

Universidade de Brasília Instituto de Biologia Departamento de Genética e Morfologia

Influência da ocultação de cadáver e do intervalo *post-mortem* na transcrição e na degradação de RNAs em cérebro de *Mus musculus*

Larissa Barbosa Nunes

Brasília 2018

Universidade de Brasília Instituto de Biologia

Departamento de Genética e Morfologia

Influência do ambiente *post-mortem* na expressão gênica e na degradação de RNAs

Dissertação de mestrado apresentada ao Programa de Biologia Animal como parte dos requisitos necessários à obtenção do título de mestre em Biologia Animal.

Brasília 2018

Título: Influência da ocultação de cadáver e do intervalo *post-mortem* na transcrição e na degradação de RNAs em cérebro de *Mus musculus*

Trabalho apresentado em Brasília, 09 de Agosto de 2018

Comissão examinadora:

Silviene Fabiana de Oliveira Orientadora

Valdir de Queiroz Balbino Membro não vinculado ao programa

Marcio José Poças Fonseca

Membro vinculado ao programa

Renato Caparroz Membro suplente

Brasília 2018

"Pessoas inovadoras veem o que todos os outros veem, mas pensam de maneira que nenhum outro pensaria."

(Claude Bernard)

AGRADECIMENTOS

À minha orientadora professora Dra. Silviene Fabiana de Oliveira, pela orientação, apoio, e por sempre acreditar no meu potencial desde a primeira vez que bati na porta do seu laboratório em 2012.

À professora Dra. Aline Pic-Taylor, minha co-orientadora de coração.

À professora Dra. Patrícia Natália Silva Moretti, pela ajuda com minhas análises estatísticas, e conselhos na reta final desse mestrado.

Ao Raphael Severino Bonadio, por todo o apoio durante todos esses anos, por me ajudar a realizar as técnicas, pela execução do experimento do array de expressão. Obrigada ainda por se tornado um grande amigo, pelos conselhos, puxões de orelha, viagens, e por aguentar minhas crises de choro e estresse. Enfim, sem você esse mestrado não sairia.

Ao Biotério da Universidade Católica de Brasília, pelo fornecimento dos animais.

Ao Dr. José Luiz Jivago de Paula Rôlo e toda a equipe do biotério do Instituto de Ciências Biológicas da Universidade de Brasília, por disponibilizar manutenção dos animais e o espaço para realização da eutanásia.

Ao Carlos Eduardo Cardoso, Marcela Campos, e Muriel Lopes pela ajuda na dinâmica do experimento com os animais.

Aos técnicos do Centro de Genômica de Alto Desempenho do DF, pela execução do experimento de Bioanalyser.

Às professoras Beatriz Dolabela de Lima, Cecilia Beatriz Fiúza Favali, Marcio José Poças Fonseca, e Renato Caparroz por disponibilizarem alguns dos equipamentos para realização dos experimentos.

A todos os membros do laboratório de Genética Humana que contribuíram com sugestões e deram apoio à essa dissertação, em especial Fabíola Turiel, Yasmin Lima, Ana Carolina Arcanjo, Harumy Sakata, Carolina Gontijo.

Às agências de fomento CAPES, pela bolsa, CNPQ e FAP-DF, pelo financiamento do projeto.

Ao melhor grupo de café que já existiu, Nina, Victor, Sara, Gislaine, Rapha, Fabs, Yas, Cadu, com certeza os longos dias foram muito melhores após um cafezinho e um bolo de cenoura com chocolate.

A todos meus amigos que estiveram presentes na minha vida e me ajudaram fosse descontraindo, discutindo ideias ou ouvindo, Camis, Mari, Fer, Yasmin, Mah, Rafa, Cris, Vanessa, Bel, Sah, Jon, Igor "Stich".

A minha mãe, Laura Barbosa, que desde sempre acreditou no meu potencial e me apoiou à encarar esse desafio, me dando colo quando precisei e aguentando as inúmeras vezes que chegava em casa no auge de um pico de estresse. Obrigada por toda a paciência.

Ao meu pai, Rui Nunes, que mesmo de longe cuidou de mim e tentava me entender mesmo quando eu simplesmente não saia do lugar. Obrigada pelos conselhos e ensinamentos.

Aos meus irmãos, Rodrigo e Natália, por serem os melhores irmãos que eu podia pedir.

A minha segunda família, os Ramalho, por me acolherem como membro da família e me apoiarem sempre. Agradeço especialmente aos meus sogros, Lúcia e Fernando.

À Onix, minha cadela e filha, pela companhia durante esses anos e durante as longas noites da reta final.

E por fim, mas não menos importante, agradeço ao meu namorado, Leandro Ramalho, por ser hoje uma das pessoas mais incríveis que já conheci, com um coração gigante. Agradeço por todo o suporte, paciência, dedicação, companhia, carinho, colos, abraços e travesseiro. Te amo, obrigada por tudo!

RESUMO

Na criminalística, em casos de homicídio, conhecer a hora precisa da morte é relevante para a inclusão e exclusão de suspeitos na dinâmica do crime. O intervalo entre esse acontecimento e a descoberta do corpo é chamado de intervalo post-mortem (IPM), correntemente inferido com a ajuda da tanatologia e da entomologia forense. É crescente o número de estudos que buscam indicadores de IPM utilizando parâmetros físicos, químicos e bioquímicos. O processo de morte dá início a degradação do corpo, tanto por vias intrínsecas quanto extrínsecas. Na extrínseca, sabe-se que o cadáver tem uma decomposição diferenciada de acordo com o ambiente no qual ele está exposto. Com relação a intrínseca, a degradação molecular leva à degradação de tecidos, sendo que os produtos gênicos envolvidos tanto já estão presentes antes da morte, como potencialmente podem ter sido transcritos após a morte. Ainda há a ativação de diversas vias metabólicas que levam a degradação dos ácidos nucleicos, incluindo o RNA. Considerando o conhecimento atual, a hipótese desse trabalho é que exista uma relação entre IPM tanto com a degradação e/ou transcrição de RNAs quanto com o repertório dessas moléculas em diferentes ambientes de ocultação de cadáver. Para tanto, o objetivo foi avaliar a degradação e possível transcrição de mRNA e miRNA em cérebro de camundongo (Mus musculus) em diferentes simulações de ocultação. Foram simulados três tipos de ocultação de cadáver: exposição ao ar, submersão em água e enterramento. Cérebros dos camundongos foram retirados em cinco IPM: 24, 48, 72, 96 e 192 horas. A avaliação da integridade das moléculas ao longo dos IPMs, mostrou a existência de RNAs íntegros em até 96 horas post-mortem. A busca de um biomarcador para a estimativa de IPMs e de distintas simulações de ocultação de cadáver foi realizada por análise de transcriptoma *post-mortem (array* de expressão) do controle, 0 horas, e dos três grupos experimentais no IPM de 48 horas. Foram encontrados 502 genes diferencialmente expressos, 222 comuns a todos os grupos de ocultação de cadáver. A partir disso escolheu-se buscar um biomarcador de IPM que não variasse entre os tipos de ocultação. Nessa busca, foi realizada uma análise de enriquecimento de vias metabólicas, o que levou à escolha final de oito transcritos para validação do Array de expressão, sendo F3 e Fabp7 os dois transcritos com maiores fold change, esses se mostraram potenciais biomarcadores. Foram estimadas regressões cúbicas para descrever a dinâmica de degradação desses transcritos ao longo do IPM. Além disso, foi observado que 27,23% dos genes diferencialmente expressos foram up-regulated, sugerindo transcrição post-mortem. Desses, a maioria está ligada a biogênese de ribossomos, manutenção celular e desenvolvimento, sendo um indicativo de resistência da célula ao processo de morte. Considerando que o array de expressão utilizado tinha baixa cobertura para miRNAs, foram analisados três miRNAs - miR-9, miR-124 e miR-134 -, descritos como específicos do cérebro, por RT-qPCR, visando avaliar a integridade dessas moléculas ao longo dos IPMs. Não foram encontradas diferenças tanto entre os IPMs testados como entre as simulações de ocultação de cadáver mostrando que esses miRNAs permanecem estáveis ao longo de ao menos 192 horas post-mortem. Conclui-se que exista uma relação na expressão e/ou degradação diferencial de mRNAs entre diferentes IPMs, porém uma estabilidade dos miRNA testados nesse mesmo intervalo post-mortem. Ainda, os ambientes simulados para ocultação de cadáver não interferem substancialmente no repertório dessas moléculas. Os dados aqui mostrados permitem inferir que seja possível estimar IPM utilizando mRNA, não sendo possível distinguir o ambiente de ocultação de cadáver considerando uma simulação com parâmetros controlados.

ABSTRACT

In the criminalist, in cases of homicide, knowing the precise time of death is relevant for the inclusion and exclusion of suspects in the dynamics of the crime. The time period between the occurrence and the discovery of the body is called *post-mortem* interval (PMI), currently deduced with help from the thanatology and entomology. The studies that search for PMI indicators using biological, chemical and/or parameters are increasing. The death process starts with the degradation of the body by the intrinsic and extrinsic pathways. By the extrinsic pathway, it is known that the corpse has a differentiated decomposition according to environment exposed. By the intrinsic relation, the molecular degradation is related to the tissues degradation, and the genetic products involved are already present before death. It is possible that the genetic products are potentially transcripted *post-mortem*. Considering the current knowledge, this work's hypothesis is the existence of relationship between PMI and RNA degradation and/or transcription and a relationship about the repertory of these molecules on different environments of corpse concealment. For such purpose, the objective was analysis the levels of mRNA and miRNA transcription in a mice's brain (Mus musculus) in three different corpse concealment simulations: air exposure, water submersion and burial. Mice's brains were removed in five PMI: 24, 48, 72, 96 and 192 hours. The evaluation of the integrity of the molecules along the PMIs showed the existence of intact RNAs in up to 96 hours post-mortem. The search for a biomarker for estimating PMIs and for different cadaver occultations was performed by the post*mortem* transcriptome analysis (GeneChipTM expression array MoGene 2.0 ST Array) of the control, 0 hours, and the three experimental groups in the IPM of 48 hours. We found 502 differentially expressed genes (222 common to all cadaveric hiding groups), most of which differentiate the two *post-mortem* periods. In the search for biomarkers, two genes were selected from the 222, F3 and Fabp7, which showed to be potential biomarkers. Cubic regressions were estimated to describe the dynamics of degradation of these genes throughout the PMI. In addition, it was observed that 27.23% of the differentially expressed genes were up-regulated, suggesting *post-mortem* transcription. Of these, most are linked to ribosome biogenesis, cell maintenance and development. Considering that the expression array used had low coverage for miRNAs, three miRNAs - miR-9, miR-124 and miR-134, described as specifics of the brain, were analyzed by RT-qPCR to evaluate the integrity of these molecules over the PMIs. No differences were found either between the PMIs tested neither between cadaver occultation simulations, showing that these miRNAs remained stable over at least 192 post-mortem hours. It was concluded that exists a relationship between differential expression and/or degradation of mRNAs during different IPMs, but that is a stability of miRNA in this same *post-mortem* interval. Still, the simulated environment for the corpse concealment didn't interfere substantially in those set of molecules. The data shown here allow to infer that it is possible to estimate PMI using mRNA, not being possible to distinguish the corpse concealment environment, considering the simulation with controlled parameters.

LISTA DE FIGURAS

Figu	ıra 1- V	'ias b	ioquími	cas ativa	ada	as por pri	vaçâ	ăo de oxigê	nio e/o	ou glio	cose	iniciand	0 0
	process	so de	morte	celular	e	ativação	de	nucleases.	AIF:	fator	de	indução	de
	apoptos	se (A	laeddini	et al, 20)1())							6

- Figura 4 Via de degradação dos miRNAs por ação da enzima Sdn1 após o processo de maturação da fita simples (Adaptado de Houseley,2009).....11

Figura I. 7. Expressão gênica mensurada pelo array de expressão mostrando o

LISTA DE TABELAS

- Tabela I. 2. Matriz de comparação grupo a grupo da quantidade de transcritos produzidos (up) e degradados (down) no cérebro de camundongo no IPM zero horas (grupo Controle) e IPM de 48 horas nos grupos Ar, Água e Terra)......33
- Tabela I. 4. Lista dos genes e classificação dos mesmos encontrados up-regulated emcérebro de camundongo, excluindo os genes preditos, na comparação com oencontrado pelo experimento de array de expressão exclusivos entre tempo zero e48 horas post-mortem41
- Tabela II.2 Valores de ΔCt dos miR-9, miR-124 e miR-134 ao longo do intervalo *post-mortem* de 0 à 192 horas, utilizando snRNU6 como endógeno......55

LISTA DE ABREVIATURAS E SIGLAS

ANOVA	Análise de variância
°C	Graus Celsius
cDNA	DNA complementar
CEUA	Comitê de Ética no Uso Animal
circRNA	RNA circular
CO_2	Gás carbônico
Ct	Threshold cycle
DEPC	Dicarbonato de etila
DNA	Ácido desoxirribonucleico
dsRNA	RNA dupla fita
FC	Fold change
IPM	Intervalo post-mortem
KEGG	Kyoto Encyclopedia of Gene and Genomes
mg	Miligramas
Mirbase	Banco de dados de microRNA
miRNA	MicroRNA
ml	Mililitros
mRNA	RNA mensageiro
N°	Número
NCBI	Nacional Center for Biotechnology Information
ng	Nanogramas
pb	Pares de base
pН	Potencial de Hidrogênio
pré-miRNA	Pré-microRNA
pri-miRNA	Pri-microRNA
\mathbb{R}^2	Coeficiente de determinação
RIN	Número de integridade do RNA
RNA	Ácido ribonucleico
RNAse	Ribonuclease
rRNA	RNA ribossomal
RT-qPCR	Reação de transcrição reversa associada a PCR
	quantitativa em tempo real
SDN	Nucleases de degradação de pequenos RNAs
snRNA	Small RNA
TAC	Transcriptome Analysis Console
UCB	Universidade Católica de Brasília
UDG	Uracil-DNA glicolase
μl	Microlitro

SUMÁRIO

1. INTRODUÇÃO	1
1.1. Tanatologia forense e a degradação do cadáver	1
1.2. Decomposição do cadáver em diferentes ambientes	3
1.3. Entomologia forense	4
1.4. A morte: uma visão molecular	5
1.5. RNA e suas características	7
1.6. O RNA e a ciência forense	12
2.JUSTIFICATIVA	13
3.OBJETIVOS	14
CAPÍTULO I	15
RESUMO	16
I.1. INTRODUÇÃO	17
I.2. MATERIAL E MÉTODOS	.20
I.2.1.Aspectos Éticos	20
I.2.2.Experimentação animal e coleta de cérebros	20
I.2.3.Extração e quantificação de RNA total	21
I.2.4. Avaliação do transcriptoma	22
I.2.5. Seleção de genes para validação do array de expressão e dos	
candidatos a biomarcador	22
I.2.6. RT-qPCR	23
I.2.7. Modelos matemáticos e análise estatística do RT-qPCR	24
I.3. RESULTADOS E DISCUSSÃO	25
I.3.1. Alterações cadavéricas e ambientais post-mortem	25
I.3.2. Concentração e qualidade do RNA	27
I.3.3. Análise do transcriptoma	30
I.4. CONCLUSÃO	42
I.5. REFERÊNCIAS	43
II. CÁPITULO II	48
RESUMO	49
II.1 INTRODUÇÃO	50

II.2. MATERIAL E MÉTODOS	51
II.2.1.Aspectos éticos	51
II.2.2. Animais	51
II.2.3.Extração e quantificação dos miRNAs	
II.2.4.RT-qPCR	
II.2.5.Análise estatística	
II.3. RESULTADOS E DISCUSSÃO	
II.4. CONCLUSÃO	
II.5. REFERÊNCIAS	
4. CONCLUSÃO GERAL	61
5. REFERÊNCIAS GERAIS	
ANEXOS	67

1. INTRODUÇÃO

No campo das ciências forenses, a estimativa do tempo que decorreu da morte de um indivíduo até a descoberta do seu copo é chamada de intervalo *post-mortem* (IPM). Essa estimativa é significativamente relevante para investigações criminais, pois auxilia na inclusão ou exclusão de suspeitos, assim como a aceitação ou rejeição de álibis [1]. Ainda, a determinação do IPM em casos sem testemunhas oculares se torna uma das principais evidências para desdobramento das investigações. Os principais meios de determinação do IPM atualmente são por meio da tanatologia forense e da entomologia forense.

