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Resumo Expandido

A investigação sobre a mudança de uso e cobertura da terra é importante para promover

o gerenciamento criterioso do território, como meio de contenção de danos ambientais.

Além disso, é um processo complexo que relaciona a interação entre sistemas ambientais,

econômicos e sociais em diferentes escalas temporais e espaciais. O entendimento da

dinâmica desses sistemas foca não somente nas partes, mas do comportamento que emerge

da interação entre elas. Modelo Baseado em Agente (MBA) é uma boa técnica para o

estudo desses fenômenos, uma vez que modela as interações entre agentes autônomos e

o seu ambiente. As simulações computacionais são a técnica mais utilizada para avaliar

esses modelos, para testar explicitamente os efeitos das decisões humanas em situações

complexas.

Conquanto os MBAs forneçam uma ferramenta poderosa para analisar fenômenos

emergentes, sua utilidade é limitada por di�culdades na análise dos seus resultados, o

que fomenta críticas e questionamentos sobre a contribuição real dos frameworks para o

suporte à decisão. A ferramenta mais difundida para avaliação é a análise de sensibilidade,

pois quanti�ca os efeitos das alterações nos fatores de entrada do modelo nas previsões do

modelo. Entretanto, grande parte dos métodos mais difundidos de análise de sensibilidade

não são adequados ou são insu�cientes para lidar com as especi�cidades advindas da

complexidade dos MBAs. Dentre elas, destacam-se a estocasticidade, não-linearidade

e a parametrização ad hoc, que implicam uma considerável incerteza epistêmica. Sem

uma investigação apropriada, há chances signi�cativas de que os resultados derivados da

simulação sejam a consequência de vieses.

Embora reconhecendo as diferenças particulares dos inúmeros MBAs, a presente tese

examina se esses desa�os podem ser superados, no contexto de um estudo de caso de uso

e cobertura da terra no Cerrado do Distrito Federal, usando a ferramenta multiagente

MASE-BDI (Coelho et al., 2016). O objetivo dessa tese é avaliar a aplicação de várias

metodologias de quanti�cação de incerteza e análise de sensibilidade na análise de resul-

tados de MBAs. O foco da pesquisa é efetuar uma aplicação integrada de técnicas de

análise de incerteza e sensibilidade e avaliar os impactos que as diferenças nos tamanhos

de amostra, técnicas de amostragem e métodos de análise de sensibilidade podem ter na
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saída do modelo. Além disso, propõe-se um work�ow para que essas técnicas possam ser

aplicadas de forma organizada e sistemática. De modo mais abrangente, aplica-se uma

metodologia geral de avaliação de MBAs, que inclui diferentes abordagens para produzir

versões simpli�cadas do modelo que podem ser usadas para explorar os resultados ou

realizar uma análise exploratória. Estas abordagens para análise, calibração e veri�cação

do modelo requerem um grande número de execuções de simulação de cenários repetidos

e com muitas combinações de parâmetros e de con�gurações do modelo. Para facilitar

esse processo, foi implementada a integração da ferramenta de simulação MASE-BDI com

o conjunto de bibliotecas estatísticas para quanti�cação de incerteza PSUADE. Houve a

criação de um driver e de uma interface para automatizar o pré e pós-processamento de

entradas e saídas para muitas execuções do modelo.

Todos os experimentos foram testados em um modelo espacialmente explícito de uso

e cobertura da terra. A ferramenta de simulação é o MASE-BDI, desenvolvido pela

Universidade de Brasília. MASE é o acrônimo para MultiAgent System for Environmental

simulation que implementa o modelo de racionalidade Belief-Desire-Intention (BDI). No

BDI, os agentes possuem crenças, um conjunto de informações que se tem sobre o ambiente

que habitam e que alteram tanto a percepção quanto o seu pensamento sobre o mundo.

Desejos, que representam as atitudes motivacionais dos agentes que os conduzem a um

curso de ação, e intenções, que são o conjunto de planos montados pelo agente para que

ele atinja os seus objetivos. A função objetivo da análise dos resultados da simulação

é uma métrica estatística de aptidão denominada �gura de mérito (FoM), determinada

pela razão entre as mudanças na terra que foram preditas corretamente sobre a soma das

mudanças observadas (Pontius et al., 2008). Essa métrica quanti�ca se os acertos de um

mapa de uso e cobertura da terra são maiores que os erros na predição da quantidade de

conversão entre os diferentes usos e coberturas da terra e da alocação dessas mudanças

no espaço.

A metodologia utilizada na tese foi incremental e evolutiva. Inicialmente, foi realizada

uma avaliação do modelo com a utilização dos métodos mais difundidos na literatura:

análise de sensibilidade um-fator-de-cada-vez (OAT - One-factor-At-a-Time) para quatro

fatores de entrada e um número variável de replicações. Para avaliar a qualidade da

saída do modelo, a métrica de aptidão foi avaliada por meio de intervalos de con�ança.

Os resultados mostraram que apesar de ser possível diferenciar os fatores de entrada

sensíveis e não sensíveis, a variabilidade da saída era tão grande que a incerteza impedia

qualquer análise mais robusta. Percebeu-se que diferentes replicações da amostra afetavam

consideravelmente os resultados.

A revisão de literatura apresentou um cenário apelidado por Angus and Hassani-

Mahmooei (2015) de "anarquia metodológica". Partindo da premissa que há grandes
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discrepâncias nas orientações provenientes da revisão de literatura, optou-se por uma in-

vestigação profunda e abrangente dos itens que eram passíveis de in�uenciar os resultados

do modelo. Esse segundo passo da investigação propôs uma adaptação e detalhamento do

work�ow para análise de saída do modelo, disponíveis na literatura. A partir da proposta

de Pianosi et al. (2016) propôs-se uma metodologia com três passos: 1) projeto do expe-

rimento; 2) análise de incerteza; e 3) análise de sensibilidade. A contribuição baseia-se

na inserção explícita de métodos para a de�nição da estabilidade da variância, ou seja, o

tamanho mínimo da amostra para o estudo de caso especí�co. Os pesquisadores divergem

consideravelmente sobre qual deve ser o tamanho mínimo de uma amostra, dado um de-

terminado número de fatores de entrada. Postula-se que a variabilidade do parâmetro de

saída sob investigação deve nortear essa escolha. Apenas quando a variância atingir um

ponto de estabilidade, é possível obter o número mínimo de simulações necessárias para

que as conclusões sejam válidas.

Além disso, os experimentos foram projetados para investigar a e�cácia e e�ciência

da estratégia de amostragem e do método de análise de sensibilidade. Foram avaliadas

todas as possíveis combinações entre as estratégias de amostragem comuns na literatura

(Monte Carlo, Hipercubo Latino, Array Ortogonal, Fourier, entre outros) e os métodos de

sensibilidade (regressão, correlação, OAT, Sobol, Teste Delta, processos gaussianos, entre

outros). Todas as possíveis combinações resultaram em uma miríade de simulações. Para

executar esse grande número de testes, foi necessário implementar uma integração entre a

modelo de simulação MASE-BDI e a ferramenta estatística de quanti�cação de incerteza

PSUADE (Tong, 2005). Dessa forma, por meio de uma interface de usuário é possível

determinar os fatores de entrada e saída, o tamanho da amostra e a técnica de amostra-

gem. O sistema automaticamente informa esses parâmetros para a ferramenta e simula

cada um desses cenários. Após esse cálculo, é possível selecionar os métodos de análise de

incerteza e sensibilidade e calcular os respectivos índices. De forma surpreendente, mé-

todos amplamente difundidos apresentaram resultados controversos quando aplicados no

estudo de caso. Ademais, diferentes métodos de amostragem produziram diferentes saídas

para o mesmo método de análise de sensibilidade. Em alguns casos, diferentes tamanhos

de amostra indicaram resultados con�itantes para uma mesma métrica de sensibilidade.

A partir dessas observações é possível a�rmar que nenhum MBA pode aplicar um

método sem antes questioná-lo. Uma série de investigações preliminares são obrigatórias

para garantir que os métodos de incerteza e sensibilidade são adequados para o estudo de

caso em questão. Para tornar os experimentos mais e�cientes, uma utilização integrada de

análise de incerteza e sensibilidade foi a opção metodológica escolhida. Os resultados da

análise de incerteza alimentavam a análise de sensibilidade, promovendo uma análise mais

completa das saídas do modelo. O work�ow proposto é a ferramenta para guiar outros
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pesquisadores da área de MBA e evitar que erros comuns sejam cometidos. Um exem-

plo são os métodos de regressão-linear e correlação, amplamente difundidos em modelos

ecológicos, mas que se mostraram inadequados para a avaliação do MBA em questão.

Na última etapa da tese, optou-se por enquadrar os experimentos em um framework

geral para avaliação de modelos inicialmente proposto por Augusiak, Van den Brink, and

Grimm (2014). "Avalidação"é a composição entre avaliação e validação que se ancora no

ciclo de modelagem e propõe atividades especí�cas para veri�car cada passo da concepção

e simulação de um modelo. O foco desse trabalho concentrou-se nos métodos de veri�ca-

ção das saídas, análise e corroboração das saídas do modelo. Para cada item, fornece-se

o passo a passo de atividades, aplicadas ao modelo MASE-BDI. Para ilustrar o potencial

dessa metodologia, foram propostos dois experimentos, um exploratório e um explana-

tório, para gerar versões simpli�cadas, computacionalmente e�cientes, e que exploram

comportamentos especí�cos do sistema em questão. A simpli�cação baseia-se na redução

da variabilidade dos fatores de entrada, de modo a aumentar a con�ança nos resultados

das predições. O experimento exploratório possibilitou a investigação de comportamentos

extremos do sistema, mantendo a variabilidade dos fatores. O experimento explanatório

reduz a variabilidade de saída. Ao re�nar o fator de entrada que mais in�uencia o re-

sultado, foi possível reduzir as incertezas. Ambos os experimentos mantêm a média da

variável de saída constante.

O resultado é uma avaliação integral do modelo, no que concerne a variável de saída

de interesse. A sequência de experimentos identi�cou quais os métodos mais adequados

e e�cientes para o estudo de caso. Entretanto, a aplicação desses métodos ilustra como

deveria ser uma análise integrada de incerteza e sensibilidade em um MBA. Essa iniciativa

favorece a transparência e permite o escrutínio e a replicabilidade por parte da comunidade

de pesquisa. O resultado é um modelo ajustado e avaliado, cuja média registrada para

função objetivo é maior que 51%, melhorando signi�cativamente os resultados iniciais

obtidos com as orientações provenientes da literatura.

Apesar de os testes terem sido realizados em um modelo especí�co, as considerações

podem ser generalizadas para todo o campo de pesquisa. A integração de análise de

incerteza e sensibilidade deve ser feita rotineiramente nos processos de avaliação de um

modelo. Seguindo as etapas estabelecidas pelo work�ow, pesquisadores podem aumentar

o nível de con�ança nos resultados de suas simulações e promover um uso mais racional

e e�ciente dos MBAs.

Palavras-chave: análise de incerteza, análise de sensibilidade, avaliação integrada, vali-

dação de modelo, modelo baseado em agentes, uso da terra
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Extended Abstract

Research on land use change and land cover are essential to promote insightful manage-

ment of land use to refrain environmental damage. Also, it is a complex process that

relates to the interaction between environmental, economic and social systems at di�er-

ent temporal and spatial scales. Understanding the dynamics of these systems focuses

not only on the parts but on the behavior that emerges from the interaction between

them. Agent-based model (ABM) is a useful technique for studying these phenomena

since ABMs model the interactions between autonomous agents and their environment.

Computational simulations are the most used technique to evaluate these models, to ex-

plicitly test the e�ects of human decisions in complex situations.

While ABMs provide a powerful tool for analyzing emerging behavior, their useful-

ness is limited by di�culties in analyzing their results, which encourages criticism and

questioning about the actual contribution of frameworks to decision support. The most

popular tool for model evaluation is sensitivity analysis, as it quanti�es the e�ects of

the changes in the input factors of the model in the predictions of the model. How-

ever, most of the sensitivity analysis methods are not adequate or are insu�cient to deal

with the speci�cities arising from the complexity of ABMs. Among these, we highlight

the stochasticity, non-linearity and the ad hoc parametrization of ABMs, which imply

a considerable epistemic uncertainty. Without proper investigation, there are signi�cant

chances of �nding results that can be a consequence of biases.

Although recognizing the particular di�erences of the numerous ABMs, this thesis

examines whether these challenges can be overcome in the context of a case study of land

use and land cover in the Cerrado of the Federal District, using the MASE-BDI multiagent

tool. The objective of this thesis is to evaluate the application of several methodologies

of uncertainty quanti�cation and sensitivity analysis to analyze ABM output. We aim to

perform an integrated application of uncertainty and sensitivity techniques and evaluate

the impacts that di�erences in sample sizes, sampling techniques, and SA methods may

have on model output. In addition, a work�ow is proposed so that these techniques can

be applied in an organized and systematic way. More broadly, a general ABM assessment

methodology is applied, which includes di�erent approaches to produce simpli�ed versions
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of the model that can be used to explore the results of the model or perform exploratory

analysis.

These approaches for model analysis, calibration, and veri�cation require a large num-

ber of repeated scenario simulation runs, with many combinations of model parameters

and con�gurations. To facilitate this process, we implemented the integration of the

MASE-BDI simulation tool with PSUADE, a set of statistical libraries for uncertainty

quanti�cation. A driver and an interface have been created to automate pre and post-

processing of inputs and outputs for many models' runs.

All experiments were performed in a spatially explicit model of land use and land cover

change. The simulation tool is MASE-BDI, developed at the University of Brasilia. MASE

is the acronym for MultiAgent System for Environmental simulation that implements the

Belief-Desire-Intention (BDI) rationality model. In BDI, agents have beliefs, a set of

information about the environment they inhabit that change both perception and thinking

about the world. Desires, which represent the motivational attitudes of the agents and

leading them to a course of action, and, moreover, intentions, a set of plans mounted by

the agent to achieve his goals. The objective function of the output analysis is a statistical

metric called �gure of merit (FoM), determined by the ratio between the changes in the

land use that were predicted correctly over the sum of the observed changes. This metric

quanti�es whether the correctness of land use and land cover map is higher than the errors

in predicting the amount of conversion between the di�erent uses and land cover and the

allocation of those changes in space.

The methodology used in the thesis was incremental. Initially, an evaluation of the

model was performed using the most used method in the literature: one-factor-at-a-time

(OAT) sensitivity analysis. We investigated four factors and sampled it within its range

with a variable number of replications. To assess the quality of the output of the model,

the �tness metrics were evaluated through con�dence intervals. The results showed that

although it is possible to di�erentiate between the sensitive and non-sensitive input factors,

the variability of the output was so signi�cant that the uncertainty prevented any more

robust analysis. It was found that di�erent replications of the sample a�ected the results

considerably.

The literature review performed by Angus and Hassani-Mahmooei (2015) presented

a scenario of "methodological anarchy". Based on the premise that there are major

discrepancies in the guidelines found in the literature, we prosecuted an in-depth and

comprehensive investigation of the items that were likely to in�uence the results of the

model. The second step of the research proposed an adaptation and detailing of the

work�ow for model output analysis. Based on the framework proposed by Pianosi et al.

(2016), we tailored a methodology with three necessary steps: 1) design of experiment; 2)
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uncertainty analysis; and 3) sensitivity analysis. The contribution is the explicit insertion

of methods to de�ne the variance stability, i.e., the minimum sample size for the speci�c

case study. Researchers diverge considerably on what is the minimum sample size, given a

number of input factors. We postulate that the variability of the output parameter under

investigation should guide this choice. Only when variance reaches a stability point, we

can de�ne the minimum number of simulations necessary for the conclusions to be valid.

Besides, the experiments were designed to investigate the e�ectiveness and e�ciency

of the sampling strategy and the method of sensitivity analysis. We assessed all possible

combinations of the sampling strategies shared in the literature (Monte Carlo, Latin Hy-

percube, Orthogonal Array, Fourier, among others) and methods of sensitivity (regression,

correlation, OAT, Sobol, Delta test, Gaussian processes, among others). To test all these

combinations resulted in a myriad of simulations. To perform this large number of tests,

it was necessary to implement integration between the MASE-BDI simulation model and

the statistical uncertainty quanti�cation tool PSUADE (Tong, 2005). It is possible to

determine input and output factors, sample size and sampling techniques through a user

interface. The system automatically informs these parameters to the MASE-BDI tool

and simulates each of these scenarios. After the simulation, it is possible to select the

uncertainty and sensitivity analysis methods and calculate the respective indices. Sur-

prisingly, some of the methods that are used continuously in ABM presented controversial

results when applied in our case study. Also, di�erent sampling methods produced dif-

ferent outputs for the same sensitivity analysis method. In some cases, di�erent sample

sizes indicated con�icting results for the same sensitivity metric.

From these observations, it was possible to a�rm that no ABM can apply a method

without �rst questioning it. Many preliminary investigations are required to ensure that

the methods chosen for uncertainty and sensitivity analyzes are reliable to the particular

case. To raise the computational e�ciency of these tests, we applied an integrated use

of uncertainty analysis and sensitivity analysis as the baseline assessment. The results of

the uncertainty analysis were the input of the sensitivity analysis, promoting a complete

exploration of the model outputs. The proposed work�ow is a tool to guide other ABM

researchers and prevent common mistakes from being made. An example is the methods

of linear regression and correlation, widely di�used in ecological models but which proved

inadequate for the evaluation of the ABM under study.

Finally, we chose to apply a general framework for model evaluation, initially proposed

by Augusiak et al. (2014). "Evaludation" is the composition between model evaluation

and validation. It is anchored in the modeling cycle and proposes speci�c activities to

check and verify each step of the design and simulation of a model. We focused on the

last three stages of the evaludation process: model output veri�cation, model analysis,
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and model output corroboration. For each item, we provide the step-by-step of activities,

applied to the MASE-BDI model. To illustrate the potential of this methodology, two

experiments were proposed to generate simpli�ed, computationally e�cient versions that

exploit speci�c behaviors of the system in question: an exploratory and an explanatory

experiment. The simpli�cation is based on the reduction of the variability of the input fac-

tors to increase con�dence in the prediction results. The exploratory experiment allowed

the investigation of boundary behaviors of the system while maintaining the variability

of the factors. The explanatory experiment reduces output variability. By re�ning the

input factor that most in�uences the result it was possible to reduce the uncertainties.

Both experiments maintain the mean of the output variable of interest.

The overall result is an integral evaluation of the model, regarding the output variable

of interest. The sequence of experiments identi�ed the most appropriate and e�cient

methods for the case study. However, the application of these methods illustrates how

integrated analysis of uncertainty and sensitivity in an ABM should be. This initiative

promotes transparency and allows scrutiny and replicability by the research community.

The result is an adjusted and evaluated model whose average for the objective function

is higher than 51%, signi�cantly improving the initial results obtained with the literature

guidelines.

Although the tests have been performed in a speci�c model, the considerations can be

generalized for the entire �eld of research. The integration of uncertainty and sensitivity

analysis should be done routinely in the evaluation processes of a model. Following the

steps established by the work�ow, researchers can increase the con�dence level in the

results of their simulations and promote more rational and e�cient use of ABMs.

Keywords: uncertainty analysis, sensitivity analysis, integrated assessment, model vali-

dation, agent-based model, land use
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Chapter 1

Introduction

The Earth's environment is changing at an unprecedented pace. An important area of

research is the modeling of land use and land cover change (LUCC). These models try

to determine what are the factors of land use change, envision when changes will happen

and where, and assess how choices in public policy can in�uence this change. Agent-based

model (ABM) is the most applied approach in LUCC research (Matthews, Gilbert, Roach,

Polhill, & Gotts, 2007; Parker, Manson, Janssen, Ho�mann, & Deadman, 2003; Pontius,

2000; Pontius & Neeti, 2010; Rindfuss, Entwisle, Walsh, Li, et al., 2008; Verburg, 2006).

Agent-based modeling of social-ecological systems has been a valuable tool for under-

standing and supporting sustainable management of resources. ABM - in ecology also

referred to as individual-based model, has become a preferred modeling tool across a wide

range of �elds. The main reason is that ABMs represent individual agents explicitly,

and are ideally suited for including agent diversity and interactions between individual

agents (Railsback & Volker, 2011). Also, it can capture the continuous changes due to

the feedback of internal or external factors and can take place across di�erent temporal

and spatial scales (Schulze, Müller, Groeneveld, & Grimm, 2017).

1.1 Motivation

LUCC models require proper computational frameworks. Model simulation is the act of

reproducing the behavior of a phenomenon in a computer environment (Parker, Berger,

& Manson, 2001). In the last two decades, computer simulation, speci�cally agent-based

simulation (ABS) has become indispensable in many scienti�c �elds such as social sci-

ences, environmental sciences, economics, and computer sciences. This intensive use of

simulation is a shift in the scienti�c paradigm itself. Research methods usually are based

on induction, the discovery of patterns in empirical data, or deduction, the speci�cation
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of some axioms to prove logical consequences derived from them. G. Gilbert (1996) argues

that simulation is the third alternative to science. Axelrod (2003) states that:

Like deduction, [simulation] starts with a set of explicit assumptions. But unlike
deduction, it does not prove theorems. Instead, a simulation generates data that
can be analyzed inductively. Unlike typical induction, however, the simulated data
comes from a rigorously speci�ed set of rules rather than a direct measurement of
the real world. While induction can be used to �nd patterns in data, and deduction
can be used to �nd consequences of assumptions, simulation modeling can be used
as an aid [to] intuition.

Computer modeling can be de�ned as the computer-aided construction of an abstrac-

tion of an observed system for a speci�c reason (Sterman, 1991). Thus, a computer sim-

ulation has the purpose of driving a model of a system with proper inputs and observing

the corresponding outputs (Bratley, Fox, Schrage, & Schouten, 1984). There are di�erent

methodologies to build a computer model, and therefore an ABM. Each methodology at-

tempts to provide a systematic guideline to researchers. Multi-agent systems, a paradigm

from the computer science based on distributed arti�cial intelligence (AI), is one of the

approaches that have tried to provide robust methodologies, such as Tropos (Bresciani,

Perini, Giorgini, Giunchiglia, & Mylopoulos, 2004), Prometheus (Padgham & Winiko�,

2003), and Gaia (Wooldridge, Jennings, & Kinny, 2000), to guide researchers in the mod-

eling process.

Regardless of `how' the computer model was built, under which framework, the re-

sulting ABS presents several features which attract multidisciplinary research teams to

simulate complex and adaptive system. The idea beneath ABS is that the researcher may

be able to understand the complexity of the di�erent components not by trying to model

it at the global level but analyzing emergent properties resulting from local interactions

between autonomous agents and the environment. This bottom-up emergence was the

new way of thinking proposed by Epstein and Axtell (1996), which allows the researcher

to explain complex social phenomena from simple but dynamic representations. Today, a

new approach is the pattern-oriented modelling proposed by Grimm and Railsback (2012).

The modeling process may also have di�erent designs. Models may be conceived

from a theoretical approach or a data-driven, descriptive approach. Theoretical models

are abstractions that try to extract the basic mechanisms and decision points of some

phenomena, usually simple enough to be used as an illustration of a speci�c theory or

hypothesis. This modeling approach is also known as KISS, Keep It Simple, Stupid,

which requires the modeler to make preliminary choices and to eliminate elements that

seem unimportant at �rst (Bommel, 2017). Another alternative proposed by Edmonds

and Moss (2005), is the KIDS, Keep It Descriptive, Stupid. The authors state that the

simulated model must relate to the target phenomena in the most straight-forward way
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possible, taking into account the widest possible range of evidence. This methodology

considers the key role of empirical data throughout the modeling stages.

Both modeling approaches have its limitations. In KISS, the modeler takes the risk to

eliminate information that could be fundamental to describe the structure and dynamics

of the studied system correctly. Even in simple models, there is a risk of the modeler

unintentionally introduce simulation bias. In KIDS approach there is a higher probability

because of the larger more substantial of data and assumptions. Also, a KIDS model may

become so complicated that it is not possible to explain the results.

There are many reasons for an ABM other than prediction (Epstein, 2008). The

purpose of the ABM, whether it is a simple or a descriptive approach, is a di�erent issue

to consider. There is still much debate whether ABS should be viewed as a heuristic tool

to explore ideas, gain system understanding, and test hypothesis or whether they can also

serve as a management and decision support tool for speci�c case studies (Matthews et

al., 2007). Both model purposes are important and sometimes there is no clear boundary

between them. However, Groeneveld et al. (2017) extensive review of land use ABMs

showed that the overwhelming majority of ABMs are used for system understanding. In

fact, there is a gap in their use for solving real-world problems by guiding for the design

of management and policy strategies in speci�c case studies (Schulze et al., 2017). This

lack of predictive power of ABMs is still an open challenge to be overcome.

