

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

CARACTERIZAÇÃO MINERALÓGICA, GEOQUÍMICA E POTENCIAL ECONÔMICO DE OCORRÊNCIAS DE TERRAS RARAS DO MACIÇO GRANÍTICO PEDRA BRANCA, GOIÁS.

TESE DE DOUTORADO

NIVIA OLIVEIRA DA COSTA

Orientador: Prof.Dr. Nilson Francisquini Botelho

BRASÍLIA/DF

CN735c	Costa, Nivia CARACTERIZAÇÃO MINERALÓGICA, GEOQUÍMICA E FOTENCIAL ECONÔMICO DE OCORRÊNCIAS DE TERRAS RARAS DO MACIÇO GRANÍTICO PEDRA BRANCA, GOIÁS / Nivia Costa; orientador Nilson Botelho Brasília, 2019. 125 p.
	Tese (Doutorado - Doutorado em Geologia) Universidade de Brasília, 2019.
	1. ETRY. 2. Maciço Granítico Pedra Branca. 3. Adsorção Iônica. 4. Subprovíncia Estanífera de Goiás. I. Botelho, Nilson , orient. II. Título.

UNIVERSIDADE DE BRASÍLIA

INSTITUTO DE GEOCIÊNCIAS

PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

CARACTERIZAÇÃO MINERALÓGICA, GEOQUÍMICA E POTENCIAL ECONÔMICO DE OCORRÊNCIAS DE TERRAS RARAS DO MACIÇO GRANÍTICO PEDRA BRANCA, GOIÁS.

NIVIA OLIVEIRA DA COSTA

Área de concentração: Prospecção e Geologia Econômica

Orientador: Prof.Dr. Nilson Francisquini Botelho

Banca examinadora:

Prof. Dr. Artur Cezar Bastos Neto (UFRGS)

Prof^a. Dr^a. Lucy Takehara (CPRM)

Prof. Dr. José Affonso Brod (UFG)

Prof. Dr. Claudinei Gouveia de Oliveira (IGD/UnB-suplente)

BRASÍLIA/DF 2019

Aos meus pais José e Lindalva,

Nelma e Mjed

AGRADECIMENTOS

Primeiramente a Deus, por tudo que Ele representa em minha vida.

Aos meus pais José Paulino da Costa e Lindalva Oliveira da Costa pela minha formação como pessoa, a todos da minha família que torcem por mim, em especial a minha irmã Nelma Pacheco, o meu cunhado Geraldo Pacheco e ao meu marido Mjed Mofleh, por estarem sempre comigo, me apoiando nesta minha caminhada.

Ao meu orientador, Prof. Dr. Nilson Francisquini Botelho, pela transmissão de conhecimentos, pela sua compreensão, dedicação e principalmente sua paciência ao longo de todo este trabalho, pois sem o seu apoio seria impossível a finalização desta tese.

À todas as pessoas que contribuíram direta e indiretamente para ao desenvolvimento desta tese, em especial a Prof^a. Dr^a. Paola Ferreira Barbosa que não mediu esforços para me auxiliar no laboratório e pela sua colaboração enriquecedora para os artigos desta tese.

Ao Prof. Dr.Jerémie Garnier pelo seu auxílio no Laboratório de Geoquímica do IG/UnB, onde foram realizados os ataques químicos para extrações iônicas e sua colaboração nos resultados destas extrações.

Ao Prof. Dr. Valmir da Silva Souza pela sua ajuda e atenção sempre que precisei.

À Prof. Dra. Adriana Horbe, pela disponibilização do Laboratório de Difração de Raio-X, tanto para análises de Raio-X, quanto para utilização do laboratório para o peneiramento das minhas amostras, enquanto o Laboratório de Separação, chamado de Moinho estava em reforma.

À Prof^a. Dr^a Márcia Abrahão Moura, pelo seu apoio incondicional para o meu estabelecimento em Brasília e pela oportunidade de poder fazer parte como aluna de doutorado desta instituição.

Aos técnicos, Rafael Figueras do laboratório de Raios-X, Iris Santos e Jacqueline Machado do laboratório de Microssonda, Myller Tonhá do Laboratório de Geoquímica, Francisca Morais e Edson Lima, da Oficina de Laminação, sempre disponíveis quando recorria seus préstimos. À aluna Gisele Godim pela ajuda na preparação das amostras para as análises geoquímicas e microssonda.

A todos os funcionários de Geociências, como a secretária Eldna Pinheiro da pósgraduação, Sergio Brito (Serjão), Wesley Silva, Éderson Araújo (Jacaré), e em especial a Valdirene Lima, Sebastião Souza Filho (Tião), Luis Costa Filho e Maria Mendes, pela disposição em ajudar e resolver problemas burocráticos e pela amizade que me foi depositada.

À CAPES pela concessão de bolsa deste trabalho.

À Universidade de Brasília (UnB) e ao Instituto de Geociências (IG), por meio do Programa de Pós-Graduação em Geologia (PPGG), pela infraestrutura, ensinamentos recebidos e apoio oferecido.

Aos meus colegas da Pós-Graduação que compartilharam comigo momentos de descontração, em especial ao Gabriel Franco pela sua contribuição em ajudar a passar para o inglês o primeiro artigo, ao Hammel Macedo pela amizade sincera e pelo apoio mesmo de longe.

Ao Federico Cuadros que foi muito prestativo quando cheguei ao Instituto de Geociências, mostrando os laboratórios e os lugares importantes na UnB para resolver assuntos acadêmicos.

A todos, o meu muito obrigado.

Baixem sobre mim as tuas misericórdias, para que eu viva, pois na tua lei está o meu prazer. Salmos 119:77

AGRADECIMENTOS	ii
ÍNDICE DE FIGURAS	viii
ÍNDICE DE TABELAS	Х
RESUMO	xi
ABSTRACT	xii
CAPÍTULO I	<u></u> 1
1. INTRODUÇÃO E JUSTIFICATIVAS	1
2. OBJETIVOS	2
3. CONTEXTO GEOLÓGICO	2
4. MATERIAS E MÉTODOS	
4.1. Amostragem de saprolitos e solos da Faixa Placha e arredores	10
4.2. Separação de Argila pelo Método de Peneiras	
4.3. Separação da Fração Argila para Análises DRX	
4.4. Difração de Raios-X análise do pó	
4.5. Extrações e análises de troca iônica dos cátions	
4.5.1. Extração em única etapa (fração argila e amostra total)	11
4.5.2. Extração em 2 etapas	
4.5.2.1. Óxidos de Fe e Mn Amorfos - Etapa 1	12
4.5.2.2. Óxidos de Fe e Mn - Etapa 2	12
4.6. Geoquímica de rocha total	
4.7. Microssonda e Microscopia Eletrônica de Varredura	
4.8 Desenvolvimento da Tese	14
CAPÍTULO II	15
Abstract	
1. Introduction	15

SUMÁRIO

2. Geological setting	16
3. The Faixa Placha tin deposit	17
4. Materials and methods	20
4.1. EPMA and SEM analyses	
4.2. Whole-rock geochemistry	20
5. Results	21
5.1. Mineralogical characterization	
5.1.1. Zircon (ZrSiO ₄)	
5.1.2. Xenotime-(Y) (YPO ₄)	25
5.1.3. $Monazite-(Ce)$ ((Ce,La,Nd,Th)PO ₄)	
5.1.4. Apatite $Ca_5(PO4)_3(OH, F, Cl)$	
5.1.5. Thorate $(1hSiO_4)$	
5.1.0. KEE oxyjtuoriaes	
5.2 - Whole-rock geochemistry	
6 Discussion and conclusions	42
61 HREE-hearing minerals	42
6.2. LREE-bearing minerals	
7. Concluding remarks	
9 Deferences	45
CAPÍTULO III	48
Abstract	48
1. Introduction	49
2. Geological Context	50
3. Faixa Placha Tin Deposit	53
4. Materials and Methods	55
4.1. Sampling of saprolites and soils of the Faixa Placha and nearby areas	55
4.2. Clay separation by the sieving method	55
4.3. Clay fraction separation for X-ray diffraction analysis	55
4.4. Powder XRD analysis	56
4.5. Cation extractions and ion exchange analysis	56
4.5.1. Single-step extraction (clay fraction and total sample)	56
4.5.2. Two-step extraction	57

4.5.2.1. Amorphous oxides of Fe and Mn - Step 1	57
4.5.2.2. Fe and Mn oxides - Step 2	57
4.6. Whole-rock geochemistry	58
4.7. Electron microprobe and scanning electron microscopy	58
5. Results	58
5.1. Comparisons between granites, greisen, saprolites and soils	58
5.2. Faixa Placha weathering profile	65
5.3. Geochemical results	67
5.4. Single-step ino exchange extraction	71
5.5. Two-step sequential extraction	75
6. Discussion and Conclusions	78
6.1. Comparison of REE enrichment between the Faixa Placha and nearby areas	78
6.2. Ion exchange extractions in the Faixa Placha weathering profile	80
7. Referências	84
5. CONCLUSÕES	88
6. REFERÊNCIAS	90
ANEXOS	93

ÍNDICE DE FIGURAS <u>CAPÍTULO I.....1</u> Figura 1: Mapa geológico regional (Botelho, 1992).....5 Figura 2: Mapa geológico simplificado do Maciço Pedra Branca (Botelho 1992)......5 Figura 3: Amostragem de saprolito na Faixa Placha (A) e utilização do trado para amostragem de solo em superfície de aplainamento nas proximidades da Faixa Placha (B) e (C).....10 Fig. 1. Geological Map of the northeastern portion of the Goiás Tin Province (GTP) showing the location of the Fig. 2. Geological map of the Pedra Branca Massif with the location of sampling (NC) and schematic geological cross-section (AB) in the region of the Faixa Placha and Bacia Zone.....Erro! Indicador não definido. Fig. 3. Aspects of the Faixa Placha Tin Deposit (FPTD). A: greisenized pb1b granite with greisen veinlets; B: abandoned area of ancient artisanal mining exploration; C: detail of the photo B showing black greisen hosted in fracture of the pb1b biotite Fig. 4. Backscattered electron images (BSE) of REE-bearing minerals from the FPTD. (A) Primary euhedral zircon (Zrn) free of REE-rich minerals; (B to F) relationships between zircon, monazite (Mnz) and xenotime (Xnt); (D) zircon grain, with irregular and altered monazite inclusion, surrounded by secondary monazite agglomerate in a muscovite (Ms) and magnetite (Mgt) mass; (G and H) zircon and hydrothermal monazite from the biotite granite pb1b, associated with apatite rests (Ap), muscovite (Ms), quartz (Qtz), ilmenite (Ilm), and Fig. 4 (extended). (I and J) fluorapatite partially replaced by hydrothermal monazite on the edges and fractures; (K and L) Altered thorite (Thr) near zircon grains. Gn: galena; (M and N) Oxyfluorides (Oxf) associated with allanite and xenotime in a quartz-albite-muscovite mass. Aln: allanite; Fl: fluorite; (O) Fig. 5. Composition of zircons from different types of granites in the Faixa Placha Tin Deposit......24 Fig. 7. Domain of REE patterns in all analyzed granites and greisens from the FPTD. (chodrite normalization values of Sun & McDonough (1989)......40 Fig. 8. Chondrite normalized REE patterns of parent and altered granites. A and B: samples from the central part of the FPTD; C: samples from the southernmost border of the FPTD; (D): samples from the northern Fig. 1. Geological map of the northern part of the Goiás Tin Province, showing the location of the Pedra Branca Fig.2. Geological map of the Pedra Branca massif and schematic cross section (A-B) with detail of the central part of the Faixa Placha (modified from Botelho, 1992)......54

Fig. 5. Chondrite-normalizaed REE patterns (Boynton, 1984) of pb1b parental and greisenized granites and their correspondig soils, in the Faixa Placha (B) and nearby areas (A)......61 Fig. 6. Photography and corresponding columnar section of the weathering profile sampled at the center of the Fig. 7. Diagrams showing the variation of the relative REEY concentration in the whole-rock samples from the Fig. 8. Chondrite-normalized REE patterns (Boynton, 1984) of the saprolite, soil and laterite in samples from the upper zone (A) and lower zone (B) of the Faixa Placha weathering profile. Comparison with the greisenized Fig. 9. Chondrite-normalizaed REE patterns (Boynton, 1984) of ion-exchangeable from the single extraction in the clay fraction and in the whole-rock samples from the Faixa Placha saprolites and lateritic Fig. 10. Chondrite-normalized REE patterns of the sequential extraction in amorphous Fe and Mn oxides and in Placha Fe and Mn oxides from the Faixa saprolites and lateritic crust (profile NC17)......77

ÍNDICE DE TABELAS

CAPÍTULO I	<u></u> 1
Tabela 1 Table 1: Extração de unica etapa usando a solução sulfato de amôniaTabela 2 Table 2: Extração de 2 etapa	12
CAPÍTULO II	15
Table 1. EPMA analyses of zirconTable 1 (extended). Number of ions on the basis of 16 (O, F)Table 2. EPMA analyses of xenotimeTable 3. EPMA analyses of primary monaziteTable 4. EPMA analyses of hydrothermal monaziteTable 5: EPMA analyses of fluorapatiteTable 6. EPMA analyses of thoriteTable 7. EPMA analyses of oxyfluorides	
CAPÍTULO III	48
Table 1. Mineralogy and petrography of granites from the Pedra Branca Suite (adapted from Teixeira and Botelho, 1999; Zapata and Botelho, 2018; Vieira et al., 2019) Table 2. Experimental conditions of the single-step extraction using the amr solution	Botelho, 1992; 51 nonium sulfate 57
Table3.Experimentalconditionsoftheextraction	two-step
Table 4. Whole-rock chemical analysis of the biotite granite, greisenized granite, greisen and Placha and nearby areas	soil of the Faixa 62 xa Placha 70

Table 6 Results of the single step extraction showing extracted element concentrations (ppm) in the
clay and in the whole-rock	73
Table 7. Results of the two - step extraction showing extracted element concentrations (ppm) in the
amorphous Fe oxide and Mn and Fe and Mn oxide	76

RESUMO

O presente estudo tem como principal enfoque os elementos terras raras (ETR) que ocorrem em importantes concentrações no maciço granítico Pedra Branca, situado na parte leste na Província Estanífera de Goiás, mais precisamente na Subprovíncia Estanífera Paranã. O maciço possui importantes depósitos de estanho e é constituído por granitos do Tipo A, metaluminosos a peraluminosos, com idade entre 1740 e 1769 Ma.

A Faixa Placha é o depósito de estanho mais importante do Maciço Pedra Branca e apresenta concentrações elevadas de ETRY, tanto no minério de Sn quanto no granito parental e nos granitos greisenizados com potencial para serem explotados economicamente como subproduto do estanho. Os valores ultrapassam 1000 ppm em ETRL e alcançam 500 ppm em ETRPY. Os minerais portadores de ETR no granito parental são allanita, monazita, xenotima, torita, apatita e zircão. Esses minerais, exceto zircão, são alterados, dando origem a monazita secundária, silicatos, fluorcarbonatos e oxifluoretos, que são responsáveis pela concentração de ETR nos granitos greisenizados e greisens e pela disponibilização desses metais para a fração argila dos saprolitos e solos. Análises de troca iônica nos saprolitos e solos de um perfil da Faixa Placha mostram que as extrações na fração argila são mais ricas em ETRY em relação às extrações em rocha total, apresentando valores entre 3425 e 36762 ppm e entre 2804 e 21689 ppm respectivamente. Os ETR encontram-se mais ricos na parte basal do perfil, principalmente os ETRL. A composição mineralógica e as concentrações de ETRY sugerem grande potencial econômico no depósito da Faixa Placha para recuperação de terras raras como subproduto da mineração de estanho. Adicionalmente, as concentrações de ETRs como íons trocáveis no perfil de intemperismo indicam potencial para que a Faixa Placha e áreas vizinhas constituam um importante depósito de ETRY do tipo adsorção iônica.

ABSTRACT

The present study has as its main focus the rare earth elements (REE) that occur in important concentrations in the Pedra Branca granite massif, located in the eastern part of the Goiás Tin Province, more precisely in the Paranã Tin Subprovince. The massive has important tin deposits and consists of metaluminous to peraluminous A-type granites, aged between 1740 and 1769 Ma. The Faixa Placha is the most important tin deposit of the Pedra Branca Massif and presents high concentrations of REEY in the parental granite, in the greisenized granites and in the tin ore. The values are above 1000 ppm in LREE and reach 500 ppm in HREEY. The minerals with REE in the parental granite are allanite, monazite, xenotime, thorite, apatite and zircon. These minerals except zircon, are altered, giving rise to secondary monazite, REEsilicates, REE-fluorcarbonates and REE-oxyfluorides, which are responsible for the concentration of REE in greisenized granites and greisens and the availability of these metals to the clay fraction of soils and saprolite. Ion exchange analyses on saprolite and soil in a weathering profile of Faixa Placha, show that the extraction from the clay fraction are more enriched in REEY in relation to the extraction from whole rock, with values between 3425 and 36762 ppm and between 2804 and 21689 ppm respectively. The REE are more enriched in the basal part of the profile, especially the LREEs. Both the REEY concentrations and mineral compositions suggest an important economic potential of the Faixa Placha deposit for recovery of REE as by-product of tin mining. In addition, the exchangeable REEY concentrations in the weathering profile indicate the potential of the Faixa Placha and nearby areas to constitute an important REEY deposit of the ion-adsorption-type.

CAPÍTULO I

1. INTRODUÇÃO E JUSTIFICATIVAS

Nos últimos anos, a demanda e procura dos elementos terras raras (ETR) têm ficado cada vez mais críticas por causa de sua escassez no mercado mundial (Roskill, 2007; Sanematsu et al., 2009). Segundo Industrial Rare Metals (2008), o preço dos elementos terras raras pesados (ETRP) vem aumentando drasticamente em relação aos elementos terras raras leves (ETRL). Assim, a demanda mundial crítica é pelos ETRP, principalmente por disprósio, ítrio e európio, juntamente com o ETRL neodímio (Stone 2009; Service 2010, Garcia 2013. O problema não é somente pelo o aumento da demanda dos ETRP, mas também pelo suprimento limitado dos depósitos de minério. Atualmente, grande parte da oferta de ETRP é proveniente de depósitos do tipo adsorção iônica, localizados no distrito de Longnan, no sul da China (Sanematsu et al., 2009; Sanematsu & Watanabe, 2016; Hoshino *et al.*, 2016; Xu *et al.*, 2017). Entretanto, apesar da situação crítica projetada para o futuro, em 2015 houve uma redução significativa dos preços de ETR, decorrente de uma excessiva oferta, principalmente da China, que continua dominando o mercado mundial (USGS, 2016).

O presente trabalho tem os elementos terras raras (ETR) como foco de estudo, com a pretensão de se conhecer a concentração e o comportamento desses elementos nos granitos, greisens e solos que se encontram no Maciço Estanífero Pedra Branca (GO), principalmente na Faixa Placha, pertecente à Província Estanífera de Goiás (PEG).

O tema "elementos terras raras" tem sido abordado na PEG desde os trabalhos pioneiros de Marini et al. (1992) e Teixeira e Botelho (2002, 2006). Atualmente os ETR têm adquirido especial importância devido às concentrações econômicas no Maciço Serra Dourada, onde uma mina de classe mundial está sendo implantada (Rocha et al., 2013; Santana et al. 2015). Além disto, várias ocorrências foram investigadas como dissertações concluídas na Universidade de Brasília (Santana, 2015; Vieira, 2016 e Zapata, 2017).

O Maciço Pedra Branca contém o principal depósito de estanho da PEG e exibe concentrações anômalas de ETR, tanto nos granitos parentais quanto nas rochas mineralizadas em Sn (Marini et al., 1992; Botelho, 1992; Teixeira e Botelho, 2006). Assim, este maciço granítico constitui um excelente alvo para investigações de detalhe sobre ETR, com potencial para seu aproveitamento como subproduto do estanho ou mesmo depósito econômico destes elementos.

2. OBJETIVOS

O principal objetivo deste trabalho é a caracterização geoquímica, mineralógica dos elementos terras raras nos granitos, greisens e saprolitos na região do principal depósito de estanho do Maciço Pedra Branca, denominado de Faixa Placha e sua concentração no perfil de intemperismo do depósito, utilizando o método de extração na fração argila e em rocha total.

3. CONTEXTO GEOLÓGICO

A Província Estanífera de Goiás (PEG), localizada na porção norte de Goiás (Figura 1), compreende granitos com idades do Paleoproterozoico ao Neoproteorozoico, divididos em quatro subprovíncias (Marini e Botelho, 1986), dentre as quais se destacam as subprovíncias estaníferas Tocantins (SPT) e Paranã (SPP), com pequena parte se estendendo para o estado de Tocantins. Estas subprovíncias são constituídas predominantemente por granitos tipo A mineralizados em Sn, subdivididos em duas suítes: Pedra Branca, com idades entre 1,74 e 1,77 Ga., e Serra Dourada, com idade de 1,58 Ga (Pimentel e Botelho, 2001). Os granitos de ambas subprovíncias apresentam alterações tardi- a pós-magmáticas como microclinização, albitização e greisenização, além de altos teores de álcalis, Sn, Y, Nb, Th, Rb, e ETR, que os definem como granitos tipo A.

A área de estudo está localizada no nordeste do estado de Goiás, no município de Nova Roma, na porção externa da Faixa Brasília. Esta região é alvo de muitos trabalhos por causa de seu potencial para ouro, estanho, índio, terras raras, urânio, gemas e rochas ornamentais. O estanho, além do urânio e ouro, tem sido o principal bem mineral pesquisado até agora.

O Maciço Pedra Branca constitui a área tipo da Suíte Pedra Branca e está localizado na SPP (Figura 2), onde os granitos do tipo A são intrusivos em paragnaissses e micaxistos da Formação Ticunzal, que tem idade > 2,15 Ga., e também em milonitos graníticos, granitos e pegmatitos, alguns também estaníferos, da Suíte Aurumina (2,15 Ga.) (Figura 1) (Botelho *et al.* 1999, Lacerda Filho *et al.* 1999, Teixeira e Botelho, 2006). Este maciço é o mais importante da Subprovíncia Paranã, possuindo importantes zonas mineralizadas. Constituído por biotita granitos e leucogranitos das duas famílias de Suíte Pedra Branca, representadas pelas fácies: pb1 (pb1a, pb1b e pb1c), pb2 (pb2a, pb2b, pb2c e pb2d) (Botelho, 1992). O granito mais evoluído e mineralizador é o pb2d e as mineralizações mais importantes estão hospedadas em sua cúpula, na área denominada de Zona da Bacia, ou em zonas de fraturas nas suas proximidades, como é o caso da Faixa Placha.

A Faixa Placha representa a zona mineralizada mais importante do Maciço Pedra Branca, com extensão de 4 km e espessura variável ente 20 e 150 metros, Entretanto, a 100 metros de profundidade esta espessura se reduz a 10 metros (Figura 2). A mineralização que ocorre é toda pré-tectônica. Na parte central Faixa Placha, representando cerca de 1/4 de sua extensão, uma reserva de 15 kt de Sn foi bloqueada. A rocha mineralizada dominante é um topázio-Li-siderofilita-quartzo-greisen, chamado de " greisen preto" (Botelho e Rossi, 1988).

A maior concentração de garimpos de cassiterita ocorreu nesta parte central e mais rica da Faixa Placha. Os greisens são constituídos de topázio, quartzo, Li-siderofilita e cassiterita. A cassiterita desta zona contém 0,2 % de In. Em torno de 120 metros de profundidade, trabalhos de sondagens interceptaram, após a faixa principal, uma zona de 10 metros de espessura, rica em sulfetos, principalmente esfalerita com teor de 1% de In. Na parte NE, próxima da falha NS que delimita a parte central da Faixa Placha, ocorrem fraturas subparalelas, intensamente deformadas e cataclasadas, com atitudes de N30-40E e 70-80NW, mineralizadas.

Figura 1: Mapa geológico regional da Província Estanífera de Goiás (Botelho, 1992).

Figura 2. Mapa geológico simplificado do Maciço Pedra Branca (Botelho, 1992).

4. MATERIAIS E MÉTODOS

4.1. Amostragem de saprolitos e solos da Faixa Placha e arredores

As primeiras amostragens de saprolitos ocorreram em perfis de intemperismo da Faixa Placha, situados nas proximidades de uma lavra experimental para a extração do minério de estanho (Fig. 3A). Nesta área, há uma grande concentração de veios de greisens. Também foram amostrados solos (Fig.3B e C), em vários furos de trado, localizados na porção centro-sul do Maciço Pedra Branca para fim de comparação desses com a Faixa Placha.

Figura 3: Amostragem de saprolito na Faixa Placha (A) e utilização do trado para amostragem de solo em superfície de aplainamento nas proximidades da Faixa Placha (B) e (C).

4.2. Separação de Argila pelo Método de Peneiras

Este trabalho foi executado no Laboratório de Difração de Raios-X do Instituto de Geociências da Universidade de Brasília (UnB). As amostras (NC17_1 a NC17_7) foram quarteadas e peneiradas em água, para a desagregação da argila, nas frações ≥ 250 , ≥ 125 , ≥ 62 , ≥ 45 , ≥ 20 e < 20 µm. Para análise de troca iônica, foi utilizada a fração argila < 20 µm.

4.3. Separação da Fração Argila para Análises DRX

A separação da fração argila da amostra total foi realizada no Laboratório de Difração de Raios-X do Instituto de Geociências da UnB. Foram realizadas três etapas; na primeira etapa, foram adicionados 2 gramas da mesma amostra e 50 ml de água destilada em dois tubos separados. As amostras foram centrifugadas, com rotação de 750 rpm (rotação por minuto) durante 7 min. Na segunda etapa, a fração argila em suspensão foi recuperada e recolocada em dois tubos, com 50 ml de água destilada, para nova centrifugação, em uma rotação de 3000 rpm, durante 30 min. . Em ambas as etapas a temperatura foi de 30° C. A última etapa

consistiu na recuperação da fração argila precipitada no fundo dos tubos e sua preparação para a análise por difração de Raios-X.

4.4. Difração de Raios-X análise do pó

O trabalho foi desenvolvido no Laboratório de Difração de Raios-X do Instituto de Geociências da Universidade de Brasília (UnB). As análises incluíram rocha total e fração argila e foram realizadas em difratômetro da marca Rigaku - Ultima IV, pelo método do pó. As amostras foram pulverizadas em gral de ágata e o material analisado compreendeu 8 amostras totais, incluindo 5 saprolitos (NC17_3 a NC17_7), 2 solos (NC17_1 e NC17_2) e 1 laterita (NC17_LC). O tratamento dos difratogramas foi obtido com auxílio do programa Jade 9, base Windows, com banco de dados PC-PFC executado pelo International Center for Diffraction Dasta – ICDD.

4.5. Extrações e análises de troca iônica dos cátions

Antes de iniciar as extrações das amostras, os tubos foram enxaguados em água ultra pura, limpos por imersão em 1M HNO3, durante 24 h, e novamente enxaguados repetidamente em água ultra pura.

As extrações foram realizadas no Laboratório de Geoquímica da Universidade de Brasília e as análises de ICP-MS no Laboratório Actlabs no Canadá. Foram analisados 6 amostras do perfil de intemperismo da Faixa Placha, ponto 17 (5 saprolitos da camada 3 a 7 do perfil, e a crosta laterítica). As concentrações dos elementos extraidos foram determinadas pela High Resolution Inductively Coupled Plasma Mass Spectrometry (HRICP-MS).

4.5.1. Extração em única etapa (fração argila e amostra total)

A extração em única etapa foi realizada em 11 amostras de perfil de intemperismo da Faixa Placha (NC17), sendo que 5 amostras (NC17_3, 4, 5, 6 e 7) foram utilizadas para extração na fração argila e 6 amostas para extração na amostra total (NC17_3, 4, 5, 6, 7 e LC). O procedimento realizado teve como base os trabalhos de Sanematsu et al (2015) e Sanematsu e Kon (2013).

Em um tubo de centrífuga de 50 ml foram adicionados 1 grama da amostra e 40 ml de uma solução de 0,5 M (6,6 peso%) de sulfato de amônia [(NH₄)SO₄] com pH ~5,7. O tubo foi agitado mecanicamente durante 24 horas em temperatura ambiente e em seguida foi centrifugado por 15 minutos a 4500 rpm, para separar o sólido da solução. Após isso, a

solução sobrenadante foi filtrada com um filtro de membrana do tipo celulose acetato ($\phi = 0,22 \ \mu m$), pré-lavado com água ultra pura e acidificada usando 1% de ácido nítrico HNO₃(Tabela 1).

Extraction	Reagent	pН	Reaction	Dominantly reacting material
Step			Time (hrs)	
1	0.5M ammonium sulphate	5.7	24	Ion-exchangeable materials

Table 1: Extração de unica etapa usando a solução sulfato de amônia.

4.5.2. Extração em 2 etapas

4.5.2.1. Óxidos de Fe e Mn Amorfos - Etapa 1

Nesta etapa e na etapa 2 somente as 6 amostras do material total (NC17_3, 4, 5, 6, 7, LC) foram processadas (Tabela 2).

Com base no procedimento de Rauret et.al. (1999), 10 ml da mistura de $0,2M NH_4C_2O_4H_2O$ (oxilato de amônia) com $0,2M C_2H_2O_4$ (ácido oxiálico) foram adicionados ao sólido que ficou retido no tubo utilizado na extração em única etapa. A solução foi agitada mecanicamente durante 4 horas, em temperatura de 20°C. Após esse tempo, a solução foi centrifugada por 17 minutos, finalizando com a filtração da solução.

4.5.2.2. Óxidos de Fe e Mn - Etapa 2

A etapa 2 consistiu na extração realizada com o resíduo sólido retido na etapa 1, utilizando 40 ml do reagente 1,24M de hidroxilamina (NH₂OH), pH=1. A solução foi agitada por 16 horas, em temperatura ambiente, e em seguida centrifugada durante 20 minutos e filtrada com membrana de 0,22 μ m (Tabela 2).

Extração	Reagentes	pН	Reação	Materiais que reagem
Etapas			Tempo (hrs)	de forma dominante
	0,2M Oxalato de amônia e			Óxidos de Fe e Mn
1	0,2M ácido oxiálico	1	4	amorfos
2	1,24M Hidroxilamina	1	16	Óxidos de Fe e Mn

Table 2: Extração de 2 etapas.

4.6. Geoquímica de rocha total

As amostras para geoquímica foram pulverizadas em panela de ágata e enviadas para análise no Laboratório *Acme Analytical Laboratories Ltd.*, Canadá, totalizando 15 amostras, sendo que 5 amostras eram de saprolito, 4 de solo, 2 de granito parental, 2 de granito greisenizado, 1 de greisen e 1 de crosta laterítica. A rotina analítica adotada envolveu a fusão das amostras com metaborato de lítio, disgetão ácida e leitura em ICP-ES para os elementos maiores e ICP-MS para elementos menores e traços.

4.7. Microssonda e Microscopia Eletrônica de Varredura

As análises foram realizadas no equipamento JEOL JXA-8230, do Laboratório de Microssonda Eletrônica, do Instituto de Geociências da Universidade de Brasília (UnB), equipado com 5 espectrômetros com sistema de análise por dispersão de comprimento de onda (WDS) e um espectrômetro com sistema de análise por dispersão de energia (EDS) para análises qualitativas. Foram feitas duas etapas de análises: a primeira, utilizando os sistemas de imagens por elétrons secundários (SEM) e elétrons retroespalhados (BSE), junto com análises por EDS, para identificar os minerais enriquecidos em REE e Y. A segunda etapa consistiu nas análises quantitativas, obtidas por meio de dois programas analíticos. No primeiro programa, foram utilizados 15 kV de aceleração de voltagem, corrente de 10nA e 1 µm de diâmetro do feixe de elétrons para análise de Si, Al, F, P, Sr, Mn, Ti, Y, Ca e Fe. No segundo programa, foram analisados REE, Y, Na, Pb, K, Th, Zr, U e Ba, com aceleração de voltagem de 20kV, corrente de 50nA e 1 µm de diâmetro do feixe de elétrons. O tempo de contagem para todos os elementos foi de 10 segundos no pico e 5 segundos no *background*. As correções de interferência foram executadas em todos os casos necessários.

4.8. Desenvolvimento da Tese

A tese foi redigida em forma de dois artigos. O primeiro artigo, submetido ao Journal of Geochemical Exploration, trata da caracterização mineralógica, geoquímica e do potencial econômico dos elementos terras raras nos granitos e greisens do depósito estanífero do Maciço Pedra Branca. O segundo artigo, que será submetido a Ore Geology Review, aborda a concentração dos elementos terras raras em granitos, greisens e saprolitos do depósito estanífero na Faixa Placha e seu potencial econômico para mineralização de ETRY do tipo adsorção iônica.

CAPÍTULO II

MINERALOGICAL AND GEOMISTRY CHARACTERIZATION AND ECONOMIC POTENTIAL FROM RARE EARTH ELEMENTS IN GRANITES AND GREISENS OF THE A-TYPE PEDRA BRANCA GRANITE MASSIF TIN DEPOSIT, CENTRAL BRAZIL

Costa N.O.¹, Botelho N.F.¹

¹University of Brasília, Institute of Geosciences, Campus Darcy Ribeiro, 70919-970, Brasília-DF, Brazil

Corresponding author: Nivia Costa, email: nivia.costa@gmail.com phone: +55 61983039537

Abstract

The Pedra Branca Massif is an A-type granitic pluton located in the Goiás Tin Province (GTP) in central Brazil, characterized by the presence of REE-bearing granites and tin deposits. The Pedra Branca Massif (PBM) is the type area of the 1,74-1,77 Ga Pedra Branca Granite Suite that hosts the Faixa Placha tin deposit (FPTD), the largest tin deposit in the GTP and in central Brazil. The PBM is constituted by at least seven different granite facies, ranging from biotite monzogranite to evolved Li-mica-albite granite. In the FPTD, the dominant rock type corresponds to biotite granite, where intensely greisenized granites and tin ore, hosted in topaz-Li-syderophyllite-quartz greisen, were developed. All of the FPTD rock types exhibit high concentrations of REE in relation to chondrite, reaching over 1000 times in LREE, and 500 times in HREE. The main HREE-bearing minerals found in the Faixa Placha are zircon, xenotime and thorite, and the main LREE-bearing minerals are monazite, apatite, allanite and oxyfluorides. The parental biotite granite, greisenized granite and greisen all display the same REE patterns and contents, indicating that there is no relevant change in concentration and fractionation of REE coeval with the hydrothermal evolution of the FPTD. Among the accessory minerals, the REEY enrichment in zircon and apatite are conspicuous. During greisenization, apatite disappears after being replaced by secondary monazite and oxyfluorides. HREEY concentration in zircon reaches up to15 wt%, and the metamictization and alteration of zircon favor the concentration of HREEY in granites and greisen, reaching values above 500 ppm in some samples. Both the REEY concentrations and mineral compositions suggest an important economic potential of the Faixa Placha deposit for recovery of REE as by-product of tin mining. In addition, the area might also be prospected for REE deposits of ionic adsorption type in both the tin deposits and the weathering fronts of the granite massif.

1. Introduction

In recent years, the rare earth elements (REEs) have been in high demand in the world market because of their uses in technology, as well as of the Chinese monopoly that currently accounts for 70% of world production (USGS 2019). These elements have widespread use in the batteries of hybrid cars, high-efficiency magnets, superconductors, robotics, wind power generators and other clean energy applications.

The REEs are considered "strategic minerals" on account of their scarcity, and they are essential and/or critical for a country. According to the National Mining Plan 2030 (Brazil 2010), a mineral is deemed strategic if it meets three conditions: i) a commodity of which Brazil needs import an elevated percentage; ii) minerals that are bound to have increased importance in the next decades due to their uses in high technology industry; and iii) mineral resources for which the country has competitive advantages that are paramount for the economy and its regulation in the balance of trade.

Brazil has important REE reserves found in monazite-bearing placer deposits. However, for the most part, they are located in coastal zones, with several drawbacks that arise from environmental regulations. Brazilian carbonatites have sizeable contents of REE oxides. Amid these rocks, Araxá stands out with 4.4 wt% in the whole rock (Issa Filho *et al.* 1984) and 13.5% in gorceixite and goyazite ores (Mariano, 1989). Likewise, Catalão I has estimated reserves of approximately 2 Mton. However, the REE deposits hosted in carbonatites do not satisfy the Brazilian demand for heavy rare earth elements (HREEs), since carbonatites are richer in light rare earth elements (LREEs) (Dostal, 2017).

Out of all the REEs produced worldwide, less than 15% consists of HREEs. Nevertheless, HREEs provide 50% of the revenue because of their diverse technological applications. Outside of China, the majority of mines exploit LREEs. Hence, HREEs are in high demand worldwide, especially Dy, Y and Eu, as well as the LREE Nd (Stone, 2009; Service, 2010; Garcia, 2013; Hoshino et al., 2016).

In the Goiás Tin Province (GTP), where Sn has been exploited for a long time, research is being conducted on the economic potential for REE exploitation in granites, greisens, alluvial deposits and saprolites. The results show economic potential, such as in the Serra Dourada Massif, where monazite- and xenotime-rich placer deposits are situated. Additionally, in the same location, an ion adsorption REE deposit is about to become a mine (Rocha et al., 2013; Santana et al., 2015; <u>https://revistaminerios.com.br/mineracao-serra-verde/</u>, 2019).

