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Resumo Expandido

Essa dissertação contribui para o crescente campo de inteligência artificial e aprendizado
de máquina. Aprendizado é um componente essencial do comportamento humano, a facul-
dade por trás da nossa habilidade de se adaptar. E essa característica única que diferencia
seres humanos de outras espécies, e nos permitiu perserverar e dominar o mundo como
nos conhecemos. Através de algoritmos de aprendizado, nós buscamos imbuir agentes
artificiais com essa mesma capacidade, para que eles possam aprender e se adaptar inte-
ragindo com o ambiente, conseguindo desta forma aumentar seu potencial de atingir seus
objetivos.

Nesse trabalho, nós buscamos resolver o problema de como múltiplos agentes coopera-
tivos aprendendo concomitantemente podem se beneficar de conhecimento compartilhado
entre eles. A habilidade de compartilhar conhecimento adquirido, seja instantaneamente
ou através de gerações, é peça chave para a nossa evolução. Segue que o compartilhamento
de conhecimento entre agentes autônomos pode ser a chave para acelerar conhecimento
em sistemas multiagentes cooperativos. Baseado nesse raciocínio, neste trabalho inves-
tigamos métodos de compartilhamento de conhecimento que pode efetivamente levar a
uma aceleração no aprendizado.

A pesquisa é focada na abordagem de transferência de conhecimento através do com-
partilhamento de experiências. O modelo MultiAgent Cooperative Experience Sharing
(MACES) define uma arquitetura que permite troca de experiências entre agentes coope-
rativos aprendendo concomitantemente. Neste modelo, investigamos diferentes métodos
de compartilhamento de experiências que podem levar a aceleração do aprendizado.

O modelo é validado em dois problemas diferentes de aprendizado de reforço, um
problema de controle clássico e um de navegação. Os resultados apresentados mostram
que o MACES é capaz de reduzir em mais da metade o número de episódios necessários
para completar uma tarefa através da cooperação de apenas dois agentes, comparado a
agentes não cooperativos. O modelo é aplicável a agentes que implementam métodos de
aprendizado de reforço profundo.
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Extended Abstract

This dissertation is a contribution to the burgeoning field of artificial intelligence and
machine learning. Learning is a core component of human behaviour, the faculty behind
our ability to adapt. It is the single characteristic that differentiate humans from other
species, and has allowed us to persevere and dominate the world as we know. Through
learning algorithms, we seek to imbue artificial agents with the same capacity, so they
can as well learn and adapt by interacting with the environment, thus enhancing their
potential to achieve their goals.

In this work, we address the hard problem of how multiple cooperative agents learning
concurrently to achieve a goal can benefit from sharing knowledge with each other. Key
to our evolution is our ability to share learned knowledge with each other instantaneously
and through generations. It follows that knowledge sharing between autonomous and
independent agents could as well become the key to accelerate learning in cooperative
multiagent settings. Pursuing this line of inquiry, we investigate methods of knowledge
sharing that can effectively lead to faster learning.

We focus on the approach of transferring knowledge by experience sharing. The pro-
posed MultiAgent Cooperative Experience Sharing (MACES) model defines an architec-
ture that allows experience sharing between concurrently learning cooperative agents.
Within MACES, we investigate different methods of experience sharing that can lead to
accelerated learning.

The proposed model is validated in two different reinforcement learning settings, a
classical control and a navigation problem. The results shows that MACES is able to
reduce in over a half the number of episodes required to complete a task through coop-
eration of only two agents, compared to a single agent baseline. The model is applicable
to deep reinforcement learning agents.

Keywords: reinforcement learning, deep reinforcement learning, multiagent reinforce-
ment learning, transfer learning, knowledge sharing
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“Your memories are the first step to
consciousness. How can you learn
from your mistakes if you can’t
remember them?”

Bernard Lowe in Westworld
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Chapter 1

Introduction

The field of artificial intelligence was born from an ambition to create machines as intelli-
gent as the human species. Since the influential Darthmouth workshop in 1956, research
into artificial intelligence has been driven by a desire to replace traditional programming,
which requires step by step instructions for every task performed by a machine, for a
more flexible scheme where a machine can learn by itself the optimal approach to reach
an objective defined by its human creator (Russell and Norvig, 2009).

Reinforcement Learning (RL) is a learning mechanism where autonomous agents,
through trial and error, attempt to learn the best action to take given a perceived state
in an environment. It is part of the larger field of Machine Learning (ML), and it mainly
differs from other ML approaches by its online nature. Instead of learning by analyzing a
previously collected dataset, an agent learns through its interaction with the environment
(Sutton and Barto, 2018).

The idea of sharing experience between cooperative agents emerges naturally from our
view of how humans learn. While learning from experience, we also exchange knowledge
with peers and teachers to accelerate learning, so learning involves as much information
transfer as it involves discovery by trial-and-error. Our evolution as a species is tightly
linked to the ability of sharing learned knowledge with each other, either instantaneously
through verbal communications, or throughout generations by written culture. Expe-
rience Sharing (ES) between autonomous and independent agents could be paramount
to replicate how humans learn, and greatly improve learning efficiency in ML methods
applied to cooperative multiagent settings.

In this work, we explore the ES approach between homogeneous agents in the same
environment. The MultiAgent Cooperative Experience Sharing (MACES) model is pro-
posed, which comprises several methods of ES. First, we investigate the premise that
sharing experiences alone is enough to increase learning performance of two or more
cooperative agents. Following it, we propose a method which limits sharing to only expe-
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riences which are novel to the learner agent. While random ES between two agents shows
no improvement over single agent learning, the Focused ES method shows significant im-
provement over the baseline, reducing the number of episodes required to complete a task
in over a half.

1.1 Problems

RL has many applications in industry, specially in problemas related to optimization,
control and navigation. Its recent combination with deep learning reignited the field, and
its core concepts are key to the latest developments in the field of ML (Fernandez and
Mahlmann, 2018; Silver et al., 2016; Vinyals et al., 2017).

However, RL is considered difficult to implement, even for researchers in the field,
as noted in Henderson et al. (2018a). It also requires more data to learn compared to
other machine learning algorithms. Hence successful RL implementations are mainly seen
in environments that can be simulated to generate large amounts of data, like robotics
and games. A major challenge for the field, therefore, is to improve sample efficiency of
existing RL algorithms, enabling an agent to learn more from less data.

This is the problem we address. We seek to accelerate learning in existing RL algo-
rithms. Specifically, we look at settings where an agent can benefit from cooperation with
other agents concurrently learning the same task. Learning performance is measured in
number of episodes required to complete the task (ETC). Reducing ETC results in im-
provement in sample efficiency, and the benefits can be extended to a large number of
applications currently implementing RL in cooperative multiagent scenarios.

As a proposed solution, we explore how to effectively implement experience sharing
between cooperative agents. Sharing experiences in RL agents was first investigated in
Tan (1993) and Whitehead (1991). One of the main issues in learning by trial-and-error
is that it relies on the agent’s luck in first achieving the goal by chance, which could be
overcome by learning a policy directly from external experts (Lin, 1992). If cooperation
is done intelligently, each agent can benefit from other agents’ instantaneous information,
episodic experience, or learned knowledge (Tan, 1993).

Our research situates in the field of Multiagent Reinforcement Learning (MARL), and
the model proposed applies to RL algorithms that make use of neural network as function
approximators, a class of algorithms is known as Deep Reinforcement Learning (DRL).
Improving learning with cooperation, if successful, can be extended to several practical
applications in RL, specially robotics and navigation problems, where it is common to
have several potentially cooperative agents performing the same task.

2



1.2 Objectives

Our goal is to evaluate ES methods between cooperative RL agents. We want to evaluate if
ES can be an effective tool to accelerate learning in cooperative multiagent reinforcement
learning settings. The metric used as benchmark for evaluation purposes is number of
episodes required to complete a task, or ETC.

The main goal can be broken down into two subgoals: (i) show two or more agents
cooperating through ES can learn faster than a single agent; (ii) propose enhanced meth-
ods of ES that can lead to faster learning. Accomplishing these subgoals will result in the
following contributions:

• Study and propose enhanced methods of ES that can accelerate learning;

• Propose a general model for ES among cooperative agents;

• Implement the proposed ES model and its methods;

• Validate the proposal in two distinct RL scenarios: classical control, and navigation.

1.3 Document outline

This document is organized as follows.

• Chapter 2 - Reinforcement Learning introduces the basics concepts of ML and
RL;

• Chapter 3 - Deep Reinforcement Learning discusses neural networks and how
they can be combined with RL;

• Chapter 4 - Multiagent Settings describes the extension of RL to scenarios with
more than one agent;

• Chapter 5 - Proposal presents the proposed model MACES and methods of ES;

• Chapter 6 - Empirical Validation presents experimentation results and discusses
the results achieved;

• Chapter 7 - Related Work overviews the literature related to the proposal;

• Chapter 8 - Conclusion discusses limitations, possible applications and future
work.

3



Chapter 2

Reinforcement Learning

This chapter discusses RL. We start with a general introduction to the more broad cate-
gory of ML, and lead on to investigate RL in more details.

2.1 Machine learning

‘
Machine Learning, a subarea of Artificial Intelligence, is a term used to describe al-

gorithms used to learn patterns from data. It is commonly divided into three different
subclasses: Supervised Learning (SL), Unsupervised Learning (UL) and RL.

The first category, which has gained a lot of traction recently with online competitions
and industrial applications, is called SL. It is defined by Russell and Norvig (2009) as
follows:

The task of supervised learning is this: given a training set of N example in-
put–output pairs (x1, y1), (x2, y2), · · · , (xn, yn), where each yj was generated by an
unknown function y = f(x), discover a function h(x) that approximates the true
function f(x). Here x and y can be any value; they need not be numbers. The
function h is a hypothesis.

SL algorithms learn to identify a pattern in a given labeled dataset. The algorithm
encodes a model, which represents the pattern. A common SL model is composed of a set
of parameters, with each parameter having an associated weight. The learning task then
becomes an optimization task, which can be described as finding the optimal combination
of weights that makes the model a better predictor of new observations.

This problem is also called credit assignment path (Schmidhuber, 2015), due to the fact
the optimization algorithm has to discover how each parameter contributed to the correct
or incorrect classification of a new observation, and adjust its weights accordingly in order
to improve its chance to correctly predict the next round. The paramount premise in SL is
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that the model has access to large amount of labeled data, since during the training stage
the model requires knowing whether an item has been correctly or incorrectly classified.

In contrast, methods of the second category, UL, do not require a labeled dataset.
They learn patterns only through analysis of the data itself. As defined by Russell and
Norvig (2009):

In unsupervised learning the agent learns patterns in the input even though no
explicit feedback is supplied. The most common unsupervised learning task is clus-
tering: detecting potentially useful clusters of input examples.

Apart from clustering, another common application of UL are dimensionality reduction
techniques, such as principal and independent component analysis. UL has been relevant
to the evolution of ML algorithms since 1970. Today, its largest contribution is as an aid
to SL algorithms, being used to preprocess datasets, reduce dimensions, select relevant
features for maximum entropy, and pre-initialize weights and hyperparameters for SL
models. The first breakthrough achieved by Deep Neural Network (DNN)s in the 2000’s
decade was attributed to the use of AutoEncoders, an UL neural network, to pre-train
deep feedforward neural networks (Schmidhuber, 2015).

The third subclass of ML algorithms is called Reinforcement Learning. Russell and
Norvig (2009) defines as:

In reinforcement learning the agent learns from a series of reinforcements—rewards
or punishments. For example, the lack of a tip at the end of the journey gives the
taxi agent an indication that it did something wrong. The two points for a win at
the end of a chess game tells the agent it did something right. It is up to the agent
to decide which of the actions prior to the reinforcement were most responsible for
it.

RL deals with the problem of online learning; instead of learning a pattern through
large amounts of data previously made available, RL algorithms learn by direct interaction
with the environment, using feedback perceived at each step to adjust its action-selection
policy. RL algorithms and its history are discussed in details in this chapter.

The distinction between these three subclasses of ML algorithms is becoming more
blurry in the current state of the art research. UL models are used to enhance SL algo-
rithms, with improvements in performance or running time. More recently, SL and UL
have been combined with RL with astonishing results in different domains, setting the
path for a new subclass of algorithms, DRL (Schmidhuber, 2015).
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2.2 Markov decision process

Reinforcement learning can be summarized as learning through rewards. In a more de-
tailed description, RL concerns an agent learning in a given environment. The agent
perceives the world through sensors, and changes it through its actions. Each action
taken by the agent affects the environment, that may output a reward (Sutton and Barto,
2018), as seen in Figure 2.1. The learning process based on reward is inspired on the RL
theory developed in psychology to explain animal behavior (Ferster and Skinner, 1957).

Figure 2.1: Classical diagram of a RL loop. Reproduced from Sutton and Barto (2018).

