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GENERAL ABSTRACT 

The Midwest region in Brazil has the largest and most recent agricultural frontier in the 

country, where there is no currently detailed soil information to support the land use 

intensification. Producing large-extent digital soil maps is resource intensive. We aimed 

to use pedometric techniques coupled with proximal and remote sensing data to 

produce digital maps with 30 m resolution of key soil attributes at topsoil and subsoil 

for 851,000 km2 of Midwest Brazil. For mapping key soil attributes we used multi-

resolution covariates based on Earth observations: we produced composites of bare 

topsoil reflectance and potential natural vegetation reflectance using Landsat time series, 

which were coupled with terrain attributes, geologic and climate variables to capture 

short and long-range soil spatial patterns. We acquired soil data from observations at 

0−20, 20−60 and 60−100 cm (rooting) depth intervals containing soil attributes, which are 

commonly used (as key criteria) for soil interpretations: clay, silt and sand, organic 

matter, pH, aluminum and base saturation. We also determined both the soil color in 

Munsell notation and the relative abundance of minerals in soil (hematite, goethite, 

kaolinite, gibbsite and 2:1 clay minerals) from laboratorial reflectance spectra (350−2500 

nm). We fitted and validated optimal models for the spatial patterns of each soil attribute 

at topsoil and subsoil using Random Forest regression and 10-fold cross validation in R 

software. We identified the covariates that were most relevant to describe the soil spatial 

patterns in the study area. We mapped the spatial distribution of soil attributes at 30 m 

resolution for the 0−20, 20−60 and 60−100 cm depth intervals using the optimized models 

and Google Earth Engine. We made publicly available for download (GeoTIFF) at 250 m 

resolution the predicted soil maps of clay, silt and sand of the study area. We concluded 

that physical and chemical soil attributes, as well as soil color and mineralogy derived 

from spectra at multiple depth intervals, can be mapped using Earth observations data 

and machine learning methods with good performance. 

Keywords: Soil Science, big data, data mining, machine learning, cloud-computing 

 

GENERAL GRAPHICAL ABSTRACT  
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RESUMO GERAL (PORTUGUESE) 

A região Centro-Oeste do Brasil tem a maior e mais recente fronteira agrícola do país, 

onde atualmente não há informações detalhadas sobre o solo para apoiar a intensificação 

do uso do solo. A produção de mapas de solo digitais de grandes extensões é intensiva 

em recursos. O principal objetivo desta pesquisa foi usar técnicas pedométricas 

acopladas a dados de sensoriamento proximal e remoto para produzir mapas digitais 

com resolução de 30 m dos principais atributos do solo em superfície e subsuperfície 

para 850.000 km2 do Centro-Oeste do Brasil. Para mapear os principais atributos do solo, 

utilizamos covariáveis multi-resolução baseados em dados de observações da Terra: 

produzimos imagens compostas de refletância do solo exposto e de refletância da 

vegetação natural potencial usando séries temporais Landsat, que foram acoplados com 

atributos do terreno, variáveis geológicas e climáticas para capturar padrões espaciais 

do solo de curto e longo alcance. Adquirimos dados do solo a partir de observações em 

intervalos de profundidade (enraizamento) de 0–20, 20–60 e 60–100 cm, contendo 

atributos do solo que são comumente usados (como critério chave) para interpretações 

do solo: argila, silte e areia, matéria orgânica, pH, saturação de bases e de alumínio. 

Também determinamos a cor do solo em notação de Munsell e a abundância relativa de 

minerais no solo (hematita, goetita, caulinita, gibbsita e minerais de argila 2:1) a partir 

de espectros de laboratório (350–2500 nm). Foram ajustados e validados modelos ótimos 

para os padrões espaciais de cada atributo do solo em superfície e subsuperfície, usando 

regressão Random Forest e validação cruzada no software R. Identificamos as 

covariáveis mais relevantes que descreveram os padrões espaciais do solo na área de 

estudo. Mapeamos a distribuição espacial dos atributos do solo com resolução de 30 m 

para os intervalos de profundidade de 0-20, 20-60 e 60-100 cm usando os modelos 

otimizados e a plataforma Google Earth Engine. Disponibilizamos publicamente para 

consulta (GeoTIFF), com resolução de 250 m, os mapas de solo preditos de argila, silte e 

areia da área de estudo. Concluímos que atributos físicos e químicos do solo, assim como 

também a cor e a mineralogia do solo derivados de espectros de refletância, obtidos em 

múltiplos intervalos de profundidade, podem ser mapeados usando dados de 

observação da Terra e métodos de aprendizagem de máquinas com bom desempenho. 

Palavras-chave: Ciência do solo, big data, mineração de dados, aprendizado de máquina, 

computação em nuvem.  



3 

1. INTRODUCTION 

The word “soil,” like many common words, has several meanings. In its traditional 

meaning, soil is the natural medium for the growth of land plants, whether or not it has 

discernible soil horizons (SOIL SURVEY STAFF, 2014). Soil is a natural body comprised 

of solids (minerals and organic matter), liquid, and gases varying in three dimension, 

that form as a result of the interaction of soil forming factors (JENNY, 1941). The 

repeating patterns formed by the soil across landscape allow soil scientists to develop 

quantitative models for digital soil mapping (DSM) (MCBRATNEY et al., 2003). 

The soil plays essential role for natural and anthropic ecosystems (BÜNEMANN et 

al., 2018). Reliable spatial soil information can improve natural capital assessment, 

becoming important for food production, in large countries or emerging economies 

where the major demographic growth is expected (UNITED NATIONS, 2019). 

Conventional soil mapping is resource intensive and takes several years to perform 

adequate maps for large extents. This can be observed for Brazil, which is covered by 

soil class maps with small scales, mostly developed by Brazilian government institutions 

using RADAMBRASIL (Radar on Amazon and Brazil) project data (1:1,000,000 or 

nominally 2 km) (MCBRATNEY et al., 2003). In this case, such maps are not capable of 

supporting any decision making at regional or local scales.  

At the moment of this thesis, Gomes et al. (2019) performed one of the few studies 

on pedometric (or quantitative) mapping for a large extent in Brazil, where they mapped 

organic carbon stocks. When we searched for studies on soil color mapping, currently, 

Viscarra Rossel et al. (2010) performed one of the few works, where the authors also 

mapped iron oxides of Australian soil using reflectance spectra (350–2500 nm) and 

geostatistics. Conversely, we found some studies on soil mineralogy mapping from 

laboratorial spectra between 350 and 2500 nm wavelengths (MALONE et al., 2014; 

MULDER et al., 2013; ROSSEL et al., 2011; VISCARRA ROSSEL, 2011). Other studies 

(ROBERTS et al., 2019; DUCART et al., 2016; MADEIRA NETTO et al., 1997) used 

enhanced mineral mapping techniques to produce a thematic mineral map of soil using 

the spectral response of Landsat imagery. 

Midwest Brazil has the largest and most recent agricultural frontier of the country 

(PARENTE et al., 2019), which contributes about 34% and more than 10% to the 

agricultural production and gross domestic product of the nation, respectively (IBGE, 

2018). Nevertheless, the spatial patterns of soil attributes, such as physical, chemical, 

mineralogical and the color, under current conditions remains not mapped at fine 

resolution for this region and most Brazilian soils, both qualitatively and quantitatively. 

One reason for that might be the lack of dissemination of DSM knowledge to the 

community, because it is a multidisciplinary technique that involves soil knowledge, 

statistics, and mathematics applied to geoinformation science to understand soil 

variability across landscape (DALMOLIN et al., 2020). Another reason might be that in 

Brazilian repositories (SAMUEL-ROSA et al., 2020) there is a lack of mineralogical data, 

possible due to traditional methods are resource intensive (MULDER et al., 2013). Soil 

color in national datasets (SAMUEL-ROSA et al., 2020) also lacks or do not contain 
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spatial referencing or was visually approximated (MARQUES et al., 2019). Furthermore, 

several key soil forming factors are still not fully represented by classical environmental 

covariates, being necessary to develop new covariates that provide improved proxies for 

describing topsoil and subsoil spatial patterns.  

Advances in Earth observation (satellite images and products), digital elevation 

models and DSM frameworks, coupled with data mining and cloud-based computing, 

might be a solution to the lack of adequate soil data (HENGL et al., 2018). Satellite image 

provides measurements of topsoil reflectance, which are directly related to clay content, 

organic matter, mineralogy, moisture and soil color (STENBERG et al., 2010). Some 

studies has been shown that topsoil spectral patterns are related to the subsoil pattern 

variations and dynamic processes which occurs within the soil profile (MENDES et al., 

2019; POPPIEL et al., 2018, 2019). The synergy between satellite images, especially bare 

soil composites, and auxiliary covariates (e.g. elevation, climate) coupled with machine 

learning for DSM was reported in several studies (MENDES et al., 2019; ROGGE et al., 

2018; DEMATTÊ et al., 2018; FONGARO et al., 2018; HENGL et al., 2017; DIEK et al., 

2017, 2016). These techniques reduce overall soil data production costs, combining a 

number of sciences (PADARIAN et al., 2019; DEMATTÊ et al., 2018; HENGL et al., 2018; 

MCBRATNEY et al., 2003). Furthermore, environmentally clean, quick and low cost 

techniques such as reflectance spectroscopy (350–2500 nm) was successfully used in 

pedometry to determine the color and mineralogy of soil (SIMON et al., 2019; 

MARQUES et al., 2019; RIZZO et al., 2016; SCHEINOST et al., 1998; MATTIKALLI, 1997; 

ESCADAFAL et al., 1988; FERNANDEZ et al., 1987). Random Forest (RF) is one of most 

popular algorithm in DSM, being employed in several soil mapping studies (AMIRIAN-

CHAKAN et al., 2019; GOMES et al., 2019; HENGL et al., 2015, 2018; KESKIN et al., 2019; 

LOISEAU et al., 2019; NUSSBAUM et al., 2018M; A et al., 2017). 

Revealing the spatial patterns of key soil attributes at multiple (rooting) depth 

increments might provide adequate information to account for the multi-functionality 

of soil in Midwest Brazil. 
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2. HYPOTHESIS 

 Earth observation data based covariates can describe topsoil and subsoil spatial 

patterns over a large geographical extent in Midwest Brazil; 

 Proximal soil sensing data (350–2500 nm) have potential to provide accurate 

information on soil color and mineralogy; 

 Earth observation data based covariates and machine learning, coupled with soil 

observations can promote a favorable framework to produce accurate soil 

predictions.  

 It is possible to map physical and chemical soil attributes, and also the soil color 

and mineralogy at three fixed (rooting) depth intervals (0–20, 20–60 and 80–100 

cm) with 30 m resolution across the Midwest region in Brazil, using open source 

software. 

3. OBJECTIVES 

3.1. General objective 

The main objective of this research was to use pedometric techniques coupled with 

proximal and remote sensing data to produce digital maps with 30 m resolution of key 

soil attributes at topsoil and subsoil for 851,000 km2 of Midwest Brazil. 

3.2. Specific objectives 

I. To map physical and chemical soil attributes with 30 m resolution at 

multiple depth intervals in Midwest brazil; 

II. To map the soil color and mineralogy using proximal and remote sensing 

data at three depth intervals in Midwest Brazil;  

III. To make publicly available for download as integer GeoTIFF format at 250 

m resolution the soil texture maps of Midwest Brazil. 

4. GENERAL FRAMEWORK 

To achieve the objectives of this research, we followed the working steps described 

below and represented in the general methodology flowchart. 

4.1. Working steps 

I. Assessment of the pedomorphogeological characteristics across different 

areas centralized over Goiás State, based on legacy data (maps and soil 

observations) and satellite images, for size definition of the study area. 

II. Production of new covariates (composites) by Landsat data mining (30 m 

resolution) in Google Earth Engine for better representation of some soil 

forming factors: bare topsoil reflectance and potential natural vegetation 

reflectance. Interpolation of the gaps by ordinary kriging after fitting the 

semivariogram. 
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III. Acquisition of traditional covariates for soil mapping (relief and climate), 

and selection by the least correlated between them. Adjustment of the pixel 

size to 30 m. 

IV. Exploration of soil datasets and acquisition of soil observations at topsoil 

and subsoil from Brazilian databases. Evaluation of the datasets to identify 

the need for new soil observations in the study area. 

V. Visiting and collection sites planning according to pedomorphogeological 

characteristics of the region, adjusted with new detailed covariates. 

VI. New soil samples preparation for traditional (wet) determination of 

physical and chemical attributes, and for reflectance measurements 

(spectroscopy) between 350 and 2500 nm, both in laboratory. 

VII. Calculation of physical and chemical attributes values in their specific units, 

and reflectance spectra pre-processing for splice and noise bands removing. 

VIII. Determination of the soil color in Munsell notation, and the relative 

abundance of minerals in soil, both from laboratorial spectra (350−2500 nm); 

IX. Preparation of the final soil datasets by checking and aggregating data into 

depth intervals for soil modelling: physical and chemical soil dataset, and 

soil color and mineralogical dataset.  

X. Fitting, optimization and validation of regression models for the spatial 

patterns of each soil attribute at topsoil and subsoil using Random Forest 

algorithm and 10-fold cross validation. 

XI. Identification of the most relevant covariates for describing the soil spatial 

patterns in the study area. 

XII. Mapping the spatial distribution of soil attributes at 30 m resolution for the 

0−20, 20−60 and 60−100 cm depth intervals using optimized models in 

Google Earth Engine. 

XIII. Clustering of lithologies using the maps of physical and chemical soil 

attributes, and verification of the spatial correspondence of predicted 

values with parent materials. 

XIV. Verification of the spatial correspondence (using Pearson correlation) 

between the predicted maps with legacy soil observations acquired from a 

national dataset, and weathering degree and hue, both inferred from a 

legacy soil class map of the study area. 

XV. Reduction of the spatial resolution at 250 m, tailing and making publicly 

available the predicted soil maps of clay, silt and sand for the study area. 
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GENERAL METHODOLOGY FLOWCHART. 

4.2. The thematic project that supports this thesis 

This thesis is part of the thematic project entitled “Geotechnologies on a Detailed 

Digital Soil Mapping and the Brazilian Soil Spectral Library: Development and Applications”, 

founded by the São Paulo Research Foundation (FAPESP), grant number 14/22262-0, and 

coordinated by Professor José Alexandre Melo Demattê from University of São Paulo 

(USP), College of Agriculture Luiz de Queiroz (ESALQ), Departamento of Soil Science, 

Piracicaba, SP. The project is co-coordinated by Professor Marcos Rafael Nanni from 



8 

Maringá State University (UEM), and by Professor Marilusa Pinto Coelho Lacerda from 

FAV/UnB. 

The thematic project aims to act in many soil knowledge fields through 

geotechnologies at laboratorial, field, aerial and orbital acquisition levels. This will be 

organized into 6 projects as follows: 1) Brazilian Soil Spectral library; 2) Satellite images 

on soil mapping; 3) Geotechnologies for in-situ soil mapping; 4) Stratigraphy on soil 

mapping; 5) Geotechnology for digital soil mapping. The first theme aims the 

implementation of a Brazil’s soil spectral library. Soil reflectance spectra will be obtained 

and organized from the broadest attainable regions. The objective is to develop a 

database with soil patterns via spectra and make accessible to the community, to support 

future studies.  

The second theme regards to the development of a detailed soil map across the 

municipality of Piracicaba in São Paulo State, by the integration of geotechnologies. In 

order to accomplish this goal, many subprojects will be performed. The first will be the 

compartmentalization of stratigraphic surfaces according to their geological and 

geomorphological features. Composites from reflectance satellite images will be 

displayed in three dimensional software for observing and relating the bare topsoil to 

the alndscape. Hyperspectral images will be also acquired using a sensor with 620 

spectral bands on a plane, providing detailed spectral patterns of soils. Studies on 

photopedology using 3D software will be performed.  

Within the compartments, several transect points will be allocated along the study 

area, and soil samples will be collected with auger and from soil profiles. After 

fieldworks, soil samples will be prepared for determination of physical and chemical soil 

attributes, and for measurements of reflectance spectra, both in laboratory. The results 

will be used to produce a soil database. Three pilot areas within each compartment will 

be selected based on soil database and environmental variables, where a detailed in-situ 

soil characterization will be performed using diverse geotechnologies: field 

spectroradiometer, colorimeter, GPS, gammaspectrometer, computer and open source 

software. Such tools will provide information for soil interpretation at real time, allowing 

the pedologist decision.  

At the final, an approach based on a mix of traditional and geotechnological 

methods will be applied for soil mapping. Two different products are expected as a 

result from the thematic project: a soil spectral library publicly available and a detailed 

soil map assisted by a new geotechnological methodology. In addition, detailed maps of 

soil attributes for different regions of Brazil are expected as results. 

  



9 

5. LITERATURE REVIEW 

5.1. What is Pedometrics and Digital Soil Mapping? 

Pedometrics is a new expression derived from the Greek words pedos (meaning 

soil) and metron (meaning measurement), defined by the Pedometric society 

(www.pedometrics.org) as “the application of mathematical and statistical methods for 

the study of the distribution and genesis of soils”. Nevertheless, it will always intergrade 

to all areas of soil science and quantitative methods.  

DSM is defined as “the creation and population of spatial soil information systems 

by the use of field and laboratory observational methods coupled with spatial and non-

spatial soil inference systems” (LAGACHERIE et al., 2007). Other terminology has also 

been used or proposed, including: computer-assisted soil cartography, numerical soil 

cartography, pedometric mapping, environmental correlation, predictive soil mapping, 

or geographical extrapolation using models (MINASNY et al., 2016). 

McBratney et al. (2003) formalized the DSM framework, which started prior to the 

21st century, as scorpan based on Jenny's clorpt model (JENNY, 1941) of soil formation, 

where the acronym scorpan stands for soil (s), climate (c), organisms (o), relief (r), parent 

material (p), age or time (a) and spatial position (n). This updated equation provides a 

spatial model to express quantitatively the relationship between a soil attribute or class 

and environmental variables, for a given spatial location (WADOUX et al., 2020). 

Pedometric mapping is generally characterized as a quantitative, (geo)statistical 

production of soil geoinformation, also referred to as the predictive soil mapping 

(SCULL et al., 2003) or DSM (MCBRATNEY et al., 2003), as it depends heavily on the use 

of information technologies. Pedometric mapping, however, specifically means that 

quantitative methods are used in the production of soil geoinformation. The most recent 

topics covered by Pedometrics include: analysis and modelling of spatial and temporal 

variation of soil attributes; multi-resolution data integration; soil-landscape modelling 

using digital terrain analysis; quantitative soil classification algorithms; soil genesis 

simulation; soil pattern analysis; design and evaluation of sampling schemes; 

incorporation of exhaustively sampled information (remote sensing) in soil mapping; 

precision agriculture applications, among others (HENGL et al., 2019). 

5.2. Recent advances in Pedometric Mapping 

In recent years, the advance of DSM was due to several factors, mainly the 

accessibility of Landsat images and digital elevation models, as well as to the availability 

of computing power to process big data, the development of data mining tools and 

progress in open source geospatial software, applications beyond geostatistics, and 

institutional rejuvenation with a new generation of soil scientists that were attracted by 

the spatial analysis of soils (MINASNY et al., 2016). Other important factor is the current 

strong demand for soil maps by agricultural interest (food, feed, fuel) that brought soils 

back onto the global research agenda (OMUTO et al., 2013).       
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The recent advances cited above agreed with Figure 1, where the number of 

citations from keyword search “digital soil mapping”, coupled with “Remote Sensing”, 

“Random Forest regression” and “Pedometrics” on scientific papers increased from the 

year 2010 to present, mainly due to advances in soil data availability (MINASNY et al., 

2016), such as from Earth observations and the popularization of soil spectral libraries 

(DEMATTÊ et al., 2019; VISCARRA ROSSEL et al., 2016) to produce new soil 

information. According to McBratney et al. (2019), we are going into the global mapping 

era (2015 onwards), aiming to make a global digital soil map at fine resolution. 

Although the term pedometrics was coined by McBratney in 1986, and that 

quantitative methods have been increasing ever since (MCBRATNEY et al., 2019), the 

number of citations from keyword “pedometrics” on papers still remains small (Figure 

1), possibly due to a more recent dissemination of the term between the scientific 

community. In a bibliometric study of the composition of papers on soil science, from its 

inception in 1967 until 2001, Hartemink et al. (2001) showed that papers on pedometrics 

have risen from less than 3% in 1967 to around 18% of all papers in 2000. Furthermore, 

very few pedometrics-related papers in high impact journals on soil and Earth sciences 

describe the information technology used, like computer hardware, algorithms, sensors, 

models, etc. (ROSSITER, 2018). Thus, from the nature of the algorithms and datasets we 

can infer something about the information technology needed for the reported studies. 

 

 

Figure 1. Number of citations from keyword search on scientific papers from 

the ScienceDirect database (data extracted in February 2020). DSM: digital soil 

mapping. 

5.3. What is Google Earth Engine? 

Google Earth Engine (GEE), established towards the end of 2010, is a cloud-based 

platform for planetary-scale geospatial analysis that brings Google's massive 

computational capabilities to bear on a variety of high-impact societal issues 

(GORELICK et al., 2017). The main components of GEE are 1) Datasets: a petabyte-scale 

archive of publicly available remotely sensed imagery and other terrain, climatic, 
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geophysical data available at https://developers.google.com/earth-engine/datasets; 2) 

Compute power: Google’s computational infrastructure optimized for parallel 

processing (high-performance) of geospatial data; 3) API: Application Program 

Interfaces (focused on JavaScript) for making requests to the Earth Engine servers, where 

documentation (Docs) contains links to sections or pages about important data types (or 

objects) such as ee.Image(), ee.ImageCollection(), ee.Feature(), 

ee.FeatureCollection(), ee.Geometry(), etc., and methods (or functions) such as 

filter(), clip(), ee.Algorithms.Terrain(), Export.image.toDrive(), etc. Generally, a 

method is applied to an object, as follow ee.Image().clip(). And 4) Code Editor: an 

online Integrated Development Environment (IDE) for rapid prototyping and 

visualization of complex spatial analyses using the JavaScript API, available at 

https://code.earthengine.google.com. All this information and much more details can be 

found in the GEE User Guides (https://developers.google.com/earth-engine). JavaScript 

is an interpreted programming language that is most well-known as the scripting 

language for Web pages (wikipedia.org). 

 

Figure 2. A simplified system architecture diagram of the Google Earth Engine 

Code Editor. Adapted from Earth Engine educational resources available at 

https://developers.google.com/earth-engine/edu. 
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Gorelick et al. (2017) and Padarian et al. (2015) described "Cloud computing” as if 

you have access to a supercomputer designed for geospatial analysis. All the hard work 

is done on Google servers, and to get the result is low bandwidth consuming. How does 

it work?  The code you write in the Code Editor using JavaScript programming language 

(client-side) gets turned into an object representing the set of instructions which is then 

sent to Google (server-side) for processing (Figure 2). The requested analysis is then run 

in parallel on many computers or central processing units (CPUs). What you get back in 

your browser (or monitor) is only what you request, for example a statistic or chart 

printed to the console or small RGB tiles to display on the map. 

