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Resumo

Vários aspectos de sistemas computacionais complexos podem ser modelados utilizando
linguagens lógicas, que permitem a caracterização de noções como probabilidades, pos-
sibilidades, noções temporais, conhecimento e crenças [32, 37, 38, 64]. Lógicas modais,
mais especificamente, têm sido amplamente estudadas em Ciência da Computação, pois
possibilitam modelar de forma natural, por exemplo, noções de conhecimento e crença em
sistemas multiagentes [16, 32, 64] e aspectos temporais na verificação formal de problemas
relacionados a sistemas concorrentes e distribuídos [37, 38]. Apesar de sua simplicidade,
linguagens modais são expressivas para raciocinar sobre relações entre diferentes contextos
ou interpretações [15].

Uma vez que um sistema é especificado em uma linguagem lógica, é possível usar mé-
todos de prova para verificar as propriedades desse sistema. Em geral, se I é o conjunto
de fórmulas que representam a implementação e S é o conjunto que caracteriza a especi-
ficação, o processo de verificação consiste em mostrar que é possível derivar os aspectos
especificados em S a partir de I. Cada método de prova corresponde a um conjunto de
regras de inferência acompanhado de uma metodologia de como lidar com as fórmulas.
Geralmente, a literatura sobre um sistema de prova contém análises de melhor e pior
casos. Também pode-se encontrar na literatura comparações entre diferentes métodos de
prova para uma linguagem lógica específica. Para lógicas modais, por exemplo, uma aná-
lise empírica de desempenho de quatro sistemas de prova diferentes pode ser encontrada
em [42]. Ainda é possível combinar métodos de prova para se beneficiar do melhor cenário
de cada método.

Frequentemente, métodos de prova são projetados para serem implementados como
provadores de teoremas automatizados, ou seja, aspectos relacionados à busca por uma
prova também são considerados no projeto de um método de prova específico. Na lite-
ratura, existem vários provadores de teoremas para lógicas modais [4, 67, 76, 77]. Neste
trabalho, o foco é o provador de teoremas para a lógica multimodal básica Kn: KSP [61],
que implementa o método baseado em resolução proposto em [60]. Kn é a linguagem que
estende a lógica proposicional clássica com a adição dos operadores modais de necessidade,
denotado por a , e de possibilidade, denotado por ♦a , ambos indexados por um agente a.
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A semântica dos operatores é dada por “é necessário do ponto de vista do agente a” e “é
possível do ponto de vista do agente a”, respectivamente.

O KSP traduz as fórmulas de entrada para uma forma normal clausal na qual cláusulas
são rotuladas pelo nível modal em que ocorrem, ajudando a restringir aplicações desneces-
sários das regras de inferência do cálculo que o KSP implementa. Para reduzir o espaço de
busca para uma prova, vários refinamentos e estratégias de simplificação são implemen-
tadas como parte do provador KSP. Para obter o melhor desempenho para uma fórmula
específica, ou classe de fórmulas, é importante escolher as estratégias e otimizações mais
adequadas.

De acordo com [61], o KSP apresenta um ótimo desempenho se o conjunto de símbolos
proposicionais for uniformemente distribuído pelos níveis modais. No entanto, quando há
um grande número de símbolos proposicionais em apenas um nível específico, a eficiência
diminui. A razão é que a tradução para a forma normal usada sempre gera conjuntos
satisfatíveis de cláusulas proposicionais, ou seja, cláusulas sem operadores modais. Como
resolução depende da saturação do conjunto de cláusulas, isso pode custar muito tempo.
Este trabalho contribui para o KSP com a implementação de uma opção adicional à lista
de estratégias disponíveis do provador. O objetivo dessa nova opção é tentar reduzir o
tempo que o KSP gasta saturando o conjunto de cláusulas, e, possivelmente, aumentar a
velocidade na qual as regras de inferência que lidam com o raciocínio modal podem ser
aplicadas. Portanto, a contribuição deste trabalho consiste, principalmente, na adição de
duas novas regras ao cálculo implementado pelo KSP. Um dos resultados apresentados
é a demonstração de que as regras são corretas e a adição de ambas não interfere na
completude do provador.

Nossa implementação utiliza um provador de satisfatibilidade booleana baseado em
aprendizagem de cláusulas conduzida por análise de conflitos (CDCL SAT solver). O
problema de satisfatibilidade booleana (SAT) é o problema de determinar se existe al-
guma valoração para as variáveis de uma fórmula proposicional que torne esta fórmula
verdadeira. Provadores para este problema (SAT solvers) são em geral conhecidos por
serem muito eficientes. Esses provadores comumente são capazes de resolver problemas
considerados difíceis, com mais de um milhão de variáveis e milhões de restrições [35].
Uma das principais razões para o amplo uso de SAT em muitas aplicações é que os CDCL
SAT solvers são muito eficientes na prática [35]. A principal idéia por trás da aprendiza-
gem de cláusulas implementada nesses solvers é adicionar as causas de um dado conflito,
derivado de atribuições parciais de valores de verdade a símbolos proposicionais, como
cláusulas aprendidas. Então essas informações são usadas para podar a árvore de busca
por uma valoração satisfatível em diferentes partes.
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Competições anuais também influenciaram o desenvolvimento de implementações in-
teligentes e eficientes dos provadores baseados em SAT, como Chaff [56], MiniSat [73] e
Glucose [5]. Essas competições permitem que muitas técnicas sejam exploradas e criam
uma extensa coleção de instâncias de problemas do mundo real e problemas projetados
como desafiadores, formando um grande banco referência de casos de teste [35]. Além da
análise de conflitos, os provadores modernos incluem técnicas como estruturas de dados
com avaliação preguiçosa, reinicializações de busca, heurísticas de ramificação controlada
por conflitos e estratégias de exclusão de cláusulas [14]. Em 2005, mais especificamente,
Sörensson e Een desenvolveram um provador SAT com minimização de cláusulas de con-
flito, chamado MiniSat [73], que permaneceu por um tempo como o SAT solver do estado
da arte. O MiniSat é um provador popular, com um desempenho surpreendente, que
implementa de forma sucinta muitas heurísticas conhecidas. Ele ganhou vários prêmios
na competição SAT 2005 e tem a vantagem de ser código aberto. Mantém até hoje
sua importância como uma ferramenta usada como parte integrada de diferentes siste-
mas [26, 27, 28, 75]. Aproveitamos os esforços teóricos e práticos que foram direcionados
em melhorar a eficiência de tais provadores para ajudar a acelerar o processo de saturação
dentro dos procedimentos já implementados no KSP.

Nossa implementação modifica o provador KSP para realizar uma chamada externa ao
MiniSat. O provador modificado pode ser encontrado em [1]. A idéia principal por trás
dessa combinação é criar uma consulta para o SAT solver contendo cláusulas especiais
criadas a partir de cada nível modal. Se o provador baseado em CDCL aprender uma ou
mais cláusulas pelo procedimento de análise de conflitos, adicionamos-as ao conjunto de
cláusulas proposicionais da respectiva instância do KSP, pois sabemos que essas cláusulas
aprendidas são consequências do conjunto que passamos ao MiniSat. Além disso, se o
MiniSat concluir que o conjunto dado como entrada é insatisfatível, também aprendemos
uma cláusula que, por construção, deve ser uma das premissas das regras de inferência que
lidam com raciocínio modal. Aprendendo esta cláusula, nossa hipótese é que a aplicação
dessas regras será possível sem que o KSP dependa da saturação do conjunto de cláusulas
proposicionais.

A combinação implementada foi testada com três grandes bancos de problemas clás-
sicos, LWB [11], MQBF [43, 53] e 3CNF [53], em um Ubuntu 18.04 com um processador
Intel i7 e 16 GB de memória. Assim como o KSP sozinho, nossa combinação não conseguiu
resolver nenhuma instância dos problemas pertecentes ao 3CNF no limite de tempo de 20
minutos. Para os demais bancos, o limite de tempo dado foi de 100 segundos. Os resul-
tados experimentais de nossa implementação executando com os bancos MQBF e LWB
não apresentaram, em geral, um ganho em tempo de execução, provavelmente devido à
sobrecarga que inserimos com a chamada ao MiniSat.
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Entretanto, nossa implementação foi capaz de avançar o KSP na resolução de entradas
insatisfatíveis de uma das famílias mais difíceis do banco LWB. Essa família corresponde
ao princípio da casa dos pombos estabelecido como fórmulas em Kn. Essas fórmulas são
projetadas com um grande número de símbolos proposicionais distribuídos em um máximo
de dois níveis modais, o que representa exatamente o cenário para o qual desejávamos me-
lhorar a eficiência do KSP. O provador sozinho é capaz de resolver cinco instâncias dessa
família, enquanto nossa combinação conseguiu resolver até a nona entrada. Outros pro-
vadores na literatura também apresentam grande dificuldade em resolver instâncias dessa
família [61]. Além disso, a execução do KSP combinado com o MiniSat para essas entra-
das em particular mostrou que o uso do MiniSat permitiu uma diminuição significativa
no número de inferências necessárias para que o KSP encontrasse uma prova. Isso é re-
levante quando consideramos uso de memória como parâmetro de eficiência. Este último
resultado indica que nossa combinação teve um impacto positivo na execução do KSP.
Acreditamos que um refinamento nas mudanças implementadas no provador, buscando
um meio termo entre a sobrecarga da chamada ao MiniSat e minimizar o número de
inferências feitas, poderia levar a resultados ainda melhores.

Palavras-chave: lógica modal, resolução, provador baseado em SAT, aprendizagem de
cláusulas, combinação de métodos de prova
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Abstract

Modal logics have been widely studied in Computer Science for allowing the character-
isation of complex systems that express notions in terms of knowledge, belief etc. In this
work, we focus on the theorem prover for the basic multimodal language Kn: KSP, which
implements a clausal resolution method. Clauses are labelled by the modal level at which
they occur, helping to restrict unnecessary applications of the resolution inference rules.
KSP performs well if the set of propositional symbols are uniformly distributed over the
modal levels. However, when there is a high number of variables in just one particular
level, the performance deteriorates. One reason is that the specific normal form we use al-
ways generates satisfiable sets of propositional clauses. As resolution relies on saturation,
this can be very time consuming. Our work contributes to KSP with the implementation
of an additional option to the list of available strategies. This option attempts to reduce
the time KSP spends during saturation, or even to increase the rate in which inference
rules that deal with modal reasoning can be applied. We modified KSP to externally
call MiniSat, a popular SAT solver based on clause learning. The output from MiniSat,
as well as the clauses it might learn in the proof search, gives us important information
about the set of clauses at each modal level. Although the proposed combination did not
improve KSP performance in average, it allowed KSP to solve more instances of the ph
family than before. This is one of the hardest families of the LWB benchmark, which
corresponds to the pigeonhole principle established as a formula in Kn.

Keywords: modal logics, resolution, SAT solver, clause learning, combining proof meth-
ods
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Chapter 1

Introduction

Several aspects of complex computational systems can be modelled by means of logic
languages, allowing for the characterisation of notions such as probabilities, possibilities,
time, knowledge and beliefs [32, 37, 38, 64]. Modal logics, more specifically, have been
widely studied in Computer Science as they can naturally model, for instance, notions of
knowledge and belief in multiagent systems [16, 32, 64], and temporal aspects in the formal
verification of problems related to concurrent and distributed systems [37, 38]. Despite
their simplicity, modal languages are expressive languages for reasoning over relations
between different contexts or interpretations [15].

Once a system has been specified in a logic language, it is possible to use proof meth-
ods to verify properties of such system. In general, if I is the set of formulae representing
the implementation, and S is the set that characterises the specification, the verification
process consists in showing that it is possible to derive the specified aspects in S from
I. Each proof method corresponds to a set of inference rules accompanied with a meth-
odology of how to deal with formulae. Commonly, the literature about a proof system
contains descriptions of best and worst-case scenarios. We can also find in the literature
comparisons between different proof methods for a specific logic language. For modal
logics, for instance, an empirical performance analysis of four different proof systems can
be found in [42]. It is also possible to combine proof methods in order to benefit from
each method’s best-case.

Often, proof methods are designed to be implemented as an automated theorem prover,
that is, aspects related to search for a proof are also addressed in the design of a particular
proof method. In the literature, there are several theorem provers for modal logics [4, 67,
76, 77]. In this work, we focus on KSP [61], a theorem prover for the modal language Kn,
which implements the clausal resolution method proposed in [60]. Clauses are labelled
by the modal level at which they occur, helping to restrict unnecessary applications of
the resolution inference rules. In order to reduce the search space for a proof, several
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refinements and simplification techniques are implemented as part of KSP. To get the
best performance for a particular formula, or class of formulae, it is important to choose
the right strategy and optimisations.

According to [61], KSP performs well if the set of propositional symbols are uniformly
distributed over the modal levels. However, when there is a high number of propositional
symbols in just one particular level, the performance deteriorates. One reason is that the
specific normal form used always generates satisfiable sets of propositional clauses (i.e.
clauses without modal operators). As resolution relies on saturation, this can be very
time consuming. Our work contributes to KSP with the implementation of an additional
option to the list of available strategies. This option attempts to reduce the time KSP
spends during saturation and to increase the rate in which inference rules that deal with
modal reasoning can be applied.

Our implementation uses a Boolean Satisfiability Solver based on Conflict-Driven
Clause Learning (CDCL), or a CDCL SAT solver. SAT solvers are well known to be
very efficient in the proof search for propositional logic. They can often solve hard struc-
tured problems with over a million variables and several million constraints [35]. One of
the main reasons for the widespread use of SAT in many applications is that solvers based
on clause learning are very effective in practice [35]. The main idea behind Conflict-Driven
Clause Learning is to catch the causes of a conflict, derived from partial assignments to
propositional symbols, as learned clauses, and to use this information to prune the search
in a different part of the search space.

Annual competitions have also influenced the development of intelligent and efficient
implementations of SAT solvers, like Chaff [56], MiniSat [73] and Glucose [5], allow-
ing many techniques to be explored and creating an extensive collection of real-world
instances as well as challenging hand-crafted benchmarks problems [35]. Apart from con-
flict analysis, modern solvers include techniques like lazy data structures, search restarts,
conflict-driven branching heuristics and clause deletion strategies [14]. In 2005, more spe-
cifically, Sörensson and Een developed a SAT solver with conflict clause minimisation,
named MiniSat [73], which stayed for a while as the state-of-the-art solver. MiniSat is a
popular SAT solver, with an astonishing performance, that implements many well-known
heuristics in a succinct manner. It has won several prizes in the SAT 2005 competition,
and has the advantage of being open-source. To this day, MiniSat keeps its importance as
a tool used as an integrated part of different systems [26, 27, 28, 75]. We take advantage
of the theoretical and practical efforts that have been directed in improving the efficiency
of such solvers for helping to speed the saturation process within the procedures already
implemented in KSP.

Our implementation modifies KSP to externally call MiniSat. The modified prover
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can be found in [1]. The main idea behind this combination is to build a query for the
SAT solver containing special clauses built from each modal level. If the CDCL solver
learns one or more clauses by the conflict analysis procedure, we add all them back to the
set of propositional clauses of KSP, as we know that these learnt clauses are consequences
of the set we passed to MiniSat. Additionally, if the solver concludes that our input is
unsatisfiable, we also learn a clause that, by construction, must be one of the premises of
the inference rules that deal with modal reasoning. By learning this clause, our hypothesis
is that the application of these rules will be possible without KSP relying on saturation.

Although experimental results of our implementation running on classical benchmarks
did not present, in general, a gain in run-time parameters, probably due to the overhead
we inserted calling MiniSat, we were able to advance KSP in solving unsatisfiable entries
of one of the hardest families of the LWB benchmark. This family corresponds to the
pigeonhole principle established as formulae in Kn. These formulae are formatted with a
large number of propositional symbols distributed over a maximum of two modal levels,
which represents exactly the scenario that we wish to improve the efficiency of KSP for.
The prover alone is able to solve five instances of this family while our combination
managed to solve until the ninth entry. Besides, the execution of KSP combined with
MiniSat for these particular entries shows that the use of MiniSat allowed an overall
decrease in the number of required inferences on the search for a proof. This is noteworthy
when considering both time and memory issues.

The first chapters of this work set the ground theory needed to understand the scenario
in which our work fits. Chapter 2 formally introduces the syntax and semantics of the
propositional modal language which is the main focus of this work: Kn. In Chapter 3 we
briefly introduce clausal resolution, the base of the modal-layered calculus behind KSP.
We also present the calculus KSP implements, and give an overview of how the proof
search of KSP, fully presented in [61], is structured.

In Chapter 4, we discuss the basic architecture often implemented in SAT solvers,
and the role of clause learning in the successful, widespread use of them. In Chapter 5
we see how we can use this solvers as a new strategy option implemented in KSP. This
chapter presents the additional rules needed for the combination, as well as their soundness
proofs. We also present the experimental results running KSP combined with MiniSat in
Chapter 5. Finally, Chapter 6 brings a general overview of the whole work and leaves
suggestions for future work.
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Chapter 2

Modal Logics

This chapter formally introduces Kn, a propositional modal logic language, semantically
determined by an account of necessity and possibility [58].

In classical logic, propositions or sentences are evaluated to either true or false, in any
model [44]. However, in natural language, we often distinguish between various modalities
of truth, such as necessarily true, known to be true, believed to be true or yet true at some
time in the future, for example.

Modal logics extend classical logic by adding operators, known as modal operators, to
express one or more of these different modes of truth. Different modalities define different
languages [15]. The essence in modal logics is that, in opposition to propositional logic, for
instance, all the information available is not seen as from outside. Instead, the relational
structure between given contexts is examined so formulae can be evaluated from inside
these structures, i.e., at a particular state [15]. In this sense, the key concept behind
the modal operators is to allow us to access the information held at different contexts or
interpretations, an abstraction that here we may think as possible worlds.

A propositional modal language is the well known classical propositional logic language
augmented by a collection of modal operators [15]. The purpose of these operators is to
allow the information that holds at other worlds to be examined — but, crucially, only at
worlds visible or accessible from the current one via an accessibility relation [15]. Then, the
evaluation of a modal formula depends on the set of possible worlds and the accessibility
relations defined over these worlds. This idea will be made precise in Section 2.2, when we
define the satisfiability of formulae. It is possible to define several accessibility relations
between worlds, and different modal logics are defined by restrictions on relations.