The RL problem is commonly modeled as a Markov Decision Process (MDP), formal-
ized by a set of states S, a set of actions A, a transition function

p(s′ | s, a) = Pr{st+1 = s′ | st = s, at = a}, (2.1)

and a reward function

r(s, a) = E[rt+1 | st = s, at = a], (2.2)

where st is the current state at time t, at is the action taken at time at, and st+1 is the
state at time t+ 1. The agent moves from one state to another through its actions. The
transition probability function determines which next state s′ will the agent arrive after
taking action a. After arriving at the new state, the agent receives a reward, which can
be null, positive or negative (Sutton and Barto, 2018). This cycle is represented in Figure
2.2.

The goal of an RL agent in this MDP setting is to learn an optimal policy π, which
leads to the maximum reward possible. Policy is a function that determines which action
the agents needs to take given the perceived state. If we consider a finite amount of
time n, every sequence of actions from the agent from time 0 to time n is considered an
episode. The agent thrives to maximize not only local reward of a step, but the total
reward for an episode. The total reward can either be spread upon intermediate states or
concentrated in the final state, introducing the problem of learning an optimal policy in
a delayed rewards setting.
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Figure 2.2: Representation of a Markov decision process. Reproduced from Sutton et al.
(1999).

An important classification of RL is between model-based and model-free algorithms.
The first relies on the premise that, given the full knowledge of the environment, including
the transition or the reward functions, one can analytically solve for the optimal policy. If
the agent has access to complete knowledge of the environment, then learning is no longer
required; planning algorithms can be used to solve the MDP. State-of-the-art model-based
algorithms involve some sort of model estimation to increase sample efficiency in learning
algorithms by combining it with planning.

Model-free, on the other hand, considers an agent can only sample transitions from
the environment by directly experiencing it. In model-free algorithms, solving for an
MDP can be either done by directly optimizing the policy, a function which maps state to
actions and tells the agent what to do in a given situation, or by learning a function that
attributes a utility value to each state. We call the first approach policy-based and the
last value-based algorithms. By estimating the utility value of each state, a value-based
algorithm can derive a policy by selecting the action which yields the greatest utility.
This approach has been more explored in the RL literature due to its property of sample
efficiency, leading to the popular Temporal-difference (TD) learning algorithms SARSA,
Q-Learning, and its variants (Sutton and Barto, 2018).

A value-based algorithm attempts to calculate the optimal value function V ∗. The
value of a state is the maximum expected cumulative reward r achievable from that state
s, given a policy π. It can be formalized by:

V ∗(s) = max
π

E
[∑
t≥0

γtrt | s0 = s, π

]
, (2.3)

.
where γ is a discount factor between 0 and 1 applied to discount future rewards. We can
approach this problem in an iterative fashion. Bellman’s principle of optimality affirms
that:

An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision (Bellman, 1957).
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The principle of optimality allows us to consider each decision separately. So we can
solve for it iteratively making use of dynamic programming techniques, by breaking the
optimization problem into a sequence of simpler problems. The equation can be rewritten
recursively as the expected reward achieved in the state plus the expected reward achieved
from the next state:

Vi+1(s) = E
[
r + γVi(s

′) | s
]
, (2.4)

where s′ is the next state. We can also extend it to the state-action formulation, where
Q is the action-value function:

Qi+1(s, a) = E
[
r + γmax

a
Qi(s

′, a) | s, a
]
. (2.5)

Using the Bellman equation allow us to solve for the value function with repeated
small updates. This gives us the convenient property that, by taking fewer steps than
required to achieve the optimal value function, we can trade sample efficiency for a less
accurate estimate of the true value of a state. More often, a loosely estimation of the true
value function may be enough to arrive at the optimal policy. This formulation is the
basis of TD-learning algorithm Q-Learning, which we will investigate next.

Policy-based algorithms, on the other hand, rely on direct search in the policy space
to find the optimal policy. Optimization methods can include gradient-based methods,
such as gradient ascent, genetic algorithms or Monte Carlo techniques based on repeated
sampling. Policy-based methods has recently resurfaced with the family of policy gradient
algorithms which use complex non-linear models to model the policy and optimization
tricks to speed up learning. A third class of algorithms called Actor-Critic, combines value-
based and policy-based approaches, using the gradient from TD-error based optimization
to direct the policy search (Sutton and Barto, 2018).

2.3 Q-learning

Q-Learning is a model-free algorithm which belongs to a class of RL methods known as
Temporal-difference (TD) learning, where the value function is updated by the differ-
ence between the perceived reward plus expected reward from the future states and the
expected reward from current state, which is known as the TD-error.

In Q-Learning, the agent attempts to learn an optimal action-value function Q∗(s, a),
which maps a state and action to a utility value. The Q function will be used to derive
a behavior policy π. During a pre-defined number of episodes (i), at each time t the
agent experiences the world by choosing an action a from state s, reaching the next state
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st+1 and perceiving a reward r. The reward obtained is used to update its action-value
function Q. It continues to interact with the environment until the episode ends, when
it moves back to the initial state and starts a new episode. This loop is represented in
Algorithm 1 (Sutton and Barto, 2018; Watkins and Dayan, 1992).

Algorithm 1 Q-Learning
1: for i← 1 to number of episodes do
2: t← 0
3: while st is not a terminal state do
4: t← t+ 1
5: choose an action at according to policy π
6: execute at
7: update st to new state observed
8: update Q-function
9: end while

10: end for

In Q-Learning, the policy derives from the Q-function. The most simple policy is
the greedy policy: given a state, always select the action that leads to highest estimated
utility. Most policies blend greedy actions with exploratory behavior, specially in the
earlier episodes, to allow the agent to improve its Q-function to yield better predictions
of state-action values. The update rule of the Q-function is given by:

δ = rt + γmax
a
Q(st+1, a)−Q(st, at) (2.6)

Qi+1(st, at) = Qi(st, at) + αδ. (2.7)

Equation 2.6 represents the TD error δ. The variable α is a step-size learning rate,
which allows for gradual adjustment towards the target, and γ is an exponentially de-
creasing discount factor attributed to future rewards. The discount factor is required to
extend Q-learning to infinite horizon. Non-discounted future rewards can lead to policies
where the agents will have no incentive to choose an action over another, since both will
lead to the same reward in the long run. The discount factor can be seen an incentive for
the agent to achieve a reward as early as possible in the episode.

Q-Learning is guaranteed to converge to optimal policies in stochastic scenarios (Watkins
and Dayan, 1992). In non deterministic environments, it is easy to see that if we con-
tinuously loop through the problem, we will eventually reach a state with high reward.
We only need to reach the high reward state once, which will trigger an update of the
Q-function, so the following iterations will choose the action with highest reward in the
next loop.
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Update of the Q-function is done through iterative update of a table which maps state
and action to utility values, as exemplified in Figure 2.3. In the left side, we can see the
action-value for each state-action pair after only 5 episodes. Through exploration, the
agent has found the terminal state with reward of 1. The reward of the terminal state
is propagated to the previous state at each iteration, using Equation 2.7. After 1000
episodes, the action-value for each state is closer to the optimal action-value function, Q∗,
as shown in the right. Q∗ can be used to derive the optimal policy.

Such approach is not practical in high dimensional state-action spaces or feasible in
spaces represented by continuous variables. A solution is to approximate the Q-function
using linear or non-linear models, which we will see in Section 2.6.

Figure 2.3: Example of Q-function values after 1000 iterations of Q-learning. Reproduced
from Abbell and Klein (2014).

2.4 Exploration vs exploitation

In supervised learning, we commonly assume an underlying data distribution function,
and all samples used for training and test needs to be identically independent samples
drawn from that distribution. No such assumption can be made for RL, where an agent
learns through interaction with the environment, and the experiences used for learning
are therefore dependent on the actions taken by the agent. An agent who explores a fixed
policy will only learn from transition samples related to a small region of the state space
which the policy leads to, and thus will fail to find the optimal policy. This is known
as exploitation. On the other hand, an agent that always choose its actions randomly,
exploring the environment, will be stuck in a suboptimal policy.
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This is known as the exploration-exploitation dilemma, and is one of the key research
fields in RL. In deterministic policies, a common approach to address this dilemma is
known as α-greedy strategy. At each step, an agent greedily follows the optimal action
in a learned policy π with 1− ε probability, and randomly chooses amongst the available
actions with probability ε:

a =

arg maxaQ(s, a) with probability 1− ε

a random action with probability ε
(2.8)

The variable ε is a tunable hyperparameter, and can either be fixed at the start of
the learning process or decayed over time. Convergence guarantees are only theoretically
available for agents whose starts with a high degree of exploration and decay over time,
moving from a full exploration to a full exploitation policy.

Possible improvements to the ε-greedy strategy includes selecting amongst non-optimal
actions according to their potential for being optimal, taking into account how close the
Q-function estimates are to the value of the optimal action and the uncertainty in these
estimates. This method is called upper-confidence bound action selection (Sutton and
Barto, 2018). Exploration can also be forced by setting optimistic initial values for every
state-action pair, forcing the agent to visit at least once all state-action pairs, as long as
the initial value defined is equal or higher the maximum reward obtainable for any state.

Stochastic policies are a more natural approach to handle exploration. If the probabil-
ity for each action a at a state s is attributed equal weights at the beginning of the learning
process, the agent’s initial stochastic policy will be similar to a deterministic policy with
ε set to 1. As the agents learn, the probabilities are gradually adjusted to favor actions
which are more likely to lead to positive rewards. As long as all actions probabilities at
every possible state si are < 1, the agent will continue exploring the environment at some
level. Continuous action spaces where action is represented by a scalar or a vector of
scalars are a natural fit for stochastic policies.

Deterministic action, however, can also be represented stochastic policies by assigning
a numerical preference for each action,Ht(a), and using a softmax distribution (also known
as Gibbs distribution or Boltzmann distribution) over the preferences to determine the
probability of selecting the action, as follows:

Pr{at = a} =
eHt(a)∑|A|
a′=1e

Ht(a′)
= πt(a) (2.9)
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Preferences are initialized to the same constant, and after each step they are updated
according to the reward received upon taking an action, with

H t+1(at) = Ht(at) + α(rt − r̄t)(1− πt(at)) (2.10)

for a = at and

Ht+1(a) = Ht(a) + α(rt − r̄t)πt(a) (2.11)

for all a 6= at, where α > 0 is a step size parameter and r̄t ∈ R is the average of all
rewards up through and including time t. This method is popularly known as Boltzmann
exploration (Derthick, 1984; Sutton and Barto, 2018).

2.5 State discretization

State and action spaces can be represented by a set of discrete or continuous variables.
If all variables which represent the state-action space are discrete, and the number of
possible combinations is low, the state-action value function can be represented by a
table. Otherwise, the function needs to be approximated by a model.

Discretizing a space is the simplest form of function approximation. In RL, discretiza-
tion can be applied for the state space alone, which is the most common application, for
action space alone, or for the state-action space combined.

State aggregation is implemented by grouping states together, with one estimated
value per group. The estimated value attributed to a state is then the estimated value
of the group it belongs to. When updating the state value function, only the values
pertaining to the group the state belongs to are updated (Sutton and Barto, 2018).

State aggregation introduces hard boundaries which can lead to artifacts in function
approximation, specially when too many state values lay close to the boundaries. An
alternative, known as coarse coding, is to encode the state in a number of features with
different receptive fields. This can be visualized as overlapping circles covering the entire
state space, as shown in Figure 2.4. The state is represented as a binary vector, with 1
for every circle where it is in and 0 where it is not. This allows for greater generalization,
which can be controlled by the radius of the circles, and prevents the artifacts created by
the boundary cases in regular state aggregation.

We can extend discretization to multi-dimensional continuous spaces, a method named
tile coding (Sutton, 1996). Multiple groupings are used, known as tilings, and each one
is slightly offset in a direction to represent a different grouping of the state space. As in
coarse coding, the tilings overlap. Wherein state aggregation each variable is converted
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Figure 2.4: Graphical representation of coarse coding, with different levels of generaliza-
tion. Reproduced from Sutton and Barto (2018).

into a category represented by a single scalar, in tile coding each variable is encoded in a
category represented by a vector of scalars. This scheme is represented in Figure 2.5.

Figure 2.5: Tile coding. Reproduced from Sutton and Barto (2018).

2.6 Function approximation

Approximating the value function by a model allows handling of continuous state spaces,
complex state spaces and more importantly, increases the model generalization, an im-
portant requirement for efficient RL. To be able to learn an optimal policy for m possible
spaces by being exposed to n transitions, where n < m, an agent needs to be able to
extend a policy learned for a specific state to nearby or similar states.

Generalization is a topic studied under SL, which can be successfully applied to the
RL setting. Functions learned in RL can be approximated by a SL model. In model-based
algorithms, the transition and reward function, which combined represent the environ-

13



ment’s dynamics, are candidates for function approximation. In model-free algorithms,
the value or action-value function and the policy can in theory be approximated.