The REE research described in this work was developed in the Pedra Branca Massif, which is also part of the GTP. Previous work has shown REE enrichment in the granites in this massif, with contents of LREEs and HREEs up to 1000 times and 500 times chondrite, respectively (Marini et al, 1992).

This article presents the mineralogy and distribution of REEs and Y in granites, greisens and saprolites of the Faixa Placha, which is the largest Sn deposit exploited in the GTP.

2. Geological setting

The study area is situated in the northern part of Goiás State in the Nova Roma municipality and in the external region of the Brasília fold belt (Fig 1). The potential for Au, Sn, In, REEs, U, gems and ornamental rocks has attracted interest in the region (Botelho and Moura, 1998; Moura et al., 2014; Menez and Botelho, 2017). In addition to tin, uranium and gold has been important commodities researched thus far in the region of the Goiás Tin Province (GTP).

The GTP encompasses granites with ages from Paleoproterozoic to Neoproterozoic. The most noteworthy tin granites are situated in the northern part of the province (Fig. 1). Tin deposits are related to peraluminous granites of the 2.11-2.15 Ga Aurumina Suite (Botelho *et*

al. 1999; Cuadros et al., 2017) and to A-type granites subdivided into two suites, namely, Pedra Branca (1.74-1.77 Ga) and Serra Dourada (1.58 Ga) (Pimentel and Botelho, 2001). The A-type granites in both suites show late to postmagmatic alterations such as microclinization, albitization, and greisenization and host the most important tin mineralizations. Furthermore, these rocks are classified as A-type granites on account of their moderately alkaline character and high Sn, Ga, Nb, Rb, Y and REE contents (Lenharo et al., 2002).

The Pedra Branca massif is the type locality of the Pedra Branca Suite and is situated in the eastern part of the GTP, in the domains of the Araí rift (Araí Group). In this location, the granites intrude paragneisses and schists from the Ticunzal Formation, the oldest lithostratigraphic unit in the GTP (>2.15 Ga), and the mylonitic granites, granites and pegmatites from the Aurumina Suite. The Pedra Branca massif comprises biotite granites and leucogranites subdivided into two generations, pb1 (pb1a, pb1b and pb1c) and pb2 (pb2a, pb2b, pb2c and pb2d). The pb2d Li-mica leucogranite is the most evolved facies and the richest in tin. The most important ore-bearing zones are situated in the granite cupola, named the Bacia Zone, or in nearby fractures such as Faixa Placha.

Fig 1. Geological Map of the northeastern portion of the Goiás Tin Province (GTP) showing the location of the Pedra Branca Massif and the distribution of REE occurrences in the A-type granites (Botelho, 2013).

3. The Faixa Placha tin deposit

The Faixa Placha tin deposit (FPTD) is the most significant mineralized zone in the Pedra Branca Massif and the main tin deposit in central Brazil. It is 4 km in length with widths ranging between 20 and 150 m. The Faixa Placha deposit trends roughly N30-40°E and dips 70-80°NW (Fig. 2). It is a highly deformed fracture zone that underwent intense cataclasis. The tin mineralization is completely pretectonic. A 15 kton Sn reserve is located

approximately in the center of this zone, representing 1/4 of its extent. Topaz-Lisiderophyllite-quartz-greisen, named black greisen (Botelho and Rossi, 1988), is the host rock (Fig. 3). The FPTD is also known, among other tin deposits in the GTP, to host anomalous indium concentrations (Botelho and Moura, 1998; Moura et al., 2014).

Intense cassiterite artisanal mining exploration happened in the 1970s and 1980s, in the central area of the FPTD, which is the portion richest in Sn (Fig. 3B). In this area, the indium concentration in cassiterite is approximately 0.2 wt% (Botelho and Moura, 1998). Drilling projects have found, in addition to the main region, a 10 m-thick zone at 120 m deepth that hosts sulfides, especially sphalerite with 1 wt% of In. Currently, the deposit is owned and exploited by EDEM Projetos Ltd.

Fig 2. Geological map of the Pedra Branca Massif with the location of sampling (NC) and schematic geological cross-section (AB) in the region of the Faixa Placha and Bacia Zone.

4. Materials and methods

The samples have undergone several procedures for analysis in the sample preparation laboratories (SPL) in the Institute of Geosciences of the University of Brasília. For mineral separation, the samples were first split in four portions and then sieved to separate 60, 90, 125, 200, 250, 300 and 500 μ m fractions. The best recovery of REE-bearing minerals grains was in the 200-125 μ m fraction. The minerals were preliminarly identified and hand-picked under a binocular stereo microscope to be assembled into sections with 100 grains.

4.1. EPMA and SEM analyses

Microanalyses were undertaken using a JEOL JXA-8230 electron probe microanalyzer (EPMA) and an FEI-Quanta 450 scanning electron microscope (SEM) with a QEMSCAN system at the Institute of Geosciences in the University of Brasília. The probe is equipped with five vertical wavelength-dispersive spectrometers (WDS), one energy-dispersive spectrometer (EDS) and ZAF matrix correction. REE minerals were analyzed following the protocol of Scherrer et al. (2000). The advantage of this method is that no premeasured correction factors are needed and that spectral lines and background positions are set in order to avoid overlapping peaks. Analytical conditions were as follows: take-off angle of 40°, 25 kV acceleration voltage; 50 nA electron current and 3 µm beam diameter. Counting times were 20 s for the REEs and 10 s for the other elements. Ka-lines were used for P, Al, Si, Ca and Fe. La-lines were considered for Y, La, Ce, Er, and Yb. Lβ-lines were used for Pr, Nd, Sm, Gd, Tb, Dy, and Ho. For U, Th, and Pb, we used MB, Ma and MB, respectively. The standards for the REEs were synthetic glasses; for Y, a synthetic oxide of Fe and Y; for the elements U and Th, natural oxides; and for Pb, galena. The elements Ca and Si were standardized with wollastonite; and P, with apatite. For supplementary detailed information on the background positions and integration times, refer to Scherrer et al. (2000).

4.2. Whole-rock geochemistry

Sixteen specimens were milled in agate mills and shipped for analysis in Acme Analytical Laboratories, Ltd., in Canada. Out of all sixteen samples, thirteen are greisenized granite, one is greisen, and two are granite saprolite.

The procedures included fusion with lithium metaborate, acidic digestion and reading in the ICP-ES for major elements and ICP-MS for minor and trace elements.

Fig 3. Aspects of the Faixa Placha Tin Deposit (FPTD). A: greisenized pb1b granite with greisen veinlets; B: abandoned area of ancient artisanal mining exploration; C: detail of the photo B showing black greisen hosted in fracture of the pb1b biotite granite.

5. Results

5.1. Mineralogical characterization

The REE-bearing minerals in the FPTD, listed in order of abundance, are REE oxyfluorides, zircon, xenotime, monazite, apatite, allanite and thorite. These minerals exhibit, some important characteristics and their REE contents are described below.

5.1.1. Zircon (ZrSiO₄)

Zircon crystals from Faixa Placha are prismatic and euhedral to subhedral, with lengths ranging from 70 to 300 µm and width-length ratios from 1:1 to 1:4. Their colors range from colorless to pinkish, white and dark brown. White and brown grains are translucent to almost opaque, indicating strong metamictization and are enriched in HREE (Fig. 4A-C). Zircon is one of the most important HREE-hosting phases, and the metamict crystals found in all the evolved granitic facies have HREE-rich mineral inclusions, in this case, xenotime-(Y) (Fig. 4a-C). HREE and LREE-rich minerals (xenotime, monazite and oxyfluorides) are also found in rims around zircon crystals, as can be observed in Figure 4a- (B-E).

EPMA analyses yield SiO₂ contents between 20.09% and 33.6%, ZrO_2 between 34% and 67.1%, HfO₂ between 0.76% and 3.3%, HREE₂O₃ up to 4.86% and HREEY₂O₃ contents above 1% and up to 18.40% (Table 1).

The Y₂O₃ and REE₂O₃ concentration diagrams in zircon crystals show that the contents of these oxides are usually below 4% and 2%, respectively (Fig. 5A). Nevertheless, metamict zircons from pb1b and pb1c have Y₂O₃ concentrations above 8% and REE₂O₃ up to 6%. Some specimens with the same oxides above 10% and 19.4%, respectively, suggest fine xenotime inclusions. This interpretation is confirmed by the contents of P₂O₅ higher than 8% and (REE₂O₃ + Y₂O₃) above 10% (Fig. 5B). However, for the most part, P₂O₅ and (Y₂O₃+REE₂O₃) are lower than 1.5% and 5%, respectively.

Fig 4. Backscattered electron images (BSE) of REE-bearing minerals from the FPTD. (**A**) Primary euhedral zircon (Zrn) free of REE-rich minerals; (**B to F**) relationships between zircon, monazite (Mnz) and xenotime (Xnt); (**D**) zircon grain, with irregular and altered monazite inclusion, surrounded by secondary monazite agglomerate in a muscovite (Ms) and magnetite (Mgt) mass; (**G and H**) zircon and hydrothermal monazite from the biotite granite pb1b, associated with apatite rests (Ap), muscovite (Ms), quartz (Qtz), ilmenite (Ilm), and magnetite (Mgt).

Fig. 4 (extended). (I and J) fluorapatite partially replaced by hydrothermal monazite on the edges and fractures; (**K** and **L**) Altered thorite (Thr) near zircon grains. Gn: galena; (**M** and **N**) Oxyfluorides (Oxf) associated with allanite and xenotime in a quartz-albite-muscovite mass. Aln: allanite; Fl: fluorite; (**O**) Unidentified Nb-Y-REE mineral.

Fig 5. Composition of zircons from different types of granites in the Faixa Placha Tin Deposit.

5.1.2. Xenotime-(Y) (YPO₄)

Xenotime from the FPTD is irregular to prismatic and usually occurs in close association with zircon, both as inclusions and as rims (Fig.4- C, E and F). It is characterized by a yellow hue and crystals that measure approximately $30 \mu m$.

Xenotime is a HREE mineral and a by-product in tin mines and to a lesser extent in placer deposits. In the xenotime from the FPTD, P_2O_5 contents span an interval between 19.89% and 31.67%, Y_2O_3 contents between 24.32% and 38.9% and HREE₂O₃ between 3.72% and 23.58%, with HREEY₂O₃ between 28% and 55.8% (Fig. 6). Dy₂O₃ is the heavy rare earth oxide with highest contents of up to 8.4%. Yb₂O₃ follows, spanning an interval between 0.83% and 7.62%, and Er₂O₃ ranges between 0.83% and 5.34% (Table 2). The low analytical totals are due to variable degree of metamictization.

Fig. 6. Concentration of Y_2O_3 and HREE₂O₃ in xenotime.
Facies		pb1/pb2		pb	1b	pł	o1c				pb1b		
Sample	NC3A (1)	NC3A (2)	NC3A (3)	NC4B (1)	NC4B (2)	NC9 (1)	NC9 (2)	NC10A (1)	NC10A (2)	NC10A (3)	NC10A (4)	NC10A (5)	NC10A (6)
(wt.%)													
SiO2	24,19	22,44	27,23	32,09	27,28	25,84	28,03	24,11	24,52	24,48	29,91	29,87	30,50
ZrO ₂	48,06	41,42	56,29	66,10	55,42	50,01	46,92	45,75	47,61	50,10	60,66	61,30	61,25
HfO ₂	1,01	1,42	3,28	1,34	2,77	2,26	2,00	1,63	1,82	2,50	0,76	0,95	1,74
A1203	1,65	0,96	0,12	0,01	0,69	0,49	0,41	2,63	1,59	0,37	0,02	0,00	0,00
P ₂ O ₅	0,41	0,65	0,26	0,07	0,44	0,18	0,33	0,48	0,30	0,13	0,08	0,00	0,06
TiO ₂	0,01	0,00	0,00	0,05	0,02	0,20	0,19	0,03	0,00	0,09	0,13	0,00	0,09
FeO	0,77	1,24	0,51	0,31	0,90	0,86	1,12	1,36	1,99	0,72	0,03	0,04	0,00
CaO	0,66	0,72	0,64	0,08	0,53	0,25	0,40	1,02	0,85	0,30	0,00	0,25	0,00
MnO	0,33	0,17	0,00	0,00	0,93	1,33	0,46	0,00	0,10	0,08	0,00	0,04	0,04
Nb ₂ O ₅	0,98	1,35	0,37	0,03	0,01	0,68	0,96	0,77	0,03	0,62	0,05	0,59	0,35
Ta_2O_5	0,02	0,25	0,00	0,02	0,15	0,16	0,24	0,00	0,08	0,00	0,17	0,00	0,12
PbO	0,24	0,00	0,00	0,00	0,00	0,37	0,85	0,00	0,00	0,00	0,00	0,00	0,00
ThO ₂	0,35	0,58	0,06	0,00	0,02	2,53	2,05	0,11	0,09	0,06	0,00	0,00	0,00
UO2	0,36	0,31	0,12	0,00	0,28	0,77	0,91	0,00	0,01	0,07	0,00	0,00	0,00
F	1,77	2,42	0,15	0,00	0,42	0,72	0,19	0,65	0,60	0,17	0,00	0,00	0,00
O=F	-0,75	-1,02	-0,06	0,00	-0,18	-0,30	-0,08	-0,27	-0,25	-0,07	0	0	0
Y ₂ O ₃	5,71	6,92	0,86	0,22	1,93	3,11	3,61	3,21	2,99	1,80	0,08	0,04	0,00
La ₂ O ₃	0,00	0,03	0,00	0,01	0,00	0,02	0,00	0,04	0,05	0,04	0,00	0,04	0,00
Ce ₂ O ₃	0,08	0,22	0,06	0,04	0,11	1,29	0,17	0,34	0,25	0,21	0,05	0,04	0,01
Pr ₂ O ₃	0,04	0,10	0,00	0,06	0,05	0,02	0,05	0,03	0,00	0,03	0,00	0,00	0,00
Nd ₂ O ₃	0,02	0,09	0,00	0,00	0,01	0,06	0,03	0,16	0,13	0,06	0,00	0,00	0,00
Sm_2O_3	0,03	0,03	0,00	0,00	0,02	0,01	0,01	0,05	0,01	0,00	0,02	0,09	0,03
Eu ₂ O ₃	0,00	0,01	0,00	0,00	0,03	0,04	0,00	0,00	0,10	0,00	0,04	0,00	0,00
Gd_2O_3	0,08	0,14	0,01	0,00	0,10	0,12	0,17	0,15	0,15	0,02	0,00	0,00	0,02
Tb_2O_3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03
Dy ₂ O ₃	0,16	0,59	0,00	0,00	0,18	0,38	0,39	0,38	0,25	0,32	0,02	0,00	0,00
HO ₂ O ₃	0,37	0,11	0,00	0,02	0,00	0,12	0,21	0,06	0,00	0,08	0,05	0,00	0,00
Er ₂ O ₃	0,75	0,88	0,10	0,00	0,09	0,72	0,94	0,42	0,36	0,37	0,05	0,00	0,03
Tm_2O_3	0,16	0,21	0,00	0,00	0,00	0,20	0,14	0,09	0,00	0,10	0,00	0,00	0,00
Yb ₂ O ₃	1,49	1,70	0,09	0,01	0,22	2,02	2,45	0,64	0,62	0,53	0,00	0,00	0,00
Lu ₂ O ₃	0,22	0,26	0,01	0,04	0,00	0,28	0,44	0,07	0,13	0,00	0,01	0,00	0,00
Total	90,67	86,24	90,22	100,50	92,78	95,34	93,75	84,45	84,88	83,32	92,13	93,25	94,27
REE ₂ O ₃	3,40	4,37	0,27	0,18	0,80	5,26	4,99	2,42	2,05	1,75	0,24	0,17	0,11
REE ₂ Y ₂ O ₃	9,11	11,29	1,13	0,4	2,73	8,37	8,6	5,63	5,04	3,55	0,32	0,21	0,11
LREE ₂ O ₃	0,17	0,47	0,06	0,11	0,22	1,43	0,26	0,62	0,54	0,34	0,11	0,17	0,04
HREE ₂ O ₃	3,23	3,90	0,22	0,07	0,59	3,83	4,73	1,81	1,51	1,41	0,13	0,00	0,07
HREEY ₂ O ₃	8,94	10,82	1,07	0,29	2,51	6,94	8,34	5,02	4,50	3,21	0,21	0,04	0,07
Zr/Hf	41,54	25,46	57,14	43,71	17,47	19,32	20,48	24,50	29,93	22,84	17,49	69,68	56,33

Table 1. EPMA analyses of zircon

Si	3,47	3,43	3,79	3,94	3,72	3,62	3,90	3,59	3,66	3,74	3,98	3,94	3,98
Zr	3,36	3,09	3,82	3,95	3,68	3,42	3,19	3,33	3,47	3,73	3,94	3,95	3,89
Hf	0,05	0,07	0,15	0,05	0,13	0,11	0,09	0,08	0,09	0,13	0,03	0,04	0,08
Al	0,28	0,17	0,02	0,00	0,11	0,08	0,07	0,46	0,28	0,07	0,00	0,00	0,00
Р	0,05	0,08	0,03	0,01	0,05	0,02	0,04	0,06	0,04	0,02	0,01	0,00	0,01
Ti	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,00	0,00	0,01	0,01	0,00	0,01
Fe	0,09	0,16	0,06	0,03	0,10	0,10	0,13	0,17	0,25	0,09	0,00	0,00	0,00
Ca	0,08	0,09	0,08	0,01	0,06	0,03	0,05	0,13	0,11	0,04	0,00	0,03	0,00
Mn	0,04	0,02	0,00	0,00	0,11	0,16	0,05	0,00	0,01	0,01	0,00	0,00	0,00
Nb	0,06	0,09	0,02	0,00	0,00	0,04	0,06	0,05	0,00	0,04	0,00	0,04	0,02
Ta	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,00	0,01	0,00	0,00
Pb	0,01	0,00	0,00	0,00	0,00	0,01	0,03	0,00	0,00	0,00	0,00	0,00	0,00
Th	0,01	0,02	0,00	0,00	0,00	0,08	0,06	0,00	0,00	0,00	0,00	0,00	0,00
U	0,01	0,01	0,00	0,00	0,01	0,02	0,03	0,00	0,00	0,00	0,00	0,00	0,00
F	0,80	1,17	0,07	0,00	0,18	0,32	0,08	0,31	0,28	0,08	0,00	0,00	0,00
Y	0,44	0,56	0,06	0,01	0,14	0,23	0,27	0,25	0,24	0,15	0,01	0,00	0,00
La	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ce	0,00	0,01	0,00	0,00	0,01	0,07	0,01	0,02	0,01	0,01	0,00	0,00	0,00
Pr	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nd	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00
Sm	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Eu	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
Gd	0,00	0,01	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00
Tb	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Dy	0,01	0,03	0,00	0,00	0,01	0,02	0,02	0,02	0,01	0,02	0,00	0,00	0,00
Но	0,02	0,01	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Er	0,03	0,04	0,00	0,00	0,00	0,03	0,04	0,02	0,02	0,02	0,00	0,00	0,00
Tm	0,01	0,01	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Yb	0,07	0,08	0,00	0,00	0,01	0,09	0,10	0,03	0,03	0,02	0,00	0,00	0,00
Lu	0,01	0,01	0,00	0,00	0,00	0,01	0,02	0,00	0,01	0,00	0,00	0,00	0,00
Total	8,90	9,20	8,13	8,02	8,33	8,51	8,31	8,48	8,47	8,17	8,00	8,01	8,00

Table 1 (extended). Number of ions on the basis of 16 (O, F)

Table 2. EPMA analyses of xenotime

Facies	pb1/ pb2c			pb1b				F	b1c										
Sample	NC3A	NC4B	NC4C (1)	NC4C (2)	NC4C (3)	NC4C (4)	NC4C (5)	NC9 (1)	NC9 (2)			Numbei	r of ior	ns on th	e basis	of 16	(O, F)		
(wt %)										0.ł	0 00	0 00	0 00	0 00	0 00	0 00	0 1 5	0 00	0 00
SiO ₂	0,00	0,00	6,69	0,00	0,00	0,00	0,79	0,00	0,00	SI	0,00	0,00	0,99	0,00	0,00	0,00	0,15	0,00	0,00
ZrO ₂	0,79	0,68	0,87	0,80	0,88	0,91	2,09	0,49	0,83	ZE UE	0,07	0,05	0,00	0,06	0,07	0,07	0,19	0,04	0,00
HÍO ₂	0,14	0,00	0,00	0,16	0,00	0,00	0,00	0,00	0,01	HI	0,01	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
AL ₂ O ₃	0,31	0,01	1,87	0,05	0,01	0,00	0,06	0,02	0,00	AL	2 02	2 00	2 00	0,01 1 10	2 00	2 07	0,01 2 72	2 72	4 00
P ₂ O ₅	24,49	30,40	23,53	31,52	28,33	29,99	23,04	25,06	31,67	P	3,92	3,98	2,99	4,18	3,98	3,97	3,/3 0.05	3,12	4,00
CaO	0,49	0,00	0,58	0,00	0,51	0,31	0,22	0,33	0,06	Ca P.	0,10	0,00	0,09	0,00	0,09	0,05	0,05	0,06	0,01
FeO	0,06	0,86	2,64	0,48	0,27	0,04	0,19	2,51	0,12	re	0,01	0,11	0,33	0,06	0,04	0,01	0,03	0,37	0,01
Ta ₂ O ₅	0,18	0,00	0,17	0,03	0,00	0,00	0,17	0,00	0,00	Ta	0,01	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00
ThO ₂	0,32	0,06	0,17	0,19	0,20	0,15	0,99	0,40	0,37	TU II	0,01	0,00	0,01	0,01	0,01	0,01	0,04	0,02	0,01
UO ₂	0,15	0,00	0,56	0,31	0,29	0,33	0,34	0,31	0,43	U	0,01	0,00	0,02	0,01	0,01	0,01	0,01	0,01	0,01
F	0,41	0,22	0,68	0,00	0,00	0,00	0,38	0,82	0,00	E.	0,25	0,11	0,32	0,00	0,00	0,00	0,23	0,45	0,00
O=F	-0,17	-0,09	-0,29	0,00	0,00	0,00	-0,16	-0,35	0,00	Y	2,78	2,74	2,30	3,24	2,82	2,89	2,68	3,02	3,08
Y ₂ O ₃	27,58	33,36	28,75	38,87	31,92	34,75	26,34	32,41	38,86	La	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
La_2O_3	0,13	0,00	0,00	0,00	0,09	0,00	0,00	0,02	0,02	Ce	0,02	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,00
Ce ₂ O ₃	0,23	0,06	0,18	0,12	0,18	0,12	0,06	0,01	0,05	Pr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pr ₂ O ₃	0,03	0,06	0,04	0,00	0,03	0,00	0,00	0,04	0,00	Nd	0,02	0,00	0,02	0,00	0,01	0,01	0,00	0,00	0,00
Nd_2O_3	0,24	0,02	0,45	0,02	0,14	0,13	0,06	0,00	0,08	Sm	0,01	0,02	0,04	0,01	0,02	0,02	0,02	0,00	0,00
Sm_2O_3	0,15	0,37	0,84	0,11	0,43	0,39	0,35	0,00	0,00	Eu	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Eu ₂ O ₃	0,01	0,02	0,00	0,00	0,00	0,00	0,07	0,00	0,00	Gd	0,02	0,14	0,15	0,03	0,17	0,12	0,17	0,01	0,05
Gd_2O_3	0,37	2,70	3,10	0,58	3,11	2,22	2,72	0,21	1,01	Tb	0,00	0,00	0,01	0,00	0,02	0,03	0,01	0,00	0,01
Tb_2O_3	0,00	0,00	0,24	0,00	0,40	0,52	0,20	0,00	0,24	Dy	0,18	0,42	0,32	0,09	0,29	0,24	0,33	0,11	0,14
Dy ₂ O ₃	2,91	8,39	6,68	1,73	5,39	4,86	5,29	1,96	2,83	Но	0,07	0,08	0,08	0,02	0,06	0,07	0,07	0,05	0,04
HO ₂ O ₃	1,15	1,59	1,61	0,42	1,07	1,39	1,23	0,91	0,88	Er	0,27	0,22	0,25	0,07	0,17	0,21	0,20	0,20	0,16
Er_2O_3	4,56	4,49	5,34	1,36	3,20	4,21	3,37	3,72	3,51	Tm	0,04	0,03	0,04	0,01	0,02	0,03	0,03	0,05	0,03
Tm_2O_3	0,61	0,60	0,80	0,14	0,47	0,64	0,52	0,87	0,75	Yb	0,30	0,16	0,22	0,06	0,18	0,22	0,19	0,40	0,29
Yb ₂ O ₃	5,22	3,49	4,78	1,25	3,53	4,70	3,32	7,62	6,35	Lu	0,05	0,04	0,05	0,01	0,04	0,05	0,04	0,08	0,06
Lu_2O_3	0,84	0,88	1,03	0,20	0,79	1,05	0,64	1,48	1,33	Total	8,21	8,11	8,66	7,87	8,02	8,01	8,22	8,61	7,98
Total	71,20	88,17	91,31	78 , 34	81,24	86,71	72,28	78,84	89,4										
REE ₂ O ₃	16,45	22,67	25,09	5,93	18,83	20,23	17,83	16,84	17,05										
REEY ₂ O ₃	44,03	56,03	53,84	44,79	50 , 75	54,98	44,17	49,25	55,91										
LREE ₂ O ₃	0,79	0,53	1,51	0,25	0,87	0,64	0,54	0,07	0,15										
HREE ₂ O ₃	15,66	22,14	23,58	5,68	17,96	19,59	17,29	16,77	16,90										
HREEY ₂ O ₃	43,24	55 , 50	52 , 33	44,55	49,88	54,34	43,63	49,18	55 , 76										

5.1.3. Monazite-(Ce) ((Ce,La,Nd,Th)PO₄)

Monazite is an accessory mineral commonly found in granitic rocks and, together with allanite and apatite, the main LREE-hosting phase, with sizable contents of U and Th and low HREE and Y (Hinton e Paterson 1994, Bea *et al.* 1994, Bea 1996, Chang *et al.*1996, Deer *et al.*1997, Teixeira e Botelho 2002).

In the FPTD, monazite is found in prismatic hypidiomorphic (Fig. 4a – D, G and H) or irregular crystals rimming apatite grains (Fig. 4b – I and J). It has yellow to red colors, and sizes range between 10 and 30 μ m. Monazite is classified as primary and hydrothermal. The primary crystals come from the least weathered evolved granitic rock, while hydrothermal monazite crystals are found in greisens and greisenized granites related to pb1b. The primary monazite has Ce₂O₃ concentrations between 22.57% and 44.29%, La₂O₃ between 6.17% and 24.92%, Pr₂O₃ between 1.56% and 3.17%, Y₂O₃ between 0.22% and 1.01%, LREE₂O₃ from 37.50% to 74.97%, HREEY₂O₃ from 0.42% to 2.58% and ThO₂ from 0.38% to 3.35% (Table 3). On the other hand, the hydrothermal monazite shows Ce₂O₃ concentrations ranging from 39.03% to 33.16%; La₂O₃, 8.35% to 13.69%; Pr₂O₃, 2.44% to 3.55%; Y₂O₃, 0.08% to 1.49%; LREE₂O₃, 58.75% to 68.65%; (HREEY₂O₃), 0.86% to 3.78%; and ThO₂, 0.98% to 2.70% (Table 4). These results indicate that primary monazite is richer in Ce₂O₃, La₂O₃, and ThO₂ and poorer in Pr₂O₃, HREE₂O₃ and Y₂O₃, corroborating the observations of Teixeira & Botelho (2002).

5.1.4. Apatite Ca₅(PO4)₃(OH,F,Cl)

Apatite is one of the most abundant nonsilicate minerals in the crust. It is an important REE-bearing mineral across several settings and rock types and can be the main REE-bearing phase in granites.

In the FPTD, apatite is found especially in the parent biotite granite pb1b as 20 to 200 μ m prismatic and irregular crystals. The studied apatite shows alteration and substitution, mainly by monazite observed at the edges (Fig. 4a-G and H) and (Fig. 4b – I and J) or in the fractures of the grains (Fig. 4b- I). The P₂O₅ contents range between 31.66% and 41.80%; Y₂O₃, from 0.12% and 2.87%; and LREE₂O₃ contents, between 0.49% and 5.25%. Among LREE, Ce2O3 is the most abundant with contents ranging between 0.22% and 2.52%, followed by Nd₂O₃ ranging between 0.6% and 1.48%. Likewise, for the HREE (0.34% to 4.05%), Gd₂O₃ is the most abundant with contents of 0.07% and 0.88% and is followed by Dy₂O₃ from 0.04% to 0.66%. The HREE₂O₃+Y₂O₃ contents range between 0.34% and 5.25% (Table 5).

Suite/ Facies			F	bl Biot	ite gra	nite						Number	n of ion	a an th	haaia	of 16 //			
Sample	NC4C (1)	NC4C (2)	NC4C (3)	NC4C (4)	NC4C (5)	NC4C (6)	NC4C (7)	NC4C (8)	NC4C (9)			Nullide.		is on the	Dasis	01 10 (5, 2)		
(wt %)																			
P ₂ O ₅	23,65	22,73	25,13	23,90	24,13	24,12	25,66	24,43	24,47	P	3,70	3,55	3,58	3,52	3,75	3,60	3,84	0,00	0,00
CaO	0,17	0,45	0,00	0,00	0,17	0,76	0,00	0,32	0,27	Ca	0,00	0,00	0,03	0,14	0,00	0,06	0,05	0,00	0,00
ThO_2	3,06	3,35	2,67	2,55	3,23	2,49	0,38	1,46	2,06	Th	0,11	0,10	0,13	0,10	0,01	0,06	0,07	0,00	0,00
SiO ₂	0,67	0,64	0,26	0,40	0,22	0,47	0,19	0,66	0,33	Si	0,05	0,07	0,04	0,08	0,03	0,11	0,05	0,00	0,00
Y ₂ O ₃	0,47	0,55	0,36	0,74	0,22	0,60	0,32	1,01	0,87	Y	0,03	0,07	0,02	0,06	0,03	0,09	0,07	0,00	0,00
ZrO_2	0,68	0,51	0,55	0,66	0,65	0,67	0,73	0,69	0,66	Zr	0,05	0,06	0,06	0,06	0,06	0,06	0,05	0,00	0,00
PbO	0,17	0,05	0,00	0,13	0,04	0,16	0,00	0,12	0,23	Pb	0,00	0,01	0,00	0,01	0,00	0,01	0,01	0,00	0,00
UO2	0,42	0,44	0,29	0,46	0,41	0,42	0,27	0,37	0,39	U	0,01	0,02	0,02	0,02	0,01	0,01	0,01	0,00	0,00
F	1,22	0,92	1,30	1,30	1,40	1,21	1,28	1,08	1,47	F	0,72	0,72	0,78	0,66	0,70	0,59	0,73	0,00	0,00
O=F	-0,51	-0,39	-0,55	-0,55	-0,59	-0,51	-0,54	-0,45	-0,62	La	0,74	0,90	0,79	0,88	1,59	0,90	0,80	0,00	0,00
La ₂ O ₃	15,40	15,12	11,47	13,97	12,30	13,88	24,92	14,07	13,95	Ce	2,10	2,11	2,00	2,07	1,96	2,05	1,89	0,00	0,00
Ce ₂ O ₃	34,15	34,33	32,88	32,87	31,23	32,83	31,03	32,21	32,95	Pr	0,20	0,18	0,19	0,19	0,11	0,18	0,17	0,00	0,00
Pr ₂ O ₃	2,72	2,74	3,17	2,88	3,01	3,04	1,75	2,76	2,95	Nd	0,73	0,67	0,80	0,68	0,29	0,65	0,60	0,00	0,00
Nd_2O_3	10,06	10,49	11,69	10,66	12,83	11,02	4,68	10,42	10,70	Sm	0,13	0,12	0,15	0,13	0,02	0,11	0,11	0,00	0,00
$\rm Sm_2O_3$	1,58	1,51	2,18	2,01	2,53	2,22	0,39	1,75	2,01	Eu	0,04	0,02	0,03	0,03	0,01	0,03	0,03	0,00	0,00
Eu_2O_3	0,47	0,39	0,60	0,39	0,55	0,53	0,23	0,48	0,54	Gd	0,02	0,03	0,05	0,04	0,00	0,03	0,01	0,00	0,00
Gd_2O_3	0,00	0,00	0,30	0,60	0,88	0,64	0,00	0,55	0,21	Tb	0,00	0,01	0,00	0,01	0,00	0,00	0,01	0,00	0,00
Tb_2O_3	0,00	0,00	0,00	0,14	0,00	0,10	0,00	0,00	0,10	Dy	0,00	0,03	0,03	0,03	0,00	0,02	0,02	0,00	0,00
Dy ₂ O ₃	0,08	0,18	0,00	0,55	0,53	0,62	0,00	0,39	0,47	Но	0,00	0,01	0,01	0,01	0,00	0,01	0,02	0,00	0,00
HO ₂ O ₃	0,12	0,00	0,00	0,18	0,15	0,14	0,00	0,22	0,42	Er	0,00	0,01	0,01	0,01	0,00	0,01	0,01	0,00	0,00
Er ₂ 03	0,02	0,17	0,04	0,17	0,12	0,22	0,09	0,21	0,17	Tm	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,00
${\rm Tm}_2{\rm O}_3$	0,04	0,08	0,00	0,06	0,12	0,04	0,01	0,12	0,06	Yb	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Yb ₂ O ₃	0,00	0,00	0,00	0,00	0,01	0,08	0,00	0,06	0,09	Lu	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Lu_2O_3	0,14	0,03	0,00	0,07	0,00	0,00	0,00	0,02	0,03	Total	8,61	8,70	8,73	8,72	8,59	8,60	8,55	0,00	0,00
Total	94,78	94,29	92,34	94,14	94,14	95 , 75	91,39	92,95	99,31										
REE	64,78	65,01	62,34	64,55	64,24	65 , 37	64,00	63,25	64,64										
LREE	64,39	64,56	62,00	62,78	64,46	63,52	63,90	61,68	63,09										
HREE	0,39	0,45	0,34	1,77	1,80	1,85	0,10	1,57	1,55										
HREEY ₂ O ₃	0,86	0,99	0,70	2,51	2,02	2,45	0,42	2,58	2,42										

Table 3. EPMA analyses of primary monazite

Table 4.	EPMA	analyses	of hydro	othermal	monazite

Facies		Greis	en (1A) a	and grei	senized	pb1b g	ranite (1	NC4B)			Numbe	r of	ione	on the	haei	s of	16 (0	म)	
Sample	1A (1)	1A (2)	1A (3)	1A (4)	1A (5)	1A (6)	NC4B (1)	NC4B (2)	NC4B (3)		Nullide	1 01	10113		. 5431	.5 01	10 (0	, -,	
(wt %) P ₂ O ₅	24,73	24,36	26,33	24,54	25,51	25,37	25,25	25,91	25,88	P	3,57	3,56	3,70	3,65	3 , 70	3,75	3,51	3,68	3,62
CaO	0,63	0,13	0,00	0,22	0,00	0,28	0,00	0,00	0,25	Ca	0,12	0,02	0,00	0,04	0,00	0,05	0,00	0,00	0,04
ThO_2	1,99	2,18	1,78	1,06	0,98	1,39	2,70	1,73	2,31	Th	0,08	0,09	0,07	0,04	0,04	0,06	0,10	0,07	0,09
SiO ₂	0,39	0,50	0,88	0,23	0,59	0,18	0,28	0,24	0,73	Si	0,07	0,09	0,15	0,04	0,10	0,03	0,05	0,04	0,12
Y ₂ O ₃	1,49	0,20	0,38	0,23	1,18	0,92	0,08	0,21	0,73	Y	0,14	0,02	0,03	0,02	0,11	0,09	0,01	0,02	0,06
ZrO ₂	0,60	0,83	0,67	0,54	0,80	0,55	0,70	0,78	0,60	Zr	0,05	0,07	0,05	0,05	0,07	0,05	0,06	0,06	0,05
FeO	0,15	0,09	0,19	0,26	0,45	0,60	0,80	0,12	0,20	Fe	0,02	0,01	0,03	0,04	0,06	0,09	0,11	0,02	0,03
PbO	0,13	0,18	0,14	0,01	0,03	0,11	0,10	0,00	0,13	Pb	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,01
UO ₂	0,22	0,00	0,00	0,02	0,18	0,16	0,01	0,04	0,00	U	0,01	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00
F	1,19	1,289	1,658	1,344	1,135	1,044	1,711	1,32	0,948	F	0,64	0,70	0,87	0,75	0,62	0,58	0,89	0,70	0,49
O=F	-0,50	-0,54	-0,70	-0,57	-0,48	-0,44	-0,72	-0,56	-0,40	La	0,84	0,53	0,72	0,80	0,80	0,77	0,72	0,85	0,72
La ₂ O ₃	13,34	8,35	11,81	12,35	12,69	12,04	11,87	13,69	11,77	Ce	2,21	2,16	2,20	2,29	2,12	2,12	2,35	2,10	2,23
Ce_2O_3	35,29	34,22	36,16	35 , 54	33,71	33,17	39,03	34,30	36,94	Pr	0,15	0,22	0,17	0,17	0,16	0,16	0,20	0,20	0,19
Pr ₂ O ₃	2,44	3,55	2,83	2,68	2,59	2,47	3,38	3,21	3,23	Nd	0,54	0,94	0,57	0,60	0,51	0,55	0,70	0,68	0,67
Nd_2O_3	8,94	15,26	9,66	9,54	8,33	8,85	11,99	11,40	11,44	Sm	0,10	0,16	0,07	0,11	0,10	0,11	0,10	0,09	0,10
$\mathrm{Sm}_2\mathrm{O}_3$	1,70	2,68	1,14	1,76	1,66	1,90	1,82	1,60	1,71	Eu	0,03	0,04	0,04	0,03	0,02	0,02	0,03	0,03	0,03
Eu_2O_3	0,49	0,60	0,63	0,50	0,36	0,33	0,57	0,48	0,53	Gd	0,06	0,07	0,03	0,06	0,06	0,07	0,03	0,04	0,05

