fora dos leilões e são impedidas de competir neste mercado.

O acesso dinâmico ao espectro depende de informações que garantam a identificação
de transmissões no canal candidato, afim de se reduzir interferência ao detentor da licença
do canal.

Algumas das técnicas mais comuns para se detectar a ocupação do canal via senso-
riamento do espectro são carrier-sense e detecção de energia, dependendo da largura do
canal. O sensoriamento colaborativo melhora a capacidade de detecção de uso do canal
quando comparado com o sensoriamento individual, visto que diversifica geograficamente
a informação disponível para análise. A qualidade do sensoriamento colaborativo depende
não só dos sensoriamentos individuais recebidos, mais também da técnica que consolida
ou executa a fusão desses resultados. Existem diversos algoritmos de fusão, cada um
com vantagens e desvantagens. Algumas das técnicas de fusão clássicas são baseadas em
votação k-em-n, em que k sensoriamentos indicando ocupação do canal resultam em uma
fusão indicando ocupação do canal. A fusão 1-em-N, OU lógico, resulta em um número
alto de falsos positivos, detectando ocupação do canal mesmo quando está desocupado,
enquanto minimiza falsos negativos e a não detecção do canal de fato ocupado.
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Por fim, é parte do ciclo de sensoriamento colaborativo filtrar sensoriamentos de
usuários maliciosos que desejam perturbar não só o resultado do sensoriamento colab-
orativo como o funcionamento da rede. No caso de uma fusão simples como OU lógico,
um único nó malicioso é capaz de inviabilizar por completo o uso oportunístico do es-
pectro ao transmitir resultados falsos indicando que o canal está ocupado quando de fato
está livre.

Diante essa problemática, neste trabalho são propostas duas técnicas para melhorar os
resultados do sensoriamento colaborativo, a saber : (1) uma técnica baseada em cadeias de
Markov que aplicada aos resultados de sensoriamentos individuais, reduz falsos positivos
e falsos negativos, além de reduzir o envio de mensagens de controle ; (2) uma técnica
baseada na média harmônica para filtragem de resultados de sensoriamentos individuais
recebidos, descartando sensoriamentos de nós mais distantes das fontes de interferência,
protegendo de ataques Bizantinos. Ambas as técnicas são avaliadas em cenários de 5G
na área rural, em que encontra-se a maior porção de bandas do espectro subutilizadas,
candidatas ao acesso oportunístico.

A fim de permitir a avaliação das técnicas propostas, foram realizadas diversas alter-
ações para o modelo de pilha de rede LTE implementado no simulador de redes a nível
de sistemas ns-3. As alterações incluem os procedimentos de sensoriamento do espectro
individual feito pelos dispositivos de usuários (UEs), a transmissão dos resultados para
o ponto de acesso (eNodeB), a fusão dos resultados recebidos e utilização do resultado
de fusão no escalonamento de recursos para os dispositivos. Os sensoriamentos individu-
ais são obtidos a partir de curvas de probabilidade de detecção e probabilidade de falsos
positivos feitos através de medições em experimentos ou através de simulações a nível de
camada física-enlace. As curvas são carregadas durante a configuração inicial da simu-
lação, sendo interpoladas conforme necessário. As curvas podem ser tanto baseadas em
distância euclidiana quanto em relação sinal ruído e interferência (SINR). O sensoria-
mento individual consiste em utilizar a probabilidade de detecção relacionada a um dado
valor de SNR ou de distância euclidiana é utilizada para gerar uma amostra aleatória a
partir de um gerador com distribuição de Bernoulli. O procedimento se repete a cada 1
milissegundo no ciclo padrão de indicação do subquadro LTE.

A técnica baseada em cadeias de Markov se baseia em um Teorema Central do Limite,
em que a média de um certo número de amostras uniformemente distribuídas tende a
se aproximar ou ao valor real da distribuição de probabilidade fonte ou ao valor central
da distribuição. Em outras palavras, ao amostrar uniformemente uma distribuição de-
sconhecida com número suficiente de amostras, encontra-se uma boa aproximação para o
valor real que é procurado. Este princípio é aplicado para o sensoriamento individual do
espectro, em que o valor do último sensoriamento é comparado com o resultado atual, e
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quando idêntico aumenta o grau de certeza de que este resultado é de fato o real. Quando
os resultados diferem, o grau de certeza é perdido. Quando um dado limiar de certeza é
ultrapassado, o resultado do sensoriamento que é de fato transmitido para o eNodeB é
substituído pelo valor do último sensoriamento. A modelagem deste processo estocástico
binomial é feita baseado no lançamento de N moedas, em que apenas o caso em que
N resultados iguais consecutivos levam à troca do valor transmitido, sendo facilmente
modelado como uma cadeia de Markov de N − 1 estados.

Já a técnica baseada em média harmônica se baseia no fato de que as estações próx-
imas das fontes de interferência são mais confiáveis que estações distantes, baseando-se
nas curvas de probabilidade de detecção. Com isto, é necessário eliminar os resultados de
sensoriamentos informados por usuários maliciosos com alguma informação adicional que
sirva de prova que seu sensoriamento reportado é falso. Uma das maneiras de se mitigar
informações falsas é utilizando a média harmônica dos CQIs reportados, permitindo iden-
tificar UEs mais afetados pela fonte de interferência e descartar todos os resultados por
UEs pouco afetadas, mais afastadas da fonte. Para poder se confiar no CQI reportado
pelos UEs, é necessário medir a quantidade de retransmissões feitas para cada uma delas.
Uma taxa de retransmissões próxima de 10% indica um CQI adequado, enquanto taxas
próximas de 0% indicam CQI reportado abaixo do real e taxas acima de 10% indicam
CQI reportado acima do real. O limiar de retransmissões é definido nos padrões 3GPP.

A avaliação das propostas foi feita em duas partes: primeira parte com a validação
do modelo proposto para o sensoriamento colaborativo no modelo do padrão LTE do
simulador, e a segunda parte avaliando o desempenho das técnicas propostas. Durante a
validação, foi confirmado o comportamento esperado do sensoriamento colaborativo (sen-
soriamentos individuais, transmissão dos resultados e fusões) em termos de taxas de falsos
positivos e taxas de falsos negativos quando comparado com os modelos matemáticos. Na
avaliação do desempenho das técnicas propostas foram avaliadas acurácia, taxas de falsos
positivos e taxas de falsos negativos. Em ambos os casos, foram utilizados cenários inspi-
rados em zonas rurais, com: baixo número de nós (10, 20, 50, 100); uma célula com 50
quilômetros de raio; canal de 20 MHz na banda 5 com portadora em 870 MHz; eNodeB
transmitindo à 53 dBm; UEs transmitindo à 23 dBm; eNodeB e UEs com antenas com
9 dBi de ganho; detentor da licença do canal (PU) transmitindo à 40 dBm ou 35 dBm;
um PU por subcanal de 5 MHz; algoritmos de fusão simples. O cenário de validação
foi pouco realístico, com UEs dispersas ao longo de um certo raio fixo de distância do
PU, garantindo uma mesma probabilidade de detecção para todos os UEs. Os cenários
de avaliação das técnicas foram separados em dois conjuntos, um menos realístico com
dispersão aleatória pela célula, outro mais realístico com dispersão aleatória dos PUs pela
célula e dispersão aleatória de grupos de UEs pela célula, formando clusters de UEs.
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Os resultados mostram que as técnicas propostas aumentam a acurácia em relação à
técnica clássica de fusão de resultados do sensoriamento colaborativo (fusão OU lógico, ou
1-em-N), reduzindo falsos positivos em até 790 vezes, de 63.23% para 0.08% no cenário
com dispersão aleatória dos UEs e sem atacantes. Neste mesmo cenário houve um aumento
de 0% para 0.47% do número de falsos negativos, sem impactar severamente o detentor
da licença do canal. Nos cenários com atacantes, todas as fusões simples apresentam
resultados ruins, com ou sem a técnica das cadeias de Markov, até 100% de falsos positivos,
inviabilizando o acesso oportunístico. Já a técnica da média harmônica apresenta bom
grau de proteção contra atacantes, em especial nos cenários com mais dispositivos. Sem a
técnica baseada em Markov e no cenário com 100 UEs, dos quais 10 atacantes, conseguiu
reduzir falsos positivos da fusão OU de 100% para 60%, sem aumentar significativamente
o número de falsos negativos. Quando as duas técnicas são combinadas, o número de
falsos positivos cai para 5% enquanto falsos negativos sobem para 18%. Nos cenários
com menos UEs e com clusters, falsos negativos são consistentemente mais altos, porém
superiores às fusões 2-em-N, 3-em-N e E utilizando a técnica de Markov no cenário sem
atacantes. Em todos os cenários, a técnica baseada em cadeias de Markov também reduziu
a taxa média de notificação dos quadros em 2 ordens de grandeza, economizando banda
do canal de controle licenciado. Esses resultados permitem concluir que ambas as técnicas
são efetivas para o cenário rural para a qual foram propostas.

Também se depreende que o número de estados da cadeia de Markov e da técnica da
média harmônica podem ser alterados para se trocar alcance da detecção por certeza da
detecção e nível de proteção contra atacantes por falsos negativos, respectivamente.

Como trabalhos futuros, cabem a adaptação da técnica para: incluir cenários urbanos,
mais densos, utilizando técnicas de amostragem; utilização de técnicas de localização (e.g.
Time-of-Arrival, Angle-of-Arrival) para segmentação da célula em setores; melhorar a
técnica da média harmônica para reduzir falsos negativos mantendo o mesmo nível de
proteção contra atacantes.

Palavras-chave: redes 5G, acesso oportunístico, acesso dinâmico ao espectro, sensoria-
mento colaborativo, rádio cognitivo, rural
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Abstract

The smartphone revolution of 2007 started an exponential demand growth of mobile con-
nectivity. The ever increasing demand requires an increase in supply, which is depends in
the amount of available spectrum. The amount of available spectrum however is limited,
curving supply growth and reducing the quality of services perceived by the users. Cogni-
tive radio and dynamic spectrum access are essential to increase the spectrum utilization
and amount of available bandwidth in 5G networks, by opportunistically accessing unused
licensed spectrum.

The dynamic spectrum access depends on channel information that guarantees the
detection of transmissions in the candidate channel, as a means of reducing interference
to the channel licensee.

The collaborative spectrum sensing increases the channel usage detection capacity
when compared to individual spectrum sensing, as there is more geographically diverse
information for analysis and decision-making. The quality of the collaborative sensing
depends not only on the individual sensing that feeds information into it, but also on the
technique that fuses those results into the final sensing result.

Two techniques to improve the collaborative spectrum sensing results are proposed in
this dissertation: (1) a technique based in Markov chains to smooth consecutive individual
spectrum sensing results, reducing both false positives and false negatives, while enabling
the reduction of sensing reports by skipping sensing reports with the same results; (2) a
technique based in the harmonic mean of the channel quality indicator, used to filter the
received individual spectrum sensing, discarding nodes far from the source of interference,
mitigating against Byzantine attacks. Both techniques are evaluated in rural 5G scenarios,
which are the best place to use opportunistic access due to the amount of unutilized and
underused spectrum bands.

In order to evaluate the proposed techniques, a set of modifications to the LTE net-
work stack model of the ns-3 system-level simulator is proposed. The modifications include
a complete collaborative sensing cycle, including: the individual spectrum sensing pro-
cedure, performed by user equipment’s (UEs); the transmission of control messages to
the access point (eNodeB), the fusion of the received results and utilization of the free
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spectrum for the UEs. The individual spectrum sensing is performed by interpolating
probability of detection curves and false positive probability, which are produced either
by experimental measurements or by link-layer simulations.

The evaluation of the proposals was made in two parts: first part focusing on the
validating the collaborative spectrum sensing cycle implementation and integration to the
LTE model; second part focusing on the performance of the proposed techniques. The
collaborative spectrum sensing cycle (individual sensing, sensing report and fusion) was
validated and closely follows the mathematical model. The evaluation of the techniques
included accuracy of the fused result, false positive and false negative rates.

The results show the techniques are effective in increasing the accuracy of the collab-
orative sensing when compared to the standalone classic fusion techniques (OR fusion,
or 1-out-of-n). There were reductions in false positives rates of up to 790 times, from
63.23% to 0.08% in the scenario with randomized dispersion of UEs across the cell and
without attackers. In the same scenario, the false negatives increased from 0% to 0.47%,
which does not severely impact the licensee with interference. All classic fusions behave
very poorly in scenarios with attackers, with and without the Markov chain technique.
False positive rates soar to as high as 100%, making the opportunistic access impossible.
The harmonic mean-based technique reduces the false positives, providing good protec-
tion against attackers especially in scenarios with more UEs. The harmonic mean alone
reduced false positives for the OR fusion from 100% to 60% without significantly impact-
ing false negatives in the scenario with 100 UEs and 10 attackers. When both techniques
are used together, the rate of false positives fall to 5% while false negatives increase to
18%.

Scenarios with less UEs and distributed in clusters tend to have higher false negative
rates when both techniques are used, but false positives are consistently lower than other
classical fusions (e.g. 2-out-of-N, 3-out-of-N and AND). The Markov chain technique
effectively reduced the sensing report rate by 2 orders of magnitude, saving up scarce
control bandwidth. These results allow us to conclude that the both techniques are
effective for the rural scenario they were proposed.

Keywords: 5G networks, dynamic spectrum access, opportunistic access, collaborative
spectrum sensing, cognitive radio, rural
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Chapter 1

Introduction

The mobile phones, created by Motorola in 1973, revolutionized the world offering phone
calls over a Frequency Modulation (FM) analog signal between the cellphone and the
cell. Considering the potential impact of this technology, governmental agencies and
companies created standards to guarantee interoperability, reduce costs and simplify the
operation of mobile networks [1]. The European Union created a mobile network work-
group, Global System for Mobile Communications (GSM), that is part of the European
Telecommunications Standards Institute (ETSI) [1].

The latest widely deployed mobile standard is the Long Term Evolution (LTE), one
of the 4G standards [1]. The LTE network is based on IP packets, uses a newer and more
efficient Medium Access Control (MAC) technique, that can aggregate multiple channels
to increase user throughput and can use multiple antennas, known as Multiple-Input and
Multiple-Output (MIMO), to increase the number of streams transmitted/received by the
users. The MAC techniques are known as Orthogonal Frequency-Division Multiple Access
(OFDMA), used in the downlink, Single Carrier FDMA (SC-FDMA), user in the uplink.
The combination of the new features in the LTE networks allowed unprecedented levels
of efficiency and availability of radio resources, improving the data rates in the networks
and making possible the use of multimedia applications [1].

While the mobile networks advanced, so did the rest of the technology industry. The
plummeting costs of data storage, transmission and processing [16, 17], along with a
surge in component reliability and management complexity, paved the way for on-demand
infrastructure as a service, which became known as the cloud.

The highly flexible architecture of the cloud along with new radio technology, inspired
mobile carriers, governments and standard agencies to work on the new architecture for
mobile networks, known as 5G [18, 16]. On the radio side, the 5G increases the amount
of available spectrum by including new lower frequency and higher frequency bands [19].
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However, the additional high frequency bandwidth is not useful for underserved re-
mote areas such as rural zones. Remote areas have low population density and are not
economically viable for mobile operators with the default 4G/5G infrastructure. High
transmission power and antenna gain, along with low frequency bands are required for
long-range transmissions and super large cells.

The long-range transmissions are quite common in services like broadcast radio and
TV, emergency and military telecommunication systems, radio astronomy, among others.
These service providers pay steep prices for the spectrum band licenses in Spectrum
Management Agencies (SMAs) auctions. The licenses indicate the target use of the band,
the region in which the license is valid and are usually associated with coverage goals.
The coverage goals and prices prevent smaller network operators from providing local
mobile services, even though part of the spectrum remains underused, as large operators
can fulfill their coverage goals by serving larger urban centers [20, 21, 22].

In order to increase the amount of available bandwidth in remote areas, increase com-
petition in the market and provide better service for those communities, it is necessary
to either change how current licenses work or provide options to access underused spec-
trum opportunistically [23, 24, 25, 26]. Some SMAs have proposed new licensing models,
General Authorized Access (GAA), which gives priority of access to the channel licensee,
or Primary User (PU), instead of exclusivity, allowing non-licensees, or Scheduling Units
(SUs), to use the channel when it is free. The GAA requires that the SUs stop transmit-
ting as soon as the PU indicates the intent to use the channel [27], which can be done via
radio signaling or a centralized database managed by the SMAs.

The opportunistic use of underused spectrum is usually done via Dynamic Spectrum
Access (DSA) techniques, where SUs listens to candidate channels, select the less used
ones and opportunistically access any of them [23]. The SUs is required to detect the
PU transmissions as soon as possible and back off from the channel, avoiding interference
[23, 24, 25, 28, 29, 26].