Discretization, presented in section 2.5, is one of the methods used to approximate
a function. Linear models have also been used in RL with significant success for simple
problems. An action-value function approximated by a linear model has the form of:

Q(s, a, θ) =
d∑
i=1

θiφi(s, a) (2.12)

where θ is the set of parameters of the linear model and φ represents the features of
the state-action space. However, the hypothesis space of possible solutions of a linear
model is the set of all linear functions of its input (Goodfellow et al., 2016). We can
generalize linear models to expand the space of solutions it can choose from, transforming
the input by constructing features that allow it to approximate non-linear functions.
Features commonly used are polynomials, Fourier basis and radial basis functions, as well
as the features introduced by the discretization methods discussed (Sutton and Barto,
2018).

A more direct solution would be to use a non-linear function approximator. Neural
networks have the interesting property of universal function approximators, and for this
reason have been studied as viable function approximators for as long as RL algorithms
have been studied. In a study by Lin (1992), neural networks are used to approximate the
action-value function in the Q-learning algorithm. The same work introduces methods and
heuristics to safely adapt neural networks for the RL context, including the introduction
of an experience buffer to ensure transitions are used more than once in the network
optimization process before they are discarded. Tesauro (1995) used a similar approach
to construct a world-class backgammon playing algorithm, a significant milestone in the
artificial intelligence research field development.

The features used by Tesauro as input to its algorithm were manually handcrafted
for the specific problem. It took more than 20 years to successfully extend this approach
to more complex problems with a more general algorithm, benefiting from the advances
in representational learning by the emerging field of deep learning. This is what we will
cover in Chapter 3.
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Chapter 3

Deep Reinforcement Learning

In this chapter, we give a brief review of the field of deep learning and how it relates to
RL, introducing the class of algorithms known as Deep Reinforcement Learning (DRL).

3.1 Deep learning

In the past years, the artificial intelligence research community has seen a lot of hype
around a class of ML methods called deep learning. Although the naming is new, coined
around 2006 (Schmidhuber, 2015), the algorithm which originated it dates back to 1940
when McCulloch and Pitts (1943) first transcribed the neuron behavior. The described
behavior inspired an artificial system that could model complex non-linear dynamics,
named Artificial Neural Network (ANN).

The reason of this hype are the recent results achieved by DNN algorithms in ML
contests. DNNs have started winning ML competitions since 2003, starting with NIPS
2003 Feature Selection Challenge, a well-known contest with a secret testing set. More
recently, with the advent of Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) models, deep learning algorithms have achieved far better performance
in a wide variety of secret and open test set contests, including MNIST from 2009 to
current date, and ImageNet from 2012 to 2018 (Krizhevsky et al., 2012; Salakhutdinov
and Hinton, 2009).

Apart from contests, DNNs have also made a grand entrance into the corporate world,
proving a valuable algorithm to solve many existing problems such as cancer diagnosis,
object detection and localization and video classification. The big advantage of DNNs over
traditional ML methods is the lack of preprocessing required in order to fit a dataset to
the algorithm. CNNs are able to automatically learn features for classification, exempting
the practitioner of the expensive task of feature engineering and image preprocessing.
RNNs can learn patterns in sequence of data, capturing long and short temporal patterns,
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without data compression techniques commonly used before to handle time series data
(Pascanu et al., 2013).

The term deep learning comprises neural networks containing more than one hidden
layer between the input and output nodes. A sample architecture is shown in Figure 3.1.
Multilayer perceptrons are considered to be the first DNNs, and have been widely used
in the SL community around the 80s and 90s (LeCun et al., 2015). But until late 2000s,
other SL algorithms have been used with greater success in terms of performance and
computational cost, including Support Vector Machines (Hearst et al., 1998), a big hit
in early 2000s, and ensembles of simple classifiers such as Random Forest and Gradient
Boosting (Breiman, 2001; Friedman, 2001).

Figure 3.1: DNN representation with two hidden layers. Reproduced from LeCun et al.
(2015).

DNNs include not only supervised, but also unsupervised learning models. The term
DNN has emerged with the success of stack of autoencoders, an UL method used to
compress representations, and deep belief networks, which belong to the class of generative
neural networks (Schmidhuber, 2015). Two variations have attracted a lot of interest from
the research community and industry.

The first is CNN, largely used in object detection and classification tasks. CNNs
are comprised of several convolutional layers, which act as feature selectors, mimicking
the workings of the visual cortex. Each layer learns to recognize features such as edges,
simple shapes, or changes in contrast, features that can be relevant for the classification
task. Recent improvements to CNNs includes the use of max-pooling layers and dropout
as regularization techniques. Several architectures and algorithm variations of CNN are
currently in use. One that is drawing attention lately are Fully Convolutional Networks,
used for semantic segmentation or pixel by pixel classification (Long et al., 2015).
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The other relevant model which has become dominant recently are Recurrent Neural
Networks. These architectures are able to preserve the temporal information in sequential
datasets, by using information from previous observations while learning the weights for
the current observation. The basis for RNNs is a memory cell with a forget and a keep
gates. Both gates have weights that can be trained, so the network learns whether an
information needs to be forgotten or is still relevant to understand the pattern of the
current observation.

As with CNNs, several RNNs variations are being deployed. The most widely used
are Long Short Term Memory Networks, which uses a complex memory cell by the same
name (Hochreiter and Schmidhuber, 1997). RNNs work well in sequential datasets or
in any domain in which the temporal dimension is relevant, which may include audio
preprocessing, natural language processing, and object detection in videos.

Human sensory input streams are sequential, so RNNs could in theory be extended to
any pattern detection task performed by humans. Vision, for example, although perceived
as static, is also sequential, as vision works through rapid eye movement called saccades.
There is a large body of research concerning attention models based on the workings of
the human eye, transforming image to sequential data that can be decoded by RNNs
(Mnih et al., 2014).

3.2 Deep Q-network

Recent research has shown the human mind is able to combine feature extraction and
image classification techniques with learning through reinforcement (Yamins and DiCarlo,
2016). Several attempts have been made to combine these two classes of algorithms,
mostly by using ANNs to approximate the value or action-value function. However, past
experiments have not shown good results, showing ANNs overfitted or diverged when used
as nonlinear function approximators in RL problems (Schmidhuber, 2015).

In 2015, the DeepMind research group was able to successfully combine both and
published an algorithm known as Deep Q-Network (DQN) (Mnih et al., 2015), achieving
a major breakthrough in solving sequential decision problems. A representation of the
neural network used as Q-function approximator is shown in Figure 3.2. Only a few
months later, several features from DQN were used to create the AlphaGo model that
beat the Go world champion Lee Sedol in a 4-1 match (Silver et al., 2016).

DQN brings innovations that solve the unstable problems introduced in using neural
networks as function approximators. DQN makes use of the Experience Replay (ER)
technique, first introduced by Lin (1991), which consists in keeping history of past transi-
tions, and randomly drawing from this transitions memory to update the network weights.
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Figure 3.2: Action-value function approximated by neural networks, in a DQN application
to Atari 2600 games. Reproduced from Mnih et al. (2015).

Several algorithms that combined DNN and RL followed the release of DQN (Sallab et al.,
2017).

The DQN algorithm was devised as a DRL algorithm that could be extended to a wide
range of competencies in a variety of tasks. Its initial implementation applied a CNN to
represent the action-value function Q(s, a), mapping a state, represented by an image, to
a discrete set of actions.

Two key ideas were introduced to fix the stability issues found in previous attempts
to combine RL and ANN. To account for overfitting to recent experiences, the agent does
not update the action-value function at every new experience. Instead, it keeps a buffer
of experiences, and at every step samples D+ random experiences from this buffer and use
them to update the action-value function. A general scheme of DQN is shown in Figure
3.3.

The other relevant issue adressed by DQN is the moving target problem. The current
value of the Q-function is used as part of the update of the Q-function itself. This proce-
dure, known as bootstraping, creates a moving target problem for the learning function,
since each action-value update changes the target as well. In DQN, this issue is fixed
by implementing a second set of weights (which can be interpreted as a second network)
that are only updated periodically, thereby reducing correlations with the target. The
full pseudocode is shown in Algorithm 2, adapted from Mnih et al. (2015).
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Figure 3.3: Agent and environment interaction in DQN. Reproduced from Mnih (2017).

Algorithm 2 Deep Q-Network
1: for i← 1 to number of episodes do
2: t← 0
3: while st is not a terminal state do
4: t← t+ 1
5: choose an action at according to policy π
6: execute at
7: store transition st, at, rt, st+1 in replay buffer
8: update st to new state observed
9: sample batch of experiences D+ from replay buffer

10: update Q-function
11: end while
12: end for

As in Q-Learning, the Q-function in DQN is updated according to the TD-error,
which is calculated over the batch of experiences sampled from buffer instead of a single
transition. The expected squared TD-error over the batch of experiences serves as the
loss function of the neural network that approximates the Q-function. The parameters of
the neural network are updated according to the TD-error based loss L, in the direction
of the gradient of θ, as follows:

Li(θi) = Est,at,st+1,rt∼D

[
rt + γmax

a
Q(st+1, a; θ−i )−Q(st, at; θi)

]2
(3.1)

θi+1 = θi − α∇θLi(θi). (3.2)

The learned network parameters are represented as θ and the target network as θ−.
Every n steps, the parameters of the target network are copied over the learned network.
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An alternative, called soft update, is to modify θ every step with a small percentage of
θ−. The step size update is defined as the hyperparameter τ , giving the following update
function:

θi = (1− τ)θi + τθ−i . (3.3)

DQN was successfully applied to the Arcade Learning Environment (ALE). Using a
single instance of DQN, an agent learned to play 49 Atari 2600 games, achieving above
human performance in almost all of the games. More recent updates to the DQN algorithm
have increased the performance even further to include all Atari 2600 games (Hessel et al.,
2018).

The current state of the art DQN based algorithm, named Double-DQN, proposes
using the learned network to select the next action, and the target network to get the
value for the next state-action (Van Hasselt et al., 2016). The modifications yields a new
loss function:

at+1 = arg max
a

Q(st+1, a; θi) (3.4)

Li(θi) = Est,at,st+1,rt∼D

[
rt + γQ(st+1, at+1; θ

−
i )−Q(st, at); θi)

]2
. (3.5)

Replacing the max operator in DQN for an argmax helps convergence by reducing the
optimism bias introduced by the max operator in future reward estimation. Double-DQN
has shown to ease the overestimation of Q-values and both speed up and stabilize training.

3.3 Experience replay

Experience Replay (ER) is first introduced by Lin (1991). The author motivates his work
by describing self-improving by trial and error as hazardous in a hostile environment, and
efforts to reduce learning time could therefore minimize the hazard. He notes that some
experiences may be rare and are costly to obtain, so it does not make sense to discard the
experiences obtained through RL after they are used only once.

Lin also introduces the notion of experiences as quadruples, composed of state the
agent is currently in (st), the action it took (at), the reward it receives from the envi-
ronment (rt) and the next state the agent is transitioned to (st+1), or a (st, at, rt, st+1)

quadruple. The experiments conducted by Lin in 1991 and 1992 are prescient and in
many ways close to the DQN methodology used in 2013 to jumpstart the field of DRL.

One of the issues addressed by Lin is the possible discrepancies between the behav-
ior policy, followed at the time the experience was taken, and the learning policy, the
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current active policy the agent is learning, Since Q-learning is an off-policy method, its
convergence properties in a table implementation value function is not affected by these
differences. However, using function approximators to approximate the action value func-
tion introduces limited degrees of freedom, and suddenly not all states and actions can
be represented. Whenever backpropagation or related optimization methods modifies a
value function with respect to one input state, it also affects the function with respect to
many or possibly all input states.

To avoid divergence, Lin seeks to introduce recency in the algorithm. For that purpose
the replay buffer is kept to a limited size, being constantly renewed by new experiences,
and the experiences are always played in backwards manner using a recency factor to
ensure the most recent experiences have a greater impact in the value network weights.
The experiences also pass through a filter before they are used - if the probability of
belonging to the current policy is less or equal a pre-defined threshold, they are discarded
from the sample. This threshold is optimized as a hyperparameter, with ideal values
ranging from 0.1 to 0.2. In more recent applications, the threshold is replaced by the
importance sampling methodology, which weights experiences of a behavior policy b by
their probability of belonging to the learning policy π (Hachiya et al., 2009; Sutton and
Barto, 2018).