The modal language which is the focus of this work is the extension of the classical
propositional logic plus the unary operators a and ♦a , whose readings are “is necessary
from the point of view of an agent a” and “is possible from the point of view of an agent
a”, respectively. This language is known as Kn, where n is the number of possible agents.
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The satisfiability and validity of a formula in Kn depend on a structure known as a Kripke
model, a structure proposed by Saul Kripke to semantically analyse modal logics [46]. A
set of worlds, the accessibility relations over these worlds, and a valuation function define
a Kripke model.

Kn is characterised by the schema a (ϕ⇒ ψ)⇒ ( a ϕ⇒ a ψ) (axiom K), where a is
an index from a finite, fixed set of agents, and ϕ, ψ are well-formed formulae as defined in
Defition 2.1.1. The addition of other axioms defines different systems of modal logics and
it imposes restrictions on the class of models where formulae are valid [19]. For instance,
if we add the formula a ϕ ⇒ ϕ (axiom T) as an axiom, the evaluation of formulae can
be restricted to models whose accessibility relations, for an agent a, are reflexive.

In the following, we will formally define the modal language. The syntax and semantics
of Kn are given in Sections 2.1 and 2.2, respectively, following the presentation in [58].

2.1 Syntax

The language of Kn is equivalent to its set of well-formed formulae, denoted by WFFKn ,
which is constructed from a denumerable set of propositional symbols or variables P =
{p, q, r, . . .}, the negation symbol ¬, the disjunction symbol ∨, the conjunction symbol ∧,
the implication symbol ⇒, the double-implication symbol ⇔, and the modal connectives
a and ♦a , that express the notion of necessity and possibilitiy, for each a in a finite,

non-empty fixed set of indexes A = {1, . . . , n}, where n ∈ N.

Definition 2.1.1 The set of well-formed formulae, WFFKn , is the least set such
that:

1. p ∈ WFFKn , for all p ∈ P

2. if ϕ, ψ ∈ WFFKn , then so are ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ⇒ ψ), (ϕ⇔ ψ),♦a ϕ and
a ϕ, for each a ∈ A

3. false, true ∈ WFFKn

We have chosen to define all connectives as primitive instead of using a minimal set of
completely expressive set of connectives, as most of those connectives occur in the normal
form we introduce in Section 3.2. The usual abbreviations are listed below. The logical
constants false and true have the same semantic value under every interpretation. They
are better known as abbreviation to the more complex formulae:

• false = ϕ ∧ ¬ϕ (falsum)
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• true = ¬false (verum)

The operator ♦a is the dual of a , for each a ∈ A, that is, ♦a ϕ can also be seen as
an abbreviation for ¬ a ¬ϕ, with ϕ ∈ WFFKn . The usual abbreviations for classical
connectives are:

• ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ)

• ϕ⇒ ψ = ¬ϕ ∨ ψ

• ϕ⇔ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

In the following, we use these abbreviations to shorten definitions as we can derive the
whole set of connectives from a smaller, but still expressive, subset. The use of this subset
can reduce the size of a few proofs as they rely on induction on the set of connectives.
Furthermore, parentheses may be omitted if the reading is not ambiguous. Additionally,
when n = 1, we may omit the index in the modal operators, i.e. we just write ϕ and
♦ϕ, for a well-formed formula ϕ.

We define a literal as a propositional symbol p ∈ P or its negation ¬p, and denote by
L the set of all literals. A modal literal is a formula of the form a l or ♦a l, with l ∈ L and
a ∈ A. If l is a literal, we call ¬l its complement and say that l and ¬l form, in either
order, a complementary pair.

The modal depth of a formula is recursively defined as follows:

Definition 2.1.2 Let ϕ and ψ be well-formed formulae. We define the modal depth
of a formula as mdepth : WFFKn −→ N inductively as:

1. mdepth(p) = 0, for p ∈ P

2. mdepth(¬ϕ) = mdepth(ϕ)

3. mdepth(ϕ ∨ ψ) = max{mdepth(ϕ),mdepth(ψ)}

4. mdepth( a ϕ) = mdepth(ϕ) + 1

This function represents the maximal number of nested modal operators in a formula.
For instance, if ϕ = ♦p ∨ ♦q, then mdepth(ϕ) = 2.

The modal level of a formula (or a subformula), that is, the number of modal operators
in the scope of which the (sub)formula occurs, is given relative to its position in an
annotated syntactic tree.
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Definition 2.1.3 Let Σ be the alphabet {1, 2, .} and Σ∗ the set of all finite sequences
over Σ. We define τ : WFFKn × Σ∗ × N −→ P(WFFKn × Σ∗ × N) as the partial
function inductively defined as follows:

1. τ(p, λ,ml) = {(p, λ,ml)}

2. τ(¬ϕ, λ,ml) = {(¬ϕ, λ,ml)} ∪ τ(ϕ, λ.1,ml)

3. τ( a ϕ, λ,ml) = {( a ϕ, λ,ml)} ∪ τ(ϕ, λ.1,ml + 1)

4. τ(ϕ ∨ ψ, λ,ml) = {(ϕ ∨ ψ, λ,ml)} ∪ τ(ϕ, λ.1,ml) ∪ τ(ψ, λ.2,ml)

with p ∈ P , λ ∈ Σ∗,ml ∈ N and ϕ, ψ ∈ WFFKn .

The function τ applied to (ϕ, 1, 0) returns the annotated syntatic tree for ϕ, where each
node is uniquely identified by a subformula, its path order (or its position) in the tree,
and its modal level, defined below.

Definition 2.1.4 Let ϕ be a formula and let τ(ϕ, 1, 0) be its annotated syntactic
tree. We define the modal level of a subformula ϕ′ of ϕ at the position λ as mlevel :
WFFKn ×WFFKn × Σ∗ −→ N, and if (ϕ′, λ,ml) ∈ τ(ϕ, 1, 0) then mlevel(ϕ, ϕ′, λ) =
ml. Otherwise, it is undefined.

Example 2.1.1 If ϕ = a a (p ∨ a p), the application of τ to ϕ results in the follow-
ing annotated syntatic tree, also illustrated in Figure 2.1. The nodes are rotulated by
formulae, their positions are given on the left, and their modal level on the right.

τ( a a (p ∨ a p), 1, 0) = {( a a (p ∨ a p), 1, 0), τ( a (p ∨ a p), 1.1, 1)}

= {( a a (p ∨ a p), 1, 0), ( a (p ∨ a p), 1.1, 1), (τ(p ∨ a p), 1.1.1, 2)}

= {( a a (p ∨ a p), 1, 0), ( a (p ∨ a p), 1.1, 1), (p ∨ a p, 1.1.1, 2), (τ(p), 1.1.1.1, 2),

(τ( a p), 1.1.1.2, 2)}

= {( a a (p ∨ a p), 1, 0), ( a (p ∨ a p), 1.1, 1), (p ∨ a p, 1.1.1, 2), (p, 1.1.1.1, 2),

( a p, 1.1.1.2, 2), (τ(p), 1.1.1.2.1, 3)}

= {( a a (p ∨ a p), 1, 0), ( a (p ∨ a p), 1.1, 1), (p ∨ a p, 1.1.1, 2), (p, 1.1.1.1, 2),

( a p, 1.1.1.2, 2), (p, 1.1.1.2.1, 3)}
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a a (p ∨ a p)1 0

a (p ∨ a p)1.1 1

p ∨ a p1.1.1 2

p1.1.1.1 2 a p1.1.1.2 2

p1.1.1.2.1 3

Figure 2.1: Annotated tree for a a (p ∨ a p).

2.2 Semantics

The semantics of Kn is presented in terms of Kripke structures.

Definition 2.2.1 A Kripke model for the set of propositional variables P and the
finite set of agents A = {1, . . . , n} is given by the tuple

M = (W,R1, . . . , Rn, π)

where W is a non-empty set of possible worlds; each Ra, a ∈ A, is a binary relation
on W , that is, Ra ⊆ W × W , and π : W × P −→ {false, true} is the valuation
function that associates to each world w ∈ W a truth-assignment to propositional
symbols.

As a remark on our notation, the truth values are written in italic (e.g. false) whereas
the constants are written in bold (e.g. false).

We write Rawυ to denote that υ is accessible from w through the accessibility relation
Ra, that is (w, υ) ∈ Ra, and R+

a wυ, to mean that υ is reachable from w through a finite
number of steps, that is, there exists a sequence (w1, . . . , wk) of worlds such that Rawiwi+1,
for all i, 1 ≤ i < k, where w1 = w and wk = υ, with a ∈ A, w, υ, wi ∈ W and i, k ∈ N.
Note that R+

a is the transitive closure of Ra, the least transitive relation that contains all
elements of Ra.

8



Satisfiability and validity of a formula are defined in terms of the satisfiability relation.

Definition 2.2.2 Let M = (W,R1, . . . , Rn, π) be a Kripke model, w ∈ W and
ϕ, ψ ∈ WFFKn . The satisfiability relation, denoted by 〈M, w〉 |= ϕ, between a world
w and a formula ϕ, is inductively defined by:

1. 〈M, w〉 |= p if, and only if, π(w, p) = true, for p ∈ P ;

2. 〈M, w〉 |= ¬ϕ if, and only if, 〈M, w〉 6|= ϕ;

3. 〈M, w〉 |= ϕ ∨ ψ if, and only if, 〈M, w〉 |= ϕ or 〈M, w〉 |= ψ;

4. 〈M, w〉 |= a ϕ if, and only if, for all t ∈ W , (w, t) ∈ Ra implies 〈M, t〉 |= ϕ.

We can just write w |= ϕ to denote that w satisfies ϕ when the model is clear from the
context. Notice that the evaluation of the a operator quantifies over all reachable worlds
in the Kripke structure, characterising it as universal. The dual operator, ♦a , therefore
has an existential characterisation, forcing a world satisfying the modal literal to exist.

A formula ϕ ∈ WFFKn is said to be locally satisfiable if there exists a Kripke model
M = (W,R1, . . . , Rn, π) such that 〈M, w〉 |= ϕ for some w ∈ W . In this case we simply
write M |=L ϕ to mean that M locally satisfies ϕ. A model M = (W,R1, . . . , Rn, π) is said
to globally satisfy a formula ϕ, denoted M |=G ϕ, if for all w ∈ W , we have 〈M, w〉 |= ϕ.
A formula ϕ is said to be globally satisfiable if there is a model M such that M globally
satisfies ϕ. We say that a set F of formulae is locally satisfiable if the conjunction of
every ϕ ∈ F is locally satisfiable. Global satisfiability of sets is defined analogously. A
formula is said to be valid if it is satisfiable in all models.

The local satisfiability problem for Kn corresponds to determining the existence of
a model in which a formula is locally satisfied, while the global satisfiability problem
corresponds to determining the existence of a model in which a formula is globally satisfied.

Example 2.2.1 Let M be the model illustrated in Figure 2.2. Take M = (W,R, π), for
p, q ∈ P and A = {1}, where

(i) W = {w0, w1, w2}

(ii) R = {(w1, w1), (w2, w2), (w0, w1), (w0, w2)}

(iii) π(w, p) =

true if w = w1

false otherwise

(iv) π(w, q) = true for all w ∈ W

9



Note that w0 satisfies both ♦p and ♦¬p in M. This is a rather simple example to
illustrate that, even though some sentence evaluates to true at some world, one can see
the same sentence occurring with the opposite valuation through an accessibility relation.
This kind of reasoning is not possible in classical propositional logic. Other examples of
formulae satisfied by this model at w0 are: q ∨ p and ♦ p∧♦ ¬p. Also note that q is
globally satisfied in M since it is true at every world of the model.

qw0

p, qw2¬p, q w1

Figure 2.2: Example of a Kripke model for Kn

Example 2.2.2 (Tree-like model) Consider the formula ϕ = 1 (p⇒ ♦2 p). The Figure 2.3
contains two examples of models, Figure 2.3a and Figure 2.3b, that satisfy ϕ at w0 and
τ0, respectively, hence, ϕ is locally satisfiable. Note that the model from the Figure 2.3b
has a graphical representation equivalent to a tree.

As trees play an important role in future definitions, we will take this opportunity to
define them formally. By a tree T we mean a relational structure (T, S) where T is a set
of nodes and S is a binary relation over these nodes. T contains a unique node r0 ∈ T
(called the root) such that all other nodes in T are reachable from r0, that is, for all t ∈ T ,
we have S+r0t. Also, every element of T , distinct from r0, has a unique S-predecessor,
and S is acyclic, that is, for all t ∈ T , it is not the case that S+tt [3].

Figure 2.3b is a tree model. By a tree model we mean a Kripke model (W,R, π), with
A = {1}, where (W,R) is a tree with a distinguish world w0 ∈ W as its root. A tree-like
model for Kn is a model (W,R1, . . . , Rn, π), with A = {1, . . . , n}, such that (W,∪i∈ARi)
is a tree, with w0 ∈ W as the root.

Let M = (W,R1, . . . , Ra, π) be a tree-like model for Kn with w0 ∈ W as a root. We
define the depth : W −→ N of a world w ∈ W , as the length of the path from w0 to
w through the union of the relations in M. We sometimes say depth of M to mean the
longest path from the root to any world in W .

The following theorems have been adapted from the ones presented in [3].
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¬pw0

p w2pw1

1

1

2

2

1

(a) Kripke model

τ0

¬pτ1 p τ2

pτ3 ¬p τ4

1 1

2 2

(b) Tree model

Figure 2.3: Models that satisfy ϕ of Example 2.2.2

Theorem 2.2.1. Let ϕ ∈ WFFKn be a formula and M = (W,R1, . . . , Rn, π) be a model.
Then M |=L ϕ if and only if there is a tree-like model M′ such that M′ |=L ϕ. Moreover,
M′ is finite and its depth is bounded by mdepth(ϕ).

The proof of Theorem 2.2.1 presented in [15] constructs a tree-like model M′ as a
generated submodel of M, that is, it restricts both the set of worlds and the binary
relations to a subset of W which is relevant to determining the satisfiability of a given
formula. Then, using the satisfiability invariance of generated submodels, also proved
in [15], which states that a formula is satisfiable in a model if, and only if, it is satisfiable
in its generated submodels, the proof becomes trivial.

Theorem 2.2.2. Let ϕ, ϕ′ ∈ WFFKn and M = (W,R1, . . . , Rn, π) be a tree-like model
such that M |=L ϕ. If (ϕ′, λ′,ml) ∈ τ(ϕ, 1, 0) and ϕ′ is satisfied in M, then there is
w ∈ W , with depth(w) = ml, such that 〈M, w〉 |= ϕ′. Moreover, the subtree rooted at w
has height equal to mdepth(ϕ′).

The proof of Theorem 2.2.2 is by induction on the structure of the formula and shows
that a subformula ϕ′ of ϕ is satisfied at a node with distance ml of the root of the tree-like
model. As determining the satisfiability of a formula ϕ depends only on its subformulae
ϕ′, only the subtrees of height mdepth(ϕ′) starting at level ml need to be checked. The
bound on the height of the subtrees follows from Theorem 2.2.1 [60].

The global satisfiability problem for a modal logic is equivalent to the local satisfiability
problem of the logic obtained by adding the universal modality, ∗ , to the original modal
language [36]. Let K∗n be the logic obtained by adding ∗ to Kn. A model M∗ for
K∗n is the pair (M, R∗), where M = (W,R1, . . . , Rn, π) is a tree-like model for Kn and
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R∗ = W × W . A formula ∗ ϕ is satisfied at the world w ∈ W , in the model M∗,
written 〈M∗, w〉 |= ∗ ϕ, if, and only if, for all w′ such that (w,w′) ∈ R∗, we have that
〈M∗, w′〉 |= ϕ. As the relation R∗ is total, it is easy to see that this corresponds to the
global satisfiability problem as defined before. In [36], the following result is established
and proved, for first-order definable modal logics.

Theorem 2.2.3. M |=G ϕ, if, and only if, M∗ |=L ∗ ϕ, for a formula ϕ.

The satisfiability problems for Kn are proven to be PSPACE-complete [74], for local
satisfiability, and EXPTIME-complete, for global satisfiability [74]. These might seem as
discouraging results and one may wonder whether automated computation for such logics
can be viable in practice. However, the kinds of formulae that give rise to the worst case
scenarios seem to be hardly encountered in real applications [41]. This has allowed for the
successful utilisation of modal logics in, for instance, multiagent systems [16, 32, 64] and
distributed systems [37, 38], due to the implementation of automated reasoning systems
that perform very well for these logics.
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Chapter 3

Modal-Layered Resolution

Modal languages, in general, can be used in Computer Science to represent properties of
complex systems. Once a system is described by a logical language, we also want to reason
about its properties and we do this through a proof method, also called proof system or
calculus. This chapter formally introduces a calculus for the modal language defined on
Chapter 2. But first, we will go through some basic notions about proof systems.

The proof of theorems, or the deduction of consequences from assumptions, in Math-
ematics, is typically characterised by a conclusion that follows from a (possibly empty)
set of formulae [44].

Formally, a proof is a finite object built in conformity to a fixed set of syntactic
rules [33]. The set of syntactic rules that define proofs, called inference rules, are said
to specify a proof system. These rules allow the derivation of formulae from sets of
formulae through strict symbol manipulation [31]. Besides the set of syntactic rules, a
proof method may also be characterised by a set of statements that are assumed to be
true, called axioms. Axioms may serve as premises or starting points for further reasoning.

A proof system for a particular logic is said to be sound if any formula that has a
proof is a valid formula of the logic, and it is complete for a particular logic if any valid
formula has a proof [33]. Therefore, a sound and complete calculus allows us to produce
a proof for a formula if and only if this formula is valid.

There are many kinds of proof systems. One way of categorising proof systems involves
the chaining in which the rules are applied to form a line of reasoning. If the chaining
starts from a set of conditions and moves toward some (possibly remote) conclusion, the
system is called forward chaining. Backward systems, on the other hand, start from what
is needed to be proved and moves towards the axioms. Proof search by backward chaining
is a standard technique in automated reasoning [39].