1.1. Tanatologia forense e a degradação do cadáver

A tanatologia forense é a ciência que estuda os mecanismos e aspectos forenses da morte, tais como as mudanças cadavéricas do corpo. Os eventos cadavéricos *post-mortem* podem ser divididos em: período inicial *post-mortem* e período de decomposição [2].

No primeiro, o IPM é estimado a partir do decaimento da temperatura interna corporal, também conhecida como *algor mortis*. Neste evento cadavérico, o esfriamento do corpo é progressivo e é extremamente dependente da temperatura ambiental a qual o cadáver foi exposto. Esse decaimento de temperatura pode ser descrito como uma curva sigmoide na qual inicialmente há um esfriamento mais lento, com quedas menores que 1°C por hora, passando por uma fase intermediária na qual as quedas são mais rápidas de forma quase linear, se estimando a queda de 1°C a 1,5°C por hora. Por fim, quando a temperatura corpórea se aproxima da temperatura do ambiente, as quedas são menores, até a temperatura do cadáver se igualar a temperatura ambiente [2–4].

Ainda nas primeiras horas se observa o *livor mortis*. Esse fenômeno é caracterizado por manchas avermelhadas ao longo do cadáver devido à hipóstase (agrupamento de células sanguíneas devido à gravidade) nos capilares da derme após a interrupção da circulação sanguínea. O padrão de lividez é dependente da posição que o cadáver está disposto após a morte, ventre para cima ou para baixo por exemplo. Nas áreas do cadáver sujeitas à pressão do solo ou de veste, por exemplo, não ocorre o acúmulo celular, resultando em padrões brancos na pele [2]. Já nas áreas sem contato direto com o chão ocorre o acúmulo das células sanguíneas nos vasos mais externos do corpo [2].

O *livor mortis* tem início por volta de 3 a 4 horas e progressivamente atinge seu máximo em torno de 8 a 12 horas *post-mortem*. Por volta de 15 horas após a morte, a lividez cadavérica não pode mais ser modificada por ações externas. Esse fenômeno permanece então imutável até a coloração escura da putrefação camuflar o padrão estabelecido na pele. Esse modelamento de manchas avermelhadas e pálidas tem uma influência direta na investigação do crime, sugerindo a posição da morte, se o cadáver foi deslocado e o tempo *post-mortem* de acordo com o estágio do fenômeno e sua coloração [2].

O terceiro evento é a rigidez cadavérica, *rigor mortis*, evento que se dá em consequência de mudanças físico-químicas nos músculos. Em geral, o enrijecimento corporal começa entre 3 e 4 horas, chegando ao seu total estabelecimento entre 8 e 12 horas, situação essa que permanece por até 36 horas *post-mortem*. Como esse efeito desaparece em tempo posterior aos outros eventos, o enrijecimento pode ajudar na determinação do IPM por um tempo mais prolongado que os outros [2,5].

A avaliação do estágio de rigidez cadavérica é feita de forma subjetiva,

2

ocorrendo variação da mesma de acordo com aspectos como a constituição muscular do indivíduo, causa da morte e temperatura do ambiente. Esta última tem uma influência direta no *rigor mortis*, acelerando o período do fenômeno quando está mais elevada e retardando sua duração quando está mais baixa [2,6].

A decomposição do corpo tem influência das diversas comunidades microbianas endógenas e exógenas ao corpo humano [7]. Os mecanismos mediados por microrganismos (bactérias, fungos e protozoários) para decomposição do corpo começam imediatamente após a morte [8]. São esses microrganismos que metabolizam as macromoléculas do corpo na sua degradação [9,10]. Os estágios de putrefação e de inchaço que aparecem no cadáver, são gerados principalmente pela ação dos microrganismos. Estudos de comunidades microbianas em tecidos humanos mostraram que os órgãos não são completamente estéreis em hospedeiros vivos [11]. Com isso, pode-se dizer que as bactérias que se encontram nos órgãos internos de cadáveres estão, possivelmente, associadas à decomposição [12]. Essas comunidades bacterianas internas sofrem alterações sucessivas ao longo do intervalo *post-mortem*, havendo modificações de composição relativa e de grupos taxonômicos [13].

1.2. Decomposição do cadáver em diferentes ambientes

A decomposição cadavérica é variável de acordo com a temperatura, fauna cadavérica e aspectos *ante-mortem*. Ainda, pode-se dizer que a decomposição dos corpos varia de acordo com o local no qual foi ocultado ou exposto. Por exemplo, corpos expostos ao ar tem uma taxa de degradação mais rápida do que corpos enterrados [14]. Degradação mais lenta no solo pode ser devida à menor concentração de oxigênio no ambiente, desfavorecendo a ação de bactérias aeróbicas [15], assim como dificultar o acesso de moscas e outros animais à carcaça [16]. Outro ponto favorável para uma decomposição mais lenta no solo é o fato da temperatura ser menor e menos variável do

que no ambiente exposto [17,18].

Existem também diferenças entre decomposição terrestre e aquática, como marcadores visuais, que aparecem em diferentes intervalos de tempo e se desenrolam em taxas distintas [19]. Determinados fenômenos de decomposição ocorrem mais frequentemente ou exclusivamente em ambientes aquáticos, como, por exemplo: enrugamento da pele, evento de transformação destrutiva da pele do cadáver, tornando-a enrugada e amolecida; descolamento da pele da mão, formando a luva cadavérica (*degloving*) [21]; exsanguinação, que é a saída do sangue pela pele que está descolando do corpo, fazendo uma troca de líquidos com o ambiente; e formação de adipocere, a qual é uma cera produzida pela saponificação de gordura corporal [9,19,20].

1.3. Entomologia Forense

Outra forma de estimar o intervalo *post-mortem* é a entomologia forense. A entomologia é usada associada à tanatologia forense quando o intervalo *post-mortem* já ultrapassou 36 horas. Essa estimativa é feita de acordo com a identificação da etapa do ciclo de vida das larvas dos insetos encontrados no corpo em decomposição [22,23]. Para isso, é essencial a precisão na identificação das espécies de insetos atraídos pelo corpo. No entanto, padrões de sucessão das espécies dependem da sazonalidade e das condições ambientais, o que torna essa análise mais complexa. Ainda, a presença de insetos no corpo é diretamente dependente do tempo de morte, sendo impossível efetuar a estimativa quando esses se tornam adultos, e se afastam do cadáver. Há relatos da ocorrência da ovoposição de espécies em corpos ainda vivos, como moscas, diminuindo assim a acurácia na estimativa do intervalo *post-mortem* [24].

1.4. A morte: uma visão molecular

A morte celular pode ser classificada em três tipos: apoptose (tipo I), morte celular autofágica (tipo II) e necrose (tipo III) [25]. Os dois primeiros são processos complexos de morte celular programada regulados por diferentes atividades enzimáticas e a necrose é um processo passivo. A grande diferença dos processos de morte celular programados e da morte celular acidental (necrose) é a ausência de uma resposta imunológica na segunda [26].

A apoptose é caracterizada morfologicamente pelo encolhimento celular, fragmentação do DNA e formação de corpos apoptóticos [27]. As proteases responsáveis pelas alterações morfológicas são as principais desenvolvedoras da atividade enzimática na apoptose [28]. A característica principal da morte celular autofágica é a formação de numerosas vesículas autofágicas e um aumento da atividade lisossômica [29].

A necrose é um processo passivo, caracterizado pelo inchaço da célula e das organelas, com ruptura da membrana plasmática e derrame do conteúdo intracelular para o meio extracelular. Geralmente o resultado desse processo é uma reação inflamatória que leva à infiltração celular local, dano vascular, edema, lesão do tecido circundante e, eventualmente, fibrose [30]. Esse processo de morte tem sido também associado à coagulação, que é provavelmente o resultado de uma perturbação irreversível dos mecanismos homeostáticos da célula [31].

Com a morte do organismo várias vias bioquímicas são ativadas (Figura 1). O nível de oxigênio circulante decai, levando-o a entrar em uma situação de hipóxia sistêmica [32]. Em resposta à hipóxia ocorre a expressão do gene HIF1a, que atua juntamente do HIF1b, formando um dímero com função de ativador transcricional. Esse

5

complexo leva à expressão de genes que atuarão na homeostase de oxigênio, facilitando à entrega do mesmo durante à privação do mesmo pela qual o organismo está passando [32].

No processo de morte envolvendo a insuficiência respiratória e circulatória avançada, ocorre a disfunção do sistema nervoso central (SNC) [33]. A disfunção neuronal pode ter ligação ao dano astrocitário, que desenrola um papel importante no cérebro [34]. Os astrócitos estão ligados fortemente à homeostase do potássio e do glutamato [35].

A hipóxia leva também à uma queda do pH tecidual [36]. A combinação da hipóxia e da acidose acelera a morte celular dos astrócitos [37]. Além de uma queda no pH do tecido, a lesão cerebral está associada com grandes mudanças nas concentrações intersticiais de K⁺, Na⁺, Cl⁻, and Ca²⁺ [38].

Figura 1- Vias bioquímicas ativadas por privação de oxigênio e/ou glicose iniciando o processo de morte celular e ativação de nucleases. AIF: fator de indução de apoptose [39].

1.5. RNA e suas características

As tecnologias envolvendo o uso de DNA na criminalística revolucionaram a forma de resolução de crimes. Sabe-se que a molécula de DNA, por sua estrutura dupla fita, tem uma estrutura estável já descrita por diversos autores em tecidos *post-mortem*, utilizando técnicas, por exemplo, de citometria e eletroforese de célula única [40–42]. Durante o processo de morte, o DNA está sujeito a nucleases endógenas e exógenas, que quebram a molécula em fragmentos menores. Devido aos dobramentos da cromatina, as histonas permanecem intactas nas primeiras horas *post-mortem*, sendo degradada as partes do DNA mais expostas, até que proteases lisossomais degradem as proteínas da cromatina [39]. No tecido cerebral *post-mortem* por exemplo, a estrutura da cromatina permanece inalterada por até 30 horas [43].

Diferentemente do DNA, a quantidade de molécula de RNA nas células teciduais muda rapidamente. Essa mudança é dependente das alterações fisiopatológicas no processo de morte e gradualmente a concentração dessas moléculas diminuem após a morte. A diminuição dos RNAs é devida, principalmente, à degradação por ribonucleases após a morte [33].

Os RNAs, especialmente o RNA mensageiro (mRNA), são fisiologicamente degradados nas células como controle da síntese proteica e tem tempo de vida variável [44]. Após o processo de morte celular, a degradação dessas moléculas continua, ocorrendo tanto por ação de ribonucleases endógenas (presentes no citoplasma celular) quanto exógenas (bactérias ou contaminação ambiental) [45]. Existem três classes principais de ribonucleases endógenas (RNases): endonucleases que cortam RNA internamente, 5' exonucleases que hidrolisam RNA a partir da extremidade 5', e 3' exonucleases que degradam o RNA a partir da extremidade 3' [46].

A vasta maioria de mRNAs começa seu processo de degradação pela via de desadenilação (Figura 2), o qual é um encurtamento da cauda poliA por atividade de 'ribonucleases específicas como CCR4-NOT e PARN. Em seguida, a degradação do mRNA segue para degradação por uma das extremidades. A via de degradação pela extremidade 5', passa pelo processo de retirada do quepe, guanosina metilada (7-metilguanosina) que serve de proteção dessa extremidade. A retirada do quepe é realizada pelo complexo DCP1-DCP2, o qual é induzido pela ligação do complexo Lsm 1-7 na extremidade 3' do mRNA. Sem o quepe na extremidade 5', o mRNA fica disponível para ser degradado pela ribonuclease XRN1 [47].

Já o processo de degradação pela extremidade 3', após a desadenilação, é realizada pelo exossomo, um complexo proteico multienzimático, permanecendo com o quepe na extremidade 5'que no final será hidrolisado por enzima específica para sua destruição. Devido a retirada do quepe na extremidade 5', em eucariotos, uma atividade de degradação pela extremidade 3' é mais recorrente [48]. Quando a degradação do mRNA ocorre por ação de endonucleases (Figura 2), há destruição tanto por ação do exossomo quanto da enzima XRN1 [47].

Figura 2- Vias de degradação do mRNA. A- Via dependente de desadenilação, seguida pela degradação do mRNA pela via $5' \rightarrow 3'$ ou via $3' \rightarrow 5'$. B- Via de degradação por endonucleases, seguida por degradação tanto pela ação do exossomo quanto da XRN1 [47].

Os reguladores de degradação dos mRNAs são um fator chave no controle da expressão gênica e uma característica aparentemente universal do metabolismo dos mRNA [49]. Além da instabilidade devida à ação de ribonucleases, o RNA pode sofrer degradação por interferência de um conjunto de variáveis como temperatura, umidade, pH, raios UV, entre outros [50]. Essa degradação torna o mRNA distinto das muitas espécies de RNA com maior estabilidade, como, por exemplo, os microRNAs (miRNAs) [49].

