
Master's Dissertation

Hybrid Control of a multi-agent UAV
�eet for Formation Flight with Dec-POMDP

Bruno Rodolfo de Oliveira Floriano

Brasília, December 2019

UNIVERSITY OF BRASILIA

TECHNOLOGY FACULTY



UNIVERSITY OF BRASILIA

Technology Faculty

Master's Dissertation

Hybrid Control of a multi-agent UAV
�eet for Formation Flight with Dec-POMDP

Bruno Rodolfo de Oliveira Floriano

Report submitted to the Electrical Engineering

Department as parcial requirement to obtain

the degree of Master in Electronics and Automation Engineering

Examination Board

Prof. Geovany Araújo Borges, ENE/UnB

Advisor

Prof. Henrique Cezar Ferreira, ENE/UnB

Advisor

Prof. João Yoshiyuki Ishihara, ENE/UnB

Internal examiner

Prof. Thiago Felippe Kurudez Cordeiro,

FGA/UnB
External examiner

Prof. Renato Alves Borges, ENE/UnB
Alternate examiner



FICHA CATALOGRÁFICA

FLORIANO, BRUNO RODOLFO DE OLIVEIRA

Hybrid Control of a multi-agent UAV �eet for Formation Flight with Dec-POMDP

[Distrito Federal] 2019.

728/19, 52p., 210 x 297 mm (ENE/FT/UnB), Mestre, Dissertação de Mestrado -

Universidade de Brasília. Faculdade de Tecnologia.

Departamento de Engenharia Elétrica

1. Hybrid control 2. Formation �ight

3. Dec-POMDP 4. UAV �eet

I. ENE/FT/UnB II. Título

REFERÊNCIA BIBLIOGRÁFICA

FLORIANO, B. R. O. (2019). Hybrid Control of a multi-agent UAV �eet for Formation Flight with

Dec-POMDP. Dissertação de Mestrado em Engenharia Elétrica, Publicação PGEA.DM - 728/19

Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF, 52p.

CESSÃO DE DIREITOS

AUTOR: Bruno Rodolfo de Oliveira Floriano

TÍTULO: Hybrid Control of a multi-agent UAV �eet for Formation Flight with Dec-POMDP

GRAU: Mestre ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de

mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e cientí�cos.

O autor reserva outros direitos de publicação e nenhuma parte dessa dissertação de mestrado pode

ser reproduzida sem autorização por escrito do autor.

��������������-

Bruno Rodolfo de Oliveira Floriano

SQS 209 Bl C Ap 105, Asa Sul

70.272-030 Brasília - DF - Brasil



Dedication

Dedico este trabalho aos meus pais, Lúcia e Juscelino, ao meu irmão, Vinícius, e à minha

namorada, Jéssica.

Bruno Rodolfo de Oliveira Floriano



Thanks

I would like to thank my family for all the support provided during the period of intense

studies and work on this dissertation. Also to my girlfriend Jessica for the great support

and comfort at all the di�cult moments. To my advisors Geovany and Henrique who

always provided me with good advises both technical and personal. Finally, to all my

friends at the university for the moments of necessary distractions.

Bruno Rodolfo de Oliveira Floriano



RESUMO

Voo em formação e controle cooperativo de múltplos VANTs têm sido áreas de estudo de grande

interesse das pesquisas mais recentes. Enquanto diversos métodos estão sendo criados para ras-

treamento �no de referência e formação, muitos empecilhos ainda precisam ser superados tais

como descentralização, comunicação con�ável, divisão de tarefas, evitamento de colisões e autono-

mia. Neste cenário, este trabalho propõe um sistema de controle híbrido para ser usado no voo

em formação de múltiplos VANTs de asa-�xa, aumentando a performance e e�ciência do grupo

por permitir que este planeje e controle a frota através de comandos discretos e contínuos. Para

contornar o problema da centralização, o método de planejamento Dec-POMDP foi utilizado, de

modo a evitar a con�abilidade em um nó central de tomada de decisão, como um líder ou uma

estação em terra. Através do uso deste algoritmo, este método também considera transições e ob-

servações estocásticas para permitir uma tomada de decisão e�ciente mesmo em ambientes ruidosos

e incertos. Além disso, a implementação deste sistema em uma malha externa permite reduzir o

tempo computacional. Através de simulações, o sistema proposto como uma topologia chaveada

entre a política Dec-POMDP e controles PID foi comparada com outros métodos da literatura e

apresentou uma performance satisfatória para o voo em formação.

ABSTRACT

Formation �ight and cooperative control of multiple UAVs has been areas of studies of great

interest by the most recent researches. As many methods are being created to make �ne reference

and formation tracking, collision avoidance and disturbance rejection, many trammels are still

necessary to be overcome such as decentralization, reliable communications, task division, obstacle

avoidance and autonomy. In such scenario, this work proposes an hybrid control system to be used

in formation �ight of multiple �xed-wing UAVs, increasing the group performance and e�ciency

by allowing it to plan and control the �eet by using both discrete and continuous commands.

To overcome the centralization problem, the Dec-POMDP planning method is used, in order to

avoid the reliability on a central decision node, such as a leader or a ground station. By using such

algorithm, this approach also considers stochastic transitions and observations to allow an e�ective

decision making in noisy and uncertain environments. Also, the implementation of such system in

an outer loop allows to reduce the computational time. Through simulations, the system proposed

as a switching topology between the Dec-POMDP policy and PID controls was compared to other

methods in the literature and has presented satisfactory performance for formation �ight.
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Chapter 1

Introduction

1.1 Contextualization

Thanks to the great advances in electronic researches in the last few decades, there's been

a fast and continuous increase in computational capacity, which consequently allowed for the

development of powerful embedded technologies [1, 5, 6]. Such improvements have made possible

to create complex and robust control algorithms that can be used in real scenarios, bringing a high

number of possibilities of usage. One of the major applications to bene�t from such progress, is

the development of �ying vehicles such as unmanned aerial vehicles (UAV).

UAV is a type of aerial vehicle, such as a �xed-wing aircraft (airplane), a quad-rotor, an

helicopter or any other vehicle that can �y, that doesn't require a human pilot on board. For an

e�ective �ight, this kind of system requires well constructed algorithms that deal with all parts

of the vehicle's control, such as the path planning, the non-linear aerodynamics and the obstacle

avoidance. If well built, such systems can be quite versatile, and thus might be used in many

di�erent applications including military, video and photography, package delivery, surveillance,

target tracking, tra�c monitoring and many others [1, 7, 8].

Those systems are now not only trustworthy but also commercially available, thanks to the great

technology advance. Indeed a great number of these examples can be found today as companies,

governments, civilians and researches are building or using such vehicles in their daily routines.

The company Amazon.com, Inc., e.g. made their �rst air delivery in December 7th, 2016 1with

the quad-rotor shown in Fig. 1.1 . Not to mention the numerous models of quad-rotors available

for video and photography at a wide range of prices, such as the ones sold by the Chinese company

DJI. Figure 1.2 shows the Mavic Air, one of their products 2.

As each individual vehicle becomes more advanced and less costly, the scienti�c research looks

for novel ways of extrapolating such technology in order to obtain the better and most e�cient

use of it. As for the unmanned aerial vehicles (UAVs), the �ight of multiple units is one the most

notable enhancement that is being researched [5, 8].

1https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
2https://www.dji.com/br/mavic-air?site=brandsite&from=nav
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Figure 1.1: Amazon's quad-rotor for package delivery (Source: 3)

Flying more than one UAV at the same time may have many advantages with respect to only

a single vehicle. For example, the area that can be covered with a numerous �eet is signi�cantly

larger than what can be detected with a lonely agent. This allows for a larger and more accurate

visual recognition, mapping or target detection, which can be used, e.g. for geographical research,

data collection, surveillance and etc [3].

Another possibility that comes with a multi-agent group is task di�erentiation [9]. Some

situations require that many tasks are performed in order to accomplish a given goal, which can

be processed ine�ciently, or even impossible to be performed, by a single unit. On the other hand,

a group of UAVs can be separated with respect to tasks and therefore perform all of the mission

requirements. For example, task di�erentiation can be used in rescue missions: one vehicle can

search for humans that need assistance while another one acts to aid each person detected by the

�rst one.

Finally, even if the goal doesn't require di�erent tasks, a multi-agent �eet can add redundancy

to a given mission, such that a vehicle can substitute another in the case of a downfall or a

communication lost. This is useful and necessary in military scenarios, for example [8].

For those goals and advantages to be fully harnessed in a formation �ight, one should consider

several di�erent objectives in the �ight planning, including the tracking of a global and known

reference, the desired geometric pattern of the formation, the collision avoidance between vehicles

or with an external obstacle, the communication and sensors noise robustness and many other

factors [1]. To perform such tasks, it's necessary to have e�ciency in both control and planning

algorithms.

3https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
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Figure 1.2: DJI's quad-rotor called Mavic Air (Source: 4)

1.2 Motivation

The Aerial Robotics Laboratory is a facility of the University of Brasilia (UnB) responsible for

many researches, developments and implementations related to UAVs. A picture of the laboratory

is show in Fig. 1.3. In the lab, researchers and students work with unmanned helicopters, quad-

rotors, articulated bi-rotors and, mainly, �xed-wings aircraft.

There are a total of 9 di�erent �xed wing UAVs of 4 distinct models. The main platform that

is currently being developed is based on the Volantex RC Ranger EX model 5, shown in Fig. 1.4.

There are a total of 5 units of this plane, in which 3 are available for the formation �ight project.

The embedded system that will be on board of these planes and its interconnection can be

visualized in Fig. 1.5. It is composed mainly by a digital autopilot Pixhawk 2 (with a built in

inertial measurement unit - IMU), a central processing unit (CPU) Gumstix Overo, a modem for

communications among agents microhard Pico Series P900 and a precise GPS system Here+ RTK

GPS.

The autopilot has several speci�c commands that allows that a regular �ight may already be

performed even without any external processing unit. There are many di�erent forms to program

a speci�c �ight, with the aid of a Ground Control Station (GCS) provided with a suited �ight

software, such as Mission Planner 6. However, due to the scope of the project and the �nal aim

in getting a whole �eet to �ight in formation, an external CPU is required to better deal with

communications with other vehicles, as well as to compute more dynamic and complex control

functions.