5.4. Google Earth Engine for pedometric mapping 

At the moment, most pedometric mappings take place on local computers using 

local processors, which becomes resource intensive because require massive amounts of 

processing power and memory for spatial big data analyses (HENGL et al., 2019). Kumar 

et al. (2018) found that, of the total number of research papers published between 2010 

and 2017 using GEE, less than 3% were applied to DSM, as observed by the red line in 

Figure 3. Nevertheless, GEE is an interesting new platform which could be implemented 

in a routine DSM workflow, since it is specifically designed to manage large volumes of 

gridded information (rasters), which are used to represent soil forming factors 

(PADARIAN et al., 2015). The major advantage of using GEE is that many rasters are 

already available at catalogue, making easier the process of collecting data, and the 

parallel nature of its algorithms, which considerably accelerates the computation times 

(GORELICK et al., 2017). The user can also upload his own dataset (raster or vectorial) 

to the assets with 250 Gigabytes of space, and couple them with GEE datasets for 

processing. 

 

Figure 3. Number of citations from keyword search on scientific papers from 

the ScienceDirect database (data extracted in February 2020). DSM: digital soil 

mapping. 

GEE Code Editor is accessed and controlled through an internet-accessible API and 

an associated web-based IDE that enables rapid prototyping and visualization of results 

(Figure 4). Users can access and analyze data from the public catalog as well as their own 
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private data (stored in assets) using a library of operators provided by the Code Editor. 

These operators are implemented in a large automatic parallelization that enables global-

scale analyses such as that by Hansen et al. (2013), Pekel et al. (2016) and Murray et al. 

(2019). Padarian et al. (2015) explored the feasibility of using this platform for DSM by 

presenting two soil mapping examples over the contiguous United States. The authors 

specified that, independent of the extent and aim, pedometric mapping usually has a 

standard workflow, which can be successfully implemented and improved within GEE: 

a) Environmental variables:  

 Acquisition: many covariates are already available in the GEE catalogues, 

which can be imported into the code editor and directly apply calculation of 

derivatives, up or downscale to a target grid resolution, spatial interpolation, 

filtering, subset and stack rasters, etc. 

 Development: based on previous studies (DEMATTÊ et al., 2018; DIEK et al., 

2017; ROBERTS et al., 2019; ROGGE et al., 2018), we highlight the strong 

potential that GEE has for big data mining (GORELICK et al., 2017), and thus 

to obtain new spatially continuous soil predictors based Earth observation 

data for their use as soil forming factor proxies in pedometric mappings of 

large geographical extents. 

b) Sampling: the user can upload points to their assets, using tables (.csv) or 

vectors (shapefiles), overlay them with covariates for sampling data, and thus 

prepare a value matrix. 

c) Modeling: the available algorithm within GEE covers both prediction of class 

(categorical) and continuous variables (soil attributes), such as linear 

regression, regression kriging, neural networks and Random Forests. The 

platform is not flexible enough to build and tuning models. Nevertheless, in 

our experience, sampled data (described in item b) can be exported and used 

within a geostatistical software, like R, to optimize the models. Then, tuned 

hyperparameters from optimized models can be used within GEE algorithms 

for spatial predictions. 

d) Mapping: spatial predictions are virtually made by tiles (sub-areas) in a 

parallel process for the whole extent. This is the major advantage of GEE, 

bringing speed gain to this step. According to Padarian et al. (2015), DSM in 

GEE was 40–100 times faster than DSM using desktop workstation. 

e) Uncertainty: unfortunately, techniques for uncertainty estimating are not 

implemented in GEE, and there is no straightforward way to program it at the 

current development stage. GEE is in active development and constantly 

being updated. 

f) Displaying: GEE uses the scale specified by the output (zoom level) to 

determine the appropriate level of the image pyramid to use as input by 
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aggregating 2 x 2 blocks of 4 pixels. That is, each tile is always 256 x 256 pixels, 

and it is recalculated with every change in zoom level for visualization. 

g) Map layout: code editor allows to design the traditional layouts by coding 

each element: frame, scale and gradient bars, legend, north, text and map 

background. 

h) Distribution: the code, the soil observations used to obtain the maps, and also 

the results obtained and stored in assets can be shared with other researcher. 

Results can also be exported to Google cloud storage (and share as a web map 

service) or Google Drive (for downloading). 

 

Figure 4. Google Earth Engine Code Editor interface and their components. 

API: Application Program Interfaces (focused on JavaScript) for making 

requests to the Earth Engine servers. Adapted from a screenshot by the author. 

5.5. Machine learning for pedometric mapping 

Machine learning (ML) was implemented in the 1990s as a tool for DSM 

(LAGACHERIE, 2008). ML techniques refer to a large class of non-linear data-driven 

algorithms employed primarily for data mining and pattern recognition purposes, and 

now frequently used for regression and classification tasks in all fields of science. ML 

algorithms do not make an assumption of the observations' distribution, unlike 

geostatistical methods, where transformation of the original values is often required to 

satisfy the assumptions. ML algorithms can also handle a large number of cross-

correlated covariates as predictor. 
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In parallel, there has been a tremendous increase in the production and availability 

of regional and global soil databases. For example, the Soil and Terrain Digital Database 

(OLDEMAN et al., 1993), the World Soil Information Service (BATJES et al., 2017) and 

the World Spectral Library (VISCARRA ROSSEL et al., 2016) at global extent, and the 

Free Brazilian Repository for Open Soil Data (SAMUEL-ROSA et al., 2020) and the The 

Brazilian Soil Spectral Library (DEMATTÊ et al., 2019) at national extent, among others. 

Additionally, numerous spatially exhaustive scorpan covariates are available at global 

extent (mostly available within GEE data catalogue at 

https://developers.google.com/earth-engine/datasets). Conventional regression 

techniques seem, to some extent, outdated to deal with the increased complexity of soil 

datasets. This justifies the increasing use of machine learning algorithms for digital soil 

mapping (WADOUX et al., 2020). 

There is a large number of studies using ML for mapping soil attributes from local, 

regional to global extent. For example, Pouladi et al. (2019) make a quantitative map over 

a 10 ha field in Denmark while Hengl et al. (2017) produce quantitative and categorical 

maps for the whole world. Wadoux et al. (2020) found that most of studies (70%) only 

predict topsoil attributes, while a smaller number of works mapped soil attributes at 

topsoil and subsoil (ARROUAYS et al., 2014; HENGL et al., 2015; VISCARRA ROSSEL 

et al., 2015; GOMES et al., 2019). 

ML algorithms have been successfully applied for pedometric mapping of various 

soil attributes, such as soil organic carbon concentration (GOMES et al., 2019; 

HENDERSON et al., 2005; POULADI et al., 2019; SIEWERT, 2018), soil texture 

(FONGARO et al., 2018; LIU et al., 2020; LOISEAU et al., 2019), bulk density (VISCARRA 

ROSSEL et al., 2015), pH (DHARUMARAJAN et al., 2017), or cation exchange capacity 

(FORKUOR et al., 2017). ML also was used for mapping nutrients such as nitrogen 

(FORKUOR et al., 2017; VISCARRA ROSSEL et al., 2015), phosphorus (HENGL et al., 

2017; VISCARRA ROSSEL et al., 2015), potassium, calcium or magnesium (HENGL et 

al., 2017). 

Environmental covariates represent soil forming factors, where studies with ML 

used from less than five (PADARIAN et al., 2019) to more than 100 predictor (HENGL 

et al., 2017; RAMCHARAN et al., 2018). Some examples of studies using multi-resolution 

covariates for mapping with ML algorithms were performed by Behrens et al. (2010), 

Miller et al. (2015) and Behrens et al. (2018). For instance, Miller et al. (2015) employed 

412 covariates, several of which were derived from the aggregation of terrain attributes 

from a fine elevation map (grid cell size of 2 m X 2 m). 

5.6. Why perform pedometric mapping of soil attributes? 

The soil covers the Earth, and its attributes vary spatially and temporally in a 

sometimes continuous, sometimes discrete and sometimes complex or random way 

(MCBRATNEY et al., 2003). The attributes can either be direct or indirect (proximally or 

remotely sensed, including humanly sensed) measurements of physical, chemical, 
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biological, morphological and mineralogical soil features in the field or on samples taken 

back to the laboratory or multivariate soil classes derived from them (MCBRATNEY et 

al., 2018). The word “attribute” is commonly used in soil science because the features are 

attributed to the soil and to their formation (SOIL SURVEY STAFF, 2014). 

In contrast to the quartz sand coarse soil fraction, the finer soil fraction of the highly 

weathered soil mantle of Midwest Brazil (SCHAEFER et al., 2008) is dominated by 

minerals that protect soil organic matter from mineralization by microorganisms 

through sorption and/or entrapment of organic matter in small microaggregates 

(BALDOCK et al., 2000; CHENU et al., 2006). Among these minerals, sesquioxides such 

as gibbsite and goethite, have a greater affinity for organic matter than clay minerals, 

thanks to their large specific surface area (KAISER et al., 2003). These minerals also 

constrain the nutrient status in soils with low pH through their ability to remove 

inorganic anions, such as phosphate or nitrate, from solution, forming inner or outer 

sphere complexes (SCHWERTMANN et al., 1989). Together with these very stable 

sesquioxides, kaolinite 1:1 clay, is the most abundant mineral of the fine soil fraction in 

highly weathered soils (KAISER et al., 2003). Despite being less reactive than 

sesquioxides, kaolinite can present an important anion exchange capacity at low pH 

(MELO et al., 2001), contributing to lower extractable phosphorus concentrations 

traditionally used as an indicator of readily plant accessible P (GÉRARD, 2016; 

MCGRODDY et al., 2008). Thus, the same clays and sesquioxides that lead to greater soil 

organic matter storage also occlude P into less accessible forms (RUTTENBERG et al., 

2011), reducing its mobility and making uptake of P resources from the soil more 

difficult. Phosphorus is an essential element determining plant growth and productivity 

(MALHOTRA et al., 2018), that was found to be spatially correlated with other yield-

limiting factors (soil attributes) (NAWAR et al., 2017). 

In a recent scientific report, Soong et al. (2020) demonstrates how variation in soil 

attributes that retain carbon and nutrients can help to explain variation in tropical forest 

growth and mortality (Figure 5). The authors observed strong positive relationships 

between soil attributes (soil texture and mineralogy) and forest dynamics of growth and 

mortality across tropical forests in a phosphorus-poor region of the Guiana Shield in 

South America. Average tree growth increased from 0.81 to 2.1 mm yr−1 along a soil 

texture gradient from 0 to 67% clay, and increasing metal-oxide content. Topsoil (30 cm 

depth) organic carbon stocks ranged from 30 to 118 tons C ha−1, phosphorus content 

ranged from 7 to 600 mg kg−1 soil, and the relative abundance of arbuscular mycorrhizal 

fungi ranged from 0 to 50%, all positively correlating with soil clay and sesquioxides 

content. In contrast, already low extractable phosphorus content decreased from 4.4 to 

<0.02 mg kg−1 in soil with increasing clay content. A greater prevalence of arbuscular 

mycorrhizal fungi in more clayey forests that had higher tree growth and mortality, but 

not biomass, indicates that despite the greater investment in nutrient uptake required, 

soils with higher clay content may actually serve to sustain high tree growth in tropical 

forests by avoiding phosphorus losses from the ecosystem.  
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Findings as cited are very important to soil scientists, because it supports that 

continuous and quantitative soil attribute maps could be used to predict (or to indicate) 

which soils are expected to be responsive to nutrient additions based on their soil 

attributes. In other words, to indicate the best soil management or places for food 

production. 

 

Figure 5. A simplified conceptual model of the influence of soil properties on 

tree growth and mortality, but not biomass, across phosphorus-depleted 

tropical forests. From Soong et al. (2020). Both forests have the same 

aboveground biomass, but different turnover rates and soil properties. At the 

sandy end of the soil continuum are forests with slower (narrower) nutrient 

cycling due to greater nutrient retention in the aboveground biomass (dark 

blue) based on slower growth, greater longevity, lower quality litter. At the 

other end of the spectrum are forests where the greater capacity of clay and 

(hydr)oxide-rich soils to retain phosphorus and organic matter support faster 

(wider) nutrient cycling forests. At clayey sites, nutrient recycling via 

decomposition (dark blue) is supported by a greater relative abundance of 

arbuscular mycorrhizal (AM) fungi. 
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CHAPTER 1 –– MAPPING AT 30 M RESOLUTION OF PHYSICAL AND CHEMICAL 

SOIL ATTRIBUTES AT MULTIPLE DEPTHS IN MIDWEST BRAZIL1 

 

ABSTRACT 

The Midwest region in Brazil has the largest and most recent agricultural frontier in the 

country, where there is no currently detailed soil information to support the agricultural 

intensification. Producing large-extent digital soil maps demands a huge volume of data 

and high computing capacity. This paper proposed mapping surface and subsurface key 

soil attributes with 30 m-resolution in a large extent of Midwest Brazil. These soil maps 

at multiple depth increments will provide adequate information to guide land use 

throughout the region. The study area comprises about 851,000 km2 in the Cerrado 

biome (savannah) across Brazilian Midwest. We used soil data from 7908 sites of the 

Brazilian Soil Spectral Library and 231 of the Free Brazilian Repository for Open Soil 

Data. We selected nine key soil attributes for mapping and aggregated them into three 

depth intervals: 0–20, 20–60 and 60–100 cm. A total of 33 soil predictors were prepared 

using Google Earth Engine (GEE), such as climate and geologic features with 1 km-

resolution, terrain attributes and two new covariates with 30 m-resolution, based on 

satellite measurements of the topsoil reflectance and the seasonal variability in 

vegetation spectra. The scorpan model was adopted for mapping of soil variables using 

random forest regression (RF). We used the model-based optimization by tuning RF 

hyperparameters and calculated the scaled permutation importance of covariates in R 

software. Our results were promising, with a satisfactory model performance for 

physical and chemical attributes at all depth intervals. Elevation, climate and topsoil 

reflectance were the most important covariates in predicting sand, clay and silt. In 

general, climatic variables, elevation and vegetation reflectance provided to be the most 

important covariates for predicting soil chemical attributes, while for organic matter it 

was a combination of climatic dynamics and reflectance bands from vegetation and 

topsoil. The multiple depth maps showed that soil attributes largely varied across the 

study area, from clayey to sandy, suggesting that less than 44% of the studied soils had 

good natural fertility. We concluded that key soil attributes from multiple depth 

increments can be mapped using Earth observations data and machine learning methods 

with good performance. 

Keywords: spatial big data; soil attributes; digital soil mapping; random forest; remote 

sensing; Google Earth Engine; land management 

                                                 
1 Article published in Remote Sensing, 5 December 2019, https://doi.org/10.3390/rs11242905 
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GRAPHICAL ABSTRACT 

 

1. INTRODUCTION 

The soil plays essential role for natural and anthropic ecosystems (BÜNEMANN et 

al., 2018). Reliable spatial soil information can improve natural capital assessment, 

becoming important for food production, especially in large countries or emerging 

economies where the major demographic growth is expected (UNITED NATIONS, 

2019). Soil mapping is expensive and time-demanding, consequently performing 

adequate maps in large areas takes several years and require significant economic 

resources. Such fact is observed in countries like Brazil, which is covered by small scale 

soil maps, mostly developed by Brazilian government institutions using 

RADAMBRASIL (Radar on Amazon and Brazil) project data (1:1,000,000 or nominally 2 

km) (MCBRATNEY et al., 2003). In this case, such maps are not capable of supporting 

any decision making in regional or local scales.  

Currently, there are no soil attribute maps with complete coverage across the 

Brazilian Midwest, which could support management and policy decisions. This region 

has the largest and most recent agricultural frontier in Brazil (PARENTE et al., 2019), 

which contributes about 34% and more than 10% to the agricultural production and 

gross domestic product of the country, respectively (IBGE, 2018). 

The huge volume of quantitative (pedometric) data required in the production of 

soil attribute maps, for large geographical extents, limits the feasibility of conventional 

(traditional) manual (expert-based) soil mapping (HENGL et al., 2017; MCBRATNEY et 

al., 2003). Several key soil factors are still not fully represented by classical environmental 

covariates, being necessary to develop new covariates that provide improved proxies for 

describing soil spatial variations. Advances in Earth observation (satellite images and 

products), digital elevation models and digital soil mapping (DSM) frameworks, based 

on machine learning and cloud-based computing, might be a solution to the lack of 

adequate soil data (HENGL et al., 2018). An Earth observation product that has raised 

attention in DSM is the satellite image. Such data can retrieve medium- to high-
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resolution information and are easily acquired. Recently, studies have employed multi-

temporal images in soil assessment and mapping. Such data provides measurements of 

topsoil reflectance, which are directly related to clay content, organic matter, 

mineralogy, moisture and soil color (STENBERG et al., 2010). The synergy between 

satellite images and DSM techniques is described by Diek et al. (2016), who performed a 

multi-temporal composite from the Airborne Prism Experiment (APEX). By overlapping 

images, the authors doubled the amount of bare soil pixels in the scene and presented 

an enhanced spatial representation of topsoil. Later, Diek et al. (2017) developed a 

method for identifying the least-vegetated pixels (e.g. barest pixel) in a dense Landsat 

time series. Such data was used to estimate soil attributes and evaluate the contribution 

of remote sensing (RS) to conventional and DSM procedures. Similarly, Rogge et al. 

(2018) proposed the Soil Composite Mapping Processor (SCMaP), which is an approach 

able to use per-pixel compositing to address the issue of limited soil exposure. Another 

bare surface composition technique was proposed by Demattê et al. (2018), called 

Geospatial Soil System (GEOS3). These authors validated the method by comparing the 

bare surface data (described as SySI) to laboratory spectral measurements, and found a 

canonical correlation of 0.93. Later, Fongaro et al. (2018) used such composite images to 

digitally map soils from southeastern Brazil. These authors described an expressive 

enhancement in clay content’s digital mapping when employing SySI and terrain 

attributes. The R2 and root mean squared error (RMSE) improved from 0.64 and 93.44 g 

kg-1 to 0.83 and 65.36 g kg-1, respectively. Finally, Mendes et al. (2019) indicated that 

besides surface layer mapping, SySI can also aid in the prediction of soil subsurface 

attributes. 

The prediction in DSM is usually based on machine learning techniques, which fit 

models for the spatial prediction of soil variables (i.e. maps of soil attributes and classes 

at different resolutions) (HENGL et al., 2017). While machine learning supports the soil 

spatial predictions (PADARIAN et al., 2019), cloud-based computing provides a 

superior architecture for the execution of such complex algorithms (GORELICK et al., 

2017). These techniques are very attractive, once it result in the automation of processes, 

reducing overall soil data production costs, combining statistics, data science, soil 

science, physical geography, RS, geoinformation science and a number of other sciences 

(PADARIAN et al., 2019; DEMATTÊ et al., 2018; HENGL et al., 2018; MCBRATNEY et 

al., 2003). 

A brief search in literature regarding the terms “soil” and “machine learning” 

resulted in more than 72,000 publications, from which 7,200 items were published in the 

first half of 2019 and 4,000 discussed random forest (RF) algorithms. The RF algorithm 

was first introduced by Breiman (2001) and became a standard nonparametric 

classification and regression tool. The method establishes prediction rules based on 

various types of predictor variables, without making any prior assumption on the form 

of their association with the response variable (PROBST et al., 2019). The RF is one of 

most popular algorithms in DSM, being employed in several soil mapping studies 

(AMIRIAN-CHAKAN et al., 2019; GOMES et al., 2019; HENGL et al., 2018; LOISEAU et 
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al., 2019; MA et al., 2017). Many inter-comparisons between machine learning algorithms 

are described in literature, and in most cases, authors indicated RF as the most adequate 

algorithm for DSM. Keskin et al. (2019) compared many models to quantify stochastic 

and/or deterministic components of soil carbon (C) pools. The prediction performance 

indicated the RF as the best algorithm. The covariables that best described variations in 

C pools were the biotic and hydro-pedological ones. Lithological and climatic factors 

had a reasonable influence in C predictions, while topographic factors did not contribute 

to soil C modeling. Similarly, Nussbaum et al. (2018) evaluated six approaches for 

digitally mapping 14 soil attributes at four depths. They found small differences in 

predictive performances, but RF was often the best among all methods. Hengl et al. 

(2015) mapped 14 soil attributes from African soils, combining quality-controlled point 

data and a large number of covariates. The RF was the best method, outperforming linear 

regression with an average decrease of 15%–75% in RMSE across soil properties and 

depths.  

Based on results from studies reviewed, we expect that Earth observation data and 

machine learning, coupled with Brazilian available legacy soil datasets, to promote a 

favorable framework for producing accurate soil predictions across this important 

agricultural region. We assume that it is possible to map physical and chemical soil 

attributes for three fixed depth intervals (0–20, 20–60 and 80–100 cm) with 30 m-

resolution across the Midwest region in Brazil. 

Thus, we intend to produce up-to-date pedometric maps of surface and subsurface 

key soil attributes in a large extension of the Midwest of Brazil. These maps at three fixed 

depth intervals might provide adequate information to account for the multi-

functionality of soil in the region. Therefore, we aimed to (a) produce composite images 

(described hereafter as SySI and SyVI) using Landsat data, which describes the 

reflectance variability of bare surfaces and natural vegetation; (b) employ SySI and SyVI 

coupled with terrain attributes, geologic and climate variables as predictors in the digital 

mapping of key soil attributes in the Midwest Brazil; (c) fit and assess the performance 

of the random forest models for the spatial patterns of each soil attribute at three depth 

intervals; (d) identify the covariates that were most relevant to describe the soil 

variability in Midwest Brazil; (e) to map the spatial distribution of soil attributes at 30 m 

resolution for the 0−20, 20−60 and 60−100 cm depth using the optimized models and 

cloud-based computing for the study area. 

2. MATERIAL AND METHODS 

2.1. Study Area and Soil Data 

The study area comprises about 851,000 km2 in the Cerrado biome (savanna) of 

Midwest Brazil (Figure 1), covered by Cerrado vegetation and gallery forest over 

extensive plateaus. The climate is tropical humid, which has two well-defined seasons, 

wet in summer and dry in winter, with annual precipitation ranging from 1200 to 1800 

mm. According to the 1:1,000,000-scale pedological map (IBGE, 2017), the region was 
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dominated by Ferralsols, Lixisols, Plinthosols, Arenosols and Regosols (IUSS 

WORKING GROUP WRB, 2015). These soils developed from highly diversified 

lithologies, consisting of volcanic, metamorphic, and sedimentary rocks, who reworked 

surface materials (CPRM, 2004). 

 

Figure 1. Spatial distribution of soil observations displayed over a 1:1,000,000-

scale map of the main soil classes of the study area (IBGE, 2017). Soil classes 

were defined according to World Reference Base (IUSS WORKING GROUP 

WRB, 2015). 

We obtained physical and chemical soil attribute data from 7908 sites of the 

Brazilian Soil Spectral Library (BSSL) (DEMATTÊ et al., 2019) and 231 of the Free 

Brazilian Repository for Open Soil Data (FEBR) (SAMUEL-ROSA et al., 2020). The BSSL 

started in 1995 as a collaborative network formed by several institutions across Brazil. 

The FEBR contains legacy soil observations data collected by Brazilian government 

agencies since the 1960s.  

We selected nine soil attributes for mapping in the study area (Figure 1) and 

aggregated into three depth intervals (0–20, 20–60 and 60–100 cm): sand, silt and clay 
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contents, organic matter (𝑂𝑀 = 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 × 1.72), pH measured in water (pH 

H2O) and in potassium chloride (pH KCl), cation exchange capacity (𝐶𝐸𝐶 = 𝐶𝑎2+ +

𝑀𝑔2+ + 𝐾+ + 𝐻+ + 𝐴𝑙3+), and base saturation (𝑉% = ((𝐶𝑎2+ + 𝑀𝑔2+ + 𝐾+) × 100) ÷

𝐶𝐸𝐶) and aluminum saturation (𝑚% = (𝐴𝑙3+ × 100) ÷ (𝐶𝑎2+ + 𝑀𝑔2+ + 𝐾+ + 𝐴𝑙3+)). 