Another interesting feature of Lin’s earlier work on ER, which adds to the described
filter, is the screen test. Lin proposes that before an experience is replayed, the agent
verifies its probability of choosing that action according to the current policy and Q-
function. If the probability is higher than a given threshold (set initially as 99%), or
lower than a second threshold (set initially to 0.01%), the experience is not replayed. Not
passing the screen test implies the agent already knows the action is much better than
others or much worse than the best one, and would not improve the Q-value function
further. The procedure was validated empirically, and found that ER without the screen
test was only beneficial in the beginning and actually harmful after a while. This feature
has been dropped for more recent implementations of ER, including DQN.

Although most commonly applied to model-free algorithms, ER can essentially be
seen as an approximation to model-based RL algorithms. Instead of using transitions to
estimate a model that can generate future samples for offline learning, the agent keeps a
buffer of those transitions and sample them randomly. The experience buffer acts as a
non-parametric model of the environment. The similarity between these approaches have
already been noted in Lin (1992), which compared Q-Learning with ER and Adaptive
Heuristic Critic, a model-based method, and concluded that the first learned better. He
follows it by remembering an estimated model of the environment could still be useful
to perform conventional look-ahead search, but ER was a better option than relaxation
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planning to extracting extra samples from the environment. This relationship has also
been thoroughly explored in more recent research (Altahhan, 2018; Vanseijen and Sutton,
2015).

During the past two decades ER had been sporadically addressed in the literature,
mainly as an additional methodology for data efficiency in complex domains, as seen in
the works of Smart and Kaelbling (2000) and Kalyanakrishnan and Stone (2007). In
Adam et al. (2012), the authors describe a general framework for ER and conduct a
series of experiment focused specifically on ER with robust results in real and simulated
applications. Shortly after the methodology was considered as key to the success of the
DQN algorithm (Mnih et al., 2015) and following DRL variants, and the interaction
between the replay memory buffer and the network can be seen in Figure 3.4.

Figure 3.4: Experience replay implemented in DQN algorithm. Reproduced from Nair
et al. (2015).

Improvements to ER have been made since, with a special emphasis on Prioritized
Experience Replay (PER), currently used as the state of the art methodology in DRL
algorithms, which we will explore next.

3.4 Prioritized experience replay

In previous ER methods, experiences were either sampled backwards, such as in the origi-
nal proposal by Lin (1991), or more commonly sampled at random, therefore assuring the
premise of independent identically distributed samples required to guarantee convergence
of the gradient descent algorithm (Mnih et al., 2015). However, empirical experimentation
shows that attributing an importance score to each experience and using it to steer the
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sampling process by focusing on specific experiences leads to greater data efficiency in
DRL algorithms (Schaul et al., 2015).

The notion of prioritizing experiences is already seen in prioritized sweeping (Moore
and Atkeson, 1993). Prioritized sweeping aims to increase data efficiency in model-based
algorithms by prioritizing dynamic programming sweeps to guide the exploration of the
state space. It focus only on sweeps which are “interesting”, meaning it produces a large
change in the state absorption probability. If the change produced is small, it attributes
less urgency to update its predecessors state, and if its high it attributes a high urgency
(Moore and Atkeson, 1993). Similarly, in PER, we attribute a high priority for the
experiences which can cause a greater impact on the updates of the value function.

Upon entering the buffer, an experience is assigned a priority equal to the maximum
existing priority plus a small constant ε. This ensures every experience is visited at least
once. When it is first sampled, the experience priority is updated to the magnitude of the
TD-error, seen in Equation 2.6, which stands as a proxy for surprise. Greedly selecting
experiences based on priority would lead to loss of diversity and overfitting to a smaller
group of experiences. To mitigate this issue, the probability of sampling a transition i is
defined as a softmax distribution

Pr{I = i} =
ραi∑
kρ

α
k

(3.6)

where ρi > 0 is the priority of transition i. The exponent α controls for how much priority
is used, with the uniform case being α = 0 (Schaul et al., 2015).

PER have been successfully applied in the ALE benchmark environments, and is
currently included in state-of-the-art algorithms that make use of ER.

After reviewing DQN and its main variations, we will move on to discuss how these
algorithms apply to the the context of multiagent learning, our main topic of research.
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Chapter 4

Multiagent Settings

In this chapter, we introduce the multiagent settings for RL problems. We introduce the
more commonly used model, Markov Games, discuss the major research areas of stability,
goal formulation and knowledge sharing, and review some of its applications.

4.1 Markov games

RL can be applied to single agent or multiagent scenarios. The intersection of multiagent
and RL is called MARL (Shoham et al., 2007). MARL has strong connections with single-
agent RL, game theory, evolutionary computation and optimization theory (Busoniu et al.,
2008).

MARL is often formalized as a Markov game, a generalization of MDP to multiple
agents (see Equations 2.1 and 2.2. It is represented by a set of players P , a set of states
S, a set of joint actions A, where A = A1 ·A2... ·An, with Ai being the finite set of actions
available to each agent. The transition function

p(s′ | s, ā) = Pr{st+1 = s′ | st = s, āt = ā} (4.1)

and reward function

r(s, ā) = E[rt+1 | st = s, āt = ā]. (4.2)

are similar to the regular MDP, but the action a is replaced by the joint action ā . The
joint action is a combination of the selected actions of all agents at each step:

ā = a1, a2, ..., an. (4.3)

The goal of an agent is to learn the optimal policy. Policies can be deterministic,
mapping state to actions as in π : A → S, or stochastic, outputting the probability of
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selecting an action given a state as π : A× S → [0, 1]. A Markov game is represented in
Figure 4.1.

Figure 4.1: Representation of a Markov Game. The environment responds to a joint
action. The new state and reward obtained is particular to each agent. Reproduced from
Chincoli and Liotta (2018).

The settings can be classified as fully cooperative, fully competitive or somewhere in
between, which comprises a wide spectrum of scenarios. Fully competitive two agents
scenario is equivalent to a zero-sum game, where r1 = −r2 for two agents, whereas fully
cooperative games have identical rewards r1 = r2.

More commonly, the rewards structure lies between the fully cooperative and fully
competitive extremes. Variations of Markov games can include a single global reward
function, or a combination of global reward function and local reward functions. Lo-
cal rewards can be fully correlated, as in the extreme cases described above, partially
correlated or uncorrelated.

From each agent’s perspective, the environment is non-stationary due to ongoing learn-
ing from other agents. It creates a moving target problem, which breaks the Markov
property - for an agent, its best policy may change as other agent’s policies changes.
This constitutes the biggest problem in MARL and prevents single agent RL convergence
properties and guarantees to be extended to the multiagent scenario, despite its common
use in practical applications.

One solution to the the dynamic nature of the MARL environment is to model the
behaviors of other agents, predicting their choice of action at each state. This ability is
a characteristic trait of human species, believed to be rooted in a specific region of the
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brain called mirror neurons, and considered to be crucial to how we establish relationships
and form cooperation and competition (Kilner and Lemon, 2013). Artificial autonomous
agents modelling other agents is currently a prominent research field, with no consensus
regarding the open problems (Albrecht and Stone, 2018).

The existing algorithms for MARL face a trade-off between stabilizing learning dy-
namics and prioritizing convergence, or continuously adapting to the dynamic nature of
the environment. The decision of which type of MARL algorithm to apply mainly de-
pends on the frequency and nature of the agents interactions, the correlation between
their reward functions and the targeted learning goals. MARL algorithms should not be
totally independent of other agents, nor just track their behavior without concerns for
convergence (Busoniu et al., 2008).

Experience-buffer based RL methods, as DQN and Deep Deterministic Policy Gradient
(DDPG), are incompatible with non-stationary environments. Stored transitions can
quickly become outdated and no longer representative of the current dynamics. Proposed
solutions includes mapping state-action pairs to decaying temperature values (Palmer
et al., 2018), using a fingerprint to tag the age of transition sampled or using a variant of
importance sampling to correct obsolete data (Foerster et al., 2017).

In real world applications, the scenario of sparse interactions is more commonly found.
This has induced the proposal of dual nature learning agents, which can learn a policy
at both the individual level, through single agent learning algorithms, and at a group
level, and decide when to use each policy based on the expected interaction at each step
(De Hauwere, 2011; Hu et al., 2015). Dual nature agents can benefit from state-of-the-art
single agent algorithms and the vast multiagent research that leverages game theory and
third-person reasoning to model the relationships between agents.

4.2 Learning goals

A formal statement of the multiagent learning goal is a central problem in MARL. While
in single agent scenario the goal is to maximize total reward obtained over time, this is
not always a possible or desired goal in MARL.

The traditional goal in Markov games is to achieve an equilibrium, or more commonly
a Nash equilibrium (Hu and Wellman, 2003). Consider U the utility, or the total reward
an agent can obtain by following a policy, and π = (π1, ..., πn) a policy profile that groups
the policy of all agents. Nash equilibrium can be formally defined as

∀i∀π′i : Ui(π
′
i, π−i) ≤ Ui(π), (4.4)

where no agent can improve utility by unilaterally changing its policy.
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Nash equilibrium describes a status quo. Equilibrium was quickly adopted as the goal
for many initially proposed MARL algorithms, but it has many limitations, such as:

• Non-uniqueness: multiple Nash equilibrium can exist;
• Incompleteness: does not specify behaviour for off-equilibrium paths;
• Sub-optimality: not the same as utility maximization;
• Rationality: assumes all agents are perfect utility maximizers.

An alternative for equilibrium is Pareto Optimum, defined when there is no other
profile π′ such that an agent cannot improve its policy without making another agent’s
policy worse off:

∀i : Ui(π
′) ≥ Ui(π) and ∃i : Ui(π

′) > Ui(π). (4.5)

Three other common goals are social welfare, fairness, and welfare/fairness:

Welfare(π) =
∑
i

Ui(π), (4.6)

Fairness(π) =
∏
i

Ui(π), (4.7)

Welfare/Fairness(π) =

∑
i Ui(π)∏
i Ui(π)

. (4.8)

The application of MARL agents to problems that involve multiple cooperative agents,
such as in sociological contexts, is leading the research on goals that are associated with
a more equal distribution amongst agents. Welfare over fairness is equivalent to the
harmonic sum of all utilities and it is a viable option to seek both maximization and
equality. Goals can also be customized for specific safety concerns, such as constraining
utility to lower or upper bounds, or targeted optimality (Albrecht and Ramamoorthy,
2012).

4.3 Applications

Cooperative multiagent applications can benefit from the speed of parallel computation,
exploiting the decentralized structure of a task, and accelerated learning by knowledge
sharing amongst agents, teaching or imitation. Multiagents can also add robustness to a
model by having one agent taking over another when it fails (Busoniu et al., 2008).

While the application are many, we emphasize distributed control, resource manage-
ment, collaborative decision support systems, negotiation, robotic teams and multiplayer
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games (Busoniu et al., 2008). Smart grid, wireless networks and internet of things are
possible applications that can be significant to economy in the near future.

Multiplayer games are still the main test bed for MARL agents. It has seen a recent
surge with the deployment of agents able to successfully play online multiplayer games
of the e-sport category, such as DOTA 2 (Fernandez and Mahlmann, 2018), where two
teams of five players compete in a virtual arena, or Starcraft 2 (Vinyals et al., 2017), a
role playing strategy game that can include one or multiple teams of players competing
against each other. The popular RoboCup, represented in Figure 4.2, has driven research
into robotics and MARL for more than two decades.

Figure 4.2: Soccer standard platform league match in RoboCup (2015).

Other settings involving multiplayer games have been proposed as a scenario for which
to compare and benchmark solutions to the MARL problem. Two of these are worth not-
ing. The first is Pommerman, a multiagent environment based on console game Bomber-
man, which contains both cooperative and competitive traits (Resnick et al., 2018), and
recently ran a competition in NeurIPS 2018 (formerly known as NIPS). Second is Marlo,
a MARL environment based on Project Malmo and the Minecraft engine, and sponsored
by Microsoft (Johnson et al., 2016). It also held a competition online, kickstarted in an
AAAI 2018 workshop.

These competitions are designed to motivate the creation of agents that can success-
fully work as a team, which includes amongst others the ability to devise joint plans,
model teammates and opponents, reason in game theory and communicate effectively.

While applying MARL algorithms to games serves as a benchmark that allow compar-
isons between evolving methods, the biggest challenge lies in extending those applications

28



to real-life tasks. In those, scalability and robustness to imperfect observations are re-
quired, and both characteristics have been shown to be problematic to achieve in MARL
algorithms.

Another challenge we’ve discussed is defining MARL goals that involve not only re-
ward maximization, but also fairness, safety and other auxiliary objectives. Coordination
between autonomous vehicles that learn through RL is an example of applied MARL
which has gained traction in the last years, and has functional safety as its main goal
(Shalev-Shwartz et al., 2016).

4.4 Knowledge sharing

A key benefit in cooperative multiagents setting is to benefit from other agent’s knowledge
by sharing experiences, an approach which has been extensively studied in the MARL
literature.