One of the most common examples of a backward system is a tableau system. Tableau
systems exist in many varieties and for several logics, but they all share a few aspects [33].
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For example, they are all refutational systems, i.e., to prove a formula, we begin by
negating it, then analysing the consequences of doing so. If it is the case that all the
consequences turn out to be contradictory, we conclude that the original formula has
been proved [33]. Refutational systems are based on the fact that a formula is valid if,
and only if, its negation is unsatisfiable.

Other aspect common to tableau systems is that they are analytic, that is, they usually
perform the search for a proof trough breaking down (or branching) the initial formula,
according to certain inference rules, until a rule for closing each branch is used. Hence,
proofs in tableau systems in general have a graphical representation similar to a tree [23].
Each branch of a tableau proof can be considered to be a partial description of a model
on the respective logic. A tableau proof system for modal logics usually labels every step
of the proof with a prefix that names a possible world1 in a model [33]. Therefore, to
deal with modal reasoning, whenever a formula ♦a ϕ holds in a specific world labelled by
a prefix, the tableau proof creates a new world, whose accessibility from the previous one
is made explicit trough the new prefix, that satisfies the formula ϕ in the scope of the
modal operator. Then, following closely the semantics of the a operator, if a ϕ′ has the
same prefix of ♦a ϕ, the formula ϕ′ is propagated to the newly created world. Whenever
we insert a contradiction in any world, we close the respective branch. If all branches
happen to be closed, we can conclude that the original negated formula is unsatisfiable,
hence, the original formula is valid.

Aside from tableaux, backward systems may also take the form of a version of Robin-
son’s resolution rule [39]. Calculi based on this rule are often referred as resolution based
systems. These are also refutational systems.

Numerous resolution based systems for propositional logic have been proposed in the
literature [10]. The standard system has only one inference rule [66], showed below as
the RES rule, which takes two clauses with literals that form a complementary pair and
generates a resolvent, where each clause, denoted by C, is a disjunction of literals. The
resolution rule takes, then, the form:

[RES] Ci ∨ l ¬l ∨ Cj
Ci ∨ Cj

where Ci and Cj are (possibly empty) clauses, called parent clauses, l is a literal and Ci∨Cj
is the resolvent.

1Here, we regard a world as a set of formulae, following the correspondence given by the syntactic
construction of a tableau proof and the construction of a model, as given in the completeness proofs for
such proof methods.
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We use the constant false to denote the empty clause, i.e., the clause that contains no
literals. Due to the associativity and commutativity properties of disjunction, one may
see a clause as a set of literals. In this work we might abuse of set notation, writing l ∈ C,
when l is a literal of C, and Ci ⊆ Cj, when all literals in Ci are also literals in Cj.

Resolution-based provers are widely implemented and tested [10]. Besides reliable
implementations of the main mechanism for propositional logic, presented in Section 3.1,
we can also profit from several complete strategies. For instance, linear resolution [45, 50],
set of support strategy [78], ordered resolution [65] and selection-based resolution [45]. All
those strategies restrict the clauses that can be chosen as premises for the application of
the resolution rule whilst retaining completeness. In other words, those strategies try to
avoid unnecessary applications of the rule in order to find a proof. Provers for multimodal
logics can take advantage of such strategies, as they require pruning of the search space
for a proof, in order to deal with the inherent intractability of the satisfiability problem
for such logics.

The proof method we will discuss in this chapter is a resolution-based calculus, it
was proposed in [60] for both local and global reasoning, and it is thoroughly presented
in Section 3.2. The calculus is proved to be sound and complete for Kn in [60]. It was
developed with special concerning towards computer implementations and it uses formulae
translated into a special normal form. This normal form divides the clause set according to
the modal level at which each clause occurs to prevent unecessary applications of inference
rules.

3.1 Clausal Resolution

Resolution appeared in the early 1960’s through investigations on performance improve-
ments of refutational systems based on the Herbrand’s Theorem, which allows a kind of
reduction of first-order logic to propositional logic [18]. J. A. Robinson incorporated the
concept of unification on demand on a refutational system, creating what is now known
as the resolution method for first-order logic [66].

Clausal resolution is a simple and adaptable proof system for classical logics. It was
claimed to be suitable to be performed by a computer, as, for propositional logic, it
has only one inference rule that is applied to the set of clauses. Robinson emphasises
that, from the theoretical point of view, an inference rule need only to be sound and
effective, that is, it allows only valid consequences to be deduced from premises and it
must be algorithmically decidable whether an alleged application of the rule is indeed an
application of it.
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The single inference rule of this system of logic, the RES rule, entails the resolution
principle, namely: From any two clauses Ci and Cj which contain a complementary pair
of literals, one may infer a resolvent of Ci and Cj [66].

Resolution, as proposed by Robinson, is a refutationally complete theorem proving
method for first-order logic [66]. In his paper, Robinson presents a formalisation of the
calculus for first-order logic, designed to be used as the basic theoretical instrument of the
proposed computer theorem-proving program. For the purpose of this work, we are only
interested in the calculus for propositional logic. Therefore, we will neither discuss the
theory behind the Herbrand’s Theorem nor the definition of the unification procedure,
but, if curious, the reader can refer to [66] for more details. In the sense of this last
remark, the only representational formalism needed is propositional logic.

Resolution relies on saturation. A clause set is said to be saturated when further
relevant information cannot be generated, regardless of the rule (or set of rules) that is
applied [25]. That means that the application of any rule to a saturated set of clauses
only generates tautologies or repeated clauses. Saturation, up to redundancy, of the initial
clause set is a quite useful criterion when we are thinking in terms of the termination proof
and completeness proof of a calculus [33].

As resolution has only the RES rule, to show that a formula ϕ is valid, ¬ϕ is translated
into a normal form, then the inference rule is applied until either no new resolvents can
be generated or the empty clause is obtained [10]. The contradiction implies that ¬ϕ is
unsatisfiable and hence, that ϕ is valid.

Example 3.1.1 Consider the set of clauses S = {(¬p∨q), (¬p∨r), (¬r∨q), (¬q∨r),¬r, p}.
Figure 3.1, taken from [57], shows an example of naive derivation of the empty clause for
S, proving that this set is unsatisfiable.

Despite its simplicity, naive resolution is hard to implement efficiently due to the diffi-
culty of finding good choices of clauses to resolve [35]. As one can infer from this example,
a raw implementation of resolution-based systems typically implies considerable storage
requirements. Even with such a short set of clauses (only 6 initially), the application of the
resolution rule, without any restriction, yields the generation of repeated clauses, Clauses
7 and 8, and tautologies, Clauses 9 and 10. That is, useless information is generated and
possibly stored until the contradiction can be found.

Robinson established two principles, namely purity principle and subsumption prin-
ciple, to discuss the development of efficient resolution systems. Such principles are called
search principles in [66]. A third principle, named replacement principle, is presented in
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1. ¬p ∨ q
2. ¬p ∨ r
3. ¬r ∨ q
4. ¬q ∨ r
5. ¬r
6. p
7. ¬p ∨ q [RES,3,2] = 1
8. ¬p ∨ r [RES,4,1] = 2
9. ¬q ∨ q [RES,4,3] = true
10. ¬r ∨ r [RES,4,3] = true
11. ¬p [RES,5,2]
12. ¬q [RES,5,4]
13. q [RES,6,1]
14. r [RES,6,2]
15. false [RES,11,6] contradiction

Figure 3.1: An example of derivation for the set S in Example 3.1.1

terms of replacement using the subsumption principle.

Definition 3.1.1 If S is any finite set of clauses, C is a clause in S and l a literal
in C with the property that no literal in any other clause in S form a complementary
pair with l, then l is said to be pure in S.

The purity principle is then based on Theorem 3.1.1.

Theorem 3.1.1. If S is any finite set of clauses, and a clause C ∈ S contains a literal l
which occurs pure in S, then S is satisfiable if and only if S \ {C} is satisfiable.

Definition 3.1.2 If Ci and Cj are two distinct nonempty clauses, we say that Ci
subsumes Cj in the case that Ci ⊆ Cj.

Theorem 3.1.2 establishes the basic property of subsumption.

Theorem 3.1.2. If S is any finite set of clauses, and Cj is any clause in S which is
subsumed by some clause in S \ {Cj}, then S is satisfiable if and only if S \ {Cj} is
satisfiable.

Theorems 3.1.1 and 3.1.2 are both proved in [66].
Another specially useful search principle derives from the subsumption principle. Sup-

pose that a resolvent CR of Ci and Cj subsumes Ci. Then, in adding CR as a result of
resolving Ci and Cj, we may simultaneously remove, by the subsumption principle, Ci.

17



(a) Initial clauses

1. ¬q ∨ ¬r
2. ¬q ∨ r
3. u ∨ ¬p
4. ¬p ∨ q ∨ ¬r
5. ¬p ∨ q
6. p

(b) Purity principle

1. ¬q ∨ ¬r
2. ¬q ∨ r
4. ¬p ∨ q ∨ ¬r
5. ¬p ∨ q
6. p

(c) Subsumption

1. ¬q ∨ ¬r
2. ¬q ∨ r
5. ¬p ∨ q
6. p

(d) Replacement

5. ¬p ∨ q
6. p
7. ¬q [RES,1,2]
8. q [RES,5,6]
9. false [RES,7,8]

Figure 3.2: Derivation schemes for Example 3.1.2

This combined operation leads to the replacement of Ci by CR. Accordingly, this principle
is named as the replacement principle [66].

The application, to a finite set S of clauses, of any of the three search principles de-
scribed, produces a set S ′ which either has fewer clauses than S, or has one or more shorter
clauses [66]. An evident way of profit from these principles in a refutation procedure is
therefore to delay the application of the RES rule to the set of clauses, until the search
principles are no longer fulfilled.

Example 3.1.2 Let S be the set of clauses showed in Figure 3.2a. This time, prior to the
exaustive application of the RES rule, let’s investigate opportunities to apply the search
principles, in order to reduce the number and size of clauses.

In this example, the third clause can be eliminated from the set of clauses through an
application of the purity principle, as expressed in Figure 3.2b, because there is no other
clause that has the complementary pair of the literal u. Furthermore, as the Clause 5
subsumes the Clause 4, this last one can also be eliminated from the set of clauses, leaving
only the clauses in Figure 3.2c. The application of RES to Clauses 1 and 2 generates the
resolvent ¬q, which subsumes both clauses, hence, by the replacement principle, both
may be replaced by Clause 7, as showed in Figure 3.2d. Finally, the application of RES
to Clauses 5 and 6, generates the Clause 8 as a resolvent, and then resolving this one with
the Clause 7 will generate the empty clause, a contradiction.

There are further principles of the same general sort, possibly less simple than the
ones presented earlier, which Robinson considers to be merely a brief view of the possible
approaches to the efficiency problem of resolution systems. Details can be found in [66].
Further on this work, we see a practical application for the purity principle, but we refer
to it as pure literal elimination following more recent literature. We also present unit
propagation, which can be thought as another search principle. Both will be brought back
in Chapter 4, where we discuss the role of SAT Solvers for reasoning in propositional logic.
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3.2 Modal-Layered Resolution Calculus for Kn

With the resolution ground for propositional logic all set, now we will present a resolution-
based proof system for Kn, the modal language discussed in Chapter 2.

The calculus presented in this section requires a translation into a more expressive
modal language, presented in Section 3.2.1, where labels are used to express semantic
properties of a formula. This calculus uses labelled resolution in order to avoid unnecessary
applications of the inference rules [60]. For instance, we do not apply resolution to clauses
at different modal levels, since, as we have seen, they are not, in fact, contradictory.

3.2.1 Separated Normal Form with Modal Levels

Formulae translated into a normal form have a specific, normalised structure, possibly
resulting in less operators to handle with, which may imply in a smaller number of rules
for a proof system. Hence, a calculus that is planned to be implemented in a computer
may take great advantage of normal forms, since the smaller number of inference rules
reduces the chances of implementation errors, for example.

The normal form used in this work for Kn is a layered normal form called Separated
Normal Form with Modal Levels, denoted by SNFml, proposed in [60], hence, all the
definitions in this section are adapted from [60]. A formula in SNFml is a conjunction
of clauses where the modal level in which they occur is made explicit in the syntax as a
label.

We write ml : ϕ to denote that ϕ occurs at modal level ml ∈ N ∪ {∗}. By ∗ : ϕ we
mean that ϕ is true at all modal levels. Formally, let WFFmlKn

denote the set of formulae
with the modal level annotation, ml : ϕ, such that ml ∈ N ∪ {∗} and ϕ ∈ WFFKn . Let
M∗ = (W,w0, R1, . . . , Rn, R∗, π) be a tree-like model and take ϕ ∈ WFFKn .

Definition 3.2.1 Satisfiability of labelled formulae is given by:

1. M∗ |=L ml : ϕ if, and only if, for all worlds w ∈ W such that depth(w) = ml,
we have 〈M∗, w〉 |= ϕ;

2. M∗ |=L ∗ : ϕ if, and only if, M∗ |= ∗ ϕ.

Clauses in SNFml are defined as follows.

Definition 3.2.2 Clauses in SNFml are in one of the following forms:

1. Literal clause ml : ∨r
i=1 li
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2. Positive a-clause ml : l⇒ a m

3. Negative a-clause ml : l⇒ ♦a m

where r, i ∈ N,ml ∈ N ∪ {∗}, l, li,m ∈ L and a ∈ A = {1, . . . , n}.

Positive and negative a-clauses are together known as modal a-clauses. The index a
can be omitted if it is clear from the context.

Definition 3.2.3 Let ϕ ∈ WFFKn . We say that ϕ is in Negation Normal Form
(NNF) if it contains only the operators ¬,∨,∧, a and ♦a . Also, only propositions
are allowed in the scope of negations.

The transformation of a formula ϕ ∈ WFFKn into SNFml is achieved by first trans-
forming ϕ into its Negation Normal Form, and then, recursively applying rewriting and
renaming of complex formulae [63], until all subformulae are written in one of the forms
presented by Definition 3.2.2.

Formally, let ϕ be a formula in NNF. Take t as a propositional symbol not occurring
in ϕ. The translation of ϕ into SNFml is then given by 0 : t ∧ ρ(0 : t ⇒ ϕ) for local
satisfiability — for global satisfiability, the translation is given by ∗ : t ∧ ρ(∗ : t⇒ ϕ) —
where ρ is the translation function defined by Definition 3.2.4. We refer as initial clauses
the literals clauses at the modal level 0.

Definition 3.2.4 The translation function ρ : WFFmlKn
−→ WFFmlKn

is defined as
follows:

ρ(ml : t⇒ ϕ ∧ ψ) = ρ(ml : t⇒ ϕ) ∧ ρ(ml : t⇒ ψ)

ρ(ml : t⇒ a ϕ) = (ml : t⇒ a ϕ), if ϕ is a literal

= (ml : t⇒ a t′) ∧ ρ(ml + 1 : t′ ⇒ ϕ), otherwise

ρ(ml : t⇒ ♦a ϕ) = (ml : t⇒ ♦a ϕ), if ϕ is a literal

= (ml : t⇒ ♦a t′) ∧ ρ(ml + 1 : t′ ⇒ ϕ), otherwise

ρ(ml : t⇒ ϕ ∨ ψ) = (ml : ¬t ∨ ϕ ∨ ψ), if ϕ ∨ ψ is a disjunction of literals

= ρ(ml : t⇒ ϕ ∨ t′) ∧ ρ(ml : t′ ⇒ ψ),

if ψ is not a a disjunction of literals

Where t, t′ ∈ L, ϕ, ψ ∈ WFFKn , a ∈ A and ml ∈ N ∪ {∗}, with ∗ + 1 = ∗. Also,
whenever t′ renames a subformula ϕ, it is required that t′ is a new propositional
symbol (i.e. it does not occur in the original formula).
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As the conjunction operator is commutative, associative and idempotent, we will com-
monly refer to a formula in SNFml as a set of clauses.

Example 3.2.1 Let ϕ be the formula (a ⇒ b) ⇒ ( a ⇒ b). We show how to
translate ϕ into its normal form, considering the local satisfiability problem.

First, we anchor the NNF of ϕ to the initial state:

0 : t0 ∧ ρ(0 : t0 ⇒ ♦(a ∧ ¬b) ∨ ♦¬a ∨ b) (3.1)

The Equation 3.1 is used to anchor the meaning of ϕ to the initial state, where the
formula is evaluated. The function ρ proceeds with the translation, replacing complex
formulae inside the scope of the and ♦ operators, by means of renaming.

So the translation proceeds as follows:

ρ(0 : t0 ⇒ ♦(a ∧ ¬b) ∨ ♦¬a ∨ b)

= ρ(0 : t0 ⇒ ♦(a ∧ ¬b) ∨ t1) ∧ ρ(0 : t1 ⇒ ♦¬a ∨ b)

= ρ(0 : t0 ⇒ t2 ∨ t1) ∧ ρ(0 : t2 ⇒ ♦(a ∧ ¬b)) ∧ ρ(0 : t1 ⇒ ♦¬a ∨ t3) ∧ ρ(0 : t3 ⇒ b)

= (0 : ¬t0 ∨ t2 ∨ t1) ∧ (0 : t2 ⇒ ♦t4) ∧ ρ(1 : t4 ⇒ a ∧ ¬b) ∧ ρ(0 : t1 ⇒ t5 ∨ t3)∧

(0 : t5 ⇒ ♦¬a) ∧ (0 : t3 ⇒ b)

= (0 : ¬t0 ∨ t2 ∨ t1) ∧ (0 : t2 ⇒ ♦t4) ∧ ρ(1 : t4 ⇒ a) ∧ ρ(1 : t4 ⇒ ¬b)∧

(0 : ¬t1 ∨ t5 ∨ t3) ∧ (0 : t5 ⇒ ♦¬a) ∧ (0 : t3 ⇒ b)

= (0 : ¬t0 ∨ t2 ∨ t1) ∧ (0 : t2 ⇒ ♦t4) ∧ (1 : ¬t4 ∨ a) ∧ (1 : ¬t4 ∨ ¬b)∧

(0 : ¬t1 ∨ t5 ∨ t3) ∧ (0 : t5 ⇒ ♦¬a) ∧ (0 : t3 ⇒ b)

The translation generates eight clauses, two of them at the subsequent modal level
(1 : ¬t4 ∨ a and 1 : ¬t4 ∨ ¬b). Note that, from the six clauses at the initial modal level,
we have three literal clauses (0 : t0, 0 : ¬t0 ∨ t2 ∨ t1 and 0 : ¬t1 ∨ t5 ∨ t3), known as the
initial clauses, two negative clauses (0 : t2 ⇒ ♦t4 and 0 : t5 ⇒ ♦¬a) and one positive
clause (0 : t3 ⇒ b).