1.2 Problem

The use of ABM is associated with some challenges that arise, such as data requirements,

process uncertainty, and model validity. There is a need for available datasets to re�ect

the actual heterogeneity of the agents, environment, and processes that are required to

make use of ABM's full power. Observation data can be scarce, and modelers will often

have to resort to ad hoc implementation and parametrization. The parameters of these

models exert a great in�uence on the performance of the models, and each represents

assumptions regarding the modeled system. How to specify the model parameters is not a

trivial problem (Duan et al., 2006). The combined e�ect of several factors, including errors

in observed data, method options, calibration criteria, and errors in model formulation

make parameter estimation di�cult. This problem of over-parametrization aggravates this

di�culty, as the models are progressively more complex. There is a tendency to include

more and more physical layers and information, while the calibration of the models is still

done with a limited amount of data (Gan et al., 2014).

The common criticism on ABM/ABS begins with the stochasticity problem, because

some factors will change randomly or following some probabilities and therefore sometimes
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the same initial parameters result in a di�erent output. This require exploring the model

under di�erent parameter settings. A second criticism is the subjectivity due to unclear

assumptions and because of the great amount of degrees of freedom. ABMs have solid

methodological foundations but researchers have a lot of freedom regarding the design of

agent structure, interactions, adaptations and strategies. Another aspect of the criticism

is the equi�nality or identi�ability problem. Multiple combinations of parameters and

discrepancy function can yield the same experimental prediction (Walter, 1987). Besides,

there is also the dimensionality problem. Modelers tend to include more and more layers of

data and submodels just because the data is available. The computational cost increases

dramatically with the number of input parameters.

Thus, data gaps, process uncertainty, and ad hoc parameterization entail considerable

epistemic uncertainty. This raises doubts about the validity of agent-based modeling ap-

proaches, primarily, since a sharing understanding of suitable validation and calibration

procedures for ABMs has not yet been established. Other aspects of ABM validation

can include metamorphic validation (Olsen & Raunak, 2016), agent-based services for the

validation and calibration of multi-agent models (Y. Li, Brimicombe, & Chao, 2008), or

di�erent validation methodologies Klügl (2008). Behavioral validation of ABMs, if con-

ducted at all, has so far been restricted to the comparison of overall trends in simulation

datasets. While most ABM modelers perform scenario analysis, formal uncertainty and

sensitivity analysis on parameters still have rarely been used. Exceptions are the use

of Monte-Carlo techniques in connection with stochastic submodels (Valbuena, Verburg,

Veldkamp, Bregt, & Ligtenberg, 2010) or sampling of agent characteristics (Schreinemach-

ers & Berger, 2011).

As a consequence, it is not surprising that a perceived lack of established formal mea-

sures for validation and calibration is one of the frequently cited problems of ABMs (Zim-

mermann, Heckelei, & Domínguez, 2009). Therefore, it is important to know how various

parameters in�uence the model behavior, especially in stochastic ABM. This requires ex-

ploring the model behavior under di�erent parameter settings. However, running a model

for all possible parameter combinations is usually not practically feasible. If relationships

between model parameters and output are not too complex, statistical tools may be used

to gain an understanding of model behavior for various parameter settings, based on a

limited number of model runs.

All these characteristics imply that quantitative analysis should be performed to test

the veracity of the modeler's claims, to provide transparency and to grant some scienti�c

rigor to the simulation results. However, a review of the application of quantitative

analysis in ABM performed by Angus and Hassani-Mahmooei (2015) shows that this is

still not a practice in ABM science. Richiardi, Leombruni, Saam, and Sonnessa (2006)
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states:

Agent-based models have solid methodological foundations. However, the greater
freedom they have granted to researchers (regarding model design) has often degen-
erated in a sort of anarchy (concerning design, analysis, and presentation).

Concerning the analysis, there is a general guideline (Saltelli & Annoni, 2010) that

recommends that at least two activities should accompany modeling. The �rst is to char-

acterize the empirical probability density function and the con�dence bounds for model

output, i.e., answer how uncertain is the inference. This task is also referred to as un-

certainty analysis (UA). The second task is to identify factors or groups of factors most

responsible for the uncertainty in the prediction, i.e., to identify where this uncertainty

is coming from. This is the sensitivity analysis (SA). SA is generally recognized as a

worthwhile step of analysis. However, the work of Shin, Guillaume, Croke, and Jake-

man (2013) points to a standard omission on the application of this technique. Also,

according to Saltelli and Annoni (2010), most of the times, researches perform a per-

functory quantitative analysis. Their review showed that rather often, modelers apply

popular but proven ine�cient methods of UA and SA. Although not yet widespread,

UA-SA have been applied to ABMs in a few previous studies (Fonoberova, Fonoberov, &

Mezi¢, 2013; Ligmann-Zielinska, 2013; Ligmann-Zielinska & Sun, 2010a; Parry, Topping,

Kennedy, Boatman, & Murray, 2013).

1.3 Research Question

The research question we want to answer is how uncertainty quanti�cation may be applied

to improve analytical con�dence in LUCC ABM outputs? To answer this question we need

to investigate which UA and SA methods should a modeler use for his ABM. The existing

reviews (Pianosi et al., 2016; ten Broeke, van Voorn, & Ligtenberg, 2016) are a good

start, but they did not consider issues such as the empirical initialization of the agents,

the limitations of data collections, the throughout empirical validation or the role of data

in the calibration and validation processes.

A second question to be answered is how the quantitative analysis of a model out-

put can help the overall validation of the model? There is much debate on the correct

approaches to validate ABMs but at the end, in the words of Jain (2011), one should

"not trust the results of a simulation model until they have been validated by analytical

modeling or measurements."
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1.4 Objective

Although recognizing the particular di�erences between the numerous ABMs, this work

attempts to �ll the gap between model output analysis and a general validation, to build an

empirical guide to improve con�dence in data-driven ABM. Therefore, it can be advocated

that additional stages must be incorporated to the state-of-the-art reviews, to ensure

reproducibility, to incorporate observation data when available, and to avoid perfunctory

model analysis.

The present thesis examines whether these challenges can be overcome in the con-

text of a case study of LUCC in the Cerrado of the Brazilian Federal District, using

the MASE-BDI multi-agent tool. It discusses di�erent approaches to model validation,

calibration, and uncertainty analysis to deal with the uncertainty involved using ad hoc

parametrization, especially in the initialization of the ABS. As these approaches require

large numbers of simulation run, it presents the integration of the MASE-BDI simulation

framework to a set of statistical libraries for uncertainty quanti�cation, to automate the

pre-and post-processing of MASE-BDI model' inputs and outputs. Another contribution

is the �nal outputs itself. A veri�ed and statistical sound prediction for the land use of

the Brazilian Cerrado.

The objective of this thesis is to evaluate the application of several methodologies of

uncertainty quanti�cation in the analysis of results of ABMs. Speci�cally, to perform an

integrated application of UA and SA techniques and evaluate the impacts that di�erences

in sample sizes, sampling techniques, and SA methods may have on model output. The

accomplishment of this will result on three main contributions:

• The proposal of an empirical work�ow of uncertainty quanti�cation to perform

model output analysis, adherent to a evaluation/validation model framework;

• To evaluate the impacts that di�erences in sample sizes, sampling techniques, and

sensitivity analysis methods may have on model output;

• Apply those recommendations in the MASE-BDI case study, in a general experimen-

tal ABM assessment, based on observation, hypothesis testing an reproducibility to

produce more transparent, reproducible, and statistical sound ABM results.

The exploration of the model gives us a better understanding of the model signi�cance.

Another contribution of this work is a series of scienti�c publications produced during this

Ph.D. The references are detailed in Appendix A.
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1.5 Thesis outline

The document is structured in a way that there is not a speci�c chapter of state of the

art. Each chapter tackles a review of the main research works concerning the scope of the

subject under assessment. Thus, each chapter is somehow self-contained.

The development of the thesis takes place in three stages: the literature review and

an initial investigation, followed by an extensive comparison of methods and approaches,

included in a �ow to facilitate the application, and �nally a general evaluation of the

model, applying best practices to generate simpli�ed, robust, and statistically reliable

versions of the model.

Chapter 2 presents an overview of the literature on uncertainty assessment in ABS.

The MASE-BDI ABM is introduced, and the parameters used in the initialization of

the simulation were eligible as a case study. We perform initial experimentation: an

exploratory study was performed based on the One-Factor-At-a-Time (OAT) method,

which is widely used in analyses of ABMs results. The results show that even the most

popular practice in the literature may be inadequate for all ABMs. It is evident that

the method and sample size a�ects the model analysis. The exploratory experiment

demonstrated that the results have great uncertainty and that the predictions of the

simulation were not reliable.

In Chapter 3, more information about the MASE-BDI ABM is provided. We propose

an experimental design to search for the best methods to be applied in ABMs when com-

paring di�erent UA and SA techniques for e�ciency and e�ectiveness. A baseline scenario

was established and derived from several lines of research around three main issues: i)

impact of di�erent sampling methods; ii) impact of di�erent sample sizes; iii) impact of

di�erent SA methods, besides the veri�cation of the convergence between di�erent exper-

iments. To execute this large number of simulations, we implemented the integration of

the MASE-BDI framework with PSUADE statistical calculations tool. We discuss the

discrepancy found in the literature and compare it with our results. We postulate that

the minimum sample size should be at least equal to the stability point of the variance.

Finally, we propose a work�ow to perform model analysis, organizing and detailing the

activities systematically.

Chapter 4 applies the concepts of the previous chapters in the form of UA-SA inte-

grated output assessment and develops a simpli�ed and more computationally e�cient

version of an ABM. Two simpli�cations are proposed: exploration and explanation. Ex-

ploratory experiments make it possible to investigate the extreme behavior of the sys-

tem, maintaining the variability of the factors. Explanatory experiments reduce output

variability. In the next step, we chose to integrate these analytical experiments with a

validation structure of the model as a whole, in an "evaludation" process (evaluation +
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validation). The steps for verifying the outputs of the model, analyzing the model and

corroborating the results are detailed and exempli�ed step by step to provide a guide for

similar work. This initiative promotes transparency and allows scrutiny and replicability

by the research community.

Chapter 5 discusses how the application of a UA and SA integrated assessment, orga-

nized within a work�ow and viewed under a macro prism of evaluation of the modeling

process, can increase the reliability and usefulness of ABMs. The lack of speci�c method-

ologies for ABMs is one of the reasons that a�ect reliability in the results predicted by

these models. In the end, we evaluate the strengths and limitations of existing SA meth-

ods. It should be remembered that SA can have several goals. In the context of this thesis,

SA methods are designed to evaluate which parameters produce greater uncertainty in

the model result. Thus, it is necessary to limit the number of factors studied.
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Chapter 2

Uncertainty Assessment in Agent-Based

Simulation: An Exploratory Study

Book Chapter published in:

Sukthankar G., Rodriguez-Aguilar J.

(eds) Autonomous Agents and

Multiagent Systems. AAMAS 2017.

Lecture Notes in Computer Science,

vol 10642. Springer, Cham.

2.1 Introduction

LUCC investigation is of importance to promote insightful management of Earth's land

use to refrain environmental damage. Moreover, LUCC is a complex process that relates to

the interaction between environmental, economic and social systems at di�erent temporal

and spatial scales. Computational frameworks are the most used techniques to simulate

LUCC models for its ability to cope with its complexity.

ABM has been incorporated into LUCC models, and many other real-world problems,

to explicitly simulate the e�ects of human decisions in complex situations. They are based

on the multiagent system paradigm that features autonomous entities that interact and

communicate in a shared environment. These entities perceive the environment, reason

about it and act on it to achieve an internal objective. Therefore, ABM can capture

emergent phenomena and provide an original description of the modeled system.

The Multi-Agent System for Environmental simulation (MASE) is a freeware software

developed at the University of Brasilia. MASE-BDI is an extension of MASE for ex-

ploring potential impacts of land use policies that implement a land use ABM (Ralha &

Abreu, 2017). Considering the purpose and reliance upon external data, MASE-BDI may

9



be characterized as a predictor-type ABS (Heath, Hill, & Ciarallo, 2009): a data-driven

model with the overall goal of performing medium to long-term predictions. MASE-BDI

simulations were calibrated to match available GIS data (Coelho et al., 2016). Simulation

results were validated according to a standard methodology for spatially explicit simula-

tions (Pontius et al., 2008) and then compared to similar frameworks (Ralha et al., 2013).

MASE-BDI performance was found to be higher than other 13 LUCC modeling appli-

cations with nine di�erent traditional peer-reviewed LUCC models according to Pontius

et al. (2008). Despite this fact, the lack of uncertainty assessment and sound experi-

mentation is the main reason for criticism and questioning about the real contribution of

frameworks to decision support for LUCC.

According to Bommel (2017), any ABS has levels of uncertainty and errors associ-

ated with it. ABS continues to harbor subjectivity and hence degrees of freedom in the

structure and intensity of agent's interactions, learning, and adaptation (Lee et al., 2015).

There are signi�cant chances of �nding results which may be the consequence of biases.

Furthermore, almost every ABS review have expressed the need for statistical methods

to validate models and evaluate the results to improve the transparency, replicability and

general con�dence in results derived from ABS. These problems continue to be underes-

timated and often neglected. Some authors such as Heath et al. (2009), likewise, argued

that validation is one of the most critical aspects of a model building because it is the only

means that provides some evidence that a model can be used for a particular purpose.

However, at least 65% of the models in their survey were incompletely validated. Of the

models validated in some way, surprisingly less than 5% used statistical validation tech-

niques. Traditionally, ABS types of systems are di�cult to analyze given their non-linear

behavior and size (Casti, 1995).

Treatment of uncertainty is particularly important and usually di�cult to deal with in

the case of ABM's stochastic models. While acknowledging the di�erences in data sources

and the causes of inconsistencies, there is still the need to develop methods to optimally

extract information from the data, to document the uncertainties and to assess common

methodological challenges. To look away could reinforce inconsistent results and damage

the integrity and quality of simulation results.

This work aims to discuss how uncertainty is being portrayed in ABS and to per-

form an exploratory study to use statistical methods to estimate uncertainty in an LUCC

agent-based prediction simulation tool. The MASE-BDI system will be the simulator

under study. The Cerrado case study simulations (Ralha et al., 2013) will be the basis

for the analysis. As a �rst investigation step, we assessed the uncertainty within the

inputs and con�guration parameters of the simulation. Our �nal goal would be to doc-

ument, to quantify and to foresee its propagation impacts in the results. A particular
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challenge in performing measurements is coming up with appropriate metrics. The thor-

ough experimentation and repeatability would, therefore, improve our understanding of

the uncertainty and relations among the variables that characterize a simulation. The re-

mainder of the paper is structured as follows. In Section 2.2, we present some background

on uncertainty and in Section 2.3 some related work. In Section 2.4, we summarize the

MASE-BDI characteristics and case study. We also present the methodology for the ex-

ploratory study. In Section 2.5 we show results together with discussions. In Section 2.6

we conclude with a summary.

2.2 Overview of uncertainty in ABS

The relevance of the treatment of uncertainty is dependent on the modeling objective.

Requirements regarding model uncertainty may be less critical for social learning models,

where communication and interaction among stakeholders would be of more signi�cance.

Conversely, parameters, measurements, and conditions used for model runs in�uence much

more data-based predictions of future states. Projection, forecasting and prediction mod-

els are usually very a�ected by the variation of a system output from observed models.

Also, there are di�erent sources of uncertainty that can in�uence the prediction of a

simulation model. It can arise from simulation variability in stochastic simulation models

or from structural uncertainty within assumptions of a model. We will emphasize input

uncertainty, what McKay, Morrison, and Upton (1999a) de�ned as incomplete knowledge

of "correct" values of model inputs, including model parameters. If the inputs of a model

are uncertain, there is an inherent variability associated with the output of that model.

Therefore it is crucial to communicate it e�ectively to stakeholders and technical audiences

when outputting model predictions.

Uncertainty in environmental prediction simulations may limit the reliability of pre-

dicted changes. This issue is one of the recurrent conclusions of the Intergovernmental

Panel on Climate Change (IPCC). Back at 1995, IPCC stated that "uncertainties in the

simulation of changes in the physical properties have a signi�cant impact on con�dence in

projections of future regional climate change"(Houghton et al., 1996) and that was nec-

essary to reduce uncertainties to increase future model capabilities and improve climate

change estimates. Since 2010, IPCC dedicates an integral feature of its reports to the

communication of the degree of certainty within IPCC assessment �ndings (Mastrandrea

et al., 2010). In the most recent report, IPCC assesses a substantially larger knowledge

base of scienti�c, technical and socio-economic literature to reduce uncertainty and uses

a large number of methods and formalization (IPCC, 2014). Especially for future pre-

dictions, validating a model's predictive accuracy is not straightforward due to a lack of
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appropriate data and methods for "validation" (Kelly (Letcher) et al., 2013). That is an-

other reason why applications, frameworks, and methods of formalization in this research

area are relevant and should be promoted.

Regarding the type of modeling, there are approaches such as Bayesian networks,

able to explicitly deal with uncertainty in the interpretation of data, measurements or

conditions. In contrast, other approaches such as ABMs require the development of com-

prehensive or compelling analysis of output data and a lot of resource-intensive attention

(Lee et al., 2015). The level of testing required to develop this understanding is rarely

carried out, mainly due to time and other resource constraints (Kelly (Letcher) et al.,

2013).

Indeed, uncertainty assessment in ABM can be a hard task for even relatively small

models. Due to their inherent complexity, ABS is often perceived as a "black box", where

there is no purpose in explaining why the agents acted as they did, as long as the modeler

presents some form of validation (i.e., shows a good �t). According to Marks (2007),

ABMs simulations can prove existence, but not in general necessity. Despite that, there is

a research e�ort to make ABS more transparent and to demonstrate that the simulations

behave as intended through e�orts in standardization in simulation model analysis and

result sharing (Lorscheid, Heine, & Meyer, 2012). Besides from veri�cation, uncertainty

assessment aims to increase understanding, to improve the reliability of the predicted

changes and to inform the degree of certainty of critical �ndings. To achieve this e�ort,

some techniques and methods such as uncertainty and sensitivity analysis should be part

of the modeling process.

Uncertainty Quanti�cation (UQ) is de�ned as the identi�cation, characterization,

propagation, analysis, and reduction of uncertainties. Sensitivity analysis (SA) is de-

�ned as the study of how uncertainty in the output of a model can be apportioned to

di�erent sources of uncertainty in the model input (Saltelli et al., 2008) and is a method

to assess propagation of uncertainties. SA responds to the question of which inputs are

responsible for the variability of outputs. Local SA explores the output changes by vary-

ing one parameter at a time, keeping all the others constant. Although it is a useful

and straightforward approach, it may be location dependent. Global SA gives a better

estimate of uncertainty by varying all parameters at the same time by using probability

density functions to express the uncertainty of model parameters. Uncertainty analysis is

a related broader uncertainty propagation practice to SA. It focuses instead on quantify-

ing uncertainty in model output, addressing the variability of results. Ideally, uncertainty

and SA should be run in tandem.
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2.3 Related work

There are a growing number of attempts to assess uncertainty in ABS. However, there is

a lack of speci�c guidance on e�ective presentation and analysis of the simulation output

data. There is a variety of approaches to quantifying or reducing uncertainty. The work of

Lee et al. (2015) o�ers an overview of the state-of-the-art methods in the social simulation

area, in particular examining the issues around variance stability, SA, and spatiotemporal

analysis. Because of our interest in LUCC simulations, we chose to review how those

approaches are being applied and communicated on spatially-explicit simulations.

In Albrecht and Ramamoorthy (2015), the authors propose an algorithm as an alter-

native to goodness-of-�t traditional validation to answer if the agents in a simulation are

behaving as expected. To them, the key to e�ective interaction in multi-agent applications

is to reason explicitly about the behavior of other agents, in the form of a hypothesized

behavior. This approach would allow an agent to contemplate the correctness of a hy-

pothesis. In the form of a frequentist hypothesis test, the algorithm allows for multiple

metrics in the construction of the test statistic and learns its distribution during the in-

teraction process. It is an interesting approach to addressing the uncertainties within the

model and agents behavior. We believe it would be even more useful if coupled with an

uncertainty quanti�cation technique.

The work of Paegelow, Camacho Olmedo, Mas, and Houet (2014) assesses uncertainty

that is characteristic of spatially explicit models and simulations. The authors propose a

benchmarking scheme of LUCC modeling tools by various validation techniques and error

analysis. The authors investigate LUCC tools that are based on map comparisons to

analyze the accuracy of LUCC models concerning quantity, pixel by pixel correctness and

LUCC components such as persistence and change. Also, they investigated the map out-

puts of these simulations to test the �delity of spatial patterns and the congruency of the

simulation maps from di�erent modeling tools. Although the variability of LUCC models

does not allow strict comparisons, there is still room for improvements in methodologies,

validation and uncertainty quanti�cation.

The work of Gan et al. (2014) assesses model output analysis through a global SA,

a commonly used approach for identifying critical parameters that dominate model be-

haviors. They use the Problem Solving environment for Uncertainty Analysis and Design

Exploration (PSUADE) software, to evaluate the e�ectiveness and e�ciency of widely

used qualitative and quantitative SA methods. Each method is tested using a variety

of sampling techniques to screen out the most relevant parameters from the insensitive

ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen

tunable parameters, is used for illustration. The South Branch Potomac River basin near

Spring�eld, West Virginia in the U.S. is chosen as the study area. The authors show how
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di�erent sampling methods and SA measurements can indicate di�erent sensitive and

insensitive parameters and that a comprehensive SA is paramount to avoid misleading

results.

The work of J. D. Li et al. (2013) also performed a global SA to show which model

parameters are critical to the performance of land surface models. The authors considered

forty adjustable parameters in The Common Land Model and therefore compare di�erent

SA methods and sampling. The size of each sample would vary as well. The sampling

techniques and SA measures that were considered optimal were distinct from the results

found by Gan et al. (2014), meaning that not all LUCC ABS propagate uncertainty the

same way.

Gao and Hailu (2012) integrated a recreational �shing ABM model with fuzzy logic

to incorporate uncertainties over the preferences of outcomes or criteria. Although this

work assesses the treatment of uncertainty in ABMs, the solution is based on a function

that can be used to convert observed/simulated outcomes to qualitative measurements

that re�ect uncertainty regarding the outcomes.

Another approach was performed by Le, Seidl, and Scholz (2012), also in an LUCC

model. They use the method of independent replication. In the case study, the authors

replicated the simulation 12 times for each mechanism and computed the mean values

of the impact indicators and the con�dence interval (CI) at the reliability of 95%. They

used uncertainty quanti�cation to de�ne a minimum certainty threshold in the simulation

outputs.

Schreinemachers and Berger (2011) proposed the Monte Carlo initialization of the

agents of the simulation that generates many possible and statistically consistent agent

populations that are used for repetitions of simulation experiments. The authors tested

the sensitivity of the LUCC simulation outcomes for crucial policy indicators. The vari-

ation of these indicators was measured by standard deviations (expressed as percentages

of the normalized mean) in �fty di�erent agent populations for the baseline scenario.

New interesting frameworks are being created to support SA in ABS. Herd, Miles,

McBurney, and Luck (2015) work focus on the applicability of formal veri�cation meth-

ods such as statistical testing of large-scale ABS. They created MC2MABS, a Monte Carlo

Model Checker for MultiAgent-Based Simulations which incorporates the idea of statisti-

cal runtime veri�cation, a combination of runtime veri�cation and statistical model check-

ing. The framework can provide conventional model checking for probabilistic systems by

the use of a sampling approach and the employ of statistical techniques to generalize the

results to the overall state space. Runtime veri�cation focuses on the execution trace of

a system, using temporal logic and checking automatically.

All these authors used several indicators to measure the variability of model results
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based on changing input parameters. Table 2.1 illustrates a brief comparison among

those works. MASE-BDI exploratory uncertainty assessment will be described in the

next sections. A large panel of statistical tools exist to help with the accuracy of the

predictions such as Dakota1, PSUADE (Tong, 2015), UQ-PyL2 and MEME Suite3. There

are initiatives to apply the potential of classic Design of Experiments (DOE) for ABS

(Kleijnen, Sanchez, Lucas, & Cioppa, 2005; Lorscheid et al., 2012). ABS �eld of research

would bene�t from systematic empirical research with standardized procedures, but ABS

idiosyncrasies in model output turn the task even harder. Researchers so far failed to reach

consensus and to determine sound methodological guidelines. Therefore, the studies are

still mostly investigative and exploratory.

Table 2.1: Overview of the general characteristics of each related work

Reference Model Uncertainty Methods

Albrecht et al. (2015) Generic ABS Correctness Hypothesis test and
runtime statistical veri�cation in
the agent's behavior

Paegelow et al. (2014) Land use models Image statistical comparison of
pixel/maps and error analysis to
�nd uncertainty drivers

Gan et al. (2014) SAC-SMA Global SA with 15 sampling
hydrological model 9 di�erent sample sizes and 12

SA methods

J. D. Li et al. (2013) Land surface model Local SA and 4 Global SA methods
with 3 sampling techniques, and 6
sample sizes

Le et al. (2012) LUDAS: land use Independent Replications and
ABS Con�dence Intervals to assess output

variation

Ralha et al. (2013) MASE-BDI: land use Global SA with di�erent sample
ABS con�gurations, independent replications,

and Con�dence Intervals

1https://dakota.sandia.gov/
2http://www.uq-pyl.com/
3http://meme-suite.org/
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2.4 MASE-BDI exploratory study

The MASE Project4 objective is to de�ne and implement a multi-agent tool for simulating

environmental change. MASE-BDI enables modeling and simulations of LUCC dynam-

ics using a con�gurable user model. The multi-agent architecture is composed of three

hierarchical layers (from top to bottom) (Ralha et al., 2013): a User Interface (UI), a Pre-

processing and an Agent layer. In the agent layer, there are cell agents representing land

units hosting natural processes, such as crop/forest grow, and there are transformation

agents, representing human agents and their behavior as farmers or cattle rancher.