The detection of the channel state by the PUs is done using a spectrum sensing
technique implemented on the radio Physical layer (PHY), along with processing logic in
the MAC layer [30]. However, relying on the spectrum sensing techniques is challenging,
as they are affected by a multitude of factors including the radio itself, noise caused
by the ambient temperature and unknown sources, multipath due to topography of the
area, fading due to blocking, channel bandwidth and frequency plus transmission power
from the source [30]. Spectrum sensing techniques end up trading off range of detection,
probability of detecting a transmission when one is happening, probability of detection,
and probability of detecting a transmission when none is happening, probability of false
positives.
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The spectrum sensing can also be performed by multiple nodes, improving the de-
tection range and reliability of the spectrum sensing, both essential for opportunistic
spectrum access and use in super large cells [30]. This technique is known as Collabora-
tive Spectrum Sensing (CSS), which relies on the sensing nodes sharing their results with
the other nodes, which then merge the results using a Fusion Technique (FT) [30]. The
FT trades the same properties of the individual spectrum sensing and is also responsible
for filtering bad reports [8, 31]. The CSS can be performed in a distributed fashion or
a centralized one, being the centralized the most appropriate for mobile networks due to
their protocol design [30].

Multiple FTs have been proposed over the years, trying to improve the accuracy
of the CSS. The classic FTs are based on voting, also known as k-out-of-n [32]. As
machine learning techniques such as Support-Vector Machines (SVMs), Neural Networks
(NNs) and K-Nearest Neighbors (KNN) became more popular, more FTs using them were
proposed as in KNN in [33, 9]. More recently, FTs using and Extreme Learning Machine
(ELM) were proposed in [34, 35], increasing detection accuracy even further, even with a
relatively small number of sensing nodes. The machine learning techniques have increased
accuracy at the cost of less flexibility (e.g. fixed width and trained for a specific scenario)
and more processing power, increasing the energy usage and the latency between the
sensing and avoidance, in case it is necessary.

Other FTs focus on mitigating other issues, like filtering of bad reports from malicious
users [36, 37, 38, 39]. The forged reports can be used to mislead the FT in order to disrupt
the opportunistic access necessary to maintain the SU network, or cause interference to
the PU.

Considering the above mentioned problematic, this work presents two techniques to
improve the accuracy of the individual spectrum sensing technique of a classic FT in 5G
rural networks. The first technique enables DSA using the TV Whitespace (TVWS) while
protecting channel licensees with low rate of missed detections (false negatives), incurring
in a small latency between the start of the PU transmission and the interference avoidance,
while also reducing spectrum sensing reporting overhead. The second technique protects
against false positive reports from malicious users, by tracking their reported channel
quality, which is unreliable due to self reporting nature, but made reliable anchoring its
results with error rates of the medium access control layer using the technique proposed
in [40].
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1.1 Goal

This work objective is to enable better spectrum utilization by dynamically accessing
unused spectrum and provide protection against attackers in 5G rural networks.

1.2 Specific Goals

The specific goals of this work are:

• develop a technique to improve the confidence of spectrum sensing reports, reducing
false alarms and false negatives, while reducing the amount of control transmissions.

• develop a technique capable of reducing the impact of malicious user attacks.

• implement and verify the techniques in a simulation tool

The contributions of this work are the proposed techniques which aim to improve spec-
trum usage altogether with security issues in 5G networks. Also, another contribution of
this work are the contributions made to an open source simulation tool. Several changes
were implemented in the LTE stack to enable the DSA for the data channel by using the
LTE cross-carrier scheduling, that can easily be ported to the new 3rd Generation Part-
nership Project (3GPP) standard, 5G-NR. These developments are available for further
improvement and development in the NS-3 code [41]

1.3 Work structure

This work is structured in 5 chapters. Chapter 2 presents the literature review for the
mobile network’s evolution, 4G and 5G, medium access control, spectrum sensing and
collaborative spectrum sensing technologies, and how these are used in dynamic spec-
trum access. In Chapter 3, the proposed techniques for collaborative spectrum sensing
techniques are presented and discussed. Chapter 4 describes the methodology for per-
formance evaluation and the simulation scenarios, plus the simulation results and their
analysis. The work conclusions are presented in Chapter 5.
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Chapter 2

Literature Review

This chapter presents a review of the theoretical concepts that are fundamental for the
development of this work. Also, the chapter presents a compilation of the latest related
research works of interest in the area.

2.1 Mobile networks

The growth of telecommunications after the second world war, the establishment of the
internet in the 1980s and its popularization in the 1990s created a huge demand for mobile
communications [1]. The first generation of mobile networks (1G) erupted in the end of
the 1980s with two different standards, one in the USA and other in the EU [1]. Both
standards used analog radio transmissions to transmit voice [1]. Devices were bulky,
batteries were heavy and non very portable, the call quality was poor and mainly used as
second or last option for wired communications.

Soon after, the EU created an agency responsible for telecommunication standard de-
velopment and certification, known as European Telecommunications Standards Institute
(ETSI) [1]. The agency formed a group with academic and industry partners, which pro-
posed and approved the second generation of mobile standards (2G), the Global System
for Mobile Communications (GSM) [1]. The group became known as the GSM Associa-
tion (GSMA). The GSM standard enabled a multitude of new services, including text and
voice messages and an internet-like service, along with interoperability between mobile
carriers [1].

The 2G dropped analog transmissions in favor of digital ones. As the demand for the
internet access grew in the early 2000s, two groups were formed to study and propose
the next generation [1, 42]. The first group, the 3rd Generation Partnership Project
(3GPP), ended up with the most support from the industry and the Wide-band CDMA
(WCDMA) prevailed. The new standard introduced packet-switching for data and kept
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Figure 2.1: Mobile network standards evolution[1]

circuit-switching for voice. The Code Division Multiple Access (CDMA) also increased the
spectrum usage efficiency when compared to the Time Division Multiple Access (TDMA)
used previously [1, 42].

With the advent of smartphones in late 2000s, bringing the Web and internet-services
to the user hands, there was a huge surge in demand for more bandwidth [42]. The 3GPP
continued working on improving the standards and keeping it backwards compatible to
previous standards, allowing mobile operators to slowly upgrade their infrastructure [42].

In 2008, the 3GPP released the 4G standards, known as Long Term Evolution (LTE)
[43]. The LTE introduces a multitude of improvements, including complete deprecation of
circuit switching, new MAC protocols that allows for much greater granularity of spectrum
allocation, increasing even more utilization [44, 45]. Some improvements were the increase
in bits per symbol with a bigger Quadrature Amplitude Modulation (QAM) constellation,
allowing for greater efficiency; multiple simultaneous transmissions streams to a single,
with Multiple-Input and Multiple-Output (MIMO), or multiple users, with Multi-user
MIMO (Mu MIMO), for simultaneous data streams to a single or multiple users; increased
carrier aggregation numbers, vastly increasing the maximum bandwidth capacity for the
users, giving the ability to better serve traffic bursts [43, 46].

The Figure 2.1 shows the evolution path of each standard for every generation up
to the 4G. The LTE standard was later updated to LTE-Advanced and LTE-Advanced
Pro, which further increased the maximum number of aggregated carriers, along with
QAM constellation size and improvements to the resource scheduling and synchronization
protocols to reduce the latency between request for more band and the response [47].

New applications and services brought as well new users’ profiles and traffic patterns to
the Internet. For example, on-demand video stream services like with Netflix, YouTube
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Figure 2.2: Project mobile data growth per application group [2]

and others changed the main traffic growth factor for network operators, projected to
increase up to 10 times in the next 6 years [2], as shown in Figure 2.2.

The quick evolution from 2G to 4G brought many issues to mobile operators, which
got indebted not only to redeploy different generations of the network, but also to buy
expensive spectrum licenses that also required coverage expansion [48, 49]. To solve the
bandwidth and latency demand, while keeping costs down, the 3GPP and ETSI proposed
a revamped architecture for the 5G New Radio (NR) standard. The new architecture is
based on the cloud concept, which replaces most of the hardware in favor of virtualized
network functions running on the edge and core networks, connected to different cells
and the internet [50, 51]. The standard defines support to different access technologies,
including the so called non-3GPP networks [50, 52]. The bandwidth and latency demands
are solved by including even more spectrum to the available pool, most of it from the
millimeter wave spectrum range [19] and dividing the infrastructure into slices, which is a
core concept of the standard that aims to optimize network usage for different applications
[50, 52, 51].

In the following sections, essential concepts of LTE/NR components used in this work
are explained and further detailed.
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Figure 2.3: LTE Architecture [3]

2.1.1 4G LTE and 5G NR

The 4G LTE and 5G NR are the latest mobile network standards, which share a myriad of
similarities. The main differences between them comes from the virtualized nature of the
NR infrastructure, focused on cost reduction, maintainability and upgradeability, while
LTE relies on dedicated hardware for most of its components.

2.1.1.1 Architecture and Stack Overview

Both LTE and NR architectures can be divided into the radio access entities and the
backhaul entities, also called Evolved Packet Core (EPC) [44, 53]. The radio access
entities include the User Equipment (UE) and the base station. The base station is
known as Evolved Node B (eNB) in the LTE and as 5G Node B (gNB) in NR [44, 53].

The LTE architecture is shown in Figure 2.3, showing the UE-eNB connection, along
with: the Serving Gateway (S-GW), that tunnels internet packets transferred between
the UE and the PDN Gateway (P-GW); the P-GW, that acts as an intermediary be-
tween the external server and the UE; the Mobility Management Entity (MME), that
manages UE roaming, authentication, connection management and configures eNBs; Pol-
icy Control and Charging Rule Function (PCRF), that intercepts user traffic and bills
accordingly; Home Subscriber Server (HSS), which manages roaming and authentication
of users connected to the network [44].

Differently from the approach of Institute of Electrical and Electronics Engineers
(IEEE) 802.11 [54] based networks, that rely on different frames to identify control, man-
agement and data transmissions in each channel, both LTE and NR logically separates
control and data channels in regular intervals [47]. Aggregated carriers can be used ex-
clusively for data if using cross-carrier scheduling, where control data is transmitted in
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each channel while the data transmissions can be scheduled to another or both [47]. This
difference in channel usage depends on the centralized MAC of mobile standards, versus
the distributed Medium Access Control (MAC) in wireless networks that share unlicensed
channels. Those differences will be explored later in Section 2.2.

2.1.1.2 Frame structure

The LTE frame comes in two distinct versions: one version for Time Division Duplex
(TDD), where downlink and uplink are alternated in time; and another version for
Frequency Division Duplex (FDD), where both downlink and uplink happen simulta-
neously [4, 47]. The Figures 2.4(a) and 2.4(b) show both the TDD and the FDD versions
of an LTE frame. The frames are split into subframes, which serves as the synchroniza-
tion base for the LTE protocol [4]. The subframes are further split into Resource Blocks
(RBs), that are grouped into Resource Block Groups (RBGs) for scheduling purposes [4].
Figure 2.4(c) shows the internals of the FDD frame, including the matrix of 84 Orthogonal
Frequency-Division Multiplexing (OFDM) symbols that make up each RB [4].

The number and index of the RBs that will be allocated for each UE is defined by the
eNB and transmitted in a control message called Downlink Control Information (DCI)
and Uplink Control Information (UCI) for download and upload [55]. When assigning
RBs to the users, the eNB starts by excluding RBs reserved for essential control trans-
missions (allocation map, synchronization signal, localization pilot, and others) and for
retransmissions with Hybrid Automated Repeat reQuest (HARQ) [55]. After that, the re-
source scheduler in the MAC layer of the eNB assigns the RBs based on a given scheduling
policy and a QoS Class Identifier (QCI) [55, 56].

2.1.2 Quality of Service

Quality of Service (QoS) is essential for telecommunication services that are used by
several critical applications (weather and public safety alert systems, emergency calls
and telesurgery) and other important applications (finance services, autonomous vehicles,
etc.) [57]. In LTE, QoS requirements of a GPRS tunnel between the UE and the P-GW,
known as a Bearer in 3GPP standards, is given by a QCI number [44, 47]. The General
Packet Radio Service (GPRS) tunnel uses the GPRS Tunneling Protocol (GTP) to create
a virtual connection between two endpoints. Figure 2.5 shows how the Bearer is built
and the QoS is enforced throughout the network, first on the P-GW with Traffic Flow
Templates (TFTs) that associate services with QCI levels [44, 5, 47].

The QCIs are separated into two large groups, one Guaranteed Bit Rate (GBR) and
the other non-GBR [44, 6]. The QCIs also specifies the maximum acceptable latency,

9



(a) LTE TDD frame subdivided into downlink (D), uplink (U) and special reconfigu-
ration subframes

(b) LTE FDD frames for downlink and uplink with their respective subframes

(c) LTE Frame subdivisions

Figure 2.4: LTE frame structure and internals [4]

10



Figure 2.5: LTE Bearer and Service Data Flow (SDF) level QoS architecture [5]

maximum rate of failures and the priority of the bearer in case of congestions [44, 6].
In the 5G NR standard, the CQIs are also separated in three broad groups associated
with the user demands: the combination of low latency and high failure rate is known
as Ultra-Reliable and Low Latency Communications (URLLC), while the combination of
higher latency, throughput and failure rates is known as Enhanced Mobile Broadband
/ Extreme Mobile Broadband (eMBB), while Massive Machine Type Communications
(MMTC) Quality of Service (QoS) levels depend on each application [57, 53]. The different
QCI values, related QoS metrics and services are shown in Figure 2.6.

2.2 Medium Access Control

The Medium Access Control (MAC) layer and protocols is responsible for controlling
the access of different nodes to a given channel. MAC protocols are divided into 3 major
groups: the contention-less protocols, which include polling and token passing techniques;
the contention or random access protocols, which include the Aloha and CSMA tech-
niques; the channelization protocols, which include Frequency-Division Multiple Access
(FDMA), TDMA, CDMA and other techniques found in most mobile network standards
[58]. Contention protocols are distributed, with every node controlling its own access
to the channel, commonly used in shared and unlicensed channels [58]. Channelization
protocols are centralized, with one or few of the nodes controlling the access of other
nodes to the channel. Channelization is commonly used in licensed channels, where the
licensee has exclusive access to the channel. In the following subsections we explore the
distributed and centralized MAC protocols [58].
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Figure 2.6: QoS Class Identifiers ( QCIs) and associated characteristics [6]
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2.2.1 Centralized MAC protocols

The centralized MAC protocols rely on a node that centralizes the control of the channel
in each region, assigning transmission slots to other nodes based on a scheduling policy.
The transmission slots can be either separated in multiple ways in respect to frequency,
time and bandwidth [58].

Mobile networks rely mostly in licensed spectrum, which guarantees exclusive access to
the channel. Also, the centralized MAC offers a multitude of advantages when compared
to the distributed MAC, such as higher channel utilization due to the lack of guard periods,
collisions and back-off times, all of them used in distributed MAC protocols.

The assignment of radio resources to the nodes is commonly assigned with some form
of resource matrix. In the 4G LTE protocol, the resource allocation is transmitted in a
control message known as DCI for the downlink and UCI for the uplink. In the following
subsection we detail the resource allocation message in the 4G LTE standard.

2.2.1.1 Downlink and Uplink Control Information (DCI and UCI) of 4G LTE

The DCI and DCI are control messages broadcasted by the eNBs to the UEs every sub-
frame (1ms) [44]. These messages contain a list of Radio Network Temporary Identifiers
(RNTIs), which identifies a given associated UE [44]. For each entry of UE-RNTI values,
there is either a bitmap containing allocated RBGs to that UE or a tuple containing an
offset to the first allocated RBG plus a few subsequent RBGs [55].

There are multiple DCI versions, each of them with different formats representing the
same basic information [55], which includes: the format type, resource block assignment,
Modulation and Coding Scheme (MCS) index, requests for asynchronous channel quality
testing and other. One example of the DCI formats is shown in Figure 2.7, listing the
number of bits used for each field of the DCI Format 8 from Release 8, that introduced
the LTE [7, 55].

2.2.2 Distributed MAC protocols

The distributed MAC protocols rely on the cooperation of the nodes in each channel,
where each node tries to avoid interfering with others and monopolizing the channel. Due
to its nature, this protocol is used in shared and unlicensed channels, where there is no
licensee/primary user (PU) to protect from interference.

The main distributed MAC protocols are based on the Listen-Before-Talk (LBT) prin-
ciple allowing for coexistence of different technologies on the same channel [59, 60, 61].
Each node starts by listening to the channel for a given amount of time. If no transmis-
sion is detected in each period, the node proceeds to transmission. If a transmission or a
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Figure 2.7: DCI Format 0 Release 8 [7]

collision is detected, the transmitting node stops all transmissions and waits for a random
back-off time. Then the cycle restarts. Congested channels are bound to cause collisions
as back-off times end up aligning themselves.

The most used protocol in the category is the Carrier-Sense Multiple Access (CSMA)
[62, 63] and its derivatives, which are specializations of the LBT. The CSMA listens to
the central frequency of the channel, which is dedicated to signaling patterns, instead of
the entire channel bandwidth.

2.2.3 Spectrum Sensing

The Spectrum Sensing (SS) is a set of techniques used to assess whether a channel is
occupied or not. Some of the techniques can also detect which modulations and protocols
are being used in case the channel is occupied. The sensing can be performed either
individually or in collaboration with other nodes, which are detailed in the following
subsections.

2.2.3.1 Individual Spectrum Sensing

The individual spectrum sensing is performed by the physical (PHY) and medium access
control (MAC) layers of the network interface of a node. The sensing is based on the
sampling of the perceived spectrum of a given channel and some form of post processing.
The techniques are usually divided into two sets, based on the sensed bandwidth: nar-
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rowband sensing is usually associated with Carrier-Sensing (CS), while wideband sensing
is usually associated with Energy Detection (ED).