The set of clauses obtained by translating the formula ϕ into SNFml is locally satisfiable
if, and only if, ϕ is locally satisfiable, as given by the next lemma, taken from [60].

Lemma 3.2.1. Let ϕ ∈ WFFKn be a formula and let t be a propositional symbol not
occurring in ϕ. Then:

(i) ϕ is locally satisfiable if, and only if, 0 : t ∧ ρ(0 : t⇒ ϕ) is satisfiable;

(ii) ϕ is globally satisfiable if, and only if, ∗ : t ∧ ρ(∗ : t⇒ ϕ) is satisfiable.
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3.2.2 Calculus

The motivation for the use of the labelled clausal normal form in the calculus is that
inference rules can then be guided by the syntactic information given by the labels and
applied to smaller sets of clauses, reducing the number of unnecessary applications of the
inference rules, and therefore improving the efficiency of the proof procedure [61].

The modal-layered resolution calculus, proposed in [60], comprises a set of inference
rules, individually explained below, for dealing with propositional and modal reasoning.

We denote by σ the result of unifying the labels in the premises for each rule. Formally
presented in Definition 3.2.5, the unification function imposes restrictions on the applic-
ation of the inference rules. We have seen, for instance, that contradictory clauses at
different modal levels are not contradictory. Hence, a resolvent should not be deduced.

Definition 3.2.5 Unification is given by a function σ : P(N ∪ {∗}) −→ N ∪ {∗},
where σ({ml, ∗}) = ml and σ({ml}) = ml. Otherwise, σ is undefined.

The inference rules showed in Figure 3.3 can only be applied if the unification of their
labels is defined (where ∗ − 1 = ∗). Note that for GEN1 and GEN3, if the modal clauses
occur at the modal level ml, then the literal clause occurs at the next modal level, ml+1.
The rules that deal with modal reasoning are applied only to clauses with modal operators
indexed by the same agent.

[LRES] ml1 : D ∨ l
ml2 : D′ ∨ ¬l

σ({ml1,ml2}) : D ∨D′

[MRES] ml1 : l1 ⇒ a m
ml2 : l2 ⇒♦a ¬m

σ({ml1,ml2}) : ¬l1 ∨ ¬l2

[GEN2] ml1 : l1 ⇒ a m1
ml2 : l2 ⇒ a ¬m1
ml3 : l3 ⇒♦a m2

σ({ml1,ml2,ml3}) : ¬l1 ∨ ¬l2 ∨ ¬l3

[GEN1] ml1 : l1 ⇒ a ¬m1
...

mlr : lr ⇒ a ¬mr

mlr+1 : l⇒♦a ¬m
mlr+2 :m1 ∨ . . . ∨mr ∨m

ml :¬l1 ∨ . . . ∨ ¬lr ∨ ¬l

[GEN3] ml1 : l1 ⇒ a ¬m1
...

mlr : lr ⇒ a ¬mr

mlr+1 : l⇒♦a m
mlr+2 :m1 ∨ . . . ∨mr

ml :¬l1 ∨ . . . ∨ ¬lr ∨ ¬l
where ml = σ({ml1, . . . ,mlr+1,mlr+2 − 1}) where ml = σ({ml1, . . . ,mlr+1,mlr+2 − 1})

Figure 3.3: Inference rules
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We will shortly add some intuition about each rule. In the following, consider D to
be a disjunction of literals, li,mi ∈ L,ml ∈ N ∪ {∗} and σ the unification function given
in Definition 3.2.5.

• Literal resolution: The LRES rule is classical resolution which deals with the propos-
itional portion of the logic. This rule is applied whenever we have a complementary
pair of literals on clauses at modal levels for which the unification function is defined.

[LRES] ml1 : D ∨ l
ml2 : D′ ∨ ¬l

σ({ml1,ml2}) : D ∨D′

• Modal resolution: The MRES rule resembles classical resolution in the sense that a
formula and its negation cannot be true at the same modal level.

[MRES] ml1 : l1 ⇒ a m

ml2 : l2 ⇒ ♦a ¬m
σ({ml1,ml2}) : ¬l1 ∨ ¬l2

The GEN1 rule corresponds to several applications of classical resolution. This rule
establishes what happens when we have a contradiction between a literal clause at
a certain modal level and a number of positive modal literals plus a negative modal
literal, at the preceding level. This contradiction implies that it is not possible to
satisfy all these modal literals at once at the appropriate modal level. Hence, the
disjunction of the negated left-hand side of all the modal clauses is inferred.

[GEN1] ml1 : l1 ⇒ a ¬m1
...

mlr : lr ⇒ a ¬mr

mlr+1 : l⇒ ♦a ¬m
mlr+2 : m1 ∨ . . . ∨mr ∨m
ml : ¬l1 ∨ . . . ∨ ¬lr ∨ ¬l

where ml = σ({ml1, . . . ,mlr+1,mlr+2 − 1})
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The GEN2 rule is a special case of GEN1, with the parent clauses themselves holding
the conflict.

[GEN2] ml1 : l1 ⇒ a m1

ml2 : l2 ⇒ a ¬m1

ml3 : l3 ⇒ ♦a m2

σ({ml1,ml2,ml3}) : ¬l1 ∨ ¬l2 ∨ ¬l3

The inference rule GEN3 is similar to GEN1 but the contradiction occurs only
between right-hand side of the positive a-clauses and the literal clause.

[GEN3] ml1 : l1 ⇒ a ¬m1
...

mlr : lr ⇒ a ¬mr

mlr+1 : l⇒ ♦a m
mlr+2 : m1 ∨ . . . ∨mr

ml : ¬l1 ∨ . . . ∨ ¬lr ∨ ¬l
where ml = σ({ml1, . . . ,mlr+1,mlr+2 − 1})

Definition 3.2.6 Let S be a set of clauses in SNFml. A derivation from S is a
sequence of sets S0,S1, . . . where S0 = S and, for each i > 0, Si+1 = Si ∪ {R}, where
R is the resolvent obtained from Si by an application of either LRES, MRES, GEN1,
GEN2 or GEN3. A local refutation for S is a finite derivation that contains the empty
clause at the initial modal level, that is 0 : false. A global refutation for S is a finite
derivation that contains the empty clause at any modal level [60].

Each resolvent R is assumed to be in simplified form, that is, it should not contain
repeated literals nor constants. It is also required that R does not already occur in the
set of clauses. Finally, R cannot be a tautology.

The proofs for termination, soundness and completeness of this calculus can be found
in [60]. The completeness proof heavily relies on the fact the binary resolution calculus
for propositional logic is consequence complete [48]. Given a set of clauses F , a clause C
is a prime consequence of F if, and only if, C is implied by F and there exists no other
clause D implied by F such that C is implied by D [72]. Given a set of clauses F , a
calculus is consequence complete if any prime consequence C of F is derivable.
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Lemma 3.2.2 ([48]). Let F be a set of propositional clauses. If a clause C is a prime con-
sequence of F , then there is a clause D which is derived by binary propositional resolution
from F and D subsumes C.

All the details about proof construction, in the case of unsatisfiable set of clauses,
and the model construction, in the case of a satisfiable set of clauses can be found, as
mentioned, in [60]. Here, we only point out the relevant part of the proof that we will
use later in Chapter 5. Let Cw

a,ml in F be the set of positive a-clauses corresponding to
agent a, that is, the clauses of the form ml : l′ ⇒ a m′, where l′ and m′ are literals,
whose left-hand side are satisfied at the world w at modal level ml. Let POSa,ml be the
set of literals in the scope of a on the right-hand side from the clauses in Cw

a,ml, that
is, if ml : l′ ⇒ a m′ ∈ Cw

a,ml, then m′ ∈ POSa,ml. Now, from the proof and model
constructions for a set of clauses, given a clause ml : l ⇒ ♦a m, if w |= l and there is no
world satisfying m which is a-related to w, then m, POSa,ml, and the literal clauses at
the level ml + 1 must be contradictory. As m alone is not contradictory and because the
case where the literal clauses are contradictory by themselves relies on the completeness
of resolution, there are five cases to consider for the application of the modal resolution
rules:

1. Assume that POSa,ml itself is contradictory. This means there must be clauses of
the form ml : l1 ⇒ a m′,ml : l2 ⇒ a ¬m′ ∈ Cw

a,ml, where w |= l1 and w |= l2. Thus
we can apply GEN2 to these clauses and the negative modal clause ml : l ⇒ ♦a m
deriving ml : ¬l1 ∨ ¬l2 ∨ ¬l. Hence the addition of this resolvent means that w is
not part of the model construction.

2. Assume that m and POSa,ml is contradictory. Then, Cw
a,ml in F contains a clause as

ml : l1 ⇒ a ¬m where, from the definition of Cw
a,ml, w |= l1. Thus, by an application

of MRES to this clause and ml : l ⇒ ♦a m, we derive ml : ¬l1 ∨ ¬l and w cannot be
part of the model construction.

3. Assume that m and the literal clauses at the modal level ml + 1 are contradictory.
By consequence completeness of binary resolution [48], applications of LRES to
the set of literal clauses generates ml + 1 : ¬m, which can be used together with
ml : l ⇒ ♦a m to apply GEN1 and generate ml : ¬l. This resolvent deletes w from
the model construction as required. Note that this is a special case where the set of
positive a-clauses in the premise of GEN1 is empty.

4. Assume that POSa,ml and the literal clauses at the modal level ml+1 all contribute
to the contradiction (but not m), by the results in [48], applications of LRES will
generate the relevant clause to which we can apply GEN3 and delete w as required.
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Note that this also happens in the special case where the set of positive clauses in
the premise of GEN3 is empty. In this case, the literal clause in the premises is of the
form ml : C where C is the empty disjunction, which by consequence completeness
will also be produced during a derivation.

5. Assume that m, POSa,ml and the literal clauses all contribute to the contradiction.
Thus, similarly to the above, applying LRES generates the relevant literal clause to
which GEN1 can be applied. This means that w is, again, not part of the model
construction.

Note that, for GEN1 and GEN3, whenever a set of modal clauses at a given modal level ml
is contradicting with the set of literal clauses at the next level, the relevant literal clauses
used in the premises are generated by consequence completeness of the binary resolution
calculus (which, in our case, corresponds to applications of LRES).

We finish this section by illustrating the application of the resolution calculus.

Example 3.2.2 Consider the set of clauses in SNFml of Example 3.2.1, generated for
ϕ = (a⇒ b)⇒ ( a⇒ b).

Figure 3.4 shows a derivation from the eight clauses obtained by the transformation,
once no other rule can be applied and no refutation is generated. Thus, as there is no
refutation, ϕ is a satisfiable formula, as expected.

1. 0 : t0 8. 1 : ¬t4 ∨ ¬b
2. 0 : ¬t0 ∨ t2 ∨ t1 9. 0 : t2 ∨ t1 [LRES, 1, 2, t0]
3. 0 : ¬t1 ∨ t5 ∨ t3 10. 0 : t2 ∨ t5 ∨ t3 [LRES, 9, 3, t1]
4. 0 : t2 ⇒ ♦t4 11. 0 : ¬t2 [GEN1, 4, 7, 8, t4]
5. 0 : t5 ⇒ ♦¬a 12. 0 : t5 ∨ t3 [LRES, 10, 11, t2]
6. 0 : t3 ⇒ b 13. 0 : ¬t3 [GEN3, 6, 5, 8, b, a]
7. 1 : ¬t4 ∨ a 14. 0 : t5 [LRES, 13, 14, t3]

Figure 3.4: Satisfiability proof of the formula ϕ from Example 3.2.1

Example 3.2.3 Adapted from [2, 60]. Consider the clauses in Figure 3.5. Clauses 1
and 2 state that a dog is either big or small. Clauses 3 and 4, only serving the purpose
of illustration, say that good dogs have calm puppies. The particular situation of Toto,
denoted here by t0, is given in the following clauses: Clauses 5, 6 and 7 say that Toto’s
big puppies are all good. Clauses 8 and 9 say that a grandpuppy of Toto is not a calm
dog. We want to prove that Toto has a small puppy, which appears negated in Clause
10. Otherwise, Toto would only have calm grandpuppies. The refutation is given in
Figure 3.5.

26



1. ∗ : big ∨ small 9. 1 : t3 ⇒ ♦p ¬calm
2. ∗ : ¬big ∨ ¬small 10. 0 : t0 ⇒ p ¬small
3. ∗ : ¬good ∨ t1 11. 1 : ¬t1 ∨ ¬t3 [MRES, 9, 4, calm]
4. ∗ : t1 ⇒ p calm 12. 1 : ¬good ∨ ¬t3 [LRES, 11, 3, t1]
5. 0 : t0 13. 1 : ¬t3 ∨ ¬t2 ∨ ¬big [LRES, 7, 12, good]
6. 0 : t0 ⇒ p t2 14. 1 : small ∨ ¬t3 ∨ ¬t2 [LRES, 13, 1, good]
7. 1 : ¬t2 ∨ ¬big ∨ good 15. 0 : ¬t0 [GEN1, 10, 6, 8, 14, small, t2, t3]
8. 0 : t0 ⇒ ♦p t3 16. 0 : false [LRES, 15, 5, t0]

Figure 3.5: An example of a refutation

3.2.3 KSP

In this section, we briefly introduce KSP, the theorem prover presented in [61] for the basic
multimodal logic Kn, which implements a variation of the set of support strategy [78] for
the modal resolution-based calculus described in Section 3.2. KSP is written in C. The
sources, as well as examples of input, benchmarks and instructions for installing and
running, are available for download in [62].

KSP was designed to support experimentation with different combinations of refine-
ments of its basic calculus. Refinements and options for preprocessing and processing
the input are coded as independently as possible in order to allow for the easy addition
and testing of new features. Although this may not lead to optimal performance, since
techniques need to be applied one after another whereas most tools would apply them all
together, it might help evaluating how the different options independently contribute to
achieve efficiency [61].

KSP accepts inputs coming either from a file or from the command line. A configura-
tion file can also be given. The proof search procedure for local satisfiability is shown in
Algorithm 1. The outputs of the input processing procedure, Line 1, are a double-linked
annotated abstract tree, representing the input formulae, and a symbol table, which
contains information about the propositional symbols, constants, and modal operators
occurring in the formula.

Line 2 represents the translation into the normal form. By default, formulae are trans-
formed into SNFml, as showed in Section 3.2.1. But, some of the refinements implemented
in KSP require further transformation of the set of clauses [61]. There are four different
options that specify the normal form used: SNF+

ml, SNF++
ml , SNF-

ml and SNF–
ml. Each of

them require the exhaustive application of more specific rewriting rules in addition to the
rules in Definition 3.2.4 [61].

The preprocessing of clauses procedure, Line 4, comprises several tasks responsible for
applying options provided by the user. For instance, propagation of a literal in the scope
of the operator ♦a , applied whenever the option propdia is on, is applied at this stage.
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The propagation rule is given by

ml : l⇒ ♦a m
ml + 1 : m

for literals l and m, modal level ml, and agent a, with the condition that there is only
one negative modal clause in the set of clauses at the given modal level. As this inference
rule generates a unit clause at the propositional set of formulae, unit propagation and
subsumption can be applied, possibly reducing the number of literals and clauses at the
modal level ml + 1.

Algorithm 1: KSP-Proof-Search
1 input_processing
2 snf_transformation
3 clause_preprocessing
4 Γlit ← ⋃ Γlitml
5 while (Γlit 6= ∅) do
6 for (all modal levels ml) do
7 clause← given(ml)
8 if (not redundant(clause)) then
9 GEN1(clause,ml,ml − 1)

10 GEN3(clause,ml,ml − 1)
11 LRES(clause,ml,ml)
12 Λlit

ml ← Λlit
ml ∪ {clause}

13 Γlitml ← Γlitml \ {clause}
14 if (0 : false ∈ Γlit0 ) then return unsatisfiable
15 Γlit ← ⋃ Γlitml
16 return satisfiable

The main loop of KSP, Lines 5-15, is based on the given-clause algorithm implemented
in Otter [54], a variation of the set of support strategy [78], a refinement that imposes a
restriction on the set of choices of clauses for a step of derivation. In the classical case,
the set of clauses F is partitioned into two sets Γ (the set of support) and Λ = F\Γ
(the usable set), where Λ must be satisfiable for completeness. For the modal calculus
considered here, the set of clauses is partitioned by modal level and, also, separated into
literal and modal clauses. Formally, we have Γ = Γlitml and Λ = Λlit

ml ∪ Λmod
ml for all modal

levels, where the subscript indicates the modal level and the superscript indicates if the set
is of literal (lit) or modal clauses (mod). As the calculus does not contain any rules that
generate new modal clauses and because the set of modal clauses by itself is satisfiable,
there is no need for a set for unprocessed modal clauses [61].
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The set Γ is the set of support (or the sos set). On the other hand, Λ is called the
usable set. The given clause is chosen from Γ to resolve with clauses in Λ, and moved
from Γ to Λ. Resolvents are then added to Γ. In more detail, let Γlit be the union of
the sets of literal clauses occurring at any modal level, Line 4 of the algorithm. A cycle
corresponds to one iteration of the outer loop. This loop is executed while the set of
unprocessed clauses is not empty. In the inner loop, Lines 6-14, for every modal level
ml, a literal clause is returned by the function given. There are also several options for
selecting the modal level and the literal clause at this stage, they can be found in detail
in [61]. Once a clause is selected, it is tested for redundancy, that is if it can be deleted
without affecting the satisfiability of the clause set. If the given clause is not deleted by
this last procedure, then it is processed against all usable modal clauses in the previous
modal level, Lines 9 and 10, which means that KSP tries to apply GEN1 and GEN3 with
the literal clause at the modal level ml with the modal clauses at the modal level ml− 1.
Then, KSP tries to apply the LRES rule with the given clause and all literal clauses in the
usable at the same modal level. Note that, as no modal clauses are generated during the
main loop and the inference rules MRES and GEN2 only deal with this kind of clauses,
they both can be applied during the preprocessing of clauses (Line 3).