Os miRNAs são RNAs não-codificantes de 18 a 24 nucleotídeos, presentes em diversos procariotos e eucariotos, os quais estão relacionados principalmente com a regulação da expressão gênica [51]. Nos eucariotos, esses ácidos nucleicos são originados de regiões codificantes e não codificantes do DNA (Figura 3), e serão transcritos pela RNA polimerase II, gerando um RNA com formato de grampo, conhecido como miRNA primário (pri-miRNA). O pri-miRNA é um RNA com uma estrutura de *stem-loop*, um terminal em forma de alça e segmentos de fita simples nas duas extremidades. Essa molécula passa então por um processo de maturação até poder ser reconhecido como miRNA maduro. A primeira etapa da maturação acontece no núcleo [52] e consiste na clivagem do pri-miRNA pela proteína Drosha, convertendo-o em pré-miRNA [53]. Drosha é uma proteína nuclear com um domínio de ligação a dsRNA (double-stranded RNA) e dois domínios do tipo RNAse III, estes para clivagem das extremidades 3' e 5' do pri-miRNA [54]. A ação da Drosha é dependente de proteínas acessórios como a DGCR8, formando um complexo chamado de mini processador que será responsável pela conversão correta do pri-miRNA em um prémiRNA em forma de grampo com aproximadamente 65 nucleotídeos [54].

Após essa primeira etapa do processamento, o pré-miRNA é exportado do núcleo para o citoplasma por um complexo proteico composto pela exportina-5 (Exp-5)

associada a uma proteína nuclear de ligação [55]. Uma vez no citoplasma, o pré-miRNA é clivado pela proteína Dicer na região terminal da alça, para assim liberar o duplex do miRNA [56]. Assim como a Drosha, a proteína Dicer também depende de proteínas acessórios para o processamento adequado do pré-miRNA em miRNA. Há ainda outras modificações pelas quais a molécula passa até o miRNA *maduro*, RNA de fita simples com ~22 nucleotídeos, que será incorporado no complexo RISC, o qual é responsável pela repressão de alvos específicos por degradação, inibição de tradução, e up-regulação [54].

Figura 3. Biogênese dos miRNAs. Os miRNA são expressos no núcleo formando o pri-miRNA, o qual será clivado pela Drosha, transformando-o em pré-miRNA. O pré-miRNA é transportado para o citoplasma onde será processado pela Dicer produzindo o duplex do miRNA. A fita simples será incorporada ao complexo RISC, após a degradação da sua fita complementar. O complexo miRNA-RISC interage com as sequências-alvo, levando à repressão da tradução, degradação do mRNA ou aumento da expressão dos níveis de transcrição [adaptado de 57].

Os miRNAs estão sujeitos a degradação pela extremidade 3', pela ação da exoribonuclease Sdn1 (Figura 4). Essas ribonucleases atuam negativamente na regulação de expressão gênica mediada pelos miRNA [49]. Em conjunto com essa exoribonuclease, há também a atuação de duas helicases DEAD-box, que funcionam junto com Drosha no processamento de pri-miRNA [58]. A degradação dos miRNAs por ação dessas enzimas sugere a evolução do sistema de processamento de miRNA a partir de outros fatores de processamento de RNA visto que as famílias SDN (nucleases de degradação de pequenos RNAs) são amplamente conservadas entre os eucariotos [49].

Figura 4 - Via de degradação dos miRNAs por ação da enzima Sdn1 após o processo de maturação da fita simples (Adaptado de [49]).

1.6. O RNA e a ciência forense

O RNA tem sido objeto de estudo para a identificação de fluídos biológicos [59], determinação de tempo de injúria [60] e estimativa de IPM [61,62]. Em adição às metodologias já executadas de rotina na estimativa de IPM, como a tanatologia clássica e a entomologia forense, alternativas ligadas à biologia molecular, bioquímica e física vêm sendo estudadas como possíveis ferramentas. Dentre elas, os ácidos nucleicos têm ocupado um espaço significativo na biologia forense molecular.

Tendo em vista os métodos utilizados atualmente e suas limitações, faz-se necessário o estudo de novas metodologias de estimativa de IPM. Dessa forma, o presente projeto tem como hipótese a existência de uma relação entre o intervalo *post-mortem* e a degradação de RNAs em diferentes ambientes de ocultação do cadáver, supondo-se que a relação IPM e a degradação dessas moléculas seja diferenciada em cada ambiente.

2. JUSTIFICATIVA

Para a condenação ou absolvição de um réu no âmbito judicial é necessária a apresentação de provas e indícios que sejam gerados por metodologias que forneçam resultados confiáveis. A morte é um processo que se desenrola ao longo de um período de tempo, dando lugar ao aparecimento de um conjunto de fenômenos *post mortem*, que são objetos de estudo, de interpretação e que se revelam cada vez mais importantes em investigações criminais. A degradação dos RNAs *post mortem* é um destes fenômenos, sobre a qual existem poucos estudos e que acreditamos poder ajudar a se obter respostas sobre quando ocorreu o evento da morte.

Com o conhecimento atual da degradação diferencial entre cadáveres em ambientes distintos, e a degradação diferencial e gradual de RNAs ao longo do IPM, a proposta deste estudo, buscando reforçar as bases da Ciência Forense Criminal, é avaliar a degradação *post-mortem* dos RNAs ao longo do IPM em situação de laboratório e em simulação de ocultação de cadáveres. Com isso, os resultados desse trabalho poderão ser translacionados para a prática e possibilitar a utilização desse conhecimento como ferramenta de auxílio e reforço aos métodos hoje utilizados para determinar o tempo após a morte.

3. OBJETIVOS

3.1. Objetivo Geral

O objetivo desse trabalho é comprovar se há uma relação entre degradação e transcrição de mRNA e miRNA e o tempo de morte e avaliar se há diferença na degradação desses RNAs em diferentes ambientes (simulação de ocultação de cadáver) utilizando como modelo animal o *Mus musculus*.

3.2. Objetivos específicos

No presente estudo foram utilizados cérebros retirados do modelo animal *Mus musculus* visando a:

- > Avaliação da integridade de RNAs até 192 horas *post-mortem*.
- Avaliação do perfil de degradação e/ou transcrição de mRNAs no IPM de 48 horas em contraste ao IPM de 0 horas, e entre três diferentes de simulações de ocultação de cadáver.
- Busca por um mRNA como marcador biológico para estimativa de IPM
- Avaliação do perfil de degradação *post-mortem* de miRNAs específicos ao longo de 192 horas *post-mortem*, e entre três diferentes de simulações de ocultação de cadáver.

CAPÍTULO I

Influência de ambientes de ocultação de cadáver na predição de intervalo *post-mortem* em cérebro de camundongo por meio de *array* de expressão

RESUMO

Saber o intervalo post-mortem (IPM) é um recurso importante para investigações criminais de crimes contra a vida. Essa estimativa é feita utilizando a medicina legal, sendo que nos últimos anos tem se tentando encontrar indicadores utilizando parâmetros físicos, químicos e bioquímicos, todos, porém com limitações. O processo de morte inicia diversas cascatas metabólicas que alteram a expressão das moléculas de RNA e sabe-se que o ambiente interfere na expressão gênica. Com o intuito de avaliar a dinâmica de expressão do RNA post-mortem em três diferentes simulações de ocultação de cadáver, o objetivo deste trabalho foi buscar um possível biomarcador de IPM, avaliando a degradação e a potencial transcrição *post-mortem*. Em nosso estudo, simulamos três diferentes tipos de ocultação de cadáver usando modelo animal (Mus musculus) baseado na exposição ao ar, submersão em água e enterramento. Foi realizado array de expressão, com cobertura de 34.472 genes, de um controle - 0 horas - e dos grupos experimentais no IPM de 48 horas. Foram encontrados 502 genes diferencialmente expressos, dos quais 72,77% se encontravam down-regulated e 27,23% se encontraram up-regulated após 48 horas post-mortem. Dentre a vasta maioria dos genes downregulated ou degradando, foi observado que 266 estava, significativamente diferentes entre o controle e os grupos de ocultação. Desses foram escolhidos dois possíveis biomarcadores de IPM sem variação da condição de ocultação do cadáver. Os genes F3 e Fabp7 se mostraram biomarcadores adequados, sendo estimadas regressões cúbicas a fim de descrever a dinâmica de degradação desses genes ao longo de 192 horas post-mortem. Dos genes down-regulated, observou-se que a maioria está ligada a biogênese de ribossomos, manutenção celular e desenvolvimento, podendo ser uam tentativa das células lutando para sobreviver ao processo de morte.

Palavras chaves: IPM; estabilidade RNA; *array* de expressão; ocultação de cadáver, degradação; transcrição; cérebro; *Mus musculus*.

I.1. INTRODUÇÃO

A estimativa acurada do intervalo *post-mortem* (IPM), espaço de tempo decorrente entre a morte do indivíduo e o momento da descoberta do seu corpo, é essencial para investigações criminais. Determinar a hora da morte, pode ser primordial para a exclusão ou inclusão de suspeitos na cena do crime, validar o depoimento de testemunhas e até mesmo ajudar nos casos que não há presença das mesmas. A principal forma de determinação do IPM ainda é por meio dos eventos cadavéricos descritos pela tanatologia forense e da análise da colonização do corpo pela fauna *post-mortem*.

As mudanças cadavéricas ditas como clássicas são: a queda da temperatura corporal (*algor mortis*), a rigidez cadavérica (*rigor mortis*) e os livores cadavéricos (*livor mortis*). Essas mudanças se iniciam a partir de 20 minutos *post-mortem* e duram até no máximo 72 horas. Cada uma dessas mudanças tem sua taxa de degradação própria e são fortemente correlacionadas à fatores ambientais [1]. Devido à decomposição dos tecidos moles do corpo, a precisão na determinação do IPM por necropsia depende do tempo transcorrido entre a morte e a descoberta do cadáver: quanto mais tempo após a morte, mais difícil e imprecisa será essa estimativa.

Juntamente da medicina legal, a entomologia forense tenta estimar o IPM por meio da idade das larvas encontradas no cadáver e o estágio de sucessão da colonização do corpo pela comunidade entomológica [1]. Esse tipo de observação para estimativa do IPM é bastante variável, visto que a fauna entomológica muda de acordo com os climas e regiões ao longo do planeta. Logo, validar o IPM é uma tarefa bastante complexa, pois é necessário avaliar diversos fatores, como a temperatura do ambiente, clima local, a descoberta tardia do corpo, fauna regional [2].

Em vista disso, nos últimos anos, foi crescente a quantidade de estudos correlacionando a estimativa de IPM com parâmetros bioquímicos, químicos, biológicos e físicos. Dentre eles pode-se citar: identificação de bactérias da cavidade bucal, cavidade retal e trato gastrointestinal por pirosequenciamento [3]; botânica forense [4,5]; análise de pH e espectrometria de sangue total e de plasma [6]; melatonina no cérebro, plasma e urina [7]; níveis de insulina e glucagon em células beta do pâncreas [8]; biomarcadores em órgãos [9]; temperatura do olho [10]; degradação de ácidos nucleicos em diversos órgãos e tecidos [11–13].

Dentre os ácidos nucleicos, o RNA é mais suscetível a degradação do que o DNA, fato que torna o RNA potencialmente mais adequado para a determinação de IPM. Essas moléculas têm despertado um interesse notório na área forense [14]. O RNA tem sido objeto de estudo para identificação de fluídos biológicos [15], determinação de tempo de injúria [16] e determinação de IPM [13,17,18]. Apesar da instabilidade é possível recuperar RNA total, no qual estão incluídos RNA mensageiro (mRNA), RNA ribossômico (rRNA), small RNA (snRNA), RNA circular (circRNA) e micro RNA (miRNA), de cadáveres de camundongos, ratos, coelhos e humanos, ao menos de 0 a 192 horas após a morte [12,13,17–20]

Mudanças transcricionais são esperadas como resposta à morte do organismo. Para essa análise, mRNAs têm sido estudados como potenciais biomarcadores de IPM, em sua maioria genes ditos com endógenos, incluindo β -Actina, GAPDH e IL-1 β [21]. Porém para uma análise mais completa da degradação das moléculas de RNA, transcriptomas com tecidos *post-mortem* estão se mostrando ótimas ferramentas [22,23]. Diferenças significativas em diversos tecidos foram vistas entre análises *ante-mortem* e *post-mortem* [23].

Cada tecido apresenta características únicas e portanto, diferentes taxas de degradação de RNA *post-mortem* [24]. A degradação dos RNAs é influenciada pelo gênero e idade do

indivíduo, pH do tecido avaliado, podendo ainda ser associada a fatores externos como temperatura e estresse metabólico [25, 26]. É observada uma maior integridade do RNA *post-mortem* no tecido cerebral, hipófise, retina, osso, enquanto se observa uma degradação mais rápida em tecidos gastrointestinais e fígado [23, 27, 28]. O cérebro é um dos órgãos mais estudados após a morte, tanto para maior conhecimento sobre doenças neurodegenerativas, quanto para determinação do IPM [26, 29, 30]. Foi verificado que determinadas moléculas de RNA extraídas de tecido nervoso podem ser recuperadas até 96 horas *post-mortem* e serem relacionadas ao IPM [31, 32].

Existe uma gama de eventos que podem influenciar a coleta do tecido cadavérico e a integridade do RNA como a circunstância da morte e os parâmetros ambientais do local em que o corpo se encontra [25]. A qualidade do RNA influencia diretamente na mensuração da expressão gênica [33], para isso tem-se usado a avaliação do *RNA integrity number* (RIN) [34].

A maior parte dos estudos foi realizada com o controle de variáveis externas a fim de diminuir a interferência das mesmas. O ambiente no qual o corpo se encontra influencia na forma de degradação dos tecidos e também nas análises da tanatologia forense. Até hoje foi analisado apenas o gene endógeno GAPDH, em três situações distintas com corpos enterrados e submersos [35]. Dessa forma, a hipótese desse trabalho é que seja possível identificar transcritos que apresentem diferentes padrões de degradação ou transcrição em cérebro de *Mus musculus* ao longo do tempo *post-mortem* e que esses padrões variem de acordo com o ambiente em que o cadáver esteja inserido.

I.2. MATERIAIS E MÉTODOS

I.2.1. Aspectos éticos

O experimento foi aprovado pelo Comitê de Ética no Uso Animal (CEUA) do Instituto de Ciências Biológicas da Universidade de Brasília (UnBDOC 79518/2013) (Anexo 1).

I.2.2. Experimentação animal e coleta de cérebros

Para a avaliação do transcriptoma de cérebro de camundongo com diferentes IPMs e tipos de ocultação de cadáver, foram utilizados 48 camundongos (*Mus musculus*), da linhagem C57BL/6j, machos, com 16 semanas de idade e peso médio de $27,6 \pm 4$ gramas. Os animais foram fornecidos pelo biotério da Universidade Católica de Brasília (UCB) e ficaram, até o momento dos experimentos, em ciclo claro/escuro de 12/12 horas com fornecimento de água e ração *ad libitum*. Para a realização dos experimentos, a alimentação dos camundongos foi suspensa por 8 horas visando minimizar o impacto da quantidade de alimento ingerida pelos animais na degradação do corpo, isso é, que o volume estomacal fosse similar entre os diferentes indivíduos.