These soil attributes are commonly used (as key criteria) to guide agricultural 

recommendations, to evaluate the locations most suitable for farming and delineation of 

soil management zones (NAWAR et al., 2017). They are also used for soil classification 

(IUSS WORKING GROUP WRB, 2015; SOIL SURVEY STAFF, 2014). According to Canadell 

(1996), maximum rooting depth of crops by far can exceed 100 cm soil depths. Thus, soil 

attributes from 0 to 100 cm depth can affect plant growth and yield. When exploring the 

complete dataset, we checked for possible duplicated data and typos. To remove outliers 

from the dataset before modelling, we used more than one condition by nesting IF 

functions in Microsoft Excel. For example, to remove sand, silt and clay contents smaller 

or greater than 1000 g kg-1 [=IF(SUM(Sand;Silt;Clay)=1000);"OK";"REMOVE")], or testing 

IF the relationships (V% vs. pH vs. m%, OM vs. CEC) were coherent. A large proportion 

of the data had information based on the laboratory method of Embrapa (2017), while 

the remaining were transformed to the same standard units.  

Finally, we performed a chord diagram based on Pearson correlation to check 

weighted relationships between soil attributes using the circlize package version 0.4.8 

(GU, 2019) in the R software (R CORE TEAM, 2018). In that diagram, each soil attribute 

is represented by a fragment on the outer part of the circular layout, where the size of 

the connections is proportional to the value of the correlation.  

The framework used for digital mapping of soil attributes (Figure 2), from 

covariates preparing to spatial predictions, was fully implemented via the cloud-based 

platform of Google Earth Engine (GEE) (GORELICK et al., 2017) and the R environment 

for statistical computing (R CORE TEAM, 2018). 

2.2.Preparing Environmental Covariates 

Environmental covariate layers can be used as predictors (“independent 

variables”) in prediction models. Their preparation is time and resources consuming, 

involving a huge image processing to transform large environmental databases into 

relevant predictors for machine learning of soil attributes. Therefore, efforts to produce 

appropriate predictors to explain the spatial distribution of soil attributes (at detail and 

generalization) increases the accuracy of the models. Various covariates (e.g. climate, 

terrain attributes and RS data) representing soil state factors have been widely used in 

statistical models to predict soil texture, bulk density, organic carbon, nutrients (Ca, Mg, 

K, Na, N, P), available water capacity, pH and CEC (BALLABIO et al., 2019; GOMES et 

al., 2019; HENGL et al., 2014, 2015, 2017; LIANG et al., 2019; VISCARRA ROSSEL et al., 

2015).  
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Figure 2. Digital soil mapping framework used for generating soil attribute maps. 

For mapping the selected soil attributes, a group of covariates were obtained (Table 

1) and used as proxies of the factors of soil formation, according the scorpan model 

(MCBRATNEY et al., 2003), that accounts for soil (s), climate (c), vegetation (o), relief (r), 

parent material (p), age of surface (a) and spatial position (n). This model assumes that 

the soils were formed in response to different processes operating over different 

distances or scales (BAILEY, 1987; MCBRATNEY et al., 2003). These soil spatial patterns 

can be captured by the use of multi-resolution covariates and used in predictions models 

(MILLER et al., 2015). For that, we adjusted the coarser-resolution covariates to a target 

resolution of 30 m, that was in accordance with the majority of covariates used. We 

employed inverse distance weighting (IDW) interpolator to downscale the 1 km 

covariates (climate and geology) to 30 m resolution. IDW attenuates the influence of 

distant points, according to the inverse distance weight, and gives an assumption of 

positive spatial autocorrelation (AKINYEMI et al., 2008). Furthermore, this interpolator 
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is easy to be implemented and available in Google Earth Engine (GEE) platform 

(GORELICK et al., 2017). Reducing pixel size did not produce information gain on 

downscaled covariates, but it enables the simultaneous use of predictors with different 

spatial resolutions that account for soil spatial patterns at different scales. 

2.2.1. Climate Data 

Annual temperature average, range and seasonality, and annual precipitation and 

seasonality values were obtained from the WorldClim dataset (HIJMANS et al., 2005) at 

a spatial resolution of 1 km, and then were downscaled to 30 m pixel size by IDW. These 

data layers derived from numerous weather stations data interpolated by thin-plate 

smoothing spline, using latitude, longitude, and elevation as independent variables 

(HIJMANS et al., 2005). The WorldClim is a spatially continuous climate dataset with 

the highest resolution available for the study region. 

2.2.2. Relief and Geology Data 

We derived local terrain attributes, including elevation, slope, aspect, horizontal 

and vertical curvature and topographic position index (TPI) from the 30 m ALOS digital 

elevation model (TADONO et al., 2014) within GEE. Slope, aspect and curvatures, were 

calculated from the partial derivatives of terrain using a 3 × 3 moving window 

(FLORINSKY, 2016). The TPI was calculated by subtracting the elevation in meters at a 

given location (or cell) to the mean elevation of all cells within a neighborhood specified 

by a radius of 3 km, which best described our region after a radius search. Highly 

positive values are associated with peaks and ridges, while highly negative values are 

associated with valley bottoms and sinks. We obtained the density of geological 

lineaments by counting the meters of structural lines obtained from a 1:1,000,000-scale 

map (CPRM, 2004) in 1 km grids, and then transformed to raster and downscaled to 30 

m pixel size by the IDW method. 

2.2.3 Landsat-Derived Data 

Data. The Landsat program has been observing the Earth continuously from 1972 

through the present day. We used Landsat surface reflectance data (Tier 1, Collection 1) 

of different sensors covering the study area from 1982 to 2019, including the Thematic 

Mapper (TM, Landsat 4–5), the Enhanced Thematic Mapper Plus (ETM+, Landsat 7), and 

the Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS, Landsat 8) with 

16 days revisiting time and 30 m resolution (USGS, 2019a, b). Considering these products 

are gridded into common characteristics (resolution, projection, spatial extent, scale 

values and spectral ranges), we performed an inter-sensor harmonization to combine 

their separated collections into a single dataset. The bands of each sensor, positioned in 

equivalent spectral regions, were matched into a common name (e.g. Blue, Green, Red, 

NIR, SWIR1, SWIR2 and LST) using the specific band number (Table A1). The quality 

assessment bands were used to remove cloudy and cloud shadow pixels. We calculated 

the land surface temperature (LST, in degrees Celsius scaled from 0 to 10,000) for each 
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image in three steps: 1) we calculated the normalized difference vegetation index (NDVI, 

Equation 1); 2) we estimated the land surface emissivity (LSE, Equation 2) using the 

NDVI-based method (VANDEGRIEND et al., 1992); 3) and we converted the brightness 

temperature (BT) data to LST using the Stefan–Boltzmann law expressed in Equation 3 

(AL-GAADI et al., 2018). This approach enabled to obtain LST from the available 

Landsat data within GEE. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 −  𝑅𝑒𝑑

NIR +  Red
 (1) 

𝐿𝑆𝐸 = 1.009 +  0.047 ×  ln(NDVI) (2) 

LST = ((
1

𝐿𝑆𝐸1/4
) × 𝐵𝑇)  (3) 

SySI. We implemented the Geospatial Soil Sensing System (GEOS3) (DEMATTÊ et 

al., 2018) into GEE to generate a 30 m synthetic soil image (SySI) using the harmonized 

Landsat data. The GEOS3 is a data mining algorithm that uses classifications rules to 

identify soil at pixel level on denser satellite time series. The rules are a set of spectral 

indices and thresholds that mask out non-soil pixels by flagging soil pixels as a valid 

value and the remaining pixels as unavailable information (NA). We used NDVI 

(Equation 1), normalized burn ratio 2 (NBR2, Equation 4) and Visible to Shortwave 

Infrared tendency index (VNSIR, Equation 5). The thresholds for the spectral indices 

were defined as –0.15 < NDVI < 0.25, –0.15 < NBR2 < 0.15 and VNSIR < 9,000. These rules 

selected soil pixels that were aggregated into a single composite (SySI) by computing 

band-to-band the median of the reflectance values, over the time series. For our study, 

SySI represents the soil surface of agriculture areas and other natural surfaces with low 

vegetation cover and rock outcrops, when the vegetation was absent or almost absent, 

typical for savannas. The GEOS3 has also been implemented across different regions in 

Brazil for mapping soil variables (FONGARO et al., 2018; GALLO et al., 2018; MENDES 

et al., 2019). Similar approaches were developed to produce bare soil composites based 

on Landsat data and accurately employed for soil mapping and management in 

Germany (ROGGE et al., 2018) and both the Swiss Plateau and Europe (DIEK et al., 2017). 

𝑁𝐵𝑅2 =
𝑆𝑊𝐼𝑅1  −  𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1  +  𝑆𝑊𝐼𝑅2
 (4) 

𝑉𝑁𝑆𝐼𝑅 = (10000 − ((2 × 𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁 − 𝐵𝐿𝑈𝐸) + ((𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅) × 3))) 
(5) 

 

SyVI. To take advantage of the spatio-temporal variation of vegetation that might 

be linked to soil distribution, the GEOS3 (DEMATTÊ et al., 2018) was adapted into GEE 

to produce a 30 m synthetic vegetation image in the wet (SyVIw) and dry (SyVId) seasons 

by constraining the harmonized Landsat data. We constrained the wet and dry seasons 

from November to March and from May to September, respectively, between 1982 and 
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1994 when natural vegetation predominated over the landscape. In this work, SyVI 

represents potential natural vegetation (PNV), without or with minimal human 

intervention, that can be used as a proxy of the factor “organisms” in the scorpan model 

for estimating soil variables (MCBRATNEY et al., 2003). The PNV classification rules 

were constructed by combining the NDVI (Equation 1), NBR2 (Equation 4), the 

vegetation spectral shape index (VSI, Equation 6) and soil index (SI, Equation 7). The VSI 

and SI were elaborated by visual interpretation of the spectral shape of different types 

of vegetation collected from Landsat images using the MapBiomas dataset as a reference 

(PARENTE et al., 2019). To retrieve PNV reflectance in the study area, the thresholds 

were adjusted to NDVI ≥ 0.20, NBR2 ≥ 0.18, VSI < 11,000 and SI > 2. Therefore, selected 

PNV pixels were aggregated into two composites, for wet (SyVIw) and dry (SyVId) 

seasons, by computing band-to-band the median of the reflectance values over the time 

series for both seasons. 

𝑉𝑆𝐼 = 𝐵𝑙𝑢𝑒 + 𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2 + 2(𝑅𝑒𝑑 + 𝑁𝐼𝑅) + (
𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛
) × 100 (6) 

𝑆𝐼 = ((

𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅+ 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅2−𝑆𝑊𝐼𝑅1

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅2+𝑆𝑊𝐼𝑅1)

)

2

)

1

2

 (7) 

Kriging. To obtain spatially continuous products (100% coverage) over the study 

area, we interpolated the gaps using ordinary kriging within GEE. Thus, the spectral 

values were randomly sampled from the composites (SySI, SyVIw and SyVId) using two 

observations per km2. For each band, we fitted the spherical model to the empirical 

semivariogram to obtain the parameters (range, sill, nugget and maximum distance) and 

make the spatial interpolation of the values (MCBRATNEY et al., 1986). Finally, we 

overlaid the (original) composites on top of kriged images and merged them to obtain 

spatially continuous images (original + kriged). Merged images preserved the original 

values and incorporated the kriged where a gap occurred. Thus, the spatially continuous 

images (original + kriged), named as SySI, SyVIw and SyVId, were used as covariates for 

mapping soil attributes (Table 1), according the scorpan model. 

Quality. We assessed the kriging results by sampling band-to-band 1 value per km-

2 on overlapped areas between the synthetic image (original) and kriged (non-merged to 

synthetic image) and calculating the Pearson’s correlation for the seven spectral bands. 

We checked the quality of the spatially continuous composites (original + kriged) by 

assessing 1) the reflectance values on the spectral profile, 2) the soil line method (BARET 

et al., 1993), and 3) the spatial consistency with land cover classifications (PARENTE et 

al., 2019). The soil line uses a scatterplot to display the reflectance between Red and NIR 

spectral regions. Both methodologies can be used to analyze the spectral patterns of the 

composites and to determine if they are consistent with the classical patterns of soils and 

vegetation.  
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Table 1. List of environmental covariates used as proxies of factors of soil formation for 

digital mapping of soil attributes in the study area. 

Covariate Description Scale Source 

Soil, Parent Material and Age 

Synthetic Soil Image (SySI) Bare soil reflectance covering VNIR-

SWIR-TIR range (7 bands) 

30 m Landsat 4, 

5, 7 and 8 

Geological Lineaments Density Meters of structural features per km2 1:1Mª CPRM 

Organisms 

Synthetic Vegetation Image of 

wet season (SyVIw) 

Potential natural vegetation 

reflectance from November to March 

covering VNIR-SWIR-TIR range (7 

bands) 

30 m Landsat 4 

and 5 

Synthetic Vegetation Image of 

dry season (SyVId) 

Potential natural vegetation 

reflectance from May to September 

covering VNIR-SWIR-TIR range (7 

bands) 

30 m Landsat 4 

and 5 

Climate 

Annual Precipitation (mm) Bioclimatic variables obtained from 

the monthly temperature and rainfall 

in order to generate more biologically 

meaningful values. 

1 kmb WorldClim 

Precipitation Seasonality (CV) 1 kmb WorldClim 

Annual Mean Temperature (ºC) 1 kmb WorldClim 

Temperature Annual Range(ºC) 1 kmb WorldClim 

Temperature Seasonality (ºC) 1 kmb WorldClim 

Relief and Age 

Elevation (m) Height of terrain above sea level 30 m ALOS 

Slope (degree) Slope gradient 30 m ALOS 

Aspect (degree) Compass direction 30 m ALOS 

Topographic Position Index (m) Distinguishes ridge from valley forms 30 m ALOS 

Horizontal Curvature (m) Curvature tangent to the contour line 30 m ALOS 

Vertical Curvature (m) Curvature tangent to the slope line 30 m ALOS 

VNIR: Visible and Near infrared spectral range (~450–900 nm); SWIR: Shortwave infrared 

spectral range (~1550–2350 nm); TIR: Thermal infrared spectral range (~10,400–12,500 nm). ª 

Lines (1,000,000-scale) counted in grids of 1 km2, transformed to raster and interpolated to 30 m 

pixel resolution by IDW method. b Interpolated to 30 m pixel resolution by Inverse Distance 

Weighted method; CV: coefficient of variation;. 

2.3. Random Forest (RF) Regression 

For DSM, we have implemented the scorpan model (MCBRATNEY et al., 2003) to 

predict the spatial patterns of soil attributes (Table 2). We used all soil forming factor 

proxies (Table 1) at the same time and let the decision tree algorithms reveal the soil 

patterns. We select RF regression for soil predictions. RF is a tree-based machine learning 

algorithm which consists of many decision or regression trees where each tree depends 

on the values of a random vector sampled independently and with the same distribution 

for all trees in the data (BREIMAN, 2001). The output of the model is an average of all 

the regression trees. The RF method is popular in DSM because it has proven to be 

efficient for mapping soil attributes across a wide range of data scenarios and scales of 
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soil variability (FAO, 2018; GOMES et al., 2019; HENGL et al., 2014, 2015, 2017; LOISEAU 

et al., 2019; NUSSBAUM et al., 2018). 

2.3.1 Calibration and Model Tuning 

To generalize local patterns and to minimize possible artifacts in the final maps, the 

covariates (Table 1) were smoothed, prior to sampling, by computing the median values 

within a 4 × 4 moving window. At each soil observation (Table 2), the values were 

extracted and used as input data for calibrating RF regressions (BREIMAN, 2001) using 

the ranger package version 0.11.1 (WRIGHT et al., 2017) in the R software (R CORE 

TEAM, 2018). Usually, most modeling studies employed default hyperparameters, 

which can prompt models to under or over fit and misinterpretations of results. Thus, to 

improve the performance of RF models, we performed a grid search for (optimal) tuning 

hyperparameters (PROBST et al., 2019) investigating a range of values, where mTry was 

6, 24, 33, minimum node size was 5, 20, 50. The mTry regulates the number of variables 

that can be randomly sampled in each split of the trees. The minimum node size controls 

the tree depth by setting the minimal number of samples for the terminal nodes. We 

used 500 trees for stable variable estimates (PROBST et al., 2019). 

2.3.2 Validation and Variable Importance 

In order to evaluate the models’ performance for the prediction of each soil 

attribute at each of the three depths a 10-fold cross-validation was used. The 

observations were split into 10-folds by using the caret package version 6.0-84 (KUHN, 

2019). According to Padarian et al. (2019), the k-cross-validation is a stable method, 

where the dataset is partitioned into k groups or folds, where k − 1 groups are used for 

training and 1 group for validation, repeating the training k times, each with a different 

validation group. For each predictive model, we derived the RMSE, coefficient of 

determination (R2) and ratio of the performance to inter-quartile distance (𝑅𝑃𝐼𝑄 = (𝑄3 −

𝑄1)/RMSE), where Q1 and Q3 are the 1st (25%) and 3rd (75%) quartiles. The RPIQ is based 

on prediction error and quartiles, which better represents the spread of the population 

and easier comparable across model validation studies. Generally, smaller values of 

RMSE and larger R2 and RPIQ indicate better model performance (BELLON-MAUREL 

et al., 2010). We selected the optimized model by the minimum RMSE of the 10-fold 

cross-validation (FAO, 2018; PROBST et al., 2019). 

To quantify the most influential covariates used in the models, the scaled 

permutation importance was calculated for each soil attribute prediction at each depth 

interval (BREIMAN, 2001), which were graphically displayed using the folds estimates.  
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2.3.3 Prediction of Continuous Soil Attributes 

The optimized models were used to predict the spatial patterns of soil variables 

(Table 2) using RF optimized hyperparameters within GEE (GORELICK et al., 2017). In 

this study, the error or inaccuracy were not spatially examined as maps, because the GEE 

does not support this technique at the current stage of development. Furthermore, the 

GEE’ RF algorithm in probability mode only works for binary (presence/absence) 

datasets (GORELICK et al., 2017). 

In addition, to verify the correspondence of our spatial predictions to their possible 

parent materials, we grouped lithologies using the soil attribute maps. Lithological data 

was obtained from a legacy geological 1:1,000,000-scale map (CPRM, 2004) and used 

(each geometry) for sampling the mean value from 0 to 100 cm depth interval of each 

soil attribute map. Afterward, we clustered the lithologies (geometries) into geological 

domains using the averaged soil value. For each domain (cluster), we identified the main 

lithotypes according to metadata (table data) of the geological map. Thus, we obtained 

a new outcome containing geological domains from a pedological viewpoint. 

 3. RESULTS 

3.1. Summary and Relationships between Soil Attributes 

The soil dataset (showed in Figure 1 and summarized in Table 2), covered the main 

peological classes of the study area. Overall, the mean clay content ranged from around 

271 g kg-1 at the surface to 313 g kg-1 in the 60–100 cm depth interval. At the surface, clay 

content ranged from 10 to 920 g kg-1, while at deeper layers, the maximum values were 

930 and 950 g kg-1 (Table 2). There is relatively little silt in the studied soils, and the mean 

values does not vary much with depth. Silt content ranged from around 77 g kg-1 (0–20 

cm) to 67 g kg-1 (60–100 cm). The silt data at the three depths was positively skewed. The 

average sand content ranged from 652 g kg-1 at the surface to 619 g kg-1 in the 60–100 cm 

depth. At all depth intervals, values ranged from 1 to 975 g kg-1 (Table 2).  

The average OM content ranged from around 21 g kg-1 at the surface to 9 g kg-1 in 

the 60–100 cm depth. At all depth intervals, the mean values of pH H2O were greater 

than pH KCl, ranging from 5.6 (0–20 cm) to 5.3 (60–100 cm). The average pH KCl ranged 

from 4.9 at the surface to 4.8 in the 60-100 cm depth. At the surface, CEC ranged from 2 

to 641 mmolc kg-1, while at deepest, the maximum values were between 1 and 582 mmolc 

kg-1 (Table 2). At all depth intervals, V and m% values ranged from 0 to 100 %, with 

averages varying inversely with depth (Table 2).  

Correlation between soil attributes had similar patterns for each depth interval 

(Figure 3a–c). Sand and clay presented the highest negative correlation at all depth 

intervals, while for silt was slightly lower. The pH H2O, pH KCl and V% positively 

correlated in the three depths, and negatively with m%. OM positively correlated with 

CEC at each of the three depth intervals. Chemical attributes, weakly correlated among 
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each other at topsoil, became stronger with increasing depth intervals (Figure 3d), 

whereas the strongest, slightly decreased at deeper depths. 

Table 2. Statistical Summary of Soil Data Aggregated into Different Depth Intervals for 

Spatial Modelling. 

Soil attribute Depth* n Min. Q1 Mean Med. Q3 Max. Sd IQR Skew. 

Clay  

(g kg-1) 

0-20 7930 10 87 271 176 450 920 221 363 0.8 

20-60 6908 10 100 287 176 482 930 233 382 0.8 

60-100 7520 12 125 314 225 500 950 231 375 0.8 

            

Silt  

(g kg-1) 

0-20 7930 1 24 77 38 94 816 89 70 2.3 

20-60 6907 1 24 71 37 82 760 79 58 2.3 

60-100 7520 1 24 67 37 80 794 75 56 2.6 

            

Sand  

(g kg-1) 

0-20 7930 1 409 652 783 883 975 280 474 -0.8 

20-60 6907 1 393 643 783 873 973 284 480 -0.8 

60-100 7520 1 377 619 741 848 967 276 471 -0.7 

            

Organic Matter  

(g kg-1) 

0-20 7242 0 11 21 17 28 393 14 17 4.8 

20-60 6021 0 7 13 11 17 412 9 10 15.2 

60-100 6808 0 4 9 8 12 98 6 7 2.3 

            

pH H2O  

(log) 

0-20 6200 3.7 5.2 5.6 5.6 6.0 8.2 0.6 0.8 0.1 

20-60 5149 3.8 4.9 5.3 5.2 5.6 9.0 0.6 0.7 0.7 

60-100 7511 3.8 4.9 5.3 5.2 5.6 9.1 0.5 0.7 0.7 

            

pH KCl  

(log) 

0-20 5596 3.1 4.6 4.9 4.8 5.3 7.7 0.6 1.0 0.6 

20-60 4707 0.4 4.2 4.6 4.4 4.9 7.7 0.5 0.7 1.1 

60-100 7384 3.5 4.3 4.8 4.5 5.2 7.5 0.6 0.9 0.9 

            

CEC  

(mmolc kg-1) 

0-20 8010 2 32 53 45 68 641 33 37 3.0 

20-60 6852 2 22 36 32 45 696 23 23 5.7 

60-100 7655 1 16 26 22 32 582 18 16 6.2 

            

Base Saturation 

(V%) 

0-20 8018 0 24 42 42 58 100 22 34 0.2 

20-60 6860 0 12 25 21 34 100 18 23 1.2 

60-100 7655 0 10 23 18 31 100 17 20 1.5 

            

Aluminum 

Saturation  

(m%) 

0-20 7964 0 0 16 4 24 100 23 24 1.6 

20-60 6841 0 5 33 28 57 100 29 52 0.4 

60-100 7635 0 3 36 34 62 100 30 59 0.3 

* in centimeters; n: number of soil observations; Min.: minimum value; Q1/Q3: 1st (25%) and 

3rd (75%) quartiles; Max.: maximum value; Med: median; Sd: standard deviation; IQR: 

interquartile range; Skew: skewness; Organic Matter = 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 × 1.72; CEC: 

cation exchange capacity = (𝐶𝑎2+ + 𝑀𝑔2+ + 𝐾+ + 𝐻+ + 𝐴𝑙3+); 𝑉% = ((𝐶𝑎2+ + 𝑀𝑔2+ +

𝐾+) × 100) ÷ 𝐶𝐸𝐶); 𝑚% = ((𝐴𝑙3+ × 100) ÷ (𝐶𝑎2+ + 𝑀𝑔2+ + 𝐾+ + 𝐴𝑙3+)). 
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Figure 3. Chord diagram based on Pearson correlation (r) among all measured 

soil attributes at (a) 0–20 cm, (b) 20–60 cm and (c) 60–100 cm depth intervals; 

and (d) overall correlation with depth intervals. Blue and red colors symbolize 

positive and negative correlations, respectively. OM: organic matter; V%: base 

saturation; m%: aluminum saturation. 