2.2.3.1.1 Carrier-Sensing Carrier-Sense (CS) is a set of one of the most basic tech-
niques of SS, based on comparing the power levels in the vicinity of the central frequency
(carrier) of a given channel against the noise-floor[64]. The CS is indicated for narrowband
signals [64]. In the IEEE 802.11 and 802.15 standards, the CS variant called Preamble
Detection (PD) is used [64]. The PD searches for not only a power peak, but also a
transmission pattern to identify the preamble segment of frames [64]. Ubiquitous, CS is
used by both wired (e.g. Ethernet) and wireless protocols (e.g. Wi-Fi).

2.2.3.1.2 Energy Detection The Energy Detection (ED) is another set of techniques
of SS, based on the detection of a wideband transmission by comparing spectral density
to noise floor [64]. As the transmission power is distributed over a wider band, the power
peaks are much closer to the noise floor, reducing the probability of detection [64]. Figure
2.8(a) shows the spectral density of both narrowband and wideband transmissions. Figure
2.8(b) compares the performance between the PD Carrier-Sensing (CS) technique applied
to the narrowband scenario versus the ED applied to the wideband scenario.

2.2.3.1.3 Window-Based Energy Detector (WIBA) The Window-Based Energy
Detector (WIBA), an Energy Detection-based technique proposed in [65, 66], uses a
window-based technique to sample the sensed spectrum over time. The wideband spec-
trum is split into overlapping segments [65], as shown in Figure 2.9(a). The total energy
El = ∑

i Yi(l) of each segment is computed [65]. The power threshold Th = γ 1
L

∑L
l=1 El is

computed using the segments power spectral density [65]. The computed threshold Th is
compared against each segment total energy El, and if El > Th, the segment is said to be
occupied by a transmission [65].

Figure 2.9(b) shows the probability of detection curve of the WIBA method based on
the SNR levels of a given scenario. The WIBA performance is proven to outperform other
simple energy detection techniques, while being able to detect transmissions even when
the power spectral density is lower than the noise-floor (SNR < 0) [66].

After performing the SS procedures of one of the previous techniques, the node that
performed the sensing proceeds to the decision making process. The decision making
determines if the SS results indicate whether a transmission was detected or not. This
decision is usually done based on detection thresholds, but other techniques such as ma-
chine learning can also be used using the SS result as one of the inputs.

The individual SS provides satisfactory information to prevent most collisions in un-
crowded channels for short range transmissions in unlicensed channels. However, the
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(a) Spectral densities in narrowband and wideband transmissions
[64]

(b) Probability of detection comparison between Preamble De-
tection versus Energy Detection [64]

Figure 2.8: Spectral densities of narrow and wideband transmissions and probability of
detection for Carrier-Sense and Energy Detection techniques
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(a) Overlapped segmentation of the channel bandwidth [65]

(b) Signal-to-Noise-Ratio (SNR) versus Probability of detection
[65]

Figure 2.9: Segmentation of the band into overlapping blocks for the WIBA and SNR-
based probability of detection curves
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limited information of the channel state is not enough to ensure the protection of li-
censees (Primary Users (PUs)) during opportunistic use of their channels, especially in
long-distance scenarios (e.g. rural and arctic wide-range access networks).

2.2.3.2 Collaborative Spectrum Sensing

Collaborative Spectrum Sensing (CSS) schemes are used to share the individual SS re-
sults with different nodes, increasing the amount of information available for the decision
making process [67]. The CSS can be described as a series of steps that are executed
in cycles, that can be triggered periodically or on-demand. A generic CSS cycle has the
following steps:

1. the sensing nodes execute the individual SS technique

2. individual SS result sharing

3. reception of shared individual SS results

4. fusion of individual SS results using a Fusion Technique (FT)

5. decision making of whether the channel is occupied or not

The CSS can be either distributed or centralized, based on how the sensing information
is shared and how the decision making is made [67].

2.2.3.2.1 Distributed Collaborative Sensing In the Distributed CSS, each node
is responsible for the collection of shared sensing reports, Step 3, fusion with their own
sensing results, Step 4, making the decision about the channel state, Step 5 and which
action to take upon the decision result [8, 31].

Multiple distributed CSS schemes have been proposed, most of them focusing on the
already distributed-by-design Wi-Fi networks [8, 31]. The SS result sharing, Step 2, is
made via broadcast to nearby nodes, shown in Figure 2.10. Nodes can also choose whether
to forward the results from other nodes or not.

The Distributed CSS shares pros and cons with distributed networks: they are more
resilient, but less efficient. In the context of collaborative sensing, a distributed scheme:
requires the transmission of more messages, nodes have smaller range, there is a bigger
delay between the detection of a transmission by one node and the reception of that report
by a node far from the sensor that originally detected it, distributed decision making can
result in conflicts that result in interference between either sensing nodes or the channel
licensee, in case of a licensed channel. On the resiliency side, nodes in distributed schemes
can identify and prioritize trustworthy sensing reports and ignore nodes that are known
to report wrong sensing results.
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Figure 2.10: Distributed collaborative sensing [8]

Figure 2.11: Centralized collaborative sensing [8]

2.2.3.2.2 Centralized Collaborative Sensing In the Centralized CSS, the sensing
nodes only transmit their sensing results to the central node during Step 2. The sensing
results are collected by the central node during Step 3, followed by the fusion, Step 4,
and the decision making, Step 5. After the decision making, the fused results are either
shared directly via broadcast or indirectly via the resource allocation matrix.

Figure 2.11 depicts the transmission of the individual SS results to the central node.
The processing may include false reports filtering, weighting of sample relevance [8, 31].
When the individual sensing results are processed, they proceed to the same fusion tech-
nique used in distributed CSS, and the result is shared across the nodes [8, 31].

One example of how a Centralized CSS cycle operates is shown in Figure 2.12. Figure
2.12(a) show the individual spectrum sensing executed by the sensing nodes (UEs), Step
1. The sensing is followed by the report of their sensing results to the central node (eNB),
Step 2, as a bit per channel (Hard-combining). In Figure 2.12(b), the central node receives
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the reports, Step 3. The collected sensing reports are then fused, Step 4, and the central
node decides if the channel is occupied or not, Step 5, as shown in Figure 2.12(c).

Centralized CSS is indicated for use with centralized MAC protocols, where there
is already an implicit source of synchronization, where control messages are exchanged
between the access point (Access Point (AP) for Wi-Fi, eNB for LTE) and stations (Sta-
tions (STAs) for Wi-Fi, UEs for LTE). A few additional fields to those messages can carry
which station should perform and report the individual sensing, while the results of the
sensing can also be appended to already existing control messages, reducing the number
of transmissions and collisions when compared to a distributed MAC implementation.

A centralized approach also comes with its flaws: single point of failure; latency be-
tween the sensing and the reception of the CSS results transmitted by the AP; lost of
access opportunity due to the latency between sensing and result.

2.2.3.2.3 Spectrum Sensing Reporting The transmission of individual sensing re-
sults may require different amounts of data depending on the report type. Hard combining
fusion techniques use a single bit to represent a channel state (occupied or not), while Soft-
combining fusion techniques use n bits to represent different probabilities of occupation
of the channel [68, 69, 70].

2.2.3.3 Fusion Techniques

The FTs are fundamental for collaborative sensing schemes, as they are used to merge
the individual sensing results from multiple nodes into a single final sensing result [67], as
shown in Figure 2.12(c). The final sensing result is computed by each node or a few nodes
in Decentralized collaborative sensing schemes, while a single central node computes the
final result in Centralized collaborative schemes. FTs can be based on multiple principles:
statistical, with counting/voting and temporal analysis; pattern-matching and clustering
through machine learning [67].

As the FT merges individual sensing results, it directly affects the outcome of decisions
taken based on the fused result. The different FTs trade false positives (e.g. detection
a transmission when no node is transmitting) and false negatives (e.g. not detecting a
transmission when a node is transmitting) in different ways and should be selected based
on the use case [67]. In the CSS for opportunistic access of licensed spectrum, mitigating
false negatives is more important than mitigating false positives, as one causes interference
to the channel licensee while the other wastes unused spectrum [67]. Other metrics also
impacted by the FTs are: the processing power, important for battery-powered mobile
devices; the delay between the sensing and the broadcasting of the fusion result, also for
channel licensee protection; reporting overhead, which depends on the number of reported
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(a) Individual spectrum sensing and reporting of sensing nodes, Steps 1 and 2 of the
CSS cycle

(b) Report collection by the central node, Step 3 of the CSS cycle

(c) Fusion of individual sensing results by the central node and channel state decision,
Steps 4 and 5 of the CSS cycle

Figure 2.12: Example of partial Collaborative Spectrum Sensing Cycle
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channels, number of reporting nodes and the number of bits to represent the state of the
channels, which depends on both the chosen fusion and the SS technique.

Multiple FTs have been proposed over the years and a few of them are described next.

2.2.3.3.1 k-out-of-n rule The k-out-of-n rule for fusion is based on the probability
of an event happening k times out of n tests [67, 32]. That probability is given by a
binomial distribution

(
n
k

)
pkdi(1 − pdi)n−k. The probability of an event happening at least

k times out of n tests is given by them sum of binomial distributions with l = k..n events
with same outcome out of n samples, as in Eq. 2.1.

Pd(d) =
n∑
l=k

(
n

l

)
pdi(d)l(1− pdi(d))n−l (2.1)

Figure 2.13: Collaborative probability of detection using the k-out-of-n fusion rule for
different values of k

As an example of the behavior of the k-out-of-n rule fusion, the Figure 2.13 presents
the fused probability Pd(d) of at least k events of detecting an occurring transmission. The
number of sensing nodes n is set to n = 10, the threshold of nodes reporting a detection
k ranges from k = 1..n and the probability of detection of each spectrum sensing event
for the sensing nodes pdi(d) ranges of p = 0..1. The 1-out-of-n rule is also known as the
logic OR rule, while n-out-of-n rule is known as logic AND rule.
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Figure 2.14: Collaborative probability of false negative using the k-out-of-n fusion rule
for different values of k

It can be implied from Figure 2.13 that an increasing individual probability of detection
pdi increases the collaborative probability of detection Pd. At the same time, a small
threshold k leads to higher collaborative probability of detection Pd and lower probability
of false negatives Pfn (not detecting a transmission), as shown in Figure 2.14.

The trade-off seen in the number of minimum events k however affects the collaborative
probability of detection Pd when there is no transmission to be detected. The individual
probability of detection of the spectrum sensing technique pdi in the equation is replaced
by the probability of false positives pfp (when a transmission is detected when its not
happening) of the same spectrum sensing technique. When this happens, the decrease in
the threshold k results in an increase of the probability of false alarms pfp, as shown in
Figure 2.15. The increase in false alarms reduces the chances to opportunistically access
the licensed channel.

The simplicity of the implementation and modeling make it one of the most used FT
schemes, even though it is not the most accurate.

2.2.3.3.2 Majority rule The majority rule says that the fusion result Pd is defined
by most reports, as shown in Eq. 2.2 [32]. In this equation, the probability of detection
pdi(d) is based on the distance dk to each of the N sensing nodes (UEs). It is a special
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Figure 2.15: Collaborative probability of false positives using the k-out-of-n fusion rule
for different values of k, assuming a fixed individual probability of false positive of 0.1

case of the k-out-of-n rule.

Pd =

1, for∑N
k=1 pdi(dk) > N

2

0, otherwise
(2.2)

2.2.3.3.3 Machine learning Multiple fusion techniques have been proposed over
the years using different machine learning techniques such as Neural Networks (NNs),
Support-Vector Machines (SVMs) or K-Nearest Neighbors (KNN) [67].

In [33, 9], a shallow and narrow feed-forward neural network is trained with both
individual sensing report (local decision in Figure 2.16) and the reported Signal to Noise
Ratio (SNR) of every reporting node as the input and the real channel state as the
collaborative fusion result target (output) in a supervised learning approach. Figure 2.16
shows the topology of the NN proposed in [9].

The technique is simple, but scales very poorly for a big range of sensing nodes,
as they would require the usage of multiple NNs with different lengths, or a different
topology. It can be effective if the network behaves as expected in the simulations that
were used to train the NN, but may not be as effective in the real world as sudden
temperature fluctuations, multi-path effects due to blocking, and topography may impact
the measurements by the UEs and reflect on the fusion result.
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Figure 2.16: Artificial neural network topology proposed in [9] for the fusion of individual
sensing results in a Centralized CSS scheme

In [10], two fusion techniques are proposed, one using SVM and the other using KNN.
The SVM technique is used to improve the ED spectrum sensing technique results by
analyzing them over time, while the KNN classifier is used for distributed voting between
nearby nodes. The technique has higher accuracy than compared techniques in the sce-
narios simulated by the authors, as shown in Figure 2.17. The simulated scenarios are
inspired by urban networks, with high density of both PUs and Scheduling Units (SUs)
distributed within a small cell, with high mobility. The computational costs are ignored.

More recently, other machine learning techniques started being used in new FTs pro-
posals, such as in [34] and Extreme Learning Machines (ELMs) in [35]. As with other
techniques, they are used for clustering the sensing results and deciding based on the
clustering. The ELM used in [35] follows a similar strategy proposed as the one proposed
in [34] but using a different NN topology and achieving similar results.

The CNN proposed in [34], shown in Figure 2.18(a), aggregates sensing results reported
by the sensing nodes per channel subcarrier, forming a binary matrix that is fed into the
CNN. The CNN then processes the convolutions, producing the results that feed the FC1
layer. This layer feeds the next and a softmax function pass, that normalizes the results
r into weights wri ∈ [0, 1]/∑N

i=1 ri = 1. The results of the softmax layer are then used as
weights to define if the channel is idle with Eq 2.3. The technique has better detection
accuracy than other tested techniques in the scenario used by the authors, as shown in
Figure 2.18(b).

ewr0×r∑1
i=0 wri × r

>
ewr1×r∑1

i=0 wri × r
(2.3)
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Figure 2.17: Comparison between different fusion techniques with the ones proposed in
[10]. Scenarios assume PUs are divided into senders and receivers uniformly spaced with
100m between each other, detection radius of sensing nodes is 300 m, 49 sensing nodes
are organized in a 7x7 grid, 1000 sensing samples are used for the classifier training.
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(a) Convolutional Neural Network (CNN) model for deep collaborative sensing [34]

(b) Performance comparison of CNN and other FTs
[34]. Assuming a scenario with 32 sensing nodes and
a single PU in an area of 200 m x 200 m, with 200
samples per node and a noise floor of −164dBm/Hz

Figure 2.18: Convolutional Neural Network topology for collaborative sensing fusion and
performance comparison
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2.2.3.3.4 Additional fusion techniques There are multiple FTs implementations
based on the techniques previously mentioned which improve on specific aspects, such as:
the accuracy of different fusion techniques in [68, 69, 70]; reducing power consumption
of the reporting devices [71, 8]; and reducing the traffic overhead of the reporting in
[72, 73, 74].

2.2.3.4 Mitigation of Byzantine attacks

Byzantine generals problem was described in [75] as a problem of consistency due to a
faulty component of a system. A reliable system requires that these inconsistencies should
be mitigated to prevent erratic behavior [75]. The conflicting information provides a path
to identify, isolate and recover the faulty component [75, 76]. However, identifying which
information comes from the faulty component is the fundamental issue of the Byzantine
generals problem. If every component of the system is trustworthy, then the consensus
between components and identification is reasonably simple. If the components are not
trustworthy, then it may be impossible to reach the consensus.

The collaborative spectrum sensing schemes, distributed or centralized, can be tar-
geted by byzantine attackers, which can transmit forged sensing reports to disrupt the
opportunistic use of the spectrum or cause harmful interference [76, 39]. Byzantine attacks
in CSS is also known as Spectrum Sensing Data Falsification (SSDF). A multitude of differ-
ent Byzantine attacks and defense mechanisms against them have been studied for both
distributed and centralized schemes, with probabilistic (realistic) and non-probabilistic
(unrealistic) falsification of results [77], but it is impossible to completely protect against
all of them. Most of the defense mechanisms are based on assigning trust to the nodes
and filtering nodes below a certain threshold.

According to [36, 38], the Byzantine attacks on the CSS context can be classified as:
Always True, Always False, Dynamic. The Always True attack happens when a malicious
node, or attacker, always report that a PU is transmitting, while the Always False attack
happens when a malicious node always report that no PU is transmitting[36, 38]. Dynamic
attacks are more sophisticated and harder to identify, where the malicious node change
the forging pattern of reports to disguise itself from the central node [38].

2.2.4 Spectrum Allocation

Spectrum Management Agencies (SMAs) are responsible for managing how the spectrum
is used and by whom it is used. Spectrum bands are commonly auctioned to a single
licensee known as the PU, resulting in the static allocation of the spectrum. The PU has
the exclusivity of use of that band in each area by a given time period, usually tens of
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years. An example of such spectrum allocation is shown in Figure 2.19, produced by the
Brazilian SMA known as Anatel (National Telecommunications Agency). The large green
chunks in Figure 2.19 represent bands reserved for analog broadcasters (TV, AM and FM
radio).