The connections of the modules are built as follows: the communication modem change data

4https://www.dji.com/br/mavic-air?site=brandsite&from=nav
5https://www.volantexrc.eu/volantex-rc-ranger-ex-long-range-fpv-uav-platform-unibody-big-weight-carrier-

v757-3-pnp-p-224.html
6http://ardupilot.org/ardupilot/index.html
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Figure 1.3: UnB's Aerial Robotics Laboratory

with other vehicles with the same device. Those data are sent to (or taken from) the CPU which

processes those information. As a given command is necessary for the �ight algorithm within

the CPU, it is sent to the autopilot, which then performs it by sending a response to the motors

(throttle, aileron, rudder or elevator). As the plane change its position and attitude, the sensors

(accelerometer, gyroscope and etc.) and GPS update their status, sending them to the autopilot.

The autopilot, in its turn, will close the loop by sending the UAV data to the CPU to process.

A human pilot has access to the autopilot through a specif radio controller system in case some

emergency command should be performed.

Hence, the Aerial Robotics Laboratory has appropriate equipment and structure to build a real

system of multiple �xed-wings UAVs to �ight in formation and test in practice the algorithms for

planning and control.

1.3 Objectives

This work's objective is to develop a novel outer loop hybrid control system to be used in a

multiple �xed-wing UAV �eet in order to achieve a decentralized formation �ight. By adopting

the hybrid approach, the system might be bene�ted from the �ne reference tracking made possible

by a continuous controller such as a PID set, and also have an e�cient decentralized decision

making in unusual situations by a Dec-POMDP policy, even in a noisy environment and without

any collisions. The use of high-level actions can decrease the number of states and, therefore,

improve the computational time of the optimization solving. Similar to [10], this system might

take the advantages that come with both continuous and discrete controllers and, therefore, be

most e�cient than an individual method.

Ultimately, this algorithm should be able to appropriately track a global reference in a given

formation structure also taking into account an uncertain environment with noisy communications

as well as considering collision avoidance. Simulations should be performed in order to test the

4



Figure 1.4: Fixed-Wing UAV Ranger EX (Source: 7)

system to validate its performance and compare it to other approaches found in literature. The

�nal goal is to implement this control system in the real �eet of the Aerial Robotics Laboratory to

perform a real �ight.

1.4 Results

Through simulations performed, the proposed hybrid system was validated and compared to

other methods in the literature. To test the e�ciency of this method in di�erent UAVs, two

distinct models were used with our algorithm, showing results that are comparable to the existing

algorithms in the literature. Furthermore, the system was tested with distinct references and

formations and managed to appropriately track them.

Due to the lack of a theoretical model of the real UAVs, this system was still not able to be

implemented in practice. However, it was properly built to �t di�erent models and, as such, the

real �ight is a suggestion for future works once the model de�nition is concluded.

1.5 Dissertation organization

This dissertation is organized as follows: Chapter 2 shows a literature review of the most

recent works on formation �ight, specially with decision-making algorithms such as POMDP and

its extensions. Chapter 3 describes the methodology used to develop the proposed algorithm.

Simulated results are discussed in Chapter 4, followed by the conclusion remarks in Chapter 5.

The appendix contain complementary materials.

7https://www.volantexrc.eu/volantex-rc-ranger-ex-long-range-fpv-uav-platform-unibody-big-weight-carrier-

v757-3-pnp-p-224.html
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Figure 1.5: Embedded System of the plane
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Chapter 2

Literature Review

2.1 Introduction

In recent years, many researches in the �eld of aerial robotics have been conducted in order

to built di�erent control techniques and planning algorithms to accomplish an e�ective �ight that

might suit one of the many applications described in Chapter 1. Those include, for example, con-

sensus and synchronization methods to deal with communications problem such as noise, stochastic

information and dynamic topologies; formation strategies such as leader-follower, virtual structure

and behavior based to account for the desired group management and reference tracking; and

optimization and estimation systems such as Kalman �lters, to deal with the better performance

for a given application [5, 11].

2.2 Consensus and synchronization

Flying in formation with multiple UAV units requires a consistent knowledge of the world

states, as well as the information about the other vehicles [1]. Knowing with precision the data

that surrounds a given agent, as well as its own internal data, allows the embedded control system

to act accordingly and consequently it can re�ne the control output, avoid the collision with

other agents, diversify the tasks allocation and many other possibilities depending on the mission

requirements.

For those reasons the consistency of the information between the vehicles in the group is of

great importance in formation �ight and other types of missions with multiple units. Therefore,

the agents should be able to update the status of the states it sees by communicating with its

counterparts. That is the main concern for the consensus and synchronization techniques.

However, communication is not often available or robust enough such that all the vehicles have

the precise data from all the other ones in the group. Indeed, those data might be corrupted

by noise and disturbances which is not unusual in �ying scenarios due to atmospheric noise and

limited embedded communication systems. For that reason a consensus algorithm deals with the

7



most e�ective way of converging a given state, in the perception of all the agents, by exchanging

information with the vehicle's neighbor.

2.2.1 Graph Theory

One of the main models to represent the agent's communication topology is by using the graph

theory [5]. As it depicted in Fig. 2.1, a directed graph is de�ned by a set of nodes, ν = {1, . . . , N},
representing the N agents in the group, and by a set of edges, ξ ⊂ ν × ν, composed by the

combinations of two nodes representing the communications between two vehicles. In this de�nition

it is possible that a vehicle receives data from another but the opposite case might not be true,

that is why it is de�ned as a directed graph. On the other hand, an undirected graph is a special

case of the previous in which each edge represents the mutual transmission and reception between

two nodes.

Furthermore, it is also possible to weight each edge by giving it a particular value. It might

be done through the adjacency matrix C = [cij ] ∈ <N×N such that the element cij weights the

relevance of the communication that vehicle j sends to i. This allows the system to account for

a particular connection to be stronger (i.e. more reliable) than the others, to be weaker or even

nonexistent (cij = 0).

2.2.2 Consensus Algorithm

Usually, the consensus algorithm used to update a given state, s(t), is modeled through a

di�erential equation that imposes the dynamics of the synchronization law of the vehicles' com-

munication [1]. The most used equation to represent that dynamic is

Figure 2.1: Communication directed graph (Source: [1])

8



ṡi(t) = −
N∑
j=1

cij(t)(si(t)− sj(t)), i = 1, . . . N, (2.1)

in which, si(t) is the information state as seen by the i-th vehicle at time t and cij(t) is the

corresponding (i, j) element of the adjacency matrix at time t. By assuming this element to be

time-varying, one includes the case in which the communication topology of the group is also time-

varying and, therefore it can change in a single �ight due to a wide maneuver, a communication

loss and etc. The Eq. 2.1 also shows that the information update of each vehicle tends to follow

the data of its neighbors (weighted for each communication link). To model a similar update law

for discrete signals, a di�erence equation should be used instead [1].

The consensus and synchronizations methods extend beyond that, studying the conditions

for convergence or also including analysis for time delays in the communication, stochastic data,

switching topologies, asynchronous updates and many other cases [1, 12].

2.3 Formation control

After dealing with the communication system through a consensus algorithm, the formation

control should be designed in order to achieve an e�ective formation �ight. Indeed the system that

manages to take the whole group to a given formation, either a static or dynamic one, while tracking

a global reference or avoiding obstacle, is one the most challenge to be studied and implemented

as it includes many characteristics.

The main objective of such system can be resumed in taking all the N agents of a group of

vehicles (in this work, UAVs), to form a particular geometric pattern, which can be either �xed or

time-varying. Assume, for example, a group of N = 4 agents, as depicted in Fig. 2.2, represented

by the black circles. The formation objective in this case is to take all of the vehicles to form the

geometric pattern of a diamond. The reference point of the formation might be chosen depending

on the situation: it may be one of the agents (a leader for instance) or a global reference. In this

case, it is the central cross that marks the center of the diamond. Therefore, the formation control

strategy should be able to take each individual to its particular position in the formation, here

represented as the white circles. Also depends on the strategy (and the mission requirements) to

determine if any vehicle is able to �ll any vertex, or if each one has its own particular goal.

Although that is the primary goal of a formation �ight control system, it should be noted that

there are several other objectives that are of equal importance such as to avoid the obstacles that

might be on the route of each agent, to avoid the collision among vehicles, not to mention a speci�c

mission objective such as target tracking, area coverage, data collection and etc.

To accomplish those goals, several methods have been developed, simulated and tested in the

last decades. The main classi�cations of such algorithms can be divided into the leader-follower

strategy, the behavior based method and the virtual structure based approach [13].
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Figure 2.2: Formation desired as a geometric pattern

2.3.1 Leader-follower strategy

The leader-follower strategy is one of the most used techniques to control a given group of

vehicles (not only UAVs) [8]. Due to its easy implementation this approach has been the most

popular to be studied in the multi-vehicle formation problem. However, this method has some dis-

advantages such as the communication reliability and redundancy issues, which might be mitigated

by some of the leader-follower variations.

The main principle of the this strategy is that, from the N agents that compose the group,

one of them is designated to be the leader. It will be the one to receive the global reference to be

followed. The other agents, designated as followers, will have to communicate with the leader to

receive its position and then track a speci�c distance from it.

The easiness of such strategy relies on the fact that only one agent must possess the main

information (the global reference) and the others should only follow it by receiving the data from

the communication system. It makes the system not only simple to be implemented but also

scalable, once the addition of more agents requires only the direct knowledge of the leader status

[14].

However, such ease comes with some drawbacks. The �rst one is the communication reliability:

the followers have a high dependency on the information that is been transmitted from the leader.

If there is some failure in the communication system, or even noise at the transmission channel,

the only reference of the followers is corrupted and then they might get lost. This is speci�cally

important in the UAV case, once the environment in which the agents will be acting is very noisy

and uncertain.
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Another possibility to take into account is the redundancy: consider the case in which the

leader is somehow lost (the vehicle was turned o�, shot at or simply stopped responding). If this

is the case, similar to what was previously mentioned, the followers are now lost, once the only

reference they have is not sending the data they need to keep track of its tasks. Therefore, the

group lacks of redundancy.

To take those problems into consideration some extensions of the classic leader-follower method

have been developed. The �rst one is the virtual leader in which the leader is not one of the N

agents, but a common virtual reference [7, 15]. In this approach, all of the vehicles have a global

position knowledge that represent a reference point to guide them in their �ight. By adopting

such method, the �eet can minimize the communication dependency and also can improve its

redundancy robustness.

The virtual leader is the main variation of the leader-follower method due to the balance

between ease of implementation and communication and redundancy robustness. For those reasons

it was chosen for this work.