Once the inference rules are applied, the chosen clause is moved to the set of processed
clauses and removed from the set of unprocessed clauses, Lines 12 and 13. The possible
outputs are illustrated by Lines 14 and 16. If the empty clause 0 : false is generated at any
point of the execution, then the procedure returns that the set of clauses is unsatisfiable.
If the prover is set for global satisfiability, that condition changes to finding the clause
∗ : false. If the empty clause is not found, KSP returns satisfiable.

The results presented in [61] indicate that KSP works well on problems with high
modal depth where the separation of modal layers can be exploited to improve the ef-
ficiency of reasoning. According to [61], KSP performs well if the set of propositional
symbols are uniformly distributed over the modal levels. However, when there is a high
number of propositional symbols in just one particular level, the performance deterior-
ates. One reason is that the specific normal form used always generates satisfiable sets of
propositional clauses. As resolution relies on saturation, this can be very time consuming.

In the next chapter we present some techniques proposed to deal with propositional
reasoning. These techniques lead to efficient implementations of SAT solvers, which de-
termine whether a propositional formula is satisfiable or not. In Chapter 5, we will show
how to combine both modal resolution and the techniques from SAT in order to speed up
the time KSP spends dealing with propositional reasoning.
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Chapter 4

Satisfiability Solvers

The problem of determining whether a formula in classical propositional logic is satisfiable
has the historical honour of being the first problem ever shown to be NP-Complete [21].
Great efforts have been directed in improving the efficiency of solvers for this problem,
known as Boolean Satisfiability Solvers, or just SAT solvers. Despite the worst-case de-
terministic exponential run time of all the algorithms known, satisfiability solvers are
increasingly leaving their mark as a general purpose tool in the most diverse areas [35].
In essence, SAT solvers provide a generic combinatorial reasoning and search platform for
such problems. Besides, the source code of many implementations of such solvers is freely
available and can be used as a basis for the development of decision procedures for more
expressive logics [34].

In the context of SAT solvers for propositional provers, the underlying representation
formalism is propositional logic [35]. We are interested in formulae in Conjunctive Normal
Form (CNF): a formula ϕ is in CNF if it is a conjunction of clauses. For example,
ϕ = (p∨¬q)∧ (¬p∨r∨s)∧ (q∨r) is a CNF formula with four variables and three clauses.
A clause with only one literal is referred to as a unit clause.

A propositional formula ϕ takes a value in the set {false, true}. In algorithms for SAT,
variables can be assigned a logical value in this same set and, alternatively, variables may
also be unassigned. A truth assignment (or just an assignment) to the set of variables P ,
is the valuation function π as defined in Definition 2.2.1. As in propositional logic we have
a singleton set as the set W of possible worlds, we can omit this set from the function
signature and just write π : P −→ {false, true}, for simplicity. A satisfying assignment
for ϕ is an assignment π such that ϕ evaluates to true under π. A partial assignment for a
formula ϕ is a truth assignment to a subset of the variables in ϕ. For a partial assignment
ρ for a CNF formula ϕ, ϕ|ρ denotes the simplified formula obtained by replacing the
variables appearing in ρ with their specified values, removing all clauses with at least one
true literal, and deleting all occurrences of false literals from the remaining clauses [35].
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Therefore, the Boolean Satisfiability Problem (SAT) can be expressed as: Given a
CNF formula ϕ, does ϕ have a satisfying assignment? If this is the case, ϕ is said to be
satisfiable, otherwise, ϕ is unsatisfiable. One can be interested not only in the answer of
this decision problem, but also in finding the actual assignment that satisfies the formula,
when it exists. All practical SAT solvers do produce such an assignment [22].

4.1 The DPLL Procedure

A complete solution method for the SAT problem is one that, given the input formula ϕ,
either produces a satisfying assignment for ϕ or proves that it is unsatisfiable [35]. One
of the most surprising aspects of the relatively recent practical progress of SAT solvers
is that the best complete methods remain variants of a process introduced in the early
1960’s: the Davis-Putnam-Logemann-Loveland, or DPLL, procedure [24], which describes
a backtracking algorithm to the search problem of finding a satisfying assignment for a for-
mula in the space of partial assignments. A key feature of DPLL is the efficient pruning of
the search space based on falsified clauses. Since its introduction, the main improvements
to DPLL have been smart branch selection heuristics, extensions like clause learning and
randomised restarts, and well-crafted data structures such as lazy implementations and
watched literals for fast unit propagation [35].

Algorithm 2, DPLL-recursive(ϕ, ρ), shows the basic DPLL procedure on CNF formu-
lae [24], where ρ corresponds to a partial assignment of the CNF formula ϕ. The main
idea is to repeatedly select an unassigned literal l in the input formula and recursively
search for a satisfying assignment for ϕ|l and ϕ|¬l. The step where such an l is chosen
is called a branching step and l is referred as a decision variable. Setting the decision
variable to true or false when making a recursive call is referred to as a decision, which is
associated with a decision level and it is equal to the recursion depth at that stage of the
procedure. If the current partial assignment does not satisfy ϕ, the end of each recursive
call takes ϕ back to fewer assigned literals. This last step is called the backtracking step.

A partial assignment ρ is maintained during the search and it is output if the formula
turns out to be satisfiable. To increase efficiency, a key procedure in SAT solvers is the
unit propagation procedure [14], where unit clauses are immediately set to true as outlined
in Algorithm 2. In most implementations of DPLL, logical inferences can be derived with
unit propagation. Thus, this procedure is used for identifying variables which must be
assigned a specific value. If ϕ|ρ contains the empty clause, a conflict condition is declared,
the corresponding clause of ϕ from which it came is said to be violated by ρ, and the
algorithm backtracks.
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Algorithm 2: DPLL-recursive(ϕ, ρ)
1 (ϕ, ρ)← UnitPropagate(ϕ, ρ)
2 if ϕ contains the empty clause then
3 return unsatisfiable
4 end
5 if ϕ has no clauses left then
6 Output ρ
7 return satisfiable
8 end
9 l← a literal not assigned by ρ

10 if DPLL-recursive(ϕ|l, ρ ∪ {l}) = satisfiable then
11 return satisfiable
12 end
13 return DPLL-recursive(ϕ|¬l, ρ ∪ {¬l})

1 sub UnitPropagate(ϕ, ρ)
2 while ϕ contains no empty clause but has a unit clause C do
3 l← the literal in C not assigned by ρ
4 ϕ← ϕ|l
5 ρ← ρ ∪ {l}
6 end
7 return (ϕ, ρ)

The literals whose negation do not appear in the formula, called pure literals, are also
set to true as a preprocessing step and, in some implementations, during the simplification
process after every branching. We mentioned pure literal elimination in Chapter 3 as the
purity principle proposed by Robinson.

Variants of the DPLL algorithm form the most widely used family of complete al-
gorithms for the SAT problem. They are frequently implemented in an iterative manner,
instead of using recursion, resulting in significantly reduced memory usage. The efficiency
of state-of-the-art SAT solvers relies heavily on various features that have been developed,
analysed and tested over the last two decades. These include fast unit propagation using
watched literals, deterministic and randomised restart strategies, effective clause deletion
mechanisms, smart static and dynamic branching heuristics and learning mechanisms.
We will discuss learning mechanisms in the next section and refer the reader to [35] for
more details about other search strategies.

4.2 Conflict-Driven Clause Learning

One of the main reasons for the widespread use of SAT in many applications is that
solvers based on clause learning are very efficient [35]. The main idea behind Conflict-
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Driven Clause Learning (CDCL) is to catch the causes of a conflict as learned clauses,
and utilise this information to prune the search in a different part of the search space.

Since their inception in the mid-90s, CDCL SAT solvers have been used in practice in
several applications. Some successful use cases include a tool for managing learnt clauses
among a parallel, memory shared solver [8], an implementation basis for hybrid logics
solvers [68], and as plugins for integrated development environments [47]. Additionally,
they keep showing outstanding results in SAT competitions [7, 13].

The architecture of CDCL SAT solvers is primarily inspired by the DPLL procedure.
The notation used in this section is based on the one in [14]. In CDCL SAT solvers, each
variable p is characterised by a number of properties. Mainly, we need to maintain its
value, its antecedent and its decision level. A variable’s value is denoted by ν(p), and
defined in the set {false, true, u}, where ν(p) = u means that p is still unassigned.

A variable p that is assigned a value as the result of unit propagation is said to be
implied. The unit clause C used for implying this value is said to be the antecedent of
p, and it is denoted by α(p) = C. For decision variables or unassigned variables, the
antecedent is nil. Ergo, antecedents are only defined for variables whose value is implied
by other assignments.

The decision level of a variable p, written δ(p), denotes the depth of the decision
tree at which the variables are assigned a value in {true, false} or δ(p) = −1 if the
value of p is still unassigned, therefore, δ(p) ∈ {−1, 0, 1, . . . , |Pϕ|}, where Pϕ denotes the
set of all variables that appear in the initial formula ϕ. The decision level associated
with variables used for branching steps is specified by the search process, and denotes
the current depth of the decision stack. Hence, a variable p associated with a decision
assignment is characterised by having α(p) = nil and δ(p) > 0. On the other hand, the
decision level of p with antecedent C is given by δ(p) = max({0}∪{δ(p′) | p′ ∈ C∧p′ 6= p}),
i.e., the highest decision level of the literals appearing in the antecedent clause.

The notation p = v@d is used to denote that ν(p) = v and δ(p) = d. Moreover, the
decision level of a literal is defined as the decision level of its variable, that is, δ(l) = δ(p)
if l = p or l = ¬p.

Example 4.2.1 Consider the formula

ϕ = C1 ∧ C2 ∧ C3

= (p ∨ ¬s) ∧ (p ∨ r) ∧ (¬r ∨ q ∨ s)

Assume that the decision assignment is s = false@1. Unit propagation yields no ad-
ditional implied assignments. Assume that the second decision is p = false@2. Unit
propagation yields the implied assignments r = true@2 and q = true@2. Therefore,
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π = {(s, false), (p, false), (r, true), (q, true)} is a satisfying assignment for ϕ, since π makes
ϕ true. Moreover, α(r) = C2 and α(q) = C3.

During the execution of a DPLL based SAT solver, assigned variables, as well as their
antecedents, define a directed acyclic graph GIMP = (V,E) referred to as the implication
graph [70]. The vertices of this graph are assigned variables or the special node false,
the empty clause which represents a contradiction, that is, V ⊆ P ∪ {false}. If unit
propagation yields an unsatisfiable clause Ci, then this special vertex is used to represent
it. In this case, the antecedent of false is defined by α(false) = Ci. Remember that the
constant false, representing empty clauses, is different from the value false attributed to
variables.

The edges in the implication graph are obtained from the antecedent of each implied
variable. If α(p) = C then there is a directed edge, labelled by C, from each variable in C,
other than p, to p.

Example 4.2.2 (Implication graph without conflict). Consider the CNF formula:

ϕ = C1 ∧ C2 ∧ C3

= (p ∨ t ∨ ¬q) ∧ (p ∨ ¬r) ∧ (q ∨ r ∨ s)

Assume the decision assignment t = false@1 has been taken. Moreover, assume that
the current decision assignment is p = false@2. Unit propagation yields the implied
assignments q = false@2, r = false@2 and s = true@2. The resulting implication graph
is shown in Figure 4.1. As all variables have been assigned a value and the implication
graph does not contain the vertex false, this set of decision assignments forms a satisfying
assignment for ϕ.

t = false@1

q = false@2

p = false@2 s = true@2

r = false@2

C1

C1

C2

C3

C3

Figure 4.1: Implication graph for Example 4.2.2
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t = false@3

q = false@5

p = false@5 s = true@5

r = false@5

u = false@5

false

x = false@5

y = false@2

C1

C1

C2

C3

C3

C4

C5

C5

C6

C6

Figure 4.2: Implication graph for Example 4.2.3

Example 4.2.3 (Implication graph with conflict). Consider the CNF formula:

ψ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6

= (p ∨ t ∨ ¬q) ∧ (p ∨ ¬r) ∧ (q ∨ r ∨ s) ∧ (¬s ∨ ¬u) ∧ (y ∨ ¬s ∨ ¬x) ∧ (u ∨ x)

Assume the decision assignments y = false@2 and t = false@3. Moreover, assume the
current decision assignment p = false@5. Unit propagation yields the implied assignments
q = false@2, r = false@2, s = true@2, u = false@5 and x = false@5. These last two
assignments generate a conflict as the clause C6 can no longer be satisfied. Therefore,
the resulting implication graph has the conflict vertex, as shown in Figure 4.2, with
α(false) = C6. Hence, this set of decision assignments does not satisfy ψ.

Algorithm 3, taken from [14], shows the standard structure of a CDCL SAT solver,
which essentially follows the one from DPLL. With respect to DPLL, the main differences
are the call to function ConflictAnalysis each time a conflict is identified, and the call
to Backtrack when backtracking takes place. Moreover, the Backtrack procedure allows
for backtracking prior to the most recent decision step .

In addition to the main CDCL function, the following auxiliary functions are used:

• UnitPropagate: same as in DPLL, consists of the iterated application of the unit
propagation procedure. If an unsatisfiable clause is identified, then a conflict indic-
ation is returned.

• AllVariablesAssigned: tests whether all variables have been assigned, in which
case the algorithm terminates indicating that the CNF formula is satisfiable.

• PickBranchingVariable: consists of selecting a variable to assign and deciding its
value.
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Algorithm 3: CDCL(ϕ, ρ)
1 if UnitPropagate(ϕ, ρ) yields a conflict then
2 return unsatisfiable
3 dl← 0
4 while ¬AllVariablesAssigned(ϕ, ρ) do
5 l← PickBranchingVariable(ϕ, ρ)
6 dl← dl + 1
7 ρ← ρ ∪ {l}
8 if UnitPropagate(ϕ, ρ) yields a conflict then
9 β ← ConflictAnalysis(ϕ, ρ)

10 if β < 0 then
11 return unsatisfiable
12 else
13 Backtrack(ϕ,ρ,β)
14 dl← β

• ConflictAnalysis: consists of analysing the most recent conflict and learning a
new clause from the conflict. The architecture of this procedure is described in
Section 4.2.1.

• Backtrack: backtracks to the decision level computed by ConflictAnalysis.

The typical CDCL algorithm, shown in Algorithm 3, does not account for a few often
used techniques, as for instance, search restarts and deletion policies. Search restarts cause
the algorithm to restart itself, but keeping the learnt clauses. Clause deletion policies are
used to choose learnt clauses that can be deleted, which allows the memory usage of the
SAT solver to be kept under control. If interested, the reader can refer to [14] and [35]
for more information about these techniques.

4.2.1 Conflict Analysis

Each time the CDCL SAT solver identifies a conflict due to unit propagation, the conflict
analysis procedure is invoked. As a result, one or more new clauses are learnt, and a
backtracking decision level is computed. This procedure analyses the structure of unit
propagation and decides which literals to include in the learnt clause.

The decision levels associated with assigned variables define a partial order over the
variables. Starting from a given unsatisfiable clause (represented in the implication graph
as the vertex false), the conflict analysis procedure visits variables implied at the most
recent decision level. This means that this procedure will visit the graph vertex which
represents the variables assigned at the current largest decision level. Then, it identifies
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the antecedents of these variables and keeps from the antecedents the literals assigned at
decision levels less than the one being considered. This process is repeated until the most
recent decision variable is visited.

Let d be the current decision level and p the current decision variable such that δ(p) =
d. Let ν(p) = v be the decision assignment and let C be an unsatisfiable clause identified
with unit propagation. In terms of the implication graph, the conflict vertex false is
such that α(false) = C. Moreover, take RES(Ci, Cj) to represent the process of applying
the binary resolution rule for two clauses Ci and Cj containing contradictory literals, as
defined in Chapter 3.

The clause learning procedure used in SAT solvers can be defined by a sequence of
selective resolution operations [12, 71], that at each step yields a new temporary clause.

Definition 4.2.1 Let l be a literal of a clause C, and d the current decision level.
Then, consider the following predicate:

ξ(C, l, d) =

 1 if l ∈ C ∧ δ(l) = d ∧ α(l) 6= nil

0 otherwise
(4.1)

Then, using the predicate defined by Equation 4.1, let Cd,i, with i = 0, 1, . . ., be
a intermediate clause obtained as follows:

Cd,i =


α(false) if i = 0
RES(Cd,i−1, α(l)) if i 6= 0 ∧ ξ(Cd,i−1, l, d) = 1
Cd,i−1 if i 6= 0 ∧ ∀ l ξ(Cd,i−1, l, d) = 0

(4.2)

The predicate ξ holds if, and only if, the implied literal l of C is assigned a value at
the current decision level d.

Equation 4.2 can be used for formalising the clause learning procedure. The first
condition, i = 0, denotes the initialisation step given after false is generated in GIMP ,
where all literals in the unsatisfiable clause are added to the first intermediate clause.
Afterwards, at each step i, a literal l assigned at the current decision level d is selected
and the intermediate clause Cd,i−1 is resolved with the antecedent of l. Therefore, Cd,i

denotes the clause obtained after i resolution operations.
An iteration i such that Cd,i = Cd,i−1 represents a reached fixed point, and CL def=

Cd,i denotes the new learnt clause. Observe that the number of resolution operations
represented by Equation 4.2 is no greater than |Pϕ|.

Example 4.2.4 (Clause learning) Consider Example 4.2.3. The application of clause
learning to this example results in the intermediate clauses shown in Table 4.1. The
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Table 4.1: Resolution steps during clause learning

C5,0 = {u, x} Literals in α(false)
C5,1 = {¬s, x} Resolve with α(u) = C4
C5,2 = {¬s, y} Resolve with α(x) = C5
C5,3 = {q, r, y} Resolve with α(s) = C3
C5,4 = {p, t, r, y} Resolve with α(q) = C1
C5,5 = {p, t, y} Resolve with α(r) = C2
C5,6 = CL = {p, t, y} No more resolution operations given

resulting learnt clause is CL = C5,6 = (p∨ t∨y). Alternatively, this clause can be obtained
by inspecting the graph in Figure 4.2 and selecting the negation of the literals assigned
at decision levels less than the current decision level 5, i.e. t = false@3 and y = false@2,
and by selecting the current decision assignment p = false@5.