As the number of applications requiring access to spectrum grows and spectrum
remains underused in the countryside, the academia, small Fixed Network Operators
(FNOs) (FNO) left out of the mobile business due to the lack of available spectrum, and
some SMAs started proposing either dynamic spectrum allocation.

The dynamic spectrum allocation would rely on an on-demand temporary licenses
with a short expiration date, to increase the utilization rate of spectrum and prevent
Mobile Network Operators (MNOs) from buying spectrum to keep competition away[27].
This temporary license is based on the License Shared Access (LSA). The other proposed
option, mixes Dynamic Spectrum Access (DSA) and LSA elements [27], replacing exclu-
sivity licenses with a shared one based on tiered access that guarantees the priority to the
PUs, while allowing higher and lower priority to SUs. This option is known as General
Authorized Access (GAA) [27].

2.2.5 Opportunistic Access

The lack of free air spectrum prevents MNOs from increasing the total bandwidth available
for their users. The concern was partially solved by increasing compatibility of the 5G NR
stack with additional spectrum in the FM, the 6GHz and the Millimeter Waves (mmWave)
bands [19]. Most of the additional spectrum is in the mmWave bands, which are adequate
for dense deployment due to their shorter range [19]. At the same time, most of the
spectrum licensees underutilize their spectrum by transmitting only or almost exclusively
in bigger cities, where unlicensed spectrum is crowded. In remote areas, most of the
spectrum, licensed and unlicensed, remains unused [20, 21, 22].

Proposals have been made to opportunistically access the underused spectrum, making
sure not to disturb the PU of the channel when it is transmitting [23]. The proposals
usually call for geographical databases which are queried for channel use in each region by
prospecting users. Other proposals call not only for a query system, but a full temporary
license authorization system, giving exclusivity over a channel for a given amount of time.
Others call for supplementary techniques, such as using SS to validate and update the
information provided by the database.

In the following subsections, we detail the dynamic spectrum access technique and its
enablers.
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Figure 2.20: Dynamic Spectrum Access of unused spectrum (spectrum holes [12]

2.2.5.1 Dynamic Spectrum Access (DSA)

The DSA is a form of spectrum access based on the opportunistic access to the licensed
channels by one or more unlicensed users [23, 24, 25, 26]. The SUs preemptively backs
off from transmitting when senses activity from the channel licensee, known as the PU.
The SU back off prevents interference to the PU, while increasing spectrum utilization
[23, 78, 24]. To prevent disruption to PUs protocols that are not prepared for coexistence,
the delay between the start of the PU transmission and the SUs back off should be
minimized as much as possible. The correct execution of the DSA technique, should
increase the amount of available bandwidth for the SUs [28, 29].

Most od DSA proposals are focused on bands that remain unused after the transition
from analog to digital television [79, 80]. The unused bands are called TV whitespaces
(TVWS) [81], which researchers have advocated for unlicensed use after the TV transition
finishes while MNOs pressure for repurposing them as additional 5G spectrum [82, 83, 84].
Those bands provide wide-coverage and requires less power, ideal of mobile connections
[80].

2.2.5.2 Cognitive Radio (CR)

The CR is an enabler technology for DSA [85, 22], being generally defined as a radio
that can sense its environment and adapting to it [86]. The Federal Communications
Commission (FCC) [78] defines CR as "a radio that can change its transmitter parameters
based on interaction with the environment in which it operates. This interaction may
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Figure 2.21: Cognitive Radio cycle [13]

involve active negotiation or communications with other spectrum users and/or passive
sensing and decision making within the radio".

A CR usually operates in a three step cycle: sensing, decision and judging. During the
sensing step, the radio collects channel information, either individually or by cooperative
actions[86], shown in Figure 2.21 as the Radio-scene analysis. During the decision step,
the radio checks the current parameters and last sensing results and tries to act to increase
one of its performance metrics, increasing transmission power, using a different MIMO
configuration, reducing errors by choosing a more conservative coding and modulation
scheme[86]. The decision step is shown in Figure 2.21 as the transmit-power control
and spectrum management state. During the judging step, the previous action taken
is compared to the measured outcome and the previous configuration is reverted if the
outcomes are worse [86]. This step is represented by the channel-state estimation and
predictive modeling in Figure 2.21.

The Dynamic Spectrum Sharing (DSS) enabled by CR and DSA leads to higher spec-
trum efficiency and utilization [31, 72, 87].

2.2.5.3 Geographical Databases

The geographical databases are an enabler technology proposed for the DSA, reducing
costs on specific spectrum sensing hardware required by Cognitive Radio (CR). It contains
a set of base stations per region, along with their associated coordinates and transmission
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parameters (e.g. antenna type, gain, height, direction and inclination; transmission power;
modulation and coding schemes; channels) [88].

and mobile operators already maintain similar databases for licensing, maintenance
and infrastructure sharing purposes, making it a viable choice. Some studies propose the
possibility of offering temporary licenses for users that want to use unused licensed chan-
nels in a region [89]. The users would be able to request a spectrum band using sending
a request to the geographical database, as shown in Fig. 2.22(a), and the database could
either respond with either a denial for the request or the spectrum response containing
the transmission parameters, as shown in Fig. 2.22(b).

2.3 Statistical tools

Some of the most generic tools to model/extract the distribution of random processes
are the Markov Chains and Monte-Carlo simulations. We detail them in the following
subsections.

2.3.1 Central Limit Theorem (CLT)

There are multiple theorems that state the existence of a Central Limit Theorem (CLT)
[90]. Those theorems may vary depending on the context they are used, although the
Laplacian definition has been widely adopted as a general case and improved over the
years [90]. Poisson improved on the CLT relating it to the Law of Great Numbers, pre-
viously known as Bernoulli’s Theorem, which states that, for individually and identically
distributed samples, the mean value of samples X̄ = 1

n

∑n
i=0 xi converges to the either the

real value X or the mean value of the source probability distribution Φ as the number of
samples n increase [90].

In modern times, after the contributions of Chebyschev, Markov and Lindberg, the
CLT became completely generalized [91]. They have shown that even in cases that the
samples are not individually and identically distributed, if the samples correlation c(k) =
〈xn+k + xn〉 between samples xi has a zero mean and can be summable ∑∞k=0 c(k) < ∞,
then the CLT limit in Equation 2.4 holds [91]. The CLT is given by Equation 2.5, where
SN is the mean value of the samples, N is the number of samples, and the effective
standard deviation σ2

eff = σ2 + 2∑∞k=0 c(k) [91].

lim
N→∞

P (a ≤ SN√
Nσ2

eff

≤ b) = 1√
2π

∫ b

a
e−

1
2x

2
dx (2.4)

〈Sn〉 ' 2σ2
effN (2.5)
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(a) Geographic database request for spectrum [89]

(b) Geographic database response for a spectrum request [89]

Figure 2.22: Geographic database request and response for temporary spectrum band
licenses
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Figure 2.23: Markov Chain modeled as a Finite State Machine [14]

2.3.2 Markov Chain (MCh)

A Markov Chain (MarkCh) is a tool to model a stochastic process. A process is said to
be a Markov process or have a Markov property if the probability of distribution of the
following state Sn+1 is dependent only on the previous state Sn at the time n and not on
previous states Sk for k = n− 1, ..., 0 [14, 92].

The MarkCh itself can be modeled as a combinational (memoryless) Finite State
Machine (FSM) and a set of transitions bounded to the stochastic process probability
distribution [14]. The probability distribution of the process can be obtained by observing
transitions from the events. The sum of the state transitions exiting from each state adds
up to 1. Figure 2.23 depicts a MarkCh as a FSM, with 5 states and 10 state transitions.

2.3.3 Monte-Carlo (MC)

The Monte Carlo (MonCar) methods are a set of stochastic modeling techniques that uses
random events to simulate complex probabilistic events [93]. Random events are used to
extract a good representation of an underlying complex distribution of a given process
[93].

2.3.3.1 Mathematical background

According to [94], the MonCar methods have two aims: generate samples from a given
distribution P (x), and estimate expectations of functions under the distribution P , as in
Φ = 〈φ(x)〉 ≡

∫
dNxP (x)φ(x).

The sampling goal consists of evaluating a P ∗ function which we assume is distant
from the target P distribution by a multiplicative constant Z =

∫
dNxP ∗, as in P (x) =

P ∗(X)/Z [94]. However, Z is unknown and hard to compute in both the continuous and
discrete versions [94].
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The second goal of estimating the expectation of a function φ(x) can be made using
the discrete version of the sampling function above [94]. However, the distribution of φ(x)
or P ∗(x) may have a distribution that is concentrated in a few spots of a large state space,
and sampling enough to cover them requires many samples [94].

To reduce the number of required samples, different methods are used. Both impor-
tance and rejection methods make use of a proposal density Q(x) to generate random
samples xr and study Φ̂ ≡

∑
r
wrφ(xr)∑

r
wr

with wr ≡ P ∗(xr)
Q∗(xr) [94]. The importance sampling

requires that the samples are in the typical set of P , otherwise the simulation will require
a lot of samples, unless Q is a good approximation of P [94]. For rejection sampling, Q
should also be a good approximation of P , otherwise a large sample size will be required,
and most samples will get rejected[94].

2.3.3.2 Simulations

Systems simulations can be classified as static, if the system does not evolve over time
(time-invariant), or dynamic, if the system evolve over time (time-variant) [95, 96].

The MonCar equivalents for the static and dynamic simulation models are the MonCar
MarkCh and MonCar sequential models, respectively. Sequential MonCars are used for
scenarios where future results depend on previous states, while Markov Chains are used
for scenarios where future results only depend on a stationary probability and the current
state [93].

The main use cases of MonCar simulations are: the estimation of values through
stochastic methods (e.g. calculating the Pi value by calculating the fraction of random 2-
D coordinates samples inside of a circle circumscribed by a square with same width divided
by the number of total samples), machine-learning (e.g. gradient descent), optimization
problems, simulation of a given system, and visualization of complex systems through
sampling [93].

2.4 Related Works

2.4.1 Markov chains in individual and collaborative spectrum
sensing

Markov chain based solutions have been used in CRmethods for the Carrier Sense Multiple
Access-Collision Avoidance (CSMA/CA) protocol, as proposed in [15], which uses a non-
collaborative approach. The SS results and the exponential back off are used to determine
the probability of transmission and probability of collision in a channel [15]. The joint
stochastic model is made using a bi-dimensional MarkCh composed of two components
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A, derived from the CSMA/CA stochastic process for the exponential back off, and Pi,
derived from the proposed stochastic process of the spectrum sensing technique [15].
The authors prove that both stochastic processes are independent and the probability
of a transmission happening can be expressed as τ = ∑m

i=0 bi,0
∑C−1
s=0 sc, where bi,0 is the

stationary probability of the CSMA/CA back off, sc is the stationary probability of the
SS indicating whether a channel c is idle or not and m is the number of the back off
stages [15]. They also derive the probability of collision with at least one of the PU nodes
transmitting as pc = 1− (1− τ)n−1, where n− 1 is the number of other PUs sharing the
same channel. The proposed MarkCh FSM is depicted in 2.24. The proposal does not
work with CSS, which reduces the amount of information the nodes could have access to,
increasing the chance of collisions and interference.

Figure 2.24: Markov chain to model the joint stochastic process of the CSMA/CA and
spectrum sensing [15]

A different proposal is made in [97], using a CSMA/CA based reporting scheme on
top of a Common Control Channel (CCC) licensed channel. In the proposed solution,
a sensing node performs the sensing on a candidate channel, then switches to the CCC
channel where it performs the PD [97]. If the CCC is occupied, the sensing nodes switches
to the next candidate channel and repeats the cycle [97]. If the CCC is free, the sensing
node broadcasts the sensing report [97]. Authors did not explore fusion techniques, nor
specified the saved bandwidth of their technique [97].

Yet another technique for CSMA/CA is presented in [72], where a Semi-Distributed
Cooperative Spectrum Sensing (SDCSS) technique is proposed along with a p-persistent
CSMA/CA, which according to the authors outperforms the CSMA PD [72]. Their pro-
posed SDCSS technique consists in assigning a set of channels to be sensed by each sensing
node at every sensing cycle [72]. After sensing all the assigned channels, each sensing node
transmits its sensing results for other nodes, which collect the reported data [72]. After
all nodes finish transmitting their reports, a new sensing cycle starts, and every node by
itself decides each channel is idle or busy depending on the received reports [72]. After all
nodes identifies empty channels, if the node decides to access a channel, it reserves a time
slot with a 4-way handshake with Request-To-Send (RTS)/Clear-To-Send (CTS) [72].
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Authors do not mention bandwidth savings or overall probability of detection, focusing
instead on estimated throughput.

2.4.2 Localization and statistical sampling techniques to im-
prove fusion

Regarding CSS, correctly identifying the nodes that have better performance in sensing
has a fundamental role for improving efficiency and accuracy in PU detection. Then, the
approach is to find an efficient relationship between the amount of data transmitted on the
CCC and the detection performance. One way is to define that the UEs with the highest
detection probability have the best detection performance [98]. However, several factors
influence the detection probability like shadowing, fading effects, and noise uncertainty.
Choosing which UEs need to report may require additional information, like localization
and energy constraints. Other ways to reduce overlapped sensing reports include selecting
users with low correlation levels between them [99] or to select devices with higher gain
antennas, that can collect other local user reports with a side-channel and forward them
to the Fusion Center (FC) [8].

In [100], the authors study grouping methods (random, reference-based, statistic-based
and distance-based) to select adequate UEs to report in order to save bandwidth, energy
and improve the detection probability. From the different grouping methods studied,
only the random clustering did not require localization information [100]. Not requiring
localization information can save power and increase the number of scenarios in which
the technique can be used (e.g. single tower cells without specialized hardware required
in Angle-of-Arrival (AoA) and Time-of-Flight (ToF) techniques) [100]. The authors show
that the random clustering outperforms the other grouping methods [100].

Other grouping technique for CSS is presented in [101], where the sensing nodes are
grouped into clusters and the node from each cluster that is the closest from the FC
becomes the cluster head. The cluster head receives energy sensing reports from the
nodes within its cluster, fuses them with an energy fusion technique, and forwards the
result to the FC [101]. The FC uses an OR fusion to consolidate the cluster reports
[101]. The technique can save a lot of bandwidth on the CCC if a side-channel is used for
intracluster transmissions [101]. Authors claim their technique probability of detection
rates are an order of magnitude higher than traditional CSS for the same scenario [101].
The authors don not mention the reliability and protection against attackers, which can be
mitigated with more advanced fusion techniques but not with the traditional OR fusion.
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2.4.3 Spectrum sensing trust anchor

To circumvent the lack of reliability in the SS reporting, we can use additional infor-
mation to validate the report, like tracking the CQI levels of a UE. However, the CQI
levels are self-reported, which means a malicious attacker can also report wrong values
on purpose. A technique to mitigate false reporting of Channel quality Indicator (CQI)
in LTE networks is proposed in [40]. The technique is because the standard implies the
existence of a correlation between retransmissions and the CQI levels [40]. If the number
of retransmissions is higher than 10%, either the quality of channel deteriorated in the
meantime or the reported CQI is higher than the optimal CQI, which indicate a possible
fraud [40]. If the number of retransmissions is low but the CQI remains low, there is also
indication the CQI is fraudulent.

2.4.4 Mitigation of Byzantine attacks

One of most crucial points on CSS is that relying on third-party sensing results ends up
opening opportunities for malicious users that may report wrong information to disrupt
the network, especially in an opportunistic access scenario.

A framework for detection of false sensing reports is proposed in [36], along with a
clustering technique to assess the sensing node trustworthiness. The clustering technique
is used to calculate the probability of each sensing node to be legitimate and discard
bad reports before fusion [36]. The authors assume that if the sensing period is smaller
than the transmission period to be detected, the probability of legitimate users having
the same consecutive result is higher than malicious user, depending on the rate they flip
their results [36]. This premise is also used in this dissertation.

Another clustering technique, Fuzzy-C means, is proposed in [37], also used to gen-
erate weights for the sensing node reports, which are summed and compared against a
threshold to determine the final sensing result[37]. The basic premise of the work is that
the sensing period is far smaller than the primary user activity period, from which we can
assume the number of consecutive results for the sensing nodes should be stable through-
out the entire period, while attackers should fluctuate during stable periods [37]. The
technique shows good results, with an error rate an order of magnitude smaller than the
traditional reputation technique they compare against [37]. The authors, however, over-
look shadowing effects, which may severely affect the fluctuation of the sensing results
from the legitimate nodes.

Still on protection against Byzantine attackers, [38] proposes a sequential test that
eliminates false reports in both mobile and static scenarios. The proposed technique starts
by collecting sensing reports from the sensing nodes and assignment of a trust value based
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on the correctness of the reports over a period [38]. To circumvent cases where most of
the sensing nodes are malicious, the FC verifies if any scheduled transmission over an
opportunistically accessed resource was correctly received by the recipient [38]. If the
data was correctly received, the fusion decision from the previous period is confirmed
as correct [38]. The author effectively mitigates the Byzantine attack problem, but the
premise assumes that the PU transmissions will interfere on the data reception, which
may not be the case for all sensing nodes.

Another technique to identify Byzantine attackers is proposed in [39]. The technique
uses an initial training period to collect normal operation of the network and build a
defense reference, measuring the reputation of each sensor node [39]. The reputation of
each node is computed by comparing their report to the majority rule based fusion [39].
The evaluation period follows the training period, where no node tagged as Byzantine can
participate in the fusion [39].