Lin (1992) points out that the success of learning in a trial-and-error process relies on
the agent’s luck in first achieving the goal by chance, which is correlated with how delayed
is the reward. This learning barrier is one of the main issues of slow learning time, and
could be overcome by learning expertise directly from external experts. Teaching could
direct the learner either to explore a promising part of the search space which contains the
goal states, important when the search space is large and thorough search is infeasible, or
help him avoid getting stuck in local maxima.

In Whitehead (1991), the author observes that in nature, intelligent agents exist in
a cooperative social environment, that structures and guides learning. In this context,
learning involves as much information transfer as it involves discovery by trial-and-error.
So logically methods to share knowledge should be pursued with equally measure to
methods that learn through trial and error. He points that even if individuals are not
able to make discoveries at a useful rate, the inherent parallelism in large populations can
overcome the complexity of the search, and the group could accumulate knowledge and
adapt at an acceptable rate as opposed to lone individuals.

Whitehead (1991) proceeds with a complexity analysis of the cooperative mechanism of
ES, establishing tentative upper bounds, but gives no empirical evaluation of the method
proposed. The methods are further investigated in Tan (1993). Tan poses the questions:
"Given the same number of reinforcement learning agents, will cooperative agents out-
perform independent agents who do not communicate during learning?" and "What is
the price for such cooperation?". He sets to answer those questions and puts forward a
validated theoretical framework for ES. A main concern raised in this work is the cost of
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communication. The benefits gained from sharing should outperform the cost added due
to the increased communication between the agents.

Tan (1993) proposes three main approaches for sharing knowledge: (i) sharing a
learned policy, between a more knowledgeable agent and a novice one; (ii) sharing entire
episodes, sequences of experiences; and (iii) sharing experiences. His main thesis is that
if cooperation is done intelligently, each agent can benefit from other agents’ information.

A similar classification is also put forth by Boutsioukis et al. (2011), which proposes
different forms of transferring knowledge, including:

• value functions;
• policies;
• rules;
• action subsets;
• shaping rewards;
• experiences as tuples (st, at, rt, st+1).

The simplest way of cooperating by sharing a learned policy is having one single policy
for all agents. This centralized control approach, while a simple and effective solution,
has the highest burden in terms of communication, as all agents need to communicate
back and forth with a centralized controller at every step taken. On the other spectrum,
each agent can keep its independent policy, and only consider assimilating another agents’
policy when it does not have confidence in certain actions in its own policy. This approach
of sharing a part of the policy, in form of an action advice, is successfully explored in the
teacher-student framework put forward by Torrey and Taylor (2013).

In the context of sharing episodes, a Monte-Carlo agent that learns from episodes
of two or more cooperative agents could significantly speed up learning by multiplying
the samples it learns from. However, as discussed in Lin (1992), learning from episodes
generated from a different behavior policy invalidate the convergence theorem and might
lead to worst performance (Sutton and Barto, 2018). Importance-sampling can be used
to adapt the behavior policy to the learned policy (Doucet et al., 2001). But the longer
the sequence of actions, the higher the probability that the paths diverge, making the
episode shared be considered useless for learning.

The third approach proposed relates to ES. The shared experiences can either be used
to perform a single learning step of the value function, or be stored in a local memory
to be reused several times. In the ES approach, atomic transitions are shared, instead
of entire episodes containing sequential transitions. Since in an atomic transition the
policy sampling is limited to one action, it is more likely the experience can be useful for
learning without affecting the convergence of the algorithm, as it occurs in the episode
sharing approach.
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ES can be easily extended to model-free learning algorithms with ER. The shared
experiences are added to the learning agent’s buffer, and can be periodically used to
update the value function. This is foundation of our proposal, which we will discuss in
Chapter 5.
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Chapter 5

Proposal

The previous chapter introduced methods of knowledge sharing between cooperative
agents in multiagent domains. Among these methods, we have seen ES, which is eas-
ily extendable to DRL algorithms that make use of experience replay techniques and can
be implemented in scenarios where agents interact in sparser intervals.

In this chapter, we present MACES, a cooperative multiagent model that makes use of
ES to accelerate learning. Within MACES architecture, we propose four different methods
of ES: (i) Naive ES; (ii) Focused ES; (iii) Prioritized ES; (iv) and Prioritized Focused ES.

The environment in MACES has the following characteristics:

• Multiagent: two or more agents learn concurrently, and are allowed to cooperate
to achieve their goal;

• Stationary: from the perspective of the agent, the transition and reward functions
do not undergo changes over time;

• Stochastic: transition and rewards may be determined by a probability function
distribution;

• Continuous state space: state space is represented by a set of variables that may
be continuous. For images, the [0, 255] discrete interval that represents the color
intensity of a pixel is converted to a continuous [0, 1] interval.

The agents have independent MDPs with similar goals. Experience in a MDP is
defined as a tuple (st, at, rt, st+1), representing a transition taken by an agent from one
state to another and the response received from the environment. The characteristics of
the agents implemented in MACES are as follows:

• Autonomous: agents are independent learners, with individual goals;

• Homogeneous: all agents share the same state space and action space;
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• Discrete action space: agents have a discrete set of actions available.

As independent learners, each agent is formalized by its own MDP, with individual
actions and transitions, as opposed to the common multiagent formulation of Markov
Game with joint actions. This gives us the advantage of ignoring the interactions between
the agents, allowing us to compare the results of cooperation between two or more learning
agents against a single learning agent. This relaxation of the multiagent setting has been
commonly used in the study of transfer learning in MARL algorithms (Busoniu et al.,
2008; Price and Boutilier, 2003).

The MACES architecture is represented in Figure 5.1. It shows the relationship be-
tween two concurrently learning agents in replicated environments. The dotted arrows
represent the experiences flow. The agents exchange information through a Requests
Board (RB), a common data structure accessible by all agents, similar to the blackboard
architecture described by Wooldridge (2009). Each agent has a replay buffer, which stores
the experiences, and an inbox, a temporary repository to store experience received from
other agents until they can be permanently incorporated into the replay buffer.

Figure 5.1: Experience sharing architecture showing cooperation between two agents. The
environment, replay buffer and inbox (shown in color) are unique for each agent, and the
requests board (shown in gray) is shared among them. It can be extended to any number
of agents.
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All methods in MACES can potentially be applied to any model-free DRL algorithm
which makes use of experience replay, including the popular DQN (Mnih et al., 2015) and
DDPG (Lillicrap et al., 2015). However, at this work we only present the implementation
with DQN.

5.1 Experience sharing methods

In MACES, the agents learn simultaneously, and at each round of ES, can play the role
of teacher, learner or both. For simplification, we explain the proposal with two agents,
but it can be extended to any number of agents. When one agent is assigned as teacher,
all others are assigned the role of learner, and therefore are entitled to receive experiences
from the teacher agent.

The ES process can be divided in two stages. In the episode stage, each agent in-
corporates experiences received from the last sharing stage into its buffer, and executes
the episode. After completing the episode, the agent issues a new request for help to a
public requests board. The stage ends when all agents have completed their episodes. In
the sharing stage, all agents alternatively assume the role of teacher. As a teacher, the
agent verifies if there are available requests in the requests board which are not its own. If
there are, it fulfills the request by sending a batch of experiences to the requesting agent’s
inbox.

The batch size is limited to the minimum between κ and the replay buffer size. The
variable κ represents the maximum size of an ES batch, and is a hyperparameter of the
model. In real-world applications, the batch of experiences shared is bounded by the
communication bandwidth available between two agents.

ES is typically performed by frequently sharing small batches of experiences. By
constrast, we will focus on the episode by episode approach, allowing for a more varied
range of experiences to be included in the batch before the sharing occurs and limiting the
communication between the agents to once each episode. The pseudocode is described in
Algorithm 3.

We propose four methods of ES, and proceed to validate them empirically. The meth-
ods differ mainly in how the request is composed by the requesting agent, and how ex-
periences to be shared are selected by the teacher agent. The methods are detailed in
Sections 5.1.1, 5.1.2, 5.1.3, and 5.1.4.

5.1.1 Naive ES

Requests contain no details. Experiences shared are randomly sampled from the teacher’s
replay buffer.
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Algorithm 3 Experience sharing
1: initialize environment and agents
2: initialize empty requests board RB
3: while not (all agents completed task) do
4: parallel for agent A in the environment do
5: A add experiences from inbox to buffer
6: A plays episode
7: A adds new request R to RB
8: end parallel for
9: parallel for agent A in the environment do

10: check RB for available requests from other agents
11: for request R in available requests do
12: A sample batch of experiences B matching R
13: A places B in requesting agent’s inbox
14: end for
15: end parallel for
16: clear RB
17: end while

5.1.2 Focused ES

In Focused ES, when forming the request, the agent swipes its buffer to identify regions
of the state space that have been poorly explored. This can be achieved by maintaining
a second structure parallel to the buffer called an occupancy grid.

The occupancy grid is a three dimensional n×m× o tensor, where n is the number of
actions available to the agent, m is the number of variables in the state, and o the number
of bins in which the variables are discretized. This data structure is used to count the
number of times each region of the state space has been visited.

Whenever a new experience is added to the buffer, the agent discretizes the state using
state aggregation, which consists of binning each continuous variable and combining the
resulting bins. Using 10 bins per variable, a state represented by a vector of size 4 has
104 possible categories, given by the combination of the bin positions for each variable.

The experience is allocated to the occupancy grid according to the discretized state and
the action. This process can also be extended to continuous action spaces by previously
combining the state and action variables, and using a matrix n× o as the occupancy grid
where n corresponds to the sum of the variables that represent state and action.

The occupancy grid allows for fast recovery of data and fact-checking to verify the
grid occupancy. The impact of miscategorizing an experience in Focused ES is low, so we
favor regular state aggregation over more complex approaches to perform discretization.
However, we also evaluate a variant of Focused ES using tile coding with different number
of tiles, and compare it to the regular state aggregation method.
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In more complex multidimensional state spaces, a block reduce averaging procedure is
used prior to discretization to downsample the tensor input into a vector. This procedure
is also known as average pooling and is widely used in DNNs. It works by sliding a filter
over the original tensor. The values selected by the filter are averaged and projected into
a lower dimensional output, as shown in Figure 5.2. By applying a 4× 28× 28 filter to a
4× 84× 84 tensor, we can reduce it to a 1× 1× 3 tensor, which can be further flattened
to a vector of length 9. Using state aggregation with 4 bins per variable results in 49

possible ways to classify each state perceived by the agent.

Figure 5.2: Average pooling performed on a 4x4 input with a 2x2 kernel. The output
result is the 2x2 matrix shown in the right. Reproduced from ReNom (2014).

Storing an experience corresponds to step one in the schematic process shown in Figure
5.3. In step two, the agent selects a mask of the occupancy grid where each position is
marked as unexplored if the number of experiences in the position is less or equal a
threshold ζ. By varying ζ we can control for how many experiences defines what it means
for a region to be unexplored.

In step three, the teacher agents who receives the request use the request mask to
identify experiences in its buffer that belongs to the unexplored regions of the student’s
state space. This procedure requires both agents to have the same state and action space,
being suitable only to homogeneous agents in similar environments. The experiences
selected in step three are randomly sampled to form the batch of experiences to be sent
to the inbox of the requesting agent, which are later added to its buffer (step four).

5.1.3 Prioritized ES

As in Naive ES, requests contain no details. Experiences to share are sampled using
priorities to define the probability of an experience being sampled. The priorities used for
experience sharing are the same defined in the Prioritized Replay method introduced by
Schaul et al. (2015). The priority of an experience is defined as the TD-error calculated
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Figure 5.3: Schematics of the Focused ES implementation. The large rectangles exemplify
the occupancy grids. Each experience, represented by a colored square, is allocated to its
respective place in the occupancy grid according to the discretized state. The highlighted
bins in stage 2 represents the mask identifying the unexplored regions in the student’s
occupancy grid.

when the experience is used for learning. The TD-error is the difference between the total
return expected to be obtained from the experience and the actual return obtained (see
Equation 2.6). It can also be understood as a measure of surprise, or how unexpected
the experience is to the agent that lives it. Since the teacher agent has no access to
the student’s other than the request, it calculate priorities based on its own action-value
function.

5.1.4 Prioritized Focused ES

The request process is similar to the Focused ES, described in Section 5.1.2. The teacher
agent proceeds to select the experiences based on the request, using the occupancy grid.
In the last stage, instead of randomly sampling to form the batch of experiences to be
sent, the priorities assigned to each experience according to the PER method are used
instead to determine which experiences will be selected for sharing.

5.2 Baseline algorithm

The underlying RL algorithm used in MACES is DQN (see Algorithm 2). Several im-
provements to DQN have been introduced over the last few years, and the most important
of them were considered in the baseline implementation, approaching the state-of-the-art
technique.
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To test MACES, we conducted experiments with six different versions of the algorithm.
Two are single agent implementations, to be used as baseline, and four are multiagent
implementations enhanced by the proposed ES methods.