Os animais foram eutanasiados em câmara de CO_2 e posteriormente armazenados em sacos plásticos fechados durante o período do experimento. Para verificar a degradação de mRNAs, os animais foram divididos em três grupos experimentais: i. Grupo Ar: simulação de corpos abandonados sem ocultação; ii. Grupo Terra: simulação de ocultação por enterramento utilizando terra autoclavada; iii. Grupo Água: simulação de submersão em água, utilizando água da rede pública autoclavada. Cada grupo foi composto por um total de 15 animais, que foram distribuídos por cinco períodos de tempo (24, 48, 72, 96 e 192 horas) em triplicata experimental com o objetivo de avaliar a integridade dos RNAs ao longo de 192 horas. Como controle foram utilizados três animais cujos cérebros foram extraídos no tempo zero *post-mortem* e sem simulação de ocultação de cadáver. Em cada tempo um animal de cada grupo experimental foi dissecado tendo seu cérebro recolhido e armazenado em um microtubo de polipropileno de 1,5 ml, sendo imediatamente congelado em nitrogênio líquido.

A temperatura e a umidade foram controladas durante todo o experimento, sendo que a temperatura aferida da sala foi de 23±1,2°C e a umidade de 55%. Os corpos foram distribuídos aleatoriamente dentre os tempos e grupos experimentais (Figura I.1). Todos os materiais e superfícies utilizadas para dissecação dos animais e extração do miRNAs foram tratadas com dicarbonato de etila (DEPC) a fim de minimizar a degradação por RNAses presentes no ambiente laboratorial.

Figura I. 1. Desenho experimental, no qual o grupo ar é a simulação de um cadáver exposto, grupo água é a simulação de um cadáver submerso e grupo terra é a simulação de um cadáver enterrado.

I.2.3. Extração e quantificação de RNA total

Para o preparo do tecido cerebral para a extração de RNA total, os órgãos foram macerados em nitrogênio líquido até a pulverização completa. A extração foi realizada a partir de 30 mg do tecido pulverizado utilizando o kit de extração *IllustraTM RNAspin mini Isolation*

 $(GE \ Healthcare^{TM})$, de acordo com as orientações do fabricante. A concentração e pureza do material extraído foram analisadas utilizando o espectrofotômetro *NanoDrop 2000 (Thermo ScientificTM)* e sua integridade avaliada por ensaio no *2100 Bioanalyzer (Agilent TechnologiesTM)*, o qual retorna um número de integridade do RNA (RIN). O software GraphPad Prism 6 (GraphPad Software, La Jolla California USA) foi utilizado para produção dos gráficos.

I.2.4. Avaliação do transcriptoma

Para avaliação do transcriptoma de cérebro de camundongo foi utilizado o *array GeneChipTM MoGene 2.0 ST Array (Applied BiosystemsTM)* que tem cobertura de 34.472 genes de acordo com o protocolo do fabricante) (Anexo 2). Foi escolhido o IPM de 48h, baseado no valor de RIN da análise por *Bioanalyzer (Agilent TechnologiesTM)*, devido este ser o ultimo IPM com RIN acima de sete. Foram utilizadas 100 ng de RNA total de amostras de RNA obtidas dos animais controle (IPM= 0h) e dos animais dos grupos Ar, Água e Terra do segundo tempo (IPM=48h) (Figura I. 1). Para a análise do *array de expressão* foi utilizado o *software Transcriptome Analysis Console* (TAC) 4.0 (*Applied BiosystemsTM*), tanto para verificação da qualidade do experimento quanto dos dados.

I.2.5. Seleção de genes para validação do *array* de expressão e dos candidatos à biomarcador

Para testar a validade dos dados gerados pelo *array*, foram selecionados oito genes analisados os 502 genes (Tabela suplementar 1 – Anexo 3) que apresentaram valores de fold change (FC) $\geq 2,0$ (*up-regulated*) ou $\leq -2,0$ (*down-regulated*) e intervalo de confiança de 95%.
Para a seleção dos genes para validação e candidatos à biomarcador foram selecionados os transcritos que se repetiam entre todas as comparações de simulações vs. Controle. Da intersecção entre os grupos foi a análise de enriquecimento de vias metabólicas em que esses genes estão envolvidos, de acordo com o *KEGG (Kyoto Encyclopedia of Gene and Genomes)*, utilizando o software *WebGestalt (WEB-based Gene SeT AnaLysis Toolkit)* [36]. Foram consideradas vias metabólicas enriquecidas as que apresentaram o valor de p<0,05 e a partir disso foram escolhidas as cinco mais significantes e ligadas com os processos de apoptose e morte do organismo. A partir dessas vias, oito genes foram selecionados para validação do experimento anterior por RT-qPCR (Tabela I. 1).

I.2.6. RT-qPCR

Para a detecção da expressão gênica por PCR em tempo real foi realizada síntese do DNA complementar (cDNA) a partir de 10 ng do RNA total, utilizando o *High-Capacity RNA-to-CdnaTM kit*, seguindo as instruções do fabricante. As reações foram realizadas no equipamento *7500 Fast Real-Time PCR System (Applied BiosystemsTM)* com volume final de 10µl, sendo 5 µl de *PowerUp*TM *SYBR*TM *Green Master Mix (Applied Biosystems*TM), 0,2 µl de cada iniciador, 3,6 µl de H₂O *RNAse free* e 1 µl de cDNA. A curva padrão foi gerada, para cada iniciador, a partir de cinco pontos de diluição 1:2, com concentração inicial de 800 ng/µl. Os parâmetros do ciclo utilizado foram: dois minutos a 50°C para ativação da Uracil-DNA glicolase (UDG), dois minutos a 95°C para ativação da Taq DNA polimerase, 40 ciclos de 3 segundos a 95°C para desnaturação e 30 segundos a 62,5°C para pareamento e extensão. Foram realizadas triplicatas técnicas de cada amostra biológica do experimento. O gene β-Actina (Actb) foi utilizado como controle para normalização das amostras testadas.

Gene	Sequência <i>forward</i> 5'- 3'	Sequência reverse 5'- 3'	Tamanho produto (pb)	Gene ID (NCBI)
Clqb	GCGAACGAGAACTATGAGCC	GCTTCAAGACTACCCCACCT	208	12260
Pdgfra	TCAGACCAGCAGTTTCCCAT	CATGCCTGTAATCCCAGCAC	194	18595
F3	TAGCCCAGGAAGCAGTACAG	GCCTTTCCTCTATGCCAAGC	196	14066
Acsbg1	ACTTCATGTCCAGCCCCTAC	CCGAATCAATGGCCTCACAG	180	94180
Ntsr2	GTACAGTTTCCGGCTTTGGG	TTGAGGGCAGGAGGTGTTAC	202	18217
Fabp7	CCGGACACAATGCACATTCA	ACGACCATCTTGCCATCCTT	192	12140
Fads2	CATGCCAAGCCCAACATCTT	TGCGGCTGATCATTGTCATG	211	56473
Fgfr3	AGACAAGACTTCCTGCGTGT	CTGGAAGGTAGCAGTGGGAA	181	14184
Actb	GACGGCCAGGTCATCACTAT	CTTCTGCATCCTGTCAGCAA	216	11461

Tabela I. 1Especificações dos iniciadores dos genes para validação do *array*, que são candidatos à biomarcador, e da β -actina (gene controle - iniciador Actb).

I.2.7. Modelos matemáticos e análises estatísticas do RT-qPCR

Para análise do experimento foi utilizado o Δ Ct, o qual é a diferença entre o Ct (*threshold cycle*) do gene controle e do gene testado. A estimativa das curvas entre o IPM vs. Δ Ct foram feitas de forma a buscar o melhor modelo matemático que se adequasse aos dados. Foram testados quatro tipos de regressões: linear, quadrática, cúbica e exponencial. As curvas com os maiores R² (coeficientes de determinação) foram consideradas melhores modelos para os dados. Para avaliar se os grupos experimentais apresentam diferenças significativas, foi utilizado o teste estatístico ANOVA (análise de variância) com correção de pós teste Bonferroni. Para tanto foi utilizado o software SPSS 18.0 (SPSS Inc., USA). O software GraphPad Prism 6 foi utilizado para produção dos gráficos e dos modelos matemáticos.

I.3. RESULTADOS E DISCUSSÃO

A fim de testar a hipótese de que seja possível identificar biomarcadores que possam ser úteis na estimativa de tempo *post-mortem* e da influência do ambiente de ocultação de cadáveres, esse trabalho utilizou a estratégia de buscar genes diferencialmente expressos para as diferentes simulações de ocultação de cadáver. Como esse trabalho trata de *post-mortem*, o perfil de genes diferencialmente expressos, gerados aqui a partir de dados com *array* de expressão, devem ser entendidos como degradação, no caso de genes *down-regulated*, e transcrição, no caso de genes *up-regulated*, para a maioria dos casos.

I.3.1. Alterações cadavéricas e ambientais post-mortem

O modelo animal utilizado aqui foram camundongos com uma média de peso de 27,6±4g. Foram observadas mudanças cadavéricas clássicas, como o esfriamento do corpo, a rigidez dos membros e o inchaço abdominal devido à ação de bactérias, principalmente do sistema digestório [14, 15, 37]. O odor do cadáver foi representativo de putrefação e se intensificou ao longo do tempo. Até o tempo de 48 horas, o cérebro se manteve com sua forma anatômica característica, sendo observado o processo de necrose de liquefação do tecido a partir das 72 horas *post-mortem*. Esse processo de liquefação é decorrente da grande quantidade de enzimas lisossômicas liberadas durante à morte celular [38]. Na Figura I.2 é possível observar macroscopicamente a degradação do corpo ao longo de 192 horas *post-mortem*.

Figura I. 2. Carcaças dos camundongos nos seus diferentes tipos de ocultação ao longo de 192 horas *post-mortem*. A- Grupo Ar, simulação do corpo exposto, no qual zero horas representa o indivíduo controle. B- Grupo Água, simulação de submersão. C- Grupo Terra, simulação de enterramento.

O pH da água foi mensurado como forma complementar de avaliação das mudanças ambientais após a morte. A água autoclavada usada inicialmente para disposição do cadáver apresentou um pH ácido de 5,5. Nos quatro primeiros dias *post-mortem* esse valor se manteve inalterado, porém após as 192 horas foi observada uma mudança do pH que se tornou significativamente neutro, pH=7,0 (Figura I.3). Na decomposição do cadáver, existe o estágio de ruptura dos tecidos, no qual, há liberação de fluidos biológicos no meio no qual o corpo está inserido. Os fluidos biológicos liberados aumentam os níveis de amônio, o que justifica a neutralização do pH observado [39].

Figura I. 3. pH da água da simulação de ocultação de cadáver submerso ao longo do IPM. Observou-se diferença significativa (*) na mudança de pH no tempo 192 horas

I.3.2. Concentração e qualidade do RNA

O RNA total das 48 amostras foi extraído com sucesso. Para as amostras controle (0 horas) o valor médio da concentração de RNA total foi 241,1 ng/µl . No grupo ar, observou-se uma diminuição da concentração média ao longo do tempo de IPM (24 horas: 218,13 ng/µl;

192 horas:119,06 ng/µl). Comportamento similar foi observado para o grupo da água, que apresentou uma redução de 242,10 ng/µl (24 horas) para 102,50 ng/µl (192 horas) e, no grupo da terra, de 202,96 ng/µl para 107,10 ng/µl nos mesmos tempos. Foram estimadas regressões lineares entre a concentração de RNA total e o IPM (Figura I. 4). Esse decréscimo de concentração de RNA *post-mortem* é maior em temperaturas mais elevadas [31], sendo que no caso aqui analisado os cadáveres foram mantidos a 25°C. A razão 260/280 aqui observada se manteve entre 2,1 e 2,2, mostrando pureza do RNA extraído.

Figura I. 4. - Concentração do RNA total vs IPM, com uma correlação linear significativa do grupo Ar (R^2 = 0,6413, p<0,001), do grupo água (R^2 = 0,7122, p<0,0001) e do grupo terra (R^2 = 0,4059, p<0,05).

A integridade das moléculas foi analisada por meio de ensaio em Bioanalyzer (Figura I. 5.A), o qual mostrou RNAs íntegros até 96h *post-mortem*, não demonstrando diferença entre os grupos de simulação. Os RINs variaram significativamente ao longo do intervalo *post-mortem*, sendo que no IPM de 0 horas o RIN foi mensurado em 8,43 \pm 0,27, enquanto o valor para as 192 horas foi de 2,55 \pm 0,63. A partir disso, a foi feita análise de regressão linear (R²= 0,9013, p< 0,0001) mostrando a ocorrência de uma correlação de Pearson

estatisticamente significativa (r= -0,9858; p < 0,001) entre o RIN e o IPM (Figura I. 5.B). A taxa de degradação de RNA *post-mortem* já foi avaliada também em músculo, sendo que o RNA se mostrou menos estável do que no tecido cerebral [40]. Assim como nesse estudo foi encontrada uma relação inversa entre o RIN e o IPM em cérebro [31], e em outros tecidos como coração, quadríceps e fígado [13]. A maior estabilidade do RNA no cérebro pode ser explicada por este estar envolto pela caixa craniana, ficando assim menos exposto às RNAses exógenas [41].

Figura I. 5. Análise eletroforética capilar da integridade dos RNAs extraídos mensurado por ensaio em Bioanalyzer 2100. A- Eletroforese mostrando as bandas de 18S e 28S, no controle e nas três simulações de ocultação de cadáver ao longo do IPM de 192 horas. B- Correlação do RIN (RNA integrity number) vs. IPM da média de todas as amostras analisadas (R2= 0,9013, P< 0,0001).

I.3.3. Análise de transcriptoma

Nesse trabalho optamos por utilizar a análise de transcriptoma como um parâmetro para explorar a degradação do RNA ao longo do tempo e em diferentes tipos de ocultação de cadáver, assim como potencial transcrição gênica *post-mortem*. Para obtenção dessa análise utilizamos a técnica de *array* de expressão gênica.

A qualidade do RNA influencia diretamente na mensuração da expressão gênica [33] porque define o êxito de técnicas como *array* de expressão e RT-qPCR [33, 42]. Tendo essa questão em consideração, foram selecionadas amostras do tempo zero e do IPM de 48 horas, por ser o último ponto de IPM com RIN acima de sete. Além disso, uma maior expressão gênica em cérebro de camundongo nesse IPM foi observada por Pozhitkov e colaboradores [22], o que embasou a escolha do mesmo para realização do experimento. Os dados obtidos pela análise do *array* de expressão foram validados por RT-qPCR para oito transcritos significativamente diferentes encontrados.