2.5 Chapter review

This chapter reviewed concepts regarding the evolution of mobile networks, with a short
introduction to mobile network architecture, the two main components associated with
the radio access (UE and eNodeB), the radio frame and radio resources subdivisions.

The chapter also reviewed distributed and centralized MAC techniques, including the
resource matrix for the LTE standard, known as DCI/UCI for downlink/uplink channels.
Spectrum sensing techniques are then presented along with the concepts of collabora-
tive spectrum sensing, which aggregates sensing results of multiple nodes into a single
result based on different fusion techniques. The collaboration may be either distributed,
with nodes broadcasting their sensing results to nearby nodes, or centralized, with nodes
transmitting their results to a single FC.

After that, statistical tools are presented, including: the central limit theorem, which
states the average of uniformly spaced samples of an unknown random distribution tend
to either the real value or the real average of the distribution; Markov chains, which
can be used to model stochastic processes; and Monte Carlo techniques, usually used to
model a complex system with a large number of parameters or with high computational
complexity.

The previous works show that Markov chain based techniques are not unheard in CR
and SS research, but are not commonly used, especially in CSS. Even though clustering
techniques are used to save up bandwidth and improve the reliability of the system,
authors ignore the possibility of fraudulent users, which would tank their results. To the
best of our knowledge, in the related works listed to date, none addresses DSA in a rural
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scenario, also focusing in resilience to malicious users/attackers considering optimization
of control channel transmissions in CSS reporting, while maintaining low false positives
and negatives in channel detection.

In the next chapter, our proposed techniques to improve both the individual and
collaborative spectrum sensing will be presented.
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Chapter 3

Markov Chains for Improving
Collaborative Sensing

This chapter is divided into five sections: Section 3.1 lists and justifies the assumptions
the proposed techniques are based on. Sections 3.2.2 and 3.3.1 describe the proposed
techniques to increase the Collaborative Spectrum Sensing (CSS) accuracy and the re-
silience against attackers. Section 3.4 describes how the collaborative spectrum sensing
cycle was implemented on top of the Long Term Evolution (LTE) stack using the Network
Simulator 3 (ns-3) simulator for evaluation of the proposed techniques.

The first technique filters noise of the hard-combining individual Spectrum Sensing
(SS) using a Markov chain, reducing unnecessary reporting transmissions and saving
Common Control Channel (CCC) bandwidth. The second technique filters less relevant
reports from the CSS fusion, improving resilience.

3.1 Premises and Reasoning

Both of the proposed techniques are based on the following premises:

P.1 the individual SS depends unique and exclusively on the User Equipment (UE) to
detect the state of the channel, which are represented as the probability of detection
pd and probability of false positives pfp functions.

P.2 UEs, Evolved Node B (eNB) and the Primary Users (PUs) are completely or almost
static.

P.3 pd >> 1− pd if the PU is active.

P.4 pfp << 1− pfp if the PU is not active.
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P.5 the sensing period tsensing is much smaller than the PU transmission period tputransmission.

Premise P.1 assumes that the individual SS technique results will reflect the vision
of a given channel by each sensing UE, which is to be expected from the individual SS.
Those techniques results can be compiled into probability of detection curves pd(d) or
pd(SINR), based on either distance d between the UE and the PU or the perceived
Signal to Interference plus Noise Ratio (SINR). The technique results are produced by
the SS technique either with measurements and/or link-layer simulations.

Premise P.2 derives from the fact that most of the population underserved by internet
connectivity lives in remote and sparsely populated areas, as in a rural scenario. Using a
super-cell with 50km radius proposed in the 5G-RANGE project, we assume the UEs act
as relay nodes and are static, due to high gain antenna alignment requirements. We also
assume the PUs are static broadcasting stations. The eNB is also assumed to be static,
as proposed in the 5G-RANGE project. A moving eNB, as in the Google’s project Loon
would require additional validation and adaptation of the proposed techniques, especially
if moving at high speed.

Premises P.3 and P.4 assumes that an UE nearby a PU has high probability of cor-
rectly detecting its transmission pattern, which derives from the fact that the probability
of correctly detecting transmissions increases the sensor and source get closer.

Premise P.5 assumes the sensing period is smaller than the PU transmission period,
which results in multiple sensing cycles during a single transmission period. As the ratio
of sensing cycles per transmission period increases, the amount of sensed information
increases, and temporal behavior can be analyzed.

3.2 Individual Spectrum-Sensing Smoothing technique

3.2.1 Fundamentals

From the premises P.1, the probability of detection is given by the Equation 3.1. The
variable d refers to the distance between the UE and the PU while puactive indicates
whether the PU is active at a given time t. Considering the premise P.2, d(t) = d(0)∀t ∈
[0,∞). The probability of k positive samples out of n-sized population is given by the
Binomial distribution, shown in Equation 3.2.

psense(t, d, puactive) =

pd(d(t)), if puactive(t) = 1.

pfp, otherwise.
(3.1)

(
n

k

)
pksense(1− psense)n−k (3.2)
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For premises P.3 and P.4, the probability limk→n,n→0
(
n
k

)
pksense(1− psense)n−k ' psense

for a small n-sized population (e.g. n ∈ [2, 3, 4]). The probability limk→n,n→∞
(
n
k

)
pksense(1−

psense)n−k ' 0. The side-effect of this behavior can be seen in the probability curve,
which models the real spectrum sensing technique, Pd(d) in Figure 3.1, where the source
probability of detection (blue squares) is further attenuated as the number consecutive
samples with same results k = n grows.
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Figure 3.1: Probability of detection curve based on distance

In our proposal, to aggregate the UEs individual sensing results, we use the Markov
Chain (MarkCh) presented in Figure 3.3. This is valid if, and only if, the premise P.5 is
truth, which means that multiple individual sensing procedures are executed for each PU
transmission. The MarkCh from Figure 3.3 transition states with probability P for each
consecutive value, while different values lead to state transitions with probability 1− P .
After at least N consecutive results, the MarkCh reaches the final state S.

As each consecutive state K increases, we accumulate the certainty Caccum = 1− PK

of the previous K consecutive events is lost and the counting begins from the start. With
a given threshold L for the accumulated probability, the number of required states S can
be calculated. For example, if we model using a coin toss with P = 0.5 and we define a
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Figure 3.2: Steps of the Individual Spectrum Sensing

certainty threshold of L = 0.9, the number of number of states of the MarkCh is S = 5,
with 4 state transitions and an accumulated certainty Caccum > L. The number of state
transitions is then used to determine the attenuation effect of the number of states in the
source probability P . In our case, the effects of the different state transitions (K = N)
to the source probability of detection curve is shown in Figure 3.1, as calculated with
Equation 3.2 and P = Psense.

3.2.2 Proposal of Markov Chain-based technique

The standard SS procedure is described in Figure 3.2, which shows a waiting cycle, fol-
lowed by the sensing method and transmission of results to the Fusion Center (FC). We
consider that the sensing results have short-range statistical dependence, then, for the
first technique our approach is to use a simple MarkCh with S states in the SS as shown
in Figure 3.3, which represents the counting of same consecutive results up to a given S
state. The adaptation of the SS standard procedure is illustrated in Figure 3.4, with two
additional checks used to implement the MarkCh. For each cycle, the current sensing
result (Rsense) is compared to the previous one (Rprev). In case both are equal, certainty
is accumulated (Paccum). With hard-combining, the sensing results are binary, and we
model as a coin toss, which accumulates certainty in 1−Paccum

2 steps. When the certainty
Paccum is bigger than a given threshold (e.g. 90%), the sensing result Rsense is assumed to
be correct and the variable that holds the last reported value sent to the FC (Rmarkov) is
updated with the current sensing result. This value is then transmitted to the FC. If the
result is different from the previous, the accumulated probability Paccum of the previous
K consecutive events is lost, and the counting begins from the starting point.

At the same time, the number of reports increases along with the number of sensing
nodes (UEs). The non-transmission of a same consecutive sensing result reduces the
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Figure 3.4: Steps of the Individual Spectrum Sensing with the Markov chain
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Figure 3.5: Comparison between the untreated sensing and the sensing with the 5-state
Markov chain

amount of reporting transmissions, where the FC assumes that the channel state remained
the same for a user that did not transmit in the current cycle. As a side-effect of our
proposal, the number of transmissions is further reduced as shown in Figure 3.5. The
sensing results of a given UE are represented in the dot-dashed orange line. By not
transmitting equal consecutive results, the number of reports fall from 31 to 10. With
our proposal, the amount of reports fall from 31 to 1, as the sensing results never reach a
minimum amount of certainty to switch state for a second time. The convergence can be
sped up by reducing the number of states in the MarkCh Finite State Machine (FSM),
also reducing the certainty of the result and increasing false positives if using the OR
fusion.

3.3 Collaborative Spectrum-Sensing Filtering tech-
nique

3.3.1 Proposal of Harmonic Mean-based filtering technique

The second technique uses MarkCh based mechanism like the one described in 3.2.1, which
is used to discard reports from UEs that are less relevant to fusion, as shown in Figure 3.6.
The filtering policy is based on the Channel quality Indicator (CQI) reported by the UEs,
as described in [40]. The filtering works as follows: a high CQI indicate a high Signal to
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Figure 3.6: Harmonic mean-based spectrum sensing report filtering scheme

Noise Ratio (SNR), while a low CQI refers to a low SNR. As the PU starts transmitting,
it interferes with the UEs and CQI drops, especially for those UEs closer to the PU. The
harmonic mean of the CQIs is used to find the UEs closer to the PU if the PU is active,
and UEs further from the eNB if the PU is inactive, as the mean tends to get smaller,
as illustrated in Figure 3.7. The first check in Figure 3.6 halves, following the same coin
toss model, the relevance relev of UEs that are either far from the PU or approximating
to the eNB, since they are considered potential attackers. The second check increases the
relevance relev of UEs that reported no PU presence and have a stable CQI, which is
the expected behavior to take advantage of the Dynamic Spectrum Access (DSA). It also
checks for UEs that just started sensing the PU and had a brief spike in their CQI, which
is rare, but may happen when the UE is shielded from the PU interference.

48



Figure 3.7: The harmonic-mean based filtering favors nodes distant from the eNB when
the PU is inactive. Otherwise, it favors nodes closest to the PU.

3.4 Collaborative sensing cycle implementation on
the LTE stack

The evaluation of the proposed techniques required the implementation of the collabora-
tive sensing cycle on a wireless network stack. The stack of the LTE was chosen due to
similarities between it and the new 5G-NR stack. The simulator used was the ns-3 [41].

The proposed techniques rely on a physical layer spectrum sensing technique, which is
implemented in form of a function that interpolate probability of detection curves. The
probability of detection curves can be obtained from either real measurements or link-layer
simulations, which was our case. The probability curves indicate the probability of an UE
detecting a PU transmission and can be based either on the Euclidian distance between
UEs and PUs, or SNR levels measured by the UEs. A random number generator following
a Bernoulli distribution with the interpolated probability represents if the channel is
sensed as idle or occupied. After the sensing procedure, the sensing results are transmitted
to the eNB using the CCC. The eNB stores the results and fuses the results together
during the subframe indication. Multiple fusion techniques were implemented, in special
the classic k-out-of-n variants.

To implement the collaborative sensing in the ns-3 simulator, several changes are
required. Most changes are concentrated in the LteSpectrumPhy model, that simulates
the interaction between the physical layer models (LteUePhy and LteEnbPhy) and the
channel model (MultiModelSpectrumChannel). Since the LTE model implemented in ns-3
does not support cross-carrier scheduling, one is logically split into multiple subchannels by
dividing groups of Resource Block Groups (RBGs). After that, the average SINR for each
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subchannel is calculated and the sensing procedure is executed. The SensingProcedure
can use either the previously calculated SINR for each channel, or the distance to the PUs,
calculated within the channel model. The SensingProcedure proceeds to the interpolation
of the probability of detection for each subchannel, then uses the probabilities to generate
random samples from a Bernoulli distribution. The samples are used to prepare a bitmap
for each channel containing sensing results, plus additional information only used for
analysis of the results, including: flags for false positive, false negative, fake report of an
attacker and finally if the sensing result is the same of the previous procedure.

The LteSpectrumPhys StartRx requires changes to identify subchannels with peaks
of power from non-LTE transmissions, that is stored along with the distance between
transmitter and receiver and the PU distance registry. The StartRx function also requires
changes to forward the sensing results to the MAC layer, that will enqueue a new control
message containing the sensing report data, that will then be transmitted to the eNB.

The collaborative spectrum sensing requires additional changes to both UE and eNB
physical and Medium Access Control (MAC) layers to properly forward the spectrum
sensing control messages to the eNBs MAC layer, where the individual sensing reports
are stored for later use. During the subframe indication, the eNB prepares information
required by the resource scheduler, one of them a map containing the empty RBGs. Before
calling the scheduler, the fusion technique processes the most up-to-date sensing reports
and creates a mask which indicates that the RBGs is occupied by the PU transmission.
The mask is passed down to the resource scheduler and is used to prevent allocation to
the RBGs, reducing the probability of collisions with the PU.

The 3.8 shows how the individual spectrum sensing on the LteSpectrumPhy works. In
the initial StartRx node, there is the forwarding of the latest sensing results to the MAC
layer. Starting from the StartRx and moving to the right, there is the common data path
for control messages, that also triggers the sensing, guaranteeing it is synced with the
eNB. Starting from the StartRx and moving down, there is the common data path for
non-LTE messages, where the subchannel in which the PU is transmitting is be identified
and stored along with its range to the current UE using a ResetPuPresence, used to both
store and remove distance registries.

The Figure 3.9 shows how the collaborative spectrum sensing on the eNB works. The
control message sent by the UEs is received by the eNBs LteSpectrumPhy and them
forwarded to the LteEnbPhy and LteEnbMac, where the sensing report is stored. Also, in
the eNBs MAC, the DoSubframeIndication prepares information for the resource scheduler
and then calls the scheduler. Just before calling the scheduler, the MergeSensingReports
function prepares the fusion of the individual sensing reports using the latest available
data. This function also collects false positives and negatives data for later use. The
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fusion result is a bitmap, used by the scheduler to tag RBGs that should not be scheduled
for the UEs.

The complete CSS cycle is shown in 3.10, with changes highlighted in bold text, start-
ing with: StartRX, from SpectrumChannel (5) to the UE SpectrumPhy (6), which triggers
the spectrum sensing function and saves the result to a local variable; SendingSensingRe-
port, from the UE SpectrumPhy (6) to the UE MAC (8), which triggers the creation of the
control message containing the sensing report with the results of the previous spectrum
sensing; SendLteControlMessage, from UE MAC (8) to UE MAC (8), which copies the
message to the eNB MAC (1) buffer; ReceiveLteCtrlMsgList, from eNB SpectrumPhy (4)
to eNB Phy (3), which receives the spectrum sensing report and forwards to the eNB MAC
(1); DoSubframeIndication, from eNB MAC (1), which triggers the MergeSensingReports,
that fuses the reports and collect performance metrics, then triggers DoSchedDlTrigger-
Req of the eNB Scheduler (2), that use the fused results to mark RBGs as occupied or
not before allocating resources to the UEs.

The above described changes to the ns-3 simulator were published in [102] and the
source code is publicly available along with the usage instructions in https://gabrielcarvfer.
github.io/NS3/COLAB/.

3.5 Chapter review

In this chapter we presented a Markov chain-based technique to improve the reliability
of individual spectrum sensing, at the cost of reduced detection range, and the Harmonic
mean-based technique that discards sensing results from UEs that are most likely distant
from the source of interference, at the cost of reduced probability of detection. We also
propose changes to the LTE model in the ns-3 simulator to implement a simple CSS cycle
that enables the simulations of the proposed techniques in more realistic conditions than
most works reviewed in Chapter 2.
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Chapter 4

Evaluation and Simulations Results

This chapter presents the methodology and simulations that were developed during the
research and implementation of this work. First, we describe the methodology in Section
4.1, then, in the following sections, for each of the simulations we describe the scenario
and its results.

4.1 Methodology

4.1.1 Tools and methods

The simulations were ran using a modified ns-3 simulator, nicknamed COLAB 1. The first
release was based on the ns-3.29 and was used for the CSS validation. The second release,
based on the ns-3.30.1, was used for the rest of simulations.

For the validation scenarios, we ran a simulation for each scenario and each fusion
technique, using a fixed seed, then compared the results against the mathematical models.
All parameters were kept the same, especially the distance of the nodes to one of the PUs,
used to interpolate the individual probability of detection from the input curves.

For evaluation, we follow best practices from [103]. A Monte Carlo simulation ap-
proach is used, performing a simulation for each of the 10 scenarios generated with the
same fusion technique (4), Markov and Harmonic techniques (4), number of UEs (4) and
distribution (2), with different number of attackers (3), resulting in a total of 3840 simu-
lations. Each simulation ran for 10 seconds of simulated time post the transient (initial
exchange of messages to setup the LTE network), resulting in 10000 individual sensing
cycles executed per UE plus 10000 collaborative sensing cycles of the eNB, per simulation.
The other simulation parameters (transmission power, antenna gains, PU transmission
duty cycle, transmission interval and packet size, user application, position of the eNB,

1https://gabrielcarvfer.github.io/NS3/COLAB/
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channel bandwidth, carrier frequency, simulation time and motion speed) are fixed. Er-
rors from derived metrics are properly propagated and the margins of error are calculated
using a 95% confidence interval using the t-Student distribution.