The Cerrado-LUCC model of MASE-BDI is used as a test problem. The simulations

depict the land use and cover changes of the most endangered biome in Brazil. The

Cerrado is the second largest biome in South America and harbors signi�cant endemism

and biodiversity. The landscape has been undergoing severe transformation due to the

advance of cattle ranching and soy production. The Cerrado-LUCC simulation model

was documented and described employing the standard ODD-protocol (Overview, Design

concepts, and Details) (Grimm et al., 2006, 2010) to promote transparency and replica-

bility. We also applied empirically grounding ABM mechanisms for the characterization

of agent behaviors and attributes in socio-ecological systems (Smajgl, Brown, Valbuena,

& Huigen, 2011). In this article, we provide some core information about MASE-BDI and

the Cerrado-LUCC Model, mainly about the parameters and outputs. Readers who are

interested in the details of this model and the implementation of MASE-BDI multi-agent

system should refer to Ralha et al. (2013) and Ralha and Abreu (2017), respectively.

The input of the simulation is a couple of grid raster maps consisting of the land cover

of the region, from two di�erent time periods (a reference map of the initial time t0 and

a reference map of a subsequent time t1). Also, each simulation carries a set of maps

to describe the physical characteristics of the environment, such as water courses, water

bodies, slope, buildings, highways, environmental protected areas, and territorial zoning

maps.

The simulations are calibrated from the two time-steps and project the land use and

cover change for future steps. The result of a MASE-BDI simulation is a couple of

predicted maps (Figure 2.1), with the allocation of change and a set of metrics calculated

during runtime. The resulting image is submitted to a goodness-of-�t measurement, and

the quality and errors of the quantity of change and allocation of land use change are

calculated.
4Software Availability: http://mase.cic.unb.br/
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Figure 2.1: A land cover predicted map of the Cerrado in Federal District, Brazil

Methodology

The objective is to perform exploratory analysis, based on classical statistics, to reduce

uncertainty and to understand how the model behaves. MASE-BDI LUCC model is un-

der input uncertainty investigation, to calculate their in�uence in the simulation output.

For exploratory purposes, we want insight on the parameters that a�ect the multi-agent

system implementation, so we selected a subset of Cerrado-LUCC model inputs for this

demonstration. The subset of input parameters of the multi-agent system is displayed

in Table 2.2: TA-Number of Transformation Agents, TG- Number of Group Transfor-

mation Agents, IE- Potential of Individual Exploration and GE- Potential of Group

Exploration. These parameters characterize the instantiation of MASE-BDI agents and

therefore, should be analyzed regarding uncertainty. For the sake of clarity, a brief note

on the terminology of the word input. We are aware that the ODD protocol (Grimm et

al., 2010) classi�es input as an amount of data that is added during a simulation. The

word input has a more general use in this manuscript. We use the words input, parameter

and factor to describe any entry of the model, such as a submodel, or an initialization

con�guration. The MASE-BDI input con�guration parameters are the initial conditions

to start a simulation.
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Table 2.2: MASE-BDI multi-agent input con�guration parameters

ID Parameter Description Range

I1 TA Number of Transformation Agents [1, 100]
I2 TG Number of Group Transformation Agents [10, 100]
I3 IE Potential of Individual Exploration [1, 500]
I4 GE Potential of Group Exploration [1, 1500]

The number of transformation agents is a parameter that re�ects the number of com-

putational agents (in the multi-agent system paradigm) instantiated in a simulation run.

In this study case, one agent does not represent one single individual. The Cerrado-

LUCC model was formulated based on an empirical characterization of agent behaviors,

proposed by Smajgl et al. (2011), with two necessary steps: the development of behav-

ioral categories and the scaling to the whole population of agents. TA was derived from

the Brazilian Agricultural Census of 2006 and comprises a set of Producer legal status.

The range of 1 to 100 is an abstraction to the 3407 register producers in the region that

may be active or inactive in a given period. The details of this agent characterization

are thoroughly illustrated in Ralha et al. (2013). Likewise, a particular type of agent

is TG, which represent not an individual but an organization, cooperative, business or

so. The range is an abstraction of the 548 group producers, 10 of which have permanent

exploration licenses. All the explanation of this parameters are described within the ODD

protocol (Grimm et al., 2010) in the work of Ralha et al. (2013).

The potential of exploration, individual or of a group, represent the impact an agent

can produce in the natural vegetation cover of a cell during a step. In the Cerrado LUCC

Model, considering the deforestation process, the potential of exploration is again an

abstraction for the amount of m3 of wood that can be obtained from a particular grid

cell, until a theoretical limit that represents resource depletion.

In addition to the �nal LUCC maps, the simulation generates a set of metrics as re-

sults, mainly spatial analysis measurements, which includes pixel by pixel comparison,

a quantitative and an allocation agreement. Those measurements are speci�c statistical

LUCC indices to determine the produced map accuracy, proposed by Pontius et al. (2008).

It includes an objective function called the �gure of merit (FoM), a ratio between correct

predicted changes and the sum of observed and predicted changes. To evaluate the re-

sponse of the model to the di�erent parameters, the experiments considered the outputs

described in Table 2.3 and tried to identify and quantify the in�uence of the simulation

input con�gurations on the model outputs. The identi�cation (ID) of each of the outputs

follows the numbering of its generation in the �le .csv produced by MASE-BDI at the

end of each simulation.
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Table 2.3: MASE-BDI output parameters

ID Output Description

O1 TM Total time of the simulation
O4 FoM Figure of Merit
O5 IPA Image Producer's Accuracy
O6 IUA Image User's Accuracy
O7 WC Pixel's Wrong Change: observed change predicted as persistence
O8 RC Pixel's Right Change: observed change predicted as change
O9 WP Pixel's Wrong Persistence: observed persistence predicted as change

To identify and analyze these uncertainties we performed a method of elementary

e�ects (EE) of global SA on the MASE-BDI LUCC model. For this calculation, we

used the software package developed by Tong (2015) called PSUADE, containing various

methods for parameter study, numerical optimization, uncertainty analysis and SA.

Screening methods are based on a discretization of the inputs in levels, allowing a

fast exploration of the system behavior (Iooss & Lemaître, 2015). This type of method

aims to identify the non-in�uential inputs with a small number of model calls. The most

used screening method is based on the one-parameter-at-a-time (OAT) design, where each

input is varied while �xing the others. The simplicity is one of OAT's advantages, but

there are drawbacks when applying to ABM. For one, it does not consider parameter

interactions and may cover a slight fraction of the input space. Nevertheless, OAT is still

one of the most applied SA technique in ABMs.

The EE method we chose to apply is the Morris method (MOAT) proposed by Mor-

ris (1991) and re�ned by Campolongo and Braddock (1999), an expansion of the OAT

approach that forsakes the strict OAT baseline. It means that a change in one input is

maintained when examining a switch to the next input and the parameter set is multi-

ply repeated while randomly selecting the initial parameters settings. EE is suited for

spatially explicit simulations, usually computationally expensive models with large input

sets.

MOAT allows classifying the inputs into three groups: inputs having a negligible e�ect,

inputs having substantial linear e�ects without interactions and inputs having signi�cant

non-linear and interaction e�ects. In overall e�ect and interaction e�ect of each parameter

can be approximated by the mean µ and standard deviation σ of the gradients of each

parameter sampled from r, the number of replications.

The MOAT sampling technique was designed for the particular MOAT method. The

work of Gan et al. (2014) details how the MOAT sampling works: the range of each

parameter is partitioned into p − 1 equal intervals. Thus the parameter space is an n-
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dimension p-level orthogonal grid, where each parameter can take on values from these p

determined values.

First, r points are randomly generated from the orthogonal grid; and then, for each of

the r points, other sample points are generated by perturbing one dimension at a time.

Therefore, sample size will be (n+1) ·r. For the sampling size, Levy and Steinberg (2010)

report that one needs at least 10 ·n samples to identify key factors among the parameters.

To avoid the e�ect size on the sample, we determined a minimum sample size of

800(= 20 · 4), for four inputs. For MOAT sampling we used 160 replications, resulting in

sample size of 800 (= (4 + 1) · 160).

Moreover, as in other stochastic models, it is not advisable to conclude from a single

MASE-BDI simulation run. For an initial uncertainty assessment, we applied the method

of independent replications proposed by Goldsman and Tokol (2000). We run the model

approximately eighty-�ve thousand times (an arbitrary choice to explore all the input

parameter space) and randomly clustered the results into �ve independent replication

groups. We computed the mean values of the outputs and their CIs at the reliability of

95%. Another approach to estimating the uncertainty of the model output is to study

the variance in the model outputs by using the Coe�cient of Variation (CV) (the ratio of

the standard deviation σ of a sample to its mean µ), to compare the variance of di�erent

frequency distributions.

2.5 Results

In the current work, we analyzed four input parameters, displayed in Table 2.2, regarding

the multi-agent con�guration of MASE-BDI LUCC model. First, we present the results

of the SA. Figure 2.2 presents the EE of CERRADO-LUCC model parameters. Figure 2.2

(left) illustrates the modi�ed means of MOAT gradients and also their spreads based on

Monte Carlo bootstrapping. The results show that GE and TA are the most sensitive

parameters in term of having the largest average median (26.466 and 25.205, respectively).

The other two parameters have median sensitivities close to zero, denoting the impact of

these parameters on the simulation output is minimal.

Figure 2.2 (right) is a MOAT diagram that shows a consensus view among mean µ

and standard deviation σ of the gradients of each parameter sampled from r. The more

sensitive the parameter, the closer it is to the upper right corner of the graph. These

results show a positive correlation between input and output uncertainties. Since GE

and TA describe the amount of land transformation in a simulation, high values of these

parameters will increase the model output. GE is the most sensitive parameter, followed

20



5

10

15

20

25

GE TA IE TG

MOAT (bootstrap)

M
ea

n
s 

(o
f 

g
ra

d
ie

n
ts

)

0 5 10 15 20 25

0

5

10

15

20

25

30

35 TA

TGIE

GE

Means (of gradients)

S
td

 D
ev

ia
ti

o
n

s 
(o

f 
g

ra
d

ie
n

ts
)

Figure 2.2: Parameter sensitivity rankings of MOAT method

by TA. To understand and to reduce uncertainty within this two variables will, therefore,

reduce the uncertainty of the simulation as a whole.

GE represents the amount of land cover that is transformed by a group of human

agents in a cell of the map. GE is a sensitive value for it indicates the voracity and velocity

of the current land exploitation, what will directly a�ect the result of the simulation. GE

is probably sensitive because the socio-economic groups responsible for large-scale cattle

ranching and permanent agriculture are the principal driver of deforestation in Cerrado.

Their rates of land change are more signi�cant than the number of groups, what explain

TG as an insensitive parameter to the output. As for TA, the more agents one instantiates

in a simulation, the more land cover will be a�ected, the higher will be the land use

transformation rates. Conversely, the potential of exploration of a single individual is less

determinant than the number of single individuals acting on the land, with SA indicating

TA a sensitive and IE as an insensitive parameter.

To investigate MOAT sensitivity results, we used di�erent replications times r and

di�erent levels p to know for sure the relevance of the parameters as displayed in Fig. 2.3.

It is possible to see that even within the same method, results may vary. The results for

four replications are not very consistent with the other replication results, mainly with

the mean. The results with r = 56, r = 108 and r = 160 present minor variations. We

can infer that four replications are not enough to identify the parameters sensitivity in the

MASE-BDI model successfully and therefore the number of replications should be higher

to be e�ective.

Table 2.4 is a summary of the Basic Output Statistics of the MASE-BDI LUCC model.

Each replication is assigned by i = [1..5], the sample mean from the coe�cient variation

by CVi, and the mean of all replications by Z̄. We performed independent replications to
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Figure 2.3: Sensitivity of parameters at di�erent replication times r

verify the variation of the indicators, and for an initial analysis, we consider this variation

as noise (uncertainty). Any impact conclusions in predictions can only be drawn if the

changes in standards are greater than the uncertainty rate. Therefore, we have a �rst

threshold to de�ne if some result is valid, compared to the simulations behavior.

We also estimated the expected average FoM for simulations, using the �ve replication

grouped results (b = 5). Considering the Z̄FoM = 43.87 and the estimated Variance

V̂R = 100.99, we have an approximately 100(1 − α)% two-sided CI for θ, according to

the formalization proposed by Goldsman and Tokol (2000). For level α = 0.05, we have

t0.025,4 = 2.78, and gives [31.39, 56.34] as a 95% CI for the expected FoM for MASE-BDI

simulations.

Table 2.4: Coe�cient of variation for MASE-BDI outputs

Output CV1 CV2 CV3 CV4 CV5 Z̄

Time 0.300 0.130 0.250 0.260 0.200 0.230
Figure of Merit 0.015 0.011 0.008 0.007 0.090 0.100
Producer's Accuracy 0.015 0.011 0.008 0.007 0.009 0.010
User's Accuracy 0.006 0.005 0.004 0.004 0.003 0.004
Wrong Change 0.030 0.030 0.030 0.030 0.020 0.030
Wrong Persistance 0.007 0.007 0.008 0.008 0.013 0.009
Right Change 0.015 0.011 0.008 0.008 0.009 0.010

2.6 Conclusions

In this study, we �rst identi�ed the most sensitive parameters for the MASE-BDI LUCC

model using MOAT SA. We investigated some proper sampling design and sample size
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needed for MOAT screening the parameters e�ectively. Although these conclusions are

model-speci�c, it corroborates possible variation among sampling techniques and SA

methods.

This paper is the �rst exploratory study towards quantifying uncertainty within MASE-

BDI simulations. Following experiments must be done to promote more standardization

to this e�ort through the application of Design of Experiments. We look forward to in-

vestigating further on the model parameters, analyzing the remaining inputs besides the

agent's quantities and their impacts.

The presented results allow us to understand the uncertainty when de�ning the pa-

rameters of the simulation of the LUCC model under study. Our feeling is that the

uncertainty is very high which means that either model need to improve dramatically

or LUCC policy need to be reevaluated. Most simulation tools fail to validate models

and to state the uncertainty in simulation results. Consequently, policymakers and the

general public develop opinions based on misleading research that fails to give them the

appropriate interpretations required to make informed decisions. The e�orts to assess

ABMs through statistical methods are paramount to corroborate and improve the level

of con�dence of the research that has been made in LUCC simulation.
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Chapter 3

An empirical work�ow to integrate

uncertainty and sensitivity analysis to

evaluate agent-based simulation

outputs

Full article published in Journal

Environmental Modelling & Software,

v. 107, p. 281-297, 2018.

3.1 Introduction

As cited in the literature, LUCC systems are dynamic, stochastic, and characterized by

nonlinear and non-monotonic relationships between constant changing entities (Parker et

al., 2003; Rindfuss, Entwisle, Walsh, An, et al., 2008; Verburg, 2006). Besides, ABMs have

been used as a natural metaphor to model LUCC dynamics, since they capture emergent

phenomena and provide an original description of the modeled system (Murray-Rust,

Rieser, Robinson, Mili£i£, & Rounsevell, 2013; Ralha et al., 2013; Schreinemachers &

Berger, 2011). However, ABMs are prone to uncertainty because they re�ect the intrinsic

randomness of environmental, physical, and social events. The uncertainty may also

arise because of insu�cient knowledge, lack of data, observation errors, measurements

used to parametrize the model, or from vague premises of the model (Ligmann-Zielinska,

Kramer, Cheruvelil, & Soranno, 2014; Lilburne & Tarantola, 2009). As a result, one could

argue whether there is any quality in model predictions due to high uncertainty and the

considerable number of assumptions imposed by ABMs models.
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In this scenario, UA and SA are currently popular topics in ABMs as well as for many

other complex systems (Pappenberger, Beven, Ratto, & Matgen, 2008). They are valuable

tools in understanding LUCC models and deriving decisions on strategies to reduce model

uncertainty. UA provides the variability of model results. SA presents which factors are

responsible for this variability. This variability may be expressed quantitatively in terms

of "elasticity" of performance concerning parameter levels. High sensitivities (elasticities)

give cause for concern about the reliability of a model (Dayananda, Irons, Harrison,

Herbohn, & Rowland, 2002). A factor is any source of uncertainty in the modeling process,

including model structure, initial conditions, and input parameters. Using the terminology

proposed by the National Research Council (2012), uncertainty quanti�cation (UQ) is the

process of quantifying uncertainties in a computed quantity of interest (QOI), with the

goals of accounting for all sources of uncertainty and quantifying the contributions of

speci�c sources to the overall uncertainty, i.e., UA and SA applied in tandem.

Although UA and SA applications are rising, most ABMs struggle with a shortage of

testing in general, mainly due to time and other resource constraints (Kelly (Letcher) et

al., 2013). Lee et al. (2015) argue that while a modeler invests a lot of time and e�ort in the

development of ABMs, the output analysis is not always considered as deserving the same

resource-intensive attention. According to a survey carried out by Heath et al. (2009),

less than 5% of ABM publications present any statistical validation techniques. Angus

and Hassani-Mahmooei (2015) argue that one possible cause for this "methodological

anarchy" derives from the fact that, with so many possible degrees of freedom within an

ABM, the responsibility to ensure and to demonstrate that a model is structurally sound

and the prediction is reliable falls into each modeler.

We present a UQ work�ow to integrate UA and SA in the evaluation of agent-based

simulation outputs. We illustrate the use of this work�ow in a particular spatial explicit

LUCC case study in the framework Multi-Agent System for Environmental simulation,

MASE-BDI Coelho et al. (2016). We apply general practices that should be a routine, to

improve the level of con�dence in results and to promote more rational and e�cient use

of ABMs. We may cite that broader and more complete work�ows for the application of

SA were already proposed, such as Pianosi et al. (2016) and Norton (2015). The UA-SA

integrated proposal is what set our manuscript apart. We argue that UA should be used

as an input to SA, in a broader process of UQ. Also, we noticed some con�icting results

when we compared relevant studies on SA, mainly regarding the experimental setup. Ta-

ble 3.1 summarizes the studies found in the literature (Vanrolleghem, Mannina, Cosenza,

& Neumann, 2015)(1), Gan et al. (2014)(2), Wang, Li, Lu, and Fang (2013)(3), Yang

(2011)(4), Pappenberger et al. (2008)(5), Y. Tang, Reed, Wagener, and van Werkhoven

(2007)(6). Some authors have compared di�erent SA methods and experimental setup,
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which are presented in the di�erent lines of the table.

Table 3.1: Selected applications of sensitivity analysis

approaches.

Reference Research No. Sampling SA No.

Field factors method runs

1 Urbain 17 MOAT MOAT 3000

drainage FAST E-FAST 3000

LH SRC 2800

2 Watershed 13 MC SPEA 3000

MC SRC 3000

MOAT MOAT 3000

METIS MARS 3000

METIS SOT 3000

MC DT 400

LH DT 400

OA DT 529

OALH DT 529

LPTAU DT 3000

METIS DT 3000

METIS GP 3000

FAST FAST 2777

rLH McKey 2890

SOBOL-QR SOBOL 3000

3 Crop growth 47 FAST E-FAST 2049

4 Watershed 5 SOBOL-QR SOBOL 18000

MC MOAT 3000

MC LR 3000

MC RSA 3000

SOBOL-QR SDP 500

5 Flood 6 rLH SOBOL 8192

inundation rLH MOAT 12000

rLH Entropy-based 3000

rLH RSA 5000

Continued on next page
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Reference Research No. Sampling SA No.

Field factors method runs

6 Watershed 18 SOBOL-QR SOBOL 8192

IFFD ANOVA 1000

LH RSA 10000

LP PEST 10000

Where: MOAT = Morris screening One-at-A-Time; (E-)FAST = (Extended) Fourier Am-

plitude Sensitivity Testing; (r)LH = (replicated) Latin Hypercube; SRC= Standardized

Regression Coe�cient; MC = Monte-Carlo; LR = Linear Regression; SPEA = Spear-

man Correlation Coe�cient; MARS = Multivariate Adaptive Regression Splines; SOT =

Sum-of-Trees; DT = Delta δ Test; OA = Orthogonal Array; OALH = Orthogonal Array-

based Latin Hypercube; IFFD = Iterated Fractional Factorial Design; SOBOL-QR =

Sobol quasi-random; RSA = Regionalized Sensitivity Analysis; LP = Local Perturbation;

PEST = Parameter Estimation Software.

Table 3.1 illustrates a glimpse of the myriad of possible combinations of strategies for

sampling the model parameter space and SA methods, to quantify the impacts of sampled

parameters on the model QOI. We understand that there is no combination of sampling

and SA method that �ts all applications. Thus, the work of Gan et al. (2014) shows

that di�erent sample strategies can even produce di�erent outputs regarding the same

SA method. Also, it seems that there isn't a clear relationship between the number of

factors and the number of necessary runs to compute SA. Furthermore, in some cases, the

number of runs used in the same sampling and SA method is not even in the same order

of magnitude. For example, Pianosi et al. (2016) recommend > 1000 ×M model runs

to calculate variance-based SA, such as FAST, where M is the number of input factors

subject to SA. Neither Wang et al. (2013) nor Vanrolleghem et al. (2015) nor Gan et

al. (2014) executed this many number of runs. The �rst used a sample of size 2049 for

a 47-factor problem (instead of > 47, 000), while the second used a sample size of 3000

for a 17-factor problem (instead of > 17, 000). The third used a sample size of 2777 for

a 13-factor problem (instead of > 13, 000). One could ask whether the number of runs

should be based on something more than M .

In this manuscript, we will test di�erent experimental strategies for a UQ work�ow

and discuss their relative bene�ts and limitations. A baseline scenario was developed,

and we performed a comprehensive investigation of the impacts that di�erences in sample

sizes, sample techniques, and SA methods may have on the QOI. In this work, we address
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the research question: how UA and SA may be applied to improve users' understanding

of the uncertainty and relations among input and output responses in LUCC agent-based

simulations? We are interested in �nding which parameters are responsible for the most of

the results' variability; if there is convergence when di�erent SA techniques are applied;

and �nally, if there is a minimum sample size to achieve it. Although the statistical

techniques are applied in a speci�c agent-based simulator, the methods described are

quite general and may illustrate their application in another research.

In Section 3.2, we provide an overview of the di�erent methods regarding variance

stability, parameter space exploration, UA, and SA. We also present the proposed UQ

work�ow in Section 3.2. In Section 3.3, we describe the MASE-BDI framework and LUCC

model used as a case study, followed by the experimental design. We present the results

compared to related work. We discuss challenges and provide some assessment to extrap-

olate our �nding into more general conclusions, to produce more robust or parsimonious

models, as well as to make models more defensible in the face of scienti�c or technical

controversy (Section 3.4). Finally, in Section 3.5, we summarize our �ndings and outline

future work.

3.2 Materials and methods

The methods we applied in the case study are presented in this section alongside their

experimental design. The UQ experiments have the objective to perform an output anal-

ysis on spatial stochastic models, to measure uncertainty and to reduce it. Ultimately,

we want to understand better how the model behaves and expand our con�dence in the

response of a LUCC model.

3.2.1 Variance stability

Agent-based simulations are often stochastic, and therefore any analytical exercise requires

an outcome pool drawn from a su�cient number of samples. It is only possible to draw

conclusions if the output mean and variance reaches relative stability. Otherwise, the

statistics could harbor too much uncertainty to be reliable (Lee et al., 2015). Moreover,

some ABM simulations (MASE-BDI included) can take longer run times, which makes

the execution of large samples prohibitive. Hence, knowing the minimum sample size to

reach variance stability can be more compelling to modelers.

There are many methods to assess variance stability (Law & Kelton, 2000; Lee et al.,

2015). We chose to apply the method proposed by Lorscheid et al. (2012), whose strategy

is to assess stability from metrics on an outcome for a sequence of sample sizes. The

proposed metric relies on the functional ratio between the variance and the sampled mean.
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The coe�cient of variation cV is a dimensionless and normalized metric used to measure

the uncertainty surrounding the variance, i.e., used for the analysis of experimental error

variance. It is de�ned as the ratio of the standard deviation of a number of measurement

s to the arithmetic mean µ

cV =
s

µ
. (3.1)

If cV is obtained from a small sample, e.g., it will vary more than if each sample

contained far more runs. Lorscheid et al. (2012) propose a �xed epsilon (E ) to limit cV .

This is done by calculating the cV 's of di�erent sized set of simulation runs, in ascending

order of size. The sample size at which the di�erence between consecutive cV s falls below

the determined criterion E, and remains so, is considered a minimum sample size or the

minimum number of simulation runs for ABMs. This is the point of variance stability.

These points should be obtained for all ABM outputs, thereby the minimum number of

runs for the ABMs is the maximum of these points (Lee et al., 2015)

nmin = argmaxn|cx,nV − c
x,m
V | < E, ∀x and ∀m > n,

where n is the sample size; nmin is the estimated minimum number of required simulation

runs; x is a distinct output; and m is some sample size for which the cV is calculated.