Na análise dos dados gerados pelo *array* de expressão foi observado um total de 502 genes diferencialmente expressos, mostrando alteração em aproximadamente 1% dos genes cobertos pelo chip. Dentre eles, 72,77% são genes *down-regulated* e 27,23% são genes *up-regulated*. Dos genes encontrados *down-regulated*, 10,69% são genes preditos, e dos genes *up-regulated* 52,94% são genes preditos. Como já comentado em material e métodos, foram considerados significantemente *down-regulated* genes com o FC \leq - 2,0 e p <0,05 e *up-regulated* genes com FC \geq 2,0 e p <0,05 (Figura I. 6).

Figura I. 6. Quantidade de genes diferencialmente expressos divididos em *up-regulated* e *down-regulated*, com separação dos genes preditos.

De acordo com a análise de clusterização hierárquica (Figura I. 7.A), há uma clara separação entre o grupo controle e os demais grupos. Ainda, observa-se clusters formados pelas replicatas biológicas que compõem os grupos ar, água e terra com 48 horas de IPM, sugerindo uma maior homogeneidade dentro dos grupos e diferenciação entre os tipos de ocultação de cadáver. Além disso, foi visto que o grupo água apresentou-se como o mais diferente dentre os três grupos de ocultação de cadáver, pois ele formou um agrupamento único, enquanto que ar e terra se agruparam em um mesmo ramo. Com relação a análise de componente principal (PCA) (Figura I. 7.B), a separação entre o controle e os grupos se confirma, sendo que o componente principal 1 explica 27,5% dessa segregação. Porém, a homogeneidade dentro dos grupos, vista na clusterização, não está bem definida pela a análise de PCA, visto que as componentes 2 e 3 não separam adequadamente as replicatas biológicas.

Figura I. 7. Expressão gênica mensurada pelo *array* de expressão mostrando o agrupamento das replicatas biológicas e a distinção entre o grupo controle e os demais grupos de simulação no IPM de 48h. A- Clusterização hierárquica. B- Análise de componente principal. Vermelho: controle; Azul: grupo água; Roxo: grupo ar; Verde: grupo terra.

Na Tabela Tabela I. 2 estão apresentados os números de genes diferencialmente expressos *post-mortem* grupo a grupo. Nesta foi possível observar maiores variações entre o controle e os grupos de ocultação, demonstrando haver uma quantidade significativa de transcritos degradando ou sendo produzidos ao longo do IPM. Nas comparações entre água e ar/terra observa-se um número maior de genes diferencialmente expressos do que na comparação entre os grupos Ar e Terra.

Tabela I. 2. Matriz de comparação grupo a grupo da quantidade de transcritos produzidos (*up*) e degradados (*down*) no cérebro de camundongo no IPM zero horas (grupo Controle) e IPM de 48 horas nos grupos Ar, Água e Terra).

	Ar		Água		Terra	
	Up	Down	Up	Down	Up	Down
Controle	271	105	273	88	257	99
Ar	-	-	15	11	8	10
Àgua	-	-	-	-	11	15

Diante do maior número de genes diferencialmente expressos entre o controle e os grupos do que nas comparações entre os grupos, foi definida uma busca por um biomarcador de IPM que não variasse de acordo com a ocultação do cadáver. Em vista disso, foram analisados os genes (não preditos) que se repetiam na intersecção das comparações do controle com os demais grupos (Figura I.8).

Figura I. 8. Diagrama de Venn das comparações entre controle e demais grupos de simulação de ocultação de cadáver.

A partir dos 222 transcritos alterados em todas as comparações entre o controle e os demais grupos, foi gerado um *ranking* das 10 vias metabólicas enriquecidas significantemente (p<0,05; Tabela Suplementar 2 - Anexo 4) usando o repositório do KEGG. As vias metabólicas que apresentam enriquecimento apresentam genes relacionados a uma vasta variedade de funções. Tendo em vista que após a morte as células iniciam um processo de destruição celular e todos os tipos de biomoléculas vão ser degradados em algum momento [43], as vias metabólicas encontradas neste trabalho são representativas dessa situação *postmortem*. Considerando a não especificidade das vias encontradas como um todo, foram escolhidas cinco vias (Tabela I. 3) as quais tem ligação com o processo de morte celular e vinculadas com o processo de morte. Nessas cinco vias, todos os transcritos agrupados estão

down-regulated, esse fato pode ser um indicativo de que essas vias estão parando de funcionar nesse IPM específico de 48 horas.

A via com maior significância das cinco foi a de complemento e cascata de coagulação com oito transcritos alterados dentre 87 biomoléculas que fazem parte da mesma. Outras duas outras vias enriquecidas pelos transcritos estão ligadas ao metabolismo e à degradação de ácidos graxos. Uma via que se mostrou significativa também é a de regulação do citoesqueleto de actina que tem uma ligação direta ao processo de apoptose [44]. Por fim, se mostrou significativa a via de sinalização de PPARs, enriquecida com quatro transcritos, que é ligada à receptores nucleares que regulam a homeostase da glicose, metabolismo de lipídeos e inflamação [45].

Tabela I. 3. Vias metabólicas sugestivas de estarem vinculadas ao processo de morte, enriquecidas com os transcritos diferencialmente expressos no experimento em todas as situações de simulação. Nº biomoléculas - número total de biomoléculas envolvidas na via; Nº de transcritos - número de transcritos do experimento alterados na via em questão; valor de p - significância da via dentro do universo amostral do experimento.

Via metabólica	Nº de Biomoléculas da via	Nº de transcritos alterados	Valor de <i>p</i>
Complemento e cascata de coagulação	87	8	< 0,001
Metabolismo de ácidos graxos	52	6	< 0,01
Degradação de ácidos graxos	49	4	< 0,01
Regulação do citoesqueleto de actina	218	6	< 0,05
Sinalização de PPARs (Receptores ativados por proliferadores de peroxissoma)	85	4	< 0,05

Dentre os 28 transcritos agrupados nessas cinco vias, os dois com menores *fold change (down-regulated)*, F3 - Fator de coagulação 3 (FC_{médio}= -6,5) e *Fabp7* - proteína de

ligação à ácidos graxos 7 (FC_{medio} = -8,76), foram escolhidos como possíveis biomarcadores de tempo de morte e testados em todos os pontos do IPM por RT-qPCR. O gene *F3* é uma glicoproteína de superfície responsável pela ativação da via metabólica de coagulação e complemento [46]. Já o *Fabp7* é um gene ligado a proliferação e diferenciação de células neurais [47]. Por esses terem a maior diferença de expressão entre o controle e os grupos, foi possível ver um padrão de degradação.

A figura Figura I. 9. A mostra o padrão de degradação inerido a partir da quantidade de transcritos do gene *F3* nas três condições de ocultação. Não foi observada diferença estatística entre os tipos de ocultação, fato já esperado tendo em vista que no experimento anterior a diferença de expressão foi apenas entre os grupos teste e o grupo controle. Porém, observa-se diferença entre os diversos IPMs. A figura Figura I. 9. B apresenta o melhor modelo matemático para esse transcrito utilizando a média e desvio padrão das amostras de todos os grupos juntos. A regressão cúbica se mostrou adequada aos dados (Y= 5,167 + 0,1252 X - 0,001095 X²+ 2,706e-006 X³, R² = 0,9002).

Figura I. 9. Padrão de degradação do gene *F3* ao longo do IPM de 0 até 192 horas. A- Valores de Δ Ct dos diferentes tipos de ocultação em cada IPM. B- Modelo matemático que melhor representa a média dos Δ Ct dos grupos em cada IPM (regressão cúbica, Y= 5,167 + 0,1252 X - 0,001095 X²+ 2,706e-006 X³, R² = 0,9002).

O aumento do Δ Ct ao longo do IPM confirma os dados encontrados pelo *array* de expressão, o qual mostrou que o gene *F3* estava cinco vezes menos expresso nos grupos no IPM de 48 horas do que no controle em 0 horas. No IPM de 192 horas ocorreu uma queda do Δ Ct, porém essa diminuição foi potencialmente decorrente da degradação do endógeno (*Actb*), como pode ser observado pelos valores de Ct (Figura I. 10).

Figura I. 10. Cts (Threchold cycles) do gene controle *Actb* ao longo de 192 horas *post-mortem* nas três simulações de ocultação de cadáver.

A Figura I. 11.A mostra o padrão de degradação inerido a partir da quantidade de transcritos do gene *Fabp7*, no qual foi observado um aumento significativo no Δ Ct ao longo do IPM, porém não variando entre os grupos de simulação de ocultação. A Figura I. 11.B apresenta o melhor modelo matemático para esse transcrito nas condições do experimento realizado. A regressão cúbica também se mostrou o melhor modelo para esse conjunto de dados (Y= 3,974 + 0,1339 X - 0,001380 X²+ 3,688e-006 X³, R² = 0,8549). Assim como para o transcrito anterior, ocorreu uma queda de Δ Ct às 192 horas, podendo ser explicada pelos mesmos motivos.

Figura I. 11. Padrão de degradação do gene *Fabp7* ao longo do IPM de 0 até 192 horas. A- Valores de Δ Ct dos diferentes tipos de ocultação em cada IPM. B- Modelo matemático interpolado para a média dos Δ Ct dos grupos em cada IPM (regressão cúbica, Y= 3,974 + 0,1339 X - 0,001380 X²+ 3,688e-006 X³, R² = 0,8549).

A estabilidade da β -actina foi testada em diversos outros artigos como potencial controle endógeno *post-mortem* [12,13,48]. Existe uma discordância entre autores sobre a estabilidade da ACTB [31]. A extremidade no qual o iniciador da ACTB se ligaria foi avaliada por Lv e colaboradores [12], mostrando que o iniciador da ACTB desenhado para a porção 5' é mais estável. O iniciador utilizado para os experimentos aqui descritos foi desenhado para a porção 5' em uma região com estrutura secundária de dupla fita visando essa estabilidade, mas aparentemente esta estratégia não foi suficiente para a garantia da estabilidade até 192 horas. Dessa forma, o presente trabalho corrobora com a literatura que sugere que esse não seja um marcador ideal para essa situação.

A relação entre a integridade de RNAs *post-mortem* e o tempo decorrido após a morte já foi descrita para intervalos de até 96 horas [13,49,50]. Sabe-se que existem RNAs íntegros, variando suas taxas de degradação de acordo com o tecido, as circunstâncias da morte e as condições do ambiente [51]. A diferença de degradação utilizando variação de temperatura foi testada em transcritos de genes endógenos como Actb, Gapdh e 18S rRNA [17,31]. O gene

Gapdh foi avaliado ainda em situações de ocultação em areia e submersão em água [35], não sendo observada diferença de degradação do transcrito entre os diferentes ambientes. Assim como esse estudo com ocultações de cadáver, aqui não foi observada diferença entre os ambientes na maioria dos genes diferencialmente destacados pelo *array* de expressão.

Considerando que cadáveres apresentam processos de decomposição diferente dependendo do ambiente no qual estão inseridos, expressão diferencial mais evidente era esperada entre os grupos testados. Neste trabalho, o ambiente para ocultação de cadáver foi simulado e controlado quanto às variáveis temperatura, umidade e comunidade de microrganismos externos, o que poderia explicar a ausência de diferença do Δ Ct para a maior parte dos transcritos.

A degradação de cadáveres expostos é mais rápida que em cadáveres enterrados ou submersos [52], pois há maior quantidade de oxigênio disponível, facilitando a ação de bactérias presentes no organismo. Ainda, foi observada uma menor atividade de RNAses em condições com menos disponibilidade de água. A amplitude da temperatura varia de acordo com o ambiente também, sendo essa menor na terra que ao ar livre [53]. Por outro lado, corpos em contato com água apresentam mais adipocere, um tipo de cera cadavérica formada por bactérias anaeróbicas a partir da hidrólise da gordura do tecido [54]. Dessa forma, é possível que as dinâmicas de degradação e de transcrição descritas aqui sejam distintas do que será observado em ambientes de ocultação de cadáveres reais.

Buscando uma melhor compreensão da ativação de genes *post-mortem*, foi feita uma análise dos genes que sugerem um aumento de transcrição. Desses, 52,94% são genes preditos e 47,06% são genes que podem ser categorizados de acordo com suas funções principais em quatro classes: manutenção celular, apoptose, regulação do sistema imune, desenvolvimento e diferenciação celular e biogênese de ribossomos (Tabela I.4). Os genes preditos estão em mais

abundância dentre os *up-regulated* do que naqueles vistos como *down-regulated*. Isso sugere que se tem muito mais conhecimento das funções dos genes expressos *ante-mortem* do que os expressos *post-mortem*, fato esse que pode estar ligado à dificuldade de avaliar e estudar tecidos *post-mortem* pela grande quantidade de cascatas que induzem sua degradação

Devido à degradação do corpo e das mudanças bioquímicas após a morte, pouco ainda se sabe sobre a transcrição gênica nesse tipo de situação. Análise do transcriptoma de cérebro e fígado de camundongo e *zebrafish* foi realizada por Pozhitkov e colaboradores [22], o qual utilizando *array* de expressão verificaram a expressão de genes *up-regulated* até 48 horas. Ainda, Ferreira e colaboradores [23] também verificaram esse tipo de transcrição após a morte por meio de RNA-seq, analisando transcriptoma em diversos tecidos humanos como cérebro, pulmão e sangue.

Genes ligados à manutenção de DNA já foram descritos com maior expressão *postmortem* [22,23]. Porém, a comparação entre os genes aqui observados e aqueles descritos por Pozhitkov e colaboradores [22] para camundongo mostra que não há sobreposição. Observouse sobreposição de genes na comparação dos dados aqui apresentados e os genes encontrados com aumento de expressão em *zebrafish* pelos mesmos autores. Diversos genes aqui encontrados, foram encontrados alterados também no sangue analisado em Ferreira e colaboradores [23].

A segunda classe de genes com aumento de expressão *post-mortem* está relacionada com os estágios iniciais do desenvolvimento e também regeneração. Dentre os genes potencialmente religados estão dois genes do desenvolvimento do sistema olfatório. Aumento de expressão de genes ligados ao desenvolvimento também foram observados por Pozhitkov e colaboradores [22]. De acordo com os autores, esse aumento de expressão está potencialmente ligado a dinâmica após a morte, religando esses genes um dia silenciados.