Most of the other fixed parameters (transmission power, antenna gains, position of the
eNB, channel bandwidth, carrier frequency and motion speeds) are based on a long range
rural network, as proposed in the 5G-RANGE project [99]. The PU transmission interval
and duty cycle were randomly generated. The link-layer individual spectrum sensing
technique is modeled after the Window-Based Energy Detector (WIBA) [65], which is
the proposed Spectrum Sensing (SS) technique for the 5G-RANGE project [99]. The
spectrum sensing technique is modeled based on the probability of detection curve in Fig.
3.1. As this dissertation focuses strictly on CSS performance, we use an unrepresentative
user application workload and ignore the resulting general network performance metrics
like throughput and latency.

The proposed techniques and implemented tools can be used in the future with more
realistic scenarios and traffic workloads if the premises are still valid.

4.1.2 Performance Metrics

In order to assess how much the proposed techniques impacted on the collaborative sensing
results, we use three different metrics:

False positives which represent the probability of detecting a Primary User (PU) trans-
mission when it is not transmitting. It can be calculated as the ratio of subframes where
the PU is incorrectly detected and the number of subframes where the PU was not present,
as shown in Eq. 4.1. This metric is used to compare how much spectrum will remain
subutilized with each different fusion technique.

False negatives which represent the probability of not detecting a PU transmission
when it is transmitting. It can be calculated as the ratio of subframes where the PU was
active but was not detected and the number of subframes in which the PU was active, Eq.
4.2. This metric is used to compare how much interference to the PU can be expected
from each fusion technique.

Fusion accuracy which represents the probability of correctly detecting the PU trans-
missions. It can be calculated as the ratio of subframes where the fusion result matches
the real PU activity/inactivity, Eq. 4.3. This metric shows a combination of both False
Positives and False Negatives metrics, but it can be skewed in favor of one of the two
metrics depending on the PU transmission pattern and fusion technique (e.g. OR fusion
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Simulation
Scenario Spectrum sensing Markov technique Harmonic technique

parameters cycle validation evaluation evaluation
Simulation time 10 s (104 subframes)
Propagation model FSPL 5G-RANGE

General Band 5 (∼ 850 MHz)
Number of channels 4
Channel bandwidth 3x5.2 MHz + 1x4.4MHz
PUs per channel 1

PU Tx power 40 dBm
Tx period [1-5] s
Tx duty cycle [0.1-0.4]
Tx power 53 dBm

eNB Antenna gain 9 dBi
Fusion techniques [OR, AND, [2,3]-out-of-n UEs]
Number of UEs 10 [10, 20, 50, 100]

UE Number of attackers 0 [0, 1, 2, 5, 10]
Tx power 23 dBm
Antenna gain 9 dBi

Table 4.1: Simulation parameters for the different scenarios

technique produces false positives while AND fusion technique produces false negatives.
In a scenario with more PU activity, the false positives of the OR fusion will become more
apparent, while false negatives of the AND fusion become more apparent in scenarios with
less PU activity).

Pfp = #falsePositives
#subframesWithInactivePU

(4.1)

Pfn = #falseNegatives
#subframesWithActivePU

(4.2)

acc = #totalSubframes−#falseNegatives−#falsePositives
#totalSubframes (4.3)

4.2 Collaborative Spectrum Sensing cycle validation

4.2.1 Validation scenario

The first step to perform simulations in different scenarios is to validate the cognitive cycle
implementation. For this, a simulation was done in a simple scenario that we denote as
Validation Scenario, shown in Fig. 4.1, with the following parameters:

a) 20 MHz Additive White Gaussian Noise (AWGN) channel, broken into 4x5 MHz
channels, noise floor of -174 dBm/Hz, Free-Space Path Loss (FSPL) path loss model. In
real scenarios, the TV Whitespace (TVWS) has 24 MHz bandwidth divided into 3 x 8
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MHz (Europe) or 4 x 6 MHz (Brazil) data channels. In the simulation, to abstract the
physical layer and keep compatibility with the LENA module, the 20 MHz bandwidth
emulates the 24 MHZ TVWS channel and translates 100 LTE Resource Blocks (RBs),
that were grouped into 50 RBGs of size 2 (also required changes to the DCI Type 0, used
in the NS-3/LTE model). Those RBGs were then grouped into 4 subchannels of 3 x 13
RBGs (5.2 MHz) and 1 x 11 RBGs (4.4 MHz).

b) the channel is in band 5 ( 869 MHz). gNB transmits with 53 dBm and is equipped
with 9 dBi gain antennas, resulting in a 50 km radius cell. UEs transmit with 23 dBm
and is equipped with 9 dBi gain antennas. The PUs transmits with 40 dBm. The UEs
are placed at a fixed 30 km radius from the PU0, while PUs 1-3 are placed at a fixed 40
km from the PU0. The PU0 is 35 km away from the gNB. This scenario characterizes a
rural area with a 50 km cell, one gNB and 4 PUs channels.

c) the spectrum sensing curves used in the simulation are based on the WIBA link-
level simulation[65], collecting data from 10 UEs. The PU detection probability curves
used are shown in Fig. 3.1. To evaluate the different possibilities, at the fusion center in
the gNB, 4 different fusion techniques were implemented (OR, 2-out-of-10, 3-out-of-10,
4-out-of-10).

Figure 4.1: Topology of the Validation Scenario for the CSS
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4.2.2 Results and analysis

The results for different fusion techniques of the simulated scenario are shown in Table 4.2.
False positives are the ratio of subframes where the PU was not present but was detected.
False negatives show the ratio of subframes where a PU was present but was not detected
and the number of subframes that the PU was present. False positives result in wasted
radio resources while false negatives result in interference to the PU. The false positives
for all channels are below 10% for all the types of fusion rules while false negatives increase
with higher detection thresholds.

The simulation results of the cognitive cycle are shown in Figure 4.2, based on the
topology shown in Figure 4.1, that contains 10 UEs, 1 eNB and 4 PUs, one for each
channel. The first lines of Figure 4.2 show the perceived PSD of each of the PUs in their
respective channel. The second line shows the individual SNR levels of each UEs for each
one of the four channels. The third line show the results of the RBGs scheduling, where
blank spaces are unused spectrum, blue spaces are scheduled spectrum and red spaces
are avoided spectrum. The third line directly reflects the collaborative sensing fusion
behavior, being capable of increasing or decrease the false alarms and false negatives. As
false negatives implicate in collisions with the PU, the main target with the collaborative
sensing fusion should be decreasing false negatives while keeping false positives low.

As the UEs are equidistant from the PU, their probability of detection is identical. We
can calculate the theoretical results using Equation 2.1 and compared to the simulated
ones. The results of this comparison are shown in Table 4.3, which shows simulated
results are on par with the mathematical model, indicating that the model is properly
implemented.

Channel 0 Channel 1 Channel 2 Channel 3
False False

Fusion Positives Negatives FP FN FP FN FP FN
(%) (%) (%) (%) (%) (%) (%) (%)

OR 9.2 0.4 9.9 0.3 9.3 0.0 9.7 0.0
2-out-of-10 0.4 5.0 0.4 2.2 0.4 0.3 0.5 0.1
3-out-of-10 0.1 17.9 0.0 3.9 0.0 3.9 0.0 0.3
4-out-of-10 0.0 38.1 0.0 27.3 0.0 14.4 0.0 2.8

Table 4.2: Collaborative sensing results for the validation scenario.
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Channel 0
Simulated Theoretical

False False False False
Fusion Positives Negatives Positives Negatives

(%) (%) (%) (%)
OR 9.2 0.4 9.6 0.6

2-out-of-10 0.4 5.0 0.4 4.6
3-out-of-10 0.1 17.9 0.0 16.7
4-out-of-10 0.0 38.1 0.0 38.2

Table 4.3: Comparison between simulated and theoretical results for channel 0.

4.3 Proposed techniques evaluation

4.3.1 Evaluation scenarios

To evaluate the proposed techniques, we developed in NS-3 a scenario that emulates a 5G
rural area with a 50km radius cell per Evolved Node B (eNB) and a set of parameters,
that were defined based on previous studies[104], as follows:

a) a 20 MHz channel with a 5G propagation model for remote areas [99], broken into
4x5 MHz TVWS channels, and a noise floor of -174 dBm/Hz.

b) the channel uses band 5 ( 850 MHz). The eNB transmits with 53 dBm and has 9
dBi gain antennas. UEs transmit with 23 dBm and use 9 dBi gain antennas. The PUs
transmits with 35 dBm.

c) the PUs are distributed randomly through the cell and the UEs are distributed
either the same or into randomly placed clusters of 5 km radius. The randomly distributed
scenario may be unrealistic for such a large cell but provides an interesting approach for
evaluating the proposal. The clustered scenario is more realistic and represents a micro-
region as small towns/villages. Examples of both randomized and clustered scenarios are
illustrated, respectively, in Figures 4.3(a) and 4.3(b). In both scenarios, all the simulations
were made with 4 PUs while varying the number of User Equipments (UEs) within 10,
20, 50 and 100. d) we use SS detection probability curves, 3.1, based on the link-layer
results using the WIBA [65] sensing technique. The PU detection probability curve is
described in Figure 3.5 and was already discussed in Section III.

e) The fusion center uses 4 different techniques: OR, 2-out-of-N, 3-out-of-N and AND.
f) in every simulation, a given number of UEs act as attackers to evaluate the impact

considering the proposed techniques using Markov chains and the harmonic mean.
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(a) UEs randomly places into the 50km radius cell

(b) UEs placed randomly into randomly placed clusters with 5km
radius

Figure 4.3: Scenarios with different UEs placements
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4.3.2 Results and analysis

4.3.2.1 Randomized Scenarios

Figure 4.4 shows the compiled results of the simulations using different fusion techniques
combinations with an increasing number of UEs per simulation. Each subfigure of Figure
4.4 shows the simulation results for the same scenarios with an increasing number of
attackers transmitting fraudulent sensing reports.

The fusion techniques used were:

i. OR/1-out-of-N

ii. OR with the Markov technique, that increases the reliability of the individual spec-
trum sensing

iii. OR with the Harmonic technique, that filter nodes distant from the PU protecting
against attackers

iv. OR with both techniques

The performance for the standalone OR fusion (i.) is shown in blue, OR with the
Markov technique (ii.) is shown in orange, OR with Harmonic technique (iii.) is shown
in green and the OR with both techniques (iv.) is shown in red.

The baseline scenario without attackers is shown in Figure 4.4(a), where the fusion
techniques with the Markov technique (ii. and iv.) performed better than the others
without it. The fusion accuracy (how many collaborative fusion results matched the
channel state) of the standalone OR and the Harmonic technique (i. and iii.) falls as the
number of false positives steadily grows as the number of reporting UEs increases.

The Markov technique (ii.) beats all the other techniques in the scenario without
attackers. In the case with 100 UEs, our technique was able to reduce the false positives
to a minimum (from 0.6323 ± 0.0110 to 0.0008 ± 0.0002 in the random scenario, a 790x
reduction), at the cost of increasing false negatives (from 0.0000±0.0000 to 0.0047±0.0005.

The Harmonic technique (iii.) behaves similarly to the standalone OR (i.), except in
terms of false negatives. In the worst simulated scenario, with 20 UEs, the technique had
0.37± 0.092 false negatives, 17x the standalone OR (i.).

The combination of both techniques (iv. performs badly in scenarios with no attack-
ers, with even larger false negatives numbers. As in the Harmonic technique, the worst
simulated scenario had 20 UEs, with 31x the standalone OR (i.).

However, false negatives of both Harmonic techniques (iii. and iv.) decrease as the
number of UEs increase, providing more spatial information for the fusion. The 0.068±
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0.014 false negatives in the scenario with 100 UEs is reasonably low for opportunistic
access.

Figures 4.4(b) and 4.4(c) show the simulation results for the same scenario, but with
2 and 5 attackers within the cell. Both the standalone OR and the Markov technique
(i. and ii.) perform badly in this scenario, fusing the fake results, that increases false
positives to as high as 100%. Conversely, both techniques using the Harmonic mean (iii.
and iv. offer protection against the attacks for large number of UEs, behaving similarly
to the scenario without attackers, shown in Figure 4.4(a).

To estimate the number of UEs to guarantee a certain level of false negatives, the data
was fitted to a decaying exponential curve using the least-squares method. The resulting
curve for the randomized scenario is given by 0.761142e−0.0226437x, with R2 ≈ 0.995.
Assuming an interference threshold of up to 0.1 of false negatives, the estimated number
of required UEs sensing is of ∼ 90 UEs.

The values plotted in the Figure 4.4 are tabled in Tables 4.6, 4.5 and 4.4.

10 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.015 ± 0.005 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.066 ± 0.012 0.076 ± 0.015 0.164 ± 0.028 0.799 ± 0.156
Markov 0.060 ± 0.018 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov Harmonic 0.504 ± 0.088 0.507 ± 0.089 0.650 ± 0.108 0.896 ± 0.173
20 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.021 ± 0.009 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.370 ± 0.092 0.378 ± 0.091 0.413 ± 0.085 0.498 ± 0.098
Markov 0.083 ± 0.018 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov Harmonic 0.653 ± 0.182 0.659 ± 0.181 0.738 ± 0.168 0.796 ± 0.179
50 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.020 ± 0.003 0.021 ± 0.003 0.025 ± 0.003 0.038 ± 0.005
Markov 0.007 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov Harmonic 0.170 ± 0.048 0.170 ± 0.048 0.195 ± 0.045 0.206 ± 0.049
100 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.002 ± 0.001 0.002 ± 0.001 0.004 ± 0.001 0.004 ± 0.001
Markov 0.005 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov+Harmonic 0.068 ± 0.014 0.068 ± 0.014 0.071 ± 0.014 0.077 ± 0.015

Table 4.4: False negative values for the base scenario and combinations of the proposed
techniques in the randomized scenarios

Figure 4.5 depicts the simulation results of the randomized scenarios using multiple
fusion techniques: standalone OR, 2-out-of-N, 3-out-of-N and AND. The results are for
scenarios with 0, 2, 5 and 10 attackers per simulation, shown respectively in 4.5(a), 4.5(b),
4.5(c) and 4.5(d).
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(a) Scenario with no attackers

(b) Scenario with 2 attackers

(c) Scenario with 5 attackers

Figure 4.4: OR fusion results with different numbers of attackers in the randomized
scenario

The standalone OR had the best false negatives performance (lower is better) in all
scenarios shown in Figure 4.5, as expected. The AND had the best false positives per-
formance (lower is better) in all scenarios, also as expected. However, the Markov-based
techniques (ii. and iv.) are, respectively, the best overall performers in terms of accuracy
(higher is better) in the scenario without attackers and in scenarios with any tested num-
ber of attackers, delivering both protection the the PU with the low false negatives and
taking advantage of underused spectrum with the low false positives.
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10 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Random
Standard 0.095 ± 0.003 1.000 ± 0.030 1.000 ± 0.030 1.000 ± 0.030
Harmonic 0.095 ± 0.003 0.091 ± 0.003 0.068 ± 0.002 0.075 ± 0.002
Markov 0.001 ± 0.000 1.000 ± 0.030 1.000 ± 0.030 1.000 ± 0.030

Markov Harmonic 0.001 ± 0.000 0.006 ± 0.000 0.012 ± 0.000 0.066 ± 0.001
20 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Random
Standard 0.183 ± 0.004 1.000 ± 0.019 1.000 ± 0.019 1.000 ± 0.019
Harmonic 0.183 ± 0.004 0.176 ± 0.004 0.160 ± 0.003 0.117 ± 0.002
Markov 0.001 ± 0.000 1.000 ± 0.019 1.000 ± 0.019 1.000 ± 0.019

Markov Harmonic 0.000 ± 0.000 0.002 ± 0.000 0.013 ± 0.000 0.013 ± 0.000
50 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Random
Standard 0.396 ± 0.005 1.000 ± 0.012 1.000 ± 0.012 1.000 ± 0.012
Harmonic 0.395 ± 0.005 0.391 ± 0.005 0.380 ± 0.005 0.350 ± 0.005
Markov 0.001 ± 0.000 1.000 ± 0.012 1.000 ± 0.012 1.000 ± 0.012

Markov Harmonic 0.001 ± 0.000 0.002 ± 0.000 0.016 ± 0.000 0.017 ± 0.000
100 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Random
Standard 0.632 ± 0.011 1.000 ± 0.016 1.000 ± 0.016 1.000 ± 0.016
Harmonic 0.632 ± 0.011 0.631 ± 0.011 0.635 ± 0.011 0.616 ± 0.011
Markov 0.001 ± 0.000 1.000 ± 0.016 1.000 ± 0.016 1.000 ± 0.016

Markov Harmonic 0.001 ± 0.000 0.006 ± 0.000 0.047 ± 0.001 0.047 ± 0.001

Table 4.5: False positive values for the base scenario and combinations of the proposed
techniques in the randomized scenarios

4.3.2.2 Clustered scenarios

Figure 4.6 shows the compiled results of the simulations using different fusion techniques
combinations with an increasing number of UEs per simulation, as in the randomized
scenarios. Each subfigure of Figure 4.6 shows the simulation results for the same scenarios
with an increasing number of attackers transmitting fraudulent sensing reports. The
fusion techniques used were the same as in the randomized scenarios. The expected
difference in these scenarios are the different behavior from the fusion techniques using
the Harmonic technique (iii. and iv.), which are dependent on the distribution of the UEs
over the cell.