3.2. Synthetic Soil Image (SySI) and Synthetic Vegetation Image (SyVI) 

The harmonized Landsat data and the data mining algorithms implemented in 

GEE enabled to obtain a SySI with 443,000 km2 (52%) coverage, which was later kriged 

to close the gaps. The bare soil frequency (data not presented) at each locations ranged 

from 1 to 1303 pixels and average of 12 pixels, between the 1982 and 2019 years. For 

potential natural vegetation from 1982 to 1994, we obtained a SyVIw with 814,175 km2 

(95.2 %) and a SyVId with 847,426 km2 (99.1 %) coverage during the wet and dry seasons, 

respectively. The PNV frequency (at every locations) in the wet season ranged from 1 to 

85 pixels, and mean values of 6 pixels. During the dry season, the PNV frequency had 

average values of 19 pixels, ranging from 1 to 185 pixels. The kriged images had 

satisfactory correlation (Pearson) with the originals, which presented average values of 

0.66 (SySI), 0.78 (SyVIw) and 0.81 (SyVId) for the seven spectral bands (Figure 4a–c). The 

full coverage SySI, SyVIw and SyVId with the NA gaps interpolated by kriging (original 

+ krikeg) were displayed in Figure 4a-c. 

The soil line for bare soil (Figure 4d) had an adjustment near to the 1:1 trend line, 

with highly correlated values (R2 of 0.95), while raw (unprocessed) pixels extracted from 

a median composite (between 2017 and 2019) had a scatter distribution. For PNV, the 

soil line had clustered values with lower reflectance intensities (Figure 4e–f) compared 

to the raw pixels sampled from the median composite (between 2017 and 2019) over 

croplands mapped by MapBiomas (PARENTE et al., 2019). The mean NIR reflectance 

was higher for SyVIw (2,471) than for SyVId (2,123), while the mean Red reflectance was 

higher for SyVId (611) than for SyVIw (536). 

The spectral signature for bare soil (Figure 4g) had a constant ascendant pattern 

from Blue to SWIR1 regions, while the PNV (Figure 4h-i) had an opposite overall pattern, 
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ascending from Blue to NIR and then descending to SWIR2. The SySI averaged a LST of 

38.7 °C (Figure 4g), higher than for the SyVIw and SyVId, with mean values of 22.58 and 

23.04 °C (Figure 4h–i), respectively. Remaining soil covariates (Table 1) were placed in 

the Appendix A as Figure A1. 

 
Figure 4. Soil covariates obtained by data mining and statistics of Landsat data. 

a) SySI (RGB: Red, Green, Blue), b) SyVIw and c) SyVId (RGB: SWIR1, NIR, Red) 

subsets. Soil line charts for d) SySI vs raw pixels, e) SyVIw vs wet season crops 

obtained from raw pixels and f) SyVId vs dry season crops obtained from raw 

pixels. Minimum, average and maximum spectra collected from g) SySI, h) 
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SyVIw and i) SyVId. The visualization of the images was adjusted by stretching 

the range of pixel values between 2% and 98%. Optical bands are positioned in 

the mean spectral range from 485 to 2215 nm, and the thermal band at 11,450 

nm. �̅�: average of Pearson's correlation from the seven spectral bands, 

performed by sampling 1 value km-2 on overlapped areas between the synthetic 

image (original) and kriged (non-merged to synthetic image). 

3.3. Model Assessments 

Table 3 shows the performance of optimized RF regression models on calibration 

(cal) and validation (10cv) sets. Predicted vs observed scatterplots from 10-fold cross-

validation derived from the models of sand, silt and clay were placed in the Appendix 

A as Figure A2, while the remaining soil attributes are displayed in Figure A3. 

We obtained decreasing RMSE and increasing RPIQ with increasing depth interval, 

both in calibration and validation data. The relatively low values of RMSE10cv suggested 

that the soil variables were slightly overestimated for all the models. On average, 

RPIQ10cv and R210cv increased slightly from 0–20 to 60–100 cm depth, while decreased for 

silt and CEC. Sand and clay presented the best model’ predictive capacity with the 

highest RPIQ10cv (from 3.8 to 4.3), followed by m% > pH KCl > OM > V% > pH H2O > CEC 

> silt, ranging from 1.2 to 3.0 (Table 3).  

Overall, the amount of variation explained by the spatial prediction models in 

validation were reasonable at all depths, with higher values for sand and clay (R210cv from 

0.81 to 0.85) followed by silt (R210cv from 0.64 to 0.66). Chemical attributes were best 

explained for pH KCl (R210cv from 0.19 to 0.64), m% (R210cv from 0.26 to 0.56), OM (R210cv 

from 0.30 to 0.53) and CEC (R210cv from 0.40 to 0.48). The poorest performances were for 

V% (R210cv from 0.18 to 0.36) and pH H2O (R210cv from 0.21 to 0.35) (Table 3). We observed 

that R210cv and RPIQ10cv had a positive relationship in most models (Figure 5), where 

higher values indicate greater robustness in predictive capability. Models with poor 

performance exhibited a scatterplot (predicted vs. observed) with higher dispersion and 

weaker trend, while good models showed more distributed values following a stronger 

linear trend (Figures A2 and A3). 

. 

Figure 5. Performance indicators of optimized models used in the soil 

predictions by depth interval. 
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Table 3. Hyperparameters and Performance of the Optimized Models used for Spatial 

Predictions of Continuous Soil Attributes at Distinct Depth Intervals. 

Soil 

attribute 

Depth 

(cm) 
mTry minNS RMSEcal RPIQcal R2cal RMSE10cv RPIQ10cv R210cv 

Clay  

(g kg-1) 

0-20 24 5 39 9.4 0.97 96 3.8 0.81 

20-60 24 5 38 10.0 0.97 96 4.0 0.83 

60-100 24 5 38 9.9 0.97 95 4.0 0.83 

 

Silt  

(g kg-1) 

0-20 24 5 21 3.3 0.94 53 1.3 0.64 

20-60 33 5 18 3.2 0.95 46 1.3 0.66 

60-100 24 5 18 3.1 0.94 45 1.3 0.64 

 

Sand  

(g kg-1) 

0-20 33 5 47 10.1 0.97 118 4.0 0.82 

20-60 24 5 45 10.7 0.98 111 4.3 0.85 

60-100 24 5 44 10.6 0.97 110 4.3 0.84 

 

Organic 

Matter  

(g kg-1) 

0-20 33 5 4 4.1 0.91 10 1.7 0.49 

20-60 33 5 3 3.4 0.90 8 1.3 0.30 

60-100 24 5 2 4.3 0.92 4 1.8 0.53 

 

pH H2O  

(log) 

0-20 33 5 0.21 3.7 0.88 0.54 1.5 0.21 

20-60 33 5 0.19 3.9 0.89 0.47 1.6 0.32 

60-100 33 5 0.18 3.9 0.90 0.44 1.6 0.35 

 

pH KCl  

(log) 

0-20 33 5 0.23 4.2 0.87 0.57 1.7 0.19 

20-60 33 5 0.16 4.3 0.91 0.40 1.8 0.44 

60-100 24 5 0.15 5.9 0.94 0.38 2.4 0.64 

 

CEC  

(mmolc kg-

1) 

0-20 33 5 10 3.7 0.91 23 1.6 0.48 

20-60 24 5 8 3.0 0.89 18 1.3 0.40 

60-100 24 5 6 2.7 0.89 14 1.2 0.40 

 

Base 

Saturation 

(V%) 

0-20 33 5 8 4.4 0.87 20 1.7 0.18 

20-60 33 5 6 3.7 0.89 15 1.5 0.30 

60-100 33 5 6 3.6 0.89 14 1.5 0.36 

 

Aluminum 

Saturation  

(m%) 

0-20 33 5 8 2.9 0.88 20 1.2 0.26 

20-60 33 5 9 6.1 0.91 21 2.4 0.45 

60-100 24 5 8 7.4 0.93 20 3.0 0.56 

CEC: Cation exchange capacity; mTry: hyperparameter that regulates the number of variables 

that can be randomly sampled in each split of the trees; minNS: minimum node size, a 

hyperparameter that controls the tree depth by setting the minimal number of samples for the 

terminal nodes. RMSEcal: Root Mean Square Error of calibration; RMSE10cv: Root Mean Square 

Error of 10-fold cross-validation; RPIQcal: Ratio of the Performance to Inter-Quartile distance 

of calibration; RPIQ10cv: Ratio of the Performance to Inter-Quartile distance of 10-fold cross-

validation; R2cal: Coefficient of determination of calibration; R210cv: Coefficient of determination 

of 10-fold cross-validation. 
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3.4. Best Predictors 

Figure 6 shows the permutation importance (%) of all the 33 covariates in RF 

models for the spatial prediction of 9 soil attributes at three depth intervals. From a 

general view (global values, Figure 6), the results indicated that the most important 

covariates were elevation, the five climate layers, SWIR2–NIR–Blue reflectance bands 

derived from SySI, ranging their estimates from 22% to 42%. The importance values did 

not vary much with depth, except for OM and CEC, which had slight differences. That 

is because the regional patterns from the coarser covariates could help the RF models in 

stratifying the region at the coarser level, while the more detailed information from the 

finer resolution covariates can represent the variability within the regional patterns. 

 

Figure 6. Permutation importance (%) of covariates for prediction soil attributes 

at 0–20 cm (A), 20–60 cm (B) and 60–100 cm (C) depth intervals. The mean 

values were calculated from the importance obtained by the 10-fold used in 

cross-validation. CEC: cation exchange capacity; m%: Aluminum saturation; 

V%: Base saturation. Global represents averaged importance values for all soil 

attributes. 

A B C A B C A B C A B C A B C A B C A B C A B C A B C

SYSI Blue 28 21 24 30 24 25 15 17 13 18 21 15 21 23 22 18 30 19 18 12 9 35 35 30 25 24 22 22

SYSI Green 30 27 24 22 23 19 12 13 12 11 11 7 17 17 21 16 19 21 10 3 6 17 17 15 18 24 21 17

SYSI Red 23 19 19 21 19 18 10 17 13 7 14 8 21 17 13 17 19 24 17 13 4 22 22 18 19 19 22 17

SYSI NIR 78 36 52 47 34 49 30 20 29 12 8 22 17 30 21 19 17 18 36 14 5 30 30 24 30 21 18 28

SYSI SWIR1 20 15 17 17 17 21 16 15 17 15 16 17 16 20 29 22 28 23 10 12 11 23 23 26 22 18 19 19

SYSI SWIR2 42 43 39 39 52 44 27 42 31 21 22 15 16 13 19 18 33 53 22 15 9 29 29 56 17 17 17 29

SYSI LST 31 30 32 33 32 33 16 17 13 7 12 14 16 15 19 15 14 18 13 10 8 19 19 21 18 19 17 19

SYVId Blue 20 19 22 17 17 19 16 13 15 8 19 14 19 23 21 18 14 21 10 9 10 18 18 19 21 21 19 17

SYVId Green 16 14 18 16 14 17 10 9 9 4 10 10 23 18 17 18 18 18 8 6 4 25 25 21 21 17 18 15

SYVId Red 21 19 20 23 21 20 13 14 14 7 2 12 17 13 20 13 13 18 12 8 4 20 20 16 15 19 23 16

SYVId NIR 15 15 18 19 15 19 10 10 10 7 11 7 17 19 21 13 12 16 6 3 5 18 18 21 14 22 21 14

SYVId SWIR1 16 10 16 15 12 14 10 7 11 3 7 10 25 19 21 15 13 17 5 3 7 17 17 17 19 18 17 13

SYVId SWIR2 11 12 11 14 13 14 8 7 9 4 7 7 15 17 18 14 11 13 5 3 6 16 16 16 18 18 16 12

SYVId LST 16 14 15 15 15 16 10 9 11 5 7 8 17 15 18 17 10 17 8 7 6 14 14 17 18 16 19 13

SYVIw Blue 18 18 19 19 18 17 10 9 10 7 7 8 17 17 18 14 13 21 14 10 15 19 19 22 18 20 20 15

SYVIw Green 14 15 15 15 16 14 11 8 9 5 8 8 16 15 17 15 11 18 10 8 9 18 18 17 17 18 16 13

SYVIw Red 19 15 16 18 17 15 14 13 12 9 15 12 18 15 17 18 9 24 18 13 10 23 23 21 18 20 17 16

SYVIw NIR 18 15 18 19 18 19 12 12 10 5 3 10 17 17 19 18 18 19 13 4 12 20 20 27 23 21 21 16

SYVIw SWIR1 18 15 18 17 14 16 16 14 15 7 9 10 16 13 17 15 14 21 8 11 6 20 20 21 20 18 20 15

SYVIw SWIR2 16 16 15 16 15 15 13 16 14 6 11 7 15 13 17 14 14 17 9 9 4 16 16 17 16 19 19 14

SYVIw LST 16 16 16 17 16 18 17 16 14 10 11 10 16 18 17 14 18 18 13 8 4 17 17 20 15 18 19 15

69 59 59 53 49 59 29 37 35 9 2 8 31 28 47 33 35 97 30 11 8 73 73 79 44 36 43 42

24 18 21 24 21 22 14 13 11 10 16 13 15 12 18 14 9 25 13 5 5 14 14 19 15 16 18 16

21 20 25 26 25 25 20 20 25 5 2 11 19 18 22 14 20 26 9 7 12 19 19 21 16 26 23 18

9 8 7 9 7 7 6 7 7 6 8 4 7 7 10 4 6 8 9 3 2 10 10 8 12 8 7 7

15 11 10 10 9 10 11 7 8 2 5 8 8 8 8 8 9 12 12 8 7 14 14 14 6 12 18 10

11 7 7 12 8 8 9 7 11 4 4 5 7 12 10 4 13 13 6 6 6 17 17 12 8 10 14 9

25 23 24 20 22 22 22 22 23 5 18 20 22 28 27 21 15 26 13 12 6 27 27 35 20 28 23 21

41 40 44 50 38 47 30 29 27 13 5 39 39 38 27 41 14 45 23 13 10 80 80 43 60 33 26 36

74 53 53 45 27 34 58 61 46 12 19 25 27 22 31 31 34 49 15 12 13 37 37 60 23 41 54 37

42 38 46 55 58 56 27 27 23 12 7 21 34 31 31 22 16 40 22 17 8 24 24 34 40 23 31 30

35 30 34 41 47 43 24 24 23 23 4 34 32 46 45 19 24 42 22 15 14 27 27 54 28 32 33 31

59 44 48 51 46 48 46 54 43 18 5 20 34 36 38 28 21 45 24 18 11 41 41 58 39 40 50 37
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Elevation, climate and soil reflectance derived from SYSI (NIR, SWIR2 and LST) 

were the most important covariates in predicting sand, clay and silt (Figure 6). In 

general, for predicting soil chemical attributes, climatic variables, elevation and SYSI 

(NIR and SWIR2 bands) seemed to be the most important, while for OM it was a 

combination of climatic dynamics and reflectance bands derived from SYSI, i.e. SWIR2, 

Blue and SWIR1. 

Furthermore, the results indicated that PNV reflectance and temperature derived 

from SyVIw and SyVId, geological lineaments density, topographic position index and 

slope were mid important (from 12% to 21%) for whole soil attributes at all depths, with 

slightly higher values for the chemicals such as OM, pH, CEC and V% (Figure 6). In all 

cases, the least important were aspect, horizontal and vertical curvatures, which had an 

average importance of less than 10%. 

3.5. Soil Maps at Multiple Depths 

Figure 7a–c shows the maps of sand, silt and clay contents (g kg-1) in each of the 

three depth intervals. These maps were made publicly available for download as integer 

GeoTIFF format at 250 m-resolution (POPPIEL et al., 2019a). The soils of the study region 

were dominated by high to moderate amounts of sand, moderate clay and little silt. Sand 

and clay maps were inversely distributed in the region (Figure 7a, c), due to their 

negative correlation (Figure 3). The largest sand contents were located southwest of the 

study area, decreasing gradually to the north and severely to the east. The silt and clay 

maps followed a very similar spatial distribution between them (Figure 7b, c), due to 

their positive correlation (Figure 3). There was more clay and silt in the east highlands 

of the study area, while a decreasing value was observed on the west lowlands. 

In general, mean sand content decreased with depth from around 522 g kg-1 in the 

surface to 467 g kg-1 in the deepest layer, while at the same depths, mean clay content 

increased from 336 to 400 g kg-1. Average silt content remained relatively uniform with 

increasing depth (Figure 7). 

For each depth, a map representing the sum of the sand, silt and clay contents 

(Figure 7d) were used to show where the estimates of soil texture diverged from 1000 g 

kg-1. On average, 87% of the predicted summed for the three depths ranged from 800 to 

1200 g kg-1. Under and overestimates in soil texture were visually more related to the 

spatial patterns of the silt map (Figure 7b). Maps of the soil chemical attributes (Table 2) 

for all depths were placed in the Appendix A, as Figure A4. 
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Figure 7. Maps and mean lat/long distribution chart of (a) sand, (b) silt and (c) 

clay content (g kg-1) for different depth intervals (0–20 cm, 20–60 cm and 60–100 

cm). The sum of the sand, silt and clay contents [Sand+Silt+Clay] for each depth 

interval appears in (d). The visualization of the images was adjusted by 

stretching the range of pixel values between 2% and 98%.  
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4. DISCUSSION 

4.1. Soil Data 

The soil data (BESB and FEBR) aggregated into depth intervals yielded consistent 

information for mapping selected key soil attributes (Table 2). Data showed that the 

amount of soil attributes and the intensity of their relationships were soil depth-

dependent. The influence of soil forming factor (MCBRATNEY et al., 2003) causes 

pedogenic processes with different intensities across space and soil profile, resulting in 

gradients of soil attributes with different correlations among them and between different 

depth intervals (MA et al., 2019). These gradients can provide differences in nutrient 

release to soil solution for vegetation, to which they may reply back with different root 

systems. Similar patterns were described by Goebes et al. (2019), who distinguished 

between stable (e.g. sand, silt and clay) and dynamic (e.g. soil pH, nutrient contents, base 

saturation) soil attributes throughout the whole soil profile. 

Despite soil observations were spatially dense and accounted for the main soil 

classes that developed in the region (Figure 1), there are still some gaps in terms of spatial 

coverage. Natural vegetation and pasturelands remained under-represented. This is 

because many soil observations, from different studies and existing repositories for the 

study area, are still publicly unavailable for users, which could become open access to 

increase spatial coverage and improve predictions (SAMUEL-ROSA et al., 2020). 

Considering the large extent of our study area, we performed relatively low-cost 

mapping by using legacy soil observations and comparatively fewer new soil 

observations, coupled with free RS-based covariates and open-source algorithms for 

data processing and visualization, available within R software and Google Earth Engine 

cloud-based platform. 

4.2. Machine Learning 

RF was satisfactory for DSM even with soil observations that partially covered the 

large extent of the study area (~851,000 km2), where relationship between soil attributes 

and covariates is usually complex and non-linear (BREIMAN, 2001; HENGL et al., 2017). 

Therefore, the regression models used covariates that captured spatial patterns from 

broader to more local levels across different landscapes (HENGL et al., 2018). Our 

validation results were similar or even higher to those obtained in other DSMs using 

machine learning and cross-validation (GOMES et al., 2019; HENGL et al., 2015; 

LOISEAU et al., 2019; MA et al., 2017; NUSSBAUM et al., 2018; VAUDOUR et al., 2019; 

VISCARRA ROSSEL et al., 2015). Most of recently DSM studies also found tree-based 

models as the best option for soil spatial predictions (HENGL et al., 2015; LOISEAU et 

al., 2019; NUSSBAUM et al., 2018). Performance in these cases usually vary between 0.3 

to 0.5 (R2), with clay content being the best predicted attribute. Variable importance 

indicated satellite images (BUI et al., 2006; LOISEAU et al., 2019), elevation and climate 

data (BUI et al., 2009; GOMES et al., 2019; LOISEAU et al., 2019) as relevant covariates. 
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The good performance of the models showed that RF optimization was able to 

generate robust and accurate spatial predictions. This approach agreed with Probst et al. 

(PROBST et al., 2019), who provided different optimization strategies and reported that 

tuning the RF hyperparameters improved the performance of regression models. Sand, 

silt and clay had the best performances because they are stable soil attributes, and the 

chemicals are dynamic along the soil profile (HENGL et al., 2017). The pH and nutrient 

contents may change relatively quickly (within years) related to biological processes, 

vegetation cover and management practices (GOEBES et al., 2019). Gomes et al. (2019) 

mapped soil organic carbon at five standard depths (from 0 to 100 cm) for Brazilian 

territory, where RF showed the best performance for all depths, with the highest 

performance at 30–60 cm for validation (R2 = 0.33). Bui et al. (2009) reported similar 

performances for topsoil (R2=0.49) and subsoil (R2 = 0.36) when used analogous 

covariates and data mining for mapping soil organic carbon in Australia. 

The better model performance in lower layers are related to soil conditions at such 

depths. A possible factor impacting surface-subsurface predictions are the agricultural 

practices, where soil management could be increasing the system’s complexity 

(MENDES et al., 2019). While the chemical and physical weathering are more intense 

and active in surface, alterations in depth tend to be less intense (BUI et al., 2006). This 

suggests that the models for topsoil were more influenced by climatic variables, i.e. 

precipitation and temperature, which lowered the performances. Therefore, subsurface 

soils usually have conditions closer to the ones observed in pristine areas, and could 

have a better relationship with soil forming factors and covariates considered in our study. 

4.3. Interpretation of Covariate Layers 

We did not perform covariates selection (elimination) because this approach could 

generated additional load of interpretation to the project, and because RF can be used to 

fit models with large number of covariates (HENGL et al., 2018). For instance, Nussbaum 

et al. (2018) evaluated six approaches for DSM of several soil variables (totaling 48 

responses) using from 300 to 500 environmental covariates, where RF models had the 

highest overall performances. Miller et al. (2015) demonstrated that the best performing 

model was produced when using multi-resolution covariates, compared to a single 

resolution, for modeling the distribution of soil attributes at surface and subsurface. 

Relevant covariates for soil prediction had large importance values, whereas covariates 

not associated with the soil attributes showed values close to zero (Figure 6). 

Our results showed that direct measurement (where soil areas were exposed) of 

topsoil reflectance patterns by RS was a strong contributor to soil mapping. The topsoil 

reflectance from SySI (Figure 4a) was important for the spatial prediction of soil 

attributes at the rooting depth of crops (CANADELL et al., 1996) in Midwest Brazil 

(Figure 6). That was possible because the spectral patterns of SySI can provide valuable 

information on pedogenic processes, which are useful for understanding and predicting 

soil variation (MA et al., 2019). The SySI also can indicate the soil weathering products, 

which cause spatial variations in the soil color and temporally stable soil attributes, such 
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as mineralogy and texture (DEMATTÊ et al., 2018; POPPIEL et al., 2019b). Thus, 

complementary RS data can improve prediction models, as reported by Loiseau et al. 