Modern SAT solvers implement an additional refinement of Definition 4.2.1, by further
exploiting the structure of implied assignments induced by unit propagation, which is a key
aspect of the clause learning procedure [70]. This aspect was further explored with Unit
Implication Points (UIPs) [70]. A UIP is a vertex u in the implication graph, such that
every path from a decision vertex p to the conflict vertex false contains u. It represents
an alternative decision assignment at the current decision level that results in the same
conflict. The main motivation for identifying UIPs is to reduce the size of learnt clauses.

In the implication graph, there is a UIP at decision level d when the number of literals
in CL assigned at decision level d is 1 [14].

Definition 4.2.2 Let φ(C, d) be the number of literals in C assigned at decision
level d:

φ(C, d) = |{l ∈ C | δ(l) = d}| (4.3)

As a result, the clause learning procedure with UIPs is given by:

Cd,i =


α(false) if i = 0
RES(Cd,i−1, α(l)) if i 6= 0 ∧ ξ(Cd,i−1, l, d) = 1
Cd,i−1 if i 6= 0 ∧ φ(Cd,i−1, d) = 1

(4.4)

Equation 4.4 allows creating a clause containing literals from the learnt clause until
the first UIP is identified. It is simple to develop equations for learning clauses for each
additional UIP. However, this is unnecessary in practice, since the most effective CDCL
SAT solvers stop clause learning when the first one is reached. Moreover, clause learning
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could potentially stop at any UIP. But, considering the largest decision level of the literals
of the clause learnt at each UIP, the clause learnt at the first UIP is guaranteed to contain
the smallest one. What follows from this is that choosing the clause learnt at the first
UIP implies the highest backtrack jump in the search tree [14].

Example 4.2.5 Consider again Example 4.2.3. The default clause learning procedure
would learn the clause (p∨t∨y) (see Example 4.2.4). However, by taking into consideration
that s = true@5 is a UIP, applying the clause learning of Equation 4.4 yields the resulting
clause (¬s ∨ y). One advantage of this new clause is that it has one less literal than the
learnt clause from Example 4.2.3.

Clause learning with conflict analysis does not affect soundness or completeness [14].
Conflict analysis identifies new clauses trough applications of the resolution rule. There-
fore, each learnt clause can be inferred from the original clauses and other learnt clauses
by a sequence of resolution steps [14]. Let us establish this last remark as a Theorem for
future reference.

Theorem 4.2.1. If CL is a learnt clause from the set F , then F is satisfiable if and only
if F ∪ {CL} also is.

Additionally, neither the modified backtracking step affects the correctness of the
solver, since backtracking information is obtained from each new learnt clause [14]. Proofs
of soundness and completeness for different variations of CDCL SAT procedures can be
found in [51, 52, 79].

Clause learning finds other applications besides the key efficiency improvements to
CDCL SAT solvers. One example is clause reuse. In a large number of applications,
clauses learnt from a given CNF formula can often be reused for related CNF formulae.
The basic concept is to reuse constraints on the search space which are deduced while
checking a previous instance, for speeding up the SAT checking of the current one [69].

Moreover, for unsatisfiable subformulae, the clauses learnt by a CDCL SAT solver,
as formalised in Definition 4.2.1, encode a resolution refutation of the original formula.
Given the way clauses are learnt in this solvers, each learnt clause can be explained by
a number of resolution steps, each of which is a trivial resolution step. As a result, the
resolution refutation can be obtained from the learnt clauses in linear time and space on
the number of learnt clauses.

For unsatisfiable formulae, the resolution refutations obtained from the clauses learnt
by a SAT solver serve as certificate for validating the correctness of the SAT solver [14].
Besides, resolution refutations based on clause learning find practical applications, includ-
ing hardware model checking [55].

39



4.3 Modern SAT Solvers

Annual competitions have led to the development of intelligent and efficient implement-
ations of SAT solvers, allowing many techniques to be explored and creating an ex-
tensive collection of real-world instances as well as challenging hand-crafted benchmarks
problems [35]. Apart from conflict analysis, modern solvers include techniques like lazy
data structures, search restarts, conflict-driven branching heuristics and clause deletion
strategies [14].

In 2001, researches at Princeton University designed a complete solver, which they
named Chaff [56], that, as most solvers, is an instance of the DPLL search procedure with
a number of enhancements aiming in efficient applications. Their algorithm was later
used as base for numerous well-succeed implementations (as [20] and [73], for instance).
Chaff achieved significant performance gains through careful engineering of all aspects of
the search — especially a particularly efficient implementation of unit propagation and a
novel low overhead decision strategy. It was able to obtain, at the time, one to two orders
of magnitude performance improvement on difficult SAT benchmarks [56].

Alongside the optimised unit propagation, Chaff also designed a decision heuristic,
which they called Variable State Independent Decaying Sum (VSIDS). Decision assign-
ment consists of the determination of which new variable should be assigned a value, in
each decision level. There are several strategies in the literature to try and solve this prob-
lem, but by that far, there was a lack of clear statistical evidence supporting one strategy
over others, making difficult to determine what differs a good decision from a bad one [56].
With that in mind, and also after some testing with a few available strategies, Chaff’s
designers thought they could come up with a considerably better heuristic for the range
of problems on which Chaff was being tested. The VSIDS strategy is described as follows:

1. Each literal has a counter, initialised to 0.

2. When a clause is added to the clause database, the counter associated with each
literal in the clause is incremented.

3. The unassigned literal with the highest counter is chosen at each decision.

4. Ties are broken randomly by default.

5. Periodically, all the counters are divided by a constant.

Overall, this strategy can be viewed as attempting to satisfy the conflict clauses but,
particularly, attempting to satisfy recent conflict clauses, due to the fifth item. Since
difficult problems generate many conflicts, the conflict clauses dominate the problem in
terms of literal count, so this approach distinguishes itself in how it favours the information
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generated by recent conflict clauses [56]. To this day, CDCL SAT solvers crucially depend
on the VSIDS decision heuristic for their performance [49].

A few years later, Sörensson and Een developed a SAT solver with conflict clause
minimisation, named MiniSat [73], that stayed for a while as the state-of-the-art solver.
MiniSat is a popular SAT solver, with an astonishing performance, that implements many
well-known heuristics in a succinct manner. It has won several prizes in the SAT 2005
competition, and has the advantage of being open-source.

MiniSat is the implementation of the solver described in [29]. It corresponds to a
minimalist Chaff-like SAT solver based on clause learning by conflict analysis. A number
of small improvements has been made with respect to the original Chaff. Two import-
ant features are the incremental SAT interface, and the support for user defined Boolean
constraints. Despite these improvements not being really significant for the SAT competi-
tion, they are important when using MiniSat as an integrated part of a bigger system [73].
In this sense, a user application can specify and solve SAT-problems, through MiniSat’s
external interface, sending its own previously known Boolean constraints.

In 2009, a MiniSat based solver appeared claiming to predict the quality of learnt
clauses. Glucose [5] is based on a scoring scheme introduced earlier on the same year by
Audemard and Simon in [6]. The name of the solver is a contraction of the concept of
“glue clauses”, a particular kind of clauses that Glucose detects and preserves during the
search.

Detecting what would be a good clause to learn in advance is a challenge. Moreover,
deleting useful clauses can increase time dramatically [5]. To avoid this unwanted deletion,
solvers must let the maximum number of clauses grow exponentially. On very hard
benchmarks, CDCL solvers face memory issues and, even if they do not, their greedy
learning scheme deteriorates the performance. In [6], Audemard and Simon showed that
a very simple static measure on clauses can dramatically improves the performance of the
publicly available version of MiniSat of that time.

In their studies, Audemard and Simon observed a strong relationship between the
overall decreasing of decision levels, presented by most solvers running on a industrial
set of benchmarks, and the performance of them [6]. In this sense, they thought that
finding the part of the learning schema that enforces this decreasing rate, could lead to
identifying good learnt clauses in advance.

Moreover, they refer as look-back justification the estimated number of conflicts before
reaching the first decision level, which stops the search. One curious thing they noticed
was that the look-back justification is also strong when the solver finds a solution, i.e.,
a satisfying assignment. This suggested that, on satisfiable instances of problems, the
solver does not always correctly guess a value for a literal, but learns that the opposite
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value leads to a contradiction.
During the search, each decision is often followed by a large number of unit propaga-

tions. All the literals that share the same decision level are called “blocks” of literals.
Intuitively, at the semantic level, there is a chance that they are linked with each other
by direct dependencies. The idea is that a good learning schema should add explicit links
between independent blocks of decision literals. If the solver stays in the same search
space, a learnt clause that establishes such link should help reducing the number of next
decision levels in the remaining computation [6].

Glucose partitions the literals in a clause with respect to their decision level. The
Literals Blocks Distance (LBD) of a clause is exactly the number of subsets of its literals,
divided accordingly to the current assignment. The LBD score of each learnt clause is
computed and stored when the clause is produced. This measure is static, even if updated
during the search (LBD score of a clause can be re-computed when the clause is used in
unit-propagation).

For instance, consider a learnt clauses of LBD 2. We have seen that this clause is
generated until the first UIP is identified, conform Definition 4.2.2. Therefore, it only
contains one variable of the most recent decision level which are “glued” to the literals
propagated earlier trough the learnt clause, no matter the size of the clause. These clauses
are very important during the search, and they receive the special name “glue clauses”.

Experimental results lead Audemard and Simon to conclude that this strategy works in
practice. In most of the cases, the decreasing rate of decision levels was indeed accelerated.

One can notice that these last decades showed an enormous progress in the perform-
ance of SAT solvers. We have seen these modern solvers increasingly leaving their mark as
a general-purpose tool, which provides a “black-box” procedure that can often solve hard
structured problems with over a million variables and several million constraints [35].

As mentioned in Chapter 3, the KSP prover loses in performance when there is a
high number of propositional symbols in just one particular level. We already know that
these sets are satisfiable, as the specific normal form used always generates satisfiable
sets of propositional clauses. If we feed a SAT solver, like MiniSat or Glucose, with
these satisfiable sets, each time a conflict is identified, the learnt clauses may help KSP
to increase the rate in which the inference rules that deal with modal reasoning are used.

4.3.1 MiniSat and Glucose

In the Section 4.3, we gave an overview of two of the most efficient SAT solvers known to
this date: MiniSat and Glucose. Both solvers are good candidates to be combined with
KSP as they both are known to efficiently solve propositional problems. As we mentioned
in Section 3.2.3, when there is a large number of variables in one specific modal level,
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KSP may spend a considerable amount of time trying to saturate the set of propositional
clauses. Our hypothesis is that the techniques developed in solvers as MiniSat and Glucose
can help KSP reduce this time, or even to guide the application of inferences rules that
deal with modal reasoning. This section discuss the implementations of these solvers.

As we have seen, MiniSat is a minimalist solver, that implements a variation of Chaff’s
Variable State Independent Decaying Sum. MiniSat stayed for a long as the state-of-the-
art solver. To these days, this solver keeps its importance as a tool used as an integrated
part of different systems [26, 27, 28, 75]. In this sense, MiniSat’s public interface and
support for user defined constraints are key features. The source code for MiniSat, which
was written in C++, can be found at [30].

It is through MiniSat’s interface, taken from [29] and illustrated below, that a user
application can specify and solve SAT problems [29].

Interface 4: Public interface
1 class Solver
2 var newVar()
3 bool addClause(Vec〈lit〉 literals)
4 bool add...(. . .)
5 bool solve(Vec〈lit〉 assumptions)
6 Vec〈bool〉 model
7 end

The add. . . method should be understood as a place-holder for additional constraints
implemented in an extension of MiniSat. For a standard SAT problem, the interface
is used in the following way: Variables are introduced by calling newVar. From these
variables, clauses are built and added by addClause. Trivial conflicts, such as two unit
clauses {p} and {¬p} being added, can be detected by this method, in which case it
returns false. If no such trivial conflict is detected during the clause insertion phase,
solve is called with an empty list of assumptions. It returns false if the set of clauses
added is unsatisfiable, and true if it is satisfiable, in which case the model can be read
from the public vector “model”. If the solver returns satisfiable, new constraints can be
added repeatedly to the existing database and solve may execute again.

The search procedure of a modern solver is usually the most complex part to imple-
ment [29]. Heuristically, variables are picked and assigned values until the propagation
detects a conflict. At this point, a conflict clause is built and added to the clauses data-
base. Variables are then unassigned by backtracking until the conflict clause becomes
unit, from which point this unit clause is propagated and the search process continues.

The learning procedure of MiniSat starts when a constraint becomes impossible to
satisfy under the current assignment. The conflicting constraint yields the search for the
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set of variable assignments that make it contradictory. For the conflict clause, for instance,
this would be all its variables. Each of the variable assignments returned must be either
a decision or a implied variable. For implied variables, we ask for the set of variable
assignments that forced the implication to occur, continuing the analysis backwards.

The procedure is repeated until some termination condition is fulfilled, resulting in
a set of variable assignments that implied the conflict. A clause prohibiting that par-
ticular assignment is added to the clause database. This learnt clause must always, by
construction, be implied by the original problem constraints.

Learnt clauses serve two purposes: they drive the backtracking (as showed in Sec-
tion 4.2) and they speed up future conflicts by caching the reason for the conflict.

The main mechanism in which MiniSat runs, taken from [29], is illustrated bellow.

Algorithm 5: Main mechanism of MiniSat
1 loop
2 propagate()
3 if not conflict then
4 if all variables assigned then return SAT
5 else decide()
6 else
7 analyse()
8 if top-level conflict then return UNSAT
9 else backtrack()

10 end
11 end

On the other hand, we have Glucose, which improved the performance of MiniSat [5],
the solver that it was based on, claiming to predict the quality of learnt clauses. As we
are interested in the clauses a solver will learn from the set we feed it, this may highlight
Glucose from other SAT solvers. The question we face is to either go with the minimalism
of MiniSat, or to bet on Glucose’s robust search for a good learnt clause.

Glucose has also led its mark on SAT competitions, it won prizes pretty much annually
since it was first introduced in 2009 until 2015. It is also written in C++, its source code
is available at [9]. Glucose share the same public interface as MiniSat.

Audemard and Simon, the authors of Glucose, saw that one of the key factors for
the performance of the solver is not only based on the identification of good clauses, but
also on the removing of bad ones. However, as a side effect, aggressively deleting clauses
affects the CDCL completeness [9].

Based on this last remark, remembering that we are more interested in sound and
complete proof methods, this work focus on integrating KSP with MiniSat, instead of
Glucose.
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Chapter 5

Combining KSP and MiniSat

Now that all the theoretical ground is set, we can start talking about the contribution
of this work, which is the combination of the calculus presented in Section 3.2 with the
CDCL procedure presented in Section 4.2. The final purpose of the combination is to
modify KSP, the prover that implements this calculus, to externally invoke MiniSat, a
CDCL SAT solver. The modified prover, including sources, benchmarks, configuration
files, examples, instructions for building and executing can be found in [1].

The main idea behind the combination, is to use the clauses from the satisfiable sets
of literal clauses, generated by the translation into the normal form at each modal level,
with a special set of unit clauses built from the literals appearing in each positive a-clause
and one literal from some negative a-clause, all from the previous modal level in relation
to the literal clauses. If the CDCL solver learns one or more clauses by the conflict
analysis procedure we add it back to the set of propositional clauses. Additionally, if the
solver concludes that the set of clauses is unsatisfiable, as we know that the set of literal
clauses is by itself satisfiable, we know that the insertion of the unit clauses formed by the
literals from modal clauses at the prior modal level caused the contradiction. This gives
us sufficient information to learn the disjunction of all negated literals from these modal
clauses as a new propositional clause at the current modal level. By learning this clause,
we expect to be able to apply the GEN1 or GEN3 rules without relying on saturation of
the set of propositional clauses.

Section 5.1 establishes our combination as two new rules that we add to the calculus
in Section 3.2, additionally, it presents the correctness proof for both rules. Section 5.2
discusses the modifications made to KSP and MiniSat in order to implement the combin-
ation. Finally, Section 5.3 presents experimental results for KSP combined with MiniSat
running on established modal benchmarks.
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5.1 Combining Rules

Our combination relies on two new rules, LSAT and MSAT, in addition to the ones from
the calculus that KSP implements, shown in Figure 3.3. These rules are presented in
descriptive form, but fulfilling the same standard structure: list of premises followed by
a conclusion. This is due to one of the rules relying on the unsatisfiability of a set of
clauses, therefore, the standard way of representing a inference rule does not apply for it.
In the following we give the required premises for the new rules.

Let F be a set of clauses in SNFml. Let also POSa,ml = {m | (ml : t⇒ a m) ∈ F} be
the finite set of unit clauses formed by the literals in all positive a-clauses in F , at a modal
level ml. Suppose that NEGa,ml = {m} is a singleton formed by the unit clause such
that (ml : t ⇒ ♦a m) ∈ F is a negative a-clause in F , at a modal level ml. Additionally,
let LITml = {D | (ml : D = ∨r

i=1 li) ∈ F} be the set of the disjunctions occurring on the
literal clauses in F at a modal level ml. Note that LITml is still a set of clauses, only
without the label for modal levels.

The following two rules are applied to the set of clauses formed by the literal clauses
at modal level ml1, with the set of unit clauses built from the literals from the positive
clauses, at modal level ml2, and a literal from a negative clause, at modal level ml3.
Remind the unification function denoted by σ as defined in Definition 3.2.5. For the rules
to be applied, the unification for σ({ml1,ml2 + 1,ml3 + 1}) has to be defined.