The baseline scenario without attackers is shown in Figure 4.6(a), where the fusion
techniques with the Markov technique (ii. and iv.) performed better in terms of accuracy
than the others, at the cost of increased false negatives. The fusion accuracy of the
standalone OR and the Harmonic technique (i. and iii.) falls as the number of false
positives steadily grows as the number of reporting UEs increases, the same with the
randomized scenarios.

The Markov technique (ii.) beats all the other techniques in the scenario without
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10 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Random
Standard 0.916 ± 0.002 0.137 ± 0.018 0.137 ± 0.018 0.137 ± 0.018
Harmonic 0.909 ± 0.002 0.911 ± 0.003 0.919 ± 0.003 0.826 ± 0.015
Markov 0.991 ± 0.002 0.137 ± 0.018 0.137 ± 0.018 0.137 ± 0.018

Markov Harmonic 0.931 ± 0.008 0.925 ± 0.008 0.901 ± 0.009 0.820 ± 0.017
20 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Random
Standard 0.832 ± 0.003 0.095 ± 0.012 0.095 ± 0.012 0.095 ± 0.012
Harmonic 0.800 ± 0.008 0.805 ± 0.008 0.816 ± 0.006 0.847 ± 0.007
Markov 0.991 ± 0.001 0.095 ± 0.012 0.095 ± 0.012 0.095 ± 0.012

Markov Harmonic 0.938 ± 0.015 0.935 ± 0.015 0.918 ± 0.013 0.912 ± 0.014
50 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Random
Standard 0.650 ± 0.004 0.116 ± 0.007 0.116 ± 0.007 0.116 ± 0.007
Harmonic 0.648 ± 0.004 0.652 ± 0.003 0.661 ± 0.003 0.686 ± 0.003
Markov 0.998 ± 0.000 0.116 ± 0.007 0.116 ± 0.007 0.116 ± 0.007

Markov Harmonic 0.980 ± 0.005 0.978 ± 0.005 0.964 ± 0.005 0.961 ± 0.005
100 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Random
Standard 0.461 ± 0.007 0.149 ± 0.009 0.149 ± 0.009 0.149 ± 0.009
Harmonic 0.462 ± 0.007 0.463 ± 0.007 0.459 ± 0.007 0.475 ± 0.007
Markov 0.999 ± 0.000 0.149 ± 0.009 0.149 ± 0.009 0.149 ± 0.009

Markov Harmonic 0.989 ± 0.002 0.985 ± 0.002 0.949 ± 0.002 0.949 ± 0.002

Table 4.6: Accuracy values for the base scenario and combinations of the proposed tech-
niques in the randomized scenarios

attackers. In the case with 100 UEs, our technique was able to reduce the false positives
to a minimum (from 0.635 ± 0.018 to 0.001 ± 0.000, a 653x reduction), at the cost of
increasing false negatives (from 0.0000± 0.0000 to 0.148± 0.047.

The Harmonic technique (iii.) behaves similarly to the standalone OR (i.), except in
terms of false negatives. In the worst simulated scenario, with 50 UEs, the technique had
0.139± 0.034 false negatives, 46x the standalone OR (i.).

The combination of both techniques (iv. performs badly in scenarios with no attackers
when compared to the standalone Markov technique (ii., even larger false negatives num-
bers. Differently from what happened in the randomized scenario, the worst simulated
scenario in relative to others had 50 UEs, with 123x the standalone OR (i.).

However, false negatives of both Harmonic techniques (iii. and iv.) decrease as the
number of UEs increase, providing more spatial information for the fusion. The 0.148±
0.047 false negatives in the scenario with 100 UEs is, even though higher than in the
randomized scenarios, reasonably low for opportunistic access. To estimate the number
of UEs to guarantee a certain level of false negatives, the data was fitted to a decaying
exponential curve using the least-squares method. The resulting curve for the clustered
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scenario is given by 0.622063e−0.0127897x, with R2 ≈ 0.937. Assuming an interference
threshold of up to 0.1 of false negatives, the estimated number of required UEs sensing is
of ∼ 143 UEs.

Figures 4.6(b) and 4.6(c) show the simulation results for the same scenario, but with 2
and 5 attackers within the cell. Both the standalone OR and the Markov technique (i. and
ii.) perform badly in this scenario, fusing the fake results, that increases false positives
to as high as 100%. Conversely, both techniques using the Harmonic mean (iii. and iv.
offer some protection against the attacks for large number of UEs, behaving similarly to
the scenario without attackers, shown in Figure 4.6(a).

The values plotted in the Figure 4.6 are tabled in Tables 4.9, 4.8 and 4.7.

10 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.042 ± 0.016 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.059 ± 0.019 0.069 ± 0.019 0.131 ± 0.026 0.000 ± 0.000
Markov 0.413 ± 0.130 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov Harmonic 0.559 ± 0.127 0.581 ± 0.129 0.732 ± 0.155 0.000 ± 0.000
20 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.035 ± 0.015 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.130 ± 0.035 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Markov 0.303 ± 0.098 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov Harmonic 0.449 ± 0.154 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
50 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.003 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.139 ± 0.034 0.144 ± 0.034 0.157 ± 0.036 0.174 ± 0.036
Markov 0.234 ± 0.125 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov Harmonic 0.370 ± 0.103 0.372 ± 0.104 0.392 ± 0.102 0.401 ± 0.101
100 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Standard 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Harmonic 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 0.001 ± 0.001
Markov 0.074 ± 0.042 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Markov+Harmonic 0.148 ± 0.047 0.148 ± 0.047 0.152 ± 0.049 0.162 ± 0.052

Table 4.7: False negative values for the base scenario and combinations of the proposed
techniques in the clustered scenarios

Figure 4.7 depicts the simulation results of the clustered scenarios using multiple fusion
techniques: standalone OR, 2-out-of-N, 3-out-of-N and AND. The results are for scenarios
with 0, 2, 5 and 10 attackers per simulation, shown respectively in 4.7(a), 4.7(b), 4.7(c)
and 4.7(d).

The standalone OR had the best false negatives performance (lower is better) in all
scenarios shown in Figure 4.7, as expected due to the nature of the technique. The
AND had the best false positives performance (lower is better) in all scenarios, also as
expected. However, the Markov-based techniques (ii. and iv.) are, respectively, the best
overall performers in terms of accuracy (higher is better) in the scenario without attackers
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10 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Cluster
Standard 0.095 ± 0.002 1.000 ± 0.026 1.000 ± 0.026 1.000 ± 0.026
Harmonic 0.095 ± 0.002 0.088 ± 0.002 0.064 ± 0.001 1.000 ± 0.026
Markov 0.000 ± 0.000 1.000 ± 0.026 1.000 ± 0.026 1.000 ± 0.026

Markov Harmonic 0.000 ± 0.000 0.003 ± 0.000 0.006 ± 0.000 1.000 ± 0.026
20 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Cluster
Standard 0.183 ± 0.002 1.000 ± 0.013 1.000 ± 0.013 1.000 ± 0.013
Harmonic 0.183 ± 0.002 1.000 ± 0.013 1.000 ± 0.013 1.000 ± 0.013
Markov 0.000 ± 0.000 1.000 ± 0.013 1.000 ± 0.013 1.000 ± 0.013

Markov Harmonic 0.000 ± 0.000 1.000 ± 0.013 1.000 ± 0.013 1.000 ± 0.013
50 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Cluster
Standard 0.396 ± 0.005 1.000 ± 0.014 1.000 ± 0.014 1.000 ± 0.014
Harmonic 0.396 ± 0.005 0.391 ± 0.005 0.374 ± 0.005 0.346 ± 0.005
Markov 0.001 ± 0.000 1.000 ± 0.014 1.000 ± 0.014 1.000 ± 0.014

Markov Harmonic 0.000 ± 0.000 0.002 ± 0.000 0.004 ± 0.000 0.010 ± 0.000
100 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Cluster
Standard 0.635 ± 0.018 1.000 ± 0.027 1.000 ± 0.027 1.000 ± 0.027
Harmonic 0.634 ± 0.018 0.642 ± 0.018 0.631 ± 0.018 0.611 ± 0.017
Markov 0.001 ± 0.000 1.000 ± 0.027 1.000 ± 0.027 1.000 ± 0.027

Markov Harmonic 0.001 ± 0.000 0.031 ± 0.001 0.031 ± 0.001 0.031 ± 0.001

Table 4.8: False positive values for the base scenario and combinations of the proposed
techniques in the clustered scenarios

and in scenarios with any tested number of attackers, delivering both protection the the
PU with the low false negatives and taking advantage of underused spectrum with the
low false positives. However, the number of required sensing UEs is ∼ 60% higher than
in the randomized scenario to achieve the same false negative results, based on the fitted
curves.

Figure 4.7 shows the comparison of simulation results with additional fusion tech-
niques. The effect of the Harmonic-mean based and the Markov chain can be seen very
clearly on Figures 4.7(c), where only the combination of the techniques and the OR mit-
igated the attacker’s action, except for the scenario with 20 UEs grouped into clusters
where at least one of the attackers was closer to the PU than legitimate users and the
filtering did not work as intended.

4.3.2.3 Collaborative spectrum sensing report overhead

Finally, for all the scenarios, the Markov-based technique effectively reduced the amount
of reports by 2 orders of magnitude, as shown in Figure 4.8, which presents the mean
percentage of reported frames per UE for all the simulations. The amount of reporting
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10 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers
Cluster
Standard 0.910 ± 0.002 0.102 ± 0.017 0.102 ± 0.017 0.102 ± 0.017
Harmonic 0.908 ± 0.002 0.914 ± 0.002 0.929 ± 0.002 0.102 ± 0.017
Markov 0.958 ± 0.011 0.102 ± 0.017 0.102 ± 0.017 0.102 ± 0.017

Markov Harmonic 0.943 ± 0.009 0.938 ± 0.009 0.919 ± 0.010 0.102 ± 0.017
20 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Cluster
Standard 0.830 ± 0.002 0.086 ± 0.008 0.086 ± 0.008 0.086 ± 0.008
Harmonic 0.822 ± 0.003 0.086 ± 0.008 0.086 ± 0.008 0.086 ± 0.008
Markov 0.974 ± 0.008 0.086 ± 0.008 0.086 ± 0.008 0.086 ± 0.008

Markov Harmonic 0.961 ± 0.013 0.086 ± 0.008 0.086 ± 0.008 0.086 ± 0.008
50 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Cluster
Standard 0.669 ± 0.003 0.167 ± 0.008 0.167 ± 0.008 0.167 ± 0.008
Harmonic 0.647 ± 0.006 0.650 ± 0.006 0.662 ± 0.007 0.683 ± 0.006
Markov 0.960 ± 0.021 0.167 ± 0.008 0.167 ± 0.008 0.167 ± 0.008

Markov Harmonic 0.938 ± 0.017 0.936 ± 0.017 0.932 ± 0.017 0.925 ± 0.017
100 UEs, OR no Attackers 02 Attackers 05 Attackers 10 Attackers

Cluster
Standard 0.461 ± 0.011 0.152 ± 0.016 0.152 ± 0.016 0.152 ± 0.016
Harmonic 0.462 ± 0.011 0.455 ± 0.011 0.465 ± 0.011 0.481 ± 0.011
Markov 0.988 ± 0.006 0.152 ± 0.016 0.152 ± 0.016 0.152 ± 0.016

Markov Harmonic 0.977 ± 0.007 0.952 ± 0.007 0.951 ± 0.007 0.950 ± 0.007

Table 4.9: Accuracy values for the base scenario and combinations of the proposed tech-
niques in the clustered scenarios

can be further reducing using sampling techniques or using a hybrid fusion approach with
both decentralized fusions using a side-channel intraclusters and the centralized fusion
using the control-channel interclusters. This reduction shows the effectiveness of the
technique in reducing scarce control bandwidth, enabling more nodes to be connected to
the same cell and reducing licensing costs.

4.4 Chapter review

The chapter presented the tools, methods, performance metrics, and the simulations
scenarios for validation of the CSS cycle and evaluation of the proposed techniques, along
with the results for these scenarios. The implemented CSS cycle results are on par with
the expected theoretical results. The proposed techniques show their strength and flaws in
different scenarios. The Markov chain-based technique drastically reduces false positives
but is not ineffective in the case jammers or attackers send false reports to the fusion
center. The harmonic mean-based technique shows equivalent results to the OR fusion in
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a scenario without attackers but is very effective in reducing the number of false positives
in scenarios with attackers.

The combination of both techniques behaves similarly to the Markov chain-based one
in a scenario without attackers but completely different in the scenario with attackers,
where it drastically reduces the false positives at the cost of sharply increasing false
negatives. As the number of sensing UEs grow, the number of false negatives drops
exponentially.
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(a) Scenario with no attackers

(b) Scenario with 2 attackers

(c) Scenario with 5 attackers

(d) Scenario with 10 attackers

Figure 4.5: Fusion results of different fusion techniques in the randomized scenario.
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(a) Scenario with no attackers

(b) Scenario with 2 attackers

(c) Scenario with 5 attackers

Figure 4.6: OR fusion results with different numbers of attackers in the clustered scenario
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(a) Scenario with no attackers

(b) Scenario with 2 attackers

(c) Scenario with 5 attackers

(d) Scenario with 10 attackers

Figure 4.7: Fusion results of different fusion techniques in the clustered scenario.
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Figure 4.8: Sensing report overhead with and without the proposed Markov chain based
mechanism
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Chapter 5

Conclusions and Future Work

This dissertation contributions are two techniques to increase the efficiency of collabora-
tive spectrum sensing and dynamic spectrum access in remote areas, in addition to the
tooling required to simulate and evaluate future research on the same topic. Even though
the techniques might not be as good as more sophisticated techniques, such as machine
learning, they require no training, nor additional message exchanges, while keeping the
computational costs low.

First, a review of the evolution of mobile networks, their current state and architecture,
followed by different medium access control techniques, focused on centralized MAC and
OFDMA used in the LTE standard were presented. The resource allocation matrices and
scheduling techniques were also reviewed, followed by both individual and collaborative
spectrum sensing techniques, which includes the fusion techniques. Statistical tools such
as a central limit theorem, Markov chains and Monte Carlo techniques were also are
reviewed, for later use at both the proposal itself and for its evaluation with simulations.
Related works were reviewed along with their proposals, results and limitations.

Then, two techniques to improve the results of collaborative sensing are proposed: (1)
a technique based on Markov chains to smooth the results of individual sensing, reducing
numbers of false positives and false negatives, in addition to reducing the sending of
control messages with equal sensing results consecutively; (2) a technique based on the
harmonic mean for filtering the results of individual sensing, discarding sensing of nodes
that are more distant from the sources of interference, protecting from Byzantine attacks.
Both techniques are evaluated in rural 5G scenarios, in which there is the largest portion
of underused bands, candidates for opportunistic access.

A comparison of the proposed techniques shows that the proposed Markov chain tech-
nique reduces the amount of control message exchange containing individual spectrum
sensing reports by two orders of magnitude, saving limited bandwidth in the licensed
control channel. The miss detections probability and the resulting interference was kept
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low in all simulated scenarios, except in the presence of a malicious users, which can
severely disturb the opportunistic use of the spectrum. The Harmonic mean-based filter-
ing technique nullified false positive reports, while increasing miss detections, which do
cause interference. The amount of miss detections falls sharply as the number of users, in
the randomized scenario, or the number of clusters, in the clustered scenario, increases.

Both techniques focus in 5G for rural areas. For that, we implemented and validated a
collaborative spectrum sensing cycle on top of the LTE stack of the NS-3 simulator. The
implementations include procedures for sensing the individual spectrum performed by user
devices (UEs), transmitting the results to the access point (eNodeB), merging the received
results and using the merging result in scaling resources for the devices. The individual
sensing reports are made from curves of probability of detection and probability of false
positives obtained through measurements in experiments or through simulations at the
physical link layer. The simulations results match their mathematical model counterparts
with minimal fluctuations and the adaptations in the simulator resulted in a new tool,
called COLAB that may be useful for future simulations and adaptations in 5G research.

As future work, we intend to address the following topics:

• simulate scenarios with a higher number of users in a denser environment by using
sampling techniques for the CSS.

• break up the cell into sectors and use Angle-of-Arrival (AoA) or Time-of-Flight
(ToF) to locate the general region of the UEs and use as additional information for
the fusion or hard combining.

• reduce miss detections by improving the Harmonic mean-based techniques.
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Abstract. The exponential growth of wireless devices connected to the Internet
and the limitation of the available electromagnetic spectrum requires the opti-
mization of resource scheduling and frequency reuse to provide a better quality
of service. New applications from the evolution of wireless networks, especially
the 5G network, consider the use of cognitive radios and the sensing of the spec-
trum as fundamental elements in its development. The advance and development
of new technologies depends on simulation environments that facilitate and in-
tegrate tools to evaluate the various applications and scenarios of 5G networks.
This article presents a collaborative sensing module and a cognitive resource
scheduler for the LS module of the ns-3 network simulator.