Gd_2O_3	1,13	1,15	0,54	1,03	1,00	1,14	0,48	0,73	0,92	Tb	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Tb_2O_3	0,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Dy	0,03	0,01	0,00	0,01	0,04	0,04	0,00	0,02	0,00
Dy ₂ O ₃	0,46	0,20	0,00	0,16	0,78	0,67	0,00	0,32	0,08	Но	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,01
HO ₂ O ₃	0,09	0,05	0,00	0,00	0,11	0,12	0,07	0,26	0,13	Er	0,01	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,00
Er ₂ O ₃	0,23	0,09	0,02	0,08	0,22	0,22	0,10	0,25	0,09	Tm	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,01	0,00
$\mathrm{Tm}_2\mathrm{O}_3$	0,09	0,08	0,02	0,19	0,00	0,07	0,12	0,10	0,07	Yb	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Yb ₂ O ₃	0,07	0,01	0,00	0,00	0,06	0,00	0,00	0,03	0,04	Lu	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Lu_2O_3	0,06	0,00	0,00	0,00	0,00	0,06	0,00	0,01	0,00	Total	8,69	8,70	8,70	8,71	8,55	8,56	8,89	8,63	8,53
Total	95,17	95,11	93,50	91,38	92,66	90,85	100,03	95,88	98,26										
REE ₂ O ₃	64,48	66,23	62,81	63,84	61,50	61,02	69,42	66 , 37	66,96										
$LREE_2O_3$	62,19	64,66	62,23	62,37	59,33	58 , 75	68,65	64,67	65,63										
$HREE_2O_3$	2,29	1,57	0,58	1,47	2,17	2,27	0,77	1,70	1,33										
HREE ₂ O ₃ +Y ₂ O ₃	3,78	1,76	0,96	1,70	3,34	3,19	0,86	1,91	2,06										

Table 5: EPMA ana	lyses of fluorapatite
-------------------	-----------------------

Facies								Biotit	e granit	e pb1b							
Sample	NC10 (1)	NC10 (2)	NC10 (3)	NC10 (4)	NC10 (5)	NC10 (6)	NC10 (7)	NC10 (8)	NC10 (9)	NC10 (10)	NC10 (11)	NC10 (12)	NC10 (13)	NC10 (14)	NC10 (15)	NC10 (16)	NC10 (17)
(wt%)																	
P ₂ O ₅	37,80	41,03	38,87	41,80	40,05	40,29	38,43	41,26	31,66	38,75	38,11	39,69	36,66	36,77	36,53	39,24	39,50
SiO2	2,05	0,33	2,05	0,36	0,26	0,87	1,69	0,79	6 , 52	1,97	4,03	0,76	2,27	1,76	1,67	0,55	0,36
ThO_2	0,01	0,03	0,03	n.d.	n.d.	n.d.	0,04	0,03	0,24	0,09	n.d.	0,04	0,03	n.d.	n.d.	0,03	n.d.
UO ₂	n.d.	n.d.	0,02	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Y ₂ O ₃	1,00	0,31	0,97	0,12	0,25	0,21	0,43	0,15	0,91	0,42	1,38	1,13	2,87	2,21	2,01	0,54	0,30
La_2O_3	0,23	0,09	0,22	0,25	0,02	0,30	0,30	0,18	0,59	0,52	0,05	0,10	0,28	0,13	0,14	0,18	0,32
Ce ₂ O ₃	0,91	0,33	0,73	0,64	0,22	1,11	1,58	0,79	2,52	1,45	0,41	0,34	0,81	0,86	0,84	0,73	0,61
Pr ₂ O ₃	0,09	n.d.	0,10	0,20	n.d.	0,11	0,55	0,38	0,32	0,28	0,52	0,52	n.d.	n.d.	n.d.	0,41	0,10
Nd_2O_3	0,62	0,16	0,56	0,32	0,25	0,43	0,84	0,53	1,48	0,74	0,60	0,49	0,87	0,86	0,81	0,42	0,39
Sm_2O_3	0,19	0,08	0,33	0,10	n.d.	0,03	0,27	0,08	0,34	0,20	n.d.	n.d.	0,51	n.d.	0,09	0,09	0,34
Eu ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,06	n.d.	0,07	0,07	n.d.	0,03	0,06
Gd_2O_3	0,50	0,15	0,44	0,12	0,07	0,13	0,21	0,20	0,55	0,21	n.d.	0,40	0,16	0,88	0,48	n.d.	n.d.
Dy ₂ O ₃	0,30	0,04	0,37	0,10	0,11	0,11	0,16	0,09	0,38	0,03	0,22	0,19	0,66	0,40	0,47	0,07	n.d.
Er ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,31	n.d.	n.d.	0,31	0,04	0,49	0,31
Yb ₂ O ₃	0,15	0,08	0,14	n.d.	0,02	0,07	0,13	0,01	0,14	0,08	0,14	0,15	0,21	0,25	0,17	0,06	n.d.
CaO	49,77	53,15	50,64	53 , 75	52 , 72	53,38	51,24	53,75	44,61	51,17	50,36	51,90	49,28	50 , 37	50,03	52,78	53,33
F	5,97	6,09	5,41	5,56	6,32	5,13	5,26	4,49	5,05	5,78	4,20	4,78	3,79	3,81	4,46	4,14	3,95
MnO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,16	0,23	0,28	0,17	0,17	0,22	0,10
FeO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,25	0,13	0,33	0,31	0,39	0,20	0,21
Na ₂ O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,03	0,01	0,01	n.d.	n.d.	n.d.	n.d.
Total	99,61	101,88	100,87	103,32	100,30	102,18	101,11	102,75	95,30	101,69	100,83	100,85	99,10	99 , 17	98,31	100,19	99,90
O=F	-2,52	-2,57	-2,28	-2,34	-2,66	-2,16	-2,21	-1,89	-2,13	-2,43	-1,77	-2,01	-1,60	-1,60	-1,88	-1,74	-1,66
Total	97,10	99,31	98,59	100,98	97,64	100,02	98,90	100,86	93,17	99 , 26	99,06	98,83	97 , 51	97,56	96,43	98,45	98,24

5.1.5. Thorite (ThSiO₄)

Thorite is found solely in a few biotite granite pb1c and greisenized granite samples, where crystals with sizes of 20 μ m are close to zircon grains (Fig. 4b - K and L).

SEM analyses show thorite and xenotime "intergrowths" as evident from the high P_2O_5 and Y_2O_3 contents, spanning intervals of 0.84%-1.52% and 5.54%-9.10%, respectively. The REE contents are between 2.86% and 3.63%, with HREE between 2.33% and 3.14%, which are higher than 0.49% to 0.57% found for LREE. HREE+ Y_2O_3 span an interval from 12.24% to 8.37% (table 6).

Facies			biot	ite gran	ite pblc				
Sample	NC11A	NC3A	NC3A	NC3A		NC11A	NC3A	NC3A	NC3A
(wt%)		(1)	(2)	(3)	(wt응)		(1)	(2)	(3)
ThO_2	62,58	53,63	54,78	47,71	La_2O_3	0,11	0,08	0,02	0,02
Al ₂ O ₃	0,72	1,65	0,23	0,25	Ce ₂ O ₃	0,36	0,26	0,26	0,18
SiO ₂	17,06	12,16	11,78	11,04	Pr ₂ O ₃	0,05	0,06	0	0,07
Nb_2O_5	0	3,14	3,88	2,84	Nd_2O_3	0,21	0,14	0,11	0,13
P_2O_5	1,16	1,18	1,52	1,12	$\rm Sm_2O_3$	0,08	0	0,07	0,06
Y ₂ O ₃	2,26	6,18	9,1	6,64	Eu_2O_3	0,14	0	0,02	0,07
Ta_2O_5	0	0,006	0,26	0	Gd_2O_3	0,21	0,1	0,28	0,17
TiO ₂	0	1,63	0,74	0,41	Dy ₂ O ₃	0,12	0,44	0,57	0,5
CaO	1,07	0,29	0,21	0,57	Yb ₂ O ₃	0	1,09	1,08	0,71
MnO	0	0,12	0,03	0	HO ₂ O ₃	0,21	0,16	0,22	0,01
FeO	3,48	2,49	2,52	1,19	Er_2O_3	0,20	0,75	0,79	0,63
ZrO ₂	0	1,12	0,82	0,56	$\mathrm{Tm}_2\mathrm{O}_3$	0	0,03	0,01	0,06
PbO	0,23	0	0	0,1	Tb_2O_3	0	0	0	0
F	1,20	1,75	3,23	4,36	Lu_2O_3	0	0,21	0,2	0,25
UO ₂	0,95	0,77	1,27	1,27	REE	1,68	3,33	3,63	2,86
BaO	0,04	0	0	0,06	LREE	0,94	0,55	0,49	0,52
					HREE	0,73	2,78	3,14	2,33
					$HREE+Y_2O_3$	2,99	8,97	12,24	8,97
					Total	92,43	89,44	93,98	80,99
					-O=F	-0,50	-0,74	-1,36	-1,84
					Total	91,93	88,7	92,62	79 , 15

Table 6. EPMA analyses of thorite

5.1.6. REE oxyfluorides

REE oxyfluorides are found widespread or as prismatic crystals in the samples studied. Their sizes range between 2 and 30 μ m. Additionally, anhedral aggregates have sizes of 70 μ m. Oxyfluoride grains or aggregates are common near, zircon, xenotime and fluorite crystals. Aggregates of oxyfluorides and allanite (Fig. 4b - M) or xenotime (Fig. 4b - N) can also be observed.

The oxyfluoride compositions vary according to the host rock. In the biotite granite, the oxyfluoride has 8.40% F, 2.49% Y_2O_3 and 2.17% ThO₂, whereas in the greisenized granite, the contents vary between 4.95 and 8.31% F, 0.24 and 5.36% Y_2O_3 , and 4.11 and 8.99% ThO₂. In the greisen, the oxyfluoride compositions have 7.15 to 16.55% F, 1.51 to 2.07% Y_2O_3 and 4.11 to 8.99% ThO₂. The highest REE contents, between 43.84 and 79.87%, are observed in the oxyfluorides from the greisenized granite, with Ce₂O₃ as the most abundant REE oxide with a range of 30.09% to 41.63%. HREE₂O₃+Y₂O₃ span an interval from 0.44% to 14.41%, also with higher concentrations in the greisenized granites related to oxyfluoride and xenotime aggregates. Gd₂O₃ is the most abundant HREE, with contents ranging between 0.03% and 4.44% (Table 7).

Table 7. EPMA analyses of oxyfluorides

Facies	ph Grea	olb isen							Gre	eiseniz	ed pb1b	granit	e							pb1b Biotite granite
Samples	1A (1)	NC4A (2)	NC4B (1)	NC4B (2)	NC4B (3)	NC4B (4)	NC4B (5)	NC4B (6)	NC4B (7)	NC4B (8)	NC4B (9)	NC4B (10)	NC4B (11)	NC4B (12)	NC4B (13)	NC4B (14)	NC4B (15)	NC4B (16)	NC4B (17)	NC10A (1)
(wt %)																				
F	7,15	16 , 56	7,45	5,80	6,37	5,99	4,95	4,88	6,15	5,71	7,94	8,31	8,18	5,95	7,41	4,69	6,18	7,47	6,50	8,40
Al ₂ O ₃	0,24	0,04	0,01	0,04	0,00	0,00	0,02	0,00	0,07	0,00	0,04	0,04	0,00	0,05	0,07	0,04	0,01	0,00	0,03	0,30
SiO ₂	2,34	0,26	0,09	0,33	0,06	0,49	0,30	0,28	1,07	0,02	0,15	0,00	0,01	0,02	0,20	0,15	0,14	0,04	0,10	1,26
P ₂ 05	0,24	0,16	0,02	0,16	0,00	0,06	0,03	0,00	0,32	0,00	7,34	0,00	0,05	0,09	0,00	0,03	0,00	0,04	0,01	0,26
CaO	3,23	17,43	0,90	1,25	0,18	0,15	0,11	0,05	1,90	0,00	1,15	2,13	1,40	0,28	0,20	0,29	0,23	0,53	0,66	2,57
TiO ₂	0,21	0,14	0,29	0,11	0,15	0,06	0,01	0,09	0,03	0,00	0,00	0,00	0,00	0,00	0,09	0,00	0,00	0,00	0,07	0,00
MnO	0,21	0,00	0,13	0,08	0,04	0,12	0,11	0,13	0,00	0,00	0,00	0,21	0,11	0,00	0,03	0,01	0,02	0,06	0,05	0,00
FeO	18,93	0,13	0,05	0,38	0,52	1,36	0,07	0,14	1,41	0,57	2,09	0,58	0,08	0,87	0,16	0,07	0,89	0,27	0,00	1,12
Y ₂ O ₃	1,51	2,07	0,27	0,24	0,29	0,31	0,00	0,39	1,31	0,30	0,42	0,90	0,71	0,14	1,48	5,36	0,28	1,89	0,32	2,49
ZrO ₂	0,50	0,19	0,00	0,00	0,00	0,62	0,00	0,00	1,14	0,00	0,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05
Ta_2O_5	0,07	0,00	0,12	0,00	0,00	0,00	0,00	0,06	0,32	0,00	0,17	0,00	0,04	0,13	0,05	0,00	0,10	0,16	0,00	0,01
ThO ₂	8,99	4,11	2,63	2,85	1,19	1,14	0,29	0,51	6 , 72	8,03	2,54	3,57	0,26	3,43	2,04	0,62	0,85	2,33	2,25	2,17
UO ₂	0,10	0,19	0,07	0,02	0,00	0,04	0,00	0,04	0,19	0,13	0,08	0,07	0,01	0,10	0,00	0,00	0,01	0,07	0,05	0,06
SrO	0,33	0,26	0,36	0,30	0,13	0,14	0,00	0,00	0,22	0,47	0,33	0,33	0,10	0,58	0,18	0,10	0,03	0,13	0,39	0,07
La ₂ O ₃	11,92	9,73	18,53	18,17	19,74	17,97	17,47	16,04	16,25	13,37	12,43	12,79	15,86	16,78	11,24	10,10	17,22	13,97	15,73	11,11
Ce ₂ O ₃	11,14	26,54	41,63	40,99	39,78	39,16	41,13	39,57	34,48	37,75	34,65	31,93	38,82	39,25	33,20	30,09	40,46	37,74	39,38	27,28
Pr ₂ O ₃	3,40	2,84	3,50	3,05	2,86	3,18	3,15	3,66	2,73	3,16	3,31	3,05	3,47	3,28	3,44	2,94	3,26	3,21	3,04	2,22
Nd ₂ O ₃	13,32	12,14	12,27	10,78	10,05	12,16	11,12	15,17	9,58	11,64	14,09	13,23	15,13	12,99	15,12	13,55	12,80	12,55	11,15	9,57
Sm ₂ O ₃	2,42	2,46	1,46	1,48	1,05	1,93	1,40	2,64	1,08	2,13	2,90	2,69	2,54	1,95	3,56	3,83	1,97	2,55	1,66	1,36
Eu ₂ O ₃	0,72	0,47	0,56	0,58	0,47	0,49	0,61	0,55	0,50	0,53	0,55	0,45	0,61	0,53	0,59	0,42	0,52	0,55	0,39	0,41
Gd ₂ O ₃	0,67	2,28	0,43	0,03	0,00	0,36	0,11	1,62	0,26	0,77	1,41	1,52	1,60	0,74	3,81	4,44	0,58	1,64	0,49	1,04
Tb ₂ O ₃	0,00	0,16	0,08	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,11	0,00	0,31	0,51	0,00	0,00	0,06	0,00
Dy ₂ O ₃	0,00	0,84	0,00	0,00	0,00	0,00	0,10	0,24	0,13	0,00	0,09	0,14	0,29	0,00	1,37	3,03	0,00	0,49	0,00	0,41
HO ₂ O ₃	0,00	0,00	0,15	0,11	0,12	0,00	0,01	0,21	0,29	0,00	0,00	0,06	0,21	0,01	0,19	0,40	0,24	0,02	0,00	0,09
Er ₂ O ₃	0,21	0,26	0,11	0,01	0,11	0,00	0,12	0,12	0,14	0,08	0,18	0,08	0,12	0,04	0,20	0,39	0,06	0,08	0,03	0,15
Tm ₂ O ₃	0,05	0,09	0,05	0,05	0,00	0,06	0,12	0,03	0,03	0,04	0,05	0,14	0,11	0,07	0,22	0,13	0,08	0,09	0,11	0,10
Yb ₂ O ₃	0,00	0,07	0,07	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,05	0,00	0,01	0,00	0,09
Lu ₂ O ₃	0,00	0,08	0,04	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,05	0,03	0,10	0,09	0,09	0,00	0,02	0,02	0,00
Total	87,60	99,50	91,27	86,81	83,16	85,79	81,21	86,44	86,35	84,69	92,07	82,27	89,87	87,35	85,25	81,34	85,94	85,91	82,49	12,59
-0=F	-3,01	-6,97	-3,14	-2,44	-2,68	-2,52	-2,08	-2,06	-2,60	-2,40	-3,34	-3,50	-3,44	-2,50	-3,12	-1,98	-2,60	-3,15	-2,74	-3,54
Total	84,60	92 , 53	88,13	84,40	80,48	83,27	79 , 13	84,38	83,75	82,29	88,73	78 , 77	86,43	84,85	82,13	79 , 36	83,34	82,76	79 , 75	69,05
REE	43,84	57 , 94	78 , 87	75 , 24	74,23	75 , 31	75 , 32	79 , 87	65 , 50	69,46	69,66	66,13	78 , 92	75 , 71	73,34	69,98	77 , 20	72,92	72,06	53,83
LREE	42,92	54 , 17	77 , 95	75 , 04	73 , 95	74,89	74 , 87	77 , 62	64,62	68 , 57	67,93	64 , 15	76,42	74,76	67 , 15	60,94	76,24	70,57	71 , 35	51,95
HREE	0,93	3,77	0,92	0,20	0,28	0,42	0,45	2,24	0,89	0,89	1,73	1,98	2,50	0,95	6,19	9,04	0,96	2,35	0,71	1,88
HREE+Y2O3	2,44	5,84	1,19	0,44	0,57	0,73	0,45	2,63	2,20	1,19	2,16	2,88	3,21	1,08	7 , 67	14,41	1,24	4,24	1,03	4,36

5.1.7. Unidentified Nb-Y-REE mineral

During MEV and EPMA analytical procedures, some opaque prismatic grains revealed a Nb-, Y, and REE-rich composition (Fig. 4b - O). Nb₂O₅ and Y₂O₃ contents are as high as 41.7% and 12.5%, respectively. REE oxides range between 4.24 and 9.3%, with approximately 3 to 7% HREE₂O₃ and 1.3% to 2.3% LREE₂O₃. HREE₂O₃+Y₂O₃ contents are between 5.3% and 19.5% (Table 8). Other elements in concentrations greater than 1% (wt% oxides) are Si, Ti, Fe, Ta, Th, U, and Pb. This mineral has a composition near that of some niobates, such as yttrocolumbite-(Y), but its complete identification requires additional investigation.

Facies		pb	1b granite		
Sample	NC3A	NC3A		NC3A	NC3A
(wt%)	(1)	(2)		(1)	(2)
F	0,97	0,08	La ₂ O ₃	0,31	0,19
Al ₂ O ₃	0,34	0,49	Ce ₂ O ₃	1,14	0,63
SiO ₂	5,87	4,76	Pr ₂ O ₃	0,12	0,02
Nb_2O_5	33,84	41,69	Nd ₂ O ₃	0,42	0,25
P ₂ O ₅	0	0	Sm_2O_3	0,24	0,12
Y ₂ O ₃	12,52	2,32	Eu ₂ O ₃	0,05	0,04
Ta_2O_5	2,39	2,75	Gd ₂ O ₃	0,47	0,15
TiO ₂	2,78	7,09	Dy ₂ O ₃	1,76	0,79
CaO	0,9	0,28	Yb ₂ O ₃	1,94	0,87
MnO	0,26	0,59	HO ₂ O ₃	0,63	0,09
FeO	4,06	15,36	Er_2O_3	1,88	0,9
ZrO ₂	0,38	0,07	Tm_2O_3	0,27	0,12
PbO	6,28	7,18	Tb_2O_3	0	0
ThO_2	2,45	1,56	Lu_2O_3	0,07	0,06
UO ₂	1,64	1,84	REE ₂ O ₃	9,27	4,24
BaO	0	0,15	LREE ₂ O ₃	2,27	1,26
Total	63,89	75,44	HREE ₂ O ₃	7	2,98
			HREE ₂ O ₃ +Y ₂ O ₃	19,52	5,3

Table 8. EPMA analyses for the unidentified Nb-Y-REE phase

5.2 - Whole-rock geochemistry

The geochemical analyses show that the parental biotite granite pb1b is more enriched in light rare earth elements (LREE) than in heavy rare earth elements (HREE). The LREE range between 580 and 954 ppm, especially Ce with the highest values between 230 and 461 ppm. On the other hand, the HREE display values between 88.3 and 150 ppm; nevertheless, the sum of HREE+Y spans an interval between 221.5 and 366 ppm. Among the HREE, Dy and Gd have the highest enrichments with concentrations from 23.7 to 39.7 ppm and from 26.9 to 35.9 ppm, respectively.

The greisenized granite samples also display higher LREE enrichment in comparison with HREE, with contents ranging between 180 and 1223 ppm. Likewise, in the parental granite, Ce displays the highest contents, ranging between 156 and 491 ppm, followed by La with 30 to 310 ppm and Nd with 36 to 279 ppm. The HREE contents span an 83 to 210 ppm interval. Nevertheless, some samples have higher HREE+Y than LREE, above 500 ppm, whereas the LREE contents are as high as 448 ppm. Among HREE, Y, Gd and Dy have the highest concentrations and vary between 119 and 296 ppm, 20 and 56 ppm and 21 and 59 ppm, respectively.

The only analyzed greisen with tin mineralization displays higher LREE concentrations than HREE, akin to the biotite granites and greisenized granites. The LREE in this sample have a total concentration of 1198 ppm. Ce, La and Nd are especially noteworthy, with 514 ppm, 306 ppm and 259 ppm concentrations, respectively. The HREE show a total concentration of 126 ppm, with Gd, Dy and Yb as major contributors at 34.7 ppm, 29.8 ppm and 23.8 ppm, respectively. The Y content is 292 ppm, and the HREE+Y content is 417.9 ppm (Table 9).

REE patterns are crucial for analysis of both the concentration and the behavior of these elements during magmatic differentiation as well as hydrothermal alteration. Normalized LREE contents show enrichments reaching 1000 times and HREE higher than 100 times the chondritic values (Fig. 7). These values reflect high enrichment and indicate economic potential for exploitation of these metals, according to similar data reported for granites in the literature (Wang *et al.*, 2015, Xu *et al.* 2017).

The REE patterns in granite, greisenized granite and greisen from Faixa Placha show behaviors of differentiated rocks, which match their evolution. Strongly differentiated granite pb1c is enriched in LREE and slightly depleted in HREE but still higher than 100 times the concentrations in chondrites (sample NC3A, Fig. 8A). In the greisenized granites of the pb1c facies (NC6 and NC7), LREE and HREE are enriched as much as 300 times that of chondrites. Greisenized granite NC8 also belongs to the Pb1c facies with enrichments in LREE and HREE of 1000 and 100 times relative to chondrites, respectively. The weathered greisenized granite Pb1c presents enrichment in HREE and depletion in LREE when compared to the pristine greisenized granite (Fig. 8B). In the pb1b facies, the parental biotite granite, greisenized granite and greisen have the same REE patterns. A weak enrichment in both LREE and HREE is observed in the greisen, but this enrichment could be related to the normal variation in REE concentrations in the pb1b granite (Fig. 8C). The same behavior is observed in the pb1b parental and greisenized granites, situated far from each other (Fig. 8D). In this case, NC10A and NC11A samples represent the core and the edge of the granite intrusion, respectively, but have the same REE patterns and contents, indicating that there is no relevant change in concentration and fractionation of REE during greisenization. The same REE behavior has been observed in other greisenized areas of the Pedra Branca Massif and in the FPTD by Teixeira and Botelho (2006).

Rocks	Rocks grouite			Greisenized						Greisen		
Facies	pb1c/pb2c	ph1b	pb1b	pb1c/pb2c	ph1h	pb1c	ph1c	pb1c	pb1c	pb1c	nh2h	pb1b
Sample	NC3A	NC4C	NC10A	NC3B	NC4B	NC6	NC7A	NC8	NC9A	NC9B	NC11A	NC4A
(%)	110011	11010		11000	THE ID	1100		1.00	110/11	110710		
SiO ₂	75,42	72,9	74,34	73,85	88,18	76,79	74,6	65,19	76,87	68,89	71,94	70,37
TiO_2	0,05	0,22	0,33	0,03	0,19	0,04	0,04	0,04	0,05	0,08	0,23	0,18
Al_2O_3	12,51	12,57	11,77	13,67	3,91	11,35	12,44	10,38	11,83	15,99	12,62	11,63
Fe_2O_3	1,47	2,21	3,62	1,24	3,11	1,18	1,45	1,3	1,33	3,06	2,56	6,43
MnO	0,01	0,06	0,03	0,02	0,01	0,01	0,02	0,02	0,03	0,05	0,03	0,08
MgO	0,09	0,11	0,18	0,04	0,07	0,1	0,15	0,51	0,07	0,23	0,13	0,06
CaO	0,88	1,27	0,88	0,15	1,02	1,14	0,78	11,36	0,86	0,34	1,61	3,21
Na ₂ O	3,11	1,98	2,58	3,51	0,01	2,64	2,38	1,23	2,51	1,35	1,87	0,03
K_2O	4,98	6,2	4,83	5,21	1,19	4,64	5,2	4,71	5,03	6,78	6,25	3,51
P_2O_5	< 0.01	0,03	0,08	< 0.01	0,03	< 0.01	$<\!0.01$	< 0.01	$<\!0.01$	< 0.01	0,03	0,03
P.F.	1,1	1,9	1	1,8	1,5	1,5	2,3	4,8	1	2,8	2,2	3,9
(ppm)												
Be	4	7	6	7	1	15	16	5	6	37	10	5
Rb	621,7	635,7	253	628,2	409,7	430,5	574,7	527,9	472,2	871,1	323,5	1131,6
Cs	7	4,9	5,8	5,5	5	5	3,7	3,4	2,5	5,1	3	12,2
Ba	50	434	896	40	45	202	166	185	179	301	557	56
Sr	13,2	35,3	96,7	8,5	24,1	13,5	10,8	15,2	22,3	15,6	44,3	23,5
Ga	41,7	30,2	25,2	46,5	22,6	34,9	39,8	32,4	33,2	58,9	28	46,7
Sn	18	15	9	22	124	7	467	30	25	103	29	785
Та	12,4	7,2	2,5	23,4	5,4	10,2	11,7	9,5	13,1	14,5	6,6	5
Nb	98,4	60,7	40,4	108,8	37,9	83,8	93	74,1	105,4	111,9	54,3	50,9
Th	71,8	61,9	35,3	49,9	58	59,3	45,9	46	66,9	75,3	65,2	58
U	9,5	3,8	5,3	6,5	5,9	8,5	19,6	10,5	16,9	32,7	11	7,7
Zr	164	388,5	496,1	83,8	364,5	120,4	95,2	99,4	156,9	178,7	375,6	345,3
Hf	10,1	13	15,1	5,8	12,4	7	5,4	5,4	8,6	9,8	12,5	13,2
Sc	6	6	6	6	100 7	7	101.6	6	6	15	6	8
Cu	6,3	46,6	152,1	20,9	100,7	/4,1	101,6	135,9	151,8	133,2	24	/1,6
Zn	51	707	204	104	2584	79	80	68	45	56	/1	403
Pb	17,9	26,6	62,9	14,7	14,2	/8	29,3	123,4	102,7	133,2	24	9,6
La	144,3	221,9	240,4	1/6	192,6	102	12	310,1	84,2	30,4	229,3	305,7
Ce	229,7	391,6	460,6	215,2	357,9	192,3	156,4	491,1	189,4	88,7	466,2	514
Pr	35,81	4/,18	49,07	40,53	41,26	25,87	19,01	74,62	20,38	8,53	49,5	72,37
INd	152,0	170,5	172,8	141,5	140,9	99,7	/1,0	219,4	/3,5	35,9	1/2,8	259,4
Sm	30,80	30,80	29,07	34,31	28,12	27,98	24,79	00,37	19,59	10,34	30,70	40,57
Eu	0,39	0,98	1,8	0,24	0,00	0,0	22.96	1,//	0,32	0,3	1,1	0,8
Gu Th	55,00	20,09	20,80	50,51	24,20	34,65	33,00 956	20,05 0 05	19,77	23,00	25,50	54,05
	0,0	4,39	4,12	3,70	4,00	7,72 52 1	8,30 50.12	0,0J 46.0	4,51	51.82	5,91 21.49	3,23 20,77
Dy	39,03	20,01	25,74	54,5	4 70	33,1 11 20	126	40,9	29,5	12.25	21,40 4 22	29,11
HO Er	7,07	5,29	4,04	0,05	4,79	26.52	12,0	7,90	0,05	12,23	4,25	0,14
EI	24,2	2 41	15,59	19,99	14,44	50,55	59,5	25,49	4.22	42,9	12,5	2 12
1 III Vh	5,92	2,41	1,69	3,57	2,21	41.00	0,45	5,57 25.24	4,25	7,41 52.26	1,00	5,12 22,82
10	27,87	15,20	11,0	25,57	14,00	41,99	44,15	23,24	50,75	33,30 7 97	12,24	25,82
Lu	4,2	2,27	1,07	3,43	2,15	285 1	2,95 201 2	3,73 280.2	4,44	205.0	1,01	3,7 201.0
I Total	213,0	149,1	133,2	00.52	140,7	203,1	271,2 00.26	209,5	100,9	293,9 00 57	00 47	271,9
IOUAL	77,02 570 66	77,4J 862.00	99,04 054 24	77,32 607 79	77,22	77,37 110 15	211 0	77,04 1000 07	207.20	77,31	77,47 040 66	77,43
LKEE	J / 9,00	003,02	904,04 00 21	127 56	/0/,44	446,45	344,2 200.00	1223,30	30/,39	100,17	949,00 82 20	1198,04
TKEE UDDEV	150,19	70,40 217 50	00,01	127,30	90,04 220 74	19/,4/	209,99	1/3,//	125,51	208,48	03,39 202 40	123,98
HKEE Y	202,19 045 45	247,58	221,31 1175 95	290,40	230,74	482,57	501,19 845 20	403,07	284,21	504,38	202,49	41/,88
KEE I	943,43	1110,0	11/3,85	904,24	990,18	931,02	043,39	1000,43	0/1,0	084,00	1132,13	1010,32

Table 9: Chemical composition (major elements, traces and rare earths) of the parent granite, greisenized granites and greisen from Faixa Placha.

Fig. 7. Domain of REE patterns in all analyzed granites and greisens from the FPTD. (chodrite normalization values of Sun & McDonough (1989).

Fig. 8. Chondrite normalized REE patterns of parent and altered granites. A and B: samples from the central part of the FPTD; C: samples from the southernmost border of the FPTD; (D): samples from the northern (NC10A) and southern (NC11A) parts of the FPTD.

6. Discussion and conclusions

The main discussion of this work is related to the concentrations of REE in parental granitic rocks and their accessory and secondary minerals (zircon, xenotime, monazite, thorite, apatite, and oxyfluorides), as well as their concentrations in the greisenized and tinmineralized rocks of the Faixa Placha tin deposit.

6.1. HREE-bearing minerals

Zircon is the main HREE-bearing accessory mineral in the studied granites. In the parental granite, the concentrations of HREE in the zircon are low, but in greisenized granites, the HREE contents are high, reaching up to 5.3% as observed in greisenized pb1c granite. The highest concentrations are related to metamict zircons from all studied granite facies. Tiny inclusions of xenotime are observed in some zircon grains and are probably the cause of P_2O_5 and Y_2O_3 values higher than 8% and 10%, respectively.

Teixeira and Botelho (1999) showed that there is a progressive enrichment in Y_2O_3 , HREE₂O₃, ThO₂ and UO₂ in zircons from the Pedra Branca massif as magmatic evolution takes place. Pupin (2000) reported that zircons of the late magmatic phase are generally enriched in incompatible elements such as U, Hf, and/or Y and that at this stage, UO₂ enrichment above 2000 ppm is remarkable. This result confirms that the zircons of the Faixa Placha were largely formed in the last magmatic stage, since this mineral shows UO₂ values of up to 3800 ppm in the biotite granite. However the higher UO₂ values near 1% observed in the greisenized granites are associated with high Y and REE concentrations and are probably due to hydrothermal alteration during which the chemical composition of magmatic zircon is altered. According to Förster (2006), the HREE are preferably incorporated into zircon by the substitution:

$$HREE^{3+} + P^{5+} \leftrightarrow Zr^{4+} + Si^{4+}$$

However, this author suggests that a continuous solid solution between zircon and xenotime is unlikely to exist.

Xenotime is the main source of Y, and in the Faixa Placha, this mineral occurs both as isolated grains and as inclusions or on the edges of zircon crystals. Xenotime presents Y_2O_3 concentrations that reach 39%, and the sum of HREE+Y oxides reaches 56%. The highest concentration of HREE₂O₃ in xenotime is found in the greisenized pb1b and pb1c granites, with contents up to 23.6%, but xenotime containing 22.1% HREE₂O₃ is observed in a better preserved pb1b granite sample.

HREE-bearing thorite occurs in the pb1b facies, in the most evolved rocks, which corroborates the suggestion of Botelho (1992) that thorium becomes compatible at the end of the Pedra Branca magmatic evolution, giving rise to thorite.

Thorite grains found as inclusions in zircon have the higher Y_2O_3 and $HREE_2O_3$ contents, reaching 9.1 and 3.6% respectively.

6.2. LREE-bearing minerals

The LREE-bearing minerals occurring in or near the Faixa Placha are monazite, apatite and oxyfluorides. Allanite is also a very common accessory mineral in the Pb1b granite, but in the Faixa Placha domain, this mineral was completely destabilized, giving rise to monazite and oxyfluorides. During the hydrothermal alteration, allanite, and to a lesser extent apatite, is not stable; they are destroyed and release P, Ca and REE, which have great affinity with F, a common element in the hydrothermal fluids associated with the A-type tin granites in the Goiás Tin Province (GTP). During these alterations, Ca gives rise to fluorite, while P and REE form monazite. Similar alterations are described by Zapata and Botelho (2018) in the Serra do Mendes massif, situated nearby the Pedra Branca massif and also related to the A-type granites of the GTP.

The studied monazite was separated into primary and hydrothermal types, the first one coming from evolved and less altered granite rock and the second from greisens and greisenized granites. Both monazites are classified as Ce-monazite. The hydrothermal monazite contains the highest LREE concentrations up to 68.6% LREE2O, while in the primary monazites, these values reach 64.5%. This difference is due to the substitution of REE by Ca, Th and U. The compositional variations of monazite can be explained by substitutions involving cheralite (CaTh(PO4)₂), huttonite (ThSiO₄), coffinite (USiO₄) and xenotime (Y(PO₄)), according to the following equations:

$$Ca^{2+}{}_{(A)}+Th^{4+}{}_{(A)} \leftrightarrow 2REE^{3+}{}_{(A)} (1)$$

$$Th^{4+}{}_{(A)}+Si^{4+}{}_{(B)} \leftrightarrow REE^{3+}{}_{(A)}+P^{5+}{}_{(B)} (2)$$

$$U^{4+}{}_{(A)}+Si^{4+}{}_{(B)} \leftrightarrow REE^{3+}{}_{(A)}+P^{5+}{}_{(B)} (3)$$

$$(HREE, Y)^{3+}{}_{(A)} \leftrightarrow LREE^{3+}{}_{(A)} (4)$$

Apatite occurs in less abundance in the FPTD, identified mainly in the granite Pb1b. The HREE values reach 6.32%, with the LREE more enriched in relation to the HREE reaching 5.3%; meanwhile, the HREE show maximum values of approximately 1.84%, and the sum of the HREE+Y shows values up to 4.05%. According to the work of Hoshiro et al. (2015), Hugher et al. (1991) and Roeder et al. (1987, apatite crystals may incorporate up to 21% REE2O3. The REE+Y-bearing apatite from the FPTD is partially to completely replaced by monazite, oxyfluorides and fluorite in the altered granites.