The intuition behind this construction is similar to the one behind a tableau proof for
modal logics, briefly mentioned in Chapter 3. As a result of the existential and universal
characters of the modal operators of possibility and necessity, respectively, we try to build
a world that satisfy each literal in the scope of the possibility operator, along side with
all the literals in the scope of necessity operators, with the literals that already exist at
the corresponding modal level. The new rules work as follows:

• [LSAT] If CL is a learnt clause from the conflict analysis of a CDCL procedure for
the set of clauses LITml1 ∪POSa,ml2 ∪NEGa,ml3 , then we can derive (σ({ml1,ml2 +
1,ml3 + 1}) : ¬m ∨ CL), where m ∈ NEGa,ml3 , as a new literal clause at the modal
level resulting from unifying ml1,ml2 + 1 and ml3 + 1. For local reasoning, this
means that a new clause is added, at the same level of the literal clauses, built from
the disjunction of the learnt clause CL with the negated literal in the scope of the
possibility operator at the previous modal level. We bind the new learnt clause
to the literal in the scope of the possibility operator because contradictory clauses
generated from literals from different negative clauses are not, in fact, contradictory,
as they can hold at different worlds.
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• [MSAT] We know that the translation to SNFml only generates satisfiable sets of
literal clauses at any modal level, thus LITml1 is satisfiable. If LITml1 ∪POSa,ml2 ∪
NEGa,ml3 turns out to be unsatisfiable, we are sure that the addition of the clauses
in POSa,ml2 ∪ NEGa,ml3 turned the whole set unsatisfiable. From this fact, we
can derive that at least one of the literals in the modal clauses must be false at
the same modal level as the literal clauses, that is, we can add (σ({ml1,ml2 +
1,ml3 + 1}) : ¬m1 ∨ . . . ∨ ¬mb ∨ ¬m), where mi ∈ POSa,ml2 , for every 1 ≤ i ≤ b,
and m ∈ NEGa,ml3 , to the set of literal clauses at the modal level resulting from
unifying ml1,ml2 + 1 and ml3 + 1.

5.1.1 Correctness Results

This section presents the proofs of soundness for the new inference rules, LSAT and MSAT.
Theorems 5.1.1 and 5.1.2 are based on the same premises for the rules. Proofs will be
presented for local reasoning, but it is easily extended to consider global reasoning.

Theorem 5.1.1 (LSAT). Let CL be a learnt clause trough CDCL from the set LITml+1 ∪
POSa,ml ∪NEGa,ml. Then F is satisfiable if, and only if, F ∪{ml+ 1 : ¬m∨CL}, where
m ∈ NEGa,ml, also is.

Proof. Suppose that F is satisfiable. From Theorem 4.2.1 we know that CDCL does not
affect correctness, therefore, CL can be shown to be a logical consequence of LITml+1 ∪
POSa,ml ∪ NEGa,ml trough a finite number of resolution steps, according to Defini-
tion 4.2.2. As F is satisfiable, we know that there is a model that satisfies F (recall
how we defined the satisfiability problem in Section 2.2). If this model has a world at
modal level ml + 1 that satisfies m, we know that it must also satisfy all m1, . . . ,mb

literals positive clauses, in addition to the clauses in LITml+1. Finally, because CL is a
consequence of LITml+1 ∪ POSa,ml ∪NEGa,ml, it can be shown that CL is also satisfiable
in this world.

As the construction of the LITml+1 ∪ POSa,ml ∪ NEGa,ml set used the literals from
modal clauses, we bind the learnt clause to the literal from the negative clause, knowing
that every world that satisfy this literal will also satisfy CL. Therefore, the addition of
{ml + 1 : ¬m ∨ CL} to F is sound and F ∪ {ml + 1 : ¬m ∨ CL} is also satisfiable.

Now, suppose F ∪ {ml + 1 : ¬m ∨ CL} satisfiable. From the satisfiability of sets, we
know that F must be satisfiable and that finishes this proof.

Theorem 5.1.2 (MSAT). If LITml+1 ∪ POSa,ml ∪ NEGa,ml is unsatisfiable, then F is
satisfiable if, and only if, F ∪ {ml+ 1 : ¬m1 ∨ . . .∨¬mb ∨¬m}, where mi ∈ POSa,ml for
0 ≤ i ≤ b and m ∈ NEGa,ml, also is.
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Proof. Suppose that F is satisfiable and that LITml+1 ∪ POSa,ml ∪ NEGa,ml is unsat-
isfiable. As we know that LITml+1 is satisfiable and m by itself its not contradictory,
there are five cases left to consider for the proof of soundness. Recall the few highlighted
details, presented in Section 3.2, from the completeness proof for the calculus. The cases
we have to consider for this proof follow directly from each item of the presented details.

• If POSa,ml or POSa,ml ∪ NEGa,ml are either contradictory, it means that we are
trying to add a clause of the formml+1 : ¬m1∨. . .∨m∨¬m, assumingm ∈ NEGa,ml

and ¬m ∈ POSa,ml, without lack of generality. A clause with a tautology (m∨¬m)
does not affect the satisfiability of the set.

• If LITml+1 ∪ NEGa,ml is contradictory, like mentioned in Item 3 of the details
given for the completeness proof, by consequence completeness of binary resolution
(Lemma 3.2.2), applications of LRES to the set of literal clauses would generate
ml+1 : ¬m. Therefore the addition of this clause is sound. And by the subsumption
principle (Lemma 3.1.2), the addition of any clause that subsumes it also is.

• If LITml+1∪POSa,ml is contradictory, it follows from Item 4 that the clause ml+1 :
¬m1 ∨ . . . ∨ ¬mb would also be generate by applications of LRES. Therefore, the
addition of this clause, or any other that subsumes it, to F is also sound.

• Finally, the case in which LITml+1 ∪ POSa,ml ∪ NEGa,ml also follows from Item 4
(and Item 5). Then we know that the clause ml+ 1 : ¬m1 ∨ . . . ∨¬mb ∨¬m would
also be generated by applications of LRES.

From the five cases we considered, we know that adding {ml+ 1 : ¬m1∨ . . .∨¬mb∨¬m}
to F is sound and, therefore, F ∪ {ml + 1 : ¬m1 ∨ . . . ∨ ¬mb ∨ ¬m} is also satisfiable.

Now, suppose F ∪ {ml + 1 : ¬m1 ∨ . . . ∨ ¬mb ∨ ¬m} satisfiable. Again from the
satisfiability of sets, we know that F must be satisfiable and that finishes this proof.

Completeness of the calculus is not affected as we only add rules that derive clauses
that were already consequences of the initial set of clauses. In other words, they would
have been generated at some point by exclusively applying LRES to the set of literal
clauses at a given modal level, or at least be subsumed by some of these clauses.

5.2 Implementation

We had two options on how to combine KSP with MiniSat. For the first one, we would have
to interact with the public interface of MiniSat as an integrated part of KSP. The second
one is to make an external call to MiniSat from KSP, which requires less interference
on KSP. The required effort to adapt the source code of MiniSat for both approaches
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would be pretty much the same, but we believe that the first approach probably would
result in less overall overhead of time, once every external call from KSP to MiniSat
requires a translation from the internal representation of clauses of the first to the internal
representation of the other, and vice versa. Hence, it would present a better performance.

We think, however, that the second approach is more viable, at least at a first moment,
as it demands less changes on the source code of KSP, because we are more interested
in a proof of concept to verify that our approach does not affect the correctness of the
prover. Implementing MiniSat as an integrated part of KSP is left as a possible future
work. Thus, our implementation changes KSP to externally invoke a minimally modified
version of MiniSat. After a thorough study of MiniSat’s source code, we only found two
necessary changes. As we are only interested in the final answer, satisfiable or not, and
the clauses learned from the proof search procedure, we modified MiniSat to output even
less information than the default triggered by the lowest level of verbosity of the solver.
Additionally, we had to force MiniSat to output the learnt clauses as soon as they are
produced.

Algorithm 6: KSP-Proof-Search-With-SAT-Solver
1 input_processing
2 snf_transformation
3 clause_preprocessing
4 MODD ← modal_clauses_translation(Λmod)
5 sat_skip← 0
6 while (Γlit 6= ∅) do
7 if (!sat_skip) then
8 LITD ← propositional_clauses_translation(Γlit ∪ Λlit)
9 Γlit ← Γlit ∪ minisat_call(LITD,MODD)

10 sat_skip← (sat_skip+ 1) % sat_cycles
11 for (all modal levels ml) do
12 clause← given(ml)
13 if (not redundant(clause)) then
14 GEN1(clause,ml,ml − 1)
15 GEN3(clause,ml,ml − 1)
16 LRES(clause,ml,ml)
17 Λlit

ml ← Λlit
ml ∪ {clause}

18 Γlitml ← Γlitml \ {clause}
19 if (0 : false ∈ Γlit0 ) then return unsatisfiable
20 Γlit ← ⋃ Γlitml
21 return satisfiable

Algorithm 1 on Section 3.2.3 presented the proof search procedure of KSP. Now, Al-
gorithm 6 shows exactly where, Lines 4, 5 and 7 - 10, we had to modify KSP for our pur-

49



poses of combination. In the Algorithm 6, let Γlit = ⋃ Γlitml be the set of support of literal
clauses occurring at every modal level. Analogously, let Λlit = ⋃ Λlit

ml and Λmod = ⋃ Λmod
ml

be the usable sets of literal and modal clauses.
Lines 7 and 10 represent an additional option when running KSP combined with Min-

iSat. For experimental purposes, we let the user define the value of sat_cycles, the
variable representing the frequency that the SAT solver is called. If the user, for instance,
set the sat_cycles to 100, MiniSat will be invoked every 100 cycles of the outer loop of
KSP. The default value of sat_cycles is one, i.e., MiniSat called every iteration of the
main loop.

The modal_clauses_translation and literal_clauses_translation procedures,
Lines 4 and 8, respectively, correspond to the translation of variables from the internal
representation of KSP, which is a signed integer, to the internal representation of MiniSat,
based on Dimacs [17], which is also a signed integer. The literal_clauses_translation
procedure, shown in Algorithm 7, where LITD,ml represents all clauses at modal level ml
already in Dimacs format, is quite straightforward. It translates all literal clauses at every
modal level to their specific Dimacs representation, without the modal level annotation.

Algorithm 7: propositional_clauses_translation(Γlit ∪ Λlit)
1 for all modal levels ml do
2 LITD,ml ← ∅
3 for all clauses C in Γlitml ∪ Λlit

ml do
4 LITD,ml ← LITD,ml ∪ DIMACS(C)
5 end
6 end
7 return ⋃

LITD,ml

We know that the sets of literal clauses are satisfiable, thus, we are interested in the
clauses MiniSat might learn if it eventually finds a conflict. Additionally, we also want to
see the effect of adding to the set of literal clauses, unit clauses with the literals on the
scope of modal operators at the previous modal level. The intuition behind this addition
was discussed in Section 5.1. This information might lead to an early application of GEN1
or GEN3. For that purpose, the modal_clauses_translation builds clauses containing
literals in the scope of modal operators, accordingly with Algorithm 8, that will be passed
along with the literal clauses to the SAT solver. Algorithm 8 builds, for each negative
a-clause, a set of unit clauses with the literal in the scope of the ♦a operator and all unit
clauses formed by the literals in the scope of the a operator. Then, it translates each
of these new unit clauses to Dimacs format. We already know that no modal clauses are
generated during the main loop of KSP, that is why we can call this translation prior to
the main loop.
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Algorithm 8: modal_clauses_translation(Λmod)
1 for all modal levels ml do
2 MODD,ml ← ∅
3 for all agents a do
4 POSa,ml ← ∅
5 for all positive a-clauses ml : l⇒ a m in Λmod

ml do
6 POSa,ml ← POSa,ml ∪ DIMACS({m})
7 end
8 for all negative a-clauses ml : l⇒ ♦a m in Λmod

ml do
9 MODD,ml ←MODD,ml ∪ {POSa,ml ∪ DIMACS({m})}

10 end
11 end
12 end
13 return ⋃

MODD,ml

The call to MiniSat, illustrated by Algorithm 9, occurs every k iterations of KSP main
loop, where k is set by the user trough the sat_cycles configuration. The aim is to feed
MiniSat with the set of clauses that contains all literal clauses at a specific modal level
with each unit clause built from the modal literals at the previous modal level.

Algorithm 9: minisat_call(LITD,MODD)
1 Cnew ← ∅
2 for all modal levels ml do
3 for all set of unit clauses ∆ = {m1, . . . ,mb,m} in MODD,ml−1 do
4 while MiniSat (LITD,ml ∪∆) not finished do
5 if MiniSat learns a new clause CL then
6 Cnew ← Cnew ∪ {ml : ¬m ∨ CL}
7 end
8 end
9 if MiniSat returns unsatisfiable then

10 Cnew ← Cnew ∪ {ml : ¬m1 ∨ . . .¬mb ∨ ¬m}
11 end
12 end
13 end
14 return Cnew

Each set of unit clauses ∆ = {m1, . . . ,mb,m} ∈ MODD,ml−1, Line 3, represents the
clauses built from a literal m that occurs in a negative clause, at modal level ml− 1, and
all literals occurring on the positive clauses at the same level. If MiniSat happens to learn
a new clause while reasoning over the set of literal clauses with these additional clauses,
we add it to the set of literal clauses of KSP, with a binding to the literal in the possibility
operator that was passed along. Moreover, if MiniSat decides that the set is unsatisfiable,
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we also add a new clause to the literal clauses of KSP. As shown in Section 5.1, the
unsatisfiability of the set means that we cannot place all modal literals, from the previous
modal level, at the current one, meaning that at least one of them must be false. The
derived clause, Line 10, must be a premise for GEN1 and/or GEN3, as the clause only
contains literals in the scope of modal operators in modal clauses at the previous level,
therefore, we expect that, once learning this clause, one of the two inference rules could
be applied right away. At the current state of the implementation, we do not immediately
try to apply either rules, as it would have required further changes on KSP main loop.
We leave it, though, as a future work. The minisat_call procedure returns the set of
all clauses that must be added to the literal clauses at each corresponding modal level, as
given in Line 14 of Algorithm 9.

Example 5.2.1 Consider the initial set of clauses in SNFml, Clauses 1-8, from Figure 5.1.
The figure shows a refutation of the set using a call to MiniSat. In this example, MiniSat
was called with the set of clauses {a,¬a ∨ ¬b, a ∨ ¬b ∨ c,¬a, b} as input, where ¬a and
b are the literals of the modal Clauses 4 and 5, respectively. When MiniSat returns
unsatisfiable, we add Clause 9 to the set of literal clauses at modal level one. This clause
allows the application of GEN1 instantly, as showed in Clause 10. Without the call to
MiniSat, KSP would have to correctly choose Clauses 6 and 8 to apply LRES, generating
clause 1 : ¬b, and then apply GEN3, generating the same Clause 10.

1. 0 : t0 8. 1 : ¬a ∨ ¬b
2. 0 : ¬t0 ∨ t1 9. 1 : ¬b ∨ a [MSAT, 4, 5, 6, 8]
3. 0 : ¬t0 ∨ t2 10. 0 : ¬t1 ∨ ¬t2 [GEN1, 4, 5, 9, a, b]
4. 0 : t1 ⇒ ♦¬a 11. 0 : ¬t0 ∨ ¬t2 [LRES, 2, 10, t1]
5. 0 : t2 ⇒ b 12. 0 : ¬t0 [LRES, 3, 11, t2]
6. 1 : a 13. 0 : false [LRES, 1, 12, t0]
7. 1 : a ∨ ¬b ∨ c

Figure 5.1: Example of refutation using KSP combined with MiniSat

5.3 Experimental results

In Section 5.1.1 we proved that the addition of the LSAT and MSAT rules to the calculus
that KSP implements does not affect correctness. However, we also need to determine if
we did not insert any implementation errors to the KSP source code while adding these
rules. In this sense, our experimental tests are interested in the evaluation of the impact
and overhead of calling MiniSat from KSP, as well as the answers KSP gives as indications
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that the implementation is correct. For these purposes, we compared KSP 0.1.2 running
on three benchmarks. The benchmarks used consist of three collections of modal formulae:

• LWB: Basic modal logic benchmark formulae [11], with 378 formulae divided into 9
families. Each family is a set with 21 parameterised formulae. Of the 378 formulae,
half are satisfiable and half are unsatisfiable by construction of the benchmark fam-
ilies. The minimum modal depth of formulae in this collection is 1, the maximum
30,004.

• MQBF: This benchmark corresponds to the complete set of TANCS-2000 modalised
random QBF (MQBF) formulae [53] complemented by the additional MQBF for-
mulae provided by Kaminski and Tebbi [43]. This collection consists of five families,
called qbf, qbfL, qbfS, qbfML, and qbfMS, with 617 formulae that are known to be
satisfiable and 399 known to be unsatisfiable, total of 1016 formulae. The minimum
modal depth of formulae in this collection is 19, the maximum is 225.

• 3CNF: This collection consists of 135 3CNF formulae over 3 propositional symbols
with modal depth 2, 4 or 6, all of which are known to be satisfiable [53].

For purposes of comparison, we executed KSP with five configuration files that differ
only on the option regarding the call to MiniSat: satsolver,k, where k is the number of
iterations of the main loop between every call to MiniSat. The remaining used settings
were: prenex, early_mlple, bnfsimp, snf++, unit, lhs_unit, limited_reuse_renaming,
mlple, populate_usable,max_lit_positive, ordered, propdia, mres, local, shortest,
sos_subsumption, forward, backward and, finally, full_check_repeated. The choice
for this particular set of options was due to the results on the empirical experimentation
considering different configurations presented in [59] and [61]. We will now give a quick
overview of these options that were used in our experimentation.

The description of the options was taken from [61], and the reader can refer to it if
interested in other configuration options. For the options related to input processing,
we used the option prenex to translate a formula into prenex. Basically, the prenex
normal form corresponds to pushing the modal operators occurring in a formula ϕ as
far as possible outwards the formula. With option early_mlple, also related to input
processing, pure literal elimination is applied at each modal level, prior the transformation
into the clausal form. With option bnfsimp simplification is applied to formulae in Box
Normal Form (BNF) instead of formulae in NNF. The translation into BNF removes the
♦a operator, allowing the a operator to occur in the scope of negation. For example,
the formulae a (p ∨ q) ∧ ♦a (¬p ∧ ¬q), in NNF, and a (p ∨ q) ∧ ¬ a (p ∨ q), in BNF,
are semantically equivalent, although the contradiction appears explicitly on the second
formula.
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Regarding to the SNFml translation, we choose the option snf++, that applies the
following rewriting rules, in addition to the ones in Definition 3.2.4.