Resumo. O crescimento exponencial de dispositivos sem fio conectados à inter-
net e a limitação do espectro electromagnético disponı́vel requer a otimização
do escalonamento de recursos e reúso de frequências para prover uma melhor
qualidade de serviço. As novas aplicações oriundas da evolução das redes
sem fio, principalmente a rede 5G, consideram o uso de rádios cognitivos e
o sensoriamento do espectro como elementos fundamentais no seu desenvolvi-
mento. O avanço e desenvolvimento de novas tecnologias depende de ambien-
tes de simulação que facilitem e integrem ferramentas para avaliar as diversas
aplicações e cenários das redes 5G. Este artigo apresenta um módulo de senso-
riamento colaborativo e um escalonador de recursos cognitivo para o módulo
LTE do simulador de rede ns-3.

1. Introdução
A rápida expansão de dispositivos com conectividade sem fio, aliada a novos serviços na
internet, geram forte demanda por espectro para transmissão. Para garantir nı́veis de qua-
lidade de serviço apropriados aos diferentes tipos de aplicações é necessário o aumento
da largura de banda e também o aumento da eficiência no uso do espectro disponı́vel.
Espera-se que essas necessidades deverão ser atendidas na próxima geração de redes sem
fio, ou seja, a quinta geração (5G) que planeja fornecer uma capacidade aumentada em
1.000 vezes, uma taxa de dados 10-100 vezes maior e 10-100 vezes mais dispositivos
conectados, em comparação com as atuais redes sem fio 4G.



Hoje em dia o espectro de radiofrequência está quase totalmente atribuı́do às di-
ferentes operadoras licenciadas. Para permitir um melhor uso dos recursos de espectro
limitado e otimizar a sua utilização são usadas várias tecnologias de multiplexação tais
como Acesso Múltiplo por Divisão de Freqüência (FDMA em inglês), Acesso Múltiplo
por Divisão de Tempo (TDMA em inglês) e técnicas de Múltiplas Entradas e Múltiplas
Saı́das (MIMO em inglês). Redes com acesso centralizado (TDMA, CDMA, Ortogho-
nal FDMA) garantem uma maior eficiência espectral ao evitar o desperdı́cio de recursos
com colisões, como ocorre no CSMA (Carrier Sense Multiple Access) ou nas requisições
assı́ncronas para acesso ao meio (CSMA/Collision Avoidance). No controle de acesso ao
meio (MAC) centralizado, os pontos de acesso indicam às estações associadas o momento
e frequência em que podem transmitir e/ou devem receber uma transmissão, conforme a
disponibilidade de recursos de rádio e necessidade das estações. Essas técnicas não se
mostram capazes de resolver fundamentalmente o problema de escassez de recursos do
espectro causado pela polı́tica de alocação fixa [Hu et al. 2018].

Vários estudos mostram [Valenta et al. 2009, Beckman et al. 2010,
Hu et al. 2018] que o espectro licenciado é em muitos momentos subutilizado. A
tecnologia de Rádio Cognitivo (RC) surgiu como uma proposta para resolver o problema
de subutilização do espectro e otimizar a alocação de recursos. O espectro de radio-
frequência apresenta um conjunto de faixas não contı́nuas de espectro não utilizados
pelos respectivos usuários licenciados chamados de usuários primários (PUs em inglês).
O sensoriamento de espectro é o primeiro passo do compartilhamento de espectro e
permite que usuários secundários (SUs em inglês) usem de maneira oportunı́stica as
faixas de espectro vazias de acordo com sua necessidade e deixem de acessar o canal
tão logo o PU retome sua transmissão. Este compartilhamento é chamado de acesso
dinâmico ao espectro (DSA em inglês) e permite o uso de espectro ocioso desde que não
interfira com o PU. A correta execução do procedimento permite aumentar a largura de
banda disponı́vel para os SUs e é considerada fundamental para o desenvolvimento das
redes 5G.

Normalmente, o uso compartilhado do espectro envolve quatro passos: 1) sen-
soriamento; 2) alocação; 3) acesso e 4) hand-off. Trabalhos recentes de pesquisa
[Hu et al. 2018] agrupam as técnicas de sensoriamento do espectro em 3 grandes grupos:
a) não colaborativos, onde os SUs detectam o PU e evitam o canal, ideal para uma abor-
dagem de protocolos MAC descentralizados; b) base de dados, em que cada SU envia
o resultado do sensoriamento para o ponto de acesso ou estação rádio base, que com-
para resultado com dados históricos para encontrar faixas disponı́veis e c) colaborativo,
que combina os resultados de detecção de vários SUs para melhorar a confiabilidade da
detecção usando algoritmos de fusão.

Amplamente usado no meio acadêmico, o ns-3 [NSNAM 2019] é um simula-
dor de rede de eventos discretos de código aberto. Comparado a outros simuladores
de código aberto, o ns-3 oferece alguns recursos de simulação multi-RAT (Radio Ac-
cess Technology) e multi-banda, com Wi-Fi, WiGig, LTE (Long Term Evolution) (LTE-A,
LAA, LTE-U), entre outros. Existe um interesse de estender as funcionalidades do ns-3
para permitir avaliar as tecnologias que promoverão o desenvolvimento da rede 5G, entre
elas, os RC e as técnicas DSA. Existem várias iniciativas nesse sentido, por exemplo o
LENA [CTTC 2019], desenvolvido para o LTE no ns-3. Entretanto, no momento em que



a presente ferramenta foi desenvolvida, não existia ainda uma implementação sólida de
algoritmos de sensoriamento colaborativo com foco em redes LTE e 5G.

Com essa motivação, este trabalho apresenta o COLAB, um conjunto de
adaptações para o módulo LTE do simulador ns-3 que implementa o sensoriamento co-
laborativo para rádio cognitivo. A implementação e validação deste módulo para o ns-3
utilizando a pilha LTE serve de base para a simulação de uma rede 3GPP [Sultan 2019],
facilitando comparações de resultados e portabilidade de novos protocolos para a pilha
do 5G-NR. O algoritmo de sensoriamento permite que a torre de telefonia chamada de
evolved NodeB (eNB) estime o comportamento de um PU e aloque recursos de rádio de
maneira a evitar colisões. O protótipo do sensoriamento colaborativo foi desenvolvido em
C++ e um conjunto de ferramentas auxiliares para plotagem de resultados foram imple-
mentadas em Python.

As contribuições esperadas do COLAB à área de pesquisa em redes 5G são as
seguintes: a) suporte ao desenvolvimento de novos algoritmos de escalonamento da ca-
mada de enlace, com base nas informações do sensoriamento colaborativo; b) suporte ao
desenvolvimento de novas técnicas para caracterização do padrão de acesso ao canal do
PU, a fim de permitir a utilização oportunı́stica do canal sem causar prejuı́zos à trans-
missão primária; c) verificação do impacto dos mecanismos de sensoriamento da camada
fı́sica nas camadas superiores e nas métricas das diversas aplicações das redes LTE e 5G;
d) facilitar um ambiente para o desenvolvimento de algoritmos de detecção de espectro
ideal em conjunto com estratégias de alocação de espectro e mecanismos de acesso ao
espectro que atendam aos diferentes requisitos dos quatro cenários de aplicação das redes
5G. Este artigo está organizado como segue: a Seção 2 apresenta a especificação da arqui-
tetura usada no ns-3 para implementar o algoritmo de sensoriamento colaborativo e seu
uso com rádio cognitivos. A Seção 3 descreve o roteiro de demonstração da ferramenta.
A Seção 4 apresenta as conclusões e trabalhos futuros.

2. Descrição da ferramenta

2.1. Arquitetura e funcionalidades

A implementação da arquitetura para sensoriamento colaborativo adotada no módulo LTE
do simulador ns-3 é dispersa pelas múltiplas classes que implementam as diferentes cama-
das da pilha do protocolo, conforme mostrado na Figura 1. À camada LteSpectrumPhy,
que corresponde à parte de transmissão e recepção de sinais, no método de recepção
(StartRX) foi acrescida uma parte para integração dos dados recebidos e o encaminha-
mento para uma função de sensoriamento (Sense). A função StartRxDlCtrl foi
modificada para permitir o recebimento de mensagems de controle com resultados do
sensoriamento e o seu encaminhamento para a camada PHY do eNB (eNodeB, imple-
mentado no LteEnbPhy).

À camada MAC do módulo do UE (User Equipment), foi acrescida
uma função para montagem da mensagem de controle com resultados do sen-
soriamento (SendCognitiveMessageC). Ainda à camada MAC do eNB, fo-
ram acrescidas funções para receber mensagens de sensoriamento das dife-
rentes estações (ReceiveCognitiveMessage) e fazer fusão dos resultados
(mergeSensingReports). Assim também, a função DoSubframeIndication



Figura 1. Implementação de pilha de rede LTE com sensoriamento no ns-3.

do LTE foi modificada, para implementar a fusão de resultados antes de execu-
tar o escalonamento de recursos. Ainda na camada MAC do eNB, a função
DoSchedDlTriggerReq dos escalonadores passou a receber um parâmetro adicio-
nal, contendo um bitmap informando os grupos de blocos de recursos (RBGs em inglês)
ocupados, prevenindo seu uso pelo escalonador.

2.2. Funcionamento dos Módulos Desenvolvidos
A Figura 2 mostra um esquema dos passos do algoritmo desenvolvido no plano de con-
trole para a operação do sensoriamento colaborativo em um canal licenciado. A primeira
versão dessa implementação no módulo exemplifica o acesso do usuário primário (PU) ao
canal em um dado momento, seguida pela notificação da UE para o eNB sobre a presença
do PU, a agregação das notificações pelo eNB e o seu efeito no escalonamento de recursos
para prevenir transmissões que interfiram com o PU.

Na camada fı́sica (LteSpectrumPhy), está disposta a função de sensoriamento do
canal (Sense), que executa o sensoriamento. Dado que o ns-3 não emula a camada
fı́sica no caso da rede LTE, o algoritmo de sensoriamento do canal utiliza os parâmetros
de SINR e uma curva de probabilidades de detecção de usuário primário, gerados externa-
mente em um simulador de camada de enlace. O protótipo de algoritmo de sensoriamento
implementado (sensingProcedure), verifica a relação SINR de cada um dos RBGs,
ou a relação entre o SINR médio dos RBGs, e estima as chances de um PU estar trans-
mitindo baseado na curva de probabilidade. A Figura 3 mostra um exemplo de curva
de probabilidade de detecção que serve de entrada no ns-3, calculada em um ambiente
simulado com o uso de vários pontos de amostragem e parâmetros do canal fı́sico de
interesse[5G-Range 2018]. A probabilidade de falso positivo é Pfa = 0.01. O módulo da
camada fı́sica dos eNBs (LteEnbPhy) foi modificado para redirecionar mensagens com
informações do sensoriamento cognitivo para a camada MAC do eNB associado.

Na camada MAC dos UEs (LteUeMac), se encontra a função de notificação da
detecção de PU via canal de controle (SendCognitiveMessageC), ou via canal
de dados (SendCognitiveMessage). A notificação contém o número do quadro e
sub-quadro, mais um bitmap indicando os RBGs em que a transmissão do PU foi de-
tectada. A camada MAC dos eNBs (LteEnbMac) foi modificada para receber as men-



Figura 2. Diagrama do sensoriamento colaborativo

sagens do sensoriamento colaborativo (RecvCognitiveMessage, via canal de da-
dos, ou RecvCognitiveMessageC, via canal de controle), guardando em seguida
os resultados dos sensoriamentos dos UEs em registros que facilitam a posterior con-
sulta. Ainda na camada MAC dos eNBs (LteEnbMac), dentro da função de indicação
do sub-quadro (DoSubframeIndication) e antes do disparo de cada escalonamento
(SchedDlTriggerReq), foi implementado um método que agrega os dados do sen-
soriamento colaborativo. O resultado dessa agregação é um bitmap de RBGs a serem
ignoradas pelo escalonamento, evitando interferir com o usuário primário.

Um exemplo dos resultados da execução da ferramenta é mostrado na Figura 5,
utilizando a topologia da Figura 4, que contém 10 dispositivos (UEs) e um eNodeB. O
primeiro gráfico da Figura 5 mostra a potência de transmissão medida do PU no canal. No
segundo gráfico, é mostrado o resultado do sensoriamento individual dos UEs ao longo da
simulação. No terceiro gráfico, é mostrada a relação SINR média dos RBGs para cada um
dos UEs ao longo da simulação, visualmente indicando a presença da transmissão do PU.
No quarto gráfico, são plotados os resultados do escalonamento, com espaços em branco
indicando RBGs livres, azul indicando RBGs escaladas (transmissões de downlink), en-
quanto RBGs com transmissões do PU são indicadas em vermelho, onde transmissões
LTE cessam. Este gráfico reflete diretamente o algoritmo de agregação das informações
de sensoriamento colaborativo advindo dos UEs, podendo aumentar ou reduzir o número
de falsos positivos e/ou falsos negativos.

2.3. Aplicações e Casos de uso

A presente ferramenta pode ser utilizada como um suporte para o desenvolvimento e
avaliação dos seguintes casos de uso:

• Novos algoritmos de escalonamento para a camada MAC: algoritmos clássicos



Figura 3. Curvas de probabilidade de detecção do PU vs SNR [5G-Range 2018]

de escalonamento tipicamente assumem que o canal é licenciado e, portanto, o
eNB é usuário primário. O sensoriamento colaborativo implementado na ferra-
menta provê informações suficientes para a modificação e implementação de no-
vos algoritmos que levem em conta a possibilidade de usar oportunisticamente
um canal licenciado. A ferramenta assume que o canal de controle fica em banda
licenciada e não sofre interferência de terceiros.
• Caracterização do padrão de acesso do PU ao canal e rádio cognitivo: o

acesso à whitespaces, é tipicamente regido por bases de dados controlados por
agências controladoras do espectro. As bases de dados porém, não contam com
comportamento detalhado do padrão de acesso do PU, o que dificulta o reúso
do espectro por terceiros. Neste sentido, a ferramenta oferece a possibilidade
da implementação de algoritmos de aprendizado para identificar e caracterizar o
padrão de acesso do PU, a fim de prever seus acessos e identificar oportunidades
de acesso.
• Efeitos colaterais no sistema baseados no extrapolação do sensoriamento real:

a ferramenta pode ser utilizada para verificar como diferentes mecanismos de sen-
soriamento da camada fı́sica, seja real ou simulada, afetam a rede como todo. O
método sensingProcedure carrega uma curva de probabilidade da detecção
de um PU, que pode ser substituı́da facilmente; permite a detecção para cada RBG
ou no canal como todo, dependendo da necessidade do algoritmo de sensoria-
mento utilizado; pode ser feito apenas em RBGs não alocados para transmissão,
evitando RBG escaladas para downlink (DCIs), uplink (UCIs) e retransmissões
HARQ (RAR).

3. Roteiro de Demonstração
O código fonte, manual e vı́deos estão disponı́veis em https://gabrielcarvfer.
github.io/NS3/COLAB/.

A demonstração da ferramenta se dará em um conjunto de cenários com e sem
acesso dinâmico ao espectro, onde uma rede LTE utiliza oportunisticamente um canal
licenciado para a transmissão de dados, coexistindo com o PU do canal. O cenário si-
mulado difere do padrão LTE-LAA, onde a rede LTE faz uso de um canal não licen-
ciado utilizando o princı́pio LBT (Listen-Before-Talk). A detecção de transmissões do



Figura 4. Topologia do cenário de simulação para sensoriamento colaborativo

Figura 5. Resultados do sensoriamento colaborativo e reflexo no escalonamento
de recursos



PU através do sensoriamento colaborativo e cessão das transmissões no canal licenciado,
prevem e/ou reduzem a geração de interferência que afete o PU. A topologia da rede uti-
lizada nos cenários é a mesma utilizada na Seção 2.2, mostrada na Figura 4. A curva de
probabilidade utilizada é a mostrada na Figura 3.

Os cenários exemplificados na demonstração são 04, resultantes das combinações
de um canal AWGN (Additive white Gaussian noise) de 20MHz, com ruı́do de fundo de
-174dBm/Hz, com e sem a presença do usuário primário, com e sem DSA. As métricas
comparadas são latência, vazão, interferência percebida à transmissão do usuário primário
(medição de SINR) e taxa de utilização do canal.

4. Conclusão e trabalhos futuros
A escassez de recursos de rádio e a demanda por melhor cobertura e qualidade de serviço
tornam evidentes a necessidade do desenvolvimento e aprimoramento de tecnologias que
permitam o uso oportunı́stico do espectro. O COLAB, a ferramenta ora apresentada,
pode ajudar na pesquisa, desenvolvimento e teste de algoritmos para redes cognitivas e
acesso oportunı́stico integrado à pilha LTE do ns-3. Como trabalhos futuros, serão inves-
tigados novos métodos para aprimorar o ciclo cognitivo de sensoriamento, algoritmos de
inteligência artificial para predição do comportamento do PU e alocação de RBGs, algo-
ritmos de fusão dos dados de sensoriamento, melhorando os resultados da ferramenta e
das redes simuladas.
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