Thus, we apply the Lorscheid et al. (2012) method to establish the minimum sample size

that guarantees that variance stability is achieved.

3.2.2 Parameter space exploration

Sampling methods provide a systematic exploration of the parameter space that guaran-

tees the sample to have speci�c statistical or structural properties. The purpose of these

methods is to actively reduce the number of parameter sets that are considered but still

chose space-�lling points in the design space (Thiele, Kurth, & Grimm, 2014a). For a

complete revision of sampling methods, readers can refer to Gong et al. (2015); Kleijnen

et al. (2005); Saltelli et al. (2008). In this manuscript, the most common sampling designs

are illustrated and applied in the UQ process.

Since there are many methods to explore the parameter space, readers may have an

overview of those sampling methods in Appendix B, including: Monte Carlo sampling

(MC), Latin Hypercube (LH), Orthogonal Array (OA), Orthogonal Array-based Latin

Hypercube (OALH), METIS sampling, Fourier sampling algorithm, LPτ (LPTAU), Sobol

Extended (SOBOL), Morris one-at-a-time (MOAT).
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3.2.3 Uncertainty analysis

UA evaluates and quanti�es how the variability of input factors propagates through the

model and a�ects the variability of output values (Ligmann-Zielinska et al., 2014). UA can

also answer if there are any discontinuities associated with the distribution of results (Iman

& Helton, 1988), plot the distribution itself, calculate the average output, the standard

deviation, the quantiles of its distribution, and con�dence bounds. An overview of the

UA process can be found in Appendix C.

For the proposed UA, the only parameters considered relevant are the ones related to

the QOI and previously selected as input factors of interest. All the other model factors

and information fed into the model are disregarded, i.e., they do not vary, thereby they

cannot cause variation in the output. However, the model outputs Yj are non-deterministic

because of the stochastic component derived from the emergence of the agent's behav-

ior. Therefore, to ensure robustness, each vector (α(j), β(j), ...) of the output must be

evaluated regarding the mean and the variance (Dosi, Pereira, & Virgillito, 2017). This

con�rmation is executed by a given number of model runs but with the same parameters

con�guration (ten Broeke et al., 2016).

After the UA quanti�ed the magnitude of the resulting uncertainty in the model

predictions due to uncertainties in model inputs, the next step in the UQ work�ow would

be to perform SA.

3.2.4 Sensitivity analysis

SA is the study of "how uncertainty in the output of a model can be apportioned to

di�erent sources of uncertainty in the model input" (Saltelli et al., 2008). The authors

show that each measure of sensitivity may produce its ranking of factors by importance.

There are di�erent methods of SA, and each one has advantages and limitations. In the

particular case of SA in spatial models, we incorporated the general guidelines provided

by Lilburne and Tarantola (2009). It is clear from their work that each SA method has

sampling and pre-processing technique requisites. Therefore, a careless combination of

methods will result in ine�cient and inappropriate results. Also, not all of the methods

are capable of providing sensitivity index for non-monotonic input-output dependencies

typically observed in ABMs (Fonoberova et al., 2013; ten Broeke et al., 2016). Therefore,

we selected ten well-known methods of qualitative and quantitative SA. They were applied

in MASE-BDI to verify if they were capable of providing those indexes for the LUCC

model.

In general, gradient and linear-regression-based SA are known as qualitative meth-

ods, since they use some heuristic to represent the relative sensitivity of the parameters.
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We will assess the Morris one-of-a-time screening method (MOAT) (Morris, 1991) and

some correlation analysis, such as Spearman (SPEA) (Spearman, Con, & Page, 1904)

and the standard regression coe�cient (SRC). Variance-based methods are classi�ed as

quantitative methods because they tell the sensitivity of a parameter by calculating the

impact of this parameter on the total variance of the model outputs (Saltelli, Taran-

tola, Campolongo, & Ratto, 2004). We will assess three variance-based SA techniques:

SOBOL (Sobol', 1993), FAST (Cukier, Fortuin, Shuler, Petschek, & Schaibly, 1973), and

McKay (McKay, Morrison, & Upton, 1999b). Also, we compare response-surface meth-

ods, such as Sum-of-Trees (SOT) (Breiman, Friedman, Olshen, & Stone, 1984; Chipman,

George, & McCulloch, 2012), Multivariate Adaptive Regression Splines (MARS) (Fried-

man, 1991), and Gaussian Process (GP) (Gibbs & MacKay, 1997). Other screening

method such as the Delta δ Test (DT) (Pi & Peterson, 1994), are also assessed. The

overall mechanisms of each method are discussed in Appendix D. The implementations

of each technique are not provided due to space constraint, but readers may refer to Gan

et al. (2014); Tong (2005) for details.

3.2.5 UA�SA integrated work�ow

The integration of UA-SA has been applied to ABMs in a few relevant studies (Fonoberova

et al., 2013; Ligmann-Zielinska et al., 2014; Ligmann-Zielinska & Sun, 2010b; Parry et al.,

2013), that argue that a systematic evaluation of ABMs must comprise of an integrated

approach to quanti�cation of model output variability and its sensitivity to inputs. We

followed the terminology of the National Research Council (2012) and called this process

UQ: the process of quantifying uncertainties associated with a model QOI, to account for

all sources of uncertainty (UA) and quantifying the contributions of speci�c sources to the

overall uncertainty (SA). Figure 3.1 presents an overview of the UQ integrated work�ow,

with UA and SA as part of the modeling process, adapted from the original one proposed

by Ligmann-Zielinska et al. (2014).

Analyzing the work�ow, we argue that UA should be used as an input to SA, in a

broader process of UQ. ABM input factors are often diverse, and the stochasticity makes

multiple model runs a paramount step of the ABM's output evaluation. Once the modeler

de�nes what is the QOI to be investigated, UA should be incorporated in the modeling

process to indicate what is the variability of the QOI outcomes. The next step would

be to test the sensitivity of model response to changes in the factors. This discovery

could identify interactions among factors, factor �xing and prioritization that could lead

to a model simpli�cation, the reduction of output variance or the improvement of model

accuracy.
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This larger UQ process involves many smaller tasks, so a more detailed work�ow

is presented in Figure 3.2. Pianosi et al. (2016) proposed a practical work�ow for the

application of SA, with four fundamental group of activities: i) experimental setup; ii)

input sampling; iii) model evaluation; and iv) post-processing. This work presents a state-

of-the-art review and a very concise guide to good practices for readers. However, ABMs

have speci�c characteristics, mainly due to stochasticity, uncertainties, equi�nality, and

because of the complex system applications. We took Pianosi et al. (2016) work as a

guideline and tailored the level of e�ort and estimation to �t ABM needs. The main

di�erence is the simpli�cation of the SA tasks and the incorporation of the UA tasks.

Model

Multiple Model Runs

Distribution of the QOI

Decomposition of Result Variability

Uncertainty Analysis: 

What is the variability of the QOI?

Sensitivity Analysis: 

Which factors are responsible for the variability of  the QOI?

Factors:

Parameter Distributions

Layers (Maps)

Functions

Agent behavior

Finite-state machine

Resulting Maps
INPUT

OUTPUT

Uncertainty Quanti!cation: 

How do the various sources of error and uncertainty feed into uncertainty in the model-based prediction of the QOI?

Figure 3.1: Overview of the modeling process, including UQ, UA and SA speci�c ques-
tions. Source: Adapted from (Ligmann-Zielinska et al., 2014).

Because a portion of ABM uncertainty is irreducible, a comprehensive evaluation of

ABM uncertainty should assume that code veri�cation, model-parameter calibration and

validation have been successfully accomplished before UQ process begins for a QOI. The

UQ work�ow for ABMs (Figure 3.2) is composed of three basic steps: experimental setup,

UA, and SA. We maintained the terminology proposed by Pianosi et al. (2016) as (*) in

Figure 3.2. The �rst step of the work�ow regards the experimental setup with basic

choices: i) de�ning the QOI - the modeler must specify what the QOI for the problem at

hand is; ii) select the input factors of interest; and iii) specify the range or distribution

probability of each factor. The fourth task iv) is to determine variance stability - which

represents the minimum number of simulation runs that accurately report the descriptive

statistics.
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In the second step of the work�ow, the UA is composed of three tasks that summarize

what is needed to discover what is the variability of the QOI in an ABM. After choos-

ing the sampling strategy, the modeler would run multiple simulations (the minimum

number of runs is provided by the last task of the experimental setup - de�ne variance

stability). ABM modelers usually choose factor values randomly from their respective

range/distribution. As a result, UA produces a distribution of the QOI. The last task is

to use this distribution to quantify the variability of the QOI, i.e., the use of descriptive

statistics to analyze the model outputs.

SENSITIVITY

ANALYSIS

De ne the Quantity of Interest (QOI)

Select the input factors of interest

Specify the range/distribution of the input
EXPERIMENTAL

SETUP
Determine variance stability (minimum sample

size/number of runs)

UQ Work�ow for ABM

UNCERTAINTY

ANALYSIS

Choose the sampling strategy

Run multiple simulations

Quanti cation of variability in QOI

Choose the sampling-based SA method

Choose the sampling strategy (*Input Sampling)

Check model behavior (*Model Evaluation)

Obtain input’s relative importance

Assess convergence (*Post Processing)

Factor Priorization

or

Factor Fixing

Figure 3.2: A UQ work�ow for the application of UA + SA. Source: Adapted from (Pianosi
et al., 2016).

The third step is a simpli�cation of Pianosi et al. (2016) original work�ow. It all begins

with the selection of the SA method. Although the original work proposed a classi�cation

system based on the SA purpose, the literature shows that, for ABMs, this choice is

somewhat model-speci�c. We decided to leave this decision to the modeler and tested

many di�erent methods to see the impacts of the SA method in our case study. The next

task would be to de�ne the input variability space by choosing the sampling strategy to

be applied. There are several sampling methods, and although MC is still the most used

sampling strategy, we tested di�erent combinations of well-known techniques, such as MC

and SOBOL, and also tailored sampling strategies to see if there would be an impact on

the sensitivities outcomes.
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The number of model runs required to perform SA is usually a rough estimation of

a function of the number of factors subject to SA. We postulate that this minimum

sample size should be equal or larger to the variance stability number of runs de�ned

in the experimental setup step. We also test this empiric assumption and discuss it in

later sections (Sections 3.3.4 and 3.4). This is what is necessary to obtain the factor's

relative importance. The work�ow's last two steps are checkpoints de�ned by Pianosi et

al. (2016) to evaluate the model (check model behavior) and to assess convergence (check

whether sensitivity estimates are independent of the size of the sample and if they would

take similar values if we used independent samples). These steps inform us about the

reliability of the results.

We applied the presented UQ work�ow for ABMs in a case study. We tested several

combinations of methods, sampling strategies, and sample sizes. In Section 3.3, we will

present the application and the experimental setup designed for this application.

3.3 A land-use case study

MASE1 is an agent-based simulation tool developed at the University of Brasília, Brazil.

MASE enables modeling and simulations of LUCC dynamics using a con�gurable model

and both top-down and bottom-up (Grimm, 1999) model structures simultaneously. MASE

enables multiple types of agents with di�erent behaviors to represent the interaction be-

tween agents with autonomy, the physical environment, and its relations (Ralha & Abreu,

2017). MASE has the overall goal of performing medium to long-term LUCC predictions.

It also allows assisting decision-making processes related to LUCC.

We run the experiments in MASE-BDI, which is a freeware software extension of

MASE that introduces cognitive reasoning-oriented agents through the implementation

of the BDI rationality (Bratman, 1987). MASE-BDI was implemented in JADEX multi-

agent platform (Braubach, Pokahr, & Lamersdorf, 2005). In the BDI model, agents have

beliefs, a set of information about the world it inhabits, that changes both the perception

and thinking about the world. Desires represent the motivational attitudes of agents,

capturing the agent's wishes and driving the course of its actions. An agent can also

make plans related to its intention to achieve its goals. This multi-agent reasoning model

is de�ned as means-end-reasoning (Wooldridge, 2009).

The MASE-BDI architecture is composed of three layers (from top to bottom): a user

interface, a utility layer, and an agent layer. The �rst provides an optional graphical

interface (models and simulation parameters can also be de�ned directly in a con�gura-

1Project Website:http://mase.cic.unb.br/

Software availability:https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode
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tion �le) and a JADEX control center of the BDI model. The utility layer groups a set

of modules to control the pre-processing of the maps and input of the geographic infor-

mation. It also provides the simulation parameter automatic tuning, which is a complex

and error-prone task in ABMs. The parameter adjustment is performed by employing

e�cient optimization algorithms to tune the simulation model parameters, concerning

a user-de�ned single or multi-objective function of interest. Still, in the utility layer, a

module of validation is responsible for evaluating the �nal simulation output maps and

metrics (Coelho et al., 2016).

In the agent layer, we have an organization of hierarchical agents. The GRID Manager

controls the general aspects of the simulation. The Spatial Manager controls the agents

responsible for representing and updating the spatial environment. The Transformation

Agents are computational entities accountable for moving, exploring, and reasoning about

the space according to their internal goals and beliefs. The Transformation Manager rules

and resolves the con�ict due to the competition among transformation agents concurring

for the same environmental resources. Readers who are interested in details of the MASE-

BDI architecture, agent design and implementation may refer to Coelho et al. (2016).

3.3.1 The Cerrado Federal District study area

The Federal District of Brazil (5, 789km2) and its Cerrado (Brazilian savanna) coverage

is the study area in this article. The simulations depict the land changes of the region

(Figure 3.3), the most endangered biome in Brazil, and the second largest biome in South

America harboring signi�cant biodiversity. This area has been undergoing severe trans-

formation due to the advance of cattle ranching and soy production, being an attractive

study area for land use simulations. To allow replicability, the Cerrado LUCC simula-

tion model was documented and described using the ODD protocol (Overview, Design

concepts, and Details protocol) (Grimm et al., 2006). The characterization of agent be-

haviors and attributes in socio-ecological systems were applied by empirically grounding

ABM mechanisms (Smajgl et al., 2011). A complete conceptual and methodological de-

scription of the model is available in Ralha et al. (2013).

The initialization data for the simulation is a couple of Landsat-derived grid raster

maps consisting of the land cover of the region, from two di�erent time periods (an initial

and a �nal map). Furthermore, the user must adjust a set of initialization parameters

of the multi-agent system, such as the number of agents that will explore the landscape

(transformation agents), their typology (cattle ranchers and farmers), and characteristics

of the initial behavior of those agents. The simulations are performed in steps, where

each step corresponds to the measure of time de�ned by the user. In this example, one

step equals to one week in chronological time. The user also determines the size of a
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Figure 3.3: A land use map of the Cerrado study area in Federal District, Brazil. Data
by (GDF, 2009).

plot or cell. Here, the total area of study was divided into plots of one hectare. The

physical environment is spatially represented by a set of layers of geographical informa-

tion data (shapes or raster �les), such as rivers, lakes, slopes, building areas, highways,

environmental protected areas, and regional zoning maps of the area. The aggregation

of these geographical features determines the physical environment of any given point in

the simulation grid. The transformation agents represent humans performing activities

of cattle ranchers and farmers, with their behavior and beliefs, explicitly changing the

natural landscape to achieve their internal goals (e.g., production expansion, sustainable

exploration).

The simulations are calibrated by the simulation parameter automatic tuning tool,

adjusting the parameters to best �t the observed change from the two initial maps. The

outcome of the simulation is a result of the emergence of the agent's action within the

duration of a simulation, determined by the user. The �nal landscape is a result of the

emergence of the agent's e�ects on the land.

MASE-BDI is a spatially explicit framework because the results comprise of the quan-

tity of land cover change and the spatial allocation of the change (which plots were chosen

by the agents to initiate or expand their cattle ranching or farming business). The result

of any MASE-BDI simulation is a couple of predicted maps with the spatial allocation of

the land change, and the quantity of change - a set of metrics calculated during runtime,

such as the total amount of land change. At the end of each simulation, the resulting
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image is submitted to a goodness-of-�t measurement, and the quality and errors of the

quantity of change and allocation of land use change are calculated.

MASE-BDI produces stochastic simulations, which mean that the same input to the

model may lead to a di�erent result in the quantity and allocation of change. Therefore,

the same set of parameters must be run several times to raise the con�dence that the

results are representative.

3.3.2 LUCC goodness-of-�t

According to Thiele et al. (2014a) there are two strategies for �tting model parameters

to observational data: best-�t and categorical calibration. MASE-BDI applies the �rst

strategy, in which we must �nd the parameter combination that best �t the data. The

quality measure is one exact value obtained from the observational data, so it is easy to

determine which parameter set leads to the lowest di�erence.

Pontius et al. (2008) de�ne the most common quality measure for LUCC spatial ex-

plicit simulations; hence it is used in MASE-BDI. Although there is not a universally

agreed-upon criterion to evaluate the goodness-of-�t of validation maps, the performance

of the simulation model is done objectively by computing the sources of error of prediction

maps.

A set of map comparisons is responsible for the evaluation of the model. Pontius,

Hu�aker, and Denman (2004) indicate that three maps are necessary: i) a reference map

of the initial time t0; ii) a reference map of a subsequent time t1; and iii) a prediction

map of the subsequent time t1. There are three possible two-map comparisons, picking

two maps at a time:

• Comparison between the reference map of time t0 and the reference map of time t1:

characterizes the observed change in the maps, which re�ects the dynamics of the

landscape;

• Comparison between the reference map of time t0 and the prediction map of time

t1: characterizes the model's predicted change, which re�ects the behavior of the

model;

• Comparison between the reference map of time t1 and the prediction map of time

t1: characterizes the accuracy/error of the prediction's accuracy/error.

The total disagreement between any two maps that share a categorical variable is

computed in terms of quantity disagreement and location disagreement (Pontius et al.,

2004). Quantity disagreement derives from di�erences between the maps regarding the

number of pixels for each category. Location disagreement is the di�erence that could be
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resolved by rearranging the pixels spatially within one map so that its agreement with

the other map is as broad as possible. The sum of them both is the total disagreement.

To illustrate the methodology, we present the Brazilian Federal District Map with only

two land cover categories: natural vegetation (the Cerrado), and developed (areas char-

acterized by 30% or greater of constructed materials, e.g., asphalt, concrete, buildings).

Considering these two categories, the comparison of pixels may result in the categories

presented in Figure 3.4: error due to observed vegetation predicted as developed; correct

due to observed developed predicted as developed; correct due to observed vegetation

predicted as vegetation; and error due to observed developed predicted as vegetation.

According to Pontius et al. (2008), the most accurate applications are the ones where

the amount of observed net change in the reference maps is larger. The Figure of Merit

(FoM) is the ratio of the amount of correctly predicted pixels of change to the sum of all

pixels

FoM =
RightChange

WrongPersistence+RightChange+WrongGaining +WrongChange
,

where Wrong Persistence is the area of error due to observed change predicted as persis-

tence; Right Change is the area of correct due to observed change predicted as change;

Wrong Gaining is the area of error due to observed change predicted as wrong gaining

category; and Wrong Change is the area of error due to observed persistence predicted as

change.

FoM is a statistical measurement that can range from 0% - meaning no overlap between

observed and predicted change, to 100% - meaning perfect overlap between observed and

predicted change. When the amount of correctly predicted change is larger than the sum

of the various types of error, FoM is greater than 50%. FoM is the best-�t quality measure

of this manuscript. It is also the QOI chosen to illustrate the UQ work�ow for ABM, as

the �rst task of the experimental setup step.

It is worth mentioning that Pontius et al. (2008) set a testing benchmark, based

on statistical methods for map comparison of 13 applications of di�erent popular peer-

reviewed land change models. The results show that in 12 of the 13 LUCC models

predictive maps, the amount of error is more signi�cant than the amount of correctly

predicted change at the resolution of raw data. In contrast, MASE-BDI was able to

surpass these statistics, presenting results that show high quality in the accuracy of their

predictions (FoM> 50). The complete explanation of the MASE simulation results using

Pontius' statistical techniques of map comparison to land change models is presented

in Ralha et al. (2013).
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Figure 3.4: The Brazilian Federal District maps of: a) observed change 2002-2008, regard-
ing the di�erence in observed land change within this period, produced from the input
data itself; b) predicted chance 2002-2008, results produced by the simulated model; and
c) prediction error 2008, generated when maps a) and b) are compared.

3.3.3 MASE-BDI and UQ tool integration

Previous work demonstrates that the initialization of the agents may have a substantial

e�ect on the land dynamics and into the �nal simulation outcome (Lorscheid et al., 2012).

Therefore, it was paramount to use a framework to control, calculate, trace, manage

uncertainties, and �nally make the output analysis feasible. The MASE-BDI framework

itself does not provide the modeler with the means to statistically analyze the results.

The di�culty to perform many di�erent samplings, UA and SA analysis, may lead to

a shortage of testing and �nally to a perfunctory UQ. To avoid this pitfall, we chose a

statistical platform that provided the tools needed to execute both UA and SA steps in

the proposed UQ work�ow for ABM (Figure 3.2).

Among the di�erent UQ platforms available, we chose PSUADE2 as the best �t to inte-

grate with MASE-BDI, based on its smooth coupling with external models and variability

2http://computation.llnl.gov/casc/uncertainty_quantification/
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and availability of UA and SA methods.

PSUADE is a software package composed of three main components: a sample gener-

ator with the experimental design techniques; a driver to control the simulator execution

environment; and an analysis toolset (Tong, 2005). The execution environment created

by PSUADE allows sequential or parallel automatic simulation executions. We stylized

the use of PSUADE by creating a Python driver to provide an interface for linking MASE-

BDI' simulation executable code and PSUADE. Also, we created a graphical user inter-

face (GUI) that clusters all PSUADE and MASE-BDI con�gurations, in a straightforward

uni�ed interface that encapsulates all the con�guration complexity of both PSUADE and

MASE-BDI. Users may edit the con�gurations of the model or the UQ analysis without

having to handle directly the con�guration �les.

Figure 3.5 shows the �ow of activities for MASE-BDI to work autonomously with the

PSUADE tool, beginning with the con�guration of the simulation and the UQ design of

experiments, following through the generation of samples in PSUADE that are going to

be the input of the multiple MASE-BDI simulations. All the MASE outputs are stored

and compiled so the UA and SA chosen techniques would be applied. The UQ integration

modules where designed to be model/framework independent, so that it can be coupled

with PSUADE in any other model and platforms other than MASE-BDI. The codes of

the implementation3 are available to the research community.

3.3.4 Experimental setup

The application of the UQ work�ow follows a sequence of steps that were presented in

general terms in Section 3.2.5. Next, we describe the individual choices and methods used

in a speci�c ABM application, the LUCC model simulated in MASE-BDI. We will present

the choices we made at each step, and maybe help other modelers with our example.

De�ne the Quantity of Interest (QOI)

The �rst task of the experimental setup, the de�nition of the QOI, was determined as the

output FoM, as described in Section 3.3.2. FoM was chosen as the QOI of our investigation

as it represents the quality of our simulation predictions. The higher the FoM, the better

�tted is the prediction.

Select the input factors of interest

Regarding the simulation data, a baseline scenario with �xed variables was selected for the

LUCC model to investigate the initialization parameters of MASE-BDI. For this purpose,

3https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/MASE-PSUADE
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Figure 3.5: Activity diagram of MASE-Driver-GUI, PSUADE, MASE-Driver, and MASE-
BDI tools.

there are no alterations in the geographic information in the simulated environment. All

simulations were performed with only two types of transformation agents: cattle ranchers

and farmers.

The input factors of interest refer to the number of agents initialized in a simulation,

their initial state, and their behavior. These parameters characterize the instantiation of

MASE-BDI agents, and therefore users may lack familiarity with those variables. The

MASE-BDI provides a default value for the simulations, obtained through the calibration

of the model. Therefore, these parameters are often a "black box" to users, and precisely

because of this, can be an extra source of uncertainty.

The number of transformation agents (TA) is a parameter that re�ects the number of

computational agents (in the multi-agent system paradigm) instantiated in a simulation

run. In this case study, one agent does not represent one single individual. TA was

derived from data of the Brazilian Agricultural Census of 2006 and comprises a set of

Producer legal status. The range of 1 to 100 is a percentage representation to the 3407

registered producers in the region. The MASE-BDI user must inform how many agents

may be active or inactive in a given period. The details of those agent's characterization

are thoroughly illustrated in Ralha et al. (2013). Likewise, the number of transformation
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group agents (TG) is an initial parameter which represents not an individual but an

organization, cooperative, business, and so on. The range is an abstraction of the 548

group producers, ten of which have permanent exploration licenses.

The potential for exploration, individual or of a group, represents the impact an agent

can produce in the natural vegetation cover of a cell during a step. In the Cerrado LUCC

Model, considering the deforestation process, the potential of exploration is again an

abstraction for the wood volume per hectare (m3.ha−1) of wood that can be obtained

from a particular grid cell, until a nominal limit that represents resource depletion. The

parameters of Table 3.2 will be the input for the UQ process.