(2019) where adding RS covariates increased the R² and decreased the bias of the clay 

content estimation on bare topsoil layers (e.g., 0–30 cm). 

It is recognized within the soil science community that vegetation plays significant 

roles on soil formation (MCBRATNEY et al., 2003). However, Savin et al. (2019) stated 

that the use of vegetation patterns from RS for soil interpretation is insufficiently studied. 

Some previous works found that the spectral response of vegetation in natural 

conditions can be confidently used as an indirect indicator of soil attributes (HENGL, 

WALSH, et al., 2018; MAYNARD et al., 2017; SERTESER et al., 2008). Our results pointed 

out that PNV (from SyVIw and SyVId) was influential for modelling soil attributes at all 

depths, especially for chemical variables (Figure 6). The soil–vegetation connection can 

be due to the spatial and seasonal differences in reflectance intensities between wet and 

dry conditions (Figure 4b–c), that showed relations between the spectral patterns of 

natural vegetation and soil attributes from 0 to 100 cm (rooting) depth (Figure 6). Since 

vegetation is temporally dynamic, the relationships are largely controlled by available 

soil moisture and, to a lesser extent, chemical soil properties such as pH and fertility 

(MAYNARD et al., 2017). Thus, average seasonal spectral patterns of vegetation provide 

a better indication of soil variables than only a single snapshot of surface reflectance, and 

it is probably the best way to effectively represent the cumulative influence of living 

organisms on soil formation (HENGL et al., 2017). 

Climate, relief and geology played significant roles in model prediction (Figure 6) 

because they can significantly influence the soil-vegetation feedback, as described by 

McBratney et al. (2003). The climate and geologic heterogeneity of the study region 

affected soil patterns at the macroscale (regional), followed by relief (especially 

elevation), which moderates many of the macroclimatic regimes, and landforms, at the 

meso and microscales (BAILEY, 1987; FLORINSKY, 2016). Das Sumit (2019) 

demonstrated that geological lineaments density was strongly related to drainage 

density, soil texture and soil depth, controlling the movement of groundwater through 

soil. 

Landforms affect surface water dynamic and exposure to radiant solar energy, 

which directly influence soil-forming processes (FLORINSKY, 2016). Within a landform, 

there exists slight differences in local edaphic conditions, such as soil texture and 

mineralogy, and soil moisture and temperature regimes (BAILEY, 1987). These local 

conditions provides the most significant alterations of the soil reflectance patterns 

(DEMATTÊ et al., 2018; POPPIEL et al., 2019b) and segregation of the plant communities 

(BAILEY, 1987), which could be captured and measured by the SySI, SyVIw and SyVId at 

the finest (local) resolution. Generally, the Keys to Soil Taxonomy (SOIL SURVEY 

STAFF, 2014) uses the same differing criteria to define families of soils. 

Individual relationships between soil variables and environmental covariates can 

also be interpreted and understood in terms of pedological knowledge. For instance, 
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higher SWIR reflectance may be associated with high amounts of sand in soil and hence 

lower CEC; higher precipitation and cooler temperatures frequently increase the OM 

content, due to the speed of accumulation is higher than the speed of decomposition. For 

a large number of soil attributes, however, relationships are not clearly linear and often 

many soil covariates are equally important (HENGL et al., 2017). 

4.4. Reliability and Interpretation of Soil Maps 

The spatial patterns of soil on our predicted maps were consistent with pedological 

expert knowledge of the region and with their parent materials (Figure 8). Soil attributes 

largely varied across the area (Figure 7 and A4). This can be due to the tropical climate 

that exposed the parent materials of the studied soils (with different resistances) to 

intense weathering (VIEIRA et al., 2015).  

We identified clayey and nutrient-poor soils throughout the southeast, covering 

13% of the studied area (Figure 8). The region developed upon metasedimentary rocks 

(mostly argillite, siltite, arenite) which formed smooth hills, and over ferruginous laterite 

crusts supporting residual lowered plateaus in continuous dissection process (MORAES, 

2014). The soils from these rocks (geological domain 1) had the highest clay contents 

with lowest chemical fertility and, in some cases, can be very acidic and contain 

ferruginous concretions (typically reddish color) that hinder the farming. Nevertheless, 

it is possible to observe several cropland areas distributed on soils of this domain 

(PARENTE et al., 2019), probably after undergoing soil chemical correction. 

Clayey and medium textured soils with the best chemical conditions covered 38% 

of the area, widely distributed along the central portion over domains 2 to 5 (Figure 8). 

These domains were represented by basic-ultrabasic volcanic rocks such as basalt, 

diabase and gabbro, and sedimentary rocks such as argillite, siltite and calcarenite 

(CPRM, 2004). According to the geodiversity of the region (MORAES, 2014), the areas 

also were constituted by an association of metamorphosed volcanic and sedimentary 

(metavolcanosedimentary) rocks frequently containing amphibolite, serpentine, dunites 

and peridotites, metacarbonates, phyllite and paragneiss. All these lithologies reworked 

nutrient-richer surface materials, which released nutrients into the soil and provided 

better fertility conditions (see domains 2 and 3 in Figure 8). Furthermore, granitoids 

occurred sparsely mixed with calcareous and schist (see domain 4 in Figure 8), providing 

more dissected relief than the neighboring lands, such as hills and low mountains that 

hinder the agricultural mechanization (CPRM, 2004). In those areas, higher elevations 

with denser vegetation had larger soil OM contents (Figures A1 and A4), mainly due to 

cooler and wetter climate regimes and lesser human disturbance, which promoted 

accumulation processes (VIEIRA et al., 2015). In the floodplain areas over domain 5 

(Figure 8), fertility conditions may be linked to the good fertility of the areas that 

surround it, from where it receives a high volume of water, sediments and wastes 

(MORAES, 2014). 
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Figure 8. Geological domains and summary values of soil attributes averaged 

from the three depth intervals. The geological domains were obtained by 

clustering lithologies using the averaged soil data. The main lithotypes were 

identified within each domain according the geological map (CPRM, 2004). 

Sandy soils were expressive in the region, comprising 32% of the studied area 

(Figure 8). The lowest occurrence was in the northeast with 13% of sandy soils developed 

from sedimentary rocks (domain 6). They widely occurred in the southwest and 

midwest, developed over metavolcanosedimentary rocks (23%) and sedimentary and 

acid-subacid volcanic rocks (14%), domains 7 and 8 respectively. Such geological 

domains were mainly formed by arenite, conglomerate, siltite, calcareous, 

metaconglomerate, quartzite, phyllite, orthogneiss, andesite and rhyolite, which 

naturally tend to generate flattened reliefs such as smooth hills and plateaus (MORAES, 
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2014). These lithologies generally develop sandy soils with low chemical fertility (Figure 

8). However, its high permeability and smooth reliefs facilitate agricultural 

mechanization after soil acidity correction and fertilization. 

4.5. Possible Applications of the Maps 

It is important to note that there are currently no detailed soil attribute maps with 

complete coverage over Midwest Brazil and that their production costs money. Our soil 

attribute maps can be used for different purposes, at different spatial scales from farm, 

local to regional. They provide a first complete assessment of key soil attributes across 

the Midwest region, and can be used to, for example, as input data in biological-

chemical-physical modelling and in assessments of dynamic environmental processes. 

Together with other information, the maps can be used to obtain basic information for 

the implementation of colonization projects, rural subdivisions, integrated studies of 

micro-basins, local planning for the use and conservation of soils in areas projected for 

the development of agricultural, livestock and forestry projects, as well as civil 

engineering. The maps can also guide future soil sampling for inventory at different 

scales. 

5. CONCLUSIONS AND FINAL CONSIDERATIONS 

We have demonstrated that key soil attributes from multiple depth increments can 

be mapped using Earth observation data and machine learning with good performances. 

These maps had a satisfactory performance for physical (0.64 > R210cv > 0.85) and chemical 

(0.18 > R210cv > 0.64) attributes at all depth intervals (0–20, 20–60 and 60–100 cm), being 

spatially consistent with the main lithologies from which they originated.  

The methodological approach was able to capture the spatial distribution of nine 

soil variables. The predicted soil maps suggest that less than 38% of the studied soils had 

good natural fertility. Nevertheless, the dominant smooth reliefs of the region facilitate 

agricultural mechanization, which allow the soil pH correction and fertilization. 

Although we had representative soil observations, chemical attributes were 

particularly more challenging to map because to their high dynamic, with their 

concentration changing in a short space of time due to many natural and human-induced 

factors. 

Our results support the use of multi-resolution covariates for DSM, where topsoil 

and natural vegetation reflectance are important predictors of soil variability together 

with relief and climate data. 

Since covariates widely used in digital soil mapping are globally available, such as 

elevation and climate data, this approach may be useful for other initiatives where 

obtaining the soil (SySI) and vegetation (SyVI) covariates is feasible, that is, locations 

around the world with bare soil and natural vegetation occurring with enough coverage 

within the considered satellite time series. 
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6. LIST OF ABBREVIATIONS 

ALOS Advanced Land Observing Satellite 

DSM Digital Soil Mapping 

GEE Google Earth Engine 

OM Organic Matter 

CEC Cation Exchange Capacity 

V% Base Saturation 

m% Aluminum Saturation 

SySI Synthetic Soil Image 

SyVIw Synthetic Vegetation Image of wet season 

SyVId Synthetic Vegetation Image of dry season 

PNV Potential Natural Vegetation 

IDW Inverse Distance Weighted 

DEM Digital Elevation Model 

NIR Near infrared spectral band 

SWIR1 First shortwave infrared spectral band 

SWIR2 Second shortwave infrared spectral band 

LST Land surface temperature 

RMSE Root Mean Square Error 

RPIQ Ratio of the Performance to Inter-Quartile distance 

7. APPENDIX A 

Table A1 shows the specific band number of each Landsat sensor, positioned in 

equivalent spectral regions, which were matched into a common name (e.g. Blue, Green, 

Red, NIR, SWIR1, SWIR2 and LST) for an inter-sensor harmonization.  

Figure A1 displays 12 of the 33 covariates used to support the spatial predictions 

of soil variables. These covariates were obtained using the Google Earth Engine (GEE) 

cloud-based platform (GORELICK et al., 2017), according to their possible 

representativeness of the soil forming factors (MCBRATNEY et al., 2003). The density of 

geological lineaments was obtained by counting the meters of structural lines obtained 

from a 1:1,000,000-scale map (CPRM, 2004) per 1 km2. 

Figures A2 and A3 exhibits the predicted vs observed scatterplots of 10-fold cross-

validation derived from optimized models for sand, silt and clay and the chemical 

attributes. The 30 m resolution maps of predicted soil chemical attributes at three distinct 

depth intervals are shown in the Figure A4. 
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Table A1. Harmonized Landsat Surface Reflectance Data Set. 

Band L4 TM L5 TM L7 ETM+ L8 OLI/TIRS 

Blue 1 (450–520 nm) 1 (450–520 nm) 1 (450–520 nm) 2 (452–512 nm) 

Green 2 (520–600 nm) 2 (520–600 nm) 2 (520–600 nm) 3 (533–590 nm) 

Red 3 (630–690 nm) 3 (630–690 nm) 3 (630–690 nm) 4 (636–673 nm) 

NIR 4 (770–900 nm) 4 (770–900 nm) 4 (770–900 nm) 5 (851–879 nm) 

SWIR1 5 (1550–1750 nm) 5 (1550–1750 nm) 5 (1550–1750 nm) 6 (1566–1651 nm) 

SWIR2 7 (2080–2350 nm) 7 (2080–2350 nm) 7 (2080–2350 nm) 7 (2107–2294 nm) 

LST 6 (10,400–12,500 

nm) 

6 (10,400–12,500 

nm) 

6 (10,400–12,500 

nm) 

10 (10,600–11,190 nm) 

Period 1982–1993 1984–2012 1999–present 2013–present 

L4 TM: Landsat 4 Thematic Mapper; L5 TM: Landsat 5 Thematic Mapper; L7 ETM+: Landsat 7 

Enhanced Thematic Mapper Plus; L8 OLI/TIRS: Landsat 8 Operational Land Imager/ Thermal 

Infrared Sensor; NIR: Near infrared band; SWIR1: First shortwave infrared band; SWIR2: 

Second shortwave infrared band; LST: Land surface temperature; Native spectral ranges are in 

parenthesis. 
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Figure A1. Environmental covariates used in the Random Forest modelling of 

soil attributes data. Terrain features derived from ALOS digital elevation 

model: (a) Elevation in meters, (b) Slope in degrees, (c) Aspect in degree, (d) 

Topographic Position Index, (e) Horizontal Curvature and (f) Vertical 

Curvature in meters. (g) Geological Lineaments Density  representing 

meters of structural features per km2, derived from legacy maps of the 

Geological Survey of Brazil (CPRM). Climate data obtained from WorldClim: 

(h) Annual Precipitation in mm, (i) Coefficient of variation of the Precipitation 

Seasonality, (j) Annual Mean Temperature, (k) Temperature Annual Range and 

(l) Temperature Seasonality in ºC. 
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Figure A2. Predicted vs. observed (a) sand, (b) silt and (c) clay contents by depth 

intervals of 10-fold cross-validation derived from optimized random forest 

regression. 
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Figure A3. Predicted vs. observed (a) 

organic matter, (b) pH H2O, (c) pH KCl, 

(d) cation exchange capacity, (e) base 

saturation and (f) aluminum saturation 

by depth intervals of 10-fold cross-

validation derived from optimized 

random forest regression. 

 



56 

  

Figure A4. Maps of (a) organic matter, 

(b) pH H2O, (c) pH KCl, (d) cation 

exchange capacity, (e) base saturation 

and (f) aluminum saturation predicted 

at three depth intervals (0–20 cm, 20–60 

cm and 60–100 cm). The visualization of 

the images was adjusted by stretching 

the range of pixel values between 2% 

and 98%. 
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CHAPTER 2 –– SOIL COLOR AND MINERALOGY MAPPING USING PROXIMAL 

AND REMOTE SENSING IN MIDWEST BRAZIL2 

 

ABSTRACT 

Soil color and mineralogy are used as diagnostic criteria to distinguish different soil 

types. In the literature, spectra (350–2500 nm) was successfully used to predict soil color 

and mineralogy, but these attributes currently were not mapped for most Brazilian soils. 

In this paper, we provided the first large-extent maps with 30 m resolution of soil color 

and mineralogy at three depth intervals for 851,000 km2 of Midwest Brazil. We obtained 

soil spectra (350–2500 nm) from 1397 sites of the Brazilian Soil Spectral Library at 0–20 

cm, 20–60 and 60–100 cm depths. Spectra was used to derive Munsell hue, value and 

chroma, and also second derivative spectra of the Kubelka–Munk function, where key 

spectral bands were identified and their amplitude measured for mineral quantification. 

Landsat composites of topsoil and vegetation reflectance, together with relief and 

climate data, were used as covariates to predict Munsell color and Fe–Al oxides, 1:1 and 

2:1 clay minerals of topsoil and subsoil. We used Random Forest for soil modeling and 

10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color 

and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high 

prediction accuracy (R2>0.71), followed by Munsell value and hue. Satellite topsoil 

reflectance at blue spectral region was the most relevant predictor (25% global 

importance) for soil color and mineralogy. Our maps were consistent with pedological 

expert knowledge, legacy soil observations and legacy soil class map of the study region. 

Keywords: Reflectance spectroscopy; Munsell color system; derivative spectra; remote 

sensing; Google Earth Engine; data mining; Random Forest; digital soil mapping; soil 

attributes. 

  

                                                 
2 Article submitted to Remote Sensing, in the Special Issue "Bridging the Proximal and Remote 

Sensing Spectroscopy for Soil Properties Estimation and Monitoring". 
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GRAPHICAL ABSTRACT 

1. INTRODUCTION 

The color is the most noticeable feature of soil that can be easily determined in field 

or laboratory (SCHWERTMANN et al., 1989). The main factors that influence soil color 

are the organic matter (AITKENHEAD et al., 2013) and mineralogy, especially iron 

oxides (SCHWERTMANN, 1993). Soil organic matter causes the darkness of soil by 

decreasing the Munsell value and chroma (SCHULZE et al., 1993). The most frequent 

pedogenic oxides in soil are hematite (usually associated to goethite) with hues between 

10R and 5YR, and goethite (without hematite), that have hues between 7.5YR and 2.5Y 

(SCHWERTMANN, 1993). Goethite is common in diverse climates and parent materials, 

while hematite is abundant in well-drained tropical soils with strong pigmenting effect, 

and is absent in young soils from temperate humid climates (CURI et al., 1984; 

SCHWERTMANN et al., 1989).  

In tropical Midwest Brazil, the surface materials are rich in Al, Si, and Fe-bearing 

minerals, where most of the soils developed from these rocks tend to be low in 

exchangeable bases and highly weathered (MORAES, 2014). The secondary minerals of 

these soils are frequently dominated by iron oxides, kaolinite and gibbsite, and 2:1 clay 

minerals that may resist in the silt and sand fractions (SCHAEFER et al., 2008). When 

iron oxides are completely removed (after reduction processes) from soil particles under 

anaerobic conditions, and if organic matter is negligible, the soil matrix achieves the 

background color of the minerals resulting in shades of gray (SCHWERTMANN, 1993). 

Consequently, color can be used to indicate the presence of minerals and the 

redoximorphic conditions of the soil (TORRENT et al., 1993). However, in tropical soils, 

mineralogy cannot be inferred from color alone because hematite has stronger 

pigmenting effect than the other soil minerals, including goethite (BARRÓN et al., 1986). 

The iron oxides and soil color are effective pedoenvironmental indicators 

(SCHWERTMANN, 1993; SILVA et al., 2020). Various soil classification criteria used by 

non-scientists, like ethnic groups and farmers across the world, frequently are based on 
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color (BARRERA-BASSOLS et al., 2006). Soil management zones, with different 

productivity potential, can be successfully delineated using bare soil color and 

topography (NAWAR et al., 2017). Some national (Embrapa, 2018) and international 

(IUSS WORKING GROUP WRB, 2015) soil classification systems used the color patterns 

and mineral contents of soil as diagnostic criteria. Patterns of color were also used to 

characterize soil parent materials (HURST, 1977). The standard method to describe color 

in soil science is the Munsell system (MUNSELL, 1907), which allows for direct 

comparison of soils worldwide based on three measurable components: hue, value, and 

chroma. Soil color and mineralogy play an important role in soil cartography, since they 

carry important information for pedological classification or soil attributes prediction 

(ZHANG et al., 2019).  

Reflectance spectroscopy data (350–2500 nm) was successfully used in pedometry 

as predictor of the soil color and mineralogy (ESCADAFAL et al., 1988; FERNANDEZ et 

al., 1987; MARQUES et al., 2019; MATTIKALLI, 1997; RIZZO et al., 2016; SCHEINOST 

et al., 1998; SIMON et al., 2019), nevertheless, only a small set of researches mapped their 

spatial patterns. At the moment of this work, Viscarra Rossel et at. (2010) performed one 

of the few studies on soil color mapping, where the authors also mapped iron oxides of 

Australian soil using reflectance spectra (350–2500 nm) and geostatistics. 

Studies on soil mineralogy mapping, such as Viscarra Rossel and Chen (2011), 

summarized the information content of spectra (350–2500 nm) by principal components 

to construct linear models using 31 predictors, and map the mineral of Australian 

topsoils robustly (0.69 < R2 < 0.85). Likewise, Viscarra Rossel (2011) measured the relative 

abundances of kaolinite, illite and smectite at 0–20 and 60–80 cm soil depths, using 

continuum-removed reflectance (350–2500 nm) to derive statistical models and map the 

minerals with good cross-validation (0.40 < R2 < 0.61). Malone et al. (2014) also used 

continuum-removed spectra (350–2500 nm) for the detection of iron oxides, kaolinite and 

smectite prior to mapping their spatial distribution (as class or categorical) in Australia, 

with overall accuracy ranging from 44 to 80%. Mulder et al. (2013) used reflectance 

spectroscopy (350–2500 nm) to derive soil minerals, and multinomial logistic regression, 

for mapping the likelihood of “absence” or “presence” of kaolinite, mica and smectite 

with high overall accuracy (>0.74). Other studies (DUCART et al., 2016; MADEIRA 

NETTO et al., 1997; ROBERTS et al., 2019) used enhanced mineral mapping techniques 

to produce a thematic mineral map of soil using the spectral response of Landsat 

imagery. 

Nevertheless, the spatial patterns of soil color and mineralogy under current 

conditions remains not mapped for most Brazilian soils, both qualitatively and 

quantitatively. The main reason for that might be that in Brazilian repositories 

(SAMUEL-ROSA et al., 2020) there is a lack of mineralogical data, possible due to 

traditional methods, such as x‐ray diffraction (XRD) are time consuming and resource 

intensive (MULDER et al., 2013). Besides that, XRD measurements are qualitative and 

not conducive to numerical analyses (VISCARRA ROSSEL et al., 2009). Soil color in 
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national datasets (SAMUEL-ROSA et al., 2020) also lacks or do not contain spatial 

referencing or was visually approximated, that has been proved to be less consistent 

than modern colorimeter measurements (MARQUES et al., 2019). 

Soils of tropical Midwest Brazil usually present high weathering degree and tend 

to have relatively homogenous profiles (CURI et al., 1984; SCHAEFER et al., 2008). Some 

studies has been shown that topsoil spectral patterns are related to the subsoil pattern 

variations and dynamic processes which occurs within the soil profile (MENDES et al., 

2019; POPPIEL et al., 2018; POPPIEL et al., 2019a). In addition, bare topsoil reflectance 

composites produced from Landsat time series (DEMATTÊ et al., 2018; POPPIEL et al., 

2019b; ROGGE et al., 2018) were considered as reliable proxies of topsoil spatial patterns, 

that can be integrated with other datasets by machine learning to better capture 

information from deeper layer of the Earth (ROBERTS et al., 2019). 

Machine learning emerged in the 1990 as a tool for digital soil mapping 

(LAGACHERIE, 2008). Between the algorithms, Breiman (2001) proposed “random 

forests” (RF) that is currently the most popular for regression. RF combines several 

randomized decision trees and aggregates their predictions by their average. RF is often 

used by researchers for regressing the response Y to covariates X. Scornet et al. (2015) 

remarked that RF´s tree aggregation models are able to estimate linear and non-linear 

patterns and seeks to minimize the chance of overfitting during the splitting of trees, by 

selecting a reduced subset of covariates at each split. 

Revealing the spatial patterns of the color and mineralogy in soils of Midwest Brazil 

may support our understanding of soil function to improve land use and management, 

as well as to operate as predictor for geological mapping, mineral exploration and digital 

soil mapping. 

We expect that proximal soil sensing data have potential to provide accurate 

information on soil color and mineralogy, and that the use of predictors based on remote 

sensing data can provide accurate representations of the topsoil and subsoil spatial 

patterns over a large geographical extent. Then, proximal and remote sensing data can 

be coupled to accurately produce digital soil maps. 