The most relevant modification is using the target network to accrue the value of
the next state and action when bootstrapping, introduced in Van Hasselt et al. (2016).
This modification to the original DQN is introduced as a new algorithm, Double-DQN,
which we will call here DQN for simplification. We also applied soft updates to the target
network, using a parameter τ which controls how much of the learning network is merged
with the target network at every step (Lillicrap et al., 2015).

A batch of experiences is randomly sampled from the replay buffer at every step, and
used to calculate the loss and update the weights of the network accordingly. Exploration
is done using ε-greedy policies, with epsilon reduced at every step by a linear rate. The
linear rate is calculated by setting the final epsilon value, a minimum rate of exploration,
and a number of frames to decay. The epsilon decay rate is given by the number of frames
divided by the initial epsilon minus the final epsilon.

To approximate the action-value function we implement a multilayer perceptron, with
one input layer, two hidden layers and an output layer. As in DQN, the neural network
approximates the action-value function Q, mapping a state to action values. The input
layer has four neurons, equivalent to the state size, and the output layer has two neurons,
equivalent to the number of actions. There are two hidden layers of 16 and 8 neurons
respectively, which uses rectified linear units as the non-linear activation function. This
architecture is a modification of the original DQN publication (Mnih et al., 2015), with
significantly less degrees of freedom due to the simplicity of the task.

For problems where the state space is represented by an image, a convolutional neural
network is used instead, shown Figure 5.4. The layers are further detailed in Table 5.1.

Two versions of the baseline are used. The first is the DQN, as described above. The
second, which we call Deep Q-Network with Priority Replay (DQN-PR), uses prioritized
replay to decide which samples to replay at every learning step. When using ER, each
sample is assigned a maximum priority when entering the batch, ensuring it is sampled
at least once. Every time an experience is sampled, its priority is updated according
to the TD-error calculated for it. The TD-error represents how much of an impact an
experience had in the weight adjustment done in a particular step. It is also a proxy for
how surprised the agent is in experiencing that transition. Its implementation is inspired
on neuroscience studies reporting similar behavior in rodents (Schaul et al., 2015).

The neural network implements the Adam optimizer, and its parameters, β1 and β2,
are set to the default values β1 = 0.9 and β2 = 0.999 considered optimal for the majority
of problems regarding neural networks (Kingma and Ba, 2014). Clipping the gradients
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Table 5.1: Convolutional neural network detailed layers.

Input Neurons Kernel Stride Output Layer Type
84× 84× 4 32 8 4 20× 20× 32 Convolutional
20× 20× 32 32 8 4 9× 9× 64 Convolutional
9× 9× 64 64 8 4 7× 7× 64 Convolutional
7× 7× 64 512 - - 1× 512 Global Average Pooling
1× 512 4 - - 1× 4 Fully Connected

Figure 5.4: Convolutional neural network architecture.

for the neural network was also attempted, but it led to inferior performance, and was not
considered in the implemented baseline. The remaining hyperparameters were optimized
by coarse grid search. The complete list of hyperparameters selected for the baseline
algorithm are given in Appendices A and B.

5.3 Implementation

To support the research and experiments, a Python library named fasterRL has been
created. We will briefly introduce it to reader. The library is coded in Python 3.6, and
supports future versions with backwards compatibility.

Its main focus is on experiment replication. All the required hyperparameters are
defined in a json file, which is saved to allow future replication. The details for the
experiment are recorded in several levels. Learning variables such as q-values, epsilon,
and rewards per step, are recorded as tensorboard files, and mainly used for a detailed
analysis of the learning dynamics and debugging. Experiments final results such as number
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of episodes to complete the task, average number of steps and wall clock speed are averaged
over many trials and recorded as json files. These are the main metrics that represent a
RL algorithm performance and can be used to compare different algorithms. The use of
fasterRL is illustrated in Listing 5.1.

from fasterRL . common import experiment

params = {
"LOG_LEVEL" : 2 ,
"PLATFORM" : " openai " ,
"ENV_NAME" : "FrozenLake−v0" ,
"METHOD" : "QLearning" ,
"NUM_TRIALS" : 3 ,
"LEARNING_RATE" : 0 . 3 ,
"GAMMA" : 0 .99

}

exp = experiment . UntilWinExperiment ( params )
exp . run ( )

Listing 5.1: Sample code to run experiment. Parameters can be passed as a separate json
file or in code as python dictionaries.

PyTorch 4.0 is used as the automatic differentiation framework to support neural
networks implementation. The dependency is encapsulated, to allow the library to be
extended to other frameworks such as TensorFlow and Caffee. Multiagent implementation
is provided in sequential and parallel approaches.

The implemented algorithms that are commonly presented in the literature are:

• Q-Learning
• Sarsa
• MonteCarlo
• Policy Gradients
• Cross Entropy
• Reinforce
• Deep Q-Networks
• Double Deep Q-Networks
• Deep Deterministic Policy Gradient
• Actor-Critic
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• Advantage Actor-Critic

Of the algorithms listed, Deep Q-Networks and its variant Double Deep Q-Networks
were used in the experiments. Customization options are available for state-of-the-art
methods, including:

• Discretization with aggregation (for state and/or action space)
• Discretization with tile coding (for state and/or action space)
• N-steps for off-policy methods
• Importance Sampling
• Gradient Clipping
• Priority Replay
• Multiagents
• Experience Sharing

FasterRL is designed to be platform-agnostic, allowing algorithms to be tested against
a wide range of environments in different open-source RL platforms. It currently supports
the RL environment platforms OpenAI, GymMinecraft and Marlo. Planned roadmap
includes support for PyBullet-Gym, RoboSchool, VizDoom, DeepMindLab and Industrial
Benchmark. The code is available at https://github.com/lucasosouza/fasterRL.

ES introduces an experience sharing model for cooperative multiagent RL settings. In
Chapter 6, an empirical validation of MACES and the methods proposed is conducted.
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Chapter 6

Empirical Validation

The proposed model was evaluated empirically in two different simulated environments,
featuring a classical control problem and a navigation problem. We first discuss the
experimental procedures used, and proceed to show the results achieved and discuss its
limitations.

6.1 Experimental procedures

Directly comparing two algorithms in a single trial is not reliable due to the non-deterministic
nature of both the agent’s function and the environment function. The agent’s action
selection, experience buffer sampling and neural network initialization are all in part
stochastic processes. The environment’s transition function is likewise given by a proba-
bility distribution. Therefore, in order to compare two or more algorithms, the experiment
is repeated a number of times with different random seeds, and the distribution of the
results are compared, as proposed in Henderson et al. (2018b).

Each repetition is called a trial. A trial ends when all agents completes the task.
The main performance metric used for evaluation is the ETC. In the single agent variant
(baseline), a trial adds only one sample to the distribution. In the multiagent variant, the
results of all agents are added to the distribution. The number of trials executed were
100 for single agent and 50 for multiagent variant with two agents; as a consequence, the
distribution for each variant tested is composed of 100 samples.

Although 30 is typically deemed to be the minimum sample size required to apply
large-sample statistics (Hogg and Tanis, 2009), considering the high variance of the sample
results and seeking to provide robust outcomes, we’ve decided on using 100 as the sample
size. The size of the distribution is enough to be considered representative of the entire
population.
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To compare the two distributions, we use the Kolmogorov–Smirnov (K-S) test, as
suggested by Henderson et al. (2018b). K-S is a nonparametric goodness-of-fit test, used
to determine whether two distributions differ. It is commonly used to compare two samples
coming from two populations that might be different (Massey Jr, 1951).

The experiments were conducted in an Ubuntu powered Desktop, with an Intel i5-6500
3.20 GHz quad-core processor, 32gb RAM and NVIDIA GeForce 1070 graphics card.

6.2 OpenAI: Cart Pole

In this Section, we will review and discuss the experimental results of MACES applied to
a RL classical control problem.

6.2.1 Environment description

The first environment evaluated is Cart Pole, a classic control problem introduced in
Sutton and Barto (2018), using the OpenAI Gym library (Brockman et al., 2016).

Cart Pole environment, represented in Figure 6.1, consists of balancing a pole, attached
by an un-actuated joint to a cart, that moves along a frictionless track. The goal of the
agent is to apply force to the cart, so as to balance a pendulum standing on top of it.
There are two discrete actions available, which corresponds to either applying a force of
+1 to move the cart to the right or a force of -1 to move the cart to the left (OpenAI,
2018). There is also a version of this environment with continuous action space, which
we will not cover in the experiments.

The episode starts with the pendulum upright, and it ends when the pendulum falls
over to one of the sides. At every step, the agent receives a reward of 1 if the pendulum
has not fallen to the side. There are maximum 200 steps available, so the maximum
reward obtainable is 200. A task is completed when the agents achieves a stable optimal
policy. In our experiments, that translates to obtain a reward of 199 or greater over 10
consecutive episodes. Evaluation is not done separately - the same trials used for training
are used for evaluation, so the agent has to carefully consider the exploration-exploitation
trade-off in order to achieve the goal.

The state perceived by the agent is defined by four continuous variables:

• the cart position, ranging from -2.4 to 2.4;
• the cart velocity, ranging from -Inf to Inf;
• the pole angle, ranging from - 41.8 to 41.8 degrees;
• the pole velocity at tip, ranging from -Inf to Inf.
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Figure 6.1: OpenAI CartPole environment

In our settings, no initial knowledge of the environment is allowed, including sam-
pling random transitions from the environment to fill a replay buffer as seen in Mnih
et al. (2015). As a consequence, the agent only starts to learn after its buffer reaches a
number of experiences equal or greater than the learning batch size defined, which takes
approximately between 1 to 5 episodes with the hyperparameters defined.

The performance of the agent is measured in terms of the number of episodes required
to complete the goal, or ETC. The minimum ETC is 10, as the goal requires a moving
average of the last 10 episodes. The maximum ETC allowed is 1000. If the agent is unable
to reach the goal within the delimited number of episodes, ETC is set to 1000 and the
trial is registered as a failure.

6.2.2 Results

With the experimentation procedure explained, we proceed to discuss the results achieved.
We first compare multiagent variants DQN + Naive ES and DQN + Focused ES with
single agent DQN baseline, and multiagent variants DQN-PR + Prioritized ES and DQN-
PR + Prioritized Focused ES with single agent DQN-PR baseline. We aim to show that
the cooperative multiagent variants can outperform the single agent baseline.

In Figure 6.2 we plot the samples from a single agent DQN versus a multiagent DQN
with two agents sharing experiences. In all experiments, a normalized histogram and a
kernel density estimation of both distributions are used to compare.

Results shows that multiagent DQN with Naive ES adds no improvement over the
single agent DQN. However, multiagent DQN with Focused ES shows a significant im-
provement over the baseline. The Focused ES method has an average of 154.44 and a
standard deviation of 111.92 ETC, compared to an average of 317.65 and a standard
deviation of 176.64 ETC in single agent DQN, resulting in a 51.4% improvement in per-
formance. A two sample K-S test rejects the null hypothesis that both samples are drawn
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Figure 6.2: Comparison of single agent DQN with multiagent DQN with Naive ES and
Focused ES.

from the same distribution, with a p-value of 3.70 × 10−12. These results are shown in
Table 6.1.

The same comparison is shown for the DQN-PR algorithms in Figure 6.3. Multiagent
DQN-PR with Prioritized ES have a significant higher average ETC (459.63) compared
to single agent DQN-PR (300.22), with 26 out of 100 samples failing to complete the
task. We speculate that the regular stream of new experiences received being assigned
maximum priority stops the agent from replaying old experiences, which are eventually
discarded when the buffer reaches maximum capacity, before they are used for learning.

By combining the Focused ES method with Prioritized ES we can ensure only the
most relevant experience are shared. DQN-PR with Prioritized Focused ES shows an
improvement in performance of 31.1% over the baseline DQN-PR. As before, we apply a
K-S test to test the hypothesis of both samples being drawn from the same distribution,
which we reject with a p-value of 1.74× 10−4.
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Figure 6.3: Comparison of single agent DQN-PR with multiagent DQN-PR with Priori-
tized ES and Prioritized Focused ES.

We directly compare the best approaches DQN + Focused ES with DQN-PR + Pri-
oritized Focused ES in Figure 6.4. DQN + Focused ES distribution shows lower average
(154.44) and lower variance, while DQN-PR + Prioritized Focused shows a long right-side
tail distribution which pulls the average higher (206.87), with the agent failing to achieve
the goal in 5 out of 100 samples.

We can better understand how focused experience sharing affects learning by analyzing
the learning dynamics episode by episode. Figures 6.5 and 6.6 plot the average reward
along episodes for the considered algorithms. In the plots, each line represents an average
over 100 trials (with standard deviation shown as shades). To enhance presentation, all
lines are shown up to 500 episodes. In the case of trials that completed the task before
500 episodes, we consider the last obtained reward to compute the average of subsequent
episodes.