40

Tabela I. 4. Lista dos genes e classificação dos mesmos encontrados *up-regulated* em cérebro de camundongo, excluindo os genes preditos, na comparação com o encontrado pelo experimento de *array* de expressão exclusivos entre tempo zero e 48 horas *post-mortem*

Classificação	Gene	Referências
Apoptose	Snhg7	[55]
Biogênese do ribossomo	Nop56, n-R5s1, n-R5s160, n-R5s162, n-R5s196, Ptcd3, Rnu11, Rpl30, Rpl6, Rps8, Snora20, Snora30, Snora62, Snora69, Snora73a, Snora73b, Snora74a, Snord13.	[56–60]
Desenvolvimento e diferenciação celular	Olfr 191, Olfr 503, Rabggtb, Rpph1	[61–63]
Manutenção celular	Dpep2, Eif4a2, Hist1h2aa, Ncl, Rnu11, Rnu12, Rnu1, Rnu3, Slc6a3, Snord17.	[64–72]
Sistema imune	Tcl1b2	[73]

Os níveis de RNA *post-mortem* podem ser em respostas à morte do organismo quanto à degradação das moléculas como consequência da morte celular. Avaliar como essa dinâmica ocorre é essencial para uma análise de transcriptomas *post-mortem*. O uso de genes *upregulated* mostram um potencial mais interessante tendo em vista que os genes que estão *down-regulated* podem estar se degradando, sendo reprimidos ou não transcritos por indisponibilidade de maquinaria como, por exemplo, a RNA polimerase, ainda que a quantidade de classes dos genes *down-regulated* seja significantemente maior do que dos genes expressos no IPM de 48 horas.

O uso de tecido *post-mortem* é insubstituível para entender a biologia da morte, mesmo em intervalos de tempo curtos. Nossos achados mostram que ocorrem mudanças na transcrição ao longo dos dias após a morte no cérebro de camundongo, assim como foi visto para uma gama de outros tecidos até 24 horas *post-mortem* [23]. Mesmo com enfoque do trabalho em busca de um biomarcador de IPM, os achados adicionam novas informações sobre o tecido *post-mortem*, podendo esses serem usados na elucidação de questões patológicas, transplantes e preservação do órgão, dentre outros.

I.4. CONCLUSÃO

Foi verificada a abundância de transcritos por *array* de expressão em três tipos de simulações de ocultação de cadáver, exposto, enterrado e submerso em água ao longo de um IPM de 192 horas. Observou-se que dos 502 genes diferencialmente expressos entre os grupos, mais da metade se repetia entre o controle de 0 horas *post-mortem* e os grupos no IPM de 48 horas. Genes ligados à manutenção celular e do DNA, ao desenvolvimento e diferenciação estavam *up-regulated* após dois dias de morte. Dois genes escolhidos como possíveis biomarcadores mostraram-se *down-regulated* e com *fold change* maiores, levando a sugerir que teriam padrões de degradação que melhor responderam ao intervalo de 192 horas. Tanto o *F3* quanto o *Fabp7* se mostraram, por meio do RT-qPCR, estáveis entre os grupos de ocultação e variando significativamente em relação ao IPM de 0h. Foram determinadas regressões não lineares para ambos, as quais podem descrever esse conjunto de dados especificamente. Tendo em vista que o nosso experimento foi todo realizado em condições controladas, para a avaliação de cadáveres humanos teriam que ser consideradas fatores como: influência da temperatura, idade, sexo, causa de morte e estado patológico.

I.5. REFERÊNCIAS

- [1] J.A. Siegel, P.J. Saukko, Encyclopedia of Forensic Sciences, 1st ed., San Diego, 2000. doi:10.1006/rwfs.2000.0587.
- [2] C. Henßge, B. Madea, Estimation of the time since death in the early post-mortem period, (2004). doi:10.1016/j.forsciint.2004.04.051.
- [3] E.R. Hyde, D.P. Haarmann, A.M. Lynne, S.R. Bucheli, J.F. Petrosino, The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition, PLoS One. 8 (2013) e77733. doi:10.1371/journal.pone.0077733.
- [4] H. Cardoso, A. Santos, R. Dias, ... C.G., Establishing a minimum postmortem interval of human remains in an advanced state of skeletonization using the growth rate of bryophytes and plant roots, Springer. (2010).doi: https://doi.org/10.1007/s00414-009-0372-5.
- [5] M. Lancia, F. Conforti, M. Aleffi, M. Caccianiga, M. Bacci, R. Rossi, The Use of Leptodyctium riparium (Hedw.)Warnst in the Estimation of Minimum Postmortem Interval, J. Forensic Sci. 58 (2013) S239–S242. doi:10.1111/1556-4029.12024.
- [6] A.E. Donaldson, I.L. Lamont, Biochemistry Changes That Occur after Death: Potential Markers for Determining Post-Mortem Interval, PLoS One. 8 (2013) e82011. doi:10.1371/journal.pone.0082011.
- [7] H. Mikami, K. Terazawa, T. Takatori, Estimation of time of death by quantification of melatonin in corpses, Springer. (1994). doi: https://doi.org/10.1007/BF01247274
- [8] F. Wehner, H.-D. Wehner, J. Subke, Delimitation of the time of death by immunohistochemical detection of glucagon in pancreatic α-cells, Forensic Sci. Int. 124 (2001) 192–199. doi:10.1016/S0379-0738(01)00608-9.
- [9] A.Vass, The elusive universal post-mortem interval formula, Elsevier. (2011.).doi: https://doi.org/10.1016/j.forsciint.2010.04.052.
- [10] M. Kaliszan, Studies on time of death estimation in the early post mortem period–Application of a method based on eyeball temperature measurement to human bodies, Elsevier. (2013). https://www.sciencedirect.com/science/article/pii/S1344622313000655.
- [11] N. Di Nunno, F. Costantinides, What is the best sample for determining the early postmortem period by on-the-spot flow cytometry analysis?, The American Journal of Forensic Medicine and Pathology . (2002.).
- [12] Y.H. Lv, K.J. Ma, H. Zhang, M. He, P. Zhang, Y.W. Shen, N. Jiang, D. Ma, L. Chen, A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen, J. Forensic Sci. 59 (2014) 1286–1294. doi:10.1111/1556-4029.12447.
- [13] F. Sampaio-Silva, T. Magalhães, F. Carvalho, R.J. Dinis-Oliveira, R. Silvestre, Profiling of RNA Degradation for Estimation of Post Morterm Interval, PLoS One. 8 (2013). doi:10.1371/journal.pone.0056507.
- [14] M. Bauer, RNA in forensic science, Forensic Sci. Int. Genet. 1 (2007) 69–74. doi:10.1016/j.fsigen.2006.11.002.
- [15] M. Bauer, A. Kraus, D. Patzelt, Detection of Epithelial Cells in Dried Blood Stains by Reverse Transcriptase-Polymerase Chain Reaction, J. Forensic Sci. 44 (1999) 14593J. doi:10.1520/JFS14593J.
- [16] T. Ohshima, Y.S.-I., Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality, Springer. journal of legal medicine,

(1998).

- [17] Y.H. Lv, J.L. Ma, H. Pan, H. Zhang, W.C. Li, A.M. Xue, H.J. Wang, K.J. Ma, L. Chen, RNA degradation as described by a mathematical model for postmortem interval determination, J. Forensic Leg. Med. 44 (2016) 43–52. doi:10.1016/j.jflm.2016.08.015.
- [18] C. Tu, T. Du, C. Shao, Z. Liu, L. Li, Y. Shen, Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI, Forensic Sci. Med. Pathol. 14 (2018) 194–201. doi:10.1007/s12024-018-9973-y.
- [19] S. Marciniak, J. Klunk, A. Devault, J. Enk, H.N. Poinar, Ancient human genomics: the methodology behind reconstructing evolutionary pathways, J. Hum. Evol. 79 (2015) 21–34. doi:10.1016/J.JHEVOL.2014.11.003.
- [20] A.E. Maile, C.G. Inoue, L.E. Barksdale, D.O. Carter, Toward a universal equation to estimate postmortem interval, Forensic Sci. Int. 272 (2017) 150–153. doi:10.1016/j.forsciint.2017.01.013.
- [21] W.-C. Li, K.-J. Ma, Y.-H. Lv, P. Zhang, H. Pan, H. Zhang, H.-J. Wang, D. Ma, L. Chen, Postmortem interval determination using 18S-rRNA and microRNA, Sci. Justice. 54 (2014) 307–310. doi:10.1016/J.SCIJUS.2014.03.001.
- [22] A.E. Pozhitkov, R. Neme, T. Domazet-Lošo, B.G. Leroux, S. Soni, D. Tautz, P.A. Noble, Tracing the dynamics of gene transcripts after organismal death, Open Biol. 7 (2017). doi:10.1098/rsob.160267.
- [23] P.G. Ferreira, M. Muñoz-Aguirre, F. Reverter, C.P. Sá Godinho, A. Sousa, A. Amadoz, R. Sodaei, M.R. Hidalgo, D. Pervouchine, J. Carbonell-Caballero, R. Nurtdinov, A. Breschi, R. Amador, P. Oliveira, C. Çubuk, J. Curado, F. Aguet, C. Oliveira, J. Dopazo, M. Sammeth, K.G. Ardlie, R. Guigó, The effects of death and post-mortem cold ischemia on human tissue transcriptomes, Nat. Commun. 9 (2018). doi:10.1038/s41467-017-02772-x.
- [24] T. Maniatis, S. Goodbourn, Regulation of inducible and tissue-specific gene expression, Science.Sciencemag.Org. J.F.- Science (1987).
- [25] P. Preece, N.J. Cairns, Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance, Mol. Brain Res. 118 (2003) 60–71. doi:10.1016/S0169-328X(03)00337-1.
- [26] M. Heinrich, K. Matt, S. Lutz-Bonengel, U. Schmidt, Successful RNA extraction from various human postmortem tissues, Int. J. Legal Med. 121 (2007) 136–142. doi:10.1007/s00414-006-0131-9.
- [27] S.A. Johnson, D.G. Morgan, C.E. Finch, Extensive postmortem stability of RNA from rat and human brain, J. Neurosci. Res. 16 (1986) 267–280. doi:10.1002/jnr.490160123.
- [28] K. Yasojima, E. McGeer, P.M.-B.R., High stability of mRNAs postmortem and protocols for their assessment by RT-PCR, Elsevier. (2001). https://www.sciencedirect.com/science/article/pii/ S1385299X01001192
- [29] N. Samarasekera, R.A.-S. Salman, I. Huitinga, N. Klioueva, C.A. McLean, H. Kretzschmar, C. Smith, J.W. Ironside, Brain banking for neurological disorders, Lancet Neurol. 12 (2013) 1096–1105. doi:10.1016/S1474-4422(13)70202-3.
- [30] B. Roy, M. Dunbar, R.C. Shelton, Y. Dwivedi, Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder, Neuropsychopharmacology. 42 (2017) 864–875. doi:10.1038/npp.2016.175.
- [31] J. Ma, H. Pan, Y. Zeng, Y. Lv, H. Zhang, A. Xue, J. Jiang, K. Ma, L. Chen, Exploration of the R codebased mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures, Forensic Sci. Med. Pathol. 11 (2015) 530–537. doi:10.1007/s12024-015-9703-7.

- [32] C. Nagy, M. Maheu, J.P. Lopez, K. Vaillancourt, C. Cruceanu, J.A. Gross, M. Arnovitz, N. Mechawar, G. Turecki, Effects of Postmortem Interval on Biomolecule Integrity in the Brain, J. Neuropathol. Exp. Neurol. 74 (2015) 459–469. doi:10.1097/NEN.000000000000190.
- [33] A. Schroeder, O. Mueller, S.S.-B., The RIN: an RNA integrity number for assigning integrity values to RNA measurements, Bmcmolbiol.Biomedcentral.(2006). https://bmcmolbiol.biomedcentral.com/articles/ 10.1186/1471-2199-7-3
- [34] A. Jaffe, R. Tao, ... A.N.-P., qSVA framework for RNA quality correction in differential expression analysis, Natl. Acad Sci. (2017.). http://www.pnas.org/content/114/27/7130.short .
- [35] H.A. Elghamry, M.I. Mohamed, F.M. Hassan, D.S. Abdelfattah, A.G. Abdelaal, Potential use of GAPDH m-RNA in estimating PMI in brain tissue of albino rats at different environmental conditions, Egypt. J. Forensic Sci. 7 (2017) 0–5. doi:10.1186/s41935-017-0024-8.
- [36] J. Wang, S. Vasaikar, Z. Shi, ... M.G.-N. acids, WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit, Academic.Oup.Com. (2017). https://academic.oup.com/nar/article-abstract/45/W1/W130/3791209 (accessed July 22, 2018).
- [37] A. Brown, T.M.-F. science, Body temperature as a means of estimating the time of death, Elsevier. (1974.). https://www.sciencedirect.com/science/article/pii/0300943274900934 (accessed July 22, 2018).
- [38] S. Aturaliya, A. Lukasewycz, Experimental Forensic and Bioanthropological Aspects of Soft Tissue Taphonomy: 1. Factors Influencing Postmortem Tissue Desiccation Rate, J. Forensic Sci. 44 (1999) 12011J. doi:10.1520/JFS12011J.
- [39] D.O. Carter, D. Yellowlees, M. Tibbett, Moisture can be the dominant environmental parameter governing cadaver decomposition in soil, Forensic Sci. Int. 200 (2010) 60–66. doi:10.1016/j.forsciint.2010.03.031.
- [40] Z. Li, P. Bai, D. Peng, B. Long, L. Zhang, W. Liang, Influences of different RT-qPCR methods on forensic body fluid identification by microRNA, Forensic Sci. Int. Genet. Suppl. Ser. 5 (2015) e295– e297. doi:10.1016/j.fsigss.2015.09.117.
- [41] A.C. Birdsill, D.G. Walker, L. Lue, L.I. Sue, T.G. Beach, Postmortem interval effect on RNA and gene expression in human brain tissue, Cell Tissue Bank. 12 (2011) 311–318. doi:10.1007/s10561-010-9210-8.
- [42] C. Becker, A. Hammerle-Fickinger, I.R. mRNA and microRNA quality control for RT-qPCR analysis, Elsevier. (2010). https://www.sciencedirect.com/science/article/pii/S1046202310000253 .
- [43] R.H. Powers, The Decomposition of Human Remains, in: Forensic Med. Low. Extrem., Humana Press, Totowa, NJ, 2005: pp. 3–15. doi:10.1385/1-59259-897-8:003.
- [44] C. Gourlay, K.A.-N. reviews M. cell biology, The actin cytoskeleton: a key regulator of apoptosis and ageing?, Nature.Com. (2005). https://www.nature.com/articles/nrm1682.
- [45] I. Issemann, S.G.- Nature, Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators, Nature.Com. (1990). https://www.nature.com/articles/347645a0.
- [46] M. Hoffman, Remodeling the Blood Coagulation Cascade, J. Thromb. Thrombolysis. 16 (2003) 17–20. doi:10.1023/B:THRO.0000014588.95061.28.
- [47] Y. Arai, N. Funatsu, ... K.N.-T, Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex, Soc Neurosci. (2005.). http://www.jneurosci.org/content/25/42/9752.short.
- [48] A. Koppelkamm, B. Vennemann, S. Lutz-Bonengel, T. Fracasso, M. Vennemann, RNA integrity in postmortem samples: Influencing parameters and implications on RT-qPCR assays, Int. J. Legal Med. 125

(2011) 573–580. doi:10.1007/s00414-011-0578-1.