There were still a few other extensions of the leader-follower strategy such as the implicit leader

[8]. In the method proposed by He et al., there is no explicit leader, i.e. the followers don't have the

information of which agent is a leader, whereas it only relies on the proposed consensus algorithm

that models the information exchange between vehicles to know the reference. Also, in this method

the leaders are dynamic, which means that each vehicle can be a leader depending on the situation.

By itself, the dynamic leader method is another strategy in the leader-follower scope of algorithms.

2.3.2 Behavior based method

The behavior based method consists of assigning each robot several tasks (or behaviors) to be

accomplished [7]. Then, the group general performance will be a weighted result of all the behaviors

contributions. This method is particularly interesting for its ability to accomplish multiple tasks at

the same time (which might be desirable depending on the mission goals) as well as its possibility

to respond to fast environmental change [16].

However, many disadvantages make this strategy undesirable to be implemented in many cases.

The �rst inconvenience is that it requires individual prede�ned behaviors [16]. This condition

weakens the scalability of such systems, once each new individual should be assigned a speci�c

behavior. In addition, the individually of such behaviors makes it di�cult for the formation to

achieve stability. Indeed the converge itself of the group state may be hard to be mathematically

guaranteed [7].

As it will be seen further, by using decentralized decision making algorithms such as the Dec-

POMDP, a certain degree of individual behavior might be added to a �ying system (therefore,

maintaining some of the advantages of the behavior based method) while still using a virtual

leader and followers approach (and also keeping scalability and improving the stabilization).
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2.3.3 Virtual structure based approach

In the virtual structure based approach, the whole group is modeled as a single entity, in which

the tasks and behaviors rely on [7]. Therefore, each individual is designed to keep coordination

in respect to the group task. This method is better suited for scenarios in which the group is

determined to follow a very close and unchangeable structure.

One the other hand, the rigidity in the formation has the inconvenience of the lack of �exibility.

Thus, if there is an obstacle of some sort in the environment, or if the formation is somehow required

to change, than this strategy may not guarantee the �exibility to do so. For those reasons the

virtual structure approach is not usually chosen to guide groups of UAVs.

2.3.4 Lyapunov Arti�cial Potential Function

While those methods dictate the relations between each individual and its role in the group,

a more speci�c control technique is required in order to actually drive the agents to their relative

position in the formation, accordingly to what was previously stated to be the concrete goal of

the formation control. One of the most used methods to do that, which might be implemented

alongside one the previous strategies, is the Lyapunov arti�cial potential function [17].

A potential function, either arti�cially created or not, is a function that weights the capability

of a system, given a speci�c state, to generate or retain energy. For instance, the gravitational

potential energy function weights the magnitude of energy that an object has given its current

altitude. As it drops, and consequently loses height, so as the potential function drops until it gets

to its minimum value.

The arti�cial potential function, in its turn, tries to mimic the natural behavior of those kind

of energy functions in order to achieve a certain goal by trying to reach the point of minimum

potential. Then, let V (x1, . . . , xN ) be an arti�cial potential function of the vehicles' positions, xi.

It should be arti�cially designed such that it achieves its minimum value when all of the agents

are at their desired points in the formation. If the target distance between two agents i and j is

given by x̄ij , then the Lyapunov arti�cial potential function can be implemented as

V (xi, . . . , xN ) =
1

4

∑
{i,j}

(
||xi − xj ||2 − x̄2ij

)
, (2.2)

such that, if ||xi−xj || = x̄ij for all i and j, than the function V will be equal to zero, the minimum

possible value. The absolute values within Eq. 2.2, associate with the squares operands, make sure

that the function is always non-negative which leads to the possibility of stabilization.

The potential function stated in Eq. 2.2 models the desired behavior of the vehicles with respect

to the target formation to be achieved. However, in order to actually drive the group towards the

speci�c geometric pattern the vehicles should be controlled through a function that actually leads

them to the point of minimum potential. To achieve that it is determined that the control input

ui of the i-th agent is obtained through
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ui = ẋi = −∇xiV (xi, . . . , xN ), (2.3)

in which the gradient operand ∇xi is done with respect to each agent position xi. The idea behind

this operation is that it creates a vector �eld that, when added the negative sign, points in the

direction of the decreasing potential function. This way the input of each vehicle will drive its

position to the point of minimum arti�cial energy which was modeled to be exactly at the target

formation.

By using a model that implements a similar arti�cial potential function, the group can be driven

to the target position just as a natural system seeks for the point of minimum energy consumption.

Indeed this idea can be implemented even with obstacles, i.e. the system sees a detected obstacle

as a point of very high (possibly in�nite) potential which then should be avoided (or by using a

positive gradient in order to create a vector that points away from the obstacle).

While very robust and re�ned, the arti�cial potential function method still has some issues.

The �rst one is that the stabilization in the point of global minimum can not be guaranteed, once

the implementation might trap the system in a local minima [7]. This leads to a converge problem

that might be di�cult to overcome. Another issue with this method is the communication required

in order to perceive the other agents around the vehicle to keep the correct distance between all of

them. This implementation might be problematic in the aerial environment. Also, this approach

resemble the virtual structure based method in the sense that it doesn't explicit considers sudden

formation changes, vehicle redundancy or di�erent tasks.

2.4 POMDP

Markov decision process (MPD) is a planning method developed to crate polices that directly

relate discrete states to discrete actions and, therefore can make a system (such as a robot) to

interact with the world in an optimized way according to a Markov transitioning model [2].

The MDP algorithms not only relate states with actions, but it is also able to keep track of the

history of actions and observations it has made and use it to re�ne its knowledge of the world. A

reward system also manages to determine which situation is more desirable for that speci�c system

and can use it alongside with the Markov transitions to better estimate the impact of the present

action in the future rewards.

However, the MDP by itself does not take into account the inaccuracy in which a real system

(with real and noisy sensors) perceives the world states. Because of that an extension to MDP

model was developed to consider this uncertainty and was called Partially Observable Markov

Decision Process (or POMDP).

In the POMDP model the action is not directly determined through the states, but through

the discrete observations that the system have of the states. Due to the uncertainty that lies on the

sensors and the world itself, each observation is a probabilistic function of the states. Therefore,

the decision is made based on the probabilities of each state in that give moment.
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Formally, the POMDPmethod can be described by using the following tuple {S,A, T,R, Z,O, h, γ},
in which,

� S is the set of global states with initial distribution b0;

� A is the set of possible actions;

� T is the probability function of transitioning from state s ∈ S to state s′ ∈ S by taking the

action a ∈ A, i.e. T (s, a, s′) = P (s′|a, s);

� R is the reward function of being in state s ∈ S and taking the action a ∈ A, i.e. R : S×A→
R;

� Z is the set of possible observations of the agent;

� O is the probability function to observe z ∈ Z after taking the action a ∈ A that results in

state s′ ∈ S, i.e. O(z, a, s′) = P (z|a, s′);

� h is the horizon of the problem, i.e. the number of time steps until termination.

� γ is the discount factor that weights the relevance of future rewards in comparison to the

present.

The POMDP goal is to decide which action (from the set A) should be chosen at each time

step, from the beginning of the task until the horizon h, in order that the expected reward of the

system is maximized. In order to achieve that, the POMDP solver should build a policy tree, as

seen in Fig. 2.3. It is a graphic representation of the policy, π, i.e. the function that outputs the

action that should be taken at each time step given the previous observation made. The policy

that gives the maximum cumulative reward is represented as π∗ and should be found through

Figure 2.3: Policy Tree of POMDP (Source: [2])
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π∗ = arg max
π

E

[
h−1∑
t=0

γtR(at, st)|s, π

]
. (2.4)

Equation 2.4 states that the optimized policy, π∗, is given as the argument which maximizes

the expected cumulative reward, from time t = 0 until termination at the horizon. The reward is

weighted by the discount factor γ in order to make the present decisions more relevant than the

future ones. Therefore, solving Eq. 2.4, gives a direct instruction of what the agent should do

given its past observations and the current time step.

As the policy tree is constructed during the decision making process, it is given a certain value

V π(s) for each state s. This value is a direct measurement of the reward of such policy, however

accounted for the future rewards yet to be received. Therefore it can be written as

V π(s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
z∈Z

O(s′, a, z)V π′
(s′). (2.5)

Equation 2.5 can be interpreted as follows: the value of a given policy π at state s is given

by the reward of being in that state, following the action a (decided by the policy), added by the

value to be received in the following time step. This term, on the other hand, have to acknowledge

the probability that current state s will be followed by any possible s′, as well as the possibility

that the agent might make any observation within the set O and not the state itself.

Finally, given the current belief state b(s) (i.e. the probability distribution of being in state s)

than the policy's value can be found through

V π =
∑
s∈S

b(s)V π(s). (2.6)

To �nd the optimum policy π∗, it is only necessary to �nd which policy, π gives the greater value.

The evolution of the belief state at each time step is given by

b′(s′) = τO(s′, a, o)
∑
s∈S

T (s, a, s′)b(s), (2.7)

in which τ is a normalizing factor to make the vector of the next belief state, b′(s′), sum up to one.

2.5 Dec-POMDP

The Decentralized POMDP (Dec-POMDP) framework is a planning method for multi-agent

problems, designed in such way that the observation-action policy obtained is decentralized, which

avoids the necessity of adding a central processing unit in which the vehicles might depend on.

To model a problem in a Dec-POMDP frame, it should be described as global states and rewards,

individual actions and observations and stochastic transition and observation functions, such as

its parent method POMDP [18].

15



It can be formally de�ned by the tuple {I, S, {Ai}, T,R, {Zi}, O, h, γ}, in which [19]:

� I is the set of agents, from 1 to N ;

� S is the set of global states with initial distribution b0;

� Ai is the set of individual actions for the i-th agent (i ∈ I). In addition, A = A1 × · · · ×AN
is the joint action of the group, in which × is the Cartesian product operator;

� T is the probability function of transitioning from state s ∈ S to state s′ ∈ S by taking the

joint action a ∈ A, i.e. T (s, a, s′) = P (s′|a, s);

� R is the global reward function of being in state s ∈ S and taking the joint action a ∈ A, i.e.
R : S ×A→ R;

� Zi is the set of individual observations of the i-th agent (i ∈ I). In addition, Z = Z1×· · ·×ZN
is the joint observation of the group;

� O is the probability function of jointly observe z ∈ Z after taking the joint action a ∈ A that

results in state s′ ∈ S, i.e. O(z, a, s′) = P (z|a, s′);

� h is the horizon of the problem, i.e. the number of time steps until termination.