The studied apatite exhibits chemical substitutions that occur between components in the vast field of chemical composition of the apatite supergroup (Pan and Feet, 2002) that could be explained according to the following substitutions (Felsche, 1972; Fleet and Pan, 1995; Comodi et al., 1999; Cherniak, 2000; Serret et al., 2000; Chen et al., 2002a, b):

$$REE^{3+} + X^{2-} = Ca^{2+} + F^{-}$$
(1)

$$2REE^{3+} + \Box = 3Ca^{2+}$$
(2)

$$REE^{3+} + Na + = 2Ca^{2+}$$
(3)

$$REE^{3+} + SiO_4^{4-} = Ca^{2+} + PO_4^{3-}$$
(4)

According to Pan & Fleet (2002), in these coupled substitutions, mechanisms (1) and (2) are reported only in a synthetic compound with the apatite structure and not in natural apatite. On the other hand, (3) and (4) are generally observed in nature and are related to minerals of the apatite supergroup possessing REE as major elements, e.g., belovite $(Na(Ce,La)Sr_3(PO_4)_3F)$ and britholite $((Ce,Y,Ca)_5(SiO_4)_3OH)$. These two minerals, together with apatite, constitute groups within the apatite supergroup, i.e., the apatite group, belovite

group and britholite group (Hughes and Rakovan, 2015). These authors suggest that the coupled substitutions (3) and (4) are important for incorporation of REE in natural apatite.

Substitution (3) is well established on the basis of compositional data for natural apatite (Comodi et al., 1999; Peng et al., 1997; Roeder et al., 1987; Rønsbo, 1989). The incorporation of REE within apatite by substitution (3) results from apatite that contains high concentrations of alkaline elements as in the case of Na. Therefore, substitution (3) is often observed in apatite from alkaline rocks, including carbonatites.

Substitution (4) is largely proven in natural apatite (Comodi et al., 1999; Roeder et al., 1987; Rønsbo, 1989) and is supported by the complete solid solution between hydroxyapatite and britholite-(Y) (Ito, 1968; Khudolozhkin et al., 1973). This substitution leads to the final member $Ca_4REE_6(SiO_4)_6F_2$, which has been synthesized with compositions involving La, Ce, Nd, and Y (Ito, 1968; Mayer et al., 1974).

The apatite containing Ce and Y is of the britholite type. Therefore, both LREE-rich and HREE-rich apatites form via substitution (4). Britholite typically occurs in the metamictic state in alkaline rocks and pegmatites.

According to Pan and Fleet (2002), the incorporation of REE into natural apatite is caused by the type of substitution by belovite or britholite and may be related to the alkalinity and silica saturation in the melt (Roeder et al., 1987; Watson and Green, 1981). Replacement of the britholite type is important for the incorporation of HREE, Th and U into apatite.

According to this information and the presented chemical data, the fluorapatite from granites of the Pedra Branca Massif shows a substitution of the britholite type, and this reaction is due to the alkalinity of the hydrothermal fluids in the FPTD.

The oxyfluorides found in the Pedra Branca Massif are concentrated mainly in the FPTD related to the hydrothermally altered rocks. The REE_2O_3 concentrations reach approximately 80% in the greisenized granite with La, Ce and Nd as the elements with the highest values up to 18.5, 41.6 and 15.5%, respectively. According to the work of Teixeira (2002), the substitution of REE in the Pedra Branca Massif is due to the joint entry and intersubstitution between the REE as the main active substitutions, as in the case:

 $Th^{4+} + Ca^{2+} \leftrightarrow 2REE^{3+} \text{ and } 2Th^{4+} + Si^{4+} + [] \leftrightarrow 4REE^{3+}.$

An unidentified mineral rich in Nb, Y and REE is found as accessory in the biotite granite, included in the quartz mass. This mineral could be REE+Y-rich columbite, but its identification needs more detailed studies.

7. Concluding remarks

All the granites from the Faixa Placha tin deposit are enriched in REE with highest values more than 1000 times the chondritic value, and this enrichment is due mainly to magmatic evolution. Although LREE are more abundant than HREE, contents of HREE up to 500 times the concentration in chondrites have been found. Parental granites, greisenized granites and greisens have the same REE patterns and contents, indicating that there is no relevant change in concentration and fractionation of REE coevally with the hydrothermal evolution of granites in the Pedra Branca Massif.

The results obtained to date suggest that the Pedra Branca Massif has a dominant REE+Y-rich granite due to the presence of allanite, monazite, xenotime, thorite, zircon and

apatite. In the parental granites, greisenized granites and greisens, metamictized and altered zircons favor the concentration of HREE+Y, which reaches values above 500 ppm in some samples. The REE+Y concentrations and the mineral compositions suggest an economic potential in the Faixa Placha deposit, the main tin deposit in central Brazil, for recovery of REE as by-products. In addition, the area is also favorable for REE deposits of the ionic adsorption type in both the tin deposits and the weathered surfaces of the granite massif.

8. References

- Bea, F., Pereira M.D., Corretge L.G., Fershtater G.B., 1994. Differentiation of strong peraluminous, perphosphorous granites: The Pedrobernardo pluton, central Spain. Geochimical et Cosmochimica. Acta 58 (12), 2609-2627.
- Bea, F., 1996. Residence of REE, Y, Th, and U in granites and crustal protoliths, implications for the chemistry of crustal melts. Journal of Petrology 37 (3), 521-552.
- Botelho, N.F., 1992. Les ensembles granitiques subalcalins a peralumineux mineralisés en Sn et In de la sousprovince Paranã, état de Goiás, Brésil. Université de Paris VI, Paris, Thèse de Doctorat, 344p.
- Botelho N.F., Moura M.A. 1998. Granite-ore deposit relationships in Central Brazil. Journal of South American Earth Sciences 11 (5), 427-438.
- Botelho, N.F., Rossi, G., 1988. Depósito de estanho da Pedra Branca, Nova Roma, Goiás. Principais Depósitos Brasileiros -Metais Básicos Não Ferrosos, Ouro e Alumínio. DNPM 3, 1431.
- Botelho, N.F., Alvarenga, C.J.S., Menezes, P.R., D'el Rey, S. L. J. H., 1999. Suíte Aurumina: uma suíte de granitos paleoproterozóicos, peraluminosos e sintectônicos na Faixa Brasília. In: SBG/Núcleo Centro Oeste e Minas Gerais, Simp.Geol. Centro Oeste, 7, Brasília, Boletim de Resumos, v. 1. p. 49-49.
- Botelho, N.F., 2013. Potencial Econômico para Terras Raras em Granitos tipo-A da Província Estanífera de Goiás. XIII Simpósio de Geologia do Centro-Oeste, SBG, Cuiabá, Palestras.
- Brasil. Plano Nacional de Mineração 2030 (PNM 2030). Brasil, Ministério de Minas e Energia. Brasilía, MME, 2010.
- Chang, L., Howie, R.A., Zussman, J., 1996. Rock forming minerals volume 5B Non Silicates sulphates, carbonates, phosphates and halides.2 ed.London, Longma Group Limited, 383p.
- Chen, N., Pan, Y., Weil, J.A., 2002a. Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: part I. Local structural environment and substitution mechanism of Gd at the Ca2 site. American Mineralogist 87, 37-46.
- Chen, N., Pan, Y., Weil, J.A., Nilges, M.J., 2002b. Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: part II. Gd3+ at the Ca1 site, with a neighboring Ca2 vacancy. American Mineralogist 87, 47-55.
- Cherniak, D.J., 2000. Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta 64, 3871-3885.
- Comodi, P., Liu, Y., Stoppa, F., Woolley, A.R., 1999. A multi-method analysis of Si-, S- and REE-rich apatite from a new kind of kalsilite-bearing leucitite (Abruzzi, Italy). Mineralogical Magazine 63(5), 661-672.
- Cuadros, F.A., Botelho, N.F., Fuck, R.A., Dantas, E.L., 2017. The peraluminous Aurumina Granite Suite in central Brazil: An example of mantle-continental crust interaction in a Paleoproterozoic cordilleran hinterland setting?. Precambrian Research 299, 75-100.
- Deer, W.A., Howie, R.A., Zussman, J., 1997. Rock Forming Minerals Volume 1B Disilicates and Ring Silicates, London, The Geologiacal Society, 629p.
- Dostal, J., 2017. Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources, V.6, 12pp.
- Felsche, F., 1972. Rare earth silicates with apatite structure. J. Solid State Chem. 5, 266-275.
- Fleet, M.E., Pan, Y., 1995. Site preference of rare earth elements in fluorapatite. American Mineralogist 80, 248-258.
- Förster, H.J., 2006. Composition and origin of intermediate solid solutions in the system thorite-xenotimezircon-coffinite. Lithos 88, 35-55.
- Garcia, M.D.M., 2013. O projeto ETR da mina Pitinga. Apresentação no Ministério da Ciência e Tecnologia. Brasília, julho de 2013.

- Hinton, R.W., Paterson, B.A., 1994. Crystallisation history of granitic magma; evidence from trace element zoning. Mineralogical Magazine 58(A), 416-417.
- Hoshino, M., Sanematsu, K., Watanabe, Y., 2016. REE mineralogy and Resourcess. In: Bünzli Jean-Claude and Pecharsky Vitalij K (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 49, p.129 -291
- Issa Filho, Lima, P.R.A., Souza, O.M., 1984. Aspectos da geologia do complexo carbonatítico do Barreiro, Araxá MG, Brasil. In Complexos Carbonatíticos do Brasil: geologia. São Paulo. CBMN, p. 21-44.
- Ito, J., 1968. Silicate apatites and oxyapatites. American Mineralogist 53, 890-907.
- Khudolozhkin, V.O., Urosov, V.S., Tobelko, K.I., Vernadskiy, V.I., 1973. Dependence of structural ordering of rare earth atoms in the isomorphous series apatite-britholite (abukumalite) on composition and temperature. Geochemistry International 10, 1171-1177.
- Lenharo, S.L.R., Moura, M.A., Botelho, N.F., 2002. Petrogenetic and mineralization processes in Paleo- to Mesoproterozoic rapakivi granites: example from Pintinga and Goiás, Brazil. Precambrian Research 119, 277-299.
- Mariano, A., 1989. Natuyre of economic mineralization in carbonatites and related rocks. In Keit. B. (ed). Carbonatites, Genesis and Evolution, p. 149-176.
- Marini, O. J., Botelho, N. F, Rossi, PH., 1992. Elementos terras raras em granitóides da província estanífera de Goiás. Revista Brasileira de Geociências 22, 61-72.
- Mayer, I., Roth, R.S., Brown, W.E., 1974. Rare earth substituted fluoride-phosphate apatites. J. Solid State Chem. 11, 33-37.
- Menez, J., Botelho, N.F., 2017. Ore characterization and textural relationships among gold, selenides, platinumgroup minerals and uraninite at the granite-related Buraco do Ouro gold mine, Cavalcante, Central Brazil. Mineralogical Magazine 81(3), 463-475.
- Moura, M.A., Botelho, N.F., Olivo, G.R., Kyser, K., Pontes, R.M., 2014. Genesis of the Proterozoic Mangabeira tin-indium mineralization, Central Brazil: Evidence from geology, petrology, fluid inclusion and stable isotope data. Ore Geology Reviews 60, 36-49.
- Pan, Y., Fleet, M.E., 2002. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn, M.J., Rakovan, J., Hughes, J.M. (Eds.), Phosphates-Geochemical, Geobiogical, and Materials Importance. vol.48. Rev. Mineral. Geochem., Washington, DC, pp. 13-49.
- Pimentel, M.M, Botelho, N.F., 2001. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, Central Brazil. Anais da Academia Brasileira de Ciências 73, 263-276.
- Pupin, J.P., 2000. Granite genesis related to geodynamics from Hf-Y in zircon. Earth Sciences 91, 245-256.
- Rocha, A., Schissel, D., Sprecher, A., Tarso, P., Goode, J., 2013. Process Development for the Serra Verde Weathered Crust Elution-deposited Rare Earth Deposit in Brazil. In *Rare Earth Elements –Proceedings of the 52nd Conference of Metallurgists* (COM 2013), Edited by I. London, J. Goode, G. Moldoveanu and M. Rayat. Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (MetSoc-CIM), Montreal, Canada, 2013.
- Roeder, P. L., MacArthur, D., Ma, X.P., Palmer, G.R., 1987. Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist 72, 801-811.
- Rønsbo, J.G., 1989. Coupled substitution involving REEs and Na and Si in apatite in alkaline rocks from the Illimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist 74, 896-901.
- Santana I. V., Wall F., Botelho N. F. 2015. Occurence and behaviour of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: potential for ETR deposits. *Journal of Geochemical Exploration* 155, 1–13.
- Scherrer, N.C., Engi, M., Gnos, E., Jacob, V., Liechti, A., 2000. Monazite analysis; from sample preparation to microprobe age dating and REE quantification. Schweiz. Mineral. Petrogr. Mitt. 80, 93-105.
- Serret, A., Cabañas, M.V., Vallet-Regí, M., 2000. Stabilization of calcium oxyapatites with lanthanum(III)created anionic vacancies. Chem. Mater. 12, 3836-3841.
- Service, R. F., 2010. Nations move to head off shortages of rare earths. Science 327 (5973), 1596–1597.
- Stone, R., 2009. As China's rare earth R&D becomes ever more rarefied, others tremble. Science 325, 1336-1337.

- Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Editors)Magmatism in the ocean basins., Geological Society of London 42, 313-345.
- Teixera, L.M., Botelho, N.F., 1999. Comportamento dos elementos terras raras pesadas em zircão, xenotima e torita de granitos e greisens da subprovíncia estanífera Paranã, Goiás. Revista Brasileira de Geociências 29(4), 549-556.
- Teixera, L.M., Botelho, N.F., 2002. Comportamento cristaloquímico de monazita primária e hidrotermal durante a evolução de granitos e greisens: Exemplos das subprovíncias Tocantins e Paranã, Goiás. Revista Brasileira de Geociências 32(3), 335-342.
- Teixeira, L.M., Botelho, N.F., 2006. Comportamento Geoquímico de ETR durante evolução magmática e alteração hidrotermal de granitos: Exemplos da Província Estanífera de Goiás. Revista Brasileira de Geociências 36(4), 679-691.
- Wang, L., Xu, C., Zhao, Z., Song, W., Kynicky, J., 2015. Petrological and geochemical characteristics of Zhaibei granites in Nanling region, Southeast China: Implications for REE mineralization. Ore Geology Reviews 64, 569–582.
- Watson, E.B., Green, T.H., 1981. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet. Sci. Lett. 56, 405-421.
- Xu, C., Kynicky, J., Smith, M.P., Kopriva, A., Brtnicky, M., Urubek, T., Yang, Y., Zhao, Z., He, C., Song, W., 2017. Origin of heavy rare earth mineralization in South China. Nature Comunications, Open Acess, DOI: 10.1038/ncomms14598, p. 1-7.
- Zapata, A. M., & Botelho, N. F. 2018. Mineralogical and geochemical characterization of rare-earth occurrences in the Serra do Mendes massif, Goiás, Brazil. Journal of Geochemical Exploration, 188, 398-412.

CAPÍTULO III

2 CONCENTRATION OF RARE EARTH ELEMENTS IN THE FAIXA PLACHA TIN

3 DEPOSIT, PEDRA BRANCA A-TYPE GRANITIC MASSIF, CENTRAL BRAZIL,

4 AND ITS POTENTIAL FOR ION-ADSORPTION-TYPE REEY MINERALIZATION.

5 Costa N. O.¹ Botelho N. F.¹

⁶ ¹University of Brasília, Institute of Geosciences, Campus Darcy Ribeiro, 70919-970, Brasília-

7 DF, Brazil

1

8 Corresponding author: Nilson Botelho, email: nilsonfb@unb.br

9 phone: +55 (61) 99756150

10 Abstract

The Goiás Tin Province (GTP) in Brazil hers great potential for rare earth element (REE) 11 deposits associated with A-type granites, such as the Pedra Branca Massif, which contains 12 13 several Sn deposits and REE anomalies, hosted in its cupola and fracture greisens. The Faixa Placha is the most important tin deposit in the Pedra Branca Massif and has high REEY 14 concentrations, both in the Sn ore and parent granite, as well as greisenized granites with the 15 potential to be economically used as a byproduct of tin. The values exceed 1000 ppm in light 16 rare earth elements (LREEs) and 500 ppm in heavy rare earth elements (HREEs)+Y. The 17 18 REE-bearing minerals in the parent granite are allanite, monazite, xenotime, thorite, apatite, and zircon. These minerals, except zircon, are altered to secondary monazite, silicates, 19 20 fluorcarbonates, and oxyfluorides, which are responsible for the concentration of REE in greisenized granites and greisens and the availability of these metals for the clay fraction of 21 22 saprolites and soils. Ion exchange analyses in the saprolites and soils of a Faixa Placha profile show that the extractions in the clay fraction are more enriched in REEY compared to the 23 whole-rock extractions, with values between 3.425 and 36.762 ppm and between 2.804 and 24 21.689 ppm, respectively. The REEs are more enriched in the basal part of the profile, 25 26 especially the LREEs. These exchangeable REEY concentrations indicate the potential of the Faixa Placha and nearby areas to constitute an important REEY deposit of the ion-adsorption-27 28 type.

29 Key words: REE, Ion Adsorption, Faixa Placha, Tin deposit, Pedra Branca Massif

30 **1. Introduction**

In recent years, the demand for rare earth elements (REEs) has become increasingly critical 31 because of their scarcity in the world market (Roskill, 2007; Sanematsu et al., 2009). The 32 price of heavy rare earth elements (HREEs) has been drastically increasing compared to that 33 of light rare earth elements (LREEs) (Naumov, 2008). Thus, the critical global demand is for 34 HREEs, primarily dysprosium, yttrium, and europium, along with the LREE neodymium 35 (Stone, 2009; Service, 2010; Garcia, 2013). The problem is not only the increased demand for 36 HREE but also the limited supply of ore deposits. Currently, much of the HREE supply 37 38 comes from ion-adsorption deposits located in the Longnan District in southern China 39 (Sanematsu et al., 2009; Hoshino et al., 2016; Xu et al., 2017). However, despite the critical situation projected for the future, a significant reduction in REE prices was observed in 2017 40 due to excessive supply that was mainly from China, which continues to dominate the world 41 market (Roskill, 2018; USGS, 2019). 42

In Brazil, the best-known REE deposits are associated with carbonatites, and only more 43 recently has attention been paid to the potential of granite rocks for the concentration of these 44 metals, especially in the Goiás Tin Province (GTP). Previous studies drew attention to the 45 46 REE enrichment of A-type granites of the GTP, which was mainly due to the presence of 47 REE-rich zircon and apatite (Marini et al., 1992; Botelho, 1992; Teixeira and Botelho, 1999, 2002 and 2006). In this context, more recent studies have led to the characterization of an ion-48 49 adsorption deposit in the Serra Dourada Massif (Rocha et al., 2013; Santana et al., 2015) and 50 important REE anomalies in the Serra do Mendes (Zapata and Botelho, 2018) and Mocambo (Vieira et al., 2019) massifs neighboring the Pedra Branca Massif, which is the subject of this 51 52 study. This group of granites is also compared with the A-type granites of Pitinga in the Amazon region; known for their REEY enrichment (Lenharo et al., 2002). 53

The Faixa Placha is the main concentration area of tin ore in the Pedra Branca Massif, which is part of the Pedra Branca Suite in the GTP and located in the northern part of Goiás State. The Faixa Placha has relevant concentrations of REEs that could be used as byproducts of tin. These REEs are the focus of this work through studies carried out in granites and greisens and in the supergenic parts (soils and saprolites), where REE enrichment was observed, with greater enrichment of LREEs relative to HREEs.

60 2. Geological Context

The GTP consists of a succession of tin deposits housed in granite bodies of Paleo- to 61 Neoproterozoic age, which are distributed across four subprovinces, of which the most 62 relevant are the Paranã Subprovince (PSP) and the Tocantins Subprovince (TSP) (Marini and 63 Botelho, 1986) (Fig. 1). These subprovinces consist predominantly of A-type granites, which 64 are intrusive in paragneisses and mica schists of the Ticunzal Formation, and in granite 65 mylonites, granites, and tin pegmatites of the peraluminous Aurumina Suite. Granites of both 66 subprovinces have high contents of alkalis, Sn, Y, Nb, Th, Rb, Nb, and REE, which define 67 them as A-type granites (Botelho, 1992; Lenharo et al. 2002). 68

The A-type granites of the Paranã Subprovince are grouped in the Pedra Branca Suite (PBS) 69 and subdivided into two groups, Pb1 (1.77 Ga., U/Pb zircon; Pimentel et al., 1991) and Pb2 70 (1.72 Ga, monazite dating, Teixeira, 2002). The Pb1 granites exhibit alkaline to subalkaline 71 trends; high levels of Zr, Y and REE; and incompatibility of Nb and Th during their magmatic 72 73 evolution. These granites are subdivided into facies Pb1a, Pb1b and Pb1c in increasing order 74 of evolution, whereas Pb2 granites are represented by facies Pb1a, Pb2a, Pb2b, Pb2c, Pb2d, and Pb2e, which range from metaluminous to peraluminous and are responsible for Sn 75 deposits (Botelho, 1992). The Pedra Branca Suite consists of an extensive volcano-plutonic 76 77 system related to the Araí Group, a volcano-sedimentary continental rift sequence. The plutonic part of the PBS is composed of granite intrusions that form topographic highs with a 78 79 circular or elliptical shape. More detailed information on these granites can be found in 80 Lenharo et al. (2002), where granites Pb1 and Pb2 are called g1 and g2, respectively. The study area is located in the Pedra Branca Massif, which is the type area of the Pedra Branca 81 82 Suite. The Pedra Branca Massif consists of granites pb1 and pb2 (Fig. 1), whose mineralogical composition is summarized in Table 1. Pb1 granites are pink biotite granites, 83 84 which are represented by facies pb1b and pb1c. Pb2 granites consist of biotite granites pb2a, pb2b and pb2c and Li-mica leucogranite pb2d. Leucogranite pb2d is the most evolved facies 85 of the Pedra Branca Massif, which is responsible for the tin deposits. The Pedra Branca 86 massif has the largest tin deposits in the GTP and central Brazil in areas called the Basin Zone 87 88 and Faixa Placha. The Basin Zone is the cupola of the granite massif, which consists of Limuscovite-topaz-quartz greisens hosted in a pb2d granite. The Faixa Placha is located in the 89 90 fracture zone at the edge of this cupola.

91 Table 1

92 Mineralogy and petrography of the granites of the Pedra Branca Suite (adapted from Botelho, 1992; Teixeira and Botelho, 1999; Zapata and Botelho, 2018; Vieira et al., 2019)

pb1 granites								
alkaline to subalkaline								
Facies	pb1a		pb1b	pb1c				
Rock	grey monzogranite		pink porphyritic monzogranite	pink sienogranite				
Essential Mineral	ls quartz, oligoclase, microcline, biotite	(5%MgO)	quartz, oligoclase, microclíne and annite	quartz, microclíne, albite and syderophylite				
Accessory minera	ls ilmenite, allanite, apatite, zircon, an	d fluorite ilmenite, zi	rcon, allanite, monazite, apatite, xenotime and fluorite	ilmenite, zircon, monazite, thorite and fluorite				
	Hydrothermal alteration in fractures, gi	ving rise to greisenized granit	es and gresisens. Replacement of magmatic biotite and	neoformation of Li-syderophyllite, Li-muscovite,				
Alteration and	topaz, fluorite , cassiterite, Nb-Ta min	erals, sulfides, chlorite, magn	etite and carbonates. REE-bearing accessory mineral	s replaced by monazite, britholite, bastinaesite,				
secondary minera								
pb2 granites								
	metaluminous to peraluminous							
Facies	pb2a	pb2b	pb2c	pb2d				
Rock	dark grey monzogranite	pink porphyritic monzogranite with coarse groundmass	medium pink equigranular monzo- to sienogranite	medium to coarse leucosienogranite to albite granite				
Essential Minerals	quartz, oligoclase, microcline, biotite (6% MgO)	quartz, oligoclase, microcline, syderophyllite (4,5% MgO)	quartz, oligoclase, microcline, syderophyllite (1,5% MgO)	quartz, albite, microcline, Li-syderophyllite to zinnwaldite				
Accessory minerals	ilmenite, allanite, apatite, zircon, monazite thorite and fluorite	ilmenite, allanite, apatite, zircon, xenotime and fluorite	apatite, zircon, monazite, xenotime and fluorite	zircon, fluorite, monazite, cassiterite, Nb-Ta minerals				
Alteration and	n and Hydrothermal alteration in cupolas and fractures, giving rise to greisenized granites and gresisens. Replacement of magmatic biotite and neoformation of Li-syderophyllite,							
secondary	zinnwaldite, Li-muscovite, topaz, cassiterite, wolframite, sulfides, In-bearing minerals, chlorite, magnetite, fluorite and carbonates. REE-bearing accessory minerals replaced by							
minerals	monazite, britholite, bastinaesite, fluocerite, and REE-oxifluorides. Local albitization related to pb2d granites.							

93

Fig. 1. Geological map of the northern part of the Goiás Tin Province, showing the location of the Pedra Branca Massif (Botelho, 2013).

96 **3. Faixa Placha Tin Deposit**

The Faixa Placha is the most important mineralized zone of the Pedra Branca Massif, with a 97 length of 4 km and thickness between 20 and 150 meters. However, at 100 meters deep, this 98 thickness is reduced to 10 meters (Fig. 2). The general orientation of the Faixa Placha is N30-99 40E, 70-80NW, which represents an intensively deformed and cataclased fracture zone. The 100 101 mineralization is all pretectonic. The dominant mineralized rock is a Li-siderophyllite-topaz-102 quartz greisen called "black greisen" The central part of the Faixa Placha that represents approximately 1/4 of its extension, contain an indicated reserve of 15 kt of Sn (Botelho and 103 104 Rossi, 1988). This prospect is now owned by EDEM Projetos 105 (http://edemprojetos.com.br/projetos/projeto-pedra-branca-sn-f-etr/)

106 The highest concentration of cassiterite mining occurred in this central and richer part of the

107 Faixa Placha. The greisens are composed of topaz, quartz, Li-siderophyllite and cassiterite.

108 The cassiterite in this region contains 0.2% of In (Botelho and Moura, 1998). At a depth of

approximately 120 meters, drilling works have intercepted a 10-meter sulfide-rich zone,

below the main mineralized band, containing sphalerite with 1% In. (Fig. 2).

113 Fig. 2. Geological map of the Pedra Branca massif and schematic cross section (A-B) with detail of the central part of the Faixa Placha (modified from Botelho, 1992).

114 **4. Materials and Methods**

115 4.1. Sampling of saprolites and soils of the Faixa Placha and nearby areas

The first samples of saprolites were collected in weathering profiles of the Faixa Placha, located in the vicinity of an experimental tin ore mine (**Fig. 3A**). In this area, a large concentration of greisen veins was observed. Soils (**Fig. 3B and 3C**) were also sampled in several auger drilling holes located in the central-south portion of the Pedra Branca Massif to compare it with the Faixa Placha.

121

122

Fig. 3. Sampling of saprolite in the Faixa Placha (A) and auger soil sampling in planing surface near the FaixaPlacha (B) and (C).

125 4.2. Clay separation by the sieving method

126 This work was carried out at the X-ray Diffraction Laboratory of the Institute of Geosciences, 127 University of Brasilia (UnB). The samples were quartered and sieved into ≥ 250 , ≥ 125 , ≥ 62 , 128 ≥ 45 , ≥ 20 and $< 20 \ \mu m$ fractions. The procedure used to extract the clay fraction (< 20 \ μm) 129 for subsequent ion exchange analysis was washing the sample for clay disaggregation.

130 4.3. Clay fraction separation for X-ray diffraction analysis

The clay fraction was separated from the total sample. Three steps were completed; in the first step, 2 g of the sample and 50 ml of distilled water were placed into two separate tubes and then centrifuged at 750 rpm for 7 min. In the second step, the suspended clay fraction was recovered and placed into two tubes with 50 ml of distilled water for further centrifugation at 3,000 rpm for 30 min. In both steps, the temperature was 30°C. The last step consisted of the recovery of the precipitated clay fraction at the bottom of the tubes and its preparation for Xray diffraction (XRD) analysis.

138 4.4. Powder XRD analysis

This work was carried out in whole rock and clay fraction analyses were performed on a Rigaku Ultima IV diffractometer using the powder method. The samples were crushed in an agate mortar.The analyzed material consisted of 8 total samples, including 5 saprolites (NC17_3 to NC17_7, 2 soils (NC17_1 and NC17_2), and 1 laterite (NC17_LC). Kaolinite ws observed in all analyzed samples. The diffractograms were processed using Jade 9 software for Windows with the PC-PFC database run by the International Center for Diffraction Data (ICDD).

146 4.5. Cation extractions and ion exchange analysis

Before starting sample extractions, the tubes were rinsed in ultrapure water, cleaned by
immersion in 1 M HNO₃ for 24 hours, and again rinsed repeatedly in ultrapure water.

The extractions were carried out at the Geochemistry Laboratory, UnB, and analyzed at Actlabs Laboratory in Canada. The analyzed material comprised the 5 saprolite and 1 lateritic crust samples. The concentrations of the extracted elements were determined by highresolution inductively coupled plasma mass spectrometry (HRICP-MS).

153 *4.5.1. Single-step extraction (clay fraction and total sample)*

The single-stage extraction was performed on 11 samples from the weathering profile of the Faixa Placha (NC17), from which 5 samples (NC17_3, 4, 5, 6, and 7) were used for the extraction of the clay fraction and 6 samples were used for the extraction of the total sample (NC17_3, 4, 5, 6, 7, and LC). The procedure was based on the studies of Sanematsu et al. (2015), and Sanematsu and Kon (2013).

159 One gram of the sample and 40 ml of a 0.5 M (6.6% weight) solution of ammonia sulfate 160 $[(NH_4)SO_4]$ with pH ~5.7 were added to a 50-ml centrifuge tube. The tube was mechanically 161 stirred for 24 hours at room temperature and then centrifuged for 15 minutes at 4,500 rpm to 162 separate the solids from the solution. The supernatant solution was then filtered with a 163 cellulose acetate membrane filter ($\varphi = 0.22 \mu m$) and prewashed with ultrapure acidified water

164 using 1% HNO₃ (**Table 2**).

165 Table 2

166	Experimental	conditions	of the sin	gle-step	extraction	using the	e ammonium	sulfate so	olution.
				<i>a</i>		···· (7 ·			

				167
Extraction	Reagent	pН	Reaction	Dominantly reacting material
Step			Time (hrs)	168
1	0.5M ammonium sulphate	5.7	24	Ion-exchangeable materia169
				170

171 4.5.2. Two-step extraction

172 **4.5.2.1.** Amorphous oxides of Fe and Mn - Step 1

173 In this step and step 2, only the 6 whole samples (NC17_3, 4, 5, 6, 7, LC) were processed 174 (**Table 2**).

175 Based on the procedure of Rauret et al. (1999), 10 ml of a mixture of 0.2 M $NH_4C_2O_4H_2O$

176 (ammonium oxalate) with 0.2 M $C_2H_2O_4$ (oxalic acid) were added to the solid that was

177 retained in the tube used for the single-step extraction. The solution was mechanically stirred

178 for 4 hours at 20° C. After this, the solution was centrifuged for 17 minutes and then filtered.

179 **4.5.2.2. Fe and Mn oxides - Step 2**

Step 2 consisted of the extraction performed with the solid residue retained in step 1 using 40 ml of the reagent 1.24 M hydroxylamine (NH₂OH) at pH = 1. The solution was stirred for 16 hours at room temperature, then centrifuged for 20 minutes and filtered with a 0.22- μ m membrane (**Table 3**).

184 Table 3

185 Experimental conditions of the two-step extraction.

Extraction	Reagent	pН	Reaction	Dominantly reacting materials
step			Time hrs)	
1	0,2M Ammonium oxalate and 0,2M oxialic acid	1	4	Amorphous Fe oxide and Mn oxide
2	1,24M hydroxylamine	1	16	Fe and Mn oxide

186 *4.6. Whole-rock geochemistry*

187 The samples for geochemistry were crushed in an agate mortar and sent for analysis at the Acme Analytical Laboratories Ltd., Canada. Fifteen samples were obtained, the same 5 188 samples of saprolite, 4 samples of soil (NC4E, NC10B, NC17 1, NC17 2), 2 samples of 189 190 parental granite (NC3A, NC4C and NC10A), 7 samples of greisenized granite (NC3B, NC4B, NC6, NC7, NC8, NC9, NC11), 1 sample of greisens (NC4A) and the sample of lateritic crust. 191 192 The adopted analytical routine involved the melting of the samples with lithium metaborate, 193 multi-acid attack, inductively coupled plasma emission spectrometry (ICP-ES) for analysis of 194 the major elements and ICP-MS for the minor and trace elements except for the base metals, 195 which were extracted with HNO₃.

196 4.7. Electron microprobe and scanning electron microscopy

197 The analyses were carried out on a JEOL JXA-8230 electron microprobe at the Electron 198 Microprobe Laboratory at the Institute of Geosciences of the UnB, and it was equipped with 199 five wavelength-dispersive spectrometers (WDS) and one energy-dispersive spectrometer (EDS) for qualitative analyses. Two stages of analysis were conducted. In the first stage, 200 201 secondary electron (SE) and backscattered electron (BSE) images were acquired and an EDS 202 analysis was conducted to identify the minerals enriched in REEY. The second stage 203 consisted of quantitative analyses performed using two analytical programs. In the first 204 program, an accelerating voltage of 15 kV, beam current of 10 nA and beam diameter of 1 µm 205 were used for the analysis of Si, Al, F, P, Sr, Mn, Ti, Y, Ca and Fe. In the second program, 206 REE, Y, Na, Pb, K, Th, Zr, U, and Ba were analyzed with an accelerating voltage of 20 kV, 207 beam current of 50 nA and beam diameter 1 µm. The count times for all elements was 10 208 seconds at the peak and 5 seconds in the background. Interference corrections were performed 209 in all necessary cases.

210 **5. Results**

This work addresses the supergene enrichment of REE, which was studied by sampling the soils and saprolites from the Faixa Placha and surroundings. The samples were geochemically analyzed based on information about the concentrations of REEs in these materials.

214 5.1. Comparisons between granites, greisens, saprolites and soils

215 The Pedra Branca Massif consists of A-type granite or intraplate granite, which are associated

with the evolution of a continental rift system (Marini and Botelho, 1986; Marini et al., 1992).

The granites and greisenized granites analyzed in this study plot in the field of intraplate granites in the diagram of Pearce (1984) (**Fig. 4**).

219

Fig. 4. Plot of granites of the Pedra Branca Massif in the Y + Nb versus Rb diagram (Pearce, 1984). VAG,
 volcanic-arc granite; ORG, ocean ridge granite; WPG, within plate granite, Syn-COLG, syn-collisional granite.

The comparison between the parental granite (NC10A) and corresponding soil (NC10B) 222 223 indicates that both are enriched in REE relative to chondrite, with minimum values above 10 224 times (Fig. 5A). However, the granite is more enriched in REE than the soil at values of 225 approximately 1042.6 and 666 ppm, respectively, and the LREE values were approximately 1,000 times higher than chondrite, whereas in the soil, the LREE values were approximately 226 227 600 times higher. The HREE content in granite is above 100 ppm, while in the soil it is 228 approximately 37 ppm, and the HREEY values are 221.5 and 81.3 ppm, respectively (Table 229 **4**).

The comparison among granites (parental and greisenized), greisen and soil resulting from the greisenized granite from the NC4 samples (**Fig. 5B**) shows that all of them are enriched in REE and present minimum values that are 10 times higher than chondrite, thus confirming the previous findings. When comparing the samples, the greisen presents a slight enrichment of REEs relative to other elements at 1,324.6 ppm and enrichment in HREEY of 417.9 ppm. The parental and greisenized granites have almost the same REE pattern at 961.5 and 857.5 ppm, respectively. Compared to the granites, the soil has a slight enrichment in HREE from

- dysprosium, although the granite is more enriched in total HREE at a value of 98.5 ppm,
- while the soil has a value of 93.5 ppm (**Table 4**).

Fig. 5. Chondrite-normalized REE patterns (Boynton, 1984) of pb1b parental and greisenized granites and their correspondig soils, in the Faixa Placha (B) and nearby areas
 (A).
242 Table 4

243 Whole-rock chemical analysis of the biotite granite, greisenized granite, greisen and soil of the Faixa Placha and nearby areas.