In this paper, we assessed the efficiency of proximal and remote sensing for 

mapping the soil color and mineralogy with 30 m resolution at three fixed depth 

intervals over 851,000 km2 of Midwest Brazil. For that, we aimed: 1) to predict the soil 

color in Munsell notation from laboratorial spectra (350−2500 nm), 2) to measure and 

report the relative abundance of minerals in soil (hematite, goethite, kaolinite, gibbsite 

and 2:1 clay minerals) from their spectra (350−2500 nm), 3) to map their spatial 

distribution at 30 m resolution for the 0−20, 20−60 and 60−100 cm depth and verify the 

spatial patterns of the predicted maps with legacy soil information.  
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2. MATERIALS AND METHODS  

2.1. Study Area and Soil Data 

The study area is located in the Midwest of Brazil (Figure 1) comprising near 

851,000 km2. The landscape consists of extensive plateaus covered by Cerrado vegetation 

and gallery forest, within Cerrado biome (savanna). The humid tropical climate of the 

region exposed the highly diversified lithologies to intense weathering (VIEIRA et al., 

2015), who reworked surface materials (Figure 1), and resulting in soils with attributes 

largely varying across the area (POPPIEL et al., 2019b). Thus, rocks from domains 1 

(metasedimentary) and 2 (volcanic) developed clayey soils, typically redder than 

domains 7 and 8, which generated sandier soils with higher hue values. Such conditions 

allowed the genesis of Ferralsols, Lixisols, Plinthosols, Arenosols and Regosols across 

the region (IBGE, 2017). 

 

Figure 1. Soil observations and limits of Brazil’s states over shaded geological 

domains of the study area (POPPIEL, et al., 2019b). * Soil attributes averaged 

from 0 to 100 cm depths, where red represent clayey soils and yellow indicate 

sandy soils. 

We obtained soil data from 1397 sites (Figure 1) of the Brazilian Soil Spectral 

Library (BSSL) (DEMATTÊ et al., 2019), at 0–20 cm, 20–60 and 60–100 cm depth intervals. 

Those layers represent the rooting depths where soil attributes can affect the growth of 

plants (CANADELL et al., 1996). The location of soil observations was recorded using 

GNSS (Global Navigation Satellite System) receivers with positioning accuracy greater 

than 10 m, that matched the spatial resolution of covariates. The data was acquired from 

soil samples dried at 45 °C, ground and sieved with 2 mm mesh and then 

homogeneously distributed in Petri dishes prior the measurement of the spectra in 

laboratory, between 350 and 2500 nm, using the Fieldspec 3 spectroradiometer 

(Analytical Spectral Devices, ASD, Boulder, CO). Splices positioned at 1000 and 1800 nm 



67 

were corrected by linear interpolation of 10 bands using the prospectr package version 

0.1.3 (STEVENS et al., 2013) in the R software (R CORE TEAM, 2018). The flow diagram 

of the proposed method is shown at the end of this section in Figure 2. 

2.2. Reflectance to Soil Color 

Soil scientists usually use the Munsell system to represent the color of soil, 

resembling the natural way that humans perceive the color (TORRENT et al., 1993). The 

Munsell notation is a cylindrical system based on three components, hue (the color: red, 

yellow, etc), value (lightness) and chroma (purity, similar to saturation), which can be 

estimated from spectra using mathematical formulas. We used spectral reflectance data 

to calculate the Munsell soil color at three depth intervals (0–20 cm, 20–60 and 60–100 

cm), according to Marques et al. (2019) and Rizzo et al. (2016). The method used as input 

only the reflectance values between 380 and 780 nm (visible spectral range), and 

followed the steps: 1) spectra were converted to the XYZ color system for illuminant D65 

(daylight) and 2nd standard observer (WYSZECKI et al., 1982); 2) XYZ tristimulus values 

were converted to the CIELAB color system (L*a*b*); 3) coordinates a* and b* were used 

to calculate hue angles and chroma, while value was estimated by L*; 4) hue angle was 

converted to Munsell notation using a color conversion table (CENTORE, 2014). All steps 

were implemented within the R software (R CORE TEAM, 2018), using the pracma 

(BORCHERS, 2019) and CircStats (AGOSTINELLI, 2018) packages. 

For mapping purposes, Munsell hue was converted into a numerical scale of 

continuous values following the arrangement of the Munsell Soil Color Book, as 

suggested by Hurst (1977). In this system the hue charts of interest for our soil dataset 

were numbered as follow: 7.5 R was 7.5; 10 R was 10; 2.5 YR was 12.5; 5 YR was 15; 7.5 

YR was 17.5; 10 YR was 20; 2.5 Y was 22.5, at 0.1 increments. The Munsell notation for 

selected hues (letter-number combination) used R (red), YR (yellow-red) and Y (yellow) 

preceded by a number from 1 to 10 to indicate position around the hue circle. 

2.3. Reflectance to Soil Mineralogy 

2.3.1. Spectral processing 

Soils are mixtures of mineral and organic particles which partly absorb and partly 

scatter the incident light. When the dimensions of the mixed particles are comparable 

with the wavelength of the incident light, the absorption and scattering processes can be 

described by the Kubelka–Munk function [𝐾𝑀 = (1 − 𝑅)2/2𝑅; where R is reflectance] 

(BARRÓN et al., 1986). KM curves (likewise original spectra) show broad, strongly 

overlapping bands at different wavelengths. Therefore, to determine the positions of 

these bands, the resolution may be mathematically enhanced by calculating the 

derivatives of the spectra. The second derivative (SD) of the KM function is a promising 

method for spectral quantitative analysis (TORRENT et al., 2002), with sensibility for soil 

minerals detection slightly smaller than x-ray diffraction (SCHEINOST et al., 1998; 

SILVA et al., 2020). Thus, we transformed the reflectance data of soils into the KM and 
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then calculated the SD using Savitzky–Golay method (fitting 2nd polynomial order to 40-

smoothing points), within The Unscrambler software (CAMO SOFTWARE INC, 2007). 

This combination provided well-resolved spectral features, low background noise with 

little loss of spectral information for data collected at 1-nm intervals. 

2.3.2. Key spectral bands for mineral quantification 

The SD of the KM curve has spectral features originated from electronic transitions 

and non-fundamental vibrations of minerals (SCHEINOST et al., 1998), where minimum 

and maximum values match with the positions of the absorption bands in the original 

spectrum. The difference between derivative values at maxima and minima, determines 

the intensity of the “band amplitude”, that is equivalent to the amount of mineral in the 

soil sample (KOSMAS et al., 1984). Therefore, to assess the soil mineralogy we: 1) 

selected the main minerals by checking its occurrence with previous works on soil 

mineralogy in the study area (GOMES et al., 2004; MACEDO et al., 1987; TERRA et al., 

2018; ZINN et al., 2007); 2) defined the position of key spectral bands, at specific 

wavelengths (𝜆), for the main minerals of soil, summarized in Table 1; and, 3) calculated 

the band amplitudes for mineralogical quantification [𝐴 = 𝑀𝑎𝑥𝜆 − 𝑀𝑖𝑛𝜆]. The intensity 

values of these band amplitudes were used as proxies of the soil minerals in the study 

area. Ternary diagrams were obtained by calculating the proportion of band amplitude 

between minerals for each plot using ggtern package (HAMILTON, 2018) in R. 

Table 1. Position of the spectral bands in the SD KM curve, used to calculate the 

amplitude for the main minerals of soils. 

Soil mineral Minima band 

position (nm) 

Maxima band 

position (nm) 

Band 

Amplitude 

Reference for band 

positions 

Goethite ~415* ~455* AGt (KOSMAS et al., 1984; 

SCHEINOST et al., 1998) 

Hematite 535* 580* AHt (SCHEINOST et al., 1998) 

2:1 clay 

minerals1 

1900–1925 1870–1895 A2:1 (CLARK et al., 1990) 

Kaolinite 2205 2225 AKt (CLARK et al., 1990) 

Gibbsite 2265 2295 AGb (CLARK et al., 1990) 

1 Illite, Chlorite, Vermiculite, Montmorillonite. * Band positions relatively stable (lowest 

shift to neighboring wavelengths) for Al-substitution in both goethite and hematite. 

2.4. Environmental Covariates 

We used environmental predictors as proxies of the soil formation factors described 

by the scorpan model (MCBRATNEY et al., 2003) for the purpose of digital soil mapping 

(DSM). The DSM approach assumes that a soil attribute is a function of a spatial 

representation of soil forming factors: soil (s), climate (c), vegetation (o), relief (r), parent 

material (p), age of surface (a) and spatial position (n). Thus, we acquired a set of 

covariates (33 layers) from Poppiel et al. (2019b) to act as proxies of each factor of soil 

formation (Table 2). These covariates were prepared using big databases of remote 

sensing at multiple spatial resolution within Google Earth Engine (GEE) (GORELICK et 

al., 2017). Then, coarser-resolution predictors were downscaled into a target grid 
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resolution of 30 m. For further details on how the covariates were prepared and quality 

assessed, see Poppiel et al. (2019b).  

Table 2. Soil forming factor proxies from Poppiel et al. (2019b) used for mapping the soil 

color and main minerals. 

Factor Covariate Description 

Soil, Parent 

Material and 

Age 

SySI Synthetic Soil Image based Landsat 4, 5, 7 

and 8 (7 bands), representing bare soil 

reflectance at 30 m resolution. 

Geological Lineaments Meters of structural features per km2 from 

CPRM data at 1:1,000,000 scale (CPRM, 

2004). 
   

Organisms SyVIw and SyVId Synthetic Vegetation Image of wet (Nov-

Mar) and dry (May-Sep) seasons based 

Landsat 4 and 5 (7 bands), representing 

potential natural vegetation reflectance at 

30 m resolution. 
   

Climate Annual Precipitation (mm) Bioclimatic variables obtained from the 

WorldClim dataset at 1 km resolution 

(HIJMANS et al., 2005). 

Precipitation Seasonality (CV) 

Annual Mean Temperature (°C) 

Temperature Annual Range(°C) 

Temperature Seasonality (°C) 

   

Relief Elevation (m) Terrain attributes obtained from the 30 m 

ALOS digital elevation model (TADONO 

et al., 2014) 

Slope (degree) 

Aspect (degree) 

Topographic Position Index (m) 

Horizontal Curvature (m) 

Vertical Curvature (m) 

CV: coefficient of variation. 

2.5. Soil modelling by Random Forest (RF) 

In DSM studies (GOMES et al., 2019; HENGL et al., 2014, 2015, 2017; LEENAARS 

et al., 2019; LOISEAU et al., 2019; SILVA et al., 2019; WADOUX et al., 2019), Random 

Forests (BREIMAN, 2001) is increasingly being used to infer relationships between 

diverse soil attributes (at single and multiple depths), and several covariates (from 

multiple sources and resolutions) across landscapes. One of the reasons relies on that RF 

can handle both linear and nonlinear relationships of the data. Thus, we used RF 

regression for DSM of the soil color (Munsell hue, value and chroma) and the main soil 

minerals (Table 1) at 0–20, 20–60 and 60–100 cm depth intervals. For that, we used the 

full set of covariates (Table 2), on factors of soil formation–scorpan model (MCBRATNEY 

et al., 2003), and let the decision tree algorithm reveal the patterns. Therefore, a different 

model was adjusted to each soil attribute, at each one of our depths, counting 24 models. 

RF can fit models with large number of predictors (HENGL et al., 2018). 



70 

2.5.1. Model tuning 

We filtered possible artifacts in the covariates (Table 2) by computing the median 

values within a 4 × 4 moving window. These covariates were sampled at each soil 

observation and the values were used as input data for calibrating RF regressions 

(BREIMAN, 2001) using the ranger package version 0.11.1 (WRIGHT et al., 2017) in the 

R software (R CORE TEAM, 2018). According to Probst et al. (2019), a proper tuning of 

hyperparameters ensures the RF’s consistency. For that, we performed a grid search 

examining a range of values, where the number of covariates randomly selected at each 

node (mTry) was 6, 24, 33; and the tree depth by minimal number of samples “or leaves” 

for the terminal nodes (minimum node size) was 5, 20, 50. We fixed 500 trees to obtain 

stable estimates (PROBST et al., 2019). 

2.5.2. Model performance 

In order to assess the prediction models, we calculated performance metrics such 

as the root mean squared error (RMSE), coefficient of determination (R2) and ratio of the 

performance to inter-quartile distance (𝑅𝑃𝐼𝑄 = (𝑄3 − 𝑄1)/RMSE), where Q1 and Q3 are 

the 1st (25%) and 3rd (75%) quartiles. The RPIQ is based on prediction error and quartiles, 

which evaluates the spread of the dataset to the models accuracy making easier the 

comparison among soil attribute models and other studies. We derived these metrics for 

each one of the 24 models to assess the goodness of fit in the calibration step, and the 

robustness in the validation step. Validation was performed for each one of the 24 

models by 10-fold cross-validation, using the caret package version 6.0-84 (KUHN, 2019). 

The k-cross-validation maximizes the quantity of points in the training dataset, where 

the points are divided into k groups or folds, where k − 1 groups are used for training 

and 1 group for validation, repeating the training k times, each with a different validation 

group (PADARIAN et al., 2019). We selected the optimized model by the minimum 

RMSE of the 10-fold cross-validation (FAO, 2018; PROBST et al., 2019). Generally, 

smaller values of RMSE and larger R2 and RPIQ indicate higher model performance 

(BELLON-MAUREL et al., 2010).  

2.5.3. Covariates importance 

RF supply some abilities to interpret the model by providing measures for variable 

importance (GOMES et al., 2019; HENGL et al., 2014, 2015, 2017; LEENAARS et al., 2019; 

LOISEAU et al., 2019; SILVA et al., 2019; WADOUX et al., 2019), based on the increase 

in mean square error when a covariate is randomly permuted. Thus, we used the folds 

estimates to calculate the mean frequency of use for the covariates in the models and 

reported as a measure of the scaled permutation importance for each soil attribute 

prediction (BREIMAN, 2001), using the ranger package version 0.11.1 (WRIGHT et al., 

2017) in R (R CORE TEAM, 2018). Interpreting this output is quite straightforward: the 

more importance, the more relevant the variable is, according to the model. 
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Figure 2. Flow diagram of the proposed methodology for soil color and 

mineralogy mapping using proximal and remote sensing data. 

2.5.1. Soil Mapping 

The optimized models (tuned hyperparameters in R) of soil attributes were 

implemented into cloud-based platform of GEE (GORELICK et al., 2017) to predict their 

spatial distribution in the study area using RF algorithm. In this study, the uncertainty 

was not examined as maps because this technique was not implemented at the current 

development stage of GEE (GORELICK et al., 2017). Therefore, to verify the 

correspondence of the spatial patterns of our predictions, we performed Pearson’s 

correlation between our maps (at the three depth intervals) with legacy soil observations 

acquired from a national dataset (SAMUEL-ROSA et al., 2020), and also with weathering 
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degree and hue, both inferred from a 1:1,000,000-scale legacy soil class map that covered 

the study area (IBGE, 2017).  

3. RESULTS 

3.1. Soil attributes derived from spectra 

Spectra (350-2500 nm) contain information on important attributes of the soil: 

minerals, color, organic material, texture and water. The reflectance in the visible 

spectral interval revealed that in our dataset the soil color ranged from 8.9R (red) to 2.5Y 

(yellow), and reached more than 50% of samples up to 5YR (yellow-red) (Figure 3). Value 

and chroma ranged from 1.7 to 8 and from 0.7 to 8 with mean values of 3.9 and 4.5, 

respectively. Overall, the hue decreased and the value and chroma increased as the soil 

depth interval increased, that is, the soil color was redder, lighter and purer (or 

saturated) at deeper layers. The amplitude between key spectral bands in the SD KM 

curve (Table 1) indicated that the soils were dominated by hematite, goethite and 

kaolinite, with relative amounts between them of about 38%, 36% and 25%, respectively. 

These minerals were mixed in soils with smaller amounts of gibbsite and 2:1 clay 

minerals, where its proportions in relation to kaolinite were near 19%, 15% and 66%, 

respectively (Figure 4). 

 

 

Figure 3. Polar plot of soil color in the Munsell system (hue, value, chroma) 

determined from spectra at (a) 0–20, (b) 20–60 and (c) 60–100 cm depth intervals. 

Hue values were displayed on circular grid beginning at 7.5YR, increasing 

values clockwise up to 2.5Y. Chroma values were presented in Y axis, increasing 

from the center outwards. Value was shown as a color scale, increasing from 

red to yellow. The number of soil samples (n) used to calculate soil color and 

their mean values and standard deviation (SD) were summarized at the bottom 

of each panel. 
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Figure 4. Second derivative of the KM spectra (left) and ternary diagrams of soil 

minerals (right) at three depth intervals: (a) 0–20, (b) 20–60 and (c) 60–100 cm. 

The amount of mineral was quantified by the measurements of the amplitude 

between values at minima and maxima specifics bands, graphically exemplified 

in the left panel a: AGt (goethite), AHt (hematite), A2:1 (2:1 clay minerals), AKt 

(kaolinite), AGb (gibbsite). The ternary diagrams were constructed by assessing 

the proportion between band amplitudes of the minerals. The number of soil 

samples (n) used to derive soil minerals and their mean values and standard 

deviation (sd) were summarized (scale factor 1 x 10-6) at the bottom of the 

spectral curves. 

The significant correlations (p < 0.01) for goethite (-0.3 < r < -0.66) and hematite (-

0.79 < r < -0.88) with hue and value, suggested that iron oxides decreased these color 

attributes, and promoted the redness and darkness of the soils at the three depth 

intervals (Figure 5). Iron oxides also were correlated with chroma (average r of 0.29) 

which caused the saturation of soil color. 
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All minerals were positively correlated with each other (Figures 5a–c), where 

gibbsite and 2:1 clay minerals showed the smallest values between them (r < 0.21). 

Likewise, the proportion of minerals slightly increased with depth (Figure 5d), since they 

are relatively dominant at finest fractions, and there is more clay in the subsurface of the 

studied soils. Gibbsite was relatively constant across depth (Figure 5d), while the 2:1 clay 

minerals were a little more abundant in the topsoil. The hue decreased with depth while 

chroma increased, both due to small amounts of iron oxides which pigmented the soil at 

deeper layers. Value increased with depth (Figure 5d), since it depends on reflectance, 

which increases with less amounts (masking effects) of organic matter on mineral 

particles. 

 

Figure 5. Correlogram based on Pearson’s correlation (r) between soil color 

components and minerals derived from spectra at (a) 0–20 cm, (b) 20–60 cm and 

(c) 60–100 cm depth intervals; and (d) overall correlation with depth intervals 

analyzed. Blue and red colors symbolize positive and negative correlations, 

respectively. Insignificant correlation coefficient values (p-value > 0.01) were 

marked by crosses (X). HueN: Hue number; 2:1: 2:1 clay minerals. The sum of 

Gt+Ht (Goethite + Hematite) was added to the plot only for comparisons. 

3.2. Performance of spatial models 

The RF models proved to be robust for mapping soil color and mineralogy at three 

depth intervals in Midwest Brazil (Table 2), with high prediction accuracy for hematite 

(R210cv > 0.71). The prediction of Munsell value and hue, gibbsite, kaolinite, 2:1 minerals 

and goethite were accurate (0.43 < R210cv < 0.65). The models for goethite produced lower 

validation metrics than for hematite (Table 2), probably because their spectral bands 

used for relative quantification (Table 1), especially at 60–100 cm depth (R210cv = 0.24). 

Munsell chroma at all depths had worse prediction accuracy (0.24 < R210cv < 0.38). Albeit 

some models had low R2 for validation, they all showed a god performance (RPIQ10cv > 

1.3) and scatterplots with values following linear trends (Figure A1). 
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Table 2. Hyperparameters and performance metrics for calibration (goodness of fit) and 

validation (robustness) of the models used for mapping soil attributes at surface and 

subsurface. 

Soil attribute Depth2 mTry minNS RMSEcal RPIQcal R2cal RMSE10cv RPIQ10cv R210cv 

Hue number1 0–20 24 5 0.53 5.89 0.93 1.30 2.35 0.58 

20–60 24 5 0.61 5.45 0.93 1.50 2.17 0.54 

60–100 33 5 0.56 4.80 0.92 1.40 1.91 0.50 

Value 0–20 24 5 0.19 4.84 0.93 0.50 1.95 0.59 

20–60 24 5 0.24 5.85 0.92 0.60 2.44 0.55 

60–100 24 5 0.21 5.79 0.94 0.50 2.32 0.64 

Chroma 0–20 33 5 0.27 3.67 0.89 0.70 1.45 0.31 

20–60 33 5 0.31 3.56 0.88 0.80 1.41 0.24 

60–100 33 5 0.29 3.41 0.90 0.70 1.36 0.38 

Goethite 0–20 24 5 414* 4.07 0.91 1008* 1.67 0.45 

20–60 24 5 396* 4.06 0.91 990* 1.62 0.45 

60–100 6 5 494* 2.97 0.85 1122* 1.31 0.24 

Hematite 0–20 24 5 436* 6.49 0.96 1102* 2.57 0.71 

20–60 24 5 496* 6.49 0.96 1254* 2.57 0.72 

60–100 24 5 504* 6.46 0.96 1264* 2.58 0.72 

Kaolinite 0–20 33 5 171* 4.41 0.91 424* 1.78 0.47 

20–60 33 5 205* 4.86 0.93 508* 1.96 0.55 

60–100 33 5 190* 5.20 0.94 481* 2.05 0.59 

Gibbsite 0–20 24 5 123* 3.23 0.93 309* 1.28 0.55 

20–60 33 5 132* 3.55 0.94 335* 1.40 0.64 

60–100 24 5 124* 4.09 0.95 312* 1.62 0.65 

2:1 minerals 0–20 33 5 54* 3.99 0.90 132* 1.63 0.43 

20–60 24 5 56* 3.75 0.92 139* 1.52 0.51 

60–100 24 5 63* 3.13 0.91 151* 1.31 0.49 
1 see Munsell hue in section 2.2; 2 Depth in cm; * Scale factor 1 x 10-6; mTry: hyperparameter of 

Random Forest regression that controls the number of variables that can be randomly sampled in 

each split of the trees; minNS: minimum node size, a hyperparameter of Random Forest that controls 

the tree depth by setting the minimal number of samples for the terminal nodes. RMSEcal: Root Mean 

Square Error of calibration; RMSE10cv: Root Mean Square Error of 10-fold cross-validation; R2cal: 

Coefficient of determination of calibration; R210cv: Coefficient of determination of 10-fold cross-

validation. 

3.3. Relevance of covariates 

The importance of each covariate on predicting Munsell color and mineralogy of 

soil is shown in Figure 6. The main predictors (global importance > 10%) for most of the 

attributes and depths of soil in the study area were (decreasing sequence) SySIBlue, 

elevation, annual precipitation, temperature annual range, temperature seasonality, 

SySIGreen, SYSISwir2, annual mean temperature, SYSINIR, precipitation seasonality, SySIRed, 

topographic position index and SySISwir1. These covariates remained unchanged and 

usually in the same sequence at each depth, with bare topsoil reflectance at blue spectral 

region (SySIBlue) as the most relevant predictor for our conditions. They are proxies of the 

soil forming factors s, c, r, p and a (Table 2), which all interact to influence spatial 

distribution of color and minerals of soil in Midwest Brazil. 
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The forming factor o, represented by the potential natural vegetation reflectance of 

dry and wet seasons, especially at blue, green, red and near-infrared spectral ranges, had 

medium to low importance (global < 10%) to predict soil color and mineralogy at all 

depths (Figure 6). The reason is that vegetation had a more local effect on the spatial 

distribution of soil attributes, followed by slope and density of geological lineaments. 

Horizontal and vertical curvatures had low importance, while aspect was frequently no 

important as predictor for our conditions (Figure 6), possibly because the sparse and 

uneven distribution of our soil dataset failed to described important short-range patterns 

of soil variation contained in these covariates. 