� γ is the discount factor that weights the relevance of future rewards in comparison to the

present

Let the individual policy, πi be a function that maps the observations made by the i-th agent,

zi, to a given action, ai. Then, the global policy of the group as a whole can be de�ned as

π = π1 × · · · × πN . The main objective of the Dec-POMDP algorithm is to �nd the optimized

global policy, π∗, i.e. the function that results in the maximum expected cumulative reward.

Mathematically,

π∗ = arg max
π

E

[
h−1∑
t=0

γtR(at, st)|s, π

]
. (2.8)

This optimization problem is built to be resolved in a o�ine planning phase by some of the

many existent search algorithms [18]. After the optimized policy is achieved and, consequently, the

individual policies, then they can be added to the real system to be executed in an online phase.

Although the optimization is done by considering a global reward, the decentralization is still valid

once each agent receives its own policy, thus it should act based only on its own observation.

2.5.1 Other mutli-agent POMDP variations

While the Dec-POMDP is a suited model for planning in a multi-agent scenario while still

maintaining decentralization, it should be noted that there are many other POMDP variations

that may deal, in di�erent ways, with the multi-agent case. The work of Capitan et al. [3] gives a
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brief presentation about of the POMDP variations that deals with multiple agents. It classi�es each

di�erent method based on both the communication dependence among agents and the coupling

level of the resulting policies. This classi�cation is better depicted in Fig. 2.4.

The �rst and simpler approach is the independent POMDPs (I-POMDP). This strategy con-

siders that each agent in the group has its own POMDP policy to be solved individually, never

considering the existence of the its other counterparts. Due to this simple and disconnected ap-

proach, this method is classi�ed as the least dependent on communication and with less coupling

between agents. Although easy to be implemented, the disconnection and independence among

vehicles makes this algorithm less suited for the most applications in which multiple vehicle units

are desired.

On the opposite range of the interdependence spectrum is the multiagent POMDP (MPOMDP)

with a much wider coupling between agents. Indeed the modeling of the MPOMDP considers that

each agent has direct access to the actions and observations of all of the other vehicles in the

formation. Then, it uses the information data from the whole group to build its own policy tree.

This approach makes the system not only highly dependent on the communication structure but

also gives it a strong coupling in which the action of one agent has direct in�uence on the others.

Surely this strategy has a nice �t for applications that require such strong cooperation and is able

to provide perfect communication systems. As mentioned before, this is not the case for a group

of multiple UAVs.

The already mentioned Dec-POMDP is located as a method that provides high dependence

Figure 2.4: Multi-agent POMDP variations (Modi�ed from [3])
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between the agents but manages to do so without any communication whatsoever. This is possible

due to the di�erence between the planning phase and the execution phase, i.e. during the policy

optimization (performed o�ine) the probabilities are calculated based on the actions and observa-

tions of all the vehicles. During the execution phase, however, each vehicle has its policy already

calculated and will act based only on its own observations. Although this strategy is quite useful

due to the lack of communication, it still loses the aid provided by the group knowledge, even if

noisy and uncertain.

To eliminate this absence while still making use of the Dec-POMDP bene�ts, there is the Dec-

POMDP with communication method (marked with the red circle in Fig. 2.4). This procedure

consists in modeling a regular Dec-POMDP with the information received from the other agents,

as observations. This way, the set Zi of possible individual observations that a vehicle might

perceive, also includes the data sent by its counterparts. By applying this method, the policy

building consider both the information of its own agent as well as the possible communication

from the �eet. Then, the reliability on the communication is not as high as in the MPODMP case,

while still getting the bene�t of the group knowledge, which would not be possible with the simpler

Dec-POMDP. Due to this balanced approach, the Dec-POMDP was chosen to be implemented in

this work.

Finally, to complete the diagram shown in Fig. 2.4, the Auctioned POMDPs is the method

developed in [9], in which during the execution phase, an auction algorithm will decide the policy of

each individual agent. The policy, in its turn, has been computed in an o�ine planning phase prior

to the execution. This way, a balanced scenario in terms of communication and interdependence

can be accomplished. This method was not used in this work once it was desired, for the formation

control of UAV units, that the coupling between agents was stronger than the auctioned POMDPs

would provide.

2.6 UAV applications with POMDP and its extensions

Recent works have came up with novel methods to deal with UAV controls using decision mak-

ing planners such as the ones based in Markov chains [20, 21, 22, 23]. Indeed those approaches are

presenting to be �ne solutions for complex systems that have a scholastically changing dynamics.

The Partially Observable Markov Decision Process, or POMDP, is one of those techniques that

accounts for both noisy observations and uncertain transition between states. As the �ying sce-

nario is usually noisy and �lled with uncertainties this method suits such applications. However,

it should be noticed that those work still face the lack of multi-agent control and, speci�cally the

decentralized planning.

The Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a multi-

agent decentralized extension of the single-unit planning method POMDP [18, 2]. The Dec-

POMDP allows for the construction of a decision tree that dictates the individual actions of an

agent based on its observations of the world states in a decentralized way, i.e. without the need of

a central unit, in order to achieve the maximum global reward for the whole group [24].
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The Dec-POMDP planning method can be used to construct sets of states, actions and ob-

servations that are related through stochastic matrices and, therefore, can built a system that

considers uncertain measurements of the states as well as undetermined transition between them.

For those reasons this framework is particularly suited for systems that should account for noisy

information and require a decentralized policy, such as the UAV formation �ight.

However, those methods are not decentralized, which makes the system depend on a central

node for decision-making, and therefore, is very dependable on the communications and doesn't

have redundancy. Thus, the Dec-POMDP might give some advances for those approaches once it

gives for each individual his own policy tree for decision making.

The most notable work with Dec-POMDP applied for UAVs was done by Ragi et al. [25,

26]. Also designed for target tracking, this framework was built based on the dynamics and

communication of the aircraft, which gave the overall �eet a consistent set of states, actions and

observations. The problem that comes with these approaches is the fact that a high number of

states is necessary and therefore might spoil the computational solving time.

To verify that problem, our previous works in [19] have came up with a system that uses the

Dec-POMDP policy in an outer loop of the control system, in order to use higher level actions

and, therefore, reduce the amount of states and computational time. With such system it can be

integrated inner loop controllers, e.g. PIDs, that tracks the desired references, therefore taking

advantage of their characteristics.

2.7 Hybrid Control

Many control approaches are being developed to use POMDP and its extensions by creating

hybrid controllers, i.e. a system that uses both a continuous controller, such as a PID, and a

discrete planner, such as the POMDP policy [27, 10, 28, 29], allowing to obtain the advantages

that comes with both methods. The development of such hybrid algorithms can adopt the discrete

policy to choose the most appropriate continuous controller (as in [27]) or to take actions in parallel

to the other subsystem (such as in [10]).

The work done in [27], e.g. models a multi-layer system to control a biped platform. With

suited inner-loop controllers to reliably walk on distinct ground levels, the work of Sreenath et

al. uses a POMDP policy in a higher-level position to plan and choose the right controller to be

implemented based on the partially observable terrain.

The work of et al. [10], however, deals with the hybrid control in a di�erent way. The idea

of this work is to model a system in which two types of actions are implemented in parallel: a

discrete and a continuous. The two examples given and validated include a self-driven car, which

has the discrete gears to choose from and the continuous velocities. The other example is the box

push problem, in which a robot must take a box from one place to another in a speci�c trajectory

and to accomplish that it should choose both the side of the box it must push (discrete action)

and the velocity and direction of such push (continuous).
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Those hybrid control systems, however, haven't been used for UAVs in an application such

as the formation �ight problem. More over, the approaches described are not for multi-agent

problems, and much less decentralized.

Hence, there are some gaps in the decentralized formation �ight that should be considered

in a realistic �ying scenario. The noisy and uncertain environments are crucial points for this

application that can be e�ciently dealt with Markov planners such as the POMDP. The decentral-

ization is a problem solved by its extension, Dec-POMDP. However, computational time and the

lack of continuous controllers are not considered using this approach alone. Therefore, an outer

loop hybrid system might take all of the advantages of the discrete Dec-POMDP planner and the

continuous PID controllers, with a reasonable computational time, method which has not been

done for the formation �ight problem of multiple UAVs.
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Chapter 3

Development

3.1 Introduction

In order to achieve a formation �ight of multiple �xed-wing UAVs, a hybrid control system

was development. It takes the states of all the UAVs through the communication systems and

decides whether to activate a discrete policy given by a decision-making algorithm such as the

Dec-POMDP, or to activate the continuous PID controller in order to track a given reference and

formation. Before constructing this system, a simpler method, with only two possible actions were

developed to test the usage possibilities of the Dec-POMDP policy.

3.2 Problem Statement

The description of the formation �ight problem and its objectives are given as follows. There

are N �xed-wings UAVs �ying in the three-dimensional space, with its coordinate frame being

expressed in the north-east-down (NED) reference. Each agent is identi�ed by the integer index

i that ranges from 1 to N . The position of each vehicle, xi ∈ R3 is obtained by its own built-in

GPS-based localization system and it is corrupted by a zero mean white gaussian noise, n(t), with

variance σ2. Therefore, x̂i = xi + n(t), in which x̂i is the position seen from the agent. It also

knows its own heading angle ψi, in respect to the North axis in the North-East plane.

The global reference is guided by a virtual leader, known to all agents, with its position rep-

resented by xr(t) ∈ R3 and its heading angle (in respect to the North axis), ψr. Its trajectory

is constructed with the same dynamics as the agents and has as inputs its linear and angular

velocities, vr(t) and ωr(t), respectively, as well as its altitude dr(t).

The �eet's desired formation is de�ned based on the di�erence between each vehicle's target

position, x̄i, and the reference, i.e. fi(t) = x̄i − xr(t) . In this work, it will be considered that the

magnitude of this di�erence will be �xed and equal to ||fi(t)|| = εr and that the target formation is

at the same altitude as the reference. Therefore the distinction between agents lies on the angular

position within the perimeter of the circle of radius εr and the reference at its center. For this
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work, an alternative formation, f ′i was also de�ned in case a di�erent shape is desired during �ight.

This alternative parameter has the same magnitude and altitude as the main formation for all

vehicles, di�ering therefore only by their angular positions.