In Figure 6.5 we see how in DQN + Focused ES learning progress faster right from the
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Figure 6.4: Comparison of multiagent variants DQN with Focused ES and DQN-PR with
Prioritized Focused ES.

Table 6.1: Experiments results in Cart Pole environment.

Method ETC
Mean

ETC
Deviation

Trials
Failed

ETC
Improvement

DQN 317.65 176.64 0 -
DQN + Naive ES 318.19 163.26 0 -0.2%
DQN + Focused ES 154.44 111.92 0 +51.4%
DQN-PR 300.22 246.05 0 -
DQN-PR + Prioritized ES 459.63 370.57 26 -53.1%
DQN-PR + Prioritized Focused ES 206.87 214.63 5 +31.1%

beginning, while in DQN + Naive ES progress is slower, even when compared to the the
single-agent variant. The differences in performance are most notable after they reached
a high level reward, around 175. Most of the variance in ETC in DQN and DQN + Naive
ES can be explained by the time it takes to cover the last steps towards the target, leaping
to the maximum reward of 200. DQN + Focused ES is able to overcome this last stage
using fewer episodes.

A similar behavior occurs when priority replay is added, seen in Figure 6.6. In this
case, DQN-PR + Prioritized Focused ES has slower learning compared to the the single
agent variant in the first 180 episodes. However, as with regular DQN, the single agent
variant plateaus in the last step of progression, while the Focused ES version is able to
continue progressing towards the optimal policy.

Furthermore, we test if adding more agents to the multiagent variant using DQN +
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Figure 6.5: Episode reward evolution in DQN.

Figure 6.6: Episode reward evolution in DQN-PR.

Focused ES can increase the performance even further. The results are shown in Figure
6.7 and Table 6.7. As expected, the biggest impact occurs when adding a second agent
to the experiment. The median, or Q(.5), reduces from 254 with one agent to 111 with
two agents.

Increasing the number of cooperative agents further than two yields no significant
improvement. There is a small improvement up to four agents reducing the median to 99.
A similar behavior is seen for Q(.25) and Q(.75). But after five agents performance starts
to decrease. In the ten agents experiment the median is 123, inferior to the two agents
experiment. The experiment is conducted only up to ten agents, but the visible trend in
Figure 6.7 implies adding more agents might lead to continually decreasing performance.
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Figure 6.7: Boxplots showing the distribution of number of episodes to complete task
with different numbers of concurrently learning agents.

Table 6.2: Q1, Q2 and Q3 ETC for Focused Experience Sharing between 1 to 10 agents.

Quantile 1 2 3 4 5 6 7 8 9 10
Q(.25) 132 96 93 90 94 96 95 98 95 105
Q(.5) 254 111 105 99 112 108 108 110 114 123
Q(.75) 403 146 149 122 133 128 130 138 139 158

The last experiment conducted in Cart Pole environment is to see whether the use
of tile coding for state discretization in the Focused ES method is able to reduce ETC.
In Figure 6.8 we show the results with different tile coding, ranging from 1, which is
equivalent to the simple state aggregation, to 41 tiles. The number of tiles were gradually
increased until the performance dropped. In Table 6.3 we show the range of offsets applied
in each configuration, as well as the ETC mean and deviation.

The results shows that increasing from state aggregation to a small number of tiles
has a slight increase in performance measured by ETC mean. The greatest effect though
is in reducing ETC standard deviation, which is clearly seen in the density curves plotted.
The optimal results are achieved with 11 tiles; the last option, 41 tiles, actually decreases
both ETC mean and deviation.

Tile coding is implemented by multiplying the number of occupancy grids by the
number of tiles, increasing the amount of space and time to compute. Further evaluation
is required to determine if the small improvement in performance achieved by tile coding
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Figure 6.8: Density estimations for different number of tiles used on tile coding applied
to Focused ES.

Table 6.3: Comparison of results using different number of tiles for discretization.

Number
of Tiles

Tile Offsets ETC Mean ETC Deviation

1 - 157.19 130.37
5 {0.05 · x for x ∈ [−2..2]} 150.97 115.11
11 {0.02 · x for x ∈ [−5..5]} 151.70 81.32
21 {0.01 · x for x ∈ [−10..10]} 151.32 120.01
41 {0.01 · x for x ∈ [−20..20]} 170.03 150.56

justifies its use over the simpler state aggregation form of discretization.

6.3 Microsoft: Marlo

In this Section, we will review and discuss the experimental results of MACES applied to
a RL navigation problem.

6.3.1 Environment description

The model was also tested in the Marlo environment, a MARL environment based on
platform Malmo (Johnson et al., 2016). Malmo is a platform based on the Minecraft
engine, and designed by Microsoft specifically for the purposes of research in RL. Several
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researches have been conducted in Malmo since its inception and subsequently in Marlo,
and recently a competition was held to evaluate the best performing MARL algorithms
in a few selected scenarios (Mohanty, 2018).

We will use the simplest environment called Find The Goal, a navigation problem. In
it, the agent starts with in a small room. Its goal is to locate a block in the room, which is
randomly initialized in a different position at each episode. The state is represented only
by what the agent sees in the screen, a 84x84 single channel image, presented in Figure
6.9. The agent receives a negative 0.01 reward for each action taken, and a 0.5 reward for
achieving the goal. The action space is discrete and the agent has four possible actions:
turn left or right, or move forward or backwards.

Figure 6.9: Samples of the state perceived by the agent in Marlo environment. These are
84x84 images, here shown in 3 channels (RGB) for clarity. In the top images, you can
see the goal, either partially occluded or in full sight. In the bottom row are example of
states where the agent cannot see the goal. Notice as the agent approaches the wall the
images gets more blurry and the traits are indistinct.

We define the goal as achieving an average reward greater or equal 0.35 in five con-
secutive episodes. No initial knowledge of the environment is allowed, so learning only
initiates after the agent has experienced a number of transitions equal to the size of the
replay buffer, which can take between one and two episodes.

As in Cart Pole, the performance of the agent is measured in terms of the number of
number of episodes required to complete the task. For this problem, the minimum ETC
is 5, as the goal requires a moving average of the last 5 episodes, and the maximum ETC
allowed is 100. If the agent is unable to reach the goal within the delimited number of
episodes, ETC is set to 100 and the trial is registered as a failure.
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6.3.2 Results

We will follow the same approach defined for Cart Pole. Due to the significantly longer
computational time required in Marlo, caused by the complex state space, only 20 trials
were executed for each variant tested. For the same reason, additional experiments with
more than two agents and tile codings are also not included for Marlo.

We first compare multiagent variants DQN + Naive ES and DQN + Focused ES with
single agent DQN baseline, and multiagent variants DQN-PR + Prioritized ES and DQN-
PR + Prioritized Focused ES with single agent DQN-PR baseline. We aim to show that
the cooperative multiagent variants can outperform the single agent baseline.

In Figure 6.10 we plot the samples from a single agent DQN versus a multiagent DQN
with two agents sharing experiences. In all experiments, a normalized histogram and a
kernel density estimation of both distributions are used to compare.

Figure 6.10: Comparison of single agent DQN with multiagent DQN with Naive ES and
Focused ES in Marlo environment.
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Both single agent and multiagent DQN with Naive ES struggle to complete the task
within 100 episodes. DQN + Naive ES has an ETC mean of 94.30, significantly lower
compared to single agent ETC mean of 78.75, and it even fails to complete the goal in
18 out of 20 trials. DQN + Focused ES shows a marginally better result, with a 19.75%
improvement over single agent DQN, but also stops short of achieving the goal in a similar
number of trials. A two sample K-S test fails to reject the null hypothesis that DQN and
DQN + Focused ES samples are drawn from the same distribution. The results discussed
are presented in Table 6.4.

Table 6.4: Experiments results in Marlo environment.

Method ETC
Mean

ETC
Deviation

Trials
Failed

ETC
Improvement

DQN 78.75 24.55 8 -
DQN + Naive ES 94.30 19.56 18 -19.75%
DQN + Focused ES 66.25 32.21 9 +15.87%
DQN-PR 10.55 5.75 0 -
DQN-PR + Prioritized ES 25.15 11.26 0 -138.39%
DQN-PR + Prioritized Focused ES 6.25 0.70 0 +40.76%

The same test is conducted for DQN with Priority Replay, shown in Figure 6.11. DQN-
PR is able to achieve the goal in 10.55 episodes on average, a performance far superior
than regular DQN. DQN-PR with Naive ES performs far worst than regular DQN, with
an increase of 138% in ETC, from 10.55 to 25.15. DQN-PR with focused sharing, on
contrary, shows a reduction of 40.76% on the baseline single agent ETC, reducing the
mean number of episodes from 10.55 to 6.25, only 1.25 above the minimum required. A
two sample K-S test rejects the null hypothesis that DQN-PR and DQN-PR + Prioritized
Focused ES samples are drawn from the same distribution, with a p-value of 0.023.

The results achieved in the Marlo environment confirm the results seen in Cart Pole,
and hints that the MACES model can be applied to a larger selection of RL with similar
success. In Chapter 7, we review past and current research related to our proposed model
and review similarities and differences.
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Figure 6.11: Comparison of single agent DQN-PR with multiagent DQN-PR with Prior-
itized ES and Prioritized Focused ES in Marlo environment. Frequency on the y-axis is
cut-off at 0.1 for better visualization.
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Chapter 7

Related Work

After introducing our proposal, we will proceed to compare it with related existing work.
We discuss a wide range of research in related areas to situate our proposal amongst
existing state-of-the-art methods, even if the methods are not directly comparable, but
anyhow related.

We divide the related work review in three different groups. Section 7.1 discusses
proposals related to knowledge sharing through action advice, an approach more com-
mon than experience sharing and well explored in the literature. Section 7.2 discusses
approaches to extend experience sharing to heterogeneous agents and dynamic environ-
ments. Section 7.3 discusses methods to accelerate learning by increasing buffer diversity,
from which we draw inspiration to devise the Focused ES method. The work presented
includes not only multiagent variants but also single agent with distributed learning.

7.1 Sharing action advice

Apart from ES, the main approach to knowledge sharing in MARL has been what is
called action advice. Clouse (1996) proposes a model in which the learning agent learns
from both the critic, the value function, and a training agent. It introduces the pattern of
teacher-student learning in RL algorithms, in which a trainer, an agent who has learned
beforehand how to execute a task, indicates to the learner the optimal action to take in
a given state.

In the proposed approach, a instruction rate parameter determines the percentage of
timesteps to which the trainer instructs the learner. If the trainer does not provide an
action, the learner has to choose based on its own policy. In earlier work by Clouse and
Utgoff (1992), an agent decides to ask for help when it has low confidence in its own action
choices, based on the size of difference of previous state evaluations. The action advice is
not directly incorporated into the learner’s policy; however, in a value based approach to
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RL, receiving a positive feedback from taking an action indicated by a teacher will change
the value function and consequently steer the learner’s policy toward that action in the
future.

Experiments conducted by Clouse and Utgoff (1992) in a race car toy scenario shows
that instruction provided by training agents reduce the amount of training necessary to
meet the goal, with an optimal instruction rate at about 80%. It is speculated that
higher rates could lead the learner to increasingly rely on the trainer and perform less
exploration, not allowing the agent to learn from failure.

The action advice method is followed up by Torrey and Taylor (2013), which proposes
a knowledge sharing method that could be extended to scenarios where the teacher or
student could be either humans or machines. The authors advocate this method because
requires minimal similarity between teachers and students. Only action set needs to be the
same; state representations might differ, allowing for heterogeneous agents to collaborate.

In their work, Torrey and Taylor (2013) assume the teacher agent can not give un-
limited advice. The primary reason for this restriction is that the system should be able
to support human teachers, which have limited patience and attention. However, inci-
dentally also limits the cost of communication, a common concern in proposals related
to knowledge sharing since a high communication cost can be a hindrance to implement
these systems in real-life situations.

Important insights emerge from an empirical evaluation of the methods proposed.
Student learning is shown to improve with only a small advice budget, which have a
greater impact when it is spent on a few more relevant states. More importantly, they
show teaching can improve student learning through action advice even when different
learning algorithms or state representations are used, and students can eventually grow
to outperform teachers through the methodology.

This work is further extended in da Silva et al. (2017) to include multiagent environ-
ments in which all agents can act both as a teacher and a student. The authors point
all three situations in which the advice from other agents can be specially useful: when a
learning agent joins a system where other agents have been exploring for a while; when
a learning agent has not yet been exposed to a particular region of the state space, while
other friendly agents have; and when a learning agent internal representation is not as
efficient as other agents in a given task. In particular, the situation of an agent not being
exposed to a particular region of the state space is key to our proposal of Focused ES.