- [49] P. Fais, M.C. Mazzotti, G. Teti, R. Boscolo-Berto, S. Pelotti, M. Falconi, HIF1α protein and mRNA expression as a new marker for post mortem interval estimation in human gingival tissue, J. Anat. 1 (2018) 1–7. doi:10.1111/joa.12800.
- [50] M.C. Hunter, A.E. Pozhitkov, P.A. Noble, Accurate predictions of postmortem interval using linear regression analyses of gene meter expression data, Forensic Sci. Int. 275 (2017) 90–101. doi:10.1016/j.forsciint.2017.02.027.
- [51] S.L. Fordyce, M.L. Kampmann, N.L. van Doorn, M.T.P. Gilbert, Long-term RNA persistence in postmortem contexts, Investig. Genet. 4 (2013) 1–7. doi:10.1186/2041-2223-4-7.
- [52] M. Lee Goff, Early post-mortem changes and stages of decomposition in exposed cadavers, Exp. Appl. Acarol. 49 (2009) 21–36. doi:10.1007/s10493-009-9284-9.
- [53] J. Wiersema, Mark Tibbet, David O. Carter (eds): Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains, Forensic Sci. Med. Pathol. 4 (2008) 269–269. doi:10.1007/s12024-008-9050-z.
- [54] S.L. Forbes, B.H. Stuart, B.B. Dent, The effect of the burial environment on adipocere formation, Forensic Sci. Int. 154 (2005) 24–34. doi:10.1016/J.FORSCIINT.2004.09.107.
- [55] K. She, J. Huang, H. Zhou, T. Huang, G. Chen, J. He, lncRNA-SNHG7 promotes the proliferation, migration and invasion and inhibits apoptosis of lung cancer cells by enhancing the FAIM2 expression, Oncol. Rep. 36 (2016) 2673–2680. doi:10.3892/or.2016.5105.
- [56] T. Gautier, T. Bergès, D. Tollervey, E. Hurt, Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis., Mol. Cell. Biol. 17 (1997) 7088–98. doi:10.1128/MCB.17.12.7088.
- [57] C. Deisenroth, Y. Zhang, Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway, Oncogene. 29 (2010) 4253–4260. doi:10.1038/onc.2010.189.
- [58] T.S. Ro-Choi, Nuclear snRNA and Nuclear Function (Discovery of 5' Cap Structures in RNA), Crit. Rev. Eukaryot. Gene Expr. 9 (1999) 107–158. doi:10.1615/CritRevEukarGeneExpr.v9.i2.20.
- [59] C.L. Will, R. Lührmann, Spliceosomal UsnRNP biogenesis, structure and function, Curr. Opin. Cell Biol. 13 (2001) 290–301. doi:10.1016/S0955-0674(00)00211-8.
- [60] S.M.K. Davies, O. Rackham, A.-M.J. Shearwood, K.L. Hamilton, R. Narsai, J. Whelan, A. Filipovska, Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation, FEBS Lett. 583 (2009) 1853–1858. doi:10.1016/j.febslet.2009.04.048.
- [61] Y.G.J. van Helden, R.W. Godschalk, S.G. Heil, A. Bunschoten, S. Hessel, J. Amengual, M.L. Bonet, J. von Lintig, F.J. van Schooten, J. Keijer, Downregulation of Fzd6 and Cthrc1 and upregulation of olfactory receptors and protocadherins by dietary beta-carotene in lungs of Bcmo1-/- mice, Carcinogenesis. 31 (2010) 1329–1337. doi:10.1093/carcin/bgq083.
- [62] V. Lachance, A. Cartier, S. Génier, S. Munger, P. Germain, P. Labrecque, J.-L. Parent, Regulation of β₂ -Adrenergic Receptor Maturation and Anterograde Trafficking by an Interaction with Rab Geranylgeranyltransferase, J. Biol. Chem. 286 (2011) 40802–40813. doi:10.1074/jbc.M111.267815.
- [63] Y. Cai, Z. Sun, H. Jia, H. Luo, X. Ye, Q. Wu, Y. Xiong, W. Zhang, J. Wan, Rpph1 Upregulates CDC42 Expression and Promotes Hippocampal Neuron Dendritic Spine Formation by Competing with miR-330-5p, Front. Mol. Neurosci. 10 (2017) 27. doi:10.3389/fnmol.2017.00027.
- [64] G.M. HABIB, Z.-Z. SHI, A.A. CUEVAS, M.W. LIEBERMAN, Identification of two additional members of the membrane-bound dipeptidase family, FASEB J. 17 (2003) 1313–1315.

doi:10.1096/fj.02-0899fje.

- [65] W.-T. Lu, A. Wilczynska, E. Smith, M. Bushell, The diverse roles of the eIF4A family: you are the company you keep., Biochem. Soc. Trans. 42 (2014) 166–72. doi:10.1042/BST20130161.
- [66] a P. Vassilev, H.H. Rasmussen, E.I. Christensen, S. Nielsen, J.E. Celis, The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in a fraction of cells in S-phase., J. Cell Sci. 108 (Pt 3 (1995) 1205–1215. doi:10.1016/0012-1606(87)90209-0.
- [67] N. Durut, J. Sáez-Vásquez, Nucleolin: Dual roles in rDNA chromatin transcription, Gene. 556 (2015) 7– 12. doi:10.1016/j.gene.2014.09.023.
- [68] J. Verbeeren, E.H. Niemelä, J.J. Turunen, C.L. Will, J.J. Ravantti, R. Lührmann, M.J. Frilander, An Ancient Mechanism for Splicing Control: U11 snRNP as an Activator of Alternative Splicing, Mol. Cell. 37 (2010) 821–833. doi:10.1016/j.molcel.2010.02.014.
- [69] M.F. Elsaid, N. Chalhoub, T. Ben-Omran, P. Kumar, H. Kamel, K. Ibrahim, Y. Mohamoud, E. Al-Dous, I. Al-Azwani, J.A. Malek, K. Suhre, M.E. Ross, A.A. Aleem, Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia, Ann. Neurol. 81 (2017) 68–78. doi:10.1002/ana.24826.
- [70] A. Yu, A.D. Bailey, A.M. Weiner, Metaphase fragility of the human RNU1 and RNU2 loci is induced by actinomycin D through a p53-dependent pathway, Hum. Mol. Genet. 7 (1998) 609–617. doi:10.1093/hmg/7.4.609.
- [71] N.J. Watkins, I. Lemm, D. Ingelfinger, C. Schneider, M. Hoßbach, H. Urlaub, R. Lührmann, Assembly and Maturation of the U3 snoRNP in the Nucleoplasm in a Large Dynamic Multiprotein Complex, Mol. Cell. 16 (2004) 789–798. doi:10.1016/j.molcel.2004.11.012.
- [72] G.W. Miller, R.R. Gainetdinov, A.I. Levey, M.G. Caron, Dopamine transporters and neuronal injury, Trends Pharmacol. Sci. 20 (1999) 424–429. doi:10.1016/S0165-6147(99)01379-6.
- [73] M.A. Teitell, The TCL1 family of oncoproteins: co-activators of transformation, Nat. Rev. Cancer. 5 (2005) 640–648. doi:10.1038/nrc1672.

CAPÍTULO II

Ambientes interferem na estabilidade de miRNA em cérebro post-mortem? Uma abordagem utilizando simulações de ocultação de cadáver de *Mus musculus*

RESUMO

MicroRNAs (miRNAs) são RNAs não codificantes altamente envolvidos com a regulação da expressão gênica. Na genética forense, esse tipo de ácido nucléico tem sido estudado para identificação de fluídos biológicos e predição de intervalo post-mortem (IPM), assim como sua estabilidade ao longo deste período. Acredita-se que pela sequência curta e sua estrutura, os miRNAs são mais estáveis do que outras moléculas como mRNA e rRNA. Em nosso estudo, simulamos três diferentes tipos de ocultação de cadáver usando modelo animal (Mus musculus) baseado na exposição ao ar, submersão em água e enterramento. Para avaliar a estabilidade ao longo do intervalo post mortem, foram selecionados três miRNAs - miR-9, miR-124 e miR-134 - que são expressos especificamente no tecido cerebral, para análise de expressão gênica via RT-qPCR. Os cérebros dos camundongos foram retirados em cinco pontos de IPM: 24, 48, 72, 96 e 192 horas. O Δ Ct foi usado para análise da estabilidade dos miRNAs ao longo do IPM. Para normalização foi utilizado o snRNA U6 como endógeno. Não foram encontradas diferenças entre os tipos de ocultação, mostrando que esses miRNAs têm um padrão de degradação bastante similares e que os mesmos não sofrem interferência do ambiente. Ainda, a degradação não mudou ao longo dos dias post-mortem, indicando que essas moléculas são estáveis até 192 horas de após a morte.

Palavras-chave: miRNA; intervalo *post-mortem*; genética forense; estabilidade de RNA; tecido cerebral; transcriptase reversa.

II.1. INTRODUÇÃO

Estimar o intervalo *post-mortem* (IPM), período de tempo decorrente entre a morte do indivíduo e o momento da descoberta do seu corpo, é essencial para investigações criminais, principalmente no caso de crimes sem testemunhas. Nesses casos em particular, determinar a hora exata do crime ajuda a incluir ou excluir suspeitos, confirmando ou não álibis.

A medicina legal estima o tempo de morte utilizando a tanatologia forense, isto é, o estudo das mudanças cadavéricas clássicas como queda da temperatura corporal (*algor mortis*), rigidez cadavérica (*rigor mortis*) e livores cadavéricos (*livor mortis*) [1]. Essas mudanças se iniciam a partir de 20 minutos *post-mortem* e duram até no máximo 72 horas. Devido à decomposição dos tecidos moles do corpo, a precisão na determinação do IPM por necropsia depende do tempo transcorrido entre a morte e a descoberta do cadáver, sendo que, quanto mais tempo após a morte, mais difícil e imprecisa será essa estimativa. Já a entomologia tenta prever a hora da morte por meio do aparecimento e crescimento de larvas da fauna cadavérica. Esse tipo de observação para estimativa do IPM é bastante variável, visto que a fauna entomológica muda de acordo com os diferentes biomas ao longo do planeta, com as diversas épocas do ano, assim como nos diversos ambientes urbanos. Dessa forma, a validação do IPM torna-se bastante complexa, dada a necessidade de avaliação de diversos fatores ambientais no momento da descoberta do corpo, como temperatura, umidade e presença da fauna regional [2]. No Brasil, assim como em outros países, recomenda-se que o IPM seja estimado utilizando a tanatologia forense, e, em alguns casos, a ajuda da entomologia forense.

Diversos estudos buscam estimar o IPM utilizando parâmetros bioquímicos, químicos, biológicos e físicos [3,4]. O RNA tem sido objeto de estudo para identificação de fluidos biológicos, determinação de tempo de injúria e determinação de intervalo *post-mortem* [5–7]. A diferença na degradação desta molécula em relação ao observado para o DNA a torna

potencialmente mais adequada para a determinação de IPM. Enquanto o DNA pode ser recuperado até 400 mil anos após a morte o RNA é considerado uma molécula instável. Porém, é possível recuperar RNA total, que inclui RNA mensageiro (mRNA), RNA ribossômico (rRNA), *small* RNA (snRNA), RNA circular e microRNA (miRNA), de cadáveres de organismos como camundongos, ratos, coelhos e humanos, ao menos de 0 a 192 horas após a morte [6,8,9].

Cada tecido apresenta características únicas e portanto, diferentes taxas de degradação de RNA *post-mortem* [10]. A degradação dos RNAs é influenciada pelo gênero e idade do indivíduo, pH do tecido avaliado, podendo ainda ser associada a fatores externos como temperatura e estresse metabólico [11]. O cérebro é um dos órgãos mais estudados após a morte, tanto para maior conhecimento sobre doenças neurodegenerativas, quanto para determinação do IPM [12]

A família dos miRNAs destaca-se dentre os demais por serem RNAs não-codificantes de 18 a 24 nucleotídeos, presentes em diversos eucariotos, os quais estão relacionados principalmente com a regulação da expressão gênica [13]. A expressão desses, assim como os outros RNAs, é tecido-específica e tipo celular específico [10]. Esses ácidos nucléicos podem ter uma meia-vida *in vivo* de 28 a 220 horas, aproximadamente de 2 a 20 vezes mais tempo do que moléculas como mRNA, rRNA e snRNA [6,14]. Os miRNAs têm se mostrado mais resistentes às altas temperaturas e variação de pH quando comparados aos mRNAs [15]. Essas características, juntamente com a sua estrutura de dupla fita dos precursores e o padrão específico de tecidos e céuluas [16], os miRNAs têm sido considerados promissores na genética forense para estimar o IPM [6,9,14].

A maior parte dos estudos que buscam estimar o IPM foram realizados com o controle de variáveis externas a fim de diminuir a interferência das mesmas. Pouco se sabe sobre a influência do ambiente de ocultação de cadáver na degradação de RNAs. Dessa forma, o presente trabalho tem como objetivo investigar a existência da relação entre o intervalo *post-mortem* e a degradação de miRNAs e se o ambiente de ocultação do cadáver pode interferir nessa relação.

II.2. MATERIAL E MÉTODOS

II.2.1. Aspectos éticos

O protocolo foi aprovado pelo Comitê de Ética no Uso Animal (CEUA) do Instituto de Ciências Biológicas da Universidade de Brasília (UnBDOC 79518/2013).

II.2.2. Animais

Foram utilizados 48 camundongos (*Mus musculus*), da linhagem C57BL/6j, machos, com 16 semanas de idade e peso médio de 27,6 \pm 4 gramas. Os animais foram fornecidos pelo biotério da Universidade Católica de Brasília (UCB) e ficaram, até o momento dos experimentos, em ciclo claro/escuro de 12/12 horas com fornecimento de água e ração *ad libitum*. Para a realização dos experimentos, a alimentação dos camundongos foi suspensa por 8 horas visando minimizar o impacto da quantidade de alimento ingerida pelos animais na degradação do corpo, isso é, que o volume estomacal fosse similar entre os diferentes indivíduos.