Specify the range of the input

To illustrate the third task of the experimental setup step, Table 3.2 presents the four

parameters that will vary in each run of the simulation. They were the selected input

factors of interest, and the speci�cation of the range of the input is presented in Table 3.2.

Table 3.2: MASE-BDI multi-agent initialization con�guration parameters.

Parameter Description Distribution Lower bound Upper bound

TA No. of Transformation Agents Uniform 1 100
TG No. of Transformation Group Agents Uniform 10 100
IE Potential of Individual Exploration Uniform 1 500
GE Potential of Group Exploration Uniform 500 1500

In addition to the �nal LUCC maps, a MASE-BDI simulation generates 11 metrics as

results. To evaluate the model response to the di�erent parameters, FoM will be used as

the objective function and the output to be analyzed in the UQ process. Nevertheless,

another �ve variables were selected to observe the in�uence of the simulation input con-

�gurations on the model outputs. The experiments considered the outputs described in

Table 3.3.

Table 3.3: MASE-BDI output parameters.

ID Output Description

1 FoM Figure of Merit
2 IPA Image Producer's Accuracy
3 IUA Image User's Accuracy
4 WC Wrong Change: observed change predicted as persistence
5 RC Right Change: observed change predicted as change
6 WP Wrong Persistence: observed persistence predicted as change
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Variance stability determination

The last task in the experimental setup step of the UQ process is to de�ne the minimum

sample size through the determination of variance stability.

From a pool of over 138,800 model runs that were executed, 31, 815 runs represent the

baseline scenario where only the four input variables vary (Factor Fixing of inputs pre-

sented in Table 3.2). The s and the µ for this �xed parameter set are already substantially

smaller (Equation 3.1). We sampled from this �xed set to apply the variance stability

methodology proposed by Lorscheid et al. (2012). In this multivariate setting, we com-

pared the cV (rounded to 1\1000) of di�erently sized set of runs (increased iteratively),

n ∈ {10, 50, 100, 500, 800, 1000, 5000, 10000}.
The outcome drawn from runs of di�erent sample techniques may a�ect variance

stability. For clari�cation, we applied the proposed methodology with random (Monte

Carlo) (Table 3.4) and quasi-random sampling (Table 3.5). We selected E = 0.01 as the

limit of cV .

Table 3.4: Coe�cient of Variation at di�erently sized set of runs of Monte-Carlo samples

Output n

10 50 100 500 800 1000 5000 10000

Figure of Merit 0.063 0.082 0.076 0.090 0.082 0.095 0.091 0.092
Producer's Accuracy 0.143 0.138 0.143 0.149 0.141 0.146 0.151 0.152
User's Accuracy 0.130 0.122 0.125 0.120 0.121 0.121 0.121 0.122
Wrong Change 0.602 0.485 0.593 0.585 0.575 0.578 0.568 0.572
Right Change 0.143 0.138 0.143 0.149 0.141 0.156 0.151 0.152
Wrong Persistence 0.229 0.242 0.236 0.242 0.244 0.254 0.250 0.250

Table 3.5: Coe�cient of Variation at di�erently sized set of runs of Quasi-Random samples

Output n

10 50 100 500 800 1000 5000 10000

Figure of Merit 0.018 0.117 0.075 0.093 0.091 0.087 0.091 0.094
Producer's Accuracy 0.089 0.184 0.135 0.152 0.148 0.147 0.151 0.152
User's Accuracy 0.124 0.125 0.122 0.123 0.119 0.123 0.122 0.121
Wrong Change 0.121 0.593 0.547 0.557 0.561 0.570 0.579 0.574
Right Change 0.089 0.184 0.135 0.152 0.149 0.147 0.152 0.153
Wrong Persistence 0.154 0.291 0.229 0.252 0.248 0.246 0.248 0.251

Although both means for FoM were roughly the same (MC FoM µ = 50.59; QR

FoM µ = 50.57), the minimum number of runs were somewhat di�erent for almost every

output. For each outcome of interest {FoM, PA, UA, WC, RC, WP} the respective point

43



of stability were {5000, 50, 50, 500, 5000, 100} applying random sampling (Table 3.4),

and {800, 800, 50, 500, 800, 800} applying quasi-random sampling (Table 3.5). The

highlighted values (italic) on Table 3.4 and 3.5 are the cV that fall below the de�ned

E. Therefore, the minimum number of runs for the Cerrado LUCC model would be 5000

MC random samples or 800 QR samples. Since we are looking for e�ciency, 800 will be

considered the minimum sample size (number of runs).

3.3.5 The methods for UA

In the second step of the UQ work�ow, there are three tasks. The �rst one, to choose a

sampling strategy, derives from the �ndings of the variance stability task. We chose the

quasi-random sampling design since it was more e�ective in the de�nition of a minimum

sample size. The second task of the UA step is to run multiple simulations of the model

under study. Again, we used the �ndings of the experimental setup step as the minimum

sample size. Therefore, 800 simulation runs were performed.

The third task is the quanti�cation of variability in QOI. We performed descriptive

statistics and statistics of dispersion of the outcomes to draw some UA conclusions for the

second step of the UQ work�ow. We will present the results only for the QOI: the FoM

output. First, four initial moments of the sample are derived: the �rst moment (µ = 50.57,

standard error of µ = 0.16), summarizing the central tendency of the stochastic model;

the second moment (variance); the third moment (skewness); and the fourth moment

(kurtosis). The results are summarized in Table 3.6. Also, the data set has σ = 4.62.

To explore the variability of the simulation results, we performed UA by examining the

observed distribution of the FoM of the sample resulting simulations. Figure 3.6 sum-

marizes the empirical density and the cumulative distribution function of the experiment

(800 model runs).

Table 3.6: Moments results of MASE-BDI model's objective function value - Figure of
Merit.
Mean Variance Skewness Kurtosis

50.57 21.33 -3.01 12.20

A Cullen and Frey graph (a squared skewness-kurtosis plot) is presented to illustrate

whether the FoM followed a particular distribution. The data was bootstrapped using

Monte Carlo samples to consider the uncertainty of the estimated values of kurtosis and

skewness. Figure 3.7 is a plot with 1000 boot values. The diagram indicates that the

skewness and kurtosis are consistent with a beta theoretical distribution, but the interval

of FoM (not in the interval [0, 1]) disprove it. The data does not necessarily follow any
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particular distribution, which means that the normality assumption and other known

distributions do not refer to the observed data. Rather, the assumption is that the process

that produces the data is a distributed process. So that process, likewise, can never be

precisely normal because of asymmetries, discreteness, and boundness of the observable

data.

3.3.6 SA experimental setup

For the last step of our proposed UQ work�ow, multiple combinations of di�erent sample

strategies and sensitivity methods were tested to answer our research questions (Sec-

tion 3.1) regarding SA. Instead of arbitrarily choosing an SA method (task 1: choose

the sampling-based SA method) and the sampling strategy (task 2: choose the sampling

strategy), we decided to test multiple combinations of techniques. The con�guration of
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the experiments is presented in Table 3.7, following a similar experimental design of what

was proposed by Fonoberova et al. (2013) and followed by Gan et al. (2014).
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Figure 3.7: Bootstrapped Cullen and Frey graph of FoM results kurtosis and squared
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We established the minimum quasi-random sample size of N = 800 runs as a guideline

for the other sampling techniques. The di�erences among the sample size in Table 3.7

were due to the requisites of each sampling technique. The sample size for MC, METIS,

and LH was assigned as 800 since there are no prerequisites for these techniques. The

sample size of OA was set to 841(= 1× 292).

For MOAT and SOBOL, 160 and 140 replications were used, resulting in samples of

size 800 and 840, respectively. For the FAST technique, the maximum harmonic isMs = 6

and the maximum frequency ωmax = 41, when n = 4. Thus, the maximum size of the

FAST sample for four inputs is 493. We decided to keep the FAST sample experiment,

even though it disregards the variance stability calculation, as an open question of the

experiment.
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Table 3.7: Experimental con�guration for the comparison of sensitivity analysis methods.

Sensitivity Analysis Sampling

Type Method Sensitivity measurement Technique Size

Gradient MOAT Modi�ed Mean and Standard Deviation MOAT 800
Linear-regression CA Spearman Correlation Coe�cient (SPEA) MC 800

RA Standardized Regression Coe�cient (SRC) MC 800
Response-surface SOT SOT score of sensitivity METIS 800

MARS MARS score of sensitivity METIS 800
GP GP score of sensitivity METIS 800

Other DT Delta score of sensitivity MC 800
Variance Sobol Sobol First and Total Indexes SOBOL 840

FAST First order index FAST 493
McKay-1 First order correlation coe�cient LH 841
McKay-2 Second order correlation coe�cient OA 841

To avoid an ad hoc de�nition on the sample size, we applied the same method presented

in Section 3.2.1 by �xing all input parameters and choosing an E = 0.001. A quasi-random

sample of 50 runs was determined as su�cient to qualify the model results for this given

set of parameters. The next tasks of the SA step are to obtain input's relative importance,

to check model behavior and to assess convergence. Those are presented and discussed in

the following Section.

3.4 Output analysis results and discussion

To continue to execute the following tasks of our SA step, we must perform many tests

and simulation. The global SA of all model outputs was performed using the MASE-

Driver-PSUADE integration. The primary data obtained from the execution of each of

the simulations are available for checking, reviewing, and replicating the experiments4.

Input's relative importance

The method of global gradient SA is presented in Figure 3.8. Results from both methods

of linear-regression-based SA are presented in Figure 3.9. Response surface SA methods

are presented in Figure 3.10. The sensitivity scores represent the �rst-order indices, i.e.,

the contribution to the output variance by every single input alone. If the parameters

are normalized [0, 1], then the most sensitive parameters get a score next to 1 while the

least sensitive ones get a score next to 0. The vertical axis in these �gures denotes the

4Simulation results and UQ raw data: https://gitlab.com/InfoKnow/MASE/MASE-BDI/

SourceCode/tree/master/PSUADE%20Raw%20Data

47

https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/PSUADE%20Raw%20Data
https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/PSUADE%20Raw%20Data


MASE-BDI input parameters used in the experiments. The simulations were performed

according to the experiment design (Table 3.7). The color scale of each grid indicates the

order of sensitivity from low to high; that is, light colors for low data values and dark

colors for high data values.
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Figure 3.8: Heat map of MOAT gradient-based sensitivity analysis for MASE-BDI simu-
lations, where TA - No. of Transformation Agents, TG - No. of Transformation Group
Agents, IE - Potential of Individual Exploration, and GE - Potential of Group Exploration.

Figure 3.11 presents the compilation of all qualitative SA methods regarding one

single output: FoM. FoM was chosen as the QOI of our investigation, as presented in

Section 3.3.4. The results of the variance-based (quantitative) SA methods for the FoM

output are summarized in Table 3.8.

To address the minimum sample size to detect the most sensitive variables e�ciently,

SA was calculated at di�erent sample sizes for each SA method. We illustrate the appli-

cation of MARS SA technique, exclusively for the FoM output, with di�erent sampling

methods and sampling sizes, as presented in Figure 3.12. The �nal result for minimum

sample sizes and sampling methods are compiled in Table 3.9.

Check model behavior and assess convergence

The application of UA and SA o�ers a valuable complement to each other, and their

close relation in ABMs has been proven by Fonoberova et al. (2013); Ligmann-Zielinska

et al. (2014); Pianosi et al. (2016). Since the Cerrado LUCC model is stochastic, there

is intrinsic uncertainty in the model even when all model parameters are �xed. One of

the main concerns of our work was to �nd the minimum number of model evaluations,
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Figure 3.9: Heat map of linear-regression-based sensitivity analysis methods for MASE-
BDI simulations, where TA - No. of Transformation Agents, TG - No. of Transformation
Group Agents, IE - Potential of Individual Exploration, and GE - Potential of Group
Exploration.

Table 3.8: Percentage of the variability of the results for each input based on variance-
based SA results for FoM output.

Method Sensitivity Measure Input %

TA TG IE GE

FAST Total-e�ect index 61.72 0.17 0.12 37.99
McKay-1 First-order Correlation Coe�cient 59.31 0.94 1.03 38.72
McKay-2 Second-order Correlation Coe�cient 51.59 1.65 0.86 45.90
Sobol-1 First-order index 57.59 0 0 42.41
Sobol-t Total-order index 54.89 0.03 0.01 45.07

i.e., the number of simulation runs that were required to secure the stability of output

variance. We chose to apply the methodology brought by Lorscheid et al. (2012) and

discussed by Lee et al. (2015).

Regarding the minimum number of runs in MASE-BDI, the found problem-speci�c

point of stability was 800. This result stays in the middle of the typical �nd in the

literature for a small number of inputs. The Gan et al. (2014) analysis is based on the

10 ·n rule, where n=number of input factor subject to SA. Pianosi et al. (2016) argue that

the number of runs depends on the SA purpose, that should be around 1 to 1000·n. When

the purpose is screening the parameters through variance-based methods, the theoretical

minimum number of runs should be 1000 · n.
From the results, it is clear that some statistical estimation must be done before
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Table 3.9: Minimum sample sizes for each sampling technique.

Sensitivity Analysis Sampling

Type Method Technique Size

Gradient MOAT MOAT 100

Response-Surface SOT MC 400
LH 400
LPTAU 400
METIS 800
OALH 361

MARS MC 200
LH 200
LPTAU 400
METIS 800
OA 361
OALH 361

GP MC 200
LH 200
LPTAU 400
METIS 400
OA 361
OALH 361

Variance FAST FAST 493
SOBOL SOBOL 400

McKay OA 400

OALH 400

arbitrarily choosing a sample size and calculating descriptive and dispersion statistics. To

neglect this previous analysis may lead to statistical pitfalls, such as results too uncertain

to be reliable. Some other customary approach to determine minimum sample size may

presuppose normality, and therefore its e�ciency becomes sensitive to the shape of the

distribution. This assumption is particularly relevant for the reason that ABMs and

most real data often don't conform to parametric distributions. Moreover, as sample size

increases, any theoretical distribution would likely be rejected.

Another interesting discovery found was that the de�nition of a sampling technique

might alter the minimum sample size required to reach variance stability. The most

common sampling approach involves a UA that summarizes the results of Monte Carlo

simulation based on simple random sampling. We investigated one other scenario with

quasi-random sampling and found that, for our particular case, the minimum sample size
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using random sampling is larger than the minimum found using a quasi-random sampling

design. Similar �ndings were described in other areas of application, such as �nancial

models (Niederreiter, Hellekalek, Larcher, & Zinterhof, 1998) and statistical circuit anal-

ysis (Singhee & Rutenbar, 2010). These results are in sync with the current trend of

the use of quasi-random sampling in ABM (Ligmann-Zielinska et al., 2014; Saltelli et al.,

2008), as it generates samples more uniformly over the parameter space.

Notwithstanding, in our investigation of SA techniques, we decided to test a broader

combination of sampling techniques and sensitivity methods. This exercise is another

guideline to be regarded, since there are sampling methods that best �t some SA methods

and others that are ine�cient or inappropriate. The design of the SA experiments must

consider it to avoid perfunctory SA.

Very distinct results arise from the comparison of di�erent SA methods in the Cerrado

LUCC model. Not every method was able to identify the most sensitive parameters,

such as the linear-regression-based techniques, SPEA and SRC, and the response-surface

technique DT. For the most part, every other technique identi�ed TA (Table 3.2) as the

most critical parameter for all outputs, therefore answering the initial question of which

parameters are responsible for most of the results' variability. Almost every technique

also identi�ed GE (input parameter 4) as an important parameter to most of the outputs.

The most signi�cant in�uence of GE is on the producers' accuracy, and in the pixel wrong

change, right change, and wrong persistence. It is also clear across the di�erent methods

that TG and IE (input parameter 2 and 3) are entirely insensitive, hence not essential to

explain the variability in the outputs.

These results show a positive correlation between input and output uncertainties and

present consistency of the screening results and physical interpretations. Since GE and

TA describe the amount of land transformation in a simulation, high values of these

parameters will increase the model output values. GE is the most sensitive parameter,

followed by TA. To understand and to reduce uncertainty within these two variables will,

therefore, reduce the uncertainty of the simulation as a whole. GE represents the amount

of land cover that is transformed by a group of human agents in a cell of the map. GE is

a sensitive value as it indicates the voracity and velocity of the current land exploitation,

which will directly a�ect the result of the simulation. GE was found as highly sensitive in

every SA method. Therefore, this result proves that the model is coded in such a way that

it behaves similarly to reality because the socio-economic groups responsible for large-scale

cattle ranching and permanent agriculture are the principal driver of deforestation in the

Cerrado (McAlpine, Etter, Fearnside, Seabrook, & Laurance, 2009; Smith, Winograd,

Gallopín, & Pachico, 1998). SA is used to prove this similarity between our model and

the observed drivers of change.
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For qualitative SA methods, both linear-regression and gradient-based sensitivity were

able to identify the non-signi�cant parameters. Regarding the most important parameter,

there are some discrepancies. We can highlight four �ndings. First, MOAT, MARS, SOT,

and GP got similar results for most of the outputs. Second, SPEA and SRC presented

very similar results, but di�er from the other methods regarding TA and GE. We argue

that traditional methods, such as correlation and regression analysis, are not suitable for

nonlinear and non-monotonic problems like the MASE-BDI model. Third, the results from

DT appear very di�erent from that of other methods. The DT evaluation metrics were

not able to screen the parameters correctly. Fourth, GP results were consistent in three

of four input parameters. The divergences in the importance of GE may be attributed to

the GP algorithm optimal con�guration, but further investigation is required.

Regarding variance-based SA methods, the results were robust for all methods, in-

dicating TA and GE the two parameters that explain almost all the output variation.

Considering the FoM output, TA was responsible for over 57% of the output variation,

followed by GE, that explains about 42% of the output variation. Both TG and IE

combined are responsible for less than 1% of the variance. There is a consensus among

variance-based results denoting that quantitative SA is more robust than qualitative SA.

The divergences in qualitative SA may be explained by the use of heuristics to represent

the relative sensitivity of the parameters.

For the SA comparison, the general �nding on every approach is described. Moreover,

the discrepancies and similarities of the related work (Table 3.1) are also summarized:

MOAT: The gradient-based SA technique was able to identify the elementary e�ects of

the inputs correctly, and it seems to be ideal for screening purposes. The downside is

that the interaction e�ects are not included. Gan et al. (2014) found similar results

in a study case with three times more parameters. We were able to �nd consistent

results with the minimum number of simulation runs, but Lilburne and Tarantola

(2009) argue that the sample generation is not straightforward. A blind adoption

of MOAT may not be representative since it is not a global SA practice.

Linear-regression: ten Broeke et al. (2016) and Lilburne and Tarantola (2009) agree

that regression is a simple technique that can describe relationships, which yield

insight into model behavior. The bad performance of the SPEA and SRC regression

methods was also found by Gan et al. (2014), which may demonstrate that for these

case studies, the regression model does not �t well to the particular ABMs.

Response-surface: These qualitative SA methods were very e�cient to indicate the

sensitive variables at a low computational cost (low number of runs). A discrepancy

was found compared to the work of Gan et al. (2014). In the Cerrado LUCC model,
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the DT method performed poorly, while in the related work there were no such

problems. On the contrary, Gan et al. (2014) discarded the use of GP because it

was not able to �nd the sensitive parameters, a situation that did not happen in

our study case. Response-surface methods are based on heuristics, and maybe these

heuristics are more problem-speci�c, and a general guideline of use of any particular

technique should not be endorsed before scrutiny.

Variance-based: The techniques with the higher computational cost were the ones with

more consensus among them. They were all capable of �nding the most sensitive

parameters, and this result is corroborated by di�erent works: (Gan et al., 2014;

Lilburne & Tarantola, 2009; Saltelli et al., 2008; ten Broeke et al., 2016; Thiele et

al., 2014a).

MC and LH were the sampling methods with better e�cacy for qualitative SA meth-

ods, identifying the most sensitive parameters with a sample size of 200. All the quanti-

tative SA achieved the same result with the sample size of 400. From the results, we can

attest that qualitative methods are more e�cient, i.e., �nd the sensitive parameters in

fewer model evaluations. The main disadvantage is that there is no consensus among the

methods, and in some cases, the resulting importance ranking of the parameters is quite

the opposite. Fonoberova et al. (2013) argue that the use of surrogate models in ABMs

may be an alternative to increase con�dence in qualitative SA methods. Conversely, the

results of all quantitative methods were broadly the same and the methods seemed more

robust. They were all based on variance decomposition and were capable of computing

parameter �rst-order e�ects, but it takes larger samples to do so. Quantitative methods,

such as Sobol, are indeed more accurate, but at a higher computational cost, e.g.(Gan

et al., 2014). For models with a larger number of parameters than the Cerrado LUCC

model, one must evaluate the trade-o� between accuracy and cost.

3.5 Conclusions

We investigated the various impacts that UA and SA experimental design have on ABM

outputs. The results show that, although much of the analysis is problem-speci�c, there

are known challenges that can be overcome by the use of statistical methods. Related

work comparison illustrates general practices that should be a routine, both to improve

the level of con�dence in results derived from ABMs and to promote more rational and

e�cient use of ABMs. We suggest performing a speci�c investigation of the problem,

aiming to test the robustness of the results. One should begin with an investigation of the

number of simulation runs required to secure the stability of output variance, followed by
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a design of experiments selection (quasi-random sampling). It was clear that the quantity

of samples has several rami�cations to experimental design and the quality of the analysis.

These steps must be done before UA. The results of UA should be explored in a global

variance-based qualitative SA, such as Sobol.

We also investigated the impact that sampling techniques, sample sizes, and SA meth-

ods may have on the model output analysis. We identi�ed the most signi�cant and non-

signi�cant parameters of the MASE-BDI model. By applying gradient-based, variance-

based, and linear-regression-based SA, we veri�ed that TA is the parameter responsible

for most of the variability of MASE-BDI results. Although the results were similar across

the di�erent SA approaches, they also showed that not any technique can be used without

being tested and compared with others beforehand. Choice of analysis methods and sam-

pling heavily impact model parameter sensitivities. Regarding ABMs, it seems that there

is no single method able to embrace all models. The best-�t method is still dependable

on the model and the goal of the experiment.

UA and SA were found to be essential tools for analyzing and evaluating ABMs, in

particular in the LUCC context on the Cerrado LUCC model. Other than assuring the

model predictions are correct, we believe those methods should be used for model cor-

roboration to help researchers check, e.g., if the assumptions are fragile, if the inferences

are robust, or if the variables are overly dependent. Regarding this matter, we imple-

mented a comprehensive UQ through the integration of MASE-BDI and PSUADE. We

were able to improve the Cerrado LUCC model factor prioritization setting, to identify

which factor was most deserving of further analysis or measurement, and to assess the

ABM parameter elasticity. As a future work, we are interested in identifying critical or

otherwise interesting regions in the space of the input factors. Also, we search to uncover

factors which interact, and which may therefore generate extreme values.

An ABM may be used for learning purposes, role-playing games, to understand the

dynamics of a process, or to investigate di�erent scenarios and con�gurations. Despite the

research area, the number of parameters or the size of the model, there is room to apply UA

and SA routinely, as a part of the modeling process or even in the model's operational use.

It is time to make the methodology of agent-based modeling more robust and the analysis

of results collected with ABMs more scienti�c. To this end, all expressions describing the

systematic and methodological analysis of the responses and behaviors of the model, and

the mapping between its inputs and its outputs (such as robustness checking, variability,

UA or SA), are to be disseminated to the community and to be applied on a regular basis.
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Figure 3.10: Heat map of response surface methods of sensitivity for MASE-BDI simu-
lations, where TA - No. of Transformation Agents, TG - No. of Transformation Group
Agents, IE - Potential of Individual Exploration, and GE - Potential of Group Exploration.
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Figure 3.11: Heat map compilation of SA methods for FoM, where TA - No. of Transfor-
mation Agents, TG - No. of Transformation Group Agents, IE - Potential of Individual
Exploration, and GE - Potential of Group Exploration.

Figure 3.12: Comparison of di�erent sampling methods and sampling sizes for MARS SA
method.
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Chapter 4

"Evaludation" of agent-based

simulation output to improve analytical

con�dence

Full article under review in Journal

Simulation Modelling Practice and

Theory.

4.1 Introduction

ABMs are acknowledged for modeling complex systems, and simulations are commonly

used to understand the dynamics and behavior of socio-ecological systems, such as LUCC.

Realistic modeling and simulation of those systems must include the non-deterministic

features of the system, i.e., the model must embrace the existence of uncertainty in the

system or the environment, or human interaction with the system (Oberkampf, DeLand,

Rutherford, Diegert, & Alvin, 2002).

Although ABMs provide a powerful tool for analyzing uncertain emergent phenomena,

its utility is limited by di�culties in model analysis. ABMs simulations become rapidly

complicated, what makes di�cult to demonstrate the model is realistic and reliable. Sig-

ni�cant drivers of this complexity are the number of factors, potential interactions between

factors and possible non-linear e�ects (N. Gilbert & Troitzsch, 2005).

Rather often, ABMs are too complex and not at all appropriately validated to add

value to informed decision making. Conversely, some ABMs are broadly applied without

employing basic mechanisms of quality assurance(Grimm et al., 2014). These opposite

realities stem from a not yet established culture of documentation, testing, replicability,

and validation in ABMs. Even though almost all ABM and simulation review have ex-
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pressed the need for statistical methods to evaluate the con�dence of the results, these

problems continue to be shortly tested and performed almost perfunctorily. One way to

address these issues is standardization(Lorscheid et al., 2012).