Besides εr, it will also be de�ned the constants εd, εp and εc which are, respectively, the

formation distance margin, the minimum safe distance between vehicles and the maximum com-

munication range. If two agents are within the communication range, than they exchange their

position data. By default εd ≤ εp ≤ εr ≤ εc. Figure 3.1 shows a representation of those values as

sets of concentric circles with the reference at its origin.

The objectives to be achieved are to take each agent i to its respective desired formation point

x̄i, with noise and communication failure robustness, collision avoidance and little oscillation.

3.3 Dec-POMDP

Before building the actual hybrid control system to solve the problem given in section 3.2,

a simpler approach was developed in order to test the Dec-POMDP planning capabilities in the

multi-UAV scenario. This method was published in [19] and can be visualized in Fig. 3.2.

The problem to be solved is similar to what was previously presented but with a few simpli-

�cations such as: the space is considered to be two-dimensional so the altitude of all the vehicles

are considered to be constant and identical, there is no noise in the localization system and there

is no necessity that ||fi|| = εr. Other than that, the problem follows what was stated before.

To model a simple planning with Dec-POMDP, four global states, S = {0, 1, 2, 3}, were created
to describe the group situations of collision avoidance, formation tracked, vehicles' approximation

and communication failure, respectively. The individual observation sets are analogous to the

global states but at each vehicle point of view, i.e. zi = 0 means the distance between the i-th

Figure 3.1: Formation limits for Dec-POMDP states
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Figure 3.2: Block diagram of a UAV control system for cooperative �ight

vehicle and its nearest counterpart is less than the proximity constant; zi = 1 is the observation

received when the vehicle is in the formation point (within the distance margin); zi = 2 is for when

the agent is near the formation point but not so far as to lose communication and zi = 3 is when

the UAV doesn't receive any data from any other vehicle whatsoever.

The set of individual actions was modeled with two possibilities: ai = 0 is the action of changing

the trajectory to achieve the nearest point in the formation. On the other hand, ai = 1 is the action

of diverging from the closest agent. A navigation system, to be further detailed, was designed in

order to interpret what any of those actions means in terms of velocity changes.

The reward function, R(s, a), of the system must be designed in order to represent which state

should be achieved and which one must be avoided, once the states set gives the overall behavior of

the group. For that reason, it was modeled only as a function of the states, R(s). To appropriately

weight each state, given the desired behavior of the system, this function was chosen as

R(s) =



−20, if s = 0,

50, if s = 1,

5, if s = 2,

−10, if s = 3,

(3.1)

as states 0 and 3 are undesired, state 1 is the system goal and state 2 is neutral.

The transition function, T (s, a, s′), should be designed for each joint action a. For each one, a

matrix containing the transition probability between states was created. In the model designed for

formation �ight, each one was built following heuristic probabilities based on each action. They

can be visualized in the Appendix.

Finally, the observation probability function, O(z, a, s′), was uniformly distributed among the

possible observations, following the description of the states. E.g., state s = 0 means at least two

agents are in danger of colliding. Given s = 0, than the joint observation probabilities are equally
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distributed among all the combinations of two or more agents seeing zi = 0. It was not a function

of the actions a, once they don't a�ect the observation probabilities.

Fig. 3.2 presents a block diagram of each aircraft system. Starting at the outer loop is the

optimum policy to be found by the Dec-POMDP solver. The description of this block can be

found in Algorithm 1 which displays its pseudo-code for a system with 3 agents. It takes the

states of its own vehicle, the reference trajectory, xr(t), and the positions communicated by the

other agents, represented by xj and xn. It uses those information to generate an observation, zi,

for the Dec-POMDP policy which, in its turn, computes the actions ai to be executed. To avoid

possible intersections of states, priority to the danger and lost communication states was given.

The function π∗(zi), in line 10, is the optimum policy obtained after solving the Dec-POMDP

model in the planning phase, as described in chapter 2. Therefore, it returns the optimum action

for that agent, given the observation made.

In order to translate these high-level actions into numerical commands for the �ight controller,

a navigation system is required. It should take the individual action outputted by the Dec-POMDP

policy and convert it into linear and yaw angular velocity commands (v and ω, respectively), based

on the desired points to be achieved or avoided.

The navigation model used, was created for this work, and has base values vb and ωb, of linear

and yaw angular velocities, respectively. The output of this block is binary, i.e. resulting in a

positive or negative version of the base value, depending on the action. The linear velocity has a

constant component v0 to keep the movement of the aircraft, and the base value is, then, added

or subtracted to it. Therefore

v = v0 + gv(ai)vb, (3.2)

in which, gv ∈ {−1, 1} is a function of the Dec-POMDP action that outputs the desired signal for

navigation. If ai = 0 and the desired point is ahead of the aircraft then gv = 1, if it is behind,

Algorithm 1 Dec-POMDP Policy Pseudo-Code
Input: (xr, xi, xj , xn)

1: if (xj ∈ ∅ & xn ∈ ∅) then
2: zi = 3 {No communication received}

3: else if minw∈{j,n} (||xi − xw||) ≤ εp then
4: zi = 0 {Danger of collision}

5: else if minfk∈F (||xi − (xr + fk)||) ≤ εd then
6: zi = 1 {Formation achieved}

7: else

8: zi = 2 {Approximation}

9: end if

10: ai ← π∗(zi)

11: return ai
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gv = −1. The opposite goes for ai = 1, with respect to the nearest agent location.

Similarly, the yaw angular velocity is given by

ω = gω(ai)ωb, (3.3)

in which, gω ∈ {−1, 1} is a function of ai, turning the vehicle for the desired side (ai = 0) or away

from it (ai = 1).

Finally, those instructions are passed to a �ight controller that creates the corresponding throt-

tle and aileron commands (δt and δa, respectively). The plant of the aircraft receives them and

the system movement is created, generating position and angular measurements (xi and ψi, re-

spectively) that close the loop. Any �ight controller that suits the aircraft model can be used for

this block, once this method focus on the action planner.

3.4 Hybrid Control with Dec-POMDP

The approach used in this work is based on an hybrid control, i.e. the Dec-POMDP policy,

optimized in the planning phase, works in parallel with continuous PID controllers. As each one

has its own characteristics, a navigation system was built in order to de�ne which controller should

act in each situation. The designed control system can be visualized as a block diagram in Fig.

3.3.

The navigation system takes the reference and the agents data (including its own) and outputs

error information for the PID Controller, the individual observation, zi for the Dec-POMDP policy

and a selecting signal to decide which of them will act based on the current situation of the �eet.

The aerodynamics control of the aircraft takes the speeds (v and ω) and altitude (d) infor-

Figure 3.3: Hybrid control system diagram
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mation as references and sends the corresponding responses for the ailerons, throttle and elevator

commands (δa, δt and δe, respectively) which will then change the plane's attitude and position to

be measured by the sensors.

3.4.1 Dec-POMDP modeling

To model the �eet's formation in the Dec-POMDP frame, it was considered the di�erence

between each agent relative to the reference as well as the di�erence between each pair of vehicles.

Figure 3.1 depicts three concentric circles with radius εp, εr and εc and the reference xr at their

center. Three small circles with radius εd in each image represent the desired formation in a group

of N = 3 vehicles. In order to better describe the vehicles' states, it was considered one main

formation (on the left) and an alternative one (on the right). This description can also be used if

a di�erent situation during �ight requires an alternative geometric pattern.

State s = 0 was de�ned as the state of collision danger, in which any two pair of vehicles are

distant by less or equal to εp. States s = 1 and s = 2 represent the formations achieved inside the

circle with radius εr, being the �rst for when the agents are closer to the main desired formation

and the second for the alternative one, as represented by Fig. 3.1. States s = 3 and s = 4 are

achieved when all the vehicles are in their main or alternative desired positions, respectively, with

a distance margin of εd. States s = 5 and s = 6 are analogous to states 1 and 2 but for the region

between the circle of radius εr and εc. Finally, state s = 7 is for communication failure, i.e., when

any agent loses its communication with all other vehicles.

The individual action for the agents in the Dec-POMDP policy was designed as a vector

ai =
[
αv αω αd

]T
, in which αv is the linear forward acceleration of the aircraft, αω is the

angular acceleration (controlled by the aileron) and αd is the altitude acceleration (controlled

by the elevator). Each of those components has three possible values, discretized by the vector[
−1 0 1

]T
multiplied by a base value αvb, αωb or αdb, respectively. Therefore, there is a total

of 33 = 27 possible individual action combinations.

Since the actions were de�ned as accelerations and the main inputs for the aerodynamics control

are speeds, some integrator blocks should be added after the Dec-POMDP policy. The altitude

command is exceptionally di�erent since the output should be a position, which then requires a

double integration.

Each agent makes an individual observation zi of the state s, based on its own position and

the communication received. Hence, a total of 8 possible individual observations can be done.

To set the transitioning function T (s, a, s′), a group of probability square matrices Ta, based

on each action a should created, with each line for a given state s, and each column for a speci�c

next state s′. In order to get to a reasonable stochastic relation between the states transitions, the

contribution of the individual action for such change αv, αω and αd was �rst de�ned. This way,

for each agent, there were three action matrices: T iv, T
i
ω and T id. A general individual matrix is

created by
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T iai = βi(T
i
v ◦ T iω ◦ T id), (3.4)

in which T iai is the probability matrix of transitioning from state s to s′, by taking the individual

action ai. The symbol ◦ represents the Hadamard product, in which the elements of the matrices

are multiplied element-by-element. Finally, βi is a matrix to normalize the �nal matrix and make

all their lines sum up to 1.

Then, in order to get the global transitioning matrix Ta, considering the actions of all agents

together, another Hadamard product should be computed as

Ta = β(T 1
a1 ◦ · · · ◦ T

N
aN

), (3.5)

in which β is analogous to βi.

To properly set each matrix T iv, T
i
ω and T id, for each agent, the possibility of transitioning

were manually analyzed by using the diagram in Fig. 3.1, considering all states both in the

main formation and the alternative one. This way, all possible transition between states was

analyzed based on each action in order to de�ne which transition is more possible when given this

speci�c command. For example, by taking the action of zero linear acceleration, the probability

of maintaining the current state should be greater than from changing to a di�erent one. So this

analysis were performed for all possibilities to built all of the matrices.

Setting the observation stochastic function was done as follows: as the agents become far from

each other (therefore, as the states are higher), the probability that the individual observation zi
represent the state s decreases, and the same goes for the joint observation z. For state s = 0, the

probability of the three agents to see it is set to be equal to 0.9. For only two of the agents to get

it right, the probability of 0.09 was divided between all of the possible two agents permutation.