					Faixa Plach		Nearby areas							
Sample	NC4A greisen	NC4B greisenized granite	NC4C biotite granite	NC4E soil	NC6 greisenized granite	NC7-A greisenized granite	NC8 greisenized granite	NC9A greisenized granite	NC9B Greisenized granite	NC10A biotite granite	NC10B soil	NC3A biotite granite	NC3B greisenized granite	NC11 greisenized granite
(0/)														
(%) SiO ₂	70,37	88,18	72,9	75,32	76,79	74,6	65,19	76,87	68,89	74,34	68,92	75,42	73,85	71,94
TiO ₂	0,18	0,19	0,22	0,27	0,04	0,04	0,04	0,05	0,08	0,33	0,57	0,05	0,03	0,23
Al_2O_3	11,63	3,91	12,57	11,73	11,35	12,44	10,38	11,83	15,99	11,77	15,08	12,51	13,67	12,62
Fe ₂ O ₃	6,43	3,11	2,21	4,93	1,18	1,45	1,3	1,33	3,06	3,62	6,49	1,47	1,24	2,56
MnO	0,08	0,01	0,06	0,02	0,01	0,02	0,02	0,03	0,05	0,03	0,02	0,01	0,02	0,03
MgO	0,06	0,07	0,11	0,14	0,1	0,15	0,51	0,07	0,23	0,18	0,15	0,09	0,04	0,13
CaO	3,21	1,02	1,27	0,06	1,14	0,78	11,36	0,86	0,34	0,88	< 0.01	0,88	0,15	1,61
Na ₂ O	0,03	0,01	1,98	0,03	2,64	2,38	1,23	2,51	1,35	2,58	< 0.01	3,11	3,51	1,87
K ₂ O	3,51	1,19	6,2	2,26	4,64	5,2	4,71	5,03	6,78	4,83	0,97	4,98	5,21	6,25
P_2O_5	0,03	0,03	0,03	0,03	< 0.01	<0,01	< 0.01	< 0.01	< 0.01	0,08	0,03	<0,01	<0,01	0,03
P.F.	3,9	1,5	1,9	4,9	1,5	2,3	4,8	1	2,8	1	7,4	1,1	1,8	2,2
TOTAL	99,43	99,22	99,45	99,69	99,39	99,36	99,54	99,58	99,57	99,64	99,63	99,62	99,52	99,47
(ppm) Be	5	1	7	8	15	16	5	6	37	6	5	1	7	10
Rb	1131,6	409,7	635,7	503,9	430,5	574,7	527,9	472,2	871,1	253	101,9	0,1	628,2	323,5
Cs	12,2	5	4,9	6,2	5	3,7	3,4	2,5	5,1	5,8	3,3	0,1	5,5	3
Ba	56	45	434	122	202	166	185	179	301	896	266	1	40	557
Sr	23,5	24,1	35,3	14,7	13,5	10,8	15,2	22,3	15,6	96,7	13,4	0,5	8,5	44,3
Ga	46,7	22,6	30,2	42,8	34,9	39,8	32,4	33,2	58,9	25,2	28,9	0,5	46,5	28
v	<8	<8	<8	15	<8	<8	<8	<8	<8	<8	31	8	<8	12

Sn	785	124	15	193	7	467	30	25	103	9	20	1	22	29
Та	5	5,4	7,2	8,6	10,2	11,7	9,5	13,1	14,5	2,5	3,9	0,1	23,4	6,6
Nb	50,9	37,9	60,7	84,3	83,8	93	74,1	105,4	111,9	40,4	61,2	0,1	108,8	54,3
Th	58	58	61,9	61,3	59,3	45,9	46	66,9	75,3	35,3	36,7	0,2	49,9	65,2
U	7,7	5,9	3,8	6,4	8,5	19,6	10,5	16,9	32,7	5,3	16,9	0,1	6,5	11
Zr	345,3	364,5	388,5	410,9	120,4	95,2	99,4	156,9	178,7	496,1	1194,6	0,1	83,8	375,6
Hf	13,2	12,4	13	14,2	7	5,4	5,4	8,6	9,8	15,1	30,5	0,1	5,8	12,5
Y	291,9	140,7	149,1	161,4	285,1	291,2	289,3	160,9	295,9	133,2	46	0,1	168,9	119,1
Sc	8	7	6	7	7	7	6	6	15	6	9	1	6	6
Ni	0,8	1,5	1,3	0,2	1,7	2,7	1,5	1,3	1,2	2	0,9	0,1	2,3	1,7
Cu	71,6	100,7	46,6	17,7	74,1	101,6	135,9	151,8	133,2	152,1	35,3	0,1	20,9	24
Zn	403	2584	707	82	79	80	68	45	56	204	26	1	104	71
Pb	9,6	14,2	26,6	26,8	78	29,3	123,4	102,7	133,2	62,9	21,1	0,1	14,7	24
Mo	2,9	1,3	2,5	3,3	2,4	4,2	0,7	1,6	1,7	3	2,1	0,1	0,6	1,1
As	< 0.1	1,7	0,9	3,3	0,6	<0,5	< 0.5	9	6,3	0,6	2,4	0,5	0,6	<0,5
Bi	7,7	5,9	0,4	1	0,4	0,5	1	0,6	0,9	0,2	0,3	0,1	0,8	0,1
Tl	2,8	0,9	0,6	0,5	0,8	1,4	1,8	0,6	1,4	0,7	0,2	0,1	0,9	0,5
(ppm) La	305,7	192,6	221,9	159,5	102	72	310,1	84,2	30,4	240,4	102,3	0,1	176	229,3
Ce	514	357,9	391,6	267,8	192,3	156,4	491,1	189,4	88,7	460,6	431,2	0,1	215,2	466,2
Pr	72,37	41,26	47,18	31,14	25,87	19,01	74,62	20,38	8,53	49,07	18,89	0,02	40,53	49,5
Nd	259,4	146,9	170,5	106	99,7	71,6	279,4	73,5	35,9	172,8	66,7	0,3	141,5	172,8
Sm	46,37	28,12	30,86	19,52	27,98	24,79	66,37	19,59	16,34	29,67	10,78	0,05	34,31	30,76
Eu	0,8	0,66	0,98	0,49	0,6	0,4	1,77	0,32	0,3	1,8	0,82	0,02	0,24	1,1
Gd	34,65	24,28	26,69	19,55	34,83	33,86	56,03	19,77	25,88	26,86	9,46	0,05	30,51	25,56
Tb	5,23	4,06	4,39	3,85	7,72	8,56	8,85	4,31	6,99	4,12	1,4	0,01	5,76	3,91
Dy	29,77	23,27	26,01	24,78	53,1	59,12	46,9	29,3	51,82	23,74	8,71	0,05	34,3	21,48

Но	6,14	4,79	5,29	5,33	11,28	12,6	7,96	6,85	12,25	4,64	1,89	0,02	6,63	4,23
Er	19,55	14,44	16,16	16,47	36,53	39,3	23,49	23,66	42,9	13,59	5,5	0,03	19,99	12,3
Tm	3,12	2,21	2,41	2,7	6	6,45	3,57	4,23	7,41	1,89	0,93	0,01	3,37	1,86
Yb	23,82	14,86	15,26	18,44	41,99	44,15	25,24	30,75	53,36	11,8	6,43	0,05	23,57	12,24
Lu	3,7	2,13	2,27	2,69	6,02	5,95	3,73	4,44	7,87	1,67	1	0,01	3,43	1,81
REE	1324,62	857,5	961,5	678,26	645,92	554,2	1399,1	510,7	388,65	1042,65	666,01	0,82	735,34	1033,05
REEY	1616,52	998,18	1110,6	839,66	931,02	845,4	1688,4	671,6	684,55	1175,85	712,01	0,92	904,24	1152,15
LREE	1198,64	767,44	863,02	584,45	448,45	344,2	1223,4	387,89	180,17	954,34	630,69	0,59	607,78	949,66
HREE	125,98	90,04	98,48	93,81	197,47	210	175,77	123,31	208,48	88,31	35,32	0,23	127,56	83,39
HREEY	417,88	230,74	247,58	255,21	487,57	501,2	465,7	284,21	504,38	221,51	81,32	0,33	296,46	202,49

245 5.2. Faixa Placha weathering profile

246 In a pit of the Faixa Placha (Point 17), the laterite zone, soils, and saprolites were sampled in a weathering profile with a thickness of approximately 20 meters (Fig. 6). Except in the laterite, 247 248 all the samples were taken in channels. The top of the profile consists of a 20 cm thick laterite 249 crust (NC17_LC). The A horizon consists of a poorly developed soil, sampled at a thickness 250 of 50 cm (NC17_1). The transition of soil to saprolite occurs at a depth of 90 cm. and a 251 soil/saprolite sample was collected at a thickness of 60 cm (NC17_2). Below this level, a 252 mottled clay-rich saprolite was sampled at a thickness of 50 cm (NC17_3). An interval of 6.4 meters below this point could not be sampled. The sampling proceeded from the base of the 253 254 profile, with an 80 cm sample collection (NC17_7) in grayish saprolite, followed by another 255 80 cm sampled in yellowish gray saprolite (NC17_6). A new interval of 8.4 meters was not 256 sampled. Two more samples of 80 cm each were collected, consisted of a whitish gray saprolite at 10.8 meters from the base (NC17_5) and a whitish to pink saprolite between 10.8 257 258 meters and 11.6 meters (NC17_4).

Fig. 6. Photography of the weathering profile sampled at the center of the Faixa Placha (NC 17).

261 5.3. Geochemical results

262 In the weathering profile of the Faixa Placha (point 17), samples of lateritic crust (NC17_LC), soil (NC17_1), saprolite soil (NC17_2) and saprolites (NC17_3 and NC17_4) were compared 263 264 with the greisenized granite pb1c, which was sampled in a gallery just below the profile 265 (NC17) (Fig. 7). The granite is more enriched in REEs than the laterite zone, soils (NC17_1 266 and NC17_2) and saprolites (NC17_3 and NC17_4), and the REE values are 645.92; 89.74; 267 509.49; 382.25; 312.79 and 248.79 ppm, respectively. However, the slight enrichment of Ce 268 in the soil sample (NC17_1) relative to granite stands out. The Ce value is 258 ppm in soil but 269 192.3 ppm in granite. Regarding the HREE, the clayey saprolite (NC17 3) is the most 270 enriched in these elements compared to the other saprolites and soils that are at the top of the 271 weathering profile, which had values above 100 times the chondrite (Fig. 8A). The HREE 272 value is 197.47 ppm in the greisenized granite and 89.17 ppm in the clayey saprolite, 273 revealing higher enrichment in the greisenized granite compared to the clayey saprolite 274 (Table 5).

- 275 In the base (NC17_7) and (NC17_6) and intermediate (NC17_5) portions of the profile, 276 compared to greisenized granite pb1c (Fig. 8B), the NC17_6 sample, which is a saprolite of the base, is more enriched in the REEs in relation to the granite, presenting values of 1569.94 277 and 645.92 ppm, respectively (Table 5). This sample has a positive Ce anomaly that is 1,000-278 279 times higher than chondrite, while in granite, it is approximately 200-times higher. Regarding 280 the saprolites, the base ones (NC17_7 and NC17_6) are more enriched in REEs than the 281 saprolites in the intermediate part of the profile (NC17_5), and the values are 532.55, 282 1569.94, 365.73 ppm, respectively.
- The NC17_6 saprolite, which is the most basal part of the B horizon, is the most enriched in REEs in the entire profile. This horizon is the zone of greatest accumulation of REEs, which are adsorbed in kaolinite. This sample has a LREE value of 1348.5 ppm and HREEY value of 559.44 ppm (**Table 5**).
- The NC17_7 sample has a chemical composition close to that of the greisenized granite belowthe weathering profile.

Fig. 7. Diagrams showing the variation of the relative REEY concentration in the whole-rock samples from the weathering profile of the Faixa Placha.

Fig. 8. Chondrite-normalized REE patterns (Boynton, 1984) of the saprolite, soil and laterite in samples from the upper zone (A) and lower zone (B) of the Faixa Placha
 weathering profile. Comparison with the greisenized granite (N6C) below the weathering profile.

295 Table 5

296 Chemical analysis of the laterite crust, soil, saprolites and greisenized granite of the Faixa Placha.

Samples	NC17_LC Laterit. crust	NC17_1 Soil	NC17_2 Soil	NC17_3 Saprolite	NC17_4 Saprolite	NC17_5 Saprolite	NC17_6 Saprolite	NC17_7 Saprolite	NC6 Greisenized granite
(ppm)									6
V	433	9	< 5	< 5	< 5	< 5	< 5	< 5	<8
Cu	110	50	25	30	70	60	90	70	74,1
Zn	< 30	50	40	50	50	60	90	70	79
Ga	30	52	46	61	47	55	58	60	34,9
Ge	2	2	< 1	2	2	2	3	2	-
As	62	7	<5	< 5	6	15	10	18	0,6
Rb	4	230	247	314	235	460	725	803	430,5
Sr	8	3	2,5	4	< 2	< 2	3	5	13,5
Y	17	73	105	141	104	152	338	294	285,1
Zr	363	227	208	216	134	126	253	276	120,4
Nb	33	99	87	144	102	119	189	168	83,8
Ag	1,2	0,7	< 0,5	0,6	< 0.5	< 0.5	0,8	0,8	0,4
In	2,3	3	< 0,2	0,9	0,5	1	0,6	2	-
Sn	29	289	261	322	22	49	17	118	7
Ba	20	38	31	61	34	55	178	137	202
Cs	< 0.5	6,5	3,7	4,8	3,5	12	12	9,8	5
Hf	10,4	9,6	8,4	10,9	6,8	7	13,4	13,4	7
Та	3,1	13,5	11	18,9	13,4	14,7	22,2	18,5	10,2
W	3	13	7	9	6	7	18	14	2664,2
Tl	0,2	0,6	0,5	0,9	1,1	2,2	3,8	3,1	0,8
Pb	61	82	74	97	63	54	231	64	78
Bi	0,6	< 0.4	< 0,4	0,4	< 0.4	0,9	0,4	0,9	0,4
Th	99,9	77,1	72	84,6	51,9	57,5	158	82,6	59,3
U	16,9	4,9	4,1	5,5	4,8	5,3	13,4	8,6	8,5
La	33,5	88,4	70,4	51,4	62,6	101	140	99,2	102
Ce	30,9	258	162	108	42	34,3	1030	122	192,3
Pr	3,41	20,9	14,8	11,9	13,5	22,9	33	22,8	25,87
Nd	9	73,4	52,6	41,6	46,6	79	116	81,4	99,7
Sm	1,8	14	12,5	10,4	11,7	19,7	28,1	21,4	27,98
Eu	0,15	0,51	0,45	0,32	0,6	0,92	1,4	1,12	0,6
Gd	1,6	8,9	9,4	10,2	11,5	20	33,3	26,1	34,83
Tb	0,3	1,6	2,1	2,6	2,4	3,8	7,5	6,4	7,72
Dy	2,6	11,4	15,2	20,7	17,2	26,3	55	48	53,1
Но	0,6	2,6	3,5	4,8	3,7	5,7	12,1	10,4	11,28
Er	2	9,4	13,1	16,7	12,8	18,7	40,3	34,4	36,53
Tm	0,38	1,84	2,59	3,26	2,41	3,38	7,36	6,23	6
Yb	3	15,5	20,1	26,3	18,9	26	57,1	46,1	41,99
Lu	0,5	3,04	3,51	4,61	2,88	4,03	8,78	7	6,02

REE	89,74	509,49	382,25	312,79	248,79	365,73	1569,94	532,55	645,92
REEY	106,74	582,49	487,25	453,79	352,79	517,73	1907,94	826,55	931,02
LREE	78,76	455,21	312,75	223,62	177	257,82	1348,5	347,92	448,45
HREE	10,98	54,28	69,5	89,17	71,79	107,91	221,44	184,63	197,47
HREEY	27,98	127,28	174,5	230,17	175,79	259,91	559,44	478,63	482,57

297 5.4. Single-step ion exchange extraction

The concentration of REE in extraction by ammonia sulfate [(NH₄)SO₄] in the clay fraction 298 reached values of 3425,93 to 36762,45 ppm of REEY, 3124,14 to 16178,22 ppm of LREE, 299 149,09 to 7188,19 ppm of HREE, 1.44 to 4.95 ppm of Th and 2.04 to 26.91 ppm of U. The 300 301 highest REEY concentrations are in the NC17_6 sample, which is in the basal part of the 302 weathering profile, on horizon B, and the lowest concentrations of REEs occur in the NC17 3 303 sample, which is at the top of the profile in the leaching zone of REEs. Although it has lower 304 REEY concentrations compared to the other samples and is located in the leaching zone, the 305 concentrations of REEY, especially of LREEs, can be considered high in the NC17_3 sample 306 (Fig.9).

307 In the whole-rock extraction, the REEY concentrations are between 2,804 and 21,689 ppm, the LREE concentrations range from 2412 to 10376 ppm, HREE ranges from 21.78 to 3,992 308 309 ppm, Th ranges from 3.66 to 11.23 ppm and U ranges from 8.06 to 24.61 ppm. However, comparing the REE concentrations from the whole-rock extraction with samples of the same 310 311 name of the clay fraction, higher concentrations are observed in the NC17_6 sample and lower concentrations are observed in the NC17_3 sample. The NC17_LC sample (lateritic 312 313 crust) was added to the whole-rock extraction, which revealed lower concentrations of REE at 314 a value of 179.72 ppm and the highest concentration of U in the analyzed weathering profile 315 at 31.48 ppm.

The results obtained in this study show values with significant Ce depletion, which is 316 317 represented by Ce/Ce* ratios between 0.02 and 0.12 in the clay fraction extraction and between 0.05 and 0.58 in the total sample extraction. A significant depletion of Ce in the ion 318 319 exchange extraction represented by a negative anomaly is commonly observed in the literature, such as in the work of Sanematsu and Kon, (2013). The La_N/Yb_N ratio indicates the 320 321 fractionation between LREEs and HREEs. In the ion exchange of the clay fraction, the 322 La_N/Yb_N ratio is between 4.32 and 111.69, while in whole rock, it ranges from 4.34 to 25.11. 323 In the comparison between LREE and HREE from the ion exchange extraction in the clay 324 fraction and whole rock, the concentrations of light and heavy REEs are more enriched in the clay fraction. The exception is the sample NC17_3 (clayey saprolite) in whole rock, where the 325

HREE concentration of 211.78 ppm is higher compared with that of the clay fraction at 149.09 ppm. Th and U have contrasting behavior in the sampled material, with Th more enriched in whole rock as opposed to U, which is more enriched in the clay fraction. Despite the alternation of enrichment of U and Th throughout the weathering profile, these elements are more concentrated in the middle and basal part of the profile (**Table 6**).

The normalization of the extraction products to the parental granite give evidence of the supergene mobility and fractionation of the REEY with important enrichments towards the products of alteration (Fig. 9C and D). The extractions in the whole-rock display 40 to 50-fold

- enrichment in the LREE and HREE, respectively, whereas in the clay fraction this enrichment
- 335 reachs 70 to 100-fold.

336 Table 6

337 Results of the single step extraction showing extracted elements concentrations (ppm) in the clay fraction and in the Total sample .

	Sample		Fraction	LREE (ppm)	HREE (ppm)	REE (ppm)	Y (ppm)	REEY (ppm)	Th (ppm)	U (ppm)	Ce/Ce*	Eu/Eu*	La _N /Yb _N
NC17_3	Saprolite argilized		Ion-exchangeable	3124.14	149.09	3273.23	152.70	3425.93	1.92	2.04	0.12	0.14	111.69
NC17_4	Saprolite	×	Ion-exchangeable	7544.76	1544.41	9089.18	2100.04	11189.22	1.92	3.62	0.06	0.13	13.72
NC17_5	Saprolite	Cla	Ion-exchangeable	10177.27	2790.78	12968.05	3626.16	16594.21	1.44	26.91	0.05	0.14	7.97
NC17_6	Saprolite	•	Ion-exchangeable	16178.22	7188.19	23366.41	13396.03	36762.45	2.97	13.93	0.02	0.14	4.32
NC17_7	Saprolite		Ion-exchangeable	8529.00	3697.64	12226.64	7188.39	19415.03	4.95	26.31	0.02	0.15	4.45
NC17_LC	Lateritic crust		Ion-exchangeable	168.19	11.53	179.73	13.70	193.42	3.28	31.48	0.58	0.25	25.11
NC17_3	Saprolite argilized	čk	Ion-exchangeable	2412.05	211.78	2623.82	180.38	2804.20	6.06	8.06	0.23	0.14	19.87
NC17_4	Saprolite	e-ro	Ion-exchangeable	4286.74	1049.54	5336.28	1260.03	6596.31	11.23	14.73	0.08	0.14	8.5
NC17_5	Saprolite	hol	Ion-exchangeable	8340.80	1883.77	10224.57	2475.25	12699.82	7.42	22.49	0.06	0.14	9.83
NC17_6	Saprolite	Μ	Ion-exchangeable	10375.97	3992.22	14368.19	7320.66	21688.86	7.30	24.61	0.07	0.15	4.76
NC17_7	Saprolite		Ion-exchangeable	6937.22	2903.65	9840.87	5383.18	15224.05	3.66	20.46	0.05	0.15	4.34

338 $Ce/Ce^* = Ce_N(La_N \times Pr_N)^{1/2}$, $Eu/Eu^* = EuN/(Sm_N \times Gd_N)^{1/2}$, where subscript N represents normalization by C1-chondrite (Sun and McDonough, 1989).

Fig. 9. Chondrite-normalized REE patterns (Sun and McDonough, 1989) (A and B) and parental granite normalized REE (C and D) of ion-exchangeable from the single
 extraction in the clay fraction and in the whole-rock samples from the Faixa Placha saprolites and lateritic crust.

343 5.5. Two-step sequential extraction

A two-step sequential extraction was performed to determine the concentrations of the ion exchange elements, such as REEs, Y, Th, and U, in saprolites and laterite crust, and they are associated with the amorphous Fe and Mn oxides in step 1 and Fe and Mn oxides in step 2.

Step 1 shows that the REEY concentrations are between 44.03 and 430.76 ppm and the LREE and HREE concentrations range from 127.40 to 320.07 ppm and from 6.61 to 153.92 ppm, respectively. The Th concentration ranges from 127.40 to 320.07 ppm, and the U concentration ranges from 4.58 to 39.94 ppm. The Ce/Ce* ratio shows values between 0.36 and 2.26, thus showing a positive anomaly in samples NC17_3, 6 and 4 and negative Ce anomalies in samples NC17_LC, 7, and 5. The Eu/Eu* ratio ranges from 0.15 to 0.21, indicating a negative Eu anomaly, and the La_N/Yb_N ratio ranges from 0.18 to 3.16.

The laterite crust (NC17_LC) and saprolite (NC17_3), which are at the top or close to the top of the weathering profile of the Faixa Placha, present lower REEY concentrations in amorphous Fe-Mn oxides compared to the other samples, while the highest REEY concentration is in the NC17_6 sample, which is located in the most basal part of the profile. The highest concentration of Th is found in sample NC17_6 and the lowest in sample NC17_4, while the highest concentration of U is in the laterite crust (NC17_LC) and the lowest concentration is in the NC17_3 sample.

In step 2, the concentration of REEY in the Fe and Mn oxides ranges from 162.68 to 9,727.48 ppm, with concentrations of LREEs between 143.94 and 8,853.57 ppm and HREEs between 1.46 and 531.30 ppm. The concentrations of Th and U range between 207.59 and 1,625.72 ppm and 13.98 and 94.83 ppm, respectively. The Ce/Ce* ratio ranges from 1.04 to 22.46, thus showing a positive Ce anomaly, with an emphasis on sample NC17_6, where this anomaly is very strong. The Eu/Eu* ratio is between 0.12 and 0.21, indicating a negative Eu anomaly, and the La_N/Yb_N ratio ranges from 1.18 to 7.82.

- In saprolites, the highest and lowest concentrations of REEY, Th and U in the Fe-Mn oxides are found in samples NC17_6 and NC17_3, respectively. In the comparison between amorphous Fe-Mn oxides and Fe-Mn oxides, the ion exchange shows that there is a high enrichment of REEY, Th and U in the Fe-Mn oxides. The Ce anomalies are always positive and stronger in the Fe-Mn oxides but negative to weakly positive anomalies in the amorphous Fe-Mn oxides. The Eu exhibits a greater negative anomaly in the Fe-Mn oxides relative to the
- amorphous Fe-Mn oxides (**Fig. 10**).

375 Table: 7

376 Results of the two - step extraction showing extracted elements concentrations (ppm) in amorphous Fe-Mn oxides and in Fe-Mn oxides.

													377
	Sample		Fraction	LREE (ppm)	HREE (ppm)	REE (ppm)	Y (ppm)	REY (ppm)	Th (ppm)	U (ppm)	Ce/Ce*	Eu/Eu*	La _N /Yhy 378
NC17_LC	Lateritic crust	Mn	Ion-exchangeable	32.66	6.61	39.27	4.76	44.03	155.18	39.94	0.85	0.21	3.160
NC17_3	Saprolite argilized	and	Ion-exchangeable	51.31	13.87	65.18	11.87	77.05	154.87	4.58	1.71	0.16	1.51
NC17_4	Saprolite	Fe : de	Ion-exchangeable	89.46	30.15	119.61	25.14	144.75	127.40	6.81	1.16	0.15	1.380
NC17_5	Saprolite	ous	Ion-exchangeable	58.38	48.59	106.98	46.81	153.78	176.96	9.69	0.36	0.15	0.861
NC17_6	Saprolite	orph	Ion-exchangeable	91.34	153.92	245.26	185.50	430.76	320.07	17.94	2.26	0.16	0.18
NC17_7	Saprolite	Ame	Ion-exchangeable	55.59	117.83	173.42	135.48	308.91	210.91	13.92	0.52	0.15	0. 3 82
NC17_LC	Lateritic crust	S	Ion-exchangeable	143.94	1.46	155.49	7.19	162.68	207.59	40.06	1.38	0.21	7.82
NC17_3	Saprolite argilized	xide	Ion-exchangeable	1999.28	144.59	2143.87	111.00	2254.87	582.39	13.98	2.28	0.12	6.77
NC17_4	Saprolite	ln oz	Ion-exchangeable	801.45	133.24	928.58	114.06	1042.65	432.49	14.65	4.60	0.14	1.384
NC17_5	Saprolite	M bi	Ion-exchangeable	663.95	254.55	918.50	237.31	1155.81	567.48	18.94	1.04	0.13	1.78 E
NC17_6	Saprolite	e ar	Ion-exchangeable	8853.57	375.03	9228.61	498.87	9727.48	1625.72	94.83	22.46	0.14	1.44
NC17_7	Saprolite	Ц	Ion-exchangeable	3360.16	531.30	3891.46	485.50	4376.96	801.53	35.27	5.99	0.14	^{1.} 386

 $\label{eq:centralized_constraint} \textbf{387} \qquad Ce/Ce^* = Ce_N(La_N \ x \ Pr_N)^{1/2} \ , \ Eu/Eu^* = EuN/(Sm_N \ x \ Gd_N \)^{1/2}, \ where \ subscript \ N \ represents \ normalization \ by \ the \ chondrite \ of \ (Sun \ and \ McDonough, \ 1989).$

Fig. 10. Chondrite-normalized REE patterns of the sequential extraction in amorphous Fe and Mn oxides and in Fe and Mn oxides from the Faixa Placha saprolites and lateritic crust (profile NC17).

391 6. Discussion and Conclusions

392 6.1. Comparison of REE enrichment between the Faixa Placha and nearby areas

The areas close to the Faixa Placha were sampled near the north boundary (NC10) and the 393 394 south boundary (NC4), including granites and soils (Fig. 2A). The REEY concentrations in the biotite granite and soil of sample NC10 are 1,175 and 712 ppm, respectively. For the 395 biotite granite and soil of sample NC4, the values are 1,110 and 839 ppm, respectively (Table 396 397 4). The comparison between the concentrations of REEY in the Faixa Placha and in the 398 nearby areas did not identify large variations, and similar values were observed for both 399 LREE and HREE, indicating that the enrichment in REE is a characteristic of these granites without the effective influence of hydrothermal changes due to the presence of REE-bearing 400 401 primary minerals (Fig. 11). These relationships have already been pointed out in previous studies on the Pedra Branca Massif and other A-type granites of the GTP (Marini and 402 403 Botelho, 1986; Botelho, 1992; Marini et al., 1992; Teixeira and Botelho, 1999). The positive Ce anomaly in the soil (NC10B) is due to the fixation of the element because Ce⁴⁺ is located 404 at the most oxidized surface levels due to the dissolution of REE-bearing phosphates, such as 405 406 monazite and apatite, which control the mobilization of REE and Th from the surface and 407 their content in the soil (Aubert et al., 2001). The main difference between the Faixa Placha 408 and the nearby areas is its Y enrichment, which is approximately twice as high and mainly observed in the greisens (Fig. 5B). The Faixa Placha greisenized granites and greisens have a 409 high concentration of metamict zircons that are rich in HREEs, with HREE₂O3 contents of up 410 to 4.86%. (Costa and Botelho, 2019). According to Aubert et al. (2001), the positive 411 correlation between the (Yb/Ho)_N ratio and the concentration of Zr in soil is indicative of the 412 enrichment of HREE; that is, a high (Yb/Ho)_N ratio accompanied by the high concentration of 413 Zr indicates that the HREE must be controlled by a mineral phase heavily enriched in HREE, 414 such as in the case of zircon of the Faixa Placha (Fig. 12). 415

417 Fig. 11. Comparison of the REEY enrichment between the Faixa Placha and nearby areas.

419 Fig. 12. Correlation between Zr and (Yb / Ho)_{Gran} ratio in granites of the Faixa Placha and nearby areas.

420 6.2. Ion exchange extractions in the Faixa Placha weathering profile

According to Duddy (1980), Nesbitt and Markovics (1997) and Sanematsu et al. (2015), in 421 the weathering process, the mobile elements, including REEs, are removed from the top and 422 accumulated at the bottom of the weathering profile. Generally, the upper part is enriched in 423 Ce, thus showing a positive Ce anomaly. This phenomenon can be explained by the oxidation 424 of Ce^{3+} to Ce^{4+} and the retention of Ce in the profile and incorporation into cerianite (CeO₂), 425 Mn oxides and hydroxides under oxidizing conditions close to the surface (Braun et al., 1990; 426 Mongelli, 1993; Laveuf and Cornu, 2009; Sanematsu et al., 2013; Sanematsu et al., 2015; 427 Janots et al., 2015). 428

According to Laveuf and Cornu (2009), the acid water in the soil dissolves and moves the REE³⁺ to the lower levels of the weathered profile, where they are immobilized because of their incorporation into secondary minerals or by adsorption to the surfaces of weathering products, such as clays. Since the immobilized REEs are depleted in Ce, the lower part of the profile tends to display a negative Ce anomaly (Braun et al., 1990; Wu et al., 1990; Mongelli, 1993; Ohta and Kawabe 2001; Bao and Zhao, 2008; Sanematsu et al., 2013; Yusoff et al., 2013; Sanematsu et al., 2015).

According to the above-cited studies, which analyzed a profile of the Faixa Placha, wesuggest that the negative Ce anomalies observed in clay and whole rock extractions are due to

the retention of the element at the top and adsorption of the immobilized REEs in the clays,

439 whole rock and secondary minerals at the bottom of the weathering profile.

440 The concentration of REEY in the clay fraction shows a slight enrichment relative to the

441 whole rock, but both are enriched in REEY, which is explained by the adsorption of the REEs

442 immobilized in kaolinite throughout the profile.

443 In the whole rock extraction, a slight enrichment in HREE was observed in the upper part of the weathering profile (NC17_3) compared to the clay fraction of the same sample, 444 445 suggesting that the zircon was not fully degraded by the acid of the solution and was retained in the residual fraction. This finding is confirmed in Sanematsu and Kon (2013), who relate 446 447 the enrichment in LREE and/or HREE to the presence of REE-bearing minerals and their 448 resistance to chemical weathering. These minerals are abundant in the greisenized rock that 449 occurs in the Faixa Placha. The same similarity in ion-adsorption type REE mineralization is observed in Sanematsu et al. (2013) in granites in Phuket, Thailand. 450

- The Th concentration of the Faixa Placha weathering profile is higher in the whole rock compared to the clay fraction extraction, suggesting that Th is more moderate in the clay fraction and more concentrated in the residual fraction, indicating the occurrence of insoluble Th silicates, probably thorite, preserved in granite as suggested by Sanematsu and Kon (2013) in granites of Jiangxi Province, China.
- According to Sanematsu and Kon (2013), U is significantly present in the residual fraction, in the clay fraction and rarely in the Fe-Mn oxide fraction. However, the Fe-Mn oxide fraction of the Faixa Placha has a high U concentration, suggesting that in all fractions, the abundance of U may be derived from zircon and other minerals, such as uraninite (UO₂), fergusonite (YNbO₄) and coffinite [(U, Th)SiO₄. nH₂O], which have U and are relatively common in granites as indicated by Sanematsu and Kon (2013), although they have not been identified in scanning electron microscopy (SEM)-EDS analyses.
- 463 The extraction in amorphous Fe-Mn oxides and Fe-Mn oxides from the Faixa Placha 464 weathering profile samples shows a strong positive Ce anomaly in Fe-Mn oxides, likely due 465 to oxidizing conditions that favor the incorporation of Ce into Fe-Mn oxides and cerianite as 466 shown in Fig. 13, in addition to the kaolinite that occurs throughout the profile. In the Fe-Mn oxides, the concentration of REEY is higher and presents a maximum value of 9,727.48 ppm, 467 and the concentration of LREE and HREE reach maximum values of 8,853.57 ppm and 468 469 531.30 ppm, respectively. In the amorphous Fe-Mn oxides, the REEY, LREE, and HREE 470 contents reach values of 430.76 ppm, 91.34 ppm and 153.92 ppm, respectively, suggesting

that the greater incorporation of REEY in the Fe-Mn oxides, mainly in the basal part of the B
horizon of the weathering profile. This enrichment is related to ionic adsorption, which is
responsible for the incorporation of REEY in these oxides as noted by Bau and Koschinsky
(2009) for ferromanganesiferous crusts.

475 The slight Y anomaly in the amorphous Fe-Mn oxides and Fe-Mn oxides observed in these 476 extractions indicates that the removal of this element is preferentially related to the Mn oxides 477 relative to the Fe oxides as stated by Bau and Koschinsky (2009). The concentrations of Th 478 and U are influenced by the reagents and the pH of the solution. Solutions using NH₄ favor the ionic exchange of REEY, and these extractions are more efficient with decreased pH 479 480 (Moldoveanu and Papangelakis, 2012). However, in the Faixa Placha study, the opposite 481 occurs, with a higher concentrations of REEY occurring at a pH of approximately 5.7, which was observed in the ion exchange extraction of the clay and whole rock fractions, in which the 482 reagent is ammonia sulfate [(NH4)SO₄], while in the extraction of the amorphous Fe-Mn 483 484 oxide and Fe-Mn oxide fractions, the reagents are ammonia oxalate $(NH_4C_2O_4H_2O) + oxalic$ acid and hydroxylamine, respectively, the pH was equal to 1 and the REEY concentrations 485 were lower. 486

In accordance with the REEY contents in the Faixa Placha tin deposit, mainly in the weathering profile, we suggest that this tin deposit has a potential for REEY economic concentrations of the ion-adsorption type, especially for HREE+Y. Additionally, there are extensive weathering surfaces in the Faixa Placha nearby areas and in other regions of the Pedra Branca Massif that need to be investigated in more detail.

494 Fig. 13. Concretion of Fe and Mn oxide containing cerianite (CeO2) in fissures.

495 7. Referências

- Aubert, D., Stille, P., and Probst, A., 2001. REE fractionation during granite weathering and
 removal by waters and suspended loads: Sr and Nd isotopic evidence: Geochimica et
 Cosmochimica Acta. 65, 387–406.
- Bao, Z., and Zhao, Z., 2008. Geochemistry of mineralization with exchangeable REY in the
 weathering crusts of granitic rocks in South China: Ore Geology Review. 33, 519–535.
- 501 Bau, M., and Koschinsky, A., 2009. Oxidative scavenging of cerium on hydrous Fe oxide:
- Evidence from the distribution of rare earth elements and yttrium between Fe oxides andMn oxides in hydrogenetic ferromanganese crust. Geochemical Journal. 43, 37-47.
- Boynton, W. V., 1984. Geochemistry of Rare Earth Elements: Meteorite Studies. In:
 Henderson, P., Ed., Rare Earth Element Geochemistry, Elsevier, New York, 63-114.
- Braun, J. J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., and Guillet, B., 1990. Cerium
 anoamalies in lateritic profiles: Geochimica et Cosmochimica Acta. 54, 781–795.
- Botelho, N. F., 1992. Les ensembles granitiques subalcalins a peralumineux mineralisés en
 Sn et In de la sous-province Paranã, état de Goiás, Brésil. Université de Paris VI, Paris,
 Thèse de Doctorat, 344p.
- Botelho, N. F., and Moura, M. A., 1998. Granite-ore deposit relationships in Central Brazil.
 Journal of South American Earth Sciences 11 (5), 427-438.
- Botelho, N.F., and Rossi, G., 1988. Depósito de estanho da Pedra Branca, Nova Roma, Goiás.
 Principais Depósitos Brasileiros Metais Básicos Não Ferrosos, Ouro e Alumínio.
 DNPM, 3, 1431.
- Braun, J.J., Pagel, M., Muller, J.P.,Bilong, P., Michard, A., Guillet, B., 1990. Cerium
 anomalies in lateritic profiles. *Geochimica Cosmochimica Acta*. 54, 781-795.
- Costa, N. O., and Botelho, N. F., 2019. Mineralogical and chemical characterization and
 economic potential of rare earth elements in granites and greisens from the A-type Pedra
 Branca Granite Massif Tin Deposit, Central Brazil. Submitted to the Journal Geochemical
 Exploration.
- 522 Duddy, L.R., 1980. Redistribution and fractionation of rare-earth and other elements in a
 523 weathering profile. *Chemichal Geology*. 30, 363-381.
- Garcia, M. D. M., 2013. O projeto ETR da mina Pitinga. Apresentação no Ministério da
 Ciência e Tecnologia. Brasília, julho de 2013.