ρ(ml : t⇒ a l) = (ml : t⇒ a t′) ∧ ρ(ml + 1 : t′ ⇒ l)

ρ(ml : t⇒ ♦a l) = (ml : t⇒ ♦a t′) ∧ ρ(ml + 1 : t′ ⇒ l)

These additional rules sets the ordering of the new introduced propositional symbols to be
lower than the ordering of any other symbol in the clause set. The translation into snf++ is
needed for retaining completeness when ordered resolution is also set (see below). Options
unit and lhs_unit were also set, which allows unit resolution, applying the additional
inference rules illustrated in Figure 5.2.

[UNIT] ml1 : D ∨ l
ml2 : ¬l

σ({ml1,ml2}) : D

[UNIT-GEN1] ml1 : t⇒♦a m
ml2 : ¬m

σ({ml1,ml2 + 1}) : ¬t

[UNIT-GEN3] ml1 : t1 ⇒ a m1
ml2 : t2 ⇒♦a m2
ml3 : ¬m1

σ({ml1,ml2 + 1}) : ¬t1 ∨ ¬t2

[LHS-UNIT-1] ml1 : l
ml2 : l⇒♦a m

σ({ml1,ml2}) : true⇒♦a m

[LHS-UNIT-2] ml1 : l
ml2 : l⇒ a m

σ({ml1,ml2}) : true⇒ a m

Figure 5.2: Unit resolution rules

Additionally, with option limited_reuse_renaming, we forced the same new propos-
itional symbol to be used for all occurrences of the same subformula being renamed at a
particular modal level.

Concerning the preprocessing of clauses procedure, the configuration options used
were: mlple which allowed pure literal elimination whenever a literal is pure at some
modal level. Option populate_usable,max_lit_positive, that moves literal clauses
whose maximal literal is positive from Γlitml to Λlit

ml. Option ordered, where clauses can
only be resolved on their maximal literals with respect to an ordering chosen by the
prover in such a way to preserve completeness, was also set. Propagation of a literal
in the scope of possibility operator, as showed in Section 3.2.3, are applied because the
option propdia is set. Moreover, we forced the MRES rule to be applied even when it is
not needed for completeness, because it produces very short resolvents, with the option
mres. Also, forward and backward are set, so that deletion of newly generated or old
clauses which are subsumed is applied; it also means that self-subsumption is applied
during preprocessing of clauses. We also forced subsumption checking in the whole set
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of clauses by setting the option sos_subsumption: the default is to apply subsumption
only against the usable.

Finally, with respect to the main loop of the proof search, we set KSP to only do
local reasoning with the local option. With option shortest, we tell KSP to choose the
clause with the smallest size at a particular modal level. With full_check_repeated,
repetition of clauses is checked against all sets of clauses at the same modal level: the
default is to check for repetition only against the set of support.

The option that differed each file was the satsolver,k one. The contribution to KSP
that this work set out to do was to implement the changes illustrated by the algorithms
of Section 5.2, that are called whenever the satsolver option is present. In the option,
k is the value attributed to the variable sat_cycles, which corresponds to the number
of iterations of KSP’s main loop between each call to MiniSat, set as default to one. We
choose to run KSP with k ∈ {1, 10, 100, 1000, 10000} and also without the call to MiniSat
at all. We expected to see a decay of performance for low values of k, as the call for
MiniSat causes a considerable overhead for translating and building clauses and making
the external call. For larger values of k, we expected to see a similar performance from
KSP without the call to MiniSat, as it only does it in very large intervals, sometimes does
not even get a change to call it at all, in instances that KSP is able to solve very quickly.

Benchmarking was performed on a Ubuntu 18.04 with an Intel i7-8565U CPU @1.80
GHz and 16 GB main memory. For each formula and each configuration we have determ-
ined the median run time over three runs with a time limit of 100 CPU seconds. The
choice for this limit is justified by the fact that KSP alone is able to solve most entries
from LWB and MQBF benchmarks within this time constraint.

While KSP performs pretty well for those entrances, for 3CNF it cannot solve any
entry, even when we increased the time limit to 1200 CPU seconds. Our expectation
was that this would be different for KSP combined with MiniSat. Unfortunately, our
expectations were not fulfilled. Each tested configuration of KSP failed to solve every
formulae from this benchmark within this large limit. Therefore, in the following, we will
only report on the findings of our experiment over the other two sets of formulae used for
benchmarking. For both the LWB and MQBF benchmarks, all instances solved within the
previous stipulated time limit, with each configuration file, returned the correct answer.
This serves as indication that all errors that appeared during the implementation stage
were fixed. Therefore, the implementation itself is considered a proof of concept that the
addition of the new rules did not change the correctness of KSP.

Table 5.1 shows the number of satisfiable and unsatisfiable instances solved by KSP
running the benchmarks for every configuration file. In general, KSP combined with
MiniSat did not surpass KSP running alone, for any user defined number of cycles between
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each call. As expected, calling the SAT solver every iteration of the main loop generates a
large amount of overhead, which decreases as we increase the interval that is called, though
it seems to never cross a worthwhile barrier. Large intervals did, also as expected, perform
similar to KSP alone. This can also be observed in both graphs of Figure 5.3, which
illustrate the amount of instances solved by the time of execution for each benchmark.

Table 5.1: Number of satisfiable and unsatisfiable instances solved

LWB MQBF
Configuration Satisfiable Unsatisfiable Satisfiable Unsatisfiable

Total of instances 189 189 617 399
sat-1 141 157 365 134

sat-10 158 160 577 167
sat-100 159 166 600 226

sat-1000 162 167 603 301
sat-10000 163 166 603 309

without 163 166 602 338

Figure 5.3 shows the impact on run-time of the different frequencies of calls to MiniSat
on the performance of KSP. For the LWB benchmark, without, sat-10000, sat-1000
and even sat-100 were able to solve most entries in under one second. While the line for
sat-10 indicates that, even with some overhead, it was able to solve most entries within
the time limit of 100 seconds. But sat-1 shows a lot more explicitly the impact of the
overhead caused by the calls to MiniSat on the run-time. For the MQBF benchmark,
we have sat-10000 and sat-1000 presenting an almost identical performance, slightly
inferior to the one from without. Again, sat-1 presents the worst performance.

Remember that the LWB benchmark has the same number of satisfiable and unsatis-
fiable formulae. Thus the analysis of the performance of KSP with MiniSat with respect to
the satisfiability of formulae is straightforward. Figure 5.4 shows that KSP alone already
solves slightly more unsatisfiable entries for this benchmark. This pattern was repeated
for all the other settings. All instances of KSP combined with MiniSat were able to resolve
pretty much the same number of instances, compared to KSP alone, with the exception
of KSP calling MiniSat every iteration of the main loop. It presented a large decrease of
performance for satisfiable entries. This might indicate that, besides the known overhead
from the excessive number of calls to MiniSat, the clauses we learn trough our imple-
mented procedures favoured the search for a refutation rather than the construction of
a satisfying model, for this benchmark. The opposite behaviour is, though, observed for
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Figure 5.3: Benchmark results for KSP with and without the call for MiniSat

the MQBF benchmark, where sat-1 only solves about 40% of the total of the unsatis-
fiable instances solved by KSP alone. While for satisfiable instances, it was able to solve
around 60%. The remaining configurations also presented a better rate at solving satis-
fiable instances for this benchmark. These differences might be explained by the inherent
characteristics from each benchmark.

The prover alone, in general, performed better, closely followed by KSP calling MiniSat
every 1000 and 10000 cycles. KSP calling MiniSat every 10 and 100 cycles performances
were average when comparing with KSP calling MiniSat every iteration of the main loop.
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Therefore, overall, it seems to not pay off the overhead created for externally calling
MiniSat, regardless of the interval that is called. However, for unsatisfiable instances of
one specific family of the LWB benchmark, the ph family, KSP calling MiniSat every 100
cycles was able to solve up until entry number nine in less than 100 CPU seconds, while
KSP alone only solves until the fifth entry, as showed in Table 5.2.
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Figure 5.4: Number of satisfiable and unsatisfiable instances solved for KSP with and
without the call for MiniSat on benchmark LWB

The ph family corresponds to the pigeonhole principle established as a formula in Kn.
In mathematics, the pigeonhole principle affirms that if n elements are put intom buckets,
with n > m, then at least one bucket must contain more than one element [40]. This is
one of the hardest families of LWB for KSP. Indeed, it is also hard for several other provers
as well [61]. Therefore, our contribution to KSP managed to solve four more instances in
comparison to before.

According to [11], the ph formulae are essentially classical propositional problems
with few insertions of modal operators. If k is the entry parameter, the corresponding
ph unsatisfiable formula has k2 + k variables and the maximum modal depth of two, as

58



Table 5.2: Run-time in seconds for each unsatisfiable entry for family ph

Time (seconds) per solved entry
Configuration 2 3 4 5 6 7 8 9

sat-1 0.01 0.26 1.23 4.01 13.67 90.93 - -
sat-10 0.01 0.06 0.18 0.49 1.51 3.88 - -

sat-100 0.01 0.03 0.08 0.07 0.34 0.7 2.42 93.81
sat-1000 0.00 0.03 0.12 0.38 1.05 - - -

sat-10000 0.00 0.03 0.17 2.89 - - - -
without 0.01 0.01 0.12 2.83 - - - -

illustrated by Equation 5.1 taken from [11]. The high number of variables distributed
over a maximum of two modal levels in these formulae represents exactly the previously
described scenario, which was focus of this work that attempt to improve the efficiency
of KSP for such entries. Besides having our implementation as proof of concept for the
proposed combination of the CDCL procedure implemented in the MiniSat solver with
the resolution calculus implemented in KSP, helping KSP to solve more entries from this
particular family can also be considered a positive result of this work.

ph(k) = ♦left(k)⇒ ♦right(k)
left(k) = ∧k+1

i=1
∨k
j=1 l(i, j)

right(k) = ∨k,k+1,k+1
j=1,i1=1,i2=i1+1(l(i1, j) ∧ l(i2, j))

l(i, j) =

 pi+j i < j

pi+j otherwise

(5.1)

As a last remark on this section, we will take the executions for the ph family as an
opportunity to start a discussion about the number of inferences made until KSP finds
a refutation, for each configuration of KSP. The number of inferences made serves as a
parameter of memory usage of KSP.

Table 5.3 shows that the use of MiniSat had a positive impact on the number of
new clauses KSP infers for each solved instance of this family. With a special remark
to sat-100, which was the configuration to solve more instances within the time limit.
This table also shows that excessive calls to MiniSat also lead to a larger number of
inferences than the required to derive a refutation. This is due to every call to MiniSat
possibly adding new clauses that don’t necessarily hold essential information, leaving KSP
to deal with saturation of the clause set anyway. Even so, sat-1, which presented a run-
time reasonably superior to KSP calling MiniSat at large intervals or not calling at all, for
example, for all the instances they all solved, managed to find the proof with considerably
less inferences, in comparison. This indicates that, for the ph family, the combination did
not required saturation to be able to find a refutation. Further analysis of the relation
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between the call to MiniSat and the number of inferences made for different families of
formulae is left as future work.

These results indicate that our combination impacted KSP beyond the run-time out-
come only. We believe that further polishing of the changes made to the prover related to
the call to MiniSat, trying to find a better middle ground between minimising the number
of inferences made and the overhead of calls to MiniSat, might lead to even better results.
Specially considering the approach of integrating MiniSat into KSP, as we think that it
would considerably decrease the overall overhead of our combination.

Table 5.3: Number of inferences for each unsatisfiable entry for family ph

Inferences made per solved entry
Configuration 2 3 4 5 6 7 8 9

sat-1 3 81 456 1870 5903 19510 - -
sat-10 3 34 119 418 1661 6715 - -

sat-100 3 112 195 319 1277 5009 21059 293325
sat-1000 3 112 2554 2621 4304 - - -

sat-10000 3 112 2554 134567 - - - -
without 19 150 2724 134418 - - - -
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Chapter 6

Conclusion and Future Work

This chapter does an overview of the theoretical knowledge concerned to this work and
brings final remarks on our contribution to KSP, as well as suggestions on possible future
work. Chapter 2 introduced the propositional modal language which is the main focus
of this work: Kn. We have seen that Kn extends classical logic by adding the unary
operators a and♦a to express notions of necessity and possibility, respectively, as different
modes of truth. The key goal behind these operators is to allow the reasoning over
relations between the abstractions we call possible worlds. Thus, the information holding
at worlds accessible from the current one — via an accessibility relation — is available to
examination.

In Chapter 3 we briefly introduced clausal resolution, the base of the modal-layered
calculus behind KSP. As we have seen, resolution is a simple and adaptable proof system
for propositional classical logic, as it has only one inference rule that is thoroughly applied.
This rule entails the well known resolution principle. The calculus presented for Kn adds
a few more rules, as it also has to deal with modal reasoning. This calculus makes use
of labelled resolution in order to avoid unnecessary application of such rules. Thus, it
requires a translation of formulae into a more expressive language, where labels are used
to express semantic properties. Formulae in Kn are, then, translated into a layered normal
form called SNFml, also presented in Chapter 3. We showed that a formula in SNFml is a
conjunction of clauses where the modal level in which they occur is made explicit in the
syntax.

KSP implements this modal labelled resolution calculus. It was designed to support
experimentation with different combinations of refinements. KSP presents a great effi-
ciency if the set of propositional symbols are uniformly distributed over the modal levels.
However, when there is a high number of variables in just one particular level, the per-
formance deteriorates. One reason is that the specific normal form used always generates
satisfiable sets of propositional clauses. As resolution relies on saturation, this can be
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very time consuming. Our work investigated alternative paths that KSP can take at this
stage. We aimed at strategies that could increase the rate in which we find opportunities
for applications of inference rules that deal with modal reasoning.

We saw in Chapter 4 that SAT solvers are very efficient in the proof search for propos-
itional logic. They can often solve hard structured problems with over a million variables
and several million constraints. Also in Chapter 4, we discussed the role of clause learn-
ing in the successful widespread use of SAT. We saw that the main idea behind Conflict-
Driven Clause Learning solvers is to catch clauses of conflict as learned clauses, and to use
this information to prune the search in a different part of the search space. The conflict
analysis procedure consists of analysing the most recent conflict and learning a new clause
from it. Furthermore, we have seen in Chapter 4 that MiniSat is a popular CDCL SAT
solver, with an astonishing performance, that implements many well-known heuristics in
a succinct manner. It has won several prizes in the SAT 2005 competition, and has the
advantage of being open-source. To these days, this solver keeps its importance as a tool
used as an integrated part of different systems [26, 27, 28, 75].

Chapter 5 presented the additional inference rules we added to the calculus discussed
in Chapter 3, and the implementation of these rules as our contribution to the KSP list
of available strategies. We also presented the correctness proofs for the new rules.

Our implementation modifies KSP to externally call MiniSat. The main idea behind
this combination, was to build a query for the SAT solver, to find out if the literals from
modal clauses, at a specific modal level, can be satisfied in the set of propositional clauses
at the next level. We, then, from the main loop of KSP, call MiniSat passing as input the
clauses from the satisfiable sets of literal clauses, generated by the translation into the
normal form at each modal level, with a special set of unit clauses built from the literals
appearing in each a operator and one unit clause with the literal from a ♦a operator as
well, all appearing in the previous modal level in relation to the literal clauses. If the
CDCL solver learns one or more clauses by the conflict analysis procedure we add it back
to the set of propositional clauses, as we know that this learnt clauses are consequences of
the set we passed to MiniSat. Additionally, if the solver concludes that the set of clauses
is unsatisfiable, we learn the disjunction of all negated literals from the modal clauses as
a new propositional clause at the same modal level. By learning this clause, we expected
to be able to apply the inference rules that deal with modal reasoning without relying on
saturation.

Experimental results on classical benchmarks, as showed in Chapter 5, did not present,
in general, a gain in run-time parameters, probably due to the overhead we inserted calling
MiniSat. However, getting all correct answers indicates that our implementation of the
rules that combine the KSP calculus with a CDCL solver did not introduced errors on

62



the code, also serving as proof of concept. Additionally, we were able to advance KSP in
solving unsatisfiable entries of one of the hardest families of the LWB benchmark. This
family corresponds to the pigeonhole principle established as a formula in Kn. These
formulae have a structure similar to the scenario for which we hoped to improve the
efficiency of KSP: a large number of propositional symbols in a specific modal level. The
prover alone is able to solve five instances of this family while our combination managed to
solve until the ninth entry. The execution of KSP combined with MiniSat for these entries,
also showed that using MiniSat allowed an overall decrease in the number of required
inferences on the search for a proof. Therefore, our hypothesis that the combination
might decrease the time KSP spends saturating the clause set was confirmed for this
particular family.

As future work we leave the following suggestions:

• We consider to implement our combination with MiniSat as an integrated part of
KSP, as it provides a nice public interface that we can easily interact with. However,
as making an external call to the solver demanded less interference on KSP, we have
chosen this option in the current work. The implementation showed interesting
results, though our combination did not improve KSP performance in average. But
maybe using MiniSat as an internal component of the prover, the overhead might
be reduced, and the efficiency of the combination may be increased.

• When the set we pass to MiniSat turns out to be unsatisfiable, we build a clause
exactly like the premises of two of the inference rules that deal with modal reasoning.
After the construction of these clauses, we could try to apply these rules right away.
But this would require further changes on the main loop of KSP. Thus we also left
it as a possible future work.

• The results for the ph family of the LWB benchmark revealed that our combination
can help KSP reduce the number of inferences needed to build a proof. We leave
space for further analysis of the relation between the number of inferences made and
the time KSP spends in the proof search, and how the combination with MiniSat
can impact on this relation.

• Finally, although our approach was designed to deal with either local or global
reasoning, we have not experimented the combination of KSP and MiniSat for global
satisfiability. The main reason is that there is a lack of established benchmarks for
such problems. We intend to do further experimentation on the performance of our
implementation when dealing with global satisfiability by designing and/or adapting
existing benchmarks.
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