And the same for only one agent, the probability if 0.01 was equality divided.

For states s ranging from 1 to 4 those values were set to 0.8, 0.15 and 0.05, respectively. For

states 5 and 6, 0.7, 0.2 and 0.1 and for state 7, 0.85, 0.1 and 0.05, respectively. The increase in the

probability of all the agents to see state 7 is due to the communication loss: as the UAVs become

signi�cantly distant the possibility of losing the other agent's data increase and therefore, also the

probability of seeing this lack of information.

Finally, the reward function to be used in Eq. 2.8 R(s, a) was built considering only the states,

i.e. R(s) once the �ing objectives rely only on the de�nition of the states. Therefore, a vector Rs
for the rewards was built and set as equal to

Rs =
[
−100 50 20 100 40 80 20 −80

]T
. (3.6)

3.4.2 PID Control

The PID subsystem of the hybrid controller can be represented by the transfer function
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D(s) = KP +KI
1

s
+KD

Nfs

s+Nf
, (3.7)

in which Nf os a �lter coe�cient. It was designed by manually tuning the Kp, Ki and Kd

parameters based on the simulated response of the aircraft to the reference. The parameters were

tuned to improve the tracking capabilities of each UAV model to be used, in order to obtain a

faster settling time and steady state error of zero, therefore improving the results achieved in the

non-hybrid approach.

Each component of the airplane control, i.e. the linear and angular speeds, had its own PID

controller. The exception lies on the altitude control since the description of the problem considers

that all the �eet should follow the same altitude as the reference. Once the aerodynamics control

has the own altitude as input parameter, there's no need for a PID controller.

Just as in the detached case it was considered that the aerodynamics control and the plant

model were already available and suited for another.

3.4.3 Navigation System

The navigation system is the block in the controller scheme that processes the internal and

external data in order to de�ne the errors and the observations, as well as the responsible for

deciding which of the two previous systems should act. It follows the procedure as detailed in the

pseudo-code of Algorithm 2.

Firstly, it receives information data from the reference (xr and ψr), from its own internal states

(xi and ψi) and from the other agents (xj and xn, in a three agents �eet). Then, it computes the

relative distances to its own position in the formations (both main and alternative ones) and with

the reference (fd, f ′d and rd, respectively).

Determining the Dec-POMDP observation, zi is a series of conditional statements accordingly

with the de�nitions presented so far. Preference is given to the states of no communication and

collision avoidance, as they represent situations that need fast and prioritized responses. Except

for those states, the odd observations represent formations that are nearer to the main desired

formation, while the even states are for when the agent gets near the alternative formation.

After the Dec-POMDP observation is determined, the errors for the PID controllers are calcu-

lated. Figure 3.4 shows a top view representation of the �ight scenario, in which the i-th vehicle

tracks its desired reference x̄i. The arrows point to the heading direction of each agent. For the

linear velocity control, the error ed is based on the distance to the desired point, i.e. fd and the

angular component cos(ψe − ψi) to account for the direction of the forward speed of the aircraft,

in which ψe is the angle of the distance vector (in respect to the North axis). This is done in

order to avoid the agent to accelerate in the wrong direction (the maximum acceleration happens

when ψe = ψi, i.e. when the agent is heading to the desired point). The angular error was built

such that the agent heading direction ψi is able to track both the distance angle ψe, in order to

point in the right direction, and the reference's heading angle ψr, such that the path to follow
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Algorithm 2 Navigation System Pseudo-Code
Input: (xr, ψr, x̂i, ψi, x̂j , x̂n)

1: fd = x̂i − (xr + fi)

2: f ′d = x̂i − (xr + f ′i)

3: rd = ||x̂i − xr||
4: if (x̂j ∈ ∅ & x̂n ∈ ∅) then
5: zi = 7 {No communication received}

6: else if minw∈{j,n} (||x̂i − x̂w||) ≤ εp then
7: zi = 0 {Danger of collision}

8: else if ||fd|| ≤ εd then
9: zi = 3 {Main formation achieved}

10: else if ||f ′d|| ≤ εd then
11: zi = 4 {Alternative formation achieved}

12: else if (rd > εr)&(||fd|| ≤ ||f ′d||) then
13: zi = 5 {Approximating main formation}

14: else if (rd > εr)&(||fd|| > ||f ′d||) then
15: zi = 6 {Approximating alternative formation}

16: else if (rd > εp)&(||fd|| ≤ ||f ′d||) then
17: zi = 1 {In bewteen reference and main formation}

18: else if (rd > εp)&(||fd|| > ||f ′d||) then
19: zi = 2 {In bewteen reference and alternative formation}

20: else

21: zi = 0 {Otherwise}

22: end if

23: ψe = tan−1(fdy/fdx)

24: ed = ||fd|| cos(ψe − ψi)
25: if ed ≤ 0 then

26: eψ = (ψr − ψi)
27: else

28: eψ = (ψe − ψi) + (ψr − ψi)
29: end if

30: ez = xrz

31: if zi = 0 then

32: ss = −1

33: else

34: ss = 1

35: end if

36: return ss, zi, ed, eω, ez

in maintained. To avoid each UAV to spin when the reference is behind it (when ed ≤ 0) an if

statement withdraws the term that tracks ψe. Finally, the altitude error is equal to the reference

altitude xrz once there is no PID for altitude control, as stated before.
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Figure 3.4: Top view representation of the vehicle tracking its reference

The selecting signal ss is de�ned as equal to −1 when the Dec-POMDP policy should de�ne

the �nal action and equal to 1 when the PID must take control. It was concluded through the

simulations that the best scenario for the hybrid control is when the Dec-POMDP policy acts in

order to avoid the collision, i.e. when zi = 0. Due to the �ne continuous control of the PID, it is

best suited for the reference and formation tracking in general.
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Chapter 4

Experimental Results

This chapter presents the main simulation results achieved in both studies (Dec-POMDP and

Hybrid Control). For each one, it will �rstly be stated the parameters used for the Dec-POMDP

policy solver and than the formation �ight simulation obtained with such result will be shown.

Throughout the simulations di�erent references, formations and even UAV models were used in

order to visualize the response of distinct system to the methods proposed. All the experiments

were performed with N = 3 agents.

4.1 Dec-POMDP

The �rst set of results to be discussed is the one related to the single Dec-POMDP scenario, i.e.

the method developed in [19] based only on the Dec-POMDP policy without a parallel continuous

controller. A navigation system was also created to convert the high-level actions into actual �ight

commands.

4.1.1 Dec-POMDP policy solver

As mentioned in Chapter 3, the observation function was equality distributed between the

possible observations that are consistent with each state. Therefore, for s = 0, each combination of

two or more agents observing zi = 0 gets a 0.1 probability (once there are 10 possible combinations

for 3 agents). Similarly, given s = 3, only one agent is necessary to observe zi = 3 and, therefore,

37 possibilities exist so each one receives a 1/37 probability. In its turn, s = 1 can only be achieved

if all agents observe zi = 1 and, therefore, this single case gets probability 1. Analogously for

s = 2.

The transition probability matrices were de�ned based on general concepts of each joint action

and their results for each state transition. As N = 3 and there are two possible actions for each

agent, a total of 2N = 8 matrices were built. However, the states don't di�erentiate one agent from

the other and, therefore, some combinations of actions have the same e�ect on the state transition.

Hence, there are only four distinct matrices which are described in the Appendix.
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To solve this Dec-POMDP problem, the MADP Toolbox, developed by Oliehoek et al. [30],

was used. It is an open-source library developed in C++ language to solve multi-agent planning

problems such as Dec-POMDP. Several solvers are available in it but the one used in this work is

JESP (Joint Equilibrium-based Search for Policies).

Due to possibly low memory issues, an agent might not be able to store a massive history of

observations. For that reason, together with the low scalability in the horizon, a value of h = 2

was chosen for the policy search algorithm. During execution, after h time steps are passed, they

start over again. The initial probability distribution, b0, is set to be uniform for all states. The

discount factor is set to γ = 0.9.

Solving the problem described resulted in the optimized value of 28.5 after 0.01 s of processing

in a Intel Core i5 with 2.3 GHz and 8 GB of RAM. For comparison purposes, the method used in

[26] took 5.2 s.

4.1.2 Flight Simulation

With the optimum policy π∗ obtained, it can be applied in a �ight model as described in

Chapter 3. The experiments performed in this work were simulated in Simulink with sampling

time equal to 0.01 s. The aircraft plant and controller used were the same as in [31], mainly

composed of PID controllers.

As for the navigation system parameters, the standard velocity for each aircraft was set to

v0 = 42 m/s, the same used in [31]. On the other hand, the values used for the base velocities are

vb = 10 m/s and ωb = 0.05 rad/s.

The desired formation for all the experiments was

F =

{
λ

[
−1

−1

]
, λ

[
1

0

]
, λ

[
−1

1

]}
, (4.1)

in which λ is a scalar factor, initially set to λ = 15. The proximity constants were set to εd = εp =

10 m and εc = 100 m. All of the agents were initialized at the origin and, therefore, within the

communication range. Although both initial and formation conditions were set within this range, a

second experiment tested communication failures as the vehicles separated from each other during

simulation.

4.1.2.1 Reference Tracking

The reference, xr(t), followed similar patterns as in [7] with some scale di�erences to suit the

aircraft model and avoid unfeasible maneuvers. In all the experiences performed, its linear velocity

was set for vr(t) = v0 = 42 m/s. The �rst trajectory to be tested starts as a straight line pattern

directed north, i.e., ωr(t) = 0. To test changes in the reference, after 25 s until termination at 100

s, its angular velocity was set to a sine wave de�ned by

32



ωr(t) =

0, if t ≤ 25 s

0.05 sin(0.23t), if t > 25 s.
(4.2)

The resulting trajectories of the agents with this reference is pictured in Fig 4.1(a).

It is possible to notice that all of the agents handle the reference change, executing the same

maneuver at the correct time, as required, and maintaining the pattern for the entire simulation

time.

In order to verify the accuracy of the formation achieved, the errors of the agents positions

with respect to their respective points in the formation can be visualized in Fig. 4.1(b). It can be

seen from this result that, initially, all of them are distant from their nearest point in the formation

by an amount of around 20 m. They reach the desired margin at around 25 s and stabilize the

error at 50 s. Although the steady-state errors of the agents are not zero, they are within the

distance margin, εd, established for this problem and, therefore, con�rms the correct tracking of

the formation and reference.