- Hoshino, M., Sanematsu, K., and Watanabe, Y., 2016. REE mineralogy and Resources. In:
 Bünzli Jean-Claude and Pecharsky Vitalij K (eds.) Handbook on the Physics and
 Chemistry of Rare Earths, vol. 49, p.129 -291.
- Janots, E., Bernier, F., Brunet, F., Muñoz, M., Trcera, N., Berger, A., Lanson, M., 2015. Ce
- 530 (III) and Ce (IV) (re)distribution and fractionation in a lateritic profile from Madagascar:
- insights from in situ XANES spectroscopy at the Ce L_{III}.edge. Geochimica Cosmochima
 Acta.153, 134-148.
- Laveuf, C., Cornu, S., 2009. A review on the potentiality of rare earth elements to trace
 pedogenetic processes. Geoderma. 154, 1-12.
- Lenharo, S. L. R., Moura, M. A., and Botelho, N.F., 2002. Petrogenetic and mineralization
 process in Paleo to Mesoproterozoic rapakivi granites: example from Pitinga and Goiás,
 Brazil. Precambrian Research. 119, 277-299.
- Marini, O. J., Botelho, N. F., 1986. A província de granitos estanífero de Goiás. Revista
 Brasileira de Geociências. 16,119-131.
- Marini, O. J., Botelho, N. F, and Rossi, P. H., 1992. Elementos terras raras em granitóides da
 província estanífera de Goiás. Revista Brasileira de Geociências. 22, 61-72.
- Mogelli, G., 1993. REE and other trace elements in a granitic weathering profile from Serre,
 southern Italy. Chemichal Geology. 103, 17-25.
- Moldoveanu, G. A., and Papangelakis, V. G., 2012. Recovery of rare earth elements adsorbed
 on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy. 117-118, 7178.
- Nesbitt, H.W., and Markovics, G., 1997. Weathering of granodioritic crust, long-term storage
 of elements in weathering profiles, and petrogenesis of siliciclastic sediments.
 Geochimica Cosmochimica Acta. 61, 1653-1670.
- Naumov, A.V., 2008. Review of the World Market of Rare-Earth Metals Russian. Journal of
 Non-Ferrous Metals. 49 (1), 18–27.
- Ohta, A. and Kawabe, I., 2001. REE(III) adsorption onto Mn dioxide (δ-MnO₂) and Fe
 oxyhydroxide: Ce(III) oxidation by δ-MnO₂. Geochimica et Cosmochimica Acta. 65,695703.
- Pearce, J., 1996. Sources and settings of granitic rocks. Episodes. 19(4), 120-125.
- Pimentel, M.M., Botelho, N.F., 2001. Sr and Nd isotopic characteristics of 1.77-1.58 Ga riftrelated granites and volcanics of the Goiás tin province, Central Brazil. Anais da
- 558 Academia Brasileira de Ciências 73, 263-276

- Rauret, G, López-Sanches, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., and
 Quevauviller, Ph., 1999. Improvement of the BCR three step sequential extraction
 procedure prior to the certification of new sediment and soil reference materials. Journal
 Environmental Monitoring. 1, 57-61.
- Rocha, A., Schissel, D., Sprecher, A., Tarso, P. and J. Goode, J., 2013. Process Development
 for the Serra Verde Weathered Crust Elution-deposited Rare Earth Deposit in Brazil. In

565 Rare Earth Elements – Proceedings of the 52nd Conference of Metallurgists (COM

- 2013), Edited by I. London, J. Goode G. Moldoveanu and M. Rayat. Metallurgical
 Society of the Canadian Institute of Mining, Metallurgy and Petroleum (MetSoc-CIM),
 Montreal, Canada, 2013.
- Roskill, 2007. The economics of rare earths and yttrium, 13th edn. Roskill Information
 Services, Ltd., London, 275 pp.
- 571 Roskill, 2018. Rare Earths. Global Industry, Markets & Outlook 2018
 572 (<u>https://roskill.com/market-report/rare-earths/</u>).
- Santana, I. V., Wall, F., and Botelho, N. F., 2015. Occurrence and behavior of monazite-(Ce)
 and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada
 granite, Goiás/Tocantins State, Brazil: potential for ETR deposits. *Journal of Geochemical Exploration* 155, 1–13.
- Sanematsu, K., Murakami, H., Watanabe, Y., Duangsurigna, S. and Vilayhack, S., 2009.
 Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in
 centraland southern Laos. Bull. Geol. Surv. Japan, 60, 527–558.
- Sanematsu, K., Kon, Y., Imai, A., Watanabe, K., and Watanabe, Y., 2013. Geochemical and
 mineralogical characteristics of ion-adsorption type REE mineralization in Phunket,
 Thailand. *Mineralium Deposita*. 48, 437-451.
- Sanematsu, K., and Kon, Y., 2013. Geochemical characteristic determined by multiple
 extraction from ion-adsorption type REE ores in Dingnan Country of Jiangxi Province,
 South China. Bulletin of the Geological Survey of Japan. 64, 313-330.
- Sanematsu, K., Kon, and Y., Imai, A., 2015. Influence of phosphate on mobility and
 adsorption of REEs during weathering of granites in Thailand. Journal of Asian Earth
 Sciences. 111, 14-20.
- Service, R. F., 2010. Nations move to head off shortages of rare earths. *Science*, 327 (5973),
 1596–1597.

- 591 Stone, R., 2009. As China's rare earth R&D becomes ever more rarefied, others tremble.
 592 *Science*, 325: 1336-1337.
- Teixera, L. M., and Botelho, N. F., 1999. Comportamento dos Elementos Terras Raras
 Pesadas em Zircão, Xenotima e Torita de Granitos e Greisens da Subprovíncia Estanífera
 Paranã, Goiás. Revista Brasileira de Geologia, 29 (4), 549-556.
- Teixera, L. M., and Botelho, N. F., 2002. Comportamento cristaloquímico de monazita
 primária e hidrotermal durante a evolução de granitos e greisens: Exemplos das
 subprovíncias Tocantins e Paranã, Goiás. *Revista Brasileira de Geociências*, 32 (3), 335342.
- Teixeira, L. M., and Botelho, N. F., 2006. Comportamento Geoquímico de ETR durante
 evolução magmática e alteração hidrotermal de granitos: Exemplos da Província
 Estanífera de Goiás. *Revista Brasileira de Geociências*, 36 (4), 679-691.
- U.S.G.S., 2019. Mineral Commodity Summaries 2019. U.S. Geological Survey, Reston, 200
 p. <u>https://doi.org/10.3133/70202434</u>.
- Vieira, C. C., Botelho, N. F., and Ganier, J., 2019. Geochemical and mineralogical
 characteristics of REEY occurrences in the Mocambo Granitic Massif tin-bearing A-type
 granite, central Brazil, and its potential for ion-adsorption-type REEY mineralization. Ore
 Geology Reviews. 105, 467-486.
- Wu, C. Y., Huang, D. H., and Guo, Z. G., 1990. REE geochemistry in the weathered crust of
 granites, Longnam area, Jiangxi Province. Acta Geol. Sin. 3, 193-210.
- 611 Xu, C., Kynicky, J., Smith, M.P., Kopriva, A., Brtnicky, M., Urubek, T., Yang, Y., Zhao, Z.,
- He, C., and Song, W., 2017. Origin of heavy rare earth mineralization in South China.
 Nature Comunications, Open Acess, DOI: 10.1038/ncomms14598, p. 1-7.
- Yusoff, Z.M., Ngwenya, B.T., and Parsons, I., 2013. Mobility and fractionation of REEs
 during deep weathering of geochemically contrasting granites in a tropical setting,
 Malaysia. Chemical Geology. 349, 71–86.
- Zapata, A. M., and Botelho, N. F., 2018. Mineralogical and geochemical characterization of
 rare-earth occurrences in the Serra do Mendes massif, Goiás, Brazil. Journal of
 Geochemical Exploration. 188, 398-412.
- 620
- 621

5. CONCLUSÕES GERAIS

Todos os granitos do depósito de estanho Faixa Placha são ricos em ETR com valores mais altos que 1000 vezes o valor do condrito, e este enriquecimento deve-se principalmente à evolução magmática. Embora os ETRL sejam mais abundantes que os ETRP, foram encontrados teores de ETRP até 500 vezes a concentração em condritos. Granitos parentais, granitos greisenizados e greisens têm os mesmos padrões e conteúdo de ETR, indicando que não há mudança relevante na concentração e fracionamento do ETR de forma contemporânea com a evolução hidrotermal dos granitos no Maciço da Pedra Branca.

Os resultados obtidos até o momento sugerem que o Maciço da Pedra Branca possui um granito rico em ETR + Y dominante devido à presença de allanita, monazita, xenotima, torita, zircão e apatita. Nos granitos parentais, granitos greisenizados e greisens, zircões metamictizados e alterados favorecem a concentração de ETRP + Y, que alcança valores acima de 500 ppm em algumas amostras.

A comparação entre as concentrações de ETRY na Faixa Placha e nas áreas vizinhas mostra que não há grande variação, com valores semelhantes tanto para ETRL quanto para ETRP, indicando que isso é uma características desses granitos que são ricos em ETR, sem influência efetiva das alterações hidrotermais, devido a presença de minerais primários portadores de ETR.

A anomalia positiva de Ce nos solos se deve à fixação do elemento como Ce⁴⁺ nos níveis mais superficiais oxidados, devido a dissolução dos fosfatos portadores de ETR como monazita e apatita, que controlam a mobilização da ETR e Th a partir da superfície e seu conteúdo no solo (Aubert et al. 2001). A principal diferença entre a Faixa Placha e as áreas vizinhas está na concentração em Y, cerca de duas vezes maior, principalmente nos greisens. Granitos greisenizados e greisens da Faixa Placha têm grande concentração de zircão metamíctico rico em ETRP, a correlação positiva entre a razão (Yb/Ho)_{Gran} e a concentração de Zr no solo é indicadora de enriquecimento em ETR, indicando que os ETRP devem ser controlados por uma fase mineral fortemente enriquecida nesses elementos, como no caso do zircão da Faixa Placha.

As extrações na fração argila e no óxido de Fe-Mn no perfil de intemperismo da Faixa Placha mostraram maior enriquecimento dos ETR em comparação com a rocha total e óxido de Fe-Mn amorfo respectivamente. Esse enriquecimento ocorre na parte inferior do perfil, em que os elementos ficam imobilizados, devido a sua adsorção na caulinita e nos óxidos de Fe-Mn.

As concentrações de ETRY e as composições minerais sugerem um potencial econômico no depósito de Faixa Placha, principal depósito de estanho no Brasil central, para a recuperação de ETR como subprodutos. Além disso, a área também é favorável para os depósitos de ETR do tipo de adsorção iônica, tanto nos depósitos de estanho como nas superfícies intemperizadas do maciço granítico.

6. REFERÊNCIAS

- Botelho, N.F., 1992. Les ensembles granitiques subalcalins a peralumineux mineralisés en Sn et In de la sous-province Paranã, état de Goiás, Brésil. Université de Paris VI, Paris, Thèse de Doctorat, 344p.
- Botelho N.F., Moura M.A. 1998. Granite-ore deposit relationships in Central Brazil. Journal of South American Earth Sciences 11 (5), 427-438.
- Botelho, N.F., Rossi, G., 1988. Depósito de estanho da Pedra Branca, Nova Roma, Goiás. Principais Depósitos Brasileiros-Metais Básicos Não Ferrosos, Ouro e Alumínio. DNPM 3, 1431.
- Botelho, N.F., Alvarenga, C.J.S., Menezes, P.R., D'el Rey, S. L. J. H., 1999. Suíte Aurumina: uma suíte de granitos paleoproterozóicos, peraluminosos e sintectônicos na Faixa Brasília.
 In: SBG/Núcleo Centro Oeste e Minas Gerais, Simp.Geol. Centro Oeste, 7, Brasília, Boletim de Resumos, v. 1. p. 49-49.
- Brasil. Plano Nacional de Mineração 2030 (PNM 2030). Brasil, Ministério de Minas e Energia. Brasilía, MME, 2010.
- Garcia, M.D.M., 2013. O projeto ETR da mina Pitinga. Apresentação no Ministério da Ciência e Tecnologia. Brasília, julho de 2013.
- Hoshino, M., Sanematsu, K., Watanabe, Y., 2016. REE mineralogy and Resourcess. In: Bünzli Jean-Claude and Pecharsky Vitalij K (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 49, p.129 -291
- Lenharo, S.L.R., Moura, M.A., Botelho, N.F., 2002. Petrogenetic and mineralization processes in Paleo- to Mesoproterozoic rapakivi granites: example from Pintinga and Goiás, Brazil. Precambrian Research 119, 277-299.
- Marini, O. J., Botelho, N. F, Rossi, PH., 1992. Elementos terras raras em granitóides da província estanífera de Goiás. Revista Brasileira de Geociências 22, 61-72.
- Moura, M.A., Botelho, N.F., Olivo, G.R., Kyser, K., Pontes, R.M., 2014. Genesis of the Proterozoic Mangabeira tin-indium mineralization, Central Brazil: Evidence from geology, petrology, fluid inclusion and stable isotope data. Ore Geology Reviews 60, 36-49.
- Pimentel, M.M, Botelho, N.F., 2001. Sr and Nd isotopic characteristics of 1.77-1.58 Ga riftrelated granites and volcanics of the Goiás tin province, Central Brazil. Anais da Academia Brasileira de Ciências 73, 263-276.
- Rauret, G, López-Sanches, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, Ph., 1999. Improvement of the BCR three step sequential extraction

procedure prior to the certification of new sediment and soil reference materials. Journal Environmental Monitoring. 1, 57-61.

- Rocha, A., Schissel, D., Sprecher, A., Tarso, P., Goode, J., 2013. Process Development for the Serra Verde Weathered Crust Elution-deposited Rare Earth Deposit in Brazil. In *Rare Earth Elements –Proceedings of the 52nd Conference of Metallurgists* (COM 2013), Edited by I. London, J. Goode, G. Moldoveanu and M. Rayat. Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (MetSoc-CIM), Montreal, Canada, 2013.
- Roskill, 2007. The economics of rare earths and yttrium, 13th edn. Roskill Information Services, Ltd., London, 275 pp.
- Roskill, 2018. Rare Earths. Global Industry, Markets & Outlook 2018 (<u>https://roskill.com/market-report/rare-earths/</u>).
- Sanematsu, K., Murakami, H., Watanabe, Y., Duangsurigna, S., Vilayhack, S., 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in centraland southern Laos. Bull. Geol. Surv. Japan, 60, 527–558.
- Sanematsu, K., Kon, Y., 2013. Geochemical characteristic determined by multiple extraction from ion-adsorption type REE ores in Dingnan Country of Jiangxi Province, South China. Bulletin of the Geological Survey of Japan. 64, 313-330.
- Sanematsu, K., Kon, Y., Imai, A., 2015. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand. Journal of Asian Earth Sciences. 111, 14-20.
- Santana I. V., Wall F., Botelho N. F., 2015. Occurence and behaviour of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: potential for ETR deposits. *Journal of Geochemical Exploration* 155, 1–13.
- Service, R. F., 2010. Nations move to head off shortages of rare earths. Science 327 (5973), 1596–1597.
- Stone, R., 2009. As China's rare earth R&D becomes ever more rarefied, others tremble. Science 325, 1336-1337.
- Teixera, L.M., Botelho, N.F., 1999. Comportamento dos elementos terras raras pesadas em zircão, xenotima e torita de granitos e greisens da subprovíncia estanífera Paranã, Goiás. Revista Brasileira de Geociências 29(4), 549-556.

- Teixera, L.M., Botelho, N.F., 2002. Comportamento cristaloquímico de monazita primária e hidrotermal durante a evolução de granitos e greisens: Exemplos das subprovíncias Tocantins e Paranã, Goiás. Revista Brasileira de Geociências 32(3), 335-342.
- Teixeira, L.M., Botelho, N.F., 2006. Comportamento Geoquímico de ETR durante evolução magmática e alteração hidrotermal de granitos: Exemplos da Província Estanífera de Goiás. Revista Brasileira de Geociências 36(4), 679-691.
- U.S.G.S., 2019. Mineral Commodity Summaries 2019. U.S. Geological Survey, Reston, 200 p. <u>https://doi.org/10.3133/70202434</u>.
- Vieira, C. C., 2016. Caracterização Mineralógica, Geoquímica e Potencial Econômico de Ocorrências de Terras Raras do Maciço Granítico Mocambo, Goiás. Brasil. Universidade de Brasília. Dissertação de Mestrado, 74p.
- Xu, C., Kynicky, J., Smith, M.P., Kopriva, A., Brtnicky, M., Urubek, T., Yang, Y., Zhao, Z.,
 He, C., Song, W., 2017. Origin of heavy rare earth mineralization in South China. Nature Comunications, Open Acess, DOI: 10.1038/ncomms14598, p. 1-7.
- Zapata, A. M. 2017. Caracterização Mineralógica, Geoquímica e Potencial Econômico de Ocorrências de Terras Raras do Maciço Granítico Serra Do Mendes, Goiás. Brasíl. Universidade de Brasília. Dissertação de Mestrado, 66p.
- Zapata, A. M., Botelho, N. F., 2018. Mineralogical and geochemical characterization of rareearth occurrences in the Serra do Mendes massif, Goiás, Brazil. Journal of Geochemical Exploration, 188, 398-412.

ANEXOS – 1 (DRX)

Difratogramas das análises de raios-X (rocha total e argila) do perfil de intemperismo (ponto 17) da Faixa Placha.

ANEXOS - 2

Minerais na Faixa Placha

Zircao – Faixa Placha																	
							Biotita	granito									
(%)	NC4C 1	NC4C 2	NC4C 3	NC4C 4	NC4C 5	NC4C 6	NC4C 7	NC4C 8	NC4C 9	NC4C 10	NC4C 11	NC4C 12	NC4C 13	NC4C 14	NC4C 15	NC4C 16	NC4C 17
SiO ₂	33,397	30,472	33,396	32,736	33,009	30,242	33,086	27,605	32,464	31,052	33,047	32,733	32,807	33,064	26,049	33,003	32,845
Al ₂ O ₃	0,016	0,28	0,014	0,009	0,011	0,646	0,003	0,735	0,027	0,208	0,024	0,015	0	0,038	0,909	0,017	0,03
FeO	0,427	0,503	0,064	0,688	0,556	0,663	0,234	0,577	0,726	0,982	0,304	0,254	0,363	0,677	0,356	0,855	0,575
CaO	0	0,675	0	0,194	0,032	0,52	0	0,917	0,163	0,569	0,116	0	0,178	0,284	2,205	0,161	0,251
Na ₂ O	0	0	0	0,028	0	0	0,012	0	0	0,017	0	0	0	0,013	0	0,014	0
TiO ₂	0,012	0,242	0,133	0,067	0,115	0	0	0,042	0,042	0,048	0	0,109	0	0,055	0	0,115	0
MnO	0,008	0,313	0	0,027	0	0,498	0,053	0,653	0	0,213	0,022	0	0,022	0,099	0,773	0,044	0,047
K₂O	0,002	0,014	0,001	0,021	0,016	0,028	0,011	0,023	0,038	0,012	0,002	0,019	0,007	0,001	0,025	0,026	0,072
P_2O_5	0,084	0,38	0,033	0	0,04	0,26	0,129	0,821	0,118	0,101	0,017	0	0,06	0,001	0,44	0	0,095
Nb ₂ O ₅	0,504	0,593	0,432	0,137	0,231	0,376	0,604	0,16	0	0,54	0,183	0,233	0,048	0,558	0,37	0,659	0,702
HfO ₂	1,123	2,087	1,051	0,889	1,279	0,92	0,929	4,612	0,971	1,814	1,185	0,772	1,178	0,74	1,012	1,29	1,392
Y_2O_3	0,302	0,347	0,149	0,222	0,413	0,972	0,298	1,966	0,462	0,581	0,025	0,002	0,109	0,114	1,692	0,217	0,214
Ta₂O₅	0,036	0	0,201	0	0,227	0	0,047	0,145	0,057	0,156	0	0	0,238	0,129	0	0,214	0
UO ₂	0,274	0,359	0,25	0,251	0,195	0,425	0,228	0,699	0,196	0,418	0,203	0,221	0,26	0,248	0,576	0,275	0,389
BaO	0	0	0,03	0,031	0,013	0,041	0	0,032	0	0	0,019	0,014	0	0,032	0,058	0,029	0,045
F	0	0,047	0	0	0	0,559	0	0,613	0	0,283	0	0	0	0	0,363	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0,065	0,043	0	0,026	0,029	0,104	0,013	0,275	0,057	0,033	0,051	0,025	0,056	0,028	0,097	0,074	0,234
SrO	0,114	0,139	0,144	0,041	0,074	0,233	0,035	0,189	0,083	0,149	0,068	0,135	0,103	0,086	0,127	0,097	0,038
ZrO ₂	62,343	56,854	60,858	61,076	61,268	54,763	60,861	48,628	61,075	58,349	61,265	61,99	61,838	60,007	48,47	60,663	61,322
Total	98,707	93,348	96,756	96,443	97,508	91,25	96,543	88,692	96,479	95,525	96,531	96,522	97,267	96,174	83,522	97,753	98,251
La ₂ O ₃	0	0,005	0,016	0,027	0	0,011	0,011	0	0,024	0	0,002	0	0	0	0	0,012	0,021
Ce_2O_3	0,076	0,143	0,016	0,065	0	0,276	0,019	0,3	0,099	0,125	0,075	0,003	0,044	0,062	0,3	0,037	0,21
Pr_2O_3	0	0,022	0	0,028	0,043	0,104	0	0	0,064	0,047	0,017	0,032	0	0,042	0,006	0	0,1
Nd_2O_3	0	0	0,024	0,022	0,004	0,023	0	0,04	0,02	0,036	0,029	0	0,008	0	0,049	0,012	0,083
Sm_2O_3	0,003	0,086	0,067	0	0	0,081	0,023	0	0	0	0,035	0,006	0	0	0,062	0,001	0
Eu_2O_3	0	0	0	0	0,011	0,006	0	0,01	0	0,039	0,014	0,024	0,075	0,023	0,081	0	0
Gd_2O_3	0	0	0,02	0,05	0,033	0,076	0,011	0,194	0,01	0,048	0	0	0	0	0,003	0,043	0,043
Tb_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dy_2O_3	0	0,043	0,094	0	0	0,115	0	0,614	0	0,009	0	0	0	0	0,087	0	0,1
Ho ₂ O ₃	0,155	0	0,111	0	0,021	0,235	0	0,079	0,03	0,038	0,032	0,053	0,048	0	0	0	0,056
Er_2O_3	0,061	0,051	0,024	0,083	0,021	0,12	0	0,526	0,064	0,151	0,062	0,102	0,039	0,002	0,247	0,046	0,211
Tm_2O_3	0	0	0	0	0	0	0	0,054	0	0	0	0	0	0	0	0	0,002
Yb_2O_3	0,077	0,019	0,061	0,014	0,06	0,251	0,009	0,621	0,021	0,223	0,056	0,008	0,016	0,027	0,234	0,069	0,263
Lu ₂ O ₃	0	0,097	0	0,015	0,006	0,076	0,015	0,115	0,017	0	0	0,027	0,051	0	0	0,061	0,031
--------------------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
REE	0,372	0,466	0,433	0,304	0,199	1,374	0,088	2,553	0,349	0,716	0,322	0,255	0,281	0,156	1,069	0,281	1,12
REEY	0,674	0,813	0,582	0,526	0,612	2,346	0,386	4,519	0,811	1,297	0,347	0,257	0,39	0,27	2,761	0,498	1,334
LREE	0,079	0,256	0,123	0,142	0,058	0,501	0,053	0,35	0,207	0,247	0,172	0,065	0,127	0,127	0,498	0,062	0,414
HREE	0,293	0,21	0,31	0,162	0,141	0,873	0,035	2,203	0,142	0,469	0,15	0,19	0,154	0,029	0,571	0,219	0,706
HREEY	0,595	0,557	0,459	0,384	0,554	1,845	0,333	4,169	0,604	1,05	0,175	0,192	0,263	0,143	2,263	0,436	0,92

Continuação...

(%)	NC4C 18	NC4C 19	NC4C 20	NC4C 21	NC4C 22	NC4C 23	NC4C 24	NC4C 25	NC4C 26	NC4C 27	NC4C 28	NC4C 29	NC4C 30	NC4C 31	NC4C 32	NC4C 33	NC4C 34	NC4C 35	NC4C 36	NC4C 37	NC4C 38
SiO ₂	33,21	31,47	32,743	32,725	31,968	33,34	33,382	32,553	33,507	29,906	33,054	32,874	33,348	32,926	32,302	31,605	31,958	29,258	31,857	32,308	25,981
Al ₂ O ₃	0,016	0,001	0,024	0,006	0	0	0,023	0,017	0,006	0,783	0,001	0,029	0	0	0,016	0,212	0,012	0,326	0,039	0,033	0,857
FeO	0,233	0,843	0,381	0,67	0,897	0,176	0,556	0,552	0,277	0,476	0,547	0,382	0,539	0,224	0,587	0,782	0,48	0,657	0,863	0,286	0,845
CaO	0,053	0,229	0	0	0,008	0,328	0	0,098	0	0,414	0,29	0,097	0,104	0	0	0,467	0,044	0,791	0,226	0	1,426
Na₂O	0,043	0,021	0,01	0,018	0,066	0,016	0,004	0,041	0,015	0,018	0	0,004	0,016	0,02	0,011	0,02	0,003	0,048	0,012	0,006	0,028
TiO ₂	0	0,115	0	0	0	0	0	0,042	0,115	0	0	0	0	0,248	0,127	0,079	0,17	0	0	0,158	0
MnO	0	0,056	0	0	0,063	0,029	0	0,066	0	0,644	0,034	0,03	0,006	0	0,052	0,069	0,096	0,277	0,093	0,018	0,907
K₂O	0,006	0,014	0,009	0,027	0,011	0	0,015	0,009	0,033	0,023	0,013	0,022	0,016	0,014	0,009	0,033	0,034	0,003	0,009	0,802	0,032
P_2O_5	0,095	0,062	0,148	0,094	0	0,097	0,051	0,048	0,103	0,223	0,051	0,06	0,003	0,059	0,118	0,595	0,085	0,411	0,214	0,089	1,24
Nb ₂ O ₅	0,353	0,244	0,866	0,251	0,097	0,463	0,285	0,515	0,465	0,584	0,502	0,409	0,707	0,208	0,549	0,446	0,054	0,526	0	0,586	0,271
HfO ₂	1,261	1,214	1,197	0,927	0,92	1,038	1,166	1,195	0,77	1,454	1,088	1,003	1,185	1,156	1,126	1,667	0,842	0,595	0,86	1,413	1,108
Y2O3	0,072	0,278	0,221	0,321	0,286	0,218	0,353	0,114	0	1,594	0,291	0,282	0,145	0,052	0,089	1,198	0,492	1,309	0,534	0	3,108
Ta2O5	0	0,167	0	0	0,118	0,297	0	0	0,094	0,01	0,025	0,166	0,311	0	0,025	0	0	0	0	0,167	0
UO2	0,264	0,308	0,257	0,244	0,29	0,242	0,248	0,305	0,255	0,453	0,281	0,279	0,279	0,24	0,288	0,458	0,242	0,259	0,25	0,252	0,309
BaO	0,018	0,036	0	0	0,029	0	0,002	0,01	0	0	0	0,006	0,02	0,014	0,028	0,01	0,043	0	0	0,024	0,001
F	0	0	0	0	0	0	0	0	0	0,923	0	0	0	0	0	0	0	0	0	0	0,518
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Th O ₂	0,028	0,074	0,059	0,029	0,062	0,002	0,007	0,05	0,027	0,074	0,066	0,057	0,044	0,031	0,036	0,216	0	0,027	0,005	0,016	0,085
SrO	0,092	0,092	0,18	0,02	0,084	0,059	0,121	0,079	0,127	0,129	0,076	0,121	0,126	0,057	0,122	0,099	0,143	0,129	0,174	0,065	0,15
ZrO ₂	61,895	59,74	62,154	62,298	60,037	63,146	62,035	63,207	62,65	55,379	61,37	62,904	60,678	63,007	62,522	60,429	63,324	57,796	60,743	62,667	51,858
Total	97,639	94,964	98,249	97,63	94,936	99,451	98,248	98,901	98,444	93,087	97,689	98,725	97,527	98,256	98,007	98,385	98,022	92,412	95,879	98,89	88,724
La ₂ O ₃	0,014	0,015	0	0,019	0	0	0	0,021	0,032	0	0	0	0,01	0,02	0	0,003	0,027	0,003	0	0,009	0
	0,088	0,008	0	0,041	0,039	0,103	0	0,063	0,046	0,186	0,066	0,119	0,085	0,017	0,039	0,142	0,022	0,067	0,03	0,042	0,059
Pr ₂ O ₃	0,053	0	0,001	0,049	0	0	0	0,095	0	0	0	0,038	0,036	0	0,043	0,034	0	0,074	0,012	0,035	0,01

Nd_2O_3	0,024	0,005	0	0	0	0	0	0,026	0	0	0,036	0	0,008	0,045	0,042	0,024	0	0	0,032	0	0,013
Sm_2O_3	0,029	0,017	0	0	0,028	0	0,011	0	0,033	0	0	0	0,064	0,04	0	0	0,023	0	0	0	0
Eu ₂ O ₃	0	0	0,032	0,029	0	0	0	0,005	0	0	0,016	0	0	0	0,027	0,025	0	0,022	0,005	0,021	0,006
Gd_2O_3	0,036	0,026	0,048	0,029	0,043	0,012	0,01	0	0,025	0,024	0	0	0,02	0	0	0,065	0,041	0,027	0	0,042	0,015
Tb2O3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dy_2O_3	0	0	0	0	0	0	0	0,007	0	0,156	0	0	0	0	0	0,089	0	0	0	0	0
Ho ₂ O ₃	0	0	0,072	0,013	0,028	0,008	0,087	0	0	0,092	0	0,05	0	0	0	0	0	0,075	0	0	0
Er_2O_3	0,084	0,01	0,036	0,085	0,077	0,125	0,046	0,086	0	0,216	0,079	0,026	0	0,082	0	0,141	0,083	0,001	0,015	0,074	0,17
Tm₂O ₃	0	0,024	0	0,023	0,021	0	0	0	0	0,021	0	0,001	0,061	0	0	0	0,016	0	0	0,034	0
Yb ₂ O ₃	0,095	0,029	0,06	0,034	0,015	0,041	0,058	0,025	0,053	0,25	0,12	0,092	0	0,056	0,073	0,178	0	0,018	0	0,003	0,23
Lu_2O_3	0,064	0	0,011	0	0,007	0,019	0	0	0	0,063	0,025	0,053	0,05	0,024	0,004	0	0	0,069	0,089	0	0,035
REE	0,487	0,134	0,26	0,322	0,258	0,308	0,212	0,328	0,189	1,008	0,342	0,379	0,334	0,284	0,228	0,701	0,212	0,356	0,183	0,26	0,538
REEY	0,559	0,412	0,481	0,643	0,544	0,526	0,565	0,442	0,189	2,602	0,633	0,661	0,479	0,336	0,317	1,899	0,704	1,665	0,717	0,26	3,646
LREE	0,208	0,045	0,033	0,138	0,067	0,103	0,011	0,21	0,111	0,186	0,118	0,157	0,203	0,122	0,151	0,228	0,072	0,166	0,079	0,107	0,088
HREE	0,279	0,089	0,227	0,184	0,191	0,205	0,201	0,118	0,078	0,822	0,224	0,222	0,131	0,162	0,077	0,473	0,14	0,19	0,104	0,153	0,45
HREEY	0,351	0,367	0,448	0,505	0,477	0,423	0,554	0,232	0,078	2,416	0,515	0,504	0,276	0,214	0,166	1,671	0,632	1,499	0,638	0,153	3,558

Continuação..

(%)	NC4C 39	NC4C 40	NC4C 41	NC4C 42	NC4C 43	NC4C 44	NC4C 45	NC4C 46	NC4C 47	NC4C 48	NC4C 49	NC4C 50	NC4C 51	NC4C 52
SiO ₂	32,904	32,71	32,53	33,421	6,193	32,894	29,072	31,753	32,405	31,22	27,657	29,585	24,603	31,609
AI_2O_3	0	0,002	0,004	0,001	1,12	0,027	0,6	0,14	0,006	0,062	0,46	0,069	0,073	0,046
FeO	0,218	0,274	0,163	0,136	11,678	0,426	0,795	0,784	0,308	0,055	0,59	0,766	0,372	1,192
CaO	0	0	0	0	0,407	0,44	1,015	0	0	0,088	0,743	0,098	0,249	0,322
Na ₂ O	0	0,01	0,003	0,033	0	0,003	0,013	0,002	0	0,008	0,018	0,035	0,052	0,014
TiO ₂	0,006	0	0	0,206	0,048	0	0	0,127	0	0,097	0	0	0,169	0
MnO	0	0	0,086	0,017	0,078	0,119	0,319	0	0	0,104	0,525	0,045	0,071	0,178
K ₂ O	0,014	0,05	0,009	0,008	0,029	0,011	0,779	0,015	0,007	0,008	0,01	0,003	0,008	0,025
P_2O_5	0,011	0,129	0,128	0,022	19,893	0,088	0,606	0,123	0,062	0,241	0,691	0,016	0,157	0,016
Nb_2O_5	0,383	0,419	0,601	0,625	0	0,596	0,365	0,528	0,361	0,225	0,484	0,319	0,172	0,357
HfO ₂	0,863	1,203	0,788	1,092	0,032	1,24	1,222	0,806	1,094	0,893	2,012	1,108	2,005	1,503
Y_2O_3	0,132	0,252	0,092	0,018	24,324	0,453	1,601	0,664	0,163	0,362	1,437	0,333	0,123	0,302

Ta_2O_5	0	0	0,073	0,047	0	0	0	0,18	0	0	0,036	0	0	0,012
UO ₂	0,231	0,225	0,231	0,367	0,364	0,239	0,245	0,231	0,263	0,232	0,257	0,241	0,289	0,335
BaO	0,001	0	0,003	0	0,019	0,014	0,053	0	0	0,015	0,015	0,02	0,045	0,024
F	0	0	0	0	1,216	0	0,362	0,111	0	0	0,383	0	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0,017	0,012	0,031	0,001	0,378	0,07	0,022	0	0,02	0	0,028	0,102	0,106	0,029
SrO	0,109	0,109	0,205	0,094	0,097	0,17	0,04	0,119	0,155	0,195	0,086	0,177	0,13	0,085
ZrO ₂	64,192	62,462	65,916	63,709	4,292	63,935	55,079	56,081	64,672	59,176	55,915	57,968	46,52	60,765
Total	99,081	97,857	100,863	99,797	70,168	100,725	92,188	91,664	99,516	92,981	91,347	90,885	75,144	96,814
La ₂ O ₃	0,06	0	0,024	0	0	0	0	0,004	0,034	0,029	0,014	0	0,037	0
Ce_2O_3	0,049	0,105	0	0,132	0,189	0,097	0,049	0	0,076	0,067	0,043	0,074	0,135	0,046
Pr_2O_3	0	0	0,024	0	0	0,031	0,017	0,024	0	0,01	0,005	0,006	0,06	0,027
Nd_2O_3	0,019	0	0,01	0,027	0,05	0,041	0,024	0	0,025	0	0	0	0,006	0
Sm_2O_3	0	0	0,007	0	0	0	0	0	0,066	0	0,023	0	0,071	0
Eu_2O_3	0	0	0,068	0,032	0	0,037	0	0	0	0,037	0	0	0	0
Gd_2O_3	0	0	0	0	0,501	0	0,037	0,049	0	0,004	0,032	0,064	0,041	0,065
Tb_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$Dy_2O_{\underline{3}}$	0	0	0	0	1,117	0	0,154	0	0	0,002	0	0	0	0,027
Ho_2O_3	0,046	0,09	0,065	0,024	0,296	0	0	0,122	0,047	0,033	0,007	0	0	0
Er_2O_3	0,013	0,04	0	0,154	0,831	0,002	0,023	0,107	0,101	0,06	0,169	0,069	0,094	0,053
Tm_2O_3	0,003	0,001	0	0	0,039	0	0	0	0	0,04	0	0	0,042	0
Yb_2O_3	0	0	0	0	0,825	0	0,042	0,01	0,093	0,016	0,056	0,13	0,077	0,045
Lu_2O_3	0,011	0,021	0	0	0,109	0	0	0,004	0,064	0,055	0	0	0	0,06
REE	0,201	0,257	0,198	0,369	3,957	0,208	0,346	0,32	0,506	0,353	0,349	0,343	0,563	0,323
REEY	0,333	0,509	0,29	0,387	28,281	0,661	1,947	0,984	0,669	0,715	1,786	0,676	0,686	0,625
LREE	0,128	0,105	0,133	0,191	0,239	0,206	0,09	0,028	0,201	0,143	0,085	0,08	0,309	0,073
HREE	0,073	0,152	0,065	0,178	3,718	0,002	0,256	0,292	0,305	0,21	0,264	0,263	0,254	0,25
HREEY	0,205	0,404	0,157	0,196	28,042	0,455	1,857	0,956	0,468	0,572	1,701	0,596	0,377	0,552