 

 
Figure 6. Covariate’s permutation importance (%) for soil attributes mapping at 0–

20 cm (A), 20–60 cm (B) and 60–100 cm (C) depth intervals. We used the 10-fold 

importance in cross-validation to calculate mean values. Hue num: Hue number 

(see Munsell hue in section 2.2); 2:1: 2:1 clay minerals. Global is averaged 

importance values for all soil attributes (per row). NIR: Near infrared spectral 

band; SWIR1: First shortwave infrared spectral band; SWIR2: Second shortwave 

infrared spectral band; LST: Land surface temperature. 

A B C A B C A B C A B C A B C A B C A B C A B C

SYSI Blue 47 31 45 34 32 33 26 16 8 28 34 7 60 53 47 15 16 11 13 11 13 9 14 7 25
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SYSI NIR 23 15 11 20 6 13 12 12 10 7 12 6 14 15 11 20 16 21 10 8 9 8 10 8 12
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3.4. Digital maps of the soil surface and subsurface 

3.4.1. Gridded Munsell soil color 

We used the maps of Munsell hue, value and chroma to obtain RGB composites of 

the true Munsell color of soil for the three depth intervals (Figure 7). It allowed us to 

simultaneously assess and compare the spatial patterns of the three components. 

On average, the study area had 49% of soils with hues redder (lower) than 5YR 

across the three depths (Table 3), which were mainly represented by Rhodic Ferralsols 

(and some Rhodic Nitisols and Acrisols of lower occurrence), followed by some Dystric 

Cambisols and Petric Plinthosols with redder hues in the soil matrix (see areas 

highlighted with red dashed lines in Figure 7). Within this set of soils, 7% were redder 

than 2.YR, due to the presence of ferralic (also ferritic) horizon of some Ferralsols (and 

Nitisols or Acrisols) developed from basalt in the study area.  

About 51% of soils of the study area had Munsell hues yellower (higher) than 5YR 

up to 100 cm depth, which were represented by Haplic Ferralsols, Haplic Acrisol, 

Arenosols, Haplic Plinthosols and Petric Plinthosols with yellower matrix (see areas 

highlighted with yellow dashed lines in Figure 7). Among these soils, the 7% exhibited 

hues yellower than 7.5YR due to: 1) lower ratio hematite/(hematite+goethite), where 

higher contents of goethite pigmented the soil, such as in Xanthic Ferralsols, or 2) 

reduction and removal (or partial removal) of iron oxides from Gleysols.  

The orange dashed lines in Figure 7 highlighted areas with Plinthosols (mainly 

Petric) in the study area. These soils contain petroplinthite (rich in Fe and Al) within a 

latosolic matrix, which can range from yellowish (10YR) to reddish (10R), according to 

the parent material. Their hue also can vary across the same soil profile. This features 

are important to understand the maps, because in such areas the Munsell color was more 

changing between depths. 

The maps (Figure 7) showed that most of the soils in the study area with hues 

between 2.5YR and 7.5YR became redder with depth (Table 3). In addition, soils with 

Munsell hues < 5YR usually presented lower values and higher chromas than yellower 

soils with hues ≥ 5YR. The predicted true color of soils showed a comprehensible spatial 

correspondence with taxonomic classes of the legacy soil map. It can be observed in 

detail on Figure 7e, where the distinction of the spatial pattern of hue and true soil color 

is clearly evident between a Rhodic Ferralsol (redder and darker) and a Haplic Acrisol 

(yellower, lighter and brighter). 
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Figure 7. Maps of the true Munsell soil color across the study area and 

relationship with soil class legacy map. True soil color at (a) 0–20, (b) 20–60 and 

(c) 60–100 cm depth intervals; (d) legacy soil map (1:1,000,000-scale) (IBGE, 

2017) with simplified classes according to the WRB (IUSS WORKING GROUP 

WRB, 2015); (e) expanded area showing in detail (from left to right) the spatial 
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pattern of soil hue, soil classes and true soil color. The dashed lines linked areas 

between maps with homogeneous soil color to a dominant soil class. *Soils with 

a hue of 5YR or yellower. 

Table 3. Area quantification of the Munsell soil hue maps at three depth intervals. 

Depth  Hue < 2.5YR  2.5YR ≤ Hue < 5YR  5YR ≤ Hue ≤ 7.5YR  7.5YR < Hue 

(cm)    Area (%)     

0–20  1  27  66  6 

20–60  4  49  46  1 

60–100  16  49  23  13 

Average  7  42  45  7 

3.4.2. Spatial patterns of the main minerals in studied soils 

For simultaneous assessment of the spatial patterns of soil mineralogy at each 

depth, we separately obtained RGB compositions for hematite, goethite and kaolinite 

(Figure 8a–c), and for gibbsite, 2:1 clay minerals and kaolinite (Figure 8d–f). 

More than 50% of the study area was covered by highly-weathered soils with high 

relative proportions of hematite, goethite and kaolinite, followed by gibbsite and 2:1 clay 

minerals (Table 4). The relative proportions of iron oxides in the soil ranged from 6 to 

66% as the surface materials were Fe-rich. The highest proportions of hematite (49% < 

Ht ≤ 66%) were found in 8% of soils, that accounted for nearly 7% of soils with hues 

redder than 2.5YR (Table 3). About 45% of soils had hematite contents ranging from 31 

to 49% (see areas with red dashed lines in Figure 8a–c, and Table 4), that agreed with 

~42% of soils with reddish hues between 2.5YR and 5YR (Table 3). This iron oxide also 

occurred in 47% of soils at lower contents (9% < Ht ≤ 31%), possibly coexisting with most 

of the 65% of soils with goethite amounts ranging between 24 and 37%, that may account 

for ~45% of soils with yellowish hues ranging from 5YR to 7.5YR. The lowest amounts 

of goethite, ranging from 6 to 24%, might be distributed in the redder soil masked by 

pigmenting effects of hematite. Conversely, 21% of soils presented high amounts of 

goethite ranging between 37 and 50% (see areas with green dashed lines in Figure 8a–c, 

and Table 4), which may account for the color of soils with hues yellower than 7.5YR. 

The study area had about 56% of soils with high kaolinite contents ranging from 19 

to 50% (blue shades in Figure 8d–f), which seemed to coexist in equilibrium with most 

of the 64% of soils with low amounts of gibbsite (%1 < Gb ≤ 9%). On the other hand, a 

large proportion of weathered soils (44%) with low kaolinite contents (%4 < Kt ≤ 19%) 

might coexist with the 36% of soils with highest gibbsite contents, ranging from 9 to 29% 

(see areas in shades of magenta with red dashed lines in Figure 8d–f, and Table 4). These 

highly-weathered soils were typical on highland surfaces, where long-term weathering 

resulted in intensive leaching of silica from soil particles. 
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Figure 8. Maps of the soil mineralogy in RGB composition across study area 

and relationship with a soil class legacy map. RGB: Hematite (Ht), Goethite (Gt) 

and Kaolinite (Kt) at (a) 0–20 cm, (b) 20–60 cm and (c) 60–100 cm depth; RGB: 

Gibbsite (Gb), 2:1 clay minerals (2:1) and Kaolinite (Kt) at (d) 0–20 cm, (e) 20–60 
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cm and (f) 60–100 cm depth; (g) legacy soil map (1:1,000,000-scale) (IBGE, 2017) 

with simplified classes according to the WRB (IUSS WORKING GROUP WRB, 

2015); (h−i) expanded areas showing in detail the spatial pattern of soil classes 

and mineralogy. The dashed lines linked areas between maps with 

homogeneous soil mineralogy. *Soils with a hue of 5YR or yellower. FR: 

Ferralsol, CM: Cambisol, AR: Arenosol, PT: Plinthosol, AC: Acrisol, GL: 

Gleysol. 

Traces of 2:1 clay minerals (< 7%) were found in most of soils in the study area 

(76%), while the remaining 24% of soils showed higher contents (7% < 2:1 ≤ 18%), 

displayed with shades of cyan in Figure 8d–f (especially in areas highlighted with cyan 

dashed lines). Table 4 shows that iron oxides and kaolinite contents increased with 

depth, while gibbsite increased with less intensity. Higher proportions of 2:1 clay 

minerals seemed to be more abundant at topsoil. 

We showed in detail the spatial patterns of soil mineralogy in two expanded areas 

linked to the legacy soil map (Figure 8g). The first area (Figure 8h) is on a highland 

plateau developed upon arenite and covered by Ferralsols, where flat areas in red shades 

were predicted with redder color (3YR 3/5) and proportions of Ht = 46%, Gt = 36%, Kt = 

10%, Gb = 5% and 2:1 = 3%, indicating that hematite was dominant in well-drained 

conditions. On concave areas or lower slopes surrounding drainages with green shades 

in the map (marked by black arrows) showed yellower color (6YR 4/4) and proportions 

of Ht = 27%, Gt = 47%, Kt = 18%, Gb = 3% and 2:1 = 6%, suggesting that goethite was 

dominant in wetter drainage conditions. Conversely, on plateau edges covered by 

Cambisols with cyan shades in the map, presented color 3YR 4/3 and amounts of Ht = 

38%, Gt = 36%, Kt = 8%, Gb = 2% and 2:1 = 16%, suggesting less weathered conditions 

and younger soils.  

The second area (Figure 8i) presented two scenarios, one developed upon siltite, 

where smoother relief (shades of blue) showed color 5.5YR 4/5 and proportions of Ht = 

30%, Gt = 40%, Kt = 15%, Gb = 5% and 2:1 = 10%, suggesting less weathered conditions. 

Areas over ferruginous laterite crusts with hilly relief (shades of magenta), and 

occurrence of iron oxide concretions, presented color 7YR 4/4 and amounts of Ht = 16%, 

Gt = 43%, Kt = 8%, Gb = 29% and 2:1 = 4%, indicating highly-weathered conditions on an 

ancient surface. Thus, the first scenario accounted for younger soils (e.g. Cambisols), 

while the second corresponded to older soils, such as Petric Plinthosols.  



82 

Table 4. Area quantification of the soil mineral maps at 0−20, 20−60 and 60−100 cm depth 

intervals. 

Relative amount*  0−20 cm  20−60 cm  60−100 cm  Average 

(%)    Area (%)     

9 < Ht ≤ 31  51  48  42  47 

31 < Ht ≤ 49  36  46  52  45 

49 < Ht ≤ 66  13  5  6  8 

         

6 < Gt ≤ 24  23  12  6  14 

24 < Gt ≤ 37  55  69  72  65 

37 < Gt ≤ 50  22  19  23  21 

         

4 < Kt ≤ 19  46  44  43  44 

19 < Kt ≤ 31  34  38  50  41 

31 < Kt ≤ 50  21  17  7  15 

         

1 < Gb ≤ 9  69  63  60  64 

9 < Gb ≤ 17  26  20  38  28 

17 < Gb ≤ 29  5  17  2  8 

         

2 < 2:1 ≤ 7  58  79  91  76 

7 < 2:1 ≤ 13  34  20  9  21 

13 < 2:1 ≤ 18  8  0.4  0  3 

*Amount of given mineral in the < 2 mm fraction of soils. Gt: goethite; Ht: hematite; Kt: 

kaolinite; Gb: gibbsite; 2:1: 2:1 clay minerals. 

4. DISCUSSION 

4.1. Relationships between soil color and mineralogy 

We did not verify the accuracy of the color estimations at each site because: 1) 

lacked of colorimeter records in our dataset; 2) spectral data were acquired under the 

same conditions that in reference works (MARQUES et al., 2019; RIZZO et al., 2016); 3) 

the mathematical procedures of reference, implemented in this section, provided similar 

color estimations to the colorimeter measurements, with R2 ranging from 0.68 to 0.96 and 

RMSE between 0.19 and 0.57 (MARQUES et al., 2019; RIZZO et al., 2016). 

Aitkenhead et al. (2013) demonstrated that inherent color of soil is mainly 

controlled by organic compounds and iron oxides. Soil organic matter causes the 

darkness of soil by decreasing the Munsell value and chroma (SCHULZE et al., 1993). 

Poppiel et al. (2019b) found organic matter inversely correlated (r = -0.4) with soil depth 

for the same area of Brazil, where average content ranged from 21 g kg−1 at the surface 

to 9 g kg−1 in the 60–100 cm depth. These findings agreed with our results, where value 

and chroma increased with depth, while organic matter decreased, suggesting a negative 

correlation between them, as reported by Simon et al. (2019).  

The most frequent pedogenic oxides in tropical soils are hematite (usually 

associated to goethite) with hues between 10R and 5YR, and goethite that has hues 
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between 7.5YR and 2.5Y (SCHWERTMANN, 1993). Munsell color varies with mineral 

concentration, where higher contents reduce the value and increase the chroma of soil 

(FERNANDEZ et al., 1992). According to the geodiversity of the region (MORAES, 2014), 

the most surface materials (Figure 1) contain Al, Si, and Fe-bearing minerals, that 

released these elements during their weathering (hydrolysis) and it favored the 

formations of oxide pigments (e.g. hematite and goethite) (SCHWERTMANN et al., 

1989), common to the majority of the studied soils (Figure 3) (BARBOSA et al., 2009; 

RODRIGUES, 1977; ZINN et al., 2007, 2016). Goethite (FeOOH) usually occurs in wetter, 

colder, and more acidic (pH 4) pedoenvironments, with seasonal anaerobic conditions 

and slow Fe release (SCHWERTMANN et al., 1989). When the pedoclimate becames 

drier, warmer and less acidic (pH 7) under higher Fe release, the ferrihydrite (precursor) 

is formed and then dehydrated to hematite (Fe2O3); or also, goethite can dehydrate to 

hematite (SCHWERTMANN, 1993). Usually, in red soils widely distributed in our study 

area (e.g. Rhodic Ferralsols), the yellowish hues (10YR) of coexisting goethite are masked 

by the higher pigmenting effects of hematite with reddish hues (10R) (BARRÓN et al., 

1986). Hematite, a less stable mineral, is generally negligible or absent in yellow soils 

(e.g. Xanthic Ferralsols) from Central Plateau of Brazil (CURI et al., 1984). 

When iron oxides are completely removed (after mobilization by microbial 

reduction) under anaerobic conditions from soil particles, and if organic matter is 

negligible, the soil achieves the base color of the matrix minerals resulting in shades of 

gray (gleyic) (SCHWERTMANN, 1993). Reducing conditions can dramatically reduce 

the chroma and increase the value of gleyed horizons, suggesting saturation by water in 

concave areas of the landscape, characteristic of Gleysols (IUSS WORKING GROUP 

WRB, 2015). 

The highest kaolinite content in the < 2 mm fraction of soils (see ternary graphs in 

Figure 4) might result from primary minerals, which weathered directly into kaolinite 

under intense warm and wet leaching in tropical conditions (MELO et al., 2001). 

Gibbsite, a pedogenic Al(OH)3, is formed by desilication of kaolinite or primary 

minerals, at low silica concentration and low pH (5-6), when leaching rates are rather 

high in well-drained tropical soils (SCHAEFER et al., 2008). Relatively large amounts of 

this mineral were found in the clay fraction of deeply weathered soils in Central Brazil 

(RODRIGUES, 1977). 

The 2:1 minerals are derived from their parent materials and can be present: 1) in 

the clay fraction along the profile of younger (less weathered) soils, or 2) strongly 

interlayered with Al in older soils, which decrease the cation exchange capacity by 

blocking exchange sites and provide greater stability, as reported by some works for the 

same region (BARBOSA et al., 2009; ZINN et al., 2007, 2016). In addition, weathered soils 

(e.g. Ferralsols) can contain up to 5, 17 and 5% of 2:1 minerals in the sand, silt and clay 

fractions, respectively (RODRIGUES, 1977). The first two fractions gently decreased their 

concentration with depth in the region (POPPIEL et al., 2019), and therefore, the 2:1 

minerals were reduced as well (Figure 4 right panels and Figure 5d). 
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Soil color allows to infer about the conditions of aeration and drainage of the soil 

and, consequently, of pedogenetic processes. Thus, red soils (hematite and goethite) are 

in well-drained interflows; yellow soils (goethite), on moderately drained slopes, and 

grey soils develop in poorly drained foothills. Mineralogical composition can be used to 

estimate the degree of weathering of soils, where the next sequence indicates an 

increasing degree of evolution (from younger to older): 2:1 < kaolinite < hematite < 

goethite < gibbsite. Thus, the majority of soil presented an advanced weathering degree 

with well drainage condition, developed in flattened or smoothed reliefs.  

4.2. Use of regression models for mapping soil properties 

As soil color and mineralogy are important proxies used to distinguish different soil 

types or to infer related soil attributes (ZHANG et al., 2019), they play an important role 

in soil cartography. Some studies have used reflectance spectroscopy (350–2500 nm) as 

input data to estimate the color and/or its mineralogy (ESCADAFAL et al., 1988; 

FERNANDEZ et al., 1987; MARQUES et al., 2019; MATTIKALLI, 1997; RIZZO et al., 

2016; SCHEINOST et al., 1998; SIMON et al., 2019), but only a small number of works 

mapped their spatial distribution. At the moment, Viscarra Rossel et al. (2010) performed 

one of the few studies on soil color mapping, where they accurately mapped (R2 ≅ 0.67) 

iron oxides and the color of Australian soil using reflectance spectra (350–2500 nm) and 

geostatistics.  

Studies on mapping the soil mineralogy such as Viscarra Rossel and Chen (2011), 

summarized the information content of spectra (350–2500 nm) by principal components 

to construct linear models, and map the mineral (the first three PCA scores) of Australian 

topsoils robustly (0.69 < R210cv < 0.85). Likewise, Viscarra Rossel (2011) measured the 

relative abundances of kaolinite, illite and smectite at 0–20 and 60–80 cm soil depths, 

using continuum-removed reflectance (350–2500 nm) to derive statistical models and 

map the minerals with good cross-validation results (0.40 < R210cv < 0.61). Malone et al. 

(2014) also used continuum-removed spectra (350–2500 nm) for the detection of iron 

oxides, kaolinite and smectite prior to mapping their spatial distribution in Australia, 

such as ordinal classes at fixed mineral abundance intervals, with overall accuracy 

ranging from 44 to 80%. Mulder et al. (2013) used reflectance spectroscopy (350–2500 

nm) to derive soil minerals, and multinomial logistic regression, for mapping the 

likelihood of “absence” or “presence” of kaolinite, mica and smectite with high overall 

accuracy (>0.74). Other studies (ROBERTS et al., 2019; DUCART et al., 2016; MADEIRA 

NETTO et al., 1997) used enhanced mineral mapping techniques to produce a thematic 

mineral map of soil using the spectral response of Landsat imagery. 

Our performance metrics were consistent with studies mentioned above, where 

most of them used scorpan model (MCBRATNEY et al., 2003) for DSM and reported a 

decline of prediction accuracy from calibration to validation, as summarized in Table 2. 

The unexplained part of soil variation in our study area can be due to two aspects. The 

first might be a limited number of sparse soil observations, with one site per ~2 km2 

(denser) to ~800 km2 (less dense) and ~600 km2 on average in the study area, as also 
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reported by Liu et al. (2020) when mapped the texture of Chinese soils using RF 

algorithm. This may be not sufficient to capture and describe short-range patterns of soil 

variation (HENGL et al., 2019). The second, and the most relevant for soil mapping and 

its cross validation, can be an uneven spatial distribution of observations (WADOUX et 

al., 2019). In large extent mapping, more landscapes are usually included with sampling 

sites not uniformly distributed over space. Figure 1 shows that the northwestern and 

northeastern portions of the study area had less soil observations than other parts. That 

is because: 1) the soil data, used in this study, was acquired by survey activities with 

limited funding, along different periods of time and without a statistical design, but 

purposive; 2) relatively smaller soil spatial variation in the northwestern and 

northeastern, developed over more uniform conditions of geology and relief, that were 

considered by our observations. 

Despite our dataset covered the main soil-landscape conditions across the study 

area, 10-fold cross validation was performed on uneven distribution of observations. 

This method selects 10% of total sites for validation, leading to relatively smaller number 

of data for modelling in the areas with sparse observations (LIU et al., 2020). In addition, 

although the model performances were robust for the whole extent, its prediction may 

have biased in local areas. 

The worse spatial prediction accuracy for chroma can be a consequence of a 

possible lower performance in their determination from spectra, since this Munsell 

component is influenced by the organic matter, which decreases in depth, where chroma 

model had a slightly better performance (R210cv = 0.38). In addition, Liles et al. (2013) 

reported that soils developed over sedimentary rocks, as most of our study area, showed 

an increasing in the coefficient of variation for Munsell chroma. Silva et al. (2020) found 

that the spatial variability of goethite was about twice higher than hematite in soils from 

the Western Paulista Plateau of Brazil, strongly influenced by the parent material. Thus, 

the lowest model performance for chroma may be related to effect of the density and 

locations of soil observations used for color predictions, combined with the high 

occurrence of sedimentary parent materials in the study area. 

The substitution of Fe by Al in goethite, that is greater than in hematite, ranging 

from 7 to 40% for Brazilian soils (SCHAEFER et al., 2008), may be produced their lower 

performance. This process cause less stability in the absorption feature of goethite 

(KOSMAS et al., 1984; SCHEINOST et al., 1998), and consequently lower prediction 

performances, especially at subsoil layers (R210cv = 0.24), where we had a relatively smaller 

number of soil samples. 

4.3 Influence of environmental predictors in soil color and mineralogy patterns 

Most influential covariates were important predictors of the soil color and 

mineralogy because they captured the soil spatial patterns at shorter distances or local 

variations (detail), and also at longer distances or regional variations (generalization) 

across different landscapes (HENGL et al., 2019). Therefore, SySY (soil), SyVI 
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(vegetation), DEM and derived relief attributes describe at detail the factors of soil 

formation, while temperature, precipitation and geological lineaments generalized their 

patterns (VISCARRA ROSSEL, 2011). Then we were able to spatialize our soil 

predictions from detailed to successively coarser levels of generalization in our study 

area. The impact of use multi-scale and -source predictors for modelling soil attributes 

was demonstrated by Miller et al. (2015). They reported that the parallel use of covariates 

at multiple levels of spatial representation for DSM, improved the model performance, 

promoting R2 increases of up to 70%. 

Advantages are being taking from the petabyte-scale Landsat datasets widely 

available within GEE (GORELICK et al., 2017). The covariates SySI and SyVI (Table 1) 

are examples of that benefits (POPPIEL, et al., 2019b), which provide improved proxies 

for describing several soil forming factors, e.g. s, o, p and a (MCBRATNEY et al., 2003). 

SySI can provide direct and interpretable information from Earth bare surfaces, from 

which inferences can be made about the main soil attributes, e.g. the soil color, 

mineralogy and texture, among others (DEMATTÊ et al., 2018; POPPIEL et al., 2019b). 

In a recently study, Roberts et al. (ROBERTS et al., 2019) robustly estimated the spectral 

response of the bare surfaces using the full temporal archive of Landsat images across 

Australia. The authors highlighted the broad application of the topsoil reflectance 

mosaic, which can be combined with machine learning for enhanced geological 

mapping, mineral exploration and digital soil mapping. Likewise, Post et al (POST et al., 

1994) reported a very strong correlation (0.68 < r < 0.85) between Munsell soil color 

measured with a colorimeter and Landsat reflectance on semiarid rangelands, where 

they precisely and accurately determined the color of bare topsoil using remotely sensed 

spectral data. 