Finally, to verify the behavior of the Dec-POMDP policies, the global states, the individual

observations and actions de�ned for the Dec-POMDP resolution can be visualized in Fig. 4.2. As

expected, while the system doesn't permanently reach the desired state, s = 1, it oscillates between

this value and s = 0, which represents that at least two agents are in danger of colliding, since all

the agents start at the same initial position. Providentially, at around 25 s, it reaches the desired

state and stays until termination.

4.1.2.2 Time-varying Formation

To test for changes in the formation, as well collision avoidance and lost in the communication,

the following experiment was built: with a straight line reference for all times (ωr(t) = 0), the

(a) Trajectories (b) Errors

Figure 4.1: Agents' trajectories and errors for sine wave reference with Dec-POMDP
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Figure 4.2: Global states, individual observations and actions for sine wave reference with Dec-

POMDP

formation was initially given by Eq. 4.1 and λ = 15 for the �rst 50 s. After this time is passed

and until termination (at 300 s) the scale parameter was changed to λ = 10. Also, the agent i = 1

received only the formation point F1 =

{[
−1

1

]}
and the agent i = 3, F3 =

{[
−1

−1

]}
, forcing

them to exchange position, passing near the vehicle i = 2. In order to see the system behavior

with no communication, its constant was changed to εc = 30 m. The resulting trajectories can be

visualized in Fig. 4.3(a). To represent the time domain of each trajectory, markings were made in

Fig. 4.3(a) at every 10 s. In addition, Fig. 4.4 depicts the global states and individual observations

(a) Trajectories (b) Distances

Figure 4.3: Agents' trajectories and distances for time-varying formation with Dec-POMDP
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and actions, s, zi and ai respectively, reached at very time step.

The agents are able to achieve their �rst requested formation, just as before, reaching s = 1.

After the 50 s are passed, agents 1 and 3 start changing position once they are no longer in their

desired location and have to start the movement towards their new goal. At approximately 75

s, the agents get closer, reaching state s = 0 at the danger zone which makes them change their

actions to avoid each other. Due to the base velocities used in the navigation system, the agents'

trajectories su�ered from some overshooting resulting in communication loss around 100 s. Even

so, around 200 s all of them reach and stabilize their new positions within the proximity range,

reaching formation once again at s = 1. However, it should be noted that the �nal formation

achieved is asymmetric due to the steady state error be di�erent than zero, as veri�ed in the

previous result.

Finally, it is possible to see that the paths of all the vehicles seem to encounter a common

point. Fig. 4.3(b) displays the distances between each pair of agents as a function of time. Indeed,

there are moments in which the agents are close, however, in all times they stayed at least 3 m

away from each other, con�guring collision avoidance for the aircraft sizes.

4.2 Hybrid Control

To test the hybrid control developed, compare it to other approaches already tested in the

literature (including the previous single Dec-POMDP method) and validate the e�ciency of the

proposed method in di�erent models, references and formations, three main simulations were

performed. The �rst one is the same as [19] with a sine reference to be tracked, a follow up

of this work with the controller method to improve the results achieved. The second one used the

Figure 4.4: Global states, individual observations and actions for time-varying formation with

Dec-POMDP
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same UAV model as the previous but with a constant reference but a time-varying formation. The

�nal simulation is based on the work done in [4]. For all of these, the exact UAV models and inner

loop controllers (when present) of each one was used. Because of that di�erence in the models

used, a PID tunning was required for each system. However, the Dec-POMDP policy was kept in

both, and so as the navigation system. In both scenarios, a number of N = 3 UAVs were used.

First it will be stated Dec-POMDP functions optimized to obtain the maximum reward policies

and then the simulations will be shown.

4.2.1 Dec-POMDP Policy Optimization

To solve for the policy, the MADP Toolbox developed by Oliehoek et al. was used [30]. It

is a program and library written in the C++ language in order to solve multi-agent problems

related to decision-making. It solves di�erent Markovian based planning algorithms such as the

Dec-POMDP by o�ering distinct solving methods. The one chosen in this work was JESP (Joint

Equilibrium-based Search for Policies).

Just as in [19], a horizon of h = 2 was chosen to avoid computational issues such as low memory

or times too large to compute. The matrices used in the observations and transition functions, as

well as the states rewards, were in accordance to the description given in section 3.4.1 and can be

referenced in the Appendix. The initial distribution was set to be uniform for all states and the

discount factor as λ = 0.9.

Solving the problem described resulted in the optimized value of 0. In all simulations the base

values were set to αv = 1 m/s2, αω = 2π
100 rad/s2 and αz = 0.5 m/s2.

4.2.2 Sine reference

After the Dec-POMDP policy was found, it could be added to the systems desired for simula-

tion. The �rst one to be tested is the system of [19]. In such work, the actions of the Dec-POMDP

policy were binary (0 for collision avoidance and 1 to track the agent's reference). The navigation

system, then outputs binary linear and angular velocities, taking negative or positive versions of a

base value for each. It was all considered in the two-dimensional scenario.

This navigation system was replaced by the one described earlier in this work together with the

PIDs controllers (without the Dec-POMDP policy, in the �rst moment). Once the new controller

has a wilder range of values to output, it is expected that the results achieved in [19] will be

improved, i.e. with better steady-state error, less oscillation and less overshooting.

With this new system built, the two main formation �ights obtained in [19] were simulated in a

virtual environment with a �xed-step solver using the ode4 method (Runge-Kutta) and time step

equal to 0.01s. Then, as each simulation was done, the parameters KP , KI and KD of the controls

were individually changed to account for each contribution. This process were performed until the

formation �ight achieved resulted in �ne reference tracking, with less error and less oscillation.

For the linear speed control, the values that better suited the model described and the control
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objectives were with KP = 0.03, KI = 0 and KD = 1. As for the angular speed PID control, the

values achieved in manual tuning were KP = 5, KI = 0 and KD = 3, with Nf = 100. Therefore,

a PD control was already suited for such model.

With such values, it was possible to reproduce and improve the results achieved in [19]. The

�rst one is the sine wave reference, with constant linear velocity (vr = 42 m/s) and angular speed

given by ωr = 0.05 sin(0.23t) if t > 25 s and 0 otherwise. The formation was kept constant and

equal to f1 = ρ
[
−1 −1

]T
, f2 = ρ

[
1 0

]T
, f1 = ρ

[
−1 1

]T
and ρ = 15 m at all times. The

vehicles' trajectories and their respective errors are depicted in Fig. 4.5(a) and 4.5(b).

It can be noted that the agents track their formation in a stabilized way, with a declining error.

The formation is kept still during �ight and the vehicles leave their initial state for their desired

points approaching a zero error at the steady state, showing the improved �ight in comparison

to the original work. However, the error decrease is signi�cantly slower than what was achieved

previously which can be explained by the PID tuning.

4.2.3 Time-varying formation

The other result that was replicated and improved with the new system, based on the previous

work, is the time-varying formation, in which the formation set is equal to the previous case, except

that after 50 s, agents 1 and 3 exchange their formations. The reference is kept constant (ωr = 0)

with the same linear speed. The results achieved can be visualized in Fig. 4.6(a) and 4.6(b).

From these results, it can be noted that the formation change between agents 1 and 3 is faster

than what was achieved in [19], concluding that the new system is capable of decreasing the settling

time. Furthermore, after the change is concluded the formation error is signi�cantly smaller in

comparison to the previous work, leading to a more symmetric formation. In addition, the distance

between the vehicles during all the task period is more stable than in the previous case while still

maintaining the collision avoidance.
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Figure 4.5: Agents' trajectories and errors for sine wave reference with hybrid control
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Figure 4.6: Agents' trajectories and distances for time-varying formation with hybrid control

4.2.4 Step reference

To test the tracking capability of the new hybrid system, the references and formations were

taken from [4] to test, as well as the UAV model and inner loop controls. Since the models were

di�erent from the ones used in the previous case, another PID tuning was required. By testing the

hybrid system with the new model, the the parameter found that better track the references, with

less oscillation and fast settling time were KP = 0.02, KI = 0.00015 and KD = 0 in the linear

velocity branch and KP = 0.2, KI = 1 and KD = 0. Unlike the previous system, this model then,

requires a PI control, without a derivative term.

The reference, called the ground moving target (or GMT) in such work, follows a path described

by an initial heading angle of 45 degrees that su�ers from a change (step) between 250 and 267

seconds of −5.7294 degrees per second. In its turn, the linear velocity starts at 2 m/s, the reference

changes linearly to 10 m/s between 350 and 370 s; later on it changes again to 12 m/s between

times 450 and 460 s, keeping this value until 800 s. These data can be better visualizes in Fig.4.7.

The formation desired is a equilateral triangle within a circle of radius 150 m and the reference

at its center. Agent 2 is set to be right in front of the reference while agents 1 and 2 di�er by 120

and −120 degrees from it within the circle, respectively.

The results achieved can be visualized in Fig. 4.8, 4.9 and 4.10. It can be seen from the results

achieved that the trajectories followed by the �eet were quite similar to the path achieved in [4].

Although the error during the �ight was larger than the error from [4], the trajectory was still

tracked while maintaining the formation. The angle separation of each vehicle varies signi�cantly

during the �ight, but reaches the desired value (120 degrees) at the end of the simulation. Another

relevant point to observe is the distances between the agents to verify that, as desired, there were

no collisions among them, even though the trajectories of the UAVs crosses each other at distinct

times. Finally the Dec-POMDP action can be seen in Fig. 4.10, in which it can be seen that the

its policy is activated around 300 s in order to avoid the collision between agents which has been
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accomplished. Some di�erences from the original work also appeared when the vehicles followed

a direct path, while in [4] they did some turn-overs. This happens only due to a navigation

instruction performed in [4] to achieve a reference behind the vehicle by making a turn-over, which

is performed di�erently for the proposed approach as explained in Chapter 3 to achieve the same

goal.

4.2.5 Noise Addition

The simulations presented so far did not considered any noise in the information received by

each agent, once the work done in [4] hadn't account for it either. However, the Dec-POMDP

approach, as stated in Chapter 3, was modeled to be noise robust, by considering the observation

probabilities to be distributed between the states. Therefore, other simulations were performed to
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Figure 4.7: Reference velocity and heading angle
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Figure 4.8: Agents' trajectories and distances for reference based on [4]
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Figure 4.9: Agents' errors and angle separation for reference based on [4]

improve what was previously shown adding the common data degradation while in �ight.