Sensitivity analysis (SA) is referred to as a critical tool to help this type of model

analysis because it quanti�es the e�ects of changes in model parameters and inputs on

the model predictions. However, existing methodologies of SA may be insu�cient or

not well-suited for a proper ABM analysis. Uncertainty Analysis (UA) is another set of

methods that can be used to improve model legitimacy. Both SA and UA are closely

related. Some authors such as Saltelli et al. (2008) suggest that the discrimination is that

UA focuses on quantifying the uncertainty in the output of the model, while SA focuses

on apportioning output uncertainty to the di�erent sources of uncertainty (input factors).

UA and SA have been successfully used in tandem to simplify ABMs applications such

as Ligmann-Zielinska et al. (2014),Fonoberova et al. (2013),Parry et al. (2013),Ligmann-

Zielinska and Sun (2010b). The work of Ligmann-Zielinska et al. (2014) argue that any

systematic evaluation of ABM uncertainty should meet three modeling objectives: i) the

use of UA to evaluate the validity of simulation results; ii) the use of SA to generate a

more parsimonious model; and iii) to prioritize input data re�nement by identifying the

ABM factors that are mostly responsible for model output variability.

The position paper of Hamilton, ElSawah, Guillaume, Jakeman, and Pierce (2015)

describes a concrete advantage of this integrated assessment: to develop simpli�ed or

more computationally e�cient versions of ABMs. Where the original model is complex,

speeding up computation might allow more runs to be made to allow exploration of un-

certainty, or might allow the model to be used in an interactive setting with stakeholders.

The simpli�cation might also help identify dominant characteristics of the system that

are not otherwise obvious, or allow the e�cient derivation of model properties, such as

sensitivities to changes in inputs.

This work presents a systematic and standardized procedure for ABM research based

on the model analysis work�ow proposed by Abreu and Ralha (2018), composed of the

design of experiments, UA and SA, focusing on their usefulness for the output analy-

sis of LUCC ABMs. We applied those techniques in an LUCC ABM, on a particular

case study of the Brazilian Cerrado. The results are simpli�ed versions of the model,

which can be used to explore model outcomes or conduct an exploratory analysis. Every

step is documented for improving the e�ectiveness of communication, transparency, and

reproducibility of our experiments.

For the sake of clarity, we do not imply that a simpler model is more likely to be true

or get closer to the essence of the matter. In the interest of ABMs principles of model

building, we seek model simpli�cations only if and when the model and evidence justify
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this. The simpli�cation is grounded in objective principles such as the reduction of vari-

ability. We characterized this modeling approach as KIDS (Keep It Descriptive, Stupid)

and de�ned by Edmonds and Moss (2005): we start with a straightforwardly descriptive

model, based on evidence and resources, and then allows progressive development later

(including simpli�cation and abstraction).

Also, we contextualize the model analysis in a general framework for model "evalu-

dation" (evaluation + validation) proposed by Augusiak et al. (2014), anchored on the

modeling cycle. This new terminology describes the entire approach of assessing a model's

quality and reliability. This framework proposes speci�c activities to document, check and

verify each step of the design and simulation of a model. We focused on the last three

stages of the evaludation process: model output veri�cation, model analysis (based on the

best-practices proposed by Abreu and Ralha (2018)), and model output corroboration.

For each item, we provide the step-by-step of activities, applied to the case study model.

We chose a framework of validation (catch-all term), so it is clear to decision-makers

whether our model is a su�ciently good representation of our real system counterpart,

and what criteria were used to answer this question. Therefore, we aim to provide enough

information so that our model predictions could be more policy relevant.

In Section 4.2 we describe the UA and SA techniques, as well as the modeling and

validation cycle considered in this manuscript. Also, we formulate and detail our inte-

grated empirical proposal. Section 4.3 presents a portrait of the LUCC study-case. In

Section 4.4, the evaludation of our framework is presented. In Section 4.5 we present a

step-by-step view of the model simpli�cation process and discuss our results. Finally, we

conclude and present some future research work (Section 4.6).

4.2 Materials and methods

Every assessment of ABM output must begin with the de�nition of the quantity of interest,

the output metric that provides insights about the model quality. In LUCC models, the

metric is often related to the quality of the predicted maps generated through simulation.

In this Section, we describe the methods that are going to be applied in the model analysis

work�ow, such as the output metric, the uncertainty analysis and the sensitivity strategies,

and how they are integrated. We present our experimental design and provide context

about how the model analysis should be understood as a task under a model evaludation

framework.
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4.2.1 LUCC goodness-of-�t metric

There are several veri�cation techniques designed for spatial models. Social-ecological

models need to be calibrated with spatially explicit data. Most spatial LUCC models use

LUCC maps based on remote sensing as a starting point. We chose calibration tools that

use aggregated values and spatial explicit validation methods, like the method proposed

by Pontius et al. (2008). The authors developed several statistical LUCC indexes to

determine accuracy (goodness-of-�t), including the Null Model Hypothesis, a reference for

the LUCC model accuracy that corresponds to only persistence. Also a Figure of Merit

(FoM), a ratio between correct predicted changes and the sum of observed and predicted

changes. This methodology will be used in the steps four (model output veri�cation) and

six (model output corroboration) of the evaludation framework.

The underlying principle of those techniques (Pontius & Millones, 2011) (O'Neill &

Niu, 2017) is the distinction between the quantity of change of a land use type and the

location where these land use changes take place. The accuracy of the model is measured

by the level of agreement between the reference (real) and the predicted (simulated) maps.

The method compare: 1) a reference map of the initial time t0; 2) a reference map of the

subsequent time ti; and 3) a prediction map of the subsequent time ti. Those references

and predicted maps are compared, pixel by pixel, and classi�ed into percent correct and

percent error.

These components allow the calculation of the FoM measurement that expresses the

overlap between the observed and predicted change. This value ranges from 0 (no overlap)

to 100 (perfect overlap).

4.2.2 Uncertainty analysis

From the modeling perspective, uncertainty is the lack of exact knowledge, regardless of

what is the cause of this de�ciency (Refsgaard, van der Sluijs, Højberg, & Vanrolleghem,

2007). One of the main sources of uncertainty are the model factors. Factors comprise

various uncertain model components including variables, parameters, spatial data (maps)

and functions, which often in�uence model behavior (Lorscheid et al., 2012). According to

Saltelli et al. (2008), UA focuses on quantifying uncertainty in model output and usually

precedes SA. Monte Carlo, based on random sampling, is the most common UA approach

in ABMs.

In Abreu and Ralha (2018), we developed a baseline scenario of the same case study

and performed a wide-ranging investigation of the impacts that di�erences in sample

sizes, sample techniques, and SA methods may have on ABM model output. After a

comprehensive study of the behavior of di�erent sampling methods in the case study, we

60



chose to use Sobol Extended (SOBOL) (Saltelli, 2002), which is a replicated version of low-

discrepancy sequences (quasi-random samples). The SOBOL sampling strategy generates

a uniform distribution in probability space, a qualitatively random distribution, �lling

previously unsampled regions of the probability function. This is done with two random

r · n sample matrices M0 and Mn+1, where r is the number of replications and n is the

number of input factors. Therefore, the total number of sample points is (n + 2) · r.
The use of SOBOL is in sync with the current trend of use of quasi-random sampling in

ABM (Ligmann-Zielinska et al., 2014) (Saltelli et al., 2008), because it generates samples

more uniformly over the parameter space and comprises variation reduction techniques

that arti�cially manipulate the sampling procedure.

ABMs are stochastic, and therefore the experimental error variance in estimation must

be assessed as part of the model analysis. The stochasticity in model outcomes requires

that any analytical exercise must be drawn from a su�cient number of samples. We

adopted the concept of variance stability proposed byLorscheid et al. (2012) and Field

and Hole (2003), where variance measures can determine the needed number of runs

required per setting of a given simulation. We chose the coe�cient of variation cV as

our measure and obtained 800 as the minimum sample size of our LUCC model for a

determined quantity of interest (QOI) (Abreu & Ralha, 2018).

Selecting an appropriate sample design and the sample size is paramount since UA and

SA are computationally expensive. Sampling methods provide a systematic exploration

of the parameter space that guarantees the sample to have speci�c statistical or structural

properties. The purpose of these methods is to reduce the number of parameter sets that

are considered, but still chose space-�lling points in the design space (Thiele, Kurth, &

Grimm, 2014b).

4.2.3 Sensitivity analysis

SA consists of studying the e�ects of changes in the input on the output of a model. We

adopted the application goals for SA which are common for ABM research, as proposed

by Broeke, van Voorn, and Ligtenberg (2016): 1) to gain insight in how patterns and

emergent properties are generated in the ABM; 2) to examine the robustness of emergent

properties; and 3) to quantify the variability in ABM outcomes resulting from model

factors.

Uusitalo, Lehikoinen, Helle, and Myrberg (2015) argue that the fundamental purpose

of SA is to alter model input of the model and study the subsequent changes in model

output. If the output values change little, the output is robust to changes in QOI within

the model. It can indicate that the uncertainty about the QOI is relatively small. Con-

versely, if QOI changes markedly when factors change within their reasonable range, then
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it is a sign that there is substantial uncertainty about the variable's value (Uusitalo et

al., 2015).

There are various methods of SA, and each one has advantages and limitations. In the

particular case of SA in spatial ABMs, we incorporated the general guidelines provided

by Lilburne and Tarantola (2009) and Fonoberova et al. (2013). We have already tested

and compared di�erent SA methods, as presented in Abreu and Ralha (2018). Following

these results, we selected the SOBOL variance-based global SA method (Sobol', 1993).

The SOBOL method decompose the output variance V (y) that assumes that the input

factors are independent, hence, model free,

V (y) =
∑

V (i)
i
V (i) +

∑
V (i, j)

i,j
+ · · ·+ Vi,j,...,m, (4.1)

where the partial variance is de�ned as

Vi = Vxi(Ex−i
(y|x)), (4.2)

with xi denoting all parameters except for xi. If Vi is large, the expected model outcome

strongly varies depending on xi, indicating the factor to be sensitive. Sensitivity indices

are de�ned by considering the partial variance relative to the total variance,

Ss,i =
Vi
Vy
. (4.3)

The �rst-order index represents the main e�ect contribution of each input factor to

the variance output. The total e�ect of a variable would be the total contribution to the

output variation, that is its �rst-order e�ect plus all higher-order e�ects due to interaction.

Higher-order sensitivity indices are de�ned by computing the partial variance over two or

more parameters instead of a single parameter.

4.2.4 Integrated assessment of UA and SA

The coupled use of UA and SA has many objectives and has been successfully applied

in di�erent context in ABMs through the literature ( Abreu and Ralha (2018), Abreu

and Ralha (2017), O'Neill and Niu (2017), Fonoberova et al. (2013), DeJonge, Ascough,

Ahmadi, Andales, and Arabi (2012), Ligmann-Zielinska and Sun (2010a), Crosetto, Taran-

tola, and Saltelli (2000)). We chose to employ Ligmann-Zielinska et al. (2014) quantitative

UA-SA systematic evaluation of ABM uncertainty to meet three modeling objectives: 1)

The use of UA to evaluate the validity of simulation results; 2) The use of SA to generate

a more parsimonious model; and 3) to prioritize input data re�nement by identifying the
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ABM factors that are mostly responsible for model output variability (using both UA and

SA).

In this framework, UA is applied to check the variability of the results in a stochas-

tic baseline model (Figure 4.1). Therefore it is possible to improve model rightfulness,

where the distribution of results informs the expected value validated against independent

data, the variance around the mean and the extreme results. The SA is then applied to

indicate which factors are responsible for the variability of results in two di�erent set

of experiments: exploratory and explanatory. Both are simpler versions of the baseline

ABM.

In the exploratory experiment, the input space is restricted to the inputs that pro-

duced the most of the variance of the baseline ABM, creating a practical model with

output distribution similar to the initial model. The bene�t of this experiment is the

possibility to simulate low-probability, but high-consequence events that may be of high

policy relevance. In the explanatory experiment, the framework proposes the re�nement

of the most in�uential input value, resulting in a model that is less spread but preserve

the mean of the output. Ligmann-Zielinska et al. (2014) argue that to improve model

performance and provide a scienti�c explanation it is necessary to reduce output vari-

ability to achieve the necessary accuracy. This explanatory analysis would expose the

smallest number of inputs in�uencing the steady state of the modeled system. To explain

(di�erent from predict) itself is a reason to model (Epstein, 2008), because it could bring

to light the system-wide regularities which manifest themselves through the mean of the

output of interest.

4.2.5 Evaludation of environmental models

Evaludation is the terminology proposed by Augusiak et al. (2014) to describe the entire

process of assessing a model's quality and reliability. It is based on the modeling cycle,

and it is composed of six fundamental steps: 1) data evaluation; 2) conceptual model

evaluation; 3) implementation veri�cation; 4) model output veri�cation; 5) model analysis;

and 6) model output corroboration. A simpli�ed representation is presented in Figure 4.2.

Data evaluation is a critical step for scrutinizing the quality of numerical and qualita-

tive data used for model development and testing. It includes the data used to parametrize

the model via calibration, to de�ne the conceptual model, to design the model structure,

to formalize expert knowledge in probabilistic if-then rules, among others. Data is a

signi�cant source of uncertainty, and therefore data themselves do not always represent

the real system su�ciently well. As Augusiak et al. (2014) evince, "a model cannot be

expected to provide more accuracy and clarity than what has been used to develop it in

the �rst place".
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Figure 4.1: Framework for coupling uncertainty and sensitivity analysis of ABMs. Exper-
iments to apply variance decomposition to (A) simplify a baseline stochastic model, and
(B) to maintain its exploratory power embodied in outcome variability or (C) to improve
its exploratory power by reducing its outcome variability. Source: (Ligmann-Zielinska et
al., 2014).
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Figure 4.2: Representation of the evaludation steps of model development proposed by
Augusiak et al. (2014). The modeling cycle presents the terminology for model qual-
ity assurance and it is an adaptation of the work of Refsgaard and Henriksen (2004)
and Schlesinger (1979).

Conceptual model evaluation is the step created to examine the simplifying assump-

tions underlying a model's design. The assumptions include the spatial and temporal

scales, the choice of environment, entities and processes to be represented, and even def-

initions about the stochasticity and interactions. The conceptual model is prone to bias

due to the modeler subjectivity, judgment, and lack of awareness. The third evaludation

step is the implementation veri�cation. It concerns to test the model's implementation in

equations and as a computer program. This element is concerned not only in checking for

code errors and bugs but also for detachment due to vagueness in the model description.

The model output veri�cation is an assessment of "how well model output matches

observations" for a model is to be a good representation of the real system. However, re-

searchers should be aware of what degree calibration, initial states of the model, and data

sampling were involved in obtaining good �ts of model output and data. Model analysis is

the �fth step and regards the exploration of the sensitivity to changes in the computerized

model parameters. Also to make sure that the emergence results, produced by the behav-

iors and processes of the model, were understood. Finally, model output corroboration
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is responsible for comparing the model outcome, often predictions, to independent data

and patterns not used in the model conception and calibration.

Augusiak et al. (2014) propose this set of terms and "quality assessment" processes to

ensure the reduction of avoidable uncertainties, to establish a control framework of the

model, to improve communication (to peer researchers, decision-makers, non-technical

audiences), to promote transparency of the capabilities/limitations of a model, and to

raise the con�dence of the model's results. However, the authors highlight that it is not

possible to create a fool-proof protocol considering the complexity of environmental issues.

4.2.6 Proposal

We apply the general evaludation process proposed by Augusiak et al. (2014) to promote

transparency and to improve the overall quality of the simulation results. We focused on

presenting the details of the veri�cation, model analysis and model output corroboration

steps of the evaludation process. The overview of each step is presented in Figure 4.3.

RealityComputerized

model Model output
corroboration

...

...

Input factors

x1 x2 xn

Model

y=y(x)

Output
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Factor Fixing

Factor Prioritization

Reference map of t(0)
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Model output
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Predicted map of t(n)

Independent data 

(map) of t(n)

Comparison of model 

predictions with

 independent data

Figure 4.3: Integrated uncertainty and sensitivity assessment applied to the evaludation
steps within the modeling cycle.

We used the most e�cient sampling strategy, UA and SA methods for our speci�c

land use study case (Abreu & Ralha, 2018). These methods were applied in a UA-SA

integrated assessment of an LUCC case study. As proposed by Ligmann-Zielinska et al.
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(2014), we seek to build two simpli�ed and more computationally e�cient versions of

our ABM. The exploratory experiment provides the opportunity to investigate extreme

system behavior. The explanatory experiment improves model performance and provides

scienti�c explanation necessary to reduce output variability and improve analytical con-

�dence.

Every step is applied aiming a more robust and concise model, focusing the reduction

of variability within the ABM outputs. What sets apart this scienti�c contribution is that

this simpli�cation is focused on the reduction of variability of initialization con�guration

of ABM simulation. Each step of the evaludation is documented, as well as each step

of the integrated assessment. This way we can demonstrate the robustness of the ABM

simulation outputs.

4.3 ABM land use case study

An overview of the case study is provided so the reader can understand the ABM and

its results. We will focus only on the ABM initialization variables as factors in the

experiments. The description of the parameters and its impacts will be restricted to this

dimension of uncertainty.

4.3.1 MASE-BDI computation modeling platform

Many environmental ABM simulation tools perform land change using the agent's ap-

proach, but few are using rational agents. Considering that agent's cognitive reasoning and

decision making can be executed within the Belief-Desire-Intention (BDI) model (Brat-

man, 1987) the options are even fewer. Thus, this work uses the Multi-Agent System

for Environmental (MASE)1 simulation tool (Ralha et al., 2013) which was extended by

introducing rationality to agents with the BDI model resulting in the MASE-BDI (Coelho

et al., 2016). MASE-BDI allow multiple types of agents with di�erent behaviors to repre-

sent the interactions and relations between agents and the physical environment consid-

ering spatially explicit models in the context of land change. A complete methodological

description of MASE is available in Ralha et al. (2013). In Coelho et al. (2016), the

MASE-BDI implemented architecture with the description of the agents' reasoning model

and an auto-tuning module is presented.

1MASE Project Website: http://mase.cic.unb.br/
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4.3.2 LUCC model description

The MASE-BDI LUCC model is a socio-ecological ABM with the purpose of exploring

how the land cover is a�ected by external disturbances such as the individual behavior

of agents and changes in land use policies and regulations. It is a spatially explicit

model where the real landscape is represented by a set of geographic information system

(GIS) derived maps. This model has a hybrid framework because it allows researchers

and stakeholders to explore land change from the emergence of individual decision-making

(farmers and ranchers will be based on the BDI mentalistic approach) and from a top-down

perspective (regional spatial planning). The LUCC model presented herein is committed

to the Transparency and Openness Promotion (TOP) guidelines (Nosek et al., 2015) and

all the model code, maps and data are available for reproducibility2. This paper provides

an overview of the conceptual model. For a full description of the model in the ODD

protocol (Grimm et al., 2006) for ABM communication, readers can refer to Ralha et al.

(2013).

Figure 4.4 presents the structure of MASE-BDI conceptual model using a UML Class

diagram with properties/attributes sit at the top and methods/operations at the bottom.

Note that the SimulationManager, SpatialManager, TransformationManager, and Trans-

formationAgent inherit from BDIAgent through an implementation relationship. The

FarmerAgent and the RancherAgent implement the TransformationAgent through a gen-

eralization relationship being an individualAgent or a GroupAgent. The SimulationMan-

ager instantiates the SpatialManager and TransformationManager. The SpatialManager

manages the simulation GRID that contains Proximal Matrix. The GRID and Proximal

Matrix contain Cell (composition - each simulation Cell has an instance of the GRID

and Proximal Matrix). The GRID can call Proximal Matrix's properties or methods.

The TransformationManager implements the con�ict resolution of the Transformation-

Agent's, while the TransformationAgent checks the Proximal Matrix attributes before

movement. The TransformationAgent occupies and transforms the Cell's (aggregation),

while the TransformationManager instantiates and manages the TransformationAgents

(composition).

The land cover change result from the emergence of the individual decision making of

the ranchers and farmers. Each step of the simulation corresponds to a week in chrono-

logical time. The basic spatial unit is a plot, representing 1ha of the GIS map. During the

model setup, the simulation GRID is loaded with the reference map of the initial time t0,

and a set of GIS layers, representing the environment such as hydrology (lakes and rivers),

landscape, railways, highways, slope, streets and buildings, environment protected areas,

territorial zoning maps, etc. The sum of the physical layers creates a proximal matrix that

2Model availability: https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode
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Figure 4.4: MASE Class Diagram
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is perceived by the agents and is part of their beliefs. The farmer and rancher agents (TA

- Transformation agents) are associated with various socio-demographic and economic

factors (capacity of exploration, capacity of production, land tenure) and assigned to a

plot.

A simple activity diagram for the TA is presented in Figure 4.5. A �rst step is to be

assigned to a plot, where the agent may choose to explore the land or move to a more

attractive plot of the neighborhood. If there is competition, the con�ict is brought to a

solution by a higher entity. TAs have their behavior and beliefs, explicitly changing the

natural landscape to achieve their internal goals.
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Figure 4.5: Transformation Agents Activity Diagram.

4.3.3 Case study: ABM of the Cerrado Federal District anthropic

land use

Brazil's Cerrado is the country's second-largest biome, and the most bio-diverse and

threatened savannah on the planet. This biome has already lost 48.2% of its original

vegetation cover and is being a�ected by an intense process of habitat fragmentation. The

high rates of vegetation loss and deforestation are attributed to unsustainable agricultural

activities such as soy production and cattle ranching. This over-exploitation poses a
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continuous threat to numerous animal and plant species, especially to an estimated 20%

of endemic species.

The Federal District is the only Brazilian state that has its territory entirely covered

by the Cerrado biome. All of its 5, 789km2 territory is inserted in the Environmental

Protected Area (EPA) of the Central Plateau, as presented in Figure 4.6. Therefore,

the Federal District Spatial Plan must comply with various environmental management

guidelines, from the federal, regional and local governments. This overlapping in attribu-

tion creates a peculiar scenario, in which farmers and ranchers receive multiples incentives

and penalties depending on the land use, the speci�c area of the territory and the scale

of the land exploration.

km

Hydography

Highways

Lakes

EPA St. Bartolomeu River Basin 

EPA Gama\Cabeça Veado Basin

EPA Cafuringa

EPA Paranoa Lake

EPA Central Plateau

Figure 4.6: Federal District Environmental Protected Areas. Source: Adapted
from (IBRAM, 2014).

The case study considers the participation of farmers and ranchers as land transforma-

tion agents that move and explore the land within the DF territory. The transformation

agents have di�erent beliefs, desires, and intentions and may comply with the given DF

spatial plan.

A random distribution of agent behaviors usually initialized ABM simulations. In some

cases, empirical data should be used to bring the model closer to reality. However, Grow

and Van Bavel (2017) argue that one of the primary challenges of ABM initialization

of the population of agents is that there is no set of data that contains every possible

behavior. Therefore, researchers must elaborate a strategy to initialization, that can be

purely random, utopian data-driven or, in most of the cases, something in between. In this

case study, there are four initialization factors, presented in Table 4.1, that are responsible

for a signi�cant portion of output variability (Abreu & Ralha, 2018). We start with a
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simple random initialization and will adjust the range of the factors based on the feedback

provided by the evaludation process. This way we can use empirical data not only for the

veri�cation but also for the initialization.

Table 4.1: Input factors of the MASE-BDI simulations of the land use case study.

Factor Description Distribution Range

TA No. of Transformation Agents Uniform 1 - 100
TG No. of Transformation Group Agents Uniform 10 - 100
IE Potential of Individual Exploration Uniform 1 - 500
GE Potential of Group Exploration Uniform 500 - 1500

4.4 MASE-BDI LUCC model evaludation

We use model evaludation to improve the overall con�dence of the models' results. The

following items describe a summary of the steps that were performed in the evaludation

process. The focus of this manuscript, model veri�cation, analysis, and corroboration,

will be detailed in Section 4.5 and the predictive modeling capability of the MASE-BDI

LUCC model will be discussed.

Data evaluation: The LUCC model was calibrated to experimental data. Also, the

available data for the parametrization of the model parts were taken from peer-

reviewed literature and expert interviews. The empirical characterization of agent

behavior was performed according to the Smajgl et al. (2011) methodology and

is described in details in Ralha et al. (2013). We used parallel auto-tuning algo-

rithms to evaluate the search space of over six million parameter combinations, and

quickly tune the simulation model, regardless of the QOI used (Coelho et al., 2016).

However, spatially explicit sets of data are scarce and are available in di�erent tem-

poral and spatial resolutions. We had to manually transform the spatial data into

the same scale and group it in the same temporal window. Qualitative observed

patterns were also used to design the overall model structure.