						Grani	Zircão ito greiser	nizado						
(%)	NC9-1	NC9-2	NC9-3	NC9-4	NC9-5	NC9-6	NC9-7	NC9-8	NC9-9	NC9-10	NC9-11	NC9-12	NC9-13	NC9-14
SiO ₂	25.553	32.859	29.471	29.394	29.884	28.316	33.535	33.291	28.537	20.089	25.837	28.03	33.162	29.324
Al ₂ O ₃	0.298	0.02	0.829	0.085	0.206	0.349	0	0.005	0.22	0.28	0.491	0.411	4.282	0.078
FeO	0,937	0,06	0,959	0,779	0,543	0,773	0.03	0,04	0,918	0,613	0,855	1,121	1,566	1,119
CaO	0,831	0	0,153	1,413	0,917	0,397	0	0	0,242	0,607	0,252	0,397	0,138	0,034
Na ₂ O	0,006	0,014	0,028	0,04	0,037	0,014	0	0,001	0,05	0,029	0,068	0,038	0,046	0,116
TiO ₂	0,271	0	0,012	0	0,042	0	0,036	0	0,242	0	0,199	0,193	0,164	0,687
MnŌ	0,478	0.009	0,115	0,378	0,353	0,287	0,122	0,04	0,282	0,079	1,327	0,461	0,125	0,231
K ₂ O	0,091	0,005	0,102	0,061	0,094	0,057	0	0	0,08	0,119	0,092	0,066	0,287	0,209
P_2O_5	3,469	0,056	0,743	0,144	0,199	1,385	0,032	0,044	0,635	8,89	0,176	0,325	0,615	0,198
Nb ₂ O ₅	0,275	0,39	0,207	0,496	0,054	0,939	0,356	0,497	0,38	0,686	0,681	0,957	0,397	2,422
HfO ₂	2,971	0,838	2,203	3,003	2,333	2,45	1,291	1,213	2,131	2,545	2,258	2,001	2,308	0,115
Y_2O_3	5,444	0,211	1,414	0,011	0,709	4,072	0,296	0,074	2,245	13,542	3,11	3,609	1,904	0,047
Ta2O₅	0,02	0,021	0,253	0,07	0,082	0,002	0	0	0,048	0,155	0,16	0,243	0	0,474
UO ₂	0,661	0,207	0,595	0,653	0,701	0,534	0,243	0,249	0,636	0,732	0,774	0,908	0,593	0,755
BaO	0,006	0	0,035	0,01	0	0,002	0,039	0	0,015	0,037	0,213	0,015	0	0
F	0,218	0	0,136	0,246	0,495	0,093	0	0	0,02	0,489	0,722	0,187	0,277	0
PbO	0,648	0	0,461	0,421	0,796	0,236	0	0	0,604	0,523	0,367	0,846	0,174	0,671
ThO ₂	0,119	0,021	0,198	0,023	0,236	0,71	0,015	0	0,369	1,126	2,533	2,046	0,171	0,035
SrO	0,09	0,11	0,018	0,05	0,06	0,053	0,083	0,165	0,145	0,001	0,043	0,059	0,075	0,026
ZrO ₂	47,663	64,122	53,176	54,291	53,688	48,306	62,661	63,103	54,477	35,646	50,006	46,924	45,562	53,004
Total	90,049	98,943	91,108	91,568	91,429	88,975	98,739	98,722	92,276	86,188	90,164	88,837	91,846	89,545
La ₂ O ₃	0	0	0	0	0	0	0	0	0,018	0	0,023	0	0	0
Ce ₂ O ₃	0,12	0,058	0,034	0,041	0,054	0,108	0,014	0,069	0,127	0,249	1,288	0,169	0,106	0,061
Pr ₂ O ₃	0	0,027	0	0,026	0	0	0	0	0,031	0	0,018	0,046	0	0
Nd_2O_3	0,014	0	0,025	0,011	0,045	0,006	0,011	0,004	0,021	0,021	0,056	0,034	0,056	0,011
Sm ₂ O ₃	0	0	0	0,009	0	0,074	0,063	0,076	0	0	0,008	0,006	0,046	0
Eu ₂ O ₃	0	0,006	0	0	0,049	0	0	0	0,073	0,005	0,036	0	0,023	0,067
Gd_2O_3	0,03	0,067	0,067	0,002	0	0,151	0	0,072	0,046	0,167	0,118	0,172	0,066	0
Tb ₂ O ₃	0	0	0	0	0	0	0,034	0	0	0	0	0	0	0
Dy_2O_3	0,15	0	0,222	0	0	0,287	0	0	0,088	0,514	0,377	0,387	0	0
Ho_2O_3	0	0	0	0	0	0,093	0,163	0,098	0	0	0,121	0,207	0	0
Er_2O_3	0,311	0,052	0,4	0,16	0,274	0,699	0	0,046	0,41	1,059	0,72	0,935	0,138	0,106
Tm_2O_3	0,014	0	0	0	0	0,07	0	0,011	0,064	0,117	0,2	0,138	0	0
Yb ₂ O ₃	0,829	0	0,998	0,194	0,462	1,362	0	0,089	0,951	2,468	2,019	2,453	0,706	0,197

Lu_2O_3	0,169	0	0,254	0,042	0	0,234	0	0	0,158	0,535	0,276	0,438	0,159	0
REE	1,637	0,21	2	0,485	0,884	3,084	0,285	0,465	1,987	5,135	5,26	4,985	1,3	0,442
REEY	7,081	0,421	3,414	0,496	1,593	7,156	0,581	0,539	4,232	18,677	8,37	8,594	3,204	0,489
LREE	0,134	0,091	0,059	0,087	0,148	0,188	0,088	0,149	0,27	0,275	1,429	0,255	0,231	0,139
HREE	1,503	0,119	1,941	0,398	0,736	2,896	0,197	0,316	1,717	4,86	3,831	4,73	1,069	0,303
HREEY	6,947	0,33	3,355	0,409	1,445	6,968	0,493	0,39	3,962	18,402	6,941	8,339	2,973	0,35

	Zircã	o - Riot	ita granita)			Zircâ	o - Gran	ito greise	nizado		
(%)	1A 1	1A 2	1A 3	, 1A 4	NC4B 1	NC4B 2	NC4B 3	NC4B 4	NC7A 1	NC7A 2	NC7A 3	NC7A 4
SiO ₂	32.424	33.07	32.237	32.379	32.515	33,09	27,277	33,361	32,766	28,254	25,454	30,812
	0.027	0.003	0.036	0.056	0.003	0,009	0,687	0,002	0	0,884	0,689	0,008
FeO	0,578	0,397	0,312	0,969	1,025	0,307	0,895	0,11	0	0,587	0,861	0,726
CaO	0,295	0,122	0,155	0	0,082	0,079	0,529	0,221	0	0,947	1,401	0,039
Na₂O	0,016	0,007	0,003	0,036	0.056	0	0	0	0,002	0	0,035	0,061
TiO₂	0	0,123	0,012	0	0	0,053	0,023	0,164	0	0,196	0,146	0
MnO	0,118	0,039	0,21	0,047	0,03	0	0,934	0,125	0,042	0	0,265	0,059
K₂O	0,015	0,008	0,002	0,004	0,009	0,003	0,009	0,017	0	0,005	0,089	0,007
P ₂ O ₅	0,176	0,16	0,14	0,091	0,124	0,065	0,437	0,027	0,071	0,472	0,49	0,22
Nb ₂ O ₅	0,124	0,441	0,263	0,117	0,3	0,032	0,005	0,535	0,279	0,335	0,662	0,227
HfO₂	1,484	0,962	1,541	1,154	1,26	1,336	2,769	1,427	1,178	1,794	1,133	2
Y_2O_3	0,14	0,197	0,607	0,407	0,191	0,223	1,926	0,154	0,346	5,554	9,578	0,066
Ta₂O₅	0,116	0,117	0	0	0,046	0,021	0,154	0	0,054	0,18	0	0,279
UO ₂	0	0	0,062	0	0	0	0,278	0	0	0	0,442	0,108
BaO	0,022	0	0,035	0,013	0	0	0,055	0	0,007	0,031	0,025	0
F	0	0	0	0	0	0	0,421	0	0	0,318	0,907	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0
ThO₂	0,071	0,03	0,079	0,103	0,07	0	0,022	0	0	0,033	0,438	0,03
SrO	0,037	0,142	0,124	0,07	0,152	0,122	0,152	0,177	0,122	0,178	0,204	0,073
ZrO ₂	64,047	63,106	63,264	62,806	64,902	67,099	55,415	65,974	64,453	48,066	40,734	60
Total	99,69	98,924	99,082	98,252	100,765	102,439	91,988	102,294	99,32	87,834	83,553	94,715
La ₂ O ₃	0	0	0	0,043	0,011	0,012	0	0,002	0,008	0,041	0	0
Ce_2O_3	0,062	0,035	0,046	0,064	0,006	0,041	0,108	0	0,036	0,015	0,108	0,025
Pr_2O_3	0	0,075	0,012	0,048	0,012	0,055	0,048	0	0,009	0,003	0,052	0,044
Nd ₂ O ₃	0	0,017	0,023	0	0	0,001	0,009	0	0,008	0,011	0,029	0

C	0.004	•	0.050	0.040		0	0 0 2 2	0	0	0	0.025	0.021
$5m_2O_3$	0,034	0	0,053	0,042	0	0	0,023	0	0	0	0,035	0,031
Eu_2O_3	0,055	0	0,084	0,021	0,025	0	0,029	0	0,027	0,028	0,084	0,01
Gd_2O_3	0,039	0,011	0,081	0,006	0,014	0	0,101	0	0,019	0,045	0,011	0,002
Tb_2O_3	0	0	0	0	0	0	0	0	0,007	0	0	0
Dy ₂ O ₃	0	0	0,105	0	0	0	0,182	0,063	0	0	0,172	0
Ho ₂ O ₃	0	0	0	0	0,041	0,02	0	0,183	0,002	0,061	0,09	0,021
Er ₂ O ₃	0,093	0,066	0,05	0,085	0,045	0	0,086	0,038	0,036	0,074	0,504	0,135
Tm_2O_3	0	0	0	0,086	0	0	0	0	0,005	0	0,107	0
Yb ₂ O ₃	0,071	0	0,134	0,17	0,152	0,012	0,217	0,049	0,111	0	1,285	0,049
Lu_2O_3	0	0	0,093	0,012	0	0,039	0	0	0	0	0,207	0
REE	0,354	0,204	0,681	0,577	0,306	0,18	0,803	0,335	0,268	0,278	2,684	0,317
REEY	0,494	0,401	1,288	0,984	0,497	0,403	2,729	0,489	0,614	5,832	12,262	0,383
LREE	0,151	0,127	0,218	0,218	0,054	0,109	0,217	0,002	0,088	0,098	0,308	0,11
HREE	0,203	0,077	0,463	0,359	0,252	0,071	0,586	0,333	0,18	0,18	2,376	0,207
HREEY	0,343	0,274	1,07	0,766	0,443	0,294	2,512	0,487	0,526	5,734	11,954	0,273

Monazita

Monazita – Biotita granito													
(%)	NC4C 1	NC4C 2	NC4C 3	NC4C 4	NC4C 5	NC4C 6	NC4C 7	NC4C 8	NC4C 9	NC4C 10	NC4C 11		
SiO ₂	1,51	0,623	0,667	0,642	0,258	0,399	0,222	0,469	0,193	0,663	0,331		
Al ₂ O ₃	0,343	0,085	0	0	0,006	0,023	0,012	0	0,03	0,076	0,033		
FeO	11,284	1,585	0,155	0,197	0,406	0,005	0,106	0,086	0	0,394	0,061		
CaO	0,053	0,444	0,165	0,445	0	0	0,172	0,764	0	0,319	0,267		
Na₂O	0	0	0	0	0	0	0	0	0,012	0	0		
TiO ₂	0,083	0,081	0,094	0	0,05	0	0	0	0,056	0,069	0,063		
MnO	0,05	0	0,045	0	0,052	0,111	0,007	0,083	0,043	0	0,131		
K₂O	0,023	0,088	0,021	0,04	0,084	0,047	0,06	0,066	0,051	0,475	0,045		
P_2O_5	21,559	24,277	23,647	22,727	25,125	23,902	24,128	24,119	25,659	24,43	24,471		
Nb_2O_5	0	0,38	0	0	0	0	0	0,291	0	0,135	0		
HfO ₂	0	0	0	0	0,051	0	0,007	0,119	0,162	0	0		
Y_2O_3	0,255	0,399	0,468	0,546	0,355	0,738	0,222	0,601	0,323	1,008	0,868		
Ta₂O₅	0	0,136	0,013	0	0,088	0,022	0	0,308	0	0	0		
UO₂	0,356	0,234	0,419	0,436	0,29	0,463	0,406	0,416	0,271	0,368	0,386		
BaO	0,062	0	0,038	0	0,013	0,068	0,049	0,054	0,029	0,044	0,02		
F	0,835	1,258	1,216	0,924	1,302	1,297	1,397	1,208	1,279	1,079	1,472		
PbO	0	0,025	0,172	0,045	0	0,13	0,039	0,16	0	0,115	0,233		
ThO₂	2,143	1,402	3,063	3,354	2,667	2,548	3,227	2,488	0,377	1,461	2,057		
SrO	0	0	0,022	0	0,265	0,047	0,101	0	0,328	0	0,018		
ZrO ₂	0,558	0,611	0,682	0,514	0,546	0,661	0,648	0,674	0,728	0,692	0,661		
La_2O_3	13,615	6,165	15,401	15,115	11,473	13,968	12,303	13,88	24,919	14,068	13,949		
Ce_2O_3	41,502	22,572	44,052	44,292	42,417	42,402	40,289	42,353	41,191	41,549	42,501		
Pr ₂ O ₃	3,129	1,557	2,724	2,738	3,167	2,877	3,011	3,043	1,754	2,758	2,945		
Nd_2O_3	11,501	5,807	10,058	10,486	11,69	10,66	12,834	11,015	4,682	10,421	10,697		
Sm ₂ O ₃	2,091	1,149	1,583	1,505	2,184	2,013	2,532	2,224	0,386	1,748	2,013		
Eu ₂ O ₃	0,474	0,245	0,471	0,385	0,604	0,394	0,55	0,525	0,232	0,476	0,536		
Gd_2O_3	0,403	0,208	0	0	0,299	0,603	0,876	0,644	0	0,55	0,212		
Tb ₂ O ₃	0	0	0	0	0	0,143	0	0,101	0	0	0,104		
Dy_2O_3	0	0	0,078	0,175	0	0,546	0,529	0,624	0	0,386	0,473		
Ho ₂ O ₃	0,065	0,039	0,116	0	0	0,182	0,146	0,138	0	0,219	0,42		
Er ₂ O ₃	0,057	0,166	0,022	0,168	0,041	0,169	0,122	0,222	0,088	0,205	0,167		
Tm ₂ O ₃	0,068	0	0,035	0,078	0	0,059	0,115	0,042	0,007	0,124	0,06		
Yb ₂ O ₃	0,012	0	0	0,002	0	0	0,01	0,08	0	0,061	0,089		
Lu ₂ O ₃	0	0	0,139	0,025	0	0,069	0	0	0	0,024	0,029		

Total	112,031	69,536	105,566	104,839	103,433	104,546	104,12	106,797	102,8	103,917	105,312
O≡F	-0,352	-0,530	-0,512	-0,389	-0,548	-0,546	-0,588	-0,509	-0,539	-0,454	-0,620
Total	111,679	69,006	105,054	104,450	102,885	104,000	103,532	106,288	102,261	103,463	104,692
REE	72,917	37,908	74,679	74,969	71,875	74,085	73,317	74,891	73,259	72,589	74,195
REEY	73,172	38,307	75,147	75,515	72,23	74,823	73,539	75,492	73,582	73,597	75,063
LREE	72,312	37,495	74,289	74,521	71,535	72,314	71,519	73,04	73,164	71,02	72,641
HREE	0,605	0,413	0,39	0,448	0,34	1,771	1,798	1,851	0,095	1,569	1,554
HREEY	0,86	0,812	0,858	0,994	0,695	2,509	2,02	2,452	0,418	2,577	2,422

		Mona	zita- Gr	reisen			Mon	azita – Grai	nito greisei	nizado
(%)	1A 1	1A 2	1A 3	1A 4	1A 5	1A 6	NC4B 1	NC4B 2	NC4B 3	NC7A 1
SiO ₂	0,392	0,495	0,875	0,228	0,592	0,183	0,284	0,243	0,728	1,903
Al ₂ O ₃	0	0,013	0,002	0	0,034	0,003	0,056	0	0,086	1,048
FeO	0,147	0,093	0,193	0,255	0,454	0,596	0,801	0,122	0,196	0,911
CaO	0,633	0,128	0	0,218	0	0,275	0	0	0,253	0,117
Na₂O	0	0	0	0	0	0	0	0	0	0,101
TiO₂	0,06	0,03	0,151	0	0,603	0	0,054	0,175	0,182	0,078
MnO	0,046	0,082	0	0,095	0,053	0,066	0,082	0	0	0
K₂O	0,008	0,009	0,012	0,026	0,06	0,014	0,085	0,004	0	0,965
P_2O_5	24,725	24,36	26,331	24,539	25,509	25,373	25,249	25,914	25,878	27,124
Nb ₂ O ₅	0,019	0,233	0,073	0	0	0	0	0	0	0
HfO ₂	0	0	0,092	0,167	0,321	0,005	0,094	0,122	0	0,196
Y_2O_3	1,493	0,195	0,376	0,23	1,176	0,924	0,084	0,214	0,728	40,447
Ta₂O₅	0,235	0	0	0,086	0,358	0,05	0,15	0,037	0,131	0,088
UO2	0,219	0	0	0,019	0,175	0,159	0,011	0,041	0	0,553
BaO	0	0,063	0	0	0,025	0,057	0	0,051	0,064	0,007
F	1,19	1,289	1,658	1,344	1,135	1,044	1,711	1,32	0,948	1,534
PbO	0,13	0,178	0,139	0,005	0,029	0,109	0,102	0	0,133	0,026
ThO ₂	1,989	2,176	1,775	1,064	0,984	1,387	2,698	1,727	2,311	16,767
SrO	0	0	0	0,058	0	0,077	0,213	0,084	0,089	0
ZrO ₂	0,597	0,826	0,67	0,541	0,795	0,546	0,695	0,775	0,604	1,502
La_2O_3	13,34	8,346	11,809	12,345	12,688	12,035	11,867	13,687	11,771	0,06
Ce_2O_3	35,287	34,22	36,162	35,544	33,711	33,166	39,028	34,296	36,944	0,672
Pr ₂ O ₃	2,437	3,553	2,834	2,677	2,585	2,466	3,379	3,212	3,229	0,009
Nd_2O_3	8,938	15,261	9,657	9,543	8,326	8,854	11,988	11,399	11,444	0,304
Sm_2O_3	1,698	2,683	1,136	1,759	1,663	1,901	1,818	1,6	1,714	0,125
Eu_2O_3	0,49	0,598	0,632	0,504	0,355	0,332	0,57	0,48	0,531	0,015
Gd_2O_3	1,128	1,149	0,542	1,034	1,001	1,139	0,482	0,731	0,92	0,396
Tb_2O_3	0,158	0	0	0	0	0	0	0	0	0
Dy_2O_3	0,458	0,195	0	0,163	0,779	0,669	0	0,321	0,084	1,398
Ho ₂ O ₃	0,09	0,047	0	0	0,11	0,117	0,072	0,263	0,13	0,393
Er_2O_3	0,233	0,085	0,021	0,083	0,215	0,218	0,101	0,249	0,089	1,876
Tm_2O_3	0,093	0,077	0,02	0,192	0,001	0,066	0,118	0,096	0,071	0,347
Yb ₂ O ₃	0,072	0,014	0	0	0,062	0	0	0,025	0,035	3,437
Lu ₂ O ₃	0,057	0	0	0	0	0,06	0	0,014	0	0,614
REE	64,479	66,228	62,813	63,844	61,496	61,023	69,423	66,373	66,962	9,646
Total	96,362	96,398	95,16	92,719	93,799	91,891	101,792	97,202	99,293	103,013
O≡F	-0,501	-0,543	-0,698	-0,566	-0,478	-0,440	-0,721	-0,556	-0,399	-0,646
Total	95,861	95,855	94,462	92,153	93,321	91,451	101,071	96,646	98,894	102,367
REEY	65,972	66,423	63,189	64,074	62,672	61,947	69,507	66,587	67,69	50,093
LREE	62,19	64,661	62,23	62,372	59,328	58,754	68,65	64,674	65,633	1,185
HREE	2,289	1,567	0,583	1,472	2,168	2,269	0,773	1,699	1,329	8,461
HREEY	3,782	1,762	0,959	1,702	3,344	3,193	0,857	1,913	2,057	48,908

					<u>Xenotima -</u>	<u>- Granito</u>	greiseniz	ado				
(%)	NC4B 4	NC7A1	NC9 1	NC9 2	NC9 3	NC9 4	NC9 5	NC9 6	NC9 7	NC9 8	NC9 9	NC9 10
SiO ₂	0	1,903	0	0,034	0,037	0	0	0,005	0,058	1,869	0,05	1,12
Al ₂ O ₃	0,005	1,048	0	0	0	0	0	0	0,789	6,693	0	6,193
FeO	0,859	0,911	0,118	0,585	1,441	0,042	0,166	0,269	0,189	2,638	0,482	11,678
CaO	0	0,117	0,06	0,142	0,018	0,312	0,4	0,505	0,22	0,58	0	0,407
Na₂O	0	0,101	0	0,015	0	0	0	0	0	0	0	0
TiO ₂	0,123	0,078	0	0,012	0	0	0,121	0	0,2	0,097	0,024	0,048
MnO	0	0	0	0,174	0,042	0,018	0,074	0,074	0	0,011	0,104	0,078
K₂O	0,007	0,965	0	0,06	0,036	0	0	0,036	0	0,028	0,038	0,029
P_2O_5	30,395	27,124	31,673	27,938	32,121	29,985	28,256	28,329	23,038	23,53	31,523	19,893
Nb ₂ O ₅	0	0	0,063	0	0	0,107	0	0	0	0	0	0
HfO₂	0	0,196	0,012	0,181	0,109	0	0,084	0	0	0	0,162	0,032
Y₂O₃	33,362	40,447	38,856	32,161	40,352	34,745	31,605	31,919	26,336	28,754	38,872	24,324
Ta₂O₅	0	0,088	0	0,128	0	0	0,048	0	0,166	0,173	0,025	0
UO ₂	0	0,553	0,431	0,592	0,282	0,33	0,315	0,288	0,343	0,56	0,312	0,364
BaO	0	0,007	0	0,055	0	0,034	0	0	0	0	0,004	0,019
F	0,219	1,534	0	0,287	0	0	0,127	0	0,379	0,676	0	1,216
PbO	0	0,026	0	0,203	0	0	0	0	0	0,031	0	0
ThO ₂	0,062	16,767	0,373	3,228	0,536	0,145	0,68	0,2	0,992	0,172	0,192	0,378
SrO	0	0	0	0	0,003	0,012	0,14	0,006	0	0	0,037	0,097
ZrO₂	0,681	1,502	0,828	1,274	0,913	0,908	0,779	0,88	2,093	0,873	0,8	4,292
Total	65,713	93,367	72,414	67,069	75,89	66,638	62,795	62,511	54,803	66,685	72,625	70,168
La ₂ O ₃	0	0,06	0,018	0	0,037	0	13,232	0,085	0	0	0,001	0
Ce ₂ O ₃	0,056	0,672	0,051	0,304	0,056	0,121	37,869	0,184	0,055	0,184	0,12	0,189
Pr ₂ O ₃	0,056	0,009	0	0,035	0,013	0,003	2,947	0,025	0	0,04	0	0
Nd₂O ₃	0,016	0,304	0,081	0,013	0,169	0,133	11,721	0,14	0,063	0,446	0,016	0,05
Sm ₂ O ₃	0,367	0,125	0	0	0,167	0,394	2,282	0,433	0,353	0,842	0,105	0
Eu ₂ O ₃	0,019	0,015	0	0	0	0.003	0,512	0	0,07	0,004	0	0
Gd ₂ O ₃	2,697	0,396	1.01	0.142	1.29	2.218	1.452	3.113	2.718	3.104	0.584	0.501
Tb ₂ O ₃	0	0	0.238	0	0	0.523	0.029	0.4	0.2	0.243	0	0
Dv ₂ O ₃	8,385	1,398	2.833	1.061	2.667	4.862	0.325	5.386	5.287	6.683	1.731	1.117
- ,203 Ho ₂ O ₂	1,593	0,393	0.883	0.657	0.755	1.388	0.061	1,066	1,228	1,606	0.423	0.296
Er ₂ O ₂	4,486	1,876	3,508	29	3,067	4,213	0.284	3,201	3,373	5,335	1,357	0.831
	0.601	0.347	0,000	_,0	0,007	.,	0,204	0,201	0,010	0,300	0.4.44	0,001

Va

Yb ₂ O ₃	3,491	3,437	6,349	7,831	5,055	4,696	0,253	3,534	3,324	4,782	1,245	0,825
Lu ₂ O ₃	0,878	0,614	1,327	1,618	1,069	1,049	0,125	0,794	0,638	1,025	0,199	0,109
Total	88,358	103,013	89,46	82,355	90,745	86,877	134,12	81,344	72,629	91,778	78,547	74,125
O≡F	-0,092	-0,646	0,000	-0,121	0,000	0,000	-0,053	0,000	-0,160	-0,285	0,000	-0,512
Total	88,266	102,367	89,460	82,234	90,745	86,877	134,067	81,344	72,469	91,493	78,547	73,613
REE	22,645	9,646	17,046	15,286	14,855	20,239	71,325	18,833	17,826	25,093	5,922	3,957
REEY	56,007	50,093	55,902	47,447	55,207	54,984	102,93	50,752	44,162	53,847	44,794	28,281
LREE	0,514	1,185	0,15	0,352	0,442	0,654	68,563	0,867	0,541	1,516	0,242	0,239
HREE	22,131	8,461	16,896	14,934	14,413	19,585	2,762	17,966	17,285	23,577	5,68	3,718
HREEY	55,493	48,908	55,752	47,095	54,765	54,33	34,367	49,885	43,621	52,331	44,552	28,042

Oxifluoretos

								Oxiflu	oretos –	- Granit	o greise	nizados							
(%)	NC4B 1	NC4B 2	NC4B 3	NC4B 4	NC4B 5	NC4B 6	NC4B 7	NC4B 8	NC4B 9	NC4B 10	NC4B 11	NC4B 12	NC4B 13	NC4B 14	NC4B 15	NC4B 16	NC4B 17	NC4B 18	NC4B 19
F	7,449	5,8	6,369	5,99	4,952	4,883	6,152	5,708	7,935	8,31	8,177	8,763	5,954	7,409	4,687	6,183	7,473	6,496	8,155
SiO ₂	0,094	0,328	0,063	0,485	0,299	0,282	1,069	0,015	0,148	0	0,012	3,496	0,019	0,2	0,146	0,136	0,037	0,098	1,39
AI_2O_3	0,012	0,041	0	0,004	0,021	0,003	0,068	0	0,038	0,043	0,002	0,314	0,05	0,072	0,043	0,013	0	0,031	0,161
FeO	0,047	0,381	0,524	1,363	0,072	0,137	1,409	0,572	2,094	0,582	0,079	0,237	0,869	0,159	0,07	0,887	0,266	0	0,084
CaO	0,902	1,253	0,184	0,149	0,106	0,05	1,902	0	1,148	2,13	1,403	1,93	0,275	0,204	0,293	0,227	0,532	0,664	1,49
Na₂O	0	0	0	0	0,011	0	0	0,001	0	0	0	0	0,015	0	0	0	0	0	0
TiO ₂	0,29	0,105	0,148	0,056	0,006	0,091	0,034	0	0	0	0	0	0	0,086	0	0	0	0,07	0,077
MnO	0,132	0,083	0,035	0,121	0,108	0,131	0	0	0	0,21	0,112	0,06	0	0,027	0,009	0,019	0,064	0,05	0
K₂O	0,005	0,016	0,03	0,088	0,018	0,006	0	0,025	0,013	0,013	0	0,019	0,071	0,013	0,013	0,014	0,042	0,001	0,037
P_2O_5	0,016	0,156	0	0,058	0,03	0	0,321	0	7,336	0	0,049	6,005	0,086	0	0,033	0	0,042	0,007	6,278
Nb ₂ O ₅	0	0,092	0	0	0,069	0,072	0,048	0	0	0	0	0,182	0,027	0,112	0,061	0,061	0,055	0,016	0
HfO ₂	0	0	0	0	0	0	0	0	0,186	0,055	0	0,233	0,065	0	0,062	0,048	0	0,014	0
Y_2O_3	0,268	0,243	0,289	0,308	0	0,386	1,311	0,297	0,424	0,902	0,705	9,48	0,135	1,479	5,362	0,281	1,885	0,324	1,923
Ta₂O₅	0,119	0	0	0	0	0,055	0,315	0	0,174	0	0,04	0,062	0,129	0,053	0	0,098	0,161	0	0,166
UO2	0,07	0,024	0	0,044	0	0,042	0,192	0,129	0,079	0,07	0,014	0,157	0,1	0	0	0,008	0,073	0,052	0
BaO	0,033	0,002	0,008	0	0,062	0,021	0,024	0	0,023	0,011	0,007	0,066	0	0	0	0	0	0,057	0,031
PbO	0	0,056	0	0	0,006	0,01	0,033	0,23	0,162	0	0	0,01	0,072	0	0	0,021	0	0	0
ThO₂	2,628	2,846	1,189	1,143	0,289	0,511	6,718	8,025	2,54	3,569	0,256	2,253	3,429	2,041	0,623	0,846	2,33	2,248	2,546
SrO	0,359	0,303	0,129	0,14	0	0	0,217	0,465	0,325	0,33	0,1	0,167	0,575	0,184	0,096	0,034	0,129	0,39	0,149
ZrO ₂	0	0	0	0,62	0	0	1,142	0	0,155	0	0	9,198	0	0	0	0	0	0	1,651
La ₂ O ₃	18,529	18,165	19,743	17,972	17,471	16,041	16,25	13,366	12,429	12,79	15,856	12,545	16,78	11,241	10,102	17,223	13,972	15,726	18,866
	41,632	40,987	39,775	39,159	41,129	39,573	34,476	37,749	34,646	31,933	38,823	26,19	39,247	33,196	30,09	40,46	37,735	39,378	37,624
Pr ₂ O ₃	3,5	3,048	2,862	3,179	3,145	3,655	2,728	3,155	3,308	3,053	3,469	3,428	3,275	3,436	2,944	3,26	3,206	3,044	2,598
Nd_2O_3	12,265	10,778	10,053	12,164	11,115	15,166	9,576	11,641	14,09	13,227	15,126	12,957	12,986	15,123	13,552	12,801	12,554	11,154	9,803
Sm ₂ O ₃	1,461	1,48	1,051	1,928	1,395	2,641	1,081	2,128	2,899	2,689	2,542	2,467	1,946	3,564	3,826	1,973	2,552	1,657	1,436
Eu_2O_3	0,56	0,583	0,468	0,492	0,613	0,546	0,504	0,526	0,553	0,453	0,605	0,661	0,526	0,589	0,421	0,52	0,549	0,392	0,399
Gd_2O_3	0,429	0,032	0	0,36	0,109	1,618	0,262	0,768	1,409	1,519	1,596	1,233	0,737	3,81	4,444	0,578	1,641	0,493	0,52
Tb ₂ O ₃	0,08	0	0	0	0	0,025	0	0	0	0	0,113	0	0	0,31	0,505	0	0	0,061	0
Dy ₂ O ₃	0	0	0	0	0,099	0,238	0,125	0	0,094	0,137	0,293	0,737	0	1,373	3,033	0	0,488	0	0
Ho ₂ O ₃	0,146	0,106	0,122	0	0,005	0,21	0,286	0	0	0,058	0,213	0,229	0,01	0,187	0,399	0,242	0,022	0	0,029
Er_2O_3	0,111	0,011	0,107	0	0,123	0,118	0,141	0,078	0,178	0,079	0,116	0,311	0,036	0,197	0,391	0,059	0,078	0,027	0,097
Tm ₂ O ₃	0,052	0,05	0	0,058	0,116	0,034	0,03	0,044	0,051	0,137	0,112	0,063	0,07	0,224	0,129	0,081	0,092	0,106	0
Yb_2O_3	0,069	0	0,052	0	0	0	0	0	0	0	0,033	0,296	0	0	0,05	0	0,014	0	0,077

Lu ₂ O ₃	0,036	0	0	0	0	0	0,044	0	0	0,05	0,027	0,112	0,095	0,09	0,092	0	0,015	0,02	0
Total	91,294	86,969	83,201	85,881	81,369	86,545	86,458	84,922	92,437	82,35	89,88	103,861	87,579	85,379	81,476	86,073	86,007	82,576	95,587
O≡F	-3,137	-2,442	-2,682	-2,522	-2,085	-2,056	-2,591	-2,404	-3,341	-3,499	-3,443	-3,690	-2,507	-3,120	-1,974	-2,604	-3,147	-2,735	-3,434
Total	88,157	84,527	80,519	83,359	79,284	84,489	83,867	82,518	89,096	78,851	86,437	100,171	85,072	82,259	79,502	83,469	82,860	79,841	92,153
REE	78,87	75,24	74,233	75,312	75,32	79,865	65,503	69,455	69,657	66,125	78,924	61,229	75,708	73,34	69,978	77,197	72,918	72,058	71,449
REEY	79,138	75,483	74,522	75,62	75,32	80,251	66,814	69,752	70,081	67,027	79,629	70,709	75,843	74,819	75,34	77,478	74,803	72,382	73,372
LREE	77,947	75,041	73,952	74,894	74,868	77,622	64,615	68,565	67,925	64,145	76,421	58,248	74,76	67,149	60,935	76,237	70,568	71,351	70,726
HREE	0,923	0,199	0,281	0,418	0,452	2,243	0,888	0,89	1,732	1,98	2,503	2,981	0,948	6,191	9,043	0,96	2,35	0,707	0,723
HREEY	1,191	0,442	0,57	0,726	0,452	2,629	2,199	1,187	2,156	2,882	3,208	12,461	1,083	7,67	14,405	1,241	4,235	1,031	2,646

		Oxifluo	oreto – Gr	anito grei	isenizado		
(%)	NC7A 1	NC7A 2	NC7A 3	NC7A 4	NC7A 5	NC7A 6	NC7A7
F	4,765	5,713	8,52	9,215	5,98	6,702	8,534
SiO ₂	4,237	12,911	1,72	0	0,054	0,077	0
Al ₂ O ₃	0,31	0,397	0,332	0,102	0	0	0,028
FeO	1,476	2,605	7,465	1,497	0,006	0,215	0,037
CaO	1,792	0,507	3,218	3,008	0,329	0,346	2,305
Na₂O	0	0	0,07	0,107	0	0,029	0
TiO ₂	7,789	0	0,189	0	0,072	0	0,06
MnO	0	0,002	0,058	0,077	0	0	0,041
K₂O	0,013	0,057	0,122	0,088	0,02	0,074	0,041
P_2O_5	0	3,029	0,087	0	0,036	0	0
Nb ₂ O ₅	20,133	1,097	0,344	0	0	0	0
HfO ₂	0	0,121	0	0,045	0,04	0	0
Y_2O_3	18,325	15,194	15,27	27,626	0,3	1,024	11,301
Ta₂O₅	1,579	0,148	0,144	0	0	0,022	0,054
UO2	0,347	1,72	0,063	0,037	0	0	0,007
BaO	0,125	0,046	0,093	0	0,048	0,046	0,097
PbO	0,025	0	0,068	0	0	0	0
ThO₂	2,602	25,2	3,311	3,103	0,83	0,659	1,315
SrO	0,072	0	0,094	0,149	0	0	0,129
ZrO ₂	0,329	5,968	0	0	0	0	0,026
La_2O_3	2,473	0,024	5,647	3,055	15,912	17,337	6,461
Ce_2O_3	6,724	0,332	12,524	7,349	25,855	26,23	15,937
Pr_2O_3	0,818	0,014	1,792	0,88	3,099	3,355	2,261
Nd_2O_3	3,184	0,174	6,747	3,885	10,582	11,207	10,153
Sm_2O_3	1,14	0,088	1,899	1,493	1,241	1,313	3,325
Eu_2O_3	0,109	0,049	0,286	0,054	0,442	0,425	0,291
Gd_2O_3	1,252	0,237	1,661	2,552	0	0	3,184
Tb_2O_3	0	0	0	0	0	0	0,927
Dy_2O_3	4,292	1,528	3,468	5,245	0,051	0	5,183
Ho ₂ O ₃	0,639	0,538	0,486	0,845	0,134	0,073	0,767
Er_2O_3	2,629	2,274	1,453	2,536	0	0,056	1,568
Tm_2O_3	0,465	0,627	0,11	0,313	0,122	0,027	0,316
Yb_2O_3	2,519	4,632	0,987	1,386	0,043	0,05	0,879
Lu_2O_3	0,578	0,821	0,31	0,482	0,014	0,013	0,545
Total	90,741	86,053	78,538	75,129	65,21	69,28	75,772
O≡F	-2,007	-2,406	-3,588	-3,880	-2,518	-2,822	-3,594
Total	88,734	83,647	74,950	71,249	62,692	66,458	72,178
REE	26,822	11,338	37,37	30,075	57,495	60,086	51,797
REEY	26,822	11,459	37,37	30,12	57,535	60,086	51,797
LREE	14,448	0,681	28,895	16,716	57,131	59,867	38,428
HREE	12,374	10,657	8,475	13,359	0,364	0,219	13,369
HREEY	12,374	10,778	8,475	13,404	0,404	0,219	13,369