When we examined individually the relevance of predictors for each soil attribute, 

we found that SySIBlue, SySIGreen and SySIRed, were the most important spectral bands to 

predict Munsell hue (from 12 to 47%), value (from 14 to 34%) and chroma (from 11 to 

26%), see Figure 6. This is because Munsell color system described different soil 

components with absorption features (due to electronic transitions) in the visible range 

between 380 and 780 nm (TORRENT et al., 1993), where the blue, green and red Landsat 

spectral bands are situated. The SySIBlue was by far the most important predictor for 

geothite (from 7 to 34%) and hematite (from 47 to 60%), followed by SySIGreen and SySIRed 

(between 8 and 22%). Goethite and hematite had stronger absorption features situated 

between the blue and red spectral ranges (Figure 4), with a weaker effect in the near-

infrared interval (KOSMAS et al., 1984; SCHEINOST et al., 1998). The SySISwir1 and 

SySISwir2 were important (from 9 to 37%) for gibbsite and kaolinite because they both 

exhibit molecular vibrations (involving stretching and bending) between ~1400 and 

~2300 nm (CLARK et al., 1990). Also, SySIBlue and SySINIR were important (from 11 to 

21%) for gibbsite and kaolinite, because these minerals are usually associated with iron 

oxides in tropical soils (SCHAEFER et al., 2008; SCHWERTMANN et al., 1989), which 

had spectral response between 380 and 1000 nm (KOSMAS et al., 1984; SCHEINOST et 

al., 1998). SySISwir2 was important (from 8 to 12%) for predicting 2:1 clay minerals, due to 
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their typical absorption features (by molecular vibrations) near 1900 nm (CLARK et al., 

1990). SySIBlue, SySIGreen and SySIRed also were highly important (from 7 to 21%) to predict 

2:1, since they usually were associated with iron oxides in soils of our study area 

(BARBOSA et al., 2009; ZINN et al., 2007, 2016). 

SyVI provides vegetation feedback dynamic patterns attributed to the differences 

in topsoil and subsoil conditions, across the rooting depth (POPPIEL et al., 2019b), that 

can help to distinguish, for example: 1) warmer and more rapidly drying sands, from 

colder and slower drying wet clays (LIU et al., 2012); 2) different levels of chemical soil 

attributes, such as pH and fertility (MAYNARD et al., 2017); among others. These soil 

conditions are all interlinked with other soil attributes (e.g. soil color and mineralogy) as 

a result of pedogenic processes (MCBRATNEY et al., 2003). 

Among the terrain attributes, elevation, topographic position index and slope were 

the most important covariates for modelling soil color and mineralogy. They control the 

water dynamic of the relief, which influenced the intensity of erosion, redistribution and 

sorting processes of soil particles (LIU et al., 2020). In addition to that, the density of 

geological lineaments strongly influenced the surface drainage density, soil texture and 

soil depth (DAS, 2019), which controlled the internal drainage through soil and the 

leaching rates (CURI et al., 1984). Relief attributes such as horizontal and vertical 

curvatures and aspect had relatively low importance, because they usually controlled 

local moisture, thermal conditions and short-range mass redistribution over landscapes 

(MCBRATNEY et al., 2003).  

Especially for gibbsite, the elevation of terrain was a very important predictor of 

their spatial patterns in our study area (Figure 6). According to the study of Reatto et al. 

(2008), the spatial variation of gibbsite in the Brazilian Central Plateau depended on two 

aspects. First, the spatial variability of gibbsite at regional levels was mainly related to 

the age (a) of the surface, since the higher the elevation, the greater the time the soils 

were exposed to weathering and hydrolysis process in tropical climate conditions, 

resulting in older soils (e.g. Ferralsols, Plinthosols) with a higher gibbsite content. 

Second, local spatial pattern of gibbsite was related to the local topographic position on 

landscape (r), where conditions that favored the percolation of water through the soil 

and the hydrolysis processes, presented greater amounts of gibbsite. These conditions 

on soil water and temperature regimes, also affect the genesis of iron oxides and organic 

matter oxidation rates, which strongly influence the soil attributes, such as color, 

aggregation of soil particles, the retention of cations and anions (SCHWERTMANN, 

1993). 

Climate conditions of relatively high annual temperature (> 20 °C) and 

precipitation (> 1000 mm) and low temperature changes in the study area lead to strong 

weathering of surface materials (Al, Si, Fe-rich) (SCHWERTMANN et al., 1989) and 

intensive silica leaching, that provided conditions for accumulation of specific mineral 

products (SCHAEFER et al., 2008), such as iron oxides that pigmented the soils 

(SCHWERTMANN, 1993). Using a similar approach, Ramcharan et al. (2018) found that 
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climate covariates, followed by elevation and satellite data derived from MODIS and 

Landsat, were the most important predictors for both soil property and taxonomic 

classes, across the United States. 

4.4. Comparison with legacy data and maps 

In this section, the most significant issue was but to account for the trend of spatial 

patterns between the data instead of measure the bias or error between predicted maps 

and legacy observations. We demonstrated that DSM using proximal and remote 

sensing data can reach realistic spatial representations of the soil. 

The spatial patterns of soil on our predicted maps were consistent with pedological 

expert knowledge of the region and with legacy data presented in Table 5. Predicted 

Munsell color was negatively correlated with total elements, especially with the Fe that 

reduced the hue (-0.18 ≤ r ≤ -0.35) and value (-0.39 ≤ r ≤ -0.53) of soil at the three depth 

intervals. Higher Fe, Al and Ti concentrations tend to darken the soils, by reducing the 

brightness and increasing the yellowness, redness, or brownness of soil 

(SCHWERTMANN, 1993). Chroma was poorly correlated with total elements and not 

entirely consistent at 60–100 cm depth, where was influenced by Fe (r = -0.30) possibly 

due to their worse spatial prediction accuracy (Table 2). These findings agreed with 

Simon et al. (2019), who reported negative correlations of hue and value with Fe (-0.25 ≤ 

r ≤ -0.37) and Al (r ≤ -0.64), and weak for chroma (r ≤ 0.06). The Munsell color’s spatial 

patterns from our maps were coherently correlated with the Munsell color from legacy 

observations (0.14 ≤ r ≤ 0.63), although the latter was determined visually in wet 

conditions. These relationships reinforce the accuracy and representativeness of our 

spatial predictions. 

Maps of soil minerals mostly were correlated with total elements of soil (0.20 ≤ r ≤ 

0.56), determined from clay fraction by sulfuric acid digestion method (Table 5). It was 

because Ht, Gt, Gb and Kt from Midwest Brazil are Fe and Al-bearing minerals (CURI 

et al., 1984). The correlations between predicted soil minerals and Ti (r ≤ 0.29) occurred 

because titanium probably was absorbed or incorporated into the crystal framework of 

iron oxides as impurities (SCHWERTMANN et al., 1989). Goethite showed correlation 

with Al in soils ranging from 0.1 to 0.33 (Table 5), likely because the yellower soils of the 

region contained more goethite (e.g. Xanthic and Haplic Ferralsols), which was found to 

have more Al-substituted than hematite (CURI et al., 1984; SCHAEFER et al., 2008). In 

addition, predicted iron oxides were inversely related with observed hue and value (-

0.24 ≤ r ≤ -0.46), suggesting that these two minerals (mainly hematite) reddened and 

darkened the soil color. Conversely, goethite, gibbsite and kaolinite tended to brighter 

the soil by increasing the chroma (0.11 ≤ r ≤ 0.32), as suggested in Figure 5 and Table 5. 

The correlations with Ti may be resulted from the ferralic (also ferritic) horizon of some 

Ferralsols and Nitisols developed from basalt in the study area (MELO et al., 2001; 

RODRIGUES, 1977). Ferralic horizons are rich in iron oxides (especially hematite), where 

the clay fraction can reach 5.3% of Ti-bearing minerals, mainly ilmenite and anatase 
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(SCHAEFER et al., 2008). Also, some Ti might be substituted in the kaolinite structure or 

surface-sorbed (MELO et al., 2001). 

Table 5. Verification of the spatial correspondence, based on Pearson’s correlation (p-

value < 0.05), between our predicted maps (at the three depth intervals) with legacy soil 

observations acquired from a national dataset (SAMUEL-ROSA et al., 2020), and 

weathering degree and hue, both inferred from a legacy soil class map of the study area 

(IBGE, 2017). 

Depth Legacy data  Our predicted maps 

(cm) Total elements1 n  HueN Value Chroma Ht Gt Gb Kt 2:1 

0–20 Fe2O3 225  -0.35 -0.39 0.10 0.39 -0.03 0.06 0.09 0.12 

Al2O3 878  -0.01 -0.12 0.05 0.09 0.10 0.25 0.25 0.01 

TiO2 782  -0.12 -0.16 0.03 0.11 0.04 0.13 0.06 0.19 

20–60 Fe2O3 124  -0.26 -0.39 -0.12 0.38 0.11 0.06 0.00 0.09 

Al2O3 729  -0.03 0.10 0.04 0.04 0.23 0.20 0.23 0.06 

TiO2 639  -0.27 -0.12 -0.03 0.20 0.28 0.10 0.14 0.07 

60–100 Fe2O3 174  -0.18 -0.53 -0.30 0.56 0.30 0.15 0.00 0.51 

Al2O3 532  -0.06 -0.04 -0.09 0.06 0.33 0.37 0.06 0.05 

TiO2 479  -0.06 -0.23 -0.14 0.22 0.29 0.14 -0.15 0.20 

 Munsell color2           

0–20 Hue number 230  0.53 0.38 -0.24 -0.39 -0.26 -0.01 -0.06 -0.10 

Value 230  0.32 0.37 0.01 -0.24 -0.07 0.06 -0.07 -0.18 

Chroma 230  0.01 0.02 0.16 0.01 0.23 0.32 0.15 -0.05 

20–60 Hue number 195  0.63 0.44 -0.11 -0.40 -0.30 0.02 -0.11 -0.02 

Value 195  0.48 0.46 0.03 -0.35 -0.32 0.04 -0.10 0.04 

Chroma 195  0.05 0.17 0.14 -0.04 0.11 0.24 0.19 0.13 

60–100 Hue number 143  0.35 0.46 -0.16 -0.44 -0.15 0.05 0.12 -0.06 

Value 143  0.42 0.58 -0.23 -0.46 -0.38 -0.06 0.09 -0.11 

Chroma 143  -0.01 0.05 0.19 -0.06 0.21 0.12 0.01 -0.12 

 Legacy soil map   

0–20 Weather. degree3 5k*  -0.38 -0.34 0.08 0.42 0.23 0.19 0.09 -0.02 

Hue number4 5k*  0.48 0.47 -0.10 -0.52 -0.27 -0.17 -0.05 -0.13 

20–60 Weather. degree3 5k*  -0.27 -0.35 0.03 0.40 0.35 0.17 -0.02 0.10 

Hue number4 5k*  0.39 0.47 0.03 -0.49 -0.42 -0.10 -0.03 -0.22 

60–100 Weather. degree3 5k*  -0.15 -0.38 -0.09 0.37 0.31 0.23 -0.03 0.02 

Hue number4 5k*  0.29 0.48 0.20 -0.47 -0.38 -0.18 0.00 -0.17 

1Fe, Al and Ti were determined from clay fraction by sulfuric acid digestion method; 2Munsell 

color of soil determined visually in wet conditions. We used the soil classes of the legacy soil map 

to infer a theoretical number sequence, according to the WRB (IUSS WORKING GROUP WRB, 

2015), for: 3weathering degree from 1 (less weathered) to 10 (more weathered), as follow 

Leptosols, Arenosols, Gleysols, Cambisols, Plinthosols, Acrisols, Nitisols and Ferralsols (Xanthic, 

Haplic and Rhodic); and 4Munsell hue number from 10 (redder, 10R) to 22.5 (yellower, 2.5Y), as 

follow Rhodic Ferralsols, Rhodic Nitisols, Plinthosols, Leptosols, Cambisols, Haplic Ferralsols, 

Haplic Acrisols, Arenosols, Xanthic Ferralsols, Gleysols. *5k: 5000 random points. n: numbers of 

observations or random points used for sampling the maps; HueN: Munsell hue number; Ht: 

hematite; Gt: goethite; Gb: gibbsite; Kt: kaolinite; 2:1: 2:1 clay minerals. 
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Low predicted Munsell hues (redder) and values suggested (-0.15 ≤ r ≤ -0.38) higher 

degrees of soil weathering inferred from a legacy map of soil classes (Table 3). Therefore, 

nearly 50% of the study area was dominated by weathered soils (Figure 7), such as 

Rhodic and Haplic Ferralsols (IUSS WORKING GROUP WRB, 2015), which presented 

high amounts of iron oxides that pigmented the soil color (reddened or yellowed) and 

absorbed the sunlight (darkened) (SCHWERTMANN, 1993). Higher relative 

proportions of predicted iron oxides and gibbsite correlated with higher theoretical soil 

weathering degrees (0.17 ≤ r ≤ 0.42) and lower theoretical Munsell hues (-0.10 ≤ r ≤ -0.52). 

Thus, we achieved accurate large extent soil maps because our models dealt with 

the complex relationships between factors of soil formation across the region, that were 

well-described by covariates at multiple resolutions. The linkage of our spatial 

predictions with legacy data provided a good correspondence at both local and regional 

levels, provided by correlations with soil observations that were relatively uniform 

spatial distributed and the associations with regionals patterns derived from a legacy 

soil map (IBGE, 2017). This map of soil classes at coarse 1:1,000,000-scale was performed 

several years ago by Brazilian government agencies, and is currently the best available 

pedological information covering the study area. 

5. CONCLUSIONS 

Reflectance spectra (350−2500 nm) can be used to accurately determine the Munsell 

color of soil and the relative abundance of hematite, goethite, kaolinite, gibbsite and 2:1 

clay minerals in tropical soils. Once the method was defined, only a few minutes were 

required for application of any of the steps described in 2.2 and 2.3 sections, apart from 

the time necessary for drying, grinding and sieving the soil samples. Sample mount in 

Petri dishes and measurement required only a short time and low-cost without chemical 

solutions, thus making the method suitable for use on a routine basis. We encouraged 

the soil scientists to implement and improve this clean technology into their research. 

The Random Forest models proved to be robust for mapping soil color and 

mineralogy (derived from spectra) at three depth intervals in Midwest Brazil. Validation 

showed high prediction accuracy for hematite (R210cv > 0.71), followed Munsell value and 

hue, gibbsite, kaolinite, 2:1 minerals and goethite at topsoil and subsoil (0.43 < R210cv < 

0.65). Munsell chroma at all depths had worse prediction accuracy (0.24 < R210cv < 0.38). 

The most relevant predictor of the spatial patterns of soil color and mineralogy at 

surface and subsurface in Midwest Brazil was the blue spectral region of satellite topsoil 

reflectance (SySIBlue) with 25% of global importance, followed by elevation, precipitation 

and temperature. These covariates are proxies of the soil forming factors s, c, r, p and a. 

More than 50% of the study area was covered by highly-weathered soils, where 

45% of soils had 31 to 49% of hematite accounting for 42% of soils with reddish hues 

between 2.5YR and 5YR. Nearly 56% of soils had 19 to 50% of kaolinite while 36% of 

weathered soils presented highest gibbsite contents between 9 and 29%. Traces of 2:1 

clay minerals (< 7%) were found resisting in most of soils in the study area (76%). 
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The soil spatial patterns on our predicted maps were consistent with pedological 

expert knowledge of the region and with legacy soil observations and legacy soil class 

map. Therefore, we have proven that large-extent DSM at a fine resolution using 

proximal and remote sensing data can reach realistic spatial representations of soil color 

and mineralogy in tropical conditions. 

6. APPENDIX A 

Figure A1 exhibits the predicted vs observed scatterplots of 10-fold cross-validation 

derived from optimized models for Munsell hue number, value and chroma, goethite, 

hematite, kaolinite, gibbsite and 2:1 clay minerals at three depth intervals (0−20 cm, 

20−60 cm and 60−100 cm). 
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Figure A1. Predicted vs. observed (a) hue number, (b) value, (c) chroma, (d) 

goethite, (e) hematite, (f) kaolinite, (g) gibbsite and (h) 2:1 clay minerals by 

depth interval of 10-fold cross-validation. 
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CHAPTER 3 –– 250 M-GRIDDED SOIL TEXTURE AT MULTIPLE DEPTHS OF 

MIDWEST BRAZIL3 

 

ABSTRACT 

The dataset provide relevant gridded soil information of a large-extent area located in 

Midwest Brazil. This region is the largest and most recent agricultural frontier in Brazil 

that lacks of accurate and up-to-dated soil information to support current agricultural 

and environmental demands. Soil data was delivered as multiband GeoTIFF files at 250 

m resolution, which comprise spatially continuous predictions of clay, silt and sand 

contents in g kg-1 at 0–20 cm, 20–60 cm and 60–100 cm (rooting) depth intervals. The 

spatial predictions were performed using soil observations at more than 7,000 locations 

and 33 Earth observation based covariates by Random Forest regression models into 

Google Earth Engine. 

Keywords: soil texture; pedometric mapping; multi-depth; soil management; soil 

services.  

                                                 
3 Data Article published in Data Mendeley, 28 January 2020, 

http://dx.doi.org/10.17632/52cfcm3xr7.4 
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1. TABLE OF SPECIFICATIONS 

 Subject Earth and Soil Sciences 

Specific 

subject area 

Pedometry, Pedology, Soil Geography, Geology, Soil 

Management, Ecology 

Related 

research article 

Chapter 1 – Mapping at 30 m Resolution of Soil Attributes at 

Multiple Depths in Midwest Brazil 

Type of data Raster maps containing soil clay, silt and sand contents. 

Data source 

location 

Soil maps covered Midwest Brazil, from 12° S to 20° S and from 45° 

W to 54° W. 

Data 

accessibility 

Repository name: 250 m-gridded soil texture at multiple depths of 

Midwest Brazil 

DOI: 10.17632/52cfcm3xr7.4 

Link: http://dx.doi.org/10.17632/52cfcm3xr7.4 

Description of 

data collection 

We aggregated soil clay, silt and sand data from 7,908 sites of the 

Brazilian Soil Spectral Library and 231 of the Free Brazilian 

Repository for Open Soil Data. We predicted values at 0-20 cm, 20-

60 and 60-100 depth intervals using 33 soil covariates and Random 

Forest modelling-based optimization in Google Earth Engine. 

Native resolution of 30 m was reduced to 250 m by computing the 

mean values. 

Data format Multiband, integer GeoTIFF 

Spatial 

resolution 

250 meters 

Unit g kg-1 

Valid range 0–1000 

Band: name: 

Band1: claygkg_0_20cm 

Band2: siltgkg_0_20cm 

Band3: sandgkg_0_20cm 

Band4: claygkg_20_60cm 

Band5: siltgkg_20_60cm 

Band6: sandgkg_20_60cm 

Band7: claygkg_60_100cm 

Band8: siltgkg_60_100cm 

Band9: sandgkg_60_100cm 
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2. VALUE OF THE DATA 

 The gridded soil data is important because, under current conditions, there are 

no soil texture maps with complete coverage of Midwest Brazil. Spatially 

continuous soil texture at topsoil and subsoil will subsidize public policies in 

rural and urban areas, at regional, state and municipal levels, among other 

applications. 

 Data will bring numerous benefits to society as a whole, especially farmers and 

agricultural companies, to evaluate the locations most suitable for farming and 

delineation of soil management zones. Also supporting scientific community, 

governments and creditor banks. This data will provide an invaluable legacy for 

Brazil. 

 Spatial soil data can be used as input in biological-chemical-physical modelling 

and in assessments of dynamic environmental processes. 

 Coupled with other information, the maps can be used to improve decision 

making, to evaluation the price of land for purchase and sale, increase crop and 

livestock production and help to reduce investments risk and planning for 

environmental conservation. 

 The gridded soil information can also guide future soil surveys for inventory 

programs. 

3. DATA 

The raster maps, available for download from the repository of Mendeley 

(http://dx.doi.org/10.17632/52cfcm3xr7.4), were divided into 12 tiles, each one with 2 x 3 

degree in size and 0.1 overlapping degree, according to Figure 1. Each raster tile at 250 

m resolution is delivered as integer GeoTIFF format. Each GeoTIFF file holds nine bands 

with specific information of soil clay, silt and sand contents in g kg-1 at 0-20 cm, 20-60 cm 

and 60-100 depth intervals, as illustrated in Figure 2. 
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Fig. 1. Location of the soil dataset and reference grid with the identification of 

the tiles. 
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Fig. 2. Example of a single raster tile showing the information contained in each 

pixel at 250 m resolution. 

4. MATERIALS AND METHODS 

Raster maps of soil texture were produced by Poppiel et al. (2020) using soil 

observations at more than 7,000 locations from the Brazilian Soil Spectral Library 

(DEMATTÊ et al., 2019) and the Free Brazilian Repository for Open Soil Data (SAMUEL-

ROSA et al., 2020). Soil texture was predicted using 33 Earth observations based 

covariates and Random Forest (RF) regression (BREIMAN, 2001). Regression models 

were optimized by tuning RF hyperparameters (PROBST et al., 2019) in R software. 

Optimal models, with the lowest error in the 10-fold cross-validation step, were used to 

predict soil clay, silt and sand at three (rooting) depth intervals by RF within Google 

Earth Engine (GORELICK et al., 2017). The predicted maps had coefficient of 

determination of 10-fold cross-validation for clay, silt and sand ranging from 0.64 to 0.85. 

The native resolution (30 m) of the maps was reduced to 250 m by comtupting the mean 

values. We designed a reference grid to tile the large raster maps into small, manageable 

areas (Tiles) that were stored in the repository of Mendeley provided in this data article.  
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GENERAL CONCLUDING REMARKS AND FUTURE OUTLOOK 

Physical and chemical soil attributes derived from traditional analysis, and soil 

color and mineralogy derived from laboratorial reflectance spectra (350–2500 nm), 

collected at three depth intervals (0−20, 20−60 and 60−100 cm), can be mapped at 30 m 

resolution using pedometric techniques and multi-resolution covariates with consistent 

spatial predictions in Midwest Brazil. Texture maps from this research publicly available 

will be a valuable information for future studies. 

The best model performances at topsoil and subsoil were obtained for sand, clay, 

hematite, Munsell value and hue, and the worst were obtained for silt, cation exchange 

capacity and Munsell chroma. The most relevant covariates for predicting soil attributes 

were elevation, bare topsoil reflectance, climate and vegetation reflectance. 

Under current demands, it is very important to look for new approaches and 

systematizations for the mapping of Brazilian soils, considering that the last innovative 

proposal was performed several decades ago with the RADAMBRASIL (Radar on 

Amazon and Brazil) project using radar images. This thesis shows that the integration of 

covariates based on remote sensing data with soil observations by mean of machine 

learning algorithms is a robust framework for DSM. This innovative framework will 

contribute greatly to achieve a better level of knowledge at a national scale of important 

soil attributes, that are essential (key) for soil classification, management and 

conservation. 

Future studies should be performed using recent multispectral and radar sensors, 

like those onboard the Sentinel satellites, or hyperspectral instruments like Hyperion, 

that provides detailed spectral absorption features (242 spectral bands) of Earth surface 

with 30 m resolution. Hyperspectral sensors probably are the future of remote sensing. 

New covariates for soil predictions may be produced by mining data from a single 

sensor or from the integration of multiple sensors (at multiple resolutions). Special 

attention should be paid to the thermal infrared spectral bands. 

For DSM purposes, soil reflectance spectra (350–2500 nm) need to be evaluated for 

further information about suitable spectral absorption bands for practical determination 

of soil minerals, e.g. by assessing different spectral bands at different Al-substitution 

percentages for mineralogical determination. The medium infrared spectral range 

should also be considered for soil evaluation, since this spectral range can provide 

information about soil geneses and weathering degree, among other valuable 

pedological information. 
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