Conceptual model evaluation: The design and assumptions of the LUCC model sim-

ulated in MASE-BDI model are built over an existing model of the dynamics of the

agricultural frontier in the Amazon and savannas of Brazil (Cerrado), proposed by

Smith et al. (1998) and presented in Ralha et al. (2013). The conceptual model

design is described on the ODD (Overview, Design concepts, and Details) Protocol,

designed by Grimm et al. (2010) to standardize the published description of ABMs.
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Implementation veri�cation: In order to verify and guarantee that the model code

works according to the ODDmodel description, we performed a series of code checks,

unitary tests, and compilation tests. Moreover, visual testing through MASE-BDI

interface was carried out. The computational e�ciency was veri�ed with stress tests,

with extreme parameters values.

Model output veri�cation: In this study, we performed calibration of the initialization

parameters to optimize the FoM goodness-of-�t metric to our initial data set. We

adopted the terminology proposed by Trucano, Swiler, Igusa, Oberkampf, and Pilch

(2006), where calibration ultimately is an optimization under uncertainty problem.

Therefore, we formulated the calibration problem to explicit acknowledges model

uncertainty. We adjusted the set of parameters associated with the model code so

that the model agreement is maximized to a set of experimental data. The spatial

explicit index metrics such as the null hypothesis and FoM were our QOI, i.e.,

the calibration considered not only the quantity of land use change but also the

allocation of change in the spatial grid. Each step of the model output veri�cation

is described in Section 4.5.1.

Model analysis: Although there is a relatively high computational time for each simu-

lation, a comprehensive SA was performed. The sensitivity of the model outcomes

was evaluated in a set of simulations covering di�erent sampling strategies, sample

sizes and SA methods (Abreu & Ralha, 2018). In this manuscript, we conducted

an SA to explore the behavior of the model regarding the simulation initialization

parameters, i.e., factors that were not directly determined from the literature. The

model analysis is presented in Section 4.5.2 and has two main objectives: under-

stand the emergence of model outputs to produce a simpli�ed and computational

e�cient version of the model (exploratory and explanatory).

Model output corroboration: It is hard to �nd data that can be used to corroborate

model results, given the spatiotemporal resolution of the LUCC simulations. Only

recently the Brazilian Environmental Ministry published data from di�erent years

that could �nally be used to corroborate the model. The experiments are presented

in Section 4.5.3.

4.4.1 Design of experiment

We designed three sets of experiments to verify and analyze the model: a baseline exper-

iment, an exploratory, and an explanatory experiment described as follows.

• In the baseline experiment, we run 138,800 runs using all four factors;
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• In the exploratory experiment (1680 runs), we performed SOBOL SA and included

the factors that highly impacts the FoM output;

• In the simpli�ed explanatory experiment (1680 runs), we perform a variance reduc-

tion by �xing the most in�uential factor from the baseline experiment, leaving the

remaining factors unchanged.

Finally, a corroboration experiment was performed. All simulations were run using

high-performance computing at the University of Brasilia. Factor samples were produced

using the quasi-random SOBOL experimental design. The sample size considers the

variance stability for E = 0.001, as presented in Section 4.2.2. SOBOL S and ST indices,

as long as all the UA were calculated using an integrated implementation of MASE-BDI

and PSUADE software package (Tong, 2005).

4.5 Results and discussion

The results of our ABM simulations are land use maps and a set of calculated metrics,

such as FoM, a goodness-of-�t metric. The spatially-explicit output is a simulated raster

map of the predicted LUCC change, illustrated in Figure 4.7, an example result from the

baseline experiment. The di�erent colors show the predicted land use cover produced by

simulation. Figure 4.8 represent a summary of the goodness-of-�t of the simulations runs.

As proposed by Pontius et al. (2008), each bar is a rectangular Venn diagram where the

solid and cross-hatched central segments represent the intersection of the observed change

and the predicted change, while the central solid black segment is the change that the

model predicts correctly. When FoM > 50%, it means the amount of correctly predicted

change is larger than the sum of the various types of error, and the model is more accurate

than the null model.

Figure 4.8 exemplify some contrasting results due to the variation of initialization

parameters. In Simulation no55 (Sim55), a result obtained from TA=55 agents, FoM is

55 whereas Simulation no5, a result obtained from TA=5 agents, FoM drops dramatically

to 19. It is clear that this is still not a well-calibrated model. A brief analysis would

show that variation in the initialization of the simulation may result in radical changes

of signi�cant consequence to the simulation results. We use UA-SA integration to clarify

this results and focus on the causes of variability.

4.5.1 Model output veri�cation

To investigate what is the variability of results we performed UA in our baseline sample to

examine the distribution of the QOI. Table 4.2 summarizes descriptive statistics for FoM,
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Body of water
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Figure 4.7: A land cover predicted map produced from a simulation on the Cerrado LUCC
model in Brazilian Federal District, showing the changes from the year 2002 to 2008.

the moments and its errors. The �rst moment is the mean, denoted by µ = EX. The

second central moment is the variance. The third moment, or skewness (γ) is the measure

of the lopsidedness of the distribution. Kurtosis, the fourth central moment is a measure

of the heaviness of the tail of the distribution, compared to the normal distribution of the

same variance. Figure 4.9 summarizes the empirical density of the FoM output on the

baseline experiments simulations.

Table 4.2: Uncertainty Quanti�cation: moments results of MASE-BDI model's FoM.

Mean (Error) Variance Skewness Kurtosis

41.58 (0.57 ) 268.17 -1.34 3.25

Still, regarding the UA, the null hypothesis (H0 = µ are equal) would con�rm that all

ABM representations are equivalent, but the experiments were considered being signi�-

cantly di�erent from any other (one way ANOVA (F (15, 64125) = 625, p = 0, p < 0.05)).

This result refutes the assumption that all ABM representations were equivalent. How-

ever, UA alone does not provide the in�uence of the individual factors on the accuracy

of the �nal map. We were interested in knowing the in�uence of each factor on the FoM

variability. Figure 4.10 shows simple representations of pie charts of the S and ST indices

for Sobol.

It is clear that TA is the most relevant factor that in�uences the output of the model,

followed by TG. We needed to calibrate the input factors aiming to reduce the sampling
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Figure 4.8: Sources of percent correct and percent error in di�erent runs of the MASE-BDI
simulations.

variance. Thus, we used an empirical approach to calibration as an optimization problem.

We generated a quasi-random sample and performed a total of 138,800 simulation runs

to adjust the range of the input factor. To further investigate the TA factor, we produced

a scatter plot (Figure 4.11 for the visualization of the relationship between the FoM (x

axis) and the number of agents, TA (y axis). It is possible to see that there is much noise

in FoM when TA< 40. The same observations were generated for the visualization of TG.

The maximization of FoM was considered the optimization function, and we generated a

set of range restrictions on the input factors, as presented in Table 4.3.

Table 4.3: Initialization con�guration parameters post-calibration.

Parameter Description Distribution Lower bound Upper bound

TA No. of Transformation Agents Uniform 40 80
TG No. of Transformation Group Agents Uniform 10 100
IE Potential of Individual Exploration Uniform 1 500
GE Potential of Group Exploration Uniform 400 1000

Table 4.3 presents the experimental design henceforth referred to as the baseline ex-

periment. The limitations imposed in the inputs initial range are presented in Figure 4.12.

The distribution of the FoM after the calibration is presented in Figure 4.13. Table 4.4

summarizes the moments for the baseline experiment. Now the results of no simulation run

is signi�cantly di�erent from any other (one way ANOVA (F (1, 1185) = 0.746, p = 0.39,

p > 0.05)). We can con�rm that in the baseline experiment all ABM representations are

equivalent given the signi�cance level of 0.05.
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Figure 4.9: Empirical density of the baseline experiment simulation' results of the FoM
distribution.

Table 4.4: Moments result for the baseline experiment, considering the calibrated input
factors.
Mean (Error) Variance Skewness Kurtosis
51.91 (0.57 ) 0.99 0.98 3.06

4.5.2 Model output analysis

The model analysis aims to explore the sensitivity to changes in the computerized model

parameters and includes a description and a justi�cation of the scenarios explored. We

used the variance to evaluate FoM variability, and the results show that the variance of

the second and third experiments are approximately equal (Table 4.5).

Table 4.5: Uncertainty Analysis: Means and Variance of Figure of Merit
Mean Variance

Experiment 1: Baseline 51.91 0.99
Experiment 2: Exploratory 51.98 0.97
Experiment 3: Explanatory 51.03 0.34

The �rst SA experiment is the simpli�ed exploratory, in which the input factors with

little or no in�uence on the variance decomposition are �xed. After our baseline SA

analysis, we chose to �x the input parameter TG= 45 and IE= 250, the mean values

for those factors. Due to their in�uence, TA and TG were not changed. Since FoM is
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Figure 4.10: Sensitivity analysis of FoM output in the baseline experiment.

almost insensitive to variations in TG and IE, the �xation of those factors has almost zero

in�uence in FoM output distribution. The results of the SA are presented in Figure 4.14.

In fact, the baseline experiment and the simpli�ed exploratory experiment distributions

are nearly identical, including their means and variances. Also, the variance decomposition

generated S and ST indices consistent with the baseline model.

The second scenario is the simpli�ed explanatory, in which the most in�uential input

factor is �xed. We set TA=55 (an arbitrary choice based on the best FoM). The results

of the SA are presented in Figure 4.15. In this experiment, we want to explore how our

ABM behaves when we �x the most sensitive initialization parameter. The results show

that the mean is roughly the same, but the dispersion around the mean highly decreases.

Also, because we �xed the most sensitive input factor, SA shows that only part of the

variance decomposition can be apportioned to individual factors.

4.5.3 Model output corroboration

Model output corroboration is responsible for comparing the LUCC model predictions

to independent data not used in the model conception and calibration. This step of

the model evaludation is only possible because a new set of data of the Federal District

land cover was released in 2017 by the Brazilian Environmental Ministry (Brasil, 2015),

composed of maps and satellite images of each year varying from 2009 to 2015. Before

this o�cial release, the only available data was from 2002 to 2008, and it was what we

used to test, veri�cation and calibration.

We run our baseline experiment from 2009 to 2015. The results show FoM= 51, 84,

with a total of 462, 76ha of new anthropic land cover change, added to the original map.

The external data from 2009 to 2015 reported nearly 4km2 of anthropic land change in
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Figure 4.11: Scatter plot of the relationship between FoM and TA in 138,800 simulation
runs.

the study area. Considering the simulation results of µ = 4.62km2 of land cover change,

we have that the simulated result is about 15% higher than the reported government

land cover change. Since our experimental design uses a more uniform (quasi-random)

sampling, we can infer that the calculated mean of land change is indeed the true (accu-

rate) measure of central tendency. Therefore, we considered that the independent data

promoted the model output corroboration.

Figure 4.16 illustrates the analytical procedure of map comparison proposed by Pontius

et al. (2008) to corroborate the allocation of changes in the land use. In the map (a), we

examined the di�erence between a reference map of 2009 and the reference map of the

year 2015. In the map (b) we examined the di�erence between the reference map of 2009

and the prediction map for 2015. We wish to investigate whether the model predicts the

land changes accurately. If the model were to predict the observed change correctly, then

�gures (a) and (b) would be equal. Finally, �gure (c) examines the di�erence between

the reference map of 2009 and the prediction map of 2009. Most of the error is location

disagreement, which occurs primarily because the model predicts land change at the wrong

locations.
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Figure 4.12: Distribution boxplots of the input factors (top) before the calibration and
(bottom) after the calibration process.

4.5.4 Discussion

The UA results show that a change from factor TA=55 to TA=5 can raise the error

due to observed persistence predicted as change in up to 290%. This radical changes of

signi�cant consequence to the simulation demonstrate the importance of assessing ABM

initialization. Moreover, the choice of the objective function or QOI in an ABM can have

a great impact on the identi�ability of model parameters. i.e., the optimum QOI may

not be given by a maximum in the parameter space, but rather by a complex interaction

structure, in which many di�erent combinations of the parameters are equally able to

provide best �tting model simulations (Saltelli et al., 2004). Although the initialization in

ABM can be tackled by gathering experimental data, the modeler cannot build a complete,

exact image of a real system and has to simplify some processes and representations.
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Figure 4.13: Density plot of the distribution of FoM outputs in the baseline experiment.

There will be underdetermination of the model due to epistemic uncertainty but also by

the amount and quality of data. According to Cobelli and DiStefano (1980), the only way

to uniquely identify model parameters, the number of conditional equations derived from

applying a model to a dataset has to be higher than the number of parameters, and there

must be su�cient variation in observations.

The UA results in the baseline experiment disclose another critical issue on ABMs:

over�tting. In an over�tted model, the factors are chosen and calibrated to reproduce also

the deviations present in the dataset, leading to an optimal �t in the calibration dataset,

but deteriorating prediction in other situations (Forster, 2000). Modelers have to deal

with the trade-o� between aiming for a perfect �t and the risk of deteriorating predictive

capacity for other samples. Zucchini (2000) argues that modelers should understand

calibration as a problem of maximizing the expected accuracy of prediction for any sample,

rather than �nding an optimum �t to observed sample. It is necessary for the ABM for

LUCC community of researchers to discuss what is an expected accuracy in a set of

measurements and maps.

Regarding the SOBOL sensitive indices, S and ST, the variance decomposition results

for the exploratory experiment is consistent with the baseline experiment. This simpli-

�cation is more computationally e�cient and could lead to a complete model analysis.

It is also worth mentioning that variance remains almost the same between the baseline
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Figure 4.14: Sensitivity analysis of FoM output in the simpli�ed exploratory experiment.
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Figure 4.15: Sensitivity analysis of FoM output in the simpli�ed explanatory experiment.

and the exploratory experiments. We can infer that the exploratory simpli�cation of our

model can be used in analysis without the loss of variability necessary when evaluating

LUCC policies. This simpli�cation maintains the resulting variability and therefore can

be used to identify less probable but highly consequential policy scenarios, as shown by

Ligmann-Zielinska et al. (2014).

On the contrary, the explanatory simpli�cation version of the model maintains the

same mean but reduces the variability. This is a consequence of the re�nement of data

because the most sensitive factor was �xed. The bene�t of this approach is to mimic a

scenario in which we obtain exceptionally accurate data for the most sensitive factor. It

could be used to analyze the behavior and interactions of the other variables, and raise

our understanding of other social and ecological processes of the LUCC region dynamics.

We agree with the assumption that says that it is best to reveal the complexity of a

problem through the simulation instead of through the model structure. These simpli�ca-

tions may provide a more robust and concise model, focusing the reduction of variability
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Figure 4.16: Sources of percent correct and percent error in di�erent runs of the MASE-
BDI simulations.

within the ABM outputs. One of the contributions of this manuscript is to show a real

application of the use of objective principles such as the reduction of variability to simplify

the model when data justify this approach. To focus on the initialization con�guration

of an ABM within an evaludation process may also help other researchers that face this

common challenges.

Regarding model output corroboration, it is clear that just the mere fact of comparing

model outputs to independent new data is neither su�cient nor necessary to make a model

more useful to policymakers and to conclude to its validity. However, is one more step

towards a more reliable model and predictions.

4.6 Conclusions

Despite the limitations and even though the presented analysis was done over a particular

simulator, we conclude that important feedback can arise from the application of a broader

evaluation process to improve the level of con�dence in ABMs simulation outputs. The

83



transparency of the sound statistic tests may contribute to a systematic treatment of

uncertainty and better modeler-user communication.

Researchers for descriptive and predictive purposes have used ABMs but still, have

limited use in policy-making. This may be explained by the lack of con�dence in the

accuracy of predictions. This UA-SA integrated assessment, applied within an evalu-

dation framework is an e�ort to open the ABMs "black box", to make the predictions

more transparent and to improve analytical con�dence. This approach serves as a tool

for better-informed ABM building and using of its results. Output uncertainty can be

reduced if we can improve the quality of the data on the most sensitive factors. There are

limitations to this approach, such as the choice of a QOI, in our case, the FoM goodness-

of-�t metric. The investigation of another output could alter the results and the most

in�uential factors. Also, changes in the distribution of the input factors may also result

in di�erent relative contributions to the outputs. This will lead to a future investigation

of the output space. We are also interested if we can make our simpli�ed versions of

the model pass the"falsi�ability" test. We will test di�erent theories to see if there is

any failure in the expected basic patterns of the model. Moreover, the study of changing

landscape patterns involve calculating the indices for images of a landscape taken at sev-

eral di�erent times in history and then observing how these indices vary over time. As of

today, the information on the landscape at each step of the simulation is not persisted in

the MASE-BDI framework. LUCC ABMs based on cellular-automata usually persist this

information. We will consider refactoring the code to gather this information for further

analysis of the spatial and temporal complexity.
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Chapter 5

General Discussion

ABMs are favorite for modeling complex phenomena. However, the credibility, and utility

of ABMs are hampered by the lack of model analysis, transparency, and reproducibility of

ABMs. It is partly due to the non-existence of a �t-all methodology for model validation.

Also, there is a lack of experimentation, supported by a wide range of arguments. Some

arguments suggest that experimentation is too di�cult, useless, or that it cost too much.

By the number of tests, simulations, experiments, and runs that were performed in this

thesis, one can understand why there is so little experimentation in ABM community.

A �rst question to be answered is: ABMs have to be validated at all? Only if the

answer is yes, we can argue that there is not enough of model analysis. Refsgaard et al.

(2007) argue, regarding Popper's scienti�c, philosophical school, that models cannot be

veri�ed or validated. Despite the terminology, we do not seek for absolute certainty, but to

consider the conclusions as admissible. Balci (1998) de�nes validation as substantiating

that the model, within its domain of applicability, behaves with satisfactory accuracy

consistent with the study objectives.

All of those insights must be the result of di�erent experimentation. Concerning

that topic, Tichy (1998) proposes an exciting discussion. The author states that no

amount of experimentation provides proof with absolute certainty. However, experiments

must be used for theory testing and exploration. To cite another computer scientist, Mr.

Dijkstra (Dijkstra, 1970), an experiment can only show the presence of bugs in a theory,

not their absence. Therefore we advocate that quantitative analysis of model outputs is

mandatory to probe the in�uence of model assumptions, to understand model results, to

ensure repeatability, and to raise the credibility of ABM as a science.

The usefulness of simulation models is limited by the ability of the modeler to demon-

strate the robustness of the model results. OAT analysis is the most popular SA technique

used in ABM. In Chapter 2 we were able to �nd the most in�uential factors but at a high

uncertainty. The uncertainty was so high that the con�dence intervals indicated that most

85



of the results did not meet the minimum goodness-of-�t criteria. This experiment should

su�ce to indicate that the current level of experimentation on ABMs is not enough. This

kind of shallow analysis does more harm than good. Modelers should be aware that even

a widespread technique should not be applied without questions. The proposed UA-SA

work�ow register a sequence of steps that must be assessed in any model analysis: What

is the point of variance stability? Which is the best sampling strategy? What is the vari-

ability of my results? Which SA measure should I apply? What factors are responsible

for most of the variability of the output? These questions can help to disseminate the

proposed work�ow and evaluation guidelines.

Another common argument is that this type of comprehensive investigation cost too

much, regarding time or computational resources. One could argue that more costly is to

publish a paper with unvalidated claims. The review works (Angus & Hassani-Mahmooei,

2015; Heath et al., 2009) show us that most modelers are publishing untested frameworks,

and this is one of the reasons ABMs are continuously criticized. The results of this thesis

do not suggests that every ABM idea must be experimented, but testing can help build a

reliable base of knowledge and reduce uncertainties. Also, testing can lead to unexpected

insights and quickly eliminate fruitless approaches and erroneous assumptions (Tichy,

1998). Researchers should probe the importance of the research question. Besides, the

insights gained from previous experiments are availed in the next iterations. All of the

experiments that we had to undergo in Chapter 3 gave us the understanding of how

MASE-BDI works regarding the factors under investigation. In Chapter 4, most of the

initial investigation was reused, therefore reducing the so-called high cost.

The discourse that ABM complexity is so high that a researcher may lose track of how

the model works can also be debated. If there are too many variables to control and too

much uncertainty, is more of a reason to execute those disciplinary experiments. We agree

with Tichy (1998) when he states that eschewing experimentation because of di�culties

is not acceptable science. However, it is essential to have in mind that experiments are

always be �awed in some way. Experiments may be based on unrealistic assumptions,

researchers may manipulate the data, or it might be tough to quantify the QOI. Despite

these problems, the �aws may be reduced by a description of robust experimentation.

5.1 Contributions

In this thesis, we achieved the proposed objective of evaluation of the application of

several methodologies of uncertainty quanti�cation in the ABM output analysis. We

performed an integrated application of UA and SA techniques and evaluated the impacts
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that di�erences in sample sizes, sampling techniques, and SA methods may have on model

output. To summarize, we highlight the following contributions of this thesis:

• Important feedback can arise from the application of a broader evaluation process

to improve the level of con�dence in ABM simulation outputs;

• The empirical work�ow can promote transparency and sound statistics tests, that

may contribute to a systematic treatment of uncertainty and better modeler-user

communication;

• UA-SA integrated assessment as a communication tool can open the model "black-

box";

• Parameter and Methodological uncertainty can e�ectively be reduced by the appli-

cation of these guidelines;

• The validation and model output corroboration of the Cerrado LUCC MASE-BDI

model is an important tool for understanding land-use dynamics and for policy

decision-making in Brazil.

In our proposed empirical work�ow to perform model output analysis, we organized

a set of tasks under a macro prism of validation/evaluation of an ABM. The application

of this work�ow can be generalized and applied in all ABM, because the tasks and steps

may be used as a guideline to assess the uncertainty of any kind of model. We advocate

that the model may be evaludated, but only about site-speci�c applications and to pre-

speci�ed goodness-of-�t criteria, limited in terms of space, time, boundary conditions and

types of application. The elaboration of this work�ow aims to improve the quality of ABM

studies by reducing the gap between the perceived need to improve ABMs credibility and

the lack of commonly agreed modeling guidelines.

UA and SA were found to be essential tools for analyzing and evaluating ABMs, in

particular in the LUCC context on the Cerrado LUCC model. Other than assuring the

model predictions are correct, those methods were used for model corroboration to help

researchers to check if the assumptions were fragile, if the inferences were robust, and if the

variables were overly dependent. Regarding this matter, we implemented a comprehensive

UQ through the integration of MASE-BDI and PSUADE. We were able to improve the

Cerrado LUCC model factor prioritization setting and to create simpli�ed scenarios to

explore di�erent parameter space regions. We also created a version of the model that

helped us to explain the behavior of the system under pre-de�ned variance restrictions.

All of the results were analyzed and validated by specialists.

We also re�ected that most experiments relies on a single �gure of merit. The inves-

tigation of another output could alter the results and the most in�uential factors. Also,
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changes in the distribution of the input factors may result in di�erent relative contribu-

tions to the outputs. Although we are aware of the limitations, we think we bene�t either

way. An interesting de�nition is attributed to Enrico Fermi: "there are two possible out-

comes: if the results con�rm the hypothesis, then you have made a measurement. If the

result is contrary to the hypothesis, then you have made a discovery". Following this logic,

in either case a conclusion can be made. New conclusions come from the experiments on

new ouput metrics.

Finally, an important property of good models is simplicity. A good model does not

just de�ne new useful quantities. It also leaves out many useless ones. Note that we

are saying simple rather than simplistic. We agree with the KIDS methodology and will

create simpli�ed versions of the model only if the data or the results explicitly points in

that direction.

Despite the limitations and even though the presented analysis was done over a par-

ticular simulator, we conclude that important feedback can arise from the application

of a broader evaluation process to improve the level of con�dence in ABMs simulation

outputs. The transparency of the sound statistic tests may contribute to a systematic

treatment of uncertainty and better modeler-user communication.

5.2 Future Work

As a future work, we are interested in identifying critical or otherwise interesting regions

in the space of the input factors. Also, we would like to search to uncover factors which

interact, and may therefore generate extreme values.

Also, calling a model validated does not make it valid. Researchers must continue to

work toward �nding ways to improve agent-based simulations. In this thesis we explored

the parameter input space. In our future work, we look forward to investigate the output

space and see if the model that we consider `valid' in this manuscript would also pass

the �fasi�ability� test. On the same note, another interesting future work for MASE-BDI

would be to test contrasting theories to see if there is fail in the expected basic patterns

of the model.

We marginally assessed the spatial and temporal complexity of the model under a

qualitative aspect, based on Agarwal et. al (2001) framework described in Ralha et

al. Ralha et al. (2013). The Cerrado LUCC model objective is to assess the landscape

dynamic having the mainly to human behavior drivers. It was out of the thesis' scope

to characterize the dynamics of patchy spatiotemporal mosaics, but it is something that

we would like to look into. Moreover, the study of changing landscape patterns involve

calculating the indices for images of a landscape taken at several di�erent times in history
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and then observing how these indices vary over time. As of today, the information of the

landscape at each step of the simulation is not persisted in the MASE-BDI framework.

We will consider re-factoring the code to gather this information for further analysis of

the spatial and temporal complexity.

Until now, we have been working with parameter and methodological uncertainty.