Fluorita

Fluor	ita – Granito greise	enizado
(%)	N4B 1	NC7A 1
F	38,202	48,497
SiO ₂	0,189	0,106
Al ₂ O ₃	0,008	0
FeO	0,049	0
CaO	38,206	71,342
Na ₂ O	0	0,006
TiO ₂	0,037	0,132
MnO	0	0,116
K₂O	0,008	0
P ₂ O ₅	0	0,071
Nb ₂ O ₅	0	0
HfO ₂	0	0,203
Y ₂ O ₃	0,514	1,207
Ta₂O₅	0	0
UO ₂	0	0
BaO	0,014	0,012
PbO	0	0
ThO ₂	1,407	0
SrO	0,203	0,078
ZrO ₂	0	0
La ₂ O ₃	8,824	0
Ce ₂ O ₃	26,284	0,02
Pr ₂ O ₃	2,666	0
Nd_2O_3	11,918	0,017
Sm ₂ O ₃	3,165	0,039
Eu ₂ O ₃	0,362	0
Gd ₂ O ₃	3,132	0
Tb ₂ O ₃	0,178	0,057
Dy ₂ O <u>3</u>	1,037	0
Ho ₂ O ₃	0,108	0
Er ₂ O ₃	0,063	0,052
Tm ₂ O ₃	0,151	0,022
Yb ₂ O ₃	0	0,235
Lu ₂ O ₃	0,179	0,117
Total	120,819	101,905
U≡F	104 732	81 483
REE	58.067	0,559
REEY	58,581	1,766
	53,219	0,076 0.483
HREEV	4,040	1,69
	0,002	.,00

ANEXOS -3

Minerais em áreas próximo a Faixa Placha

								Zircã	o – Bio	otita gr	anito								
(%)	NC10A 1	NC10A 2	NC10A 3	NC10A 4	NC10A 5	NC10A 6	NC10A 7	NC10A 8	NC10A 9	NC10A 10	NC10A 11	NC10A 12	NC10A 13	NC10A 14	NC10A 15	NC10A 16	NC10A 17	NC10A 18	NC10A 19
SiO ₂	24,557	25,4	26,52	24,553	24,105	28,674	28,599	29,473	30,476	29,706	29,868	29,907	29,941	30,147	25,96	29,395	30	30,18	24,522
AI_2O_3	0,433	0,029	0,027	0,291	2,631	0,018	0,223	0,016	0	0,172	0	0,016	0	0,028	0,335	0,052	0,035	0,009	1,593
FeO	0,349	0,605	0,406	5,55	1,359	0,38	1,032	0	0,069	0,841	0,035	0,033	0	0,038	0,313	0,46	0	0,04	1,988
CaO	0,324	0,073	0,024	0,885	1,022	0,567	0,332	0	0	0	0,251	0	0,451	0,137	0,268	0,177	0	0,117	0,848
Na₂O	0,002	0	0,033	0,03	0,006	0,06	0,04	0,018	0,018	0,083	0,027	0,018	0	0,019	0,026	0,113	0,021	0,023	0,036
TiO ₂	0,029	0	0	0,25	0,029	0,088	0	0	0	0	0	0,128	0,111	0	0,064	0	0	0,064	0
MnO	0	0,027	0,04	0,109	0	0,073	0,099	0,011	0	0,022	0,042	0	0	0	0,112	0,038	0,014	0	0,098
K₂O	0,005	0,018	0,011	0,052	0	0,014	0,085	0	0,006	0,023	0	0	0,002	0,004	0,009	0,008	0,149	0,002	0,009
P_2O_5	0,505	0,127	0,021	0,015	0,482	0,047	0,089	0,1	0,094	0,083	0	0,084	0,086	0	0,306	0,042	0,037	0,037	0,303
Nb_2O_5	0,293	0,736	0,28	0,094	0,77	0,3	0,093	0,529	0,102	0,814	0,585	0,053	0,43	0,479	0,373	0,342	0,391	0,573	0,03
HfO ₂	1,53	2,186	1,64	1,361	1,631	1,286	1,944	1,519	1,006	1,109	0,952	0,763	1,371	1,255	0,883	1,796	1,092	1,369	1,819
Y_2O_3	0,591	0,26	0,288	1,769	3,212	0,459	0,503	0,009	0,269	0,586	0,042	0,075	0,043	0,2	0,839	0,156	0,195	0,252	2,987
Ta₂O₅	0	0,275	0	0,123	0	0	0	0,07	0,033	0	0	0,174	0	0,273	0	0	0	0,392	0,083
UO ₂	0	0	0	0,216	0	0,025	0,354	0	0	0,024	0	0	0	0	0	0	0	0	0,012
BaO	0,04	0,014	0	0,021	0,113	0,014	0,064	0	0,005	0,004	0	0	0	0,03	0,033	0	0,04	0,012	0,058
F	0,088	0	0	0,196	0,646	0	0	0	0	0	0	0	0	0	0,001	0	0	0	0,603
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO₂	0,038	0,031	0	0,177	0,111	0,054	0,256	0,011	0,048	0,017	0	0	0	0,013	0	0,058	0,069	0	0,094
SrO	0,12	0,096	0,148	0,183	0,141	0,137	0,156	0,13	0,149	0,111	0,096	0,131	0,2	0,183	0,13	0,177	0,15	0,126	0,148
ZrO ₂	51,591	54,568	56,369	46,618	45,745	57,58	55,388	59,368	59,139	57,829	61,299	60,657	60,423	60,458	55,011	57,353	59,649	61,138	47,606
Total	80,495	84,445	85,807	82,493	82,003	89,776	89,257	91,254	91,414	91,424	93,197	92,039	93,058	93,264	84,663	90,167	91,842	94,334	82,837
La_2O_3	0	0,042	0,021	0,038	0,04	0,033	0,049	0,021	0,006	0,024	0,044	0	0,029	0,005	0	0,005	0,595	0,022	0,053
Ce_2O_3	0,085	0,119	0,047	0	0,338	0,021	0,059	0,047	0,071	0,06	0,036	0,05	0,051	0,035	0,049	0,098	1,655	0,053	0,249
Pr_2O_3	0	0,028	0,013	0,034	0,028	0	0,024	0	0,023	0	0	0	0	0	0	0	0,169	0	0
Nd_2O_3	0	0	0,005	0,056	0,16	0,006	0	0,021	0,014	0,025	0	0,001	0,013	0,014	0	0	0,59	0,026	0,126
Sm ₂ O ₃	0	0,022	0,03	0	0,05	0	0	0,03	0	0	0,091	0,017	0,054	0	0	0,01	0,124	0	0,013
Eu_2O_3	0,014	0,051	0,049	0	0	0,003	0	0,003	0	0	0	0,039	0	0,107	0	0	0	0	0,099
Gd ₂ O ₃	0	0,008	0	0,038	0,145	0,004	0,04	0	0	0,024	0	0	0,068	0,007	0	0	0,105	0	0,151
Tb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0,055	0,008	0,021	0	0	0	0
Dy ₂ O ₃	0	0	0	0	0,379	0,069	0	0	0	0,073	0	0,022	0,04	0	0	0	0	0	0,253

Próximo a Faixa Placha

Ho ₂ O ₃	0,081	0	0,037	0,088	0,061	0,105	0,086	0	0,07	0,026	0	0,046	0,022	0	0,122	0	0,105	0	0
Er_2O_3	0	0,048	0	0,2	0,421	0,01	0,119	0,036	0,04	0,037	0	0,05	0	0,054	0	0	0,039	0	0,36
Tm_2O_3	0	0,02	0	0,006	0,087	0	0	0	0	0	0	0	0,035	0	0	0,036	0	0	0
Yb_2O_3	0	0,044	0,07	0,135	0,643	0,091	0,167	0	0,044	0,037	0	0	0,01	0	0	0,031	0,039	0,041	0,617
Lu ₂ O ₃	0	0,066	0,011	0,023	0,07	0	0	0	0	0	0	0,013	0,008	0	0,016	0	0	0	0,128
REE	0,18	0,448	0,283	0,618	2,422	0,342	0,544	0,158	0,268	0,306	0,171	0,238	0,385	0,23	0,208	0,18	3,421	0,142	2,049
REEY	0,771	0,708	0,571	2,387	5,634	0,801	1,047	0,167	0,537	0,892	0,213	0,313	0,428	0,43	1,047	0,336	3,616	0,394	5,036
LREE	0,099	0,262	0,165	0,128	0,616	0,063	0,132	0,122	0,114	0,109	0,171	0,107	0,147	0,161	0,049	0,113	3,133	0,101	0,54
HREE	0,081	0,186	0,118	0,49	1,806	0,279	0,412	0,036	0,154	0,197	0	0,131	0,238	0,069	0,159	0,067	0,288	0,041	1,509
HREEY	0,672	0,446	0,406	2,259	5,018	0,738	0,915	0,045	0,423	0,783	0,042	0,206	0,281	0,269	0,998	0,223	0,483	0,293	4,496

Continuação...

(%)	NC10A 20	NC10A 21	NC10A 22	NC10A 23	NC10A 24	NC10A 25	NC10A 26	NC10A 27	NC10A 28	NC10A 29	NC10A 30	NC10A 31	NC10A 32	NC10A 33	NC10A 34
SiO ₂	29,499	29,447	30,715	30,84	30,662	29,093	29,516	30,662	30,324	30,243	30,998	30,497	30,593	30,666	30,594
Al ₂ O ₃	0,049	0,34	0,013	0	0	0,027	0,03	0,03	0,036	0	0	0	0	0,003	0,015
FeO	0,858	0,38	0,018	0,035	0,088	0,077	0,308	0,025	0	0,002	0	0	0,012	0	0,155
CaO	0,122	0,049	0,026	0,113	0,029	0,264	0,188	0	0	0,023	0,01	0	0	0	0
Na₂O	0,08	0,059	0	0,026	0,016	0,029	0,025	0	0,012	0,001	0,001	0,011	0,026	0	0,013
TiO ₂	0	0,012	0,281	0	0,059	0,065	0,111	0	0	0,052	0,094	0,088	0	0	0,064
MnO	0	0,076	0	0,043	0	0	0,102	0	0	0	0	0,04	0	0,183	0,001
K₂O	0	0,012	0	0,004	0,008	0,009	0,002	0,009	0	0	0,002	0,002	0,003	0	0,006
P_2O_5	0,156	0,27	0,021	0	0,03	0,182	0,036	0	0,089	0	0,102	0,064	0,061	0,084	0,069
Nb_2O_5	0,43	0,457	0,362	0,412	0,319	0,16	0,252	0,306	0,21	0,445	0,704	0,353	0,24	0,211	0
HfO ₂	2,406	2,137	1,495	1,217	1,332	0,952	1,264	1,128	1,038	1,083	0,862	1,74	1,195	1,23	1,385
Y_2O_3	0,188	0,61	0,188	0,085	0,117	0,654	0,405	0,034	0,027	0,098	0,065	0	0,048	0,233	0,259
Ta₂O₅	0	0,022	0	0,06	0,012	0	0,046	0,024	0,391	0	0,094	0,121	0,152	0,132	0
UO ₂	0,064	0,046	0	0	0	0	0	0	0	0	0	0	0	0	0
BaO	0,002	0	0	0	0	0,041	0	0	0,024	0	0,023	0	0	0,007	0
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO₂	0,014	0,074	0	0	0,008	0,081	0	0	0	0,026	0,011	0,003	0	0,027	0,075
SrO	0,087	0,117	0,136	0,197	0,154	0,072	0,034	0,141	0,097	0,147	0,106	0,089	0,073	0,139	0,106
ZrO ₂	56,778	56,71	60,531	61,318	60,386	56,487	57,308	59,667	60,874	61,089	61,454	61,247	62,857	61,874	59,545
Total	90,733	90,818	93,786	94,35	93,22	88,193	89,627	92,026	93,122	93,209	94,526	94,255	95,26	94,789	92,287
La₂O ₃	0,009	0,004	0	0,009	0	0	0	0	0,024	0,021	0	0	0	0	0,003
Ce ₂ O ₃	0	0,055	0,035	0,057	0	0,01	0	0	0	0,045	0,022	0,005	0,012	0,059	0,035
Pr_2O_3	0,086	0,049	0,005	0,032	0	0	0	0,01	0	0,004	0	0	0	0,023	0,028

Nd_2O_3	0	0,026	0,019	0	0,026	0,006	0,018	0	0	0,002	0	0,004	0	0	0
Sm_2O_3	0,006	0	0,075	0,012	0	0	0	0	0,108	0	0,038	0,031	0	0,005	0
Eu_2O_3	0,014	0,049	0,046	0,067	0,065	0	0	0,014	0,016	0	0,011	0	0,04	0,009	0
Gd_2O_3	0	0,009	0,018	0,02	0,042	0,029	0	0	0	0	0,058	0,016	0,032	0	0,072
Tb_2O_3	0	0	0,012	0	0,012	0	0	0	0	0,026	0	0,029	0,006	0	0
Dy ₂ O ₃	0	0	0	0	0	0,077	0	0	0,002	0,002	0	0	0	0	0
Ho ₂ O ₃	0	0,002	0,04	0,043	0	0,07	0	0,041	0,042	0,07	0	0	0	0,05	0
Er_2O_3	0,028	0,117	0,122	0,071	0,063	0,115	0,089	0,072	0,029	0,038	0,031	0,027	0,011	0,003	0
Tm_2O_3	0	0	0	0	0	0,027	0,006	0,024	0,026	0	0	0	0	0	0
Yb ₂ O ₃	0,028	0,148	0	0	0	0,051	0,053	0,045	0	0,019	0	0	0	0	0
Lu_2O_3	0	0,081	0	0,015	0	0,004	0	0	0	0	0,046	0	0,033	0,016	0
REE	0,171	0,54	0,372	0,326	0,208	0,389	0,166	0,206	0,247	0,227	0,206	0,112	0,134	0,165	0,138
REEY	0,359	1,15	0,56	0,411	0,325	1,043	0,571	0,24	0,274	0,325	0,271	0,112	0,182	0,398	0,397
LREE	0,115	0,183	0,18	0,177	0,091	0,016	0,018	0,024	0,148	0,072	0,071	0,04	0,052	0,096	0,066
HREE	0,056	0,357	0,192	0,149	0,117	0,373	0,148	0,182	0,099	0,155	0,135	0,072	0,082	0,069	0,072
HREEY	0,244	0,967	0,38	0,234	0,234	1,027	0,553	0,216	0,126	0,253	0,2	0,072	0,13	0,302	0,331

							Zircã	o – Bio	tita gra	nito						
(%)	NC3A1	NC3A 2	NC3A 3	NC3A 4	NC3A 5	NC3A 6	NC3A7	NC3A8	NC3A 9	NC3A 10	NC3A 11	NC3A 12	NC3A 13	NC3A 14	NC3A 15	NC3A 16
SiO ₂	29,013	29,552	23,361	24,186	29,335	26,052	27,03	27,227	26,113	29,927	22,437	24,652	29,885	26,606	27,907	26,169
AI_2O_3	0,022	0	1,336	1,653	0	0,126	0,126	0,119	0,13	0,013	0,963	0,214	0,029	0,411	0,152	0,215
FeO	0,003	0	0,832	0,765	0,034	0,833	0,594	0,509	1,146	0	1,236	0,895	0,026	0,992	0,915	1,019
CaO	0,066	0	0,325	0,662	0,187	0,732	0,222	0,635	0,741	0	0,717	1,137	0,143	0,719	0	1,584
Na₂O	0,017	0,002	0,023	0	0,013	0,092	0,117	0,092	0,053	0,001	0,002	0,061	0	0,023	0,095	0,013
TiO₂	0,006	0,117	0,216	0,006	0	0,023	0,064	0	0,117	0	0	0,123	0	0	0,076	0,14
MnO	0	0	0,243	0,334	0	0,266	0,153	0	0,376	0	0,17	0,512	0,009	0,278	0,176	0,654
K₂O	0,01	0,002	0,036	0,028	0,007	0,014	0,047	0,009	0,031	0	0,003	0,038	0,002	0,082	0,004	0,013
P_2O_5	0,081	0,094	0,638	0,406	0,073	0,4	0,116	0,258	0,178	0,116	0,65	0,662	0,052	0,973	0,133	0,188
Nb_2O_5	0,426	0,313	0,076	0,982	0,411	0,421	0,083	0,365	0,334	0,473	1,351	0,304	0,486	0,452	0,541	0,208
HfO ₂	0,948	1,053	1,118	1,008	0,998	2,462	1,494	3,282	1,064	1,1	1,415	1,537	0,849	2	1,924	3,195
Y_2O_3	0,102	0,152	6,436	5,712	0,048	0,851	1,208	0,859	1,168	0,032	6,923	2,603	0,322	2,51	0,743	1,445
Ta₂O₅	0	0	0	0,023	0,043	0,251	0,058	0	0	0,163	0,251	0	0	0,239	0,01	0,086
UO ₂	0	0	0,382	0,355	0	0,233	0,252	0,12	0,327	0	0,305	0,253	0	0,282	0,182	0,746
BaO	0,005	0,019	0,011	0	0,006	0	0	0	0	0,027	0,025	0,031	0	0,013	0,001	0,027
F	0	0	1,353	1,773	0	0,14	0,045	0,148	0,204	0	2,415	0,655	0	0,086	0,09	0,436
PbO	0	0	0,308	0,24	0	0	0	0	0	0	0	0	0	0	0	0
ThO₂	0	0,004	0,358	0,353	0	0,075	0,258	0,061	0,273	0,044	0,581	0,233	0,038	0,159	0,059	0,129
SrO	0,078	0,068	0,154	0,015	0,116	0,191	0,042	0,081	0,152	0,09	0,105	0,175	0,169	0,18	0,144	0,14
ZrO ₂	60,927	62,142	45,237	48,063	61,276	53,236	56,668	56,288	52,74	60,05	41,42	49,061	60,976	48,238	52,291	49,082
Total	91,704	93,518	82,443	86,564	92,547	86,398	88,577	90,053	85,147	92,036	80,969	83,146	92,986	84,243	85,443	85,489
La_2O_3	0	0,007	0,003	0	0	0,048	0,012	0	0,049	0	0,028	0	0	0	0,005	0
Ce_2O_3	0,038	0	0,057	0,084	0,013	0,021	0,029	0,057	0	0,055	0,221	0,017	0,05	0,067	0,031	0,057
Pr_2O_3	0	0	0	0,042	0	0	0,021	0	0,026	0	0,095	0	0	0,019	0	0
Nd_2O_3	0	0	0	0,017	0,004	0,017	0	0	0	0	0,09	0,014	0,019	0	0	0
Sm_2O_3	0	0	0	0,026	0,007	0	0,003	0	0	0,123	0,03	0	0,055	0	0	0
Eu_2O_3	0	0,036	0	0	0	0,005	0	0	0,008	0	0,01	0,01	0	0	0,044	0,074
Gd_2O_3	0	0,015	0,053	0,081	0	0	0,109	0,007	0,005	0,024	0,137	0,034	0	0,074	0	0
Tb ₂ O ₃	0,017	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dy ₂ O ₃	0	0	0,278	0,162	0,025	0	0,149	0	0	0,017	0,593	0,061	0	0	0,115	0
Ho ₂ O ₃	0	0	0,117	0,369	0	0,009	0,088	0	0	0	0,111	0,046	0	0,057	0,132	0
Er_2O_3	0,054	0,033	0,824	0,749	0,078	0,129	0,367	0,102	0,161	0,008	0,882	0,224	0,044	0,213	0,267	0,353

Tm_2O_3	0,003	0	0,101	0,156	0	0	0,038	0	0	0	0,214	0,023	0	0	0,085	0,058
Yb_2O_3	0	0	1,729	1,489	0	0,093	0,677	0,093	0,226	0,055	1,702	0,323	0,048	0,756	0,375	0,465
Lu ₂ O ₃	0	0,015	0,294	0,221	0,023	0,017	0,098	0,013	0	0	0,261	0,07	0,009	0,205	0	0,124
REE	0,112	0,106	3,456	3,396	0,15	0,339	1,591	0,272	0,475	0,282	4,374	0,822	0,225	1,391	1,054	1,131
REEY	0,214	0,258	9,892	9,108	0,198	1,19	2,799	1,131	1,643	0,314	11,297	3,425	0,547	3,901	1,797	2,576
LREE	0,038	0,043	0,06	0,169	0,024	0,091	0,065	0,057	0,083	0,178	0,474	0,041	0,124	0,086	0,08	0,131
HREE	0,074	0,063	3,396	3,227	0,126	0,248	1,526	0,215	0,392	0,104	3,9	0,781	0,101	1,305	0,974	1
HREEY	0,176	0,215	9,832	8,939	0,174	1,099	2,734	1,074	1,56	0,136	10,823	3,384	0,423	3,815	1,717	2,445

						F	'luorita -	- Biotita	granito						
(%)	NC3A 1	NC3A 2	NC3A 3	NC3A 4	NC3A 5	NC3A 6	NC3A7	NC3A8	NC3A 9	NC3A 10	NC3A 11	NC3A 12	NC3A 13	NC3A 14	NC3A 15
F	43,138	45,022	36,071	48,845	45,395	20,827	31,628	46,573	45,257	45,407	40,3	44,525	50,907	49,411	45,727
SiO ₂	0,223	0,029	0,442	0,063	0,059	1,194	0,254	0,036	0,442	0,006	0,162	0,019	0,204	0,028	0,072
AI_2O_3	2,06	0,027	0,167	0,061	0,035	0,308	0,242	0,163	0,158	0,04	0,236	0,107	0,183	0,004	0,166
FeO	0,359	0,059	1,086	0,051	0,044	0,954	0,088	0,09	0,101	0,004	0,08	0,101	0,087	0	0,086
CaO	56,237	60,949	45,741	59,803	56,657	25,956	48,976	54,715	54,037	52,964	56,413	58,106	55,315	54,187	57,639
Na₂O	0,042	0,026	0,024	0,035	0,028	0	0,025	0,021	0,026	0,049	0,063	0,069	0,063	0,037	0,091
TiO ₂	0	0	0	0,081	0,112	0,092	0,106	0	0,019	0,037	0,2	0,125	0,056	0,099	0
MnO	0,079	0	0,009	0	0	0,027	0	0	0	0,004	0,042	0,026	0	0	0
K₂O	0,005	0	0,1	0,017	0	0,039	0	0,006	0	0,009	0,017	0,01	0,02	0	0,115
P_2O_5	0,016	0,07	0,116	0,032	0,07	0,043	0,038	0,034	0	0,006	0,015	0,021	0,052	0,061	0,05
Nb_2O_5	0	0,11	0	0,054	0	0,1	0	0,103	0,048	0	0	0,179	0	0	0
HfO ₂	0	0,15	0	0,217	0,068	0	0	0	0	0,095	0,033	0	0	0	0
Y_2O_3	0,862	0,539	1,63	0,696	0,453	2,354	0,205	0,555	1,021	1,752	0,276	0,618	0,851	1,223	0,181
Ta₂O₅	0	0,197	0	0,094	0	0,081	0,159	0	0	0,028	0,002	0	0,187	0	0
UO₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BaO	0,017	0	0	0,005	0,011	0,033	0	0	0	0	0	0	0,002	0,003	0
PbO	0,042	0,041	0,306	0	0	0,471	0,039	0	0	0	0,015	0,03	0	0	0
ThO₂	0,594	0,053	0,573	0,045	0,069	2,045	0,027	0,016	0,051	0,067	0	0,244	0,003	0,035	0,069
SrO	0	0,066	0,02	0,163	0,106	0,137	0,148	0,004	0,062	0,254	0	0	0	0,039	0,001
ZrO ₂	0	0	0	0,004	0	0	0,078	0,011	0	0	0	0,056	0	0,061	0,01
La ₂ O ₃	1,395	0	0,561	0,048	0	9,218	0,044	0,029	0,055	0,055	0	0,601	0,014	0	1,169
	2,139	0,045	3,326	0,349	0,061	26,612	0,068	0,12	0,267	0,104	0,071	0,598	0,044	0,038	2,262
Pr ₂ O ₃	0,45	0,014	0,269	0,025	0	2,618	0,054	0	0,031	0,027	0	0,164	0,028	0	0,176
Nd ₂ O ₃	1,681	0,025	1,371	0,048	0	10,395	0,017	0,033	0,062	0,074	0,027	0,438	0,002	0,033	0,847
Sm ₂ O ₃	0,643	0	0,222	0	0	2,465	0	0	0	0	0,025	0.054	0	0	0,133
Eu ₂ O ₃	0,065	0,009	0.035	0,028	0.075	0,458	0	0	0,029	0.009	0,043	0	0,023	0,004	0,006
	0,622	0	0.286	0	0,009	2,166	0,014	0.036	0,04	0,037	0	0,041	0,002	0,024	0,318
Tb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0.001	0	0	0.018	0
Dv ₂ O ₂	0.649	0.059	0.259	0	0	1.53	0	0	0	0.109	0.059	0.063	0	0	0.062
Ho ₂ O ₂	0.086	0.048	0.031	0.011	0.032	0.19	0.054	0.072	0	0.125	0.072	0.094	0.095	0.058	0
Er ₂ O ₂	0.249	0.065	0.059	0.045	0.062	0.561	0.059	0.018	0.012	0.057	0.029	0.048	0.013	0.063	0.137
<u></u> 203	0.08	0	0.033	0	0.063	0.173	0,000	0	0	0	0.017	0	0	0,000	0.017
Yh ₂ O ₂	0,00	0 033	0.074	0 167	0.077	0.235	0	0.061	0 092	0.017	0.006	0 034	0 024	0 104	0 107
	0 058	0,000	0,074	0,107	0,077	0,233	0	0,001	0,032	0,017	0,000	0,034	0,024	0,104	0,107

Fluorita – Próxima a Faixa Placha

Total	111,791	107,665	102,224	92,811	110,996	103,486	111,394	82,323	102,696	101,81	101,336	98,232	106,384	108,199	105,53
O≡F	-18,165	-18,959	-17,585	-15,189	-20,569	-19,116	-8,770	-13,319	-19,612	-19,058	-19,121	-16,970	-18,749	-21,437	-20,807
Total	93,626	88,706	84,639	77,622	90,427	84,370	102,624	69,004	83,084	82,752	82,215	81,262	87,635	86,762	84,723
REE	8,117	0,327	6,526	0,73	0,379	56,733	0,31	0,369	0,588	0,614	0,378	2,148	0,269	0,342	5,283
REEY	8,979	0,866	8,156	1,426	0,832	59,087	0,515	0,924	1,609	2,366	0,654	2,766	1,12	1,565	5,464
LREE	6,373	0,093	5,784	0,498	0,136	51,766	0,183	0,182	0,444	0,269	0,166	1,855	0,111	0,075	4,593
HREE	1,744	0,234	0,742	0,232	0,243	4,967	0,127	0,187	0,144	0,345	0,212	0,293	0,158	0,267	0,69
HREEY	2,606	0,773	2,372	0,928	0,696	7,321	0,332	0,742	1,165	2,097	0,488	0,911	1,009	1,49	0,871

	Oxifluoretos – Biotita granito																			
(%)	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A	NC3A

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
F	8,445	9,065	7,445	7,441	8,068	5,491	10,261	7,607	7,233	8,126	7,952	10,788	9,218	8,145	8,636	7,256	8,071	7,761	8,408	7,634
SiO ₂	0,202	0,541	0,241	0	0,055	0,044	0,01	0	3,559	9,576	0	0,313	3,759	0	5,584	0,059	0,676	0	0	0
Al ₂ O ₃	0,352	0,079	0,07	1,47	0,105	0,345	0,094	0,073	2,677	2,731	0,141	0,354	1,309	0,268	2,571	0,085	0,161	0,037	0,043	0
FeO	1,003	0,193	0,275	0,011	0,126	0,151	0,402	0,122	0,781	2,663	0,046	1,718	2,351	0,08	10,918	0,342	2,39	1,53	0,119	0,079
CaO	1,041	0,609	1,001	0,272	0,724	0,173	4,692	1,073	0,279	0,336	1,025	9,59	37,821	0,7	17,322	1,136	1,814	1,041	0,489	0,398
Na₂O	0	0	0,058	0	0,033	0	0,039	0,077	0	0	0,096	0,052	0,049	0,022	0,086	0,034	0	0	0	0
TiO ₂	0,136	0,195	0	0,114	0,098	0,137	0,222	0,011	0	0,105	0	0	1,831	0,092	0,672	0,466	1,02	0,168	0	0
MnO	0	0	0	0,081	0,096	0	0	0,045	0	0,012	0	0,069	0,047	0	0	0,111	0,156	0,06	0,16	0
K₂O	0,026	0,043	0,128	0,03	0,027	0,057	0,031	0,02	0,07	0,051	0,069	0,027	0	0,061	0,034	0,095	0,132	0,026	0,03	0,01
P_2O_5	0,033	0	0,08	0,026	0,021	0,035	0,055	0	0	0,02	0	0,085	0,092	0,003	0,113	0,02	0,049	0,089	0	0,056
Nb₂O₅	0,097	1,718	0	0	0	0	0	0	0	0,208	0	0	0	0	0,76	0,291	0,743	0,054	0	0
HfO₂	0	0	0,183	0	0	0,034	0	0	0	0,189	0,045	0	0,108	0	0	0	0,068	0,019	0,014	0,116
Y_2O_3	6,486	3,294	3,806	4,162	4,002	2,474	6,09	3,075	4,085	4,295	5,014	3,89	0,531	3,958	4,477	3,796	4,3	4,929	3,45	3,807
Ta₂O₅	0,332	0	0,051	0	0,194	0	0,028	0	0	0	0,061	0	0,096	0,22	0	0	0	0	0,096	0
	0,016	0	0,032	0,006	0,024	0,019	0,04	0	0	0,025	0	0	0	0	0	0,111	0,029	0,006	0,076	0
BaO	0,016	0,006	0,018	0,032	0,02	0	0,031	0,022	0,017	0,027	0,031	0 209	0,014	0,044	0,038	0,030	0,050	0 787	0,009	0,040
ThO	1 905	0,540	0,70Z	0,30	1,190	1 262	0,490	0,200	1,074	0,024	0,152	0,300	0,04	1 904	0,000	13	1 472	1 333	0,000	0,333
SrO	0 123	0 141	0 266	0.035	0	0.029	4,333	2,000	0	0.006	0,073	0,739	0,045	0.054	0,033	0.015	0.117	0	0,000	0,071
ZrO ₂	0	0	0, <u>2</u> 00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,099	0
	8.746	10.834	11.36	10.959	11.807	10.404	5.891	2.556	9.915	8.859	9.269	3.088	0.164	6.364	0.016	11,651	12,216	11,974	11,651	11,746
Ce ₂ O ₃	24.982	39.82	31.719	31.715	33.78	32.994	12.331	7.185	29.919	29.427	28.862	11.03	0.169	18.295	0.739	22,445	24,318	22,856	21,591	22,429
Pr ₂ O ₃	2,589	2,181	2,569	3,102	3,075	3,17	1,723	0,93	2,775	2,978	2,616	0,954	0,025	1,761	0.02	2,945	2,944	3,285	3,179	3,422
Nd ₂ O ₃	10,866	7,695	9,532	12,829	12,942	13,445	6,97	3,941	11,039	12,873	10,756	2,954	0,036	7,222	0,052	11,626	11,599	13,558	12,57	14,245
Sm ₂ O ₃	2,875	1,257	1,798	3,034	3,001	3,69	1,893	1,025	3,262	3,532	2,478	0,685	0,01	1,85	0	3,049	2,729	3,167	3,154	3,792
Eu ₂ O ₃	0,482	0,207	0,411	0,549	0,457	0,527	0,164	0,063	0,384	0,37	0,477	0,192	0	0,24	0	0,414	0,3	0,389	0,297	0,424
Gd_2O_3	2,931	1,188	1,407	3,052	3,061	3,643	1,948	1,083	2,866	4,142	2,074	0,26	0,05	1,482	0,069	0,474	0,572	0,097	0,389	1,963
Tb_2O_3	0	0	0	0,124	0,317	0,031	0,236	0,092	0,124	0,543	0	0	0	0	0	0	0	0	0,045	0,774
Dy ₂ O ₃	2,247	0,894	0,799	2,142	1,168	1,592	1,683	1,089	1,495	2,566	1,03	0,275	0,018	1,1	0,08	2,584	2,393	1,042	1,195	2,552
Ho ₂ O ₃	0,011	0,001	0,184	0,19	0,141	0,195	0,266	0,073	0,239	0,196	0,248	0,105	0,093	0,158	0,137	0,208	0,539	0,265	0,311	0,416
Er_2O_3	0,465	0,312	0,318	0,231	0,132	0,146	0,425	0,284	0,208	0,23	0,214	0,085	0,013	0,231	0,058	0,632	0,51	0,276	0,364	0,3
Tm_2O_3	0,227	0,06	0,123	0,123	0,124	0,108	0,16	0,116	0,111	0,261	0,143	0,087	0,017	0,05	0	0,108	0,163	0,136	0,099	0,163
Yb_2O_3	0,174	0,177	0,047	0,133	0,032	0	0,157	0,229	0	0,07	0,073	0,094	0,003	0,098	0,067	0,34	0,267	0	0,274	0,116
Lu_2O_3	0,263	0,114	0,101	0,072	0,022	0,126	0,106	0,088	0,021	0,021	0,079	0,008	0	0,075	0,002	0,199	0,091	0,091	0,117	0,188
Total	77,468	82,97	79,8	83,716	85,475	80,323	60,843	33,351	83,453	96,254	73,648	47,808	58,029	54,867	52,591	73,228	81,062	74,976	69,236	75,908
O≡F	-3,556	-3,817	-3,135	-3,133	-3,397	-2,312	-4,321	-3,203	-3,046	-3,422	-3,349	-4,543	-3,882	-3,430	-3,637	-3,056	-3,399	-3,268	-3,541	-3,215
Total	73,912	79,153	76,665	80,583	82,078	78,011	56,522	30,148	80,407	92,832	70,299	43,265	54,147	51,437	48,954	70,172	77,663	71,708	65,695	72,693

REE	56,858	64,74	60,368	68,255	70,059	70,071	33,953	18,754	62,358	66,068	58,319	19,817	0,598	38,926	1,24	56,675	58,641	57,136	55,236	62,53
REEY	63,344	68,034	64,174	72,417	74,061	72,545	40,043	21,829	66,443	70,363	63,333	23,707	1,129	42,884	5,717	60,471	62,941	62,065	58,686	66,337
LREE	50,54	61,994	57,389	62,188	65,062	64,23	28,972	15,7	57,294	58,039	54,458	18,903	0,404	35,732	0,827	52,13	54,106	55,229	52,442	56,058
HREE	6,318	2,746	2,979	6,067	4,997	5,841	4,981	3,054	5,064	8,029	3,861	0,914	0,194	3,194	0,413	4,545	4,535	1,907	2,794	6,472
HREEY	12,804	6,04	6,785	10,229	8,999	8,315	11,071	6,129	9,149	12,324	8,875	4,804	0,725	7,152	4,89	8,341	8,835	6,836	6,244	10,279

	Oxifluo	retos – gra	anito grei	senizado	
(%)	NC11A 1	NC11A 2	NC11A 3	NC11A 4	NC11A 5
F	8,199	6,1	8,627	6,332	5,836
SiO ₂	0,108	0	0,175	0	0,108
Al ₂ O ₃	0,049	0,008	0,004	0,013	0,026
FeO	2,137	0,643	5,877	0,059	0,245
CaO	3,991	0,209	10,155	0,086	0
Na₂O	0	0	0,042	0	0
TiO ₂	0	0,131	0	0	0,12
MnO	0,145	0,03	0,116	0	0
K₂O	0,15	0,026	0,062	0,01	0,255
P_2O_5	0	0,073	0	0,04	0,012
Nb_2O_5	0,062	0	0,066	0	0
HfO ₂	0	0	0	0,145	0,191
Y ₂ O ₃	0,707	0,545	0,978	0,416	0,436
Ta₂O₅	0	0	0	0,053	0
UO2	0	0	0,02	0,001	0
BaO	0	0,022	0,028	0	0,067
PbO	0,025	0	0	0,002	0
ThO ₂	0,794	0,945	1,669	0,173	1,046
SrO	0,09	0,082	0,296	0	0,016
ZrO ₂	0	0	0	0	0
La_2O_3	12,731	16,867	11,075	25,729	15,632
Ce ₂ O ₃	25,868	25,913	20,277	24,067	25,068
Pr ₂ O ₃	3,144	3,349	2,703	2,341	3,46
Nd_2O_3	11,606	13,123	10,752	8,366	13,622
Sm ₂ O ₃	2,03	1,877	1,859	0,775	2,251
Eu ₂ O ₃	0,381	0,457	0,457	0,258	0,472
Gd ₂ O ₃	0	0	0	0	0
Tb ₂ O ₃	0	0	0	0	0
Dy ₂ O ₃	0	0	0,034	0,054	0,036
Ho ₂ O ₃	0	0	0	0	0
Er ₂ O ₃	0,18	0	0,065	0,077	0,015
Tm ₂ O ₃	0	0,117	0	0	0,102
Yb ₂ O ₃	0	0	0,021	0,065	0
Lu ₂ O ₃	0,003	0	0,034	0	0
Total	64,201	64,417	66,765	62,73	69,016
O≡F	-3,453	-2,569	-3,633	-2,666	-2,458
Total	60,748	61,848	63,132	60,064	66,558
REE	55,943	61,703	47,277	61,732	60,658
REEY	56,65	62,248	48,255	62,148	60,849
LREE	55,76	61,586	47,123	61,536	60,505
HREE	0,183	0,117	0,154	0,196	0,153
HREEY	0,89	0,662	1,132	0,612	0,344