To model the GPS noise that degrades the vehicle's position, a band limited white noise was

added to the input of each agent, not only his own but also for the data sent by the other individuals

of the group. Considering that each UAV has a built-in GPS without the combination of an inertial

measurement unit (IMU), then this noise can modeled with a standard deviation of σ = 4 m.

With such change, the same reference and formation used in the previous section was applied

to the new system in order to compare them. The results achieved can be visualized in Fig. 4.11

and 4.12. Comparing both cases, the di�erence between them is quite small, with minor changes.
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Figure 4.11: Agents' trajectories and distances for reference based on [4] with noise

This indicates the noise robustness that the hybrid system proposed gives to the formation �ight,

maintaining practically the same trajectory, distances and reference errors.

The noise robustness visualized in these results might be related to the minor changes in

the observed outputs that are already capable to be corrected by the PID control. However, while

dealing with the collision avoidance, the main task of the Dec-POMDP policy to correct, the wrong

perception of the current state might jeopardize the mission so it is important that this algorithm

is also safe to disturbed signals which is considered by the observation probability functions built

in Chapter 3.
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Figure 4.12: Agents' errors for reference based on [4] with noise
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Chapter 5

Conclusions

The formation �ight problem requires complex and dynamic objectives to be performed includ-

ing reference and formation tracking, collision and obstacle avoidance, noise and communication

robustness and many others. As such complex systems, the multiple UAVs scenario may require

both discrete and continuous commands. Therefore, a hybrid control was proposed, in order to

obtain the best bene�t from both types of commands.

The Dec-POMDP method showed to be a �ne planning algorithm to be used in a hybrid

method. Due to its decentralized approach, this model is well suited to a �ight scenario, in

which the environment is very uncertain and a given UAV should not rely on central decision

making unit. Indeed it was shown, through simulations that even a single Dec-POMDP policy,

i.e. without a parallel continuous controller in a hybrid system, is already capable of sustaining

a stable performance in �ight, maintaining a �xed formation while tracking a global reference

through time. The collision avoidance was also achieved with this method, which was not studied

before in previous works with such algorithm. The proposed method also managed to decrease the

number of states by applying the Dec-POMDP policy in an outer loop which, in its turn, improved

the computational time.

However, it was possible to see that indeed the hybrid approach has several advantages in

comparison to a single method, as it is able to have a �ner tracking capability as well as the

discrete commands in speci�c and emergency situations as was the case for the collision avoidance.

It was shown that the hybrid strategy is comparable, and in some characteristics even superior, to

other existing methods in the literature.

Although such approach is suited for all possible vehicles, in this work the formation desired

was based on multiple �xed-wing aircraft. However, it is noticeable to mention that the proposed

system, due to its �exibility, is able to be implemented for di�erent vehicles such as quad-rotors,

helicopters and even non-aerial vehicles and systems.

The Dec-POMDP method can be further used to many other applications within the multiple

UAV scenario, due to its versatility. Through the action-state-observation sets that are constructed

in the policy planning, it is possible to implement many kind of algorithms to accomplish all sort

of goals. From the examples provided in Chapter 1, it can be seen that the Dec-POMDP, specially
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when combined with other continuous methods, suits action planning for data acquisition, target

tracking, surveillance, package delivery, tra�c monitoring, footage and many other possibilities.

However, it should be noted that some disadvantages took place and can be further improved.

By adopting the virtual leader method there are synchronization requirements that needs to be

guaranteed, once the reference will be embedded in each vehicle, all of them should still act

in harmony. Also, while using a �exible approach due to the Dec-POMDP constructions, the

reference is �xed, so it can be di�cult to change the route and, therefore, it might compromise a

mission which requires sudden changes.

Also, in the hybrid control it can be seen that the Dec-POMDP policy only took place at

very speci�c cases, leaving the system to be working with the PIDs most of the time. Further

improvements can change those systems in order to take advantage of those policies at a longer

period. In addition the collision avoidance was obtained by a narrow margin. Therefore a better

maneuver from the Dec-POMDP policy can be applied at a di�erent rate and time in order to

widen this margin.

Finally, another study upon the proposed method that can be performed further is stabilization

analysis. Indeed, it was not mathematically proven whether the hybrid method is actually stable

or that it can guarantee collision avoidance so a detailed study should be performed.

5.1 Future work suggestions

For future works, the main follow up to what was presented in this work is the implementation

of those methods in real UAVs. While the current research was allowed only for tests in simulation

environments, the future developments lie on practical tests. In order to do so, the model of the

real UAVs should be obtained, in order to tune the PID parameters and, consequently, avoid that

the vehicles are damaged.

Besides that, suggestions for future work include the re�nement of the PID controllers, possibly

replacing it by another continuous system if it can provide an even better tracking capability.

However, another possibility to be used is the discrete PID control. Once the system was simulated

with a sampling time to mimic the continuous system, so by using all of them as discrete might also

be a natural follow-up of this work. Indeed the transition matrices might also be a�ected by the

sampling time, therefore an analysis on the impact of such period might also be necessary. Testing

di�erent actions to be performed by the Dec-POMDP policy in parallel to this other systems may

also be relevant, once the multi-vehicle �ight allows for many di�erent actions to be performed.

In addition, another improvement that can be done is using an online policy, that is able to

compute the decisions in real time in response to the environment. This would take away the Dec-

POMDP disadvantage of separating the planning and the execution phase and, therefore allow

the UAVs to plan their actions in real time. Finally, bringing together the concepts of the online

planning and the increasingly researched machine learning algorithms, future works might also

study the possibilities of learning algorithms within multiple UAV groups.
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I. TRANSITION MATRICES

Here are presented the transition probability matrices used in Chapter 4.

I.1 Detached Dec-POMDP matrices

For the simpler detached Dec-POMDP approach, the transition probability matrices, T (a), are

described as follows. The joint action indices are decimal representations of the binary combination

of individual actions (e.g. a = 3 means a3 = 0, a2 = 1, a1 = 1)

T (0) =


0.6 0.4 0 0

0 1 0 0

0 0.8 0.2 0

0 0 0.8 0.2



T (1) = T (2) = T (4) =


0.4 0.1 0.5 0

0 0 0.7 0.3

0 0 0.4 0.6

0 0 0.1 0.9



T (3) = T (5) = T (6) =


0.2 0.1 0.7 0

0 0 0.6 0.4

0 0 0.3 0.7

0 0 0 1



T (7) =


0.2 0 0.8 0

0 0 0.3 0.7

0 0 0.2 0.8

0 0 0 1



I.2 Hybrid Control Matrices

For the hybrid control system, T iv, T
i
ω and T id, are described as follows (the number in paren-

theses is the index the multiplies the base values αvb, αωb or αdb of each matrix):
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T 1
v (−1) =



0.2 0.7 0 0.05 0 0.05 0 0

0.1 0.2 0 0.6 0 0.1 0 0

0.6 0.1 0.2 0 0 0 0.1 0

0.2 0 0 0.1 0 0.6 0 0.1

0.1 0.05 0.6 0 0.1 0 0.1 0.05

0.05 0 0 0 0 0.2 0 0.75

0.05 0 0.05 0 0.6 0.05 0.2 0.05

0 0 0 0 0 0.3 0.3 0.4


T 1
v (0) = 0.8I +

0.2

7
(18×8 − I),

in which I is the 8-th dimensional identity matrix and 18x8 is the 8-th dimensional square matrix

completely �lled with 1.

T 1
v (1) =



0.2 0 0.7 0 0.05 0 0.05 0

0.6 0.2 0.1 0 0 0.1 0 0

0.1 0 0.2 0 0.6 0 0.1 0

0.1 0.6 0.05 0.1 0 0.1 0 0.05

0.2 0 0 0 0.1 0 0.6 0.1

0.05 0.05 0 0.6 0.05 0.2 0 0.05

0.05 0 0 0 0 0 0.2 0.75

0 0 0 0 0 0.3 0.3 0.4


Due to the symmetry of the problem:

T 2
v (−1) = T 1

v (1)

T 2
v (0) = T 1

v (0)

T 2
v (1) = T 1

v (−1)

T 3
v = T 1

v
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T 1
ω(−1) =



0.2 0.2 0.2 0.1 0.1 0.1 0.1 0

0 0.2 0.1 0.3 0 0.4 0 0

0 0.1 0.2 0 0.3 0 0.4 0

0 0 0 0.1 0 0.4 0.2 0.3

0 0 0 0 0.1 0.2 0.4 0.3

0 0 0 0 0 0.2 0.1 0.7

0 0 0 0 0 0.1 0.2 0.7

0 0 0 0 0 0.3 0.3 0.4


T 1
ω(0) = T 1

v (0)

T 1
ω(1) =



1 0 0 0 0 0 0 0

0.8 0.1 0 0 0 0.1 0 0

0.8 0 0.1 0 0 0 0.1 0

0.5 0.3 0 0 0 0.2 0 0

0.5 0 0.3 0 0 0 0.2 0

0.1 0.5 0 0.1 0 0.2 0 0.1

0.1 0 0.5 0 0.1 0 0.2 0.1

0 0 0 0 0 0.3 0.3 0.4



T 2
ω(−1) =



0.1 0.45 0.45 0 0 0 0 0

0 0.2 0 0 0 0.8 0 0

0 0 0.2 0 0 0 0.8 0

0 0 0 0.2 0 0.8 0 0

0 0 0 0 0.2 0 0.8 0

0 0 0 0 0 0.3 0 0.7

0 0 0 0 0 0 0.3 0.7

0 0 0 0 0 0.3 0.3 0.4


T 2
ω(0) = T 1

ω(0)

T 2
ω(1) = T 2

ω(−1)

T 3
ω(−1) = T 1

ω(1)

T 3
ω(0) = T 1

ω(0)

T 3
ω(1) = T 1

ω(−1)
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T 1
d (−1) =



0.1 0.45 0.45 0 0 0 0 0

0 0.2 0 0 0 0.8 0 0

0 0 0.2 0 0 0 0.8 0

0 0 0 0.2 0 0.8 0 0

0 0 0 0 0.2 0 0.8 0

0 0 0 0 0 0.3 0 0.7

0 0 0 0 0 0 0.3 0.7

0 0 0 0 0 0.3 0.3 0.4


T 1
d (0) = T 1

v (0)

T 1
d (1) = T 1

d (−1)

T 3
d = T 2

d = T 1
d
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