The next big breakthrough would be to extend our work to investigate the uncertainty

within model structure. Another step would be an attempt to balance empirical validity,

the base of this manuscript, with face validity, an approach that checks if processes and

outcomes are reasonable and plausible within the frame of theoretic basis and implicit

knowledge of system experts or stakeholders.
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Appendix B

Parameter space exploration

Sampling methods provide a systematic exploration of the parameter space that guar-

antees the sample to have speci�c statistical or structural properties. The purpose of

these methods is to actively reduce the number of parameter sets that are considered but

still chose space-�lling points in the design space (Thiele et al., 2014a). For a complete

revision of sampling methods, readers can refer to Gong et al. (2015); Kleijnen et al.

(2005); Saltelli et al. (2008). In this manuscript, the most common sampling designs are

illustrated and applied in the UQ process.

Monte Carlo

Monte Carlo sampling (MC) (Metropolis & Ulam, 1949) method is the most common class

of computational techniques based on repeated random sampling to obtain N numerical

approximations of a speci�ed distribution function of an unknown probabilistic entity.

However, larger sample sizes are required to explore the parameter space fully.

Latin Hypercube

Latin Hypercube (LH) (McKay, Beckman, & Conover, 1979) is a 1-dimensionally space-

�lling method, also known as strati�ed sampling method without replacement. When

sampling a function of n variables, the range of each variable is divided into p equally

probable intervals, with a total of p sample points. Therefore, each sample point is the only

one in each interval. LH method selects sample points in the interior of the hypercube

of p levels. LH can capture more variability in the sample space than simple random

sampling.
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Orthogonal Array

Orthogonal Array (OA) (Owen, 1992) is a 2-dimensionally space-�lling method that uses a

general fractional factorial design to improve LH. The OA design extends to t dimensional

margins the univariate strati�cation properties of LH. That is, for a n-dimension, p-level

parameter space, a t-strength OA sampling generates pt sample points, when t < n.

Orthogonal Array-based Latin Hypercube

Orthogonal Array-based Latin Hypercube (OALH) (B. Tang, 1993) uses orthogonal arrays

to construct Latin hypercubes. In other words, the samples go through a strati�cation

process to produce samples that have been both orthogonalized and strati�ed. This

sampling scheme provides more suitable designs for computer experiments and numerical

integration than general LH sampling.

METIS

METIS sampling (Karypis & Kumar, 1998) is an m-directional space-�lling method that

is a part of a set of multilevel partitioning algorithms designed for partitioning irregular

graphs, partitioning large meshes and computing �ll-reducing ordering of sparse matrices.

METIS can partition an unstructured graph into a user-speci�ed number k of parts.

Fourier

Fourier sampling algorithm (Cukier et al., 1973) was designed speci�cally for the Fourier

Amplitude Sensitivity Test (FAST). In this method, the parameter space is explored peri-

odically with interference-free frequencies. It takes a small number of correlated random

samples from a signal and processes them e�ciently to produce an approximation of the

discrete Fourier transform (DFT) of the signal. The minimum sample size of FAST is

N = 2 ·Ms · ωmax + 1, where Ms is the maximum harmonic (in general 4 or 6) and ωmax
is the maximum frequency which is determined by the number of inputs.

LPτ

LPτ (LPTAU) (Statnikov & Matusov, 2002) is a quasi-random (QR) sampling method,

i.e., the samples are generated from a �nite subset of low-discrepancy sequence of points.

These samples are not random, in the sense of being completely unpredictable. However,

they are like random points in the sense that they are uniformly distributed across a n-

dimensional space. LPTAU explores the parameter space using partitions of the parameter

ranges on the base of two.
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Sobol Extended

Sobol Extended (SOBOL) (Saltelli, 2002; Sobol, 2001) is a replicated version of low-

discrepancy sequences (quasi-random). SOBOL generates a uniform distribution in prob-

ability space, a qualitatively random distribution, �lling previously unsampled regions of

the probability function. This is done with two random r · n sample matrices M0 and

Mn+1, therefore, the total number of sample points is (n+ 2) · r.

Morris one-at-a-time

Morris one-at-a-time (MOAT) (Morris, 1991) sampling was designed speci�cally for MOAT

SA and is similar to SOBOL. The range of each parameter is divided into p − 1 equal

intervals. Next, r points are generated from the n-dimension, p− 1-orthogonal grid. For

each one, other sample points are generated by perturbing one dimension at a time, until

all dimensions have been varied for only one time, with a (n+1) ·r total number of sample

points.
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Appendix C

Uncertainty Analysis

The uncertainty analysis assesses a con�dence bound on the output estimation by quan-

tifying the uncertainty associated with the model response due to uncertainties in the

model input. To achieve this results we follow the necessary steps of UA summarized

by Saltelli et al. (2008):

1. Start from a model parameter α N(α, σα), which reads: after estimation, the dis-

tribution of α is known, with mean α and standard deviation σα;

2. Assume that all the parameters (β, γ, ...) are independent of each other;

3. Draw a sample from the respective distributions of each parameter. In other words,

produce a set of row vectors (α(j), β(j), ...) in a way that (α1, α2, ..., α(N)) is a sample

from N(α, σα). Likewise for all parameters
α(1) β(1) γ(1) ...

α(2) β(2) γ(2) ...

... ... ... ...

α(N−1) β(N−1) γ(N−1) ...

α(N) β(N) γ(N) ...

 ;

4. Run the model for all vectors (α(j), β(j), ...) thereby producing a set of N values of

a model output Yj 
y(1)

y(2)

...

y(N−1)

y(N)

 .
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By executing these steps, it is possible to quantify the impact of input uncertainties on

the model response and assess whether or not the response meets the required standards of

precision. Although Monte Carlo is the most used method, there are many other methods

available to generate the samples and estimations required by UA. Some interesting UA

applications and experimental design are described in the literature: (Fonoberova et al.,

2013), (Saltelli et al., 2008),(Lilburne & Tarantola, 2009), (Crosetto et al., 2000). The

expected means and variance are quanti�ed to each parameter. Additionally, a histogram

of the output variable can be displayed, thus thoroughly describing the stochastic features

of the model output. The overall computational cost of UA depends basically on the cost

of the model evaluations, which is linked to the complexity of the model itself.
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Appendix D

Sensitivity Analysis Methods

Many techniques for SA have been proposed, and a thorough description of the techniques

can be found in Saltelli et al. (2008). Regardless of the technique, Saltelli and Annoni

(2010) present a guideline on how to avoid perfunctory SA, which we applied throughout

the manuscript. A brief description of the methods applied is found next.

Morris one-at-a-time

The Morris one-of-a-time screening method (MOAT) (Morris, 1991) may be regarded as

a gradient-based global SA as the �nal measure is obtained by averaging local measures,

the elementary e�ects (EE). It is composed of individually randomized one-at-a-time

experiments that calculate two sensitivity measures of the gradients of each parameter

sampled from r local changes. The mean µ assesses the overall in�uence of the factor

on the output. The standard deviation σ estimates the ensemble of the factor's e�ects,

whether nonlinear or due to interactions with other factors. EE provides the information

that the e�ects for a given parameter may be: i) negligible, ii) linear and additive, or

iii) nonlinear or involved with interactions with other factors. MOAT can be much faster

than other variance-based SA techniques.

Variance-based SA techniques

We assessed three variance-based SA techniques: SOBOL (Sobol', 1993), FAST (Cukier et

al., 1973), and McKay (McKay et al., 1999b). In general, they have higher computational

cost than qualitative SA, but some exciting features to ABMs are that variance-based SA

measures are model independent, and provide the investigation of interaction e�ects. The

�rst-order index represents the main e�ect contribution of each input factor to the variance

output. The total e�ect of a variable would be the total contribution to the output

variation, that is its �rst-order e�ect plus all higher-order e�ects due to interaction. In
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the SOBOL method, the variance may be attributed to a single input (�rst-order/main-

e�ect) or by the interaction of two or more inputs (second-order-e�ect). The sum of

those contributions is the total e�ect of a parameter. To decompose the variance, FAST

varies di�erent parameters at di�erent frequencies and applies a Fourier transformation

to measure each parameter contribution. McKay uses analysis of variance (ANOVA) to

calculate a correlation ratio, that is a ratio of the variance of a parameter and the total

variance of the output. The signi�cance of the parameter increases with the correlation

ratio.

Linear-regression-based SA techniques

Linear-regression-based SA decomposes the variance of the model outcomes by �tting a

regression function of the input parameters to these outcomes. Therefore, the simulation

outcomes are described concerning input-output relationships, which can be validated

using standard statistical measures such as R2. Correlation Analysis (CA) measures the

parameter sensitivity through correlations coe�cients, such as Spearman et al. (1904).

Regression Analysis (RA) makes the same measures using the standard regression coe�-

cient (SRC), to estimate the result from a regression analysis that has been normalized

so that the variances of the dependent and independent variables are equal to one. The

e�cacy of this methods relies on the input-output being somewhat linear or monotonic.

Response-surface SA techniques

The methods Sum-of-Trees (SOT), Gaussian Process (GP), and Multivariate Adaptive

Regression Splines (MARS), are considered response-surface or surrogate models, from

which it is possible to obtain relative scores of the total e�ects of a parameter. Those

methods provide a mapping from parameters to outputs. SOT (Breiman et al., 1984;

Chipman et al., 2012) is a tree-based Bayesian method. A single regression tree model is

obtained by the use of a recursive binary partition of the parameter space. The created

balanced binary tree, in which the variables are split to cause the maximum decrease in

the residual sum of squares, has each terminal node with a minimum number of sample

points. The variable with the larger number of splits is considered the most sensitive one.

Non-parametric regression SA techniques

MARS (Friedman, 1991) is a non-parametric regression able to model nonlinearities and

interactions between parameters. It is considered an extension of the tree method be-

cause after partitioning the space it builds localized regressions (�rst and second-order).

For each model, a score (generalizes cross-validation) is computed. It will remove each
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parameter and recalculate the model score. The larger the score, the more important is

the removed parameter.

Gaussian SA techniques

GP is an implementation of the Tpros algorithm, proposed by (Gibbs & MacKay, 1997).

GP is a method for regression using Gaussian process priors which allow exact Bayesian

analysis using matrix manipulations. The theory behind the method states that points

that are close on parameter space give rise to similar response values. Thus, it is possible

to identify the in�uence of the parameters on the model response.

Tailored SA techniques

The DT (Pi & Peterson, 1994) is a method that establishes dependencies in continuous

functions given a sequence of measurements δ, an estimate of noise variance when a subset

of variables in the sample are selected for regression. The approach is based on calculating

conditional probabilities from vector component distances. It has been proved that adding

unrelated variables or withdrawing related ones will increase δ. Hence, the subset of all

variables that minimize noise variance is considered the most sensitive.
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Appendix E

PSUADE: Con�guration Files

Input �le

Example of a psuade.in con�guration �le. The INPUT section de�nes the inputs, their

ranges, and distributions. When the distribution is not informed, the uniform distribution

is chosen as default. The OUTPUT section de�nes the order and name of the output

variables. In the METHOD section, it is possible to observe that the MOAT sampling

technique is set to 800 samples. The APPLICATION section speci�es the direct call to

the MASE-Driver, which will control the interface between the PSUADE and the MASE-

BDI executions. The last section of the PSUADE �le, the ANALYSIS section, does not

present any method in this example. This allows the generated sample results to be saved

to a psuadeData �le that can be stored. Multiple analysis can be performed by command

line or graphical interface.

PSUADE

INPUT

dimension 4

variable 1 transformationAgentQty = 1 100

variable 2 transformationAgentGroupPercentage = 10 100

variable 3 individualExploration = 1 500

variable 4 groupExploration = 1 1500

END

OUTPUT

dimension 11

variable 1 time

variable 2 qtyAgents

variable 3 percentageAgents
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variable 4 figureOfMerit

variable 5 producersaccuracy

variable 6 usersaccuracy

variable 7 wrongchange

variable 8 rightchange

variable 9 wrongpersistance

variable 10 nullModel

variable 11 simulatedNullModel

END

METHOD

sampling = MOAT

num_samples = 800

num_replications = 1

num_refinements = 0

refinement_size = 10000000

reference_num_refinements = 0

refinement_type =

randomize

random_seed = 12504321

END

APPLICATION

driver = ./MASE-Driver.py

END

ANALYSIS

analyzer output_id = 1

printlevel 4

END

END

Call to MASE-Driver

The following code is an example of a call from PSUADE to the MASE-driver. Each of

the 800 samples is sequentially passed to MASE-BDI framework to be simulated. Each

line of the call is a parameter that corresponds to a simulation input. The order of the

parameters are the ones speci�ed in the psuade.in �le.

4

4.4077203315252991e+00
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2.3059819407323289e+01

3.3939929566939020e+02

5.3074622200728061e+02

Output �le

This is an example of the psuadeData output �le, which contains the simulation outputs

for each of the samples that were generated in the con�guration �le. The psuadeData

output �le has an additional section, when compared to psuade.in: PSUADE IO. This

section contains all sample points and their results. The �rst line of this section consists

of three numbers, respectively: the number of input parameters, the number of output

parameters and the number of runs of the simulation.

In our example, 800 samples were generated. The following �le was edited to show

only the results of the �rst two samples, to illustrate how the integration of PSUADE

and MASE-BDI works. Eleven values are displayed in each simulation, concerning the

simulation results for each one of the outputs. The order of the factors is the order de�ned

in the psuade.in �le.

PSUADE_IO (Note : inputs not true inputs if pdf ~=U)

4 11 800

1 1

3.4000000000000000e+01

7.0000000000000000e+01

3.3366666666666663e+02

5.0066666666666663e+02

2.9891000000000000e+04

6.8000000000000000e+01

7.0000000000000000e+01

5.1069961502892660e+01

5.5050423090297905e+01

8.7597757119669467e+01

2.0478709634191286e+00

1.4464230784458840e+01

1.1810282602538216e+01

2.6274513386997056e-01

1.3858153565957343e-01

2 1

3.4000000000000000e+01
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1.0000000000000000e+01

3.3366666666666663e+02

5.0066666666666663e+02

2.5760000000000000e+04

6.8000000000000000e+01

1.0000000000000000e+01

5.0855483774199428e+01

5.5022603454271469e+01

8.7038157581091738e+01

2.1529446520538098e+00

1.4456921310466861e+01

1.1817592076530193e+01

2.6274513386997056e-01

1.3970536728584002e-01

>>>Edited file. Only two results were presented to illustrate the output

file.<<<

PSUADE_IO

PSUADE

INPUT

dimension = 4

variable 1 transformationAgentQty = 1.0000000000000000e+00

1.0000000000000000e+02

variable 2 transformationAgentGroupPercentage = 1.0000000000000000e+01

1.0000000000000000e+02

variable 3 individualExploration = 1.0000000000000000e+00

5.0000000000000000e+02

variable 4 groupExploration = 1.0000000000000000e+00

1.5000000000000000e+03

END

OUTPUT

dimension = 11

variable 1 time

variable 2 qtyAgents

variable 3 percentageAgents

variable 4 figureOfMerit

variable 5 producersaccuracy
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variable 6 usersaccuracy

variable 7 wrongchange

variable 8 rightchange

variable 9 wrongpersistance

variable 10 nullModel

variable 11 simulatedNullModel

END

METHOD

# sampling = MC

# sampling = FACT

# sampling = LH

# sampling = OA

# sampling = OALH

sampling = MOAT

# sampling = SOBOL

# sampling = LPTAU

# sampling = METIS

# sampling = FAST

# sampling = BBD

# sampling = PBD

# sampling = FF4

# sampling = FF5

# sampling = CCI4

# sampling = CCI5

# sampling = CCIF

# sampling = CCF4

# sampling = CCF5

# sampling = CCFF

# sampling = CCC4

# sampling = CCC5

# sampling = CCCF

# sampling = SFAST

# sampling = UMETIS

# sampling = GMOAT

# sampling = GMETIS

# sampling = SPARSEGRID

# sampling = LSA
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# sampling = RFF4

# sampling = RFF5

num_samples = 400

num_replications = 1

num_refinements = 0

refinement_size = 10000000

reference_num_refinements = 0

# refinement_type = adaptive

randomize

# randomize_more

random_seed = 12504321

END

APPLICATION

driver = ./MASE-Driver.py

opt_driver = NONE

aux_opt_driver = NONE

ensemble_driver = NONE

ensemble_opt_driver = NONE

# max_parallel_jobs = 1

# min_job_wait_time = 1

max_job_wait_time = 1000000

# nondeterministic

# launch_only

# limited_launch_only

# gen_inputfile_only

# ensemble_run_mode

# launch_interval = 1

# save_frequency = 1000000

END

ANALYSIS

# analyzer method = Moment

# analyzer method = MainEffect

# analyzer method = TwoParamEffect

# analyzer method = ANOVA

# analyzer method = GLSA

# analyzer method = RSFA

# analyzer method = MOAT
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# analyzer method = Sobol

# analyzer method = Correlation

# analyzer method = Integration

# analyzer method = FAST

# analyzer method = FF

# analyzer method = PCA

# analyzer method = ARSMGP

# analyzer method = FORM

# analyzer method = RSMSobol1

# analyzer method = RSMSobol2

# analyzer method = RSMSobolTSI

# analyzer method = Bootstrap

# analyzer method = RSMSobolG

# analyzer method = ARSMNN

# analyzer method = ARSM

# analyzer method = REL

# analyzer method = AOPT

# analyzer method = GOWER

# analyzer method = DELTA

# analyzer method = ETA

# analyzer method = ARSM

# analyzer method = LSA

analyzer output_id = 1

analyzer rstype = MARS

# analyzer rstype = linear

# analyzer rstype = quadratic

# analyzer rstype = cubic

# analyzer rstype = quartic

# analyzer rstype = selective_regression

# analyzer rstype = GP1

# analyzer rstype = GP2

# analyzer rstype = SVM

# analyzer rstype = PWL

# analyzer rstype = TGP

# analyzer rstype = MARSBag

# analyzer rstype = EARTH

# analyzer rstype = sum_of_trees
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# analyzer rstype = Legendre

# analyzer rstype = user_regression

# analyzer rstype = sparse_grid_regression

# analyzer rstype = Kriging

# analyzer rstype = splines

# analyzer rstype = KNN

# analyzer rstype = RBF

# analyzer rstype = Acosso

# analyzer rstype = Bssanova

# analyzer rstype = psuade_regression

# analyzer rstype = RBFBag

# analyzer rs_legendre_order = -1

# analyzer rs_mars_num_bases = -1

# analyzer rs_mars_interaction = -1

# analyzer rs_num_mars = -1

# analyzer rs_kriging_mode = -1

# analyzer rs_kriging_tol = -1

# analyzer opt_save_history

# analyzer opt_use_history

# analyzer regression_wgt_id = -1

# graphics

# sample_graphics

analyzer threshold = 1.000000e+00

rs_max_pts = 10000

# analyzer rs_constraint = psData indexFile Lbnd Ubnd

# analyzer moat_constraint = psData indexFile Lbnd Ubnd

# analyzer rs_index_file = indexFile

# optimization method = crude

# optimization method = txmath

# optimization method = appspack

# optimization method = minpack

# optimization method = sm

# optimization method = mm

# optimization method = mm_adaptive

# optimization method = bobyqa

# optimization method = sce

# optimization method = moo

124



# optimization method = ouu

# optimization method = ouu1

# optimization method = ouu2

# optimization num_local_minima = 0

# optimization use_response_surface

# optimization print_level = 0

# optimization num_fmin = 0

# optimization output_id = 0

# optimization max_feval = 10000

# optimization deltax = 1.0e-6

# optimization fmin = not defined

# optimization cutoff = not defined

# optimization tolerance = not defined

printlevel 4

# file_write matlab

# use_config_file = NONE

# use_input_pdfs

# constraint_op_and

END

END

PSUADE analysis

An example of the PSUADE analysis is presented in the following extract. METIS size

800 sampling is loaded into memory and the tests are performed with the Delta Test

(DT) sensitivity metric, which obtains the prioritization of the parameters according to

the sensitivity of the simulation outputs.

**********************************************************************

* Welcome to PSUADE (version 1.7.5)

**********************************************************************

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration (1.7.5)

(for help, enter <help>)

======================================================================

psuade> load psDataMETIS800

readApplication WARNING: app driver ./MASE-Driver.py not found.
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load complete : nSamples = 800

nInputs = 4

nOutputs = 11

psuade> delta_test

Enter output number (1 - 11) = 4

No transformation (e.g. log) on sample inputs nor outputs.

**********************************************************************

DeltaTest for variable selection

This test has the characteristics that the more important

a parameter is relative to the others, the smaller the

subset is at the end of the test (sharp zoom into the most

important subset).

Thus, the purpose of this test is to identify a subset of

important parameters.

Note: If both nInputs and nSamples are large, this test

may take a long time to run. So, be patient.)

======================================================================

Current best solution for output 4:

To stop the search, create a psuade_stop file in local directory.

----------------------------------------------------------------------

1 1 1 0 = 1.531177e+02

1 0 0 1 = 5.777625e+00 (1 of 100)

1 0 0 1 = 5.777625e+00 (2 of 100)

1 0 0 1 = 5.777625e+00 (3 of 100)

\vdots

1 0 0 1 = 5.777625e+00 (100 of 100)

**********************************************************************

Final Selections (based on 3 neighbors) =

Rank 1 => 1 0 0 1 : delta = 5.7776e+00

Rank 2 => 1 1 0 1 : delta = 3.0144e+01

Rank 3 => 1 0 1 1 : delta = 3.2172e+01

Rank 4 => 1 1 1 1 : delta = 5.3933e+01

Rank 5 => 1 0 0 0 : delta = 1.3737e+02

Rank 6 => 1 0 1 0 : delta = 1.4299e+02

Rank 7 => 1 1 0 0 : delta = 1.4644e+02

Rank 8 => 1 1 1 0 : delta = 1.5312e+02

Rank 9 => 0 0 1 1 : delta = 1.7724e+02
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Rank 10 => 0 0 0 1 : delta = 1.8211e+02

----------------------------------------------------------------------

Delta test ranking is now in matlabdelta.m.

Order of importance (based on 20 best configurations):

(D)Rank 1 : input 1 (score = 89 )

(D)Rank 2 : input 4 (score = 87 )

(D)Rank 3 : input 2 (score = 26 )

(D)Rank 4 : input 3 (score = 25 )

**********************************************************************

Final test using the most important parameters incrementally:

----------------------------------------------------------------------

0 0 0 0 = 3.137032e+02

1 0 0 0 = 1.373724e+02

1 0 0 1 = 5.777625e+00

1 1 0 1 = 3.014355e+01

1 1 1 1 = 5.393320e+01

**********************************************************************

AnalysisManager: analysis metric = 5.78e+00
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Appendix F

MASE-Driver

Con�guration �le

The following description is an excerpt of the con�guration �le that MASE-Driver uses

to run the multiple simulations at MASE-BDI.

{

"sampling_methods": [

"MC",

"FACT",

"LH",

"OA",

"OALH",

"MOAT",

"SOBOL",

"LPTAU",

"METIS",

"FAST",

"BBD",

"PBD",

"FF4",

"FF5",

"CCI4",

"CCI5",

"CCIF",

"CCF4",

"CCF5",
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"CCFF",

"CCC4",

"CCC5",

"CCCF",

"SFAST",

"UMETIS",

"GMOAT",

"GMETIS",

"SPARSEGRID",

"LSA",

"RFF4",

"RFF5"

],

"refinement_types": [

"adaptive"

],

"lastConfiguration": {

"output_variables": [

{

"name": "time"

},

{

"name": "qtyAgents"

},

{

"name": "percentageAgents"

},

{

"name": "figureOfMerit"

},

{

"name": "producersaccuracy"

},

{

"name": "usersaccuracy"

},

{
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"name": "wrongchange"

},

{

"name": "rightchange"

},

{

"name": "wrongpersistance"

},

{

"name": "nullModel"

},

{

"name": "simulatedNullModel"

},

{

"name": "steps"

}

],

"input_variables": [

{

"lowerBound": "1",

"name": "transformationAgentQty",

"upperBound": "100"

},

{

"lowerBound": "10",

"name": "transformationAgentGroupPercentage",

"upperBound": "100"

},

{

"lowerBound": "1",

"name": "individualExploration",

"upperBound": "500"

},

{

"lowerBound": "1",

"name": "groupExploration",
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"upperBound": "1500"

}

]

},

"psuadeLocation": "/pathToPsuadeInstallFolder/psuade",

"maseLocation": "/pathToMaseFolder/MASE-murl.jar"

}

Output �le

The results presented in the output �le are generated by MASE-BDI framework as a

result of a simulation. The predicted maps are also generated and stored in a directory.

The MASE-Driver captures each of these results and sends it automatically to PSUADE.

The results can be analyzed in PSUADE with multiple UA and SA metrics.

6490

8

23

6.921068396839571

7.09748464124261

73.57606344628695

0.6697305545149708

1.8648295522033496

24.409683834793704

0.26274513386997056

0.25079414389308674

365
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Appendix G

Software and Data Availability

MASE-BDI Software:

https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/MASE-BDI

PSUADE-MASE Software:

https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/MASE-PSUADE

Data Availability

The primary data derived from the model analysis are available for review, and replica-

bility. The data is organized �rst by sampling method and then by sensitivity measure.

The data is available at: https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/

tree/master/PSUADE%20Raw%20Data or at following QR code:

Figure G.1: Link to the primary data used in the model analysis
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