Os animais foram eutanasiados em câmara de CO₂ e posteriormente armazenados em sacos plásticos fechados durante o período do experimento. Para verificar a degradação de miRNAs, os animais foram divididos em três grupos experimentais: i. Grupo Ar: simulação de corpos abandonados sem ocultação; ii. Grupo Terra: simulação de ocultação por enterramento utilizando terra autoclavada; iii. Grupo Água: simulação de submersão em água, utilizando água autoclavada. Cada grupo foi composto por um total de 15 animais, que

foram distribuídos por cinco períodos de tempo (24, 48, 72, 96 e 192 horas) em triplicata experimental. Como controle foram utilizados três animais cujo cérebro foi extraído no tempo zero *post mortem* e sem simulação de ocultação de cadáver. Em cada tempo um animal de cada grupo experimental foi dissecado tendo seu cérebro recolhido e armazenado em um esplendor de 1,5ml, sendo imediatamente congelado em nitrogênio líquido.

A temperatura e a umidade foram controladas durante todo o experimento, sendo que a temperatura aferida na sala foi de 23±1,2°C e a umidade de 55%. Os corpos foram distribuídos aleatoriamente dentre os tempos e grupos experimentais. Todos os materiais e superfícies utilizadas para dissecação dos animais e extração do miRNAs foram tratadas com dicarbonato de etila (DEPC) a fim de minimizar a degradação por RNAses presentes no ambiente laboratorial.

II.2.3 Extração e quantificação dos miRNAs

Os cérebros foram macerados em nitrogênio líquido e uma alíquota de 50 mg foi utilizada para extração dos miRNA com o kit *mirVana™ miRNA Isolation* com fenol (*Life Technologies*), de acordo com as orientações do fabricante. A concentração e pureza do material extraído foram quantificadas no *NanoDrop 2000 (Thermo Scientific)*.

II.2.4 RT-qPCR

O *TaqMan*® *Advanced miRNA cDNA Synthesis Kit* (*Applied Biosystems*) foi utilizado para a para a síntese de cDNAs dos miR-9, miR-124 e miR-134, de acordo com protocolo do fabricante. O *input* de miRNA total foi de 10 ng. As amostras de cDNA foram armazenadas em freezer a -20°C até o momento da realização do *Real-Time* qPCR.

A técnica de *Real-Time* qPCR foi realizada pelo sistema de detecção *TaqMan*®. O protocolo do fornecedor foi adaptado para um volume final de 10 μ L, utilizando 5 μ L de

solução completa para qPCR *TaqMan*® 2X (*Applied Biosystems*), 0,5 µL de *TaqMan*® *microRNA assay* (20X), que contém os iniciadores e as sondas específicos, e 1 µL da reação de síntese de cDNA realizada no passo anterior. Os microRNAs aqui analisados foram escolhidos pela exclusividade e abundância no tecido cerebral (Tabela II.1). Foi escolhido como controle endógeno o RNU6-1, um snRNA componente do spliceossomo, exclusivo de células eucarióticas, sendo considerado altamente estável pela sua estrutura de *hairpin* [17]. As reações foram realizadas no equipamento *7500 Fast Real-Time PCR System* (*Applied Biosystems*).

Tabela II.1 miRNAs selecionados para o presente estudo - miR-9, miR-124 e miR-134 -, identificação dos miRNA selecionados de acordo com a Mirbase, sequências dos mesmos e código TaqMan.

miRNA	Mirbase ID	Sequência (5'-3')	TaqMan ID
miR-9	mmu-miR-9-5p	UCUUUGGUUAUCUAGCUGUAUGA	000583
miR-124	mmu-miR-124-5p	CGUGUUCACAGCGGACCUUGAU	002197
miR-134	mmu-miR-134-5p	UGUGACUGGUUGACCAGAGGGG	001186

II.2.5. Análise estatística

A análise estatística dos parâmetros da simulação de ambientes foi realizada utilizando o teste ANOVA de dois fatores, pós-testes de Bonferroni e Turkey com alfa (α) de 0,05. Foram utilizados os softwares SPSS 18.0 (SPSS Inc., USA) para realização dos testes estatísticos e GraphPad Prism 6 para produção dos gráficos (GraphPad Software, La Jolla California USA).

II.3. RESULTADOS E DISCUSSÃO

A estimativa de tempo de morte é uma das ferramentas essenciais nas investigações criminais. Uma das propostas para estimar IPM é a avaliação da degradação de RNA *post-mortem*. Dentre os RNAs, estudos têm mostrado que os miRNAs são estáveis até ao menos 96 horas *post-mortem* [14,18,19]. Nesse trabalho foi investigado se a estabilidade desses miRNAs se mantém até 192 horas e se diferentes ambientes de ocultação de cadáver modificam esta estabilidade.

A extração de pequenos RNAs total foi satisfatória para todas as amostras, com razão 260/280 entre 1,8 e 2,0. Ao mensurar as concentrações de miRNA total, observou-se um decaimento pequeno, estatisticamente não significativo, da quantidade total de miRNA ao longo dos dias *post-mortem*. As concentrações médias foram de 89,9±6,9 ng/µl até 58,9±5,1 ng/µl, caindo ao longo do IPM. A recuperação do RNA extraído variou entre os grupos ao longo do IPM total. Apesar da dinâmica de variação de concentração do miRNA ter sido diferente para cada tipo de ocultação ao longo do experimento, não foi observada diferença estatística entre os mesmos (*dado não mostrado*).

A degradação *post-mortem* pode ser analisada pela quantificação relativa quando se possui um controle adequado [20]. A Figura II.1 e a tabela II.2 mostram a variação do Δ Ct médio dos miRNAs nos diferentes ambientes e em diferentes tempos *post-mortem*. Foi observado, de forma geral, que essas moléculas são estáveis (estatisticamente similares) até 192 horas *post-mortem*, e que os tipos de ocultação de cadáver não contribuem para diferenças. A estabilidade de miRNAs em até 144 horas *post-mortem* já foi verificada em cérebro e outros órgãos como coração e baço [6,9,14,19].

	IDM (horas)		ΔCt			
	IPWI (noras)	Controle	Ar	Água	Terra	
	0	$-2,72 \pm 0,21$	-	-	-	
	24	-	$\textbf{-2,63} \pm \textbf{0,19}$	$\textbf{-4,07} \pm \textbf{0,26}$	$\textbf{-3,}49 \pm 0,\!21$	
Min 0	48	-	$\textbf{-4,08} \pm \textbf{0,01}$	$\textbf{-3,67} \pm 0,16$	$\textbf{-4,}56 \pm 0,\!19$	
MIII-9	72	-	$\textbf{-4,}18 \pm 0,\!35$	$\textbf{-4,36} \pm \textbf{0,29}$	$-4,64 \pm 0,15$	
	96	-	$-5,02 \pm 0,20$	$-4,13 \pm 0,15$	$-5,61 \pm 0,20$	
	192	-	$-1,58 \pm 0,12$	$-4,26 \pm 0,32$	$-4,32 \pm 0,58$	
	0	$7,\!01\pm0,\!51$	-	-	-	
	24	-	$7,\!05\pm0,\!67$	$6{,}47 \pm 0{,}16$	$6{,}84 \pm 0{,}65$	
Mir-124	48	-	$6{,}29\pm0{,}43$	$6{,}95 \pm 0{,}32$	$6{,}54\pm0{,}59$	
WIII 12-	72	-	$6{,}76\pm0{,}48$	$6{,}42\pm0{,}59$	$6{,}75\pm0{,}79$	
	96	-	$5{,}23\pm0{,}69$	$6{,}27\pm0{,}24$	$5{,}88 \pm 0{,}62$	
	192	-	$7{,}04 \pm 0{,}59$	$6{,}34\pm0{,}29$	$5,\!83\pm0,\!59$	
	0	$9{,}27\pm0{,}36$	-	-	-	
	24	-	$9{,}12\pm0{,}35$	$8{,}72\pm0{,}47$	$8,\!38\pm0,\!37$	
Mir 124	48	-	$\textbf{8,06} \pm \textbf{0,51}$	$9{,}41\pm0{,}69$	$8,\!42\pm0,\!16$	
WIII-134	72	-	$8{,}29\pm0{,}40$	$8,\!18\pm0,\!07$	$8,\!14\pm0,\!18$	
	96	-	$8,\!07\pm0,\!20$	$8{,}76\pm0{,}38$	$7{,}71\pm0{,}13$	
	192	-	$7{,}43 \pm 0{,}60$	$6{,}61 \pm 0{,}44$	$5{,}74 \pm 0{,}66$	

Tabela II.2 - Valores de Δ Ct dos miR-9, miR-124 e miR-134 ao longo do intervalo *post-mortem* de 0 à 192 horas, utilizando snRNU6 como endógeno.

Dentre os miRNAs analisados, o mir-9 (Figura II.1.A) apresentou um perfil de degradação peculiar quando em comparação com os demais - mir-124 (Figura II.1.B) e mir-134 (Figura II.1.C). Observou-se valores de ΔCt diferentes entre os IPMs porém não significativos.

Figura II.1. Valores de ΔCt dos miRNAs ao longo do intervalo *post-mortem* de 0 à 192 horas. A- Mir 9/RNUB6; B- Mir 124/RNUB6; C- Mir 134/RNUB6. Cinza – Controle; Vermelho – Ar; Azul – Água; Verde – Terra.

Quanto aos diferentes tipos de ocultação de cadáver, também não foi observada diferença estatística entre os ΔCts estimados, mostrando que os miRNA são estáveis também em relação ao ambiente no qual o corpo ficou exposto durante o intervalo *post-mortem*. Não houve diferença significativa quanto ao mir-9 nos quatro primeiros períodos de IPM. Esse miRNA já se mostrou estável até 144h mesmo em situações de variações de temperatura [19]. Já para os mir-124 e mir-134, todos grupos mantiveram seus padrões bem similares durante todo o intervalo *post-mortem*. A estabilidade dos mir-124 e mir-134 já foi verificada anteriormente em cérebros de ratos expostos à temperatura ambiente e a 4°C [14].

Os miRNAs selecionados para o presente estudo foram escolhidos pela sua abundância no tecido cerebral. O mir-124 é o miRNA mais abundante do cérebro [21] e está ligado diretamente à diferenciação de células neurais. Já o mir-9 regula uma grande quantidade de mRNAs, principalmente de genes ligados a neurogênese e migração celular [10,22]como, por exemplo Kcnma1, neurofibromina 1 (NF1), Hes1 e FoxP2. A expressão conjunta do mir-9 e do mir-124 são suficientes para a indução de fibroblastos em neurônios, mostrando a importância de ambos no cérebro [23]. O mir-124 é altamente conservado entre vertebrados, está também envolvido na regulação da morte de células neuronais, atuando em regulação de gene como p53 [24].

A expressão do mir-124 é muito similar ao do mir-134, que por sua vez está ligado à regulação de crescimento e morfologia de estruturas celulares do sistema nervoso como dendritos e espinhas dendríticas [10,23]. O miRNA 134 desenvolve um papel importante na regulação da plasticidade sináptica, mediando uma regulação pós-transcricional do gene da proteína de ligação do elemento de resposta de cAMP (*CREB*).

Considerando que cadáveres apresentam processos de decomposição diferentes dependendo do ambiente no qual estão inseridos, esperava-se observar diferença de abundância dos miRNAs nos grupos testados. Neste trabalho, o ambiente para ocultação de cadáver foi
simulado e controlado quanto às variáveis temperatura, umidade e comunidade de microrganismos externos, o que poderia explicar a ausência de diferença da abundância desses miRNAs entre os grupos e ao longo do intervalo *post-mortem* total.

Estudos mostram que cadáveres expostos ao ar estão mais propensos à decomposição do que cadáveres enterrados [25], pois há, por exemplo, menor quantidade de oxigênio, diminuindo a ação da microbiota presente no organismo nesses últimos. Além disso, observase menor variação de temperatura na condição de enterramento em relação ao ar livre [26]. Por outro lado, corpos em contato com água apresentam mais adipocere, um tipo de cera cadavérica formada por bactérias anaeróbicas a partir da hidrólise da gordura do tecido [27]. Dessa forma, é possível que o perfil de abundância aqui descrito seja distinto do que será observado em ambientes de ocultação de cadáveres reais.

II.4. CONCLUSÃO

Neste estudo demonstramos que não há uma relação entre o IPM e a abundância de miRNAs. Os miRNAs escolhidos para análise se mostraram estáveis, não havendo diferença de expressão em até 192 horas *post-mortem*. Com relação à abordagem de ocultação de cadáver, foram simulados três ambientes distintos, sendo que os dados quanto a degradação dos miRNA não mostraram ser estatisticamente diferentes entre os grupos. Dessa forma, sugere-se que os miRNAs específicos de cérebro mir-9, mir-124 e mir-134 sejam moléculas estáveis até 192 horas, não sendo recomendadas para estimativas de IPM ou de marcadores de ocultação de cadáver, porém passíveis de serem utilizadas como padrões de estabilidade *post-mortem*.

II.5. REFERÊNCIAS

- [1] J.A. Siegel, P.J. Saukko, Encyclopedia of Forensic Sciences, 1st ed., San Diego, 2000. doi:10.1006/rwfs.2000.0587.
- [2] C. Henßge, B. Madea, Estimation of the time since death in the early post-mortem period, (2004). doi:10.1016/j.forsciint.2004.04.051.
- [3] E.R. Hyde, D.P. Haarmann, A.M. Lynne, S.R. Bucheli, J.F. Petrosino, The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition, PLoS One. 8 (2013) e77733. doi:10.1371/journal.pone.0077733.
- [4] B. Zilg, S. Bernard, K. Alkass, S. Berg, H. Druid, A new model for the estimation of time of death from vitreous potassium levels corrected for age and temperature, Forensic Sci. Int. 254 (2015) 158–166. doi:10.1016/J.FORSCIINT.2015.07.020.
- [5] M. Bauer, RNA in forensic science, Forensic Sci. Int. Genet. 1 (2007) 69–74. doi:10.1016/j.fsigen.2006.11.002.
- [6] Y.H. Lv, K.J. Ma, H. Zhang, M. He, P. Zhang, Y.W. Shen, N. Jiang, D. Ma, L. Chen, A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen, J. Forensic Sci. 59 (2014) 1286–1294. doi:10.1111/1556-4029.12447.
- [7] C. Tu, T. Du, C. Shao, Z. Liu, L. Li, Y. Shen, Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI, Forensic Sci. Med. Pathol. 14 (2018) 194–201. doi:10.1007/s12024-018-9973-y.
- [8] F. Sampaio-Silva, T. Magalhães, F. Carvalho, R.J. Dinis-Oliveira, R. Silvestre, Profiling of RNA Degradation for Estimation of Post Morterm Interval, PLoS One. 8 (2013). doi:10.1371/journal.pone.0056507.
- [9] Y. Kakimoto, H. Kamiguchi, E. Ochiai, F. Satoh, M. Osawa, MicroRNA stability in postmortem FFPE tissues: Quantitative analysis using autoptic samples from acute myocardial infarction patients, PLoS One. 10 (2015) 1–17. doi:10.1371/journal.pone.0129338.
- [10] N. Ludwig, P. Leidinger, K. Becker, C. Backes, T. Fehlmann, C