To coordinate the knowledge sharing between agents, da Silva et al. (2017) propose
agents hold a confidence metric based on how many times an agent has explored a desired
state. This confidence metric is used by the learner agent to evaluate whether it is neces-
sary to ask for advice, and if advice is asked, it is used by the teacher agent to evaluate
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whether it is confident enough to share action advice regarding that particular state. Em-
pirical results in simulated Robot Soccer environment shows learning can be accelerated
through this approach even when all agents start the learning process simultaneously,
with no previous knowledge.

Although action advice has proven to increase performance in cooperative multia-
gent settings, it requires instantaneous communication between agents, with an atomic
information of one transition shared in each communication action. In our proposal, com-
munication is only done once at the end of each episode, and knowledge regarding several
transitions can be packed into a single communication effort, making it more realistically
applicable to real world problems.

7.2 Sharing with heterogeneity

A significant advantage of action advice over ES is it allows knowledge sharing to occur
between agents with different state representations. Methods that alter ES to allow for
some heterogeneity in the state space have been proposed and can be a viable solution to
extend ES methods to environments with heterogeneous agents or states.

In Verstraeten and Nowé (2018), the main issue of transferring experiences among
heterogeneous agents is addressed. The author details an approach to share experiences
amongst similar but heterogeneous agents, in what is called fleet applications. The ex-
periments are conducted in a wind farm, where each wind turbine is considered an agent.
The agents learn in the same context and have similar state and action spaces. However,
small differences in the fabrication process may lead to slight variations in the state or
action spaces, hindering the opportunity to freely share experience in the fleet.

A work around is found by discovering which agents are similar enough to benefit from
shared knowledge. The solution is a model-based approach, where Gaussian processes are
used to model each fleet member’s transition function. Gaussian processes are able to
model complex non-linear surfaces using limited amount of data. The correlation between
the agents are measured through coregionalization, which is used to define which members
of the fleet are similar enough, and could eventually be allowed to share experiences
(Verstraeten and Nowé, 2018).

Garant et al. (2017) approaches a similar problem. The authors introduce a technique
for speeding up multiagent learning by exploiting concurrent and incremental ES, allowing
for rapid acquisition of policies in large-scale, stochastic and homogeneous multiagent
systems. In this investigation, the agents are homogeneous, but the environments are
dynamic. So instead of having to determine agent’s similarities, the agents needs to
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determine if the environment they are currently in are similar enough to determine if ES
will be helpful to its learning process.

The solution proposed introduces a supervisor-directed transfer technique. A super-
visor agent constructs a high-level characterization of an agent’s non-stationary learning
environment, here called contexts, which are used to identify groups of agents operating
under approximately similar dynamics in a short temporal window. These agents com-
putes the contextual information for a group of subordinate agents, and groups them by a
similarity metric. Agents are only allowed to share experience within these groups, which
are constantly recalculated by the supervisors. The context distributions are approxi-
mated by a multivariate Gaussian and the Mahalanobis distance is used as the metric.
The method, shown in Figure 7.1, is validated on a large network-distributed task alloca-
tion problem.

Figure 7.1: Architeture showing how subordinate agents are grouped by the supervisor
according to the calculated context features. Reproduced from Garant et al. (2017).

Similarly, plenty research has been conducted covering knowledge sharing between
heterogeneous tasks, either by the same agent or different agents. To be able to transfer
learned knowledge between tasks is considered the holy grail of ML, a silver bullet that
could make existing ML models into actual prospects for artificial general intelligence
(Pan and Yang, 2010).

Torrey et al. (2006) discusses an action advice process where the tasks are different. It
proposes a human-provided mapping to specify the similarity between source and target
task, allowing advice to be given even when the task conducted between agents differ.
A similar proposal but extended to model based algorithms is discussed in Taylor et al.
(2008). These are further explored in Boutsioukis et al. (2011), where the authors apply
intertask mapping specifically to multiagent domains, demonstrating through experiments
reduction of learning time. This technique is extended to DRL algorithms in Kong et al.
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(2017). The intertask mapping approach could also be a solution to handle heterogeneity
between agents and environments in ES models.

7.3 Increasing buffer diversity

A lot of research has been conducted in how to increase buffer diversity and whether it
leads to better performance, a key tenet behind the Focused ES method. In Nguyen et al.
(2018), the authors propose a technique to calculate similarity of new experiences with
existing experiences based on a custom distance function. This measure, combined with
a stochastic process, is used to determine whether or not to store a new experience. This
assures that new experiences are only added if they are different enough from the existing
experiences in the buffer. This new technique, combined with PER, shows consistently
better results compared to the original DQN.

Related as well is the work conducted in distributed learning using DQN, with similar
approaches discussed in Nair et al. (2015) and Ong et al. (2015). Nair et al. (2015)
introduces a fully distributed learning algorithm, called Gorilla. In it, several agents
learn concurrently, but have a single action-value function and a single replay buffer. The
gradient of the loss is calculated locally, and then sent to a centralized network where it is
used to update the parameters. Sampling from several environments in parallel leads to
increased diversity in the buffer, and the centralized network ensures every learning step
is shared among all agents. A representation of the Gorilla framework is seen in Figure
7.2.

Figure 7.2: Gorilla Framework for distributed learning with multiple learners and actors
with a single replay memory and parameter server. Reproduced from Nair et al. (2015).
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More recently, in Horgan et al. (2018), the authors argue that having a single replay
buffer shared amongst agents is alone sufficient to improve the results of DQN. This
statement is investigated empirically and confirmed by the results achieved in the ALE
environment. The success is credited to the diverse set of experiences introduced in the
buffer, caused mainly by the possibility of having each agent follow different exploration
policies in order to form a more diversified buffer. The model, called Apex, is considered
an evolution of Gorilla, and is represented in Figure 7.3.

Figure 7.3: Apex Framework for distributed learning with multiple actors, a single learner
and a single replay buffer. Reproduced from Horgan et al. (2018).

Our approach differs from this work by considering each agent as an autonomous
independent entity, aligned with the MARL problem definition. Focused ES do not require
centralized replay buffer or networks, limiting the communication to once per episode
during the ES round.

We believe that this makes our approach more easily applicable to real world scenarios,
since an unique shared buffer would require constant communication with a central server,
which may be impractical in several in industrial applications. In addition, we also propose
enhanced ways of deciding which experiences are relevant to share amongst the agents,
ensuring that the proper balance of experiences is stored in the buffer that can lead to
faster convergence of the learning algorithm.

In Table 7.1 we present an overview of the main related work discussed in this Chapter.
For each method we show: (i) whether or not it is applicable to independent learning
agents; (ii) what knowledge is shared between agents; (iii) if it is applicable to discrete
or continuous state spaces; (iv) which experimental domains were used for validation; (v)
the number of methods proposed in the work; (vi) and a brief sentence summarizing its
contribution to the field.

In Chapter 8, we conclude with a discuss of some of the limitations of MACES, and
interesting directions for future research.
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Chapter 8

Conclusion

The proposal was validated in two different setups, a classic control environment, Cart Pole, and
a more complex navigation problem based on a game engine, Marlo. The very different setups
allows us to have a more robust evaluation of the proposed MACES model and its applicability
to distinct RL problems.

Our first goal was to answer if naive ES between agents is enough to accelerate multiagent
learning between cooperative agents. As the experiments show, naive ES between two agents
can either have no impact (Cart Pole) or effectively delay learning (Marlo). The constant flow
of unrelated experiences destabilizes learning and it was shown to be harmful for the agent’s
performance.

Our secondary and main goal was to propose a ES method that can accelerate learning. The
model proposed, MACES, allows two agents learning concurrently to learn the same task in half
the number of episodes required for non cooperative agents.

The best performing method in MACES is named Focused ES, in which the agents keep
track of an occupancy grid showing which regions of the state-action space have already been
explored, and only requests experiences related to regions with low exploration. This limits the
flow of new experiences to only those that can bring novelty and help the agent increase the reach
of its action-value function estimation. Focused ES fixes the major issue found in naive ES, in
both regular DQN variant and in DQN-PR, as shown in both Cart Pole and Marlo environments
summarized in Tables 6.1 and 6.4. Additional exploration in the CartPole environment shows
the method can be further improved by either increasing the number of cooperative agents or
using tile coding for state discretization.

We also propose and test a Prioritized ES method, where the agents use TD-error based
priorities to define which experiences are more relevant to share, and a combined Prioritized
Focused ES method. Prioritized ES alone shows none or little improvement over single agent
DQN with Priority Replay, but combined with Focused ES can outperform the single agent
variants.

All the experiments were conducted disregarding agents interactions, a key factor in Markov
games, the most common formulation of MARL. To extend ER methods to Markov Games we
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need to account the non-stationary nature of the environment caused by the other agent’s chang-
ing policies, and possible effects on the state caused by the agents interactions. We discussed
some related work that addresses the issue of applying ER to MARL. An interesting direction
of future research would be to extend the Focused ES method to Markov games by combining
it with methods that control for the non-stationary nature of MARL, such as either filtering
experiences by age or applying a form of importance sampling to decay experiences.

Another relevant limitation is its applicability to only homogeneous environments. Related
research were discussed on how to extend ES to settings with either heterogeneous agents or
states space. The proposed solution involves determining a measure of similarity to define if the
agents or states space are similar enough in order to benefit from ES. As in the intertask map-
ping proposals, a mapping function can be used to transform experiences and allow experiences
between distinct agents to be shared. Extending Focused ES to problems with heterogeneity
using the methods discussed can also be an interesting line of research.

It is important to note that Focused ES benefits from exchanges up to ten agents only. A
likely scenario that can be considered in future research is a larger number of agents interacting
sparsely, requiring an even more careful consideration of which experiences are relevant to share.

Finally, we emphasize MACES do not require a centralized neural network or centralized
buffer, and requires limited communication between agents compared to action-advice knowl-
edge sharing methods or centralized learning RL algorithms. This makes it more prone to be
applied to environments where the latency and bandwidth of communication between agents are
limited. Example applications can include autonomous agents spread over large distance that
share experience on episodic basis, such as cooperative autonomous vehicles or manufacturing
robots, or autonomous agents that are allowed only to communicate at sparse intervals.
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Appendix A

Hyperparameters - Cart Pole

Hyperparameter Value Explanation

Learning Rate (α) 0.001 Step-size update for the neural network weights
Discount Rate (γ) 0.99 Used to discount future rewards
Soft Update Rate (τ) 0.005 Step-size update for the target network
Experience Buffer Size 20000 Maximum number of experiences in the experi-

ence buffer
Replay Batch Size 32 Number of experiences sampled for each learning

step
Exploration Rate (ε) Initial Value 1.0 Initial value for ε-greedy exploration
Exploration Rate (ε) Final Value 0 Final value for ε-greedy exploration
Exploration Rate (ε) Decay 4000 Number of frames over which the initial value of

ε is linearly annealed to its final value
Experience Transfer Batch Size (κ) 1 128 Maximum number of experiences shared at each

transfer round
Priority Replay α 2 0.6 Prioritization exponent, determines how much

prioritization is used
Priority Replay β Initial Value 2 0.4 Initial value of importance sampling correction

exponent
Priority Replay β Final Value 2 0 Final value of importance sampling correction

exponent
Priority Replay β Decay 2 10000 Number of frames over which the initial value of

β is linearly annealed to its final value
Focused ES Threshold (ζ) 3 10 Number of experiences below which the agent

considers the region unexplored

Table A.1: 1Applied only to multiagent variants.
2Applied only to methods with priority replay.
3Applied only to methods using Focused ES
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Appendix B

Hyperparameters - Marlo

Hyperparameter Value Explanation

Learning Rate (α) 0.002 Step-size update for the neural network weights
Discount Rate (γ) 0.97 Used to discount future rewards
Soft Update Rate (τ) 0.005 Step-size update for the target network
Experience Buffer Size 10000 Maximum number of experiences in the experi-

ence buffer
Replay Batch Size 128 Number of experiences sampled for each learning

step
Exploration Rate (ε) Initial Value 1.0 Initial value for ε-greedy exploration
Exploration Rate (ε) Final Value 0.01 Final value for ε-greedy exploration
Exploration Rate (ε) Decay 600 Number of frames over which the initial value of

ε is linearly annealed to its final value
Experience Transfer Batch Size (κ) 1 128 Maximum number of experiences shared at each

transfer round
Priority Replay α 2 0.6 Prioritization exponent, determines how much

prioritization is used
Priority Replay β Initial Value 2 0.4 Initial value of importance sampling correction

exponent
Priority Replay β Final Value 2 0 Final value of importance sampling correction

exponent
Priority Replay β Decay 2 10000 Number of frames over which the initial value of

β is linearly annealed to its final value
Focused ES Threshold (ζ) 3 5 Number of experiences below which the agent

considers the region unexplored

Table B.1: 1Applied only to multiagent variants.
2Applied only to methods with priority replay.
3Applied only to methods using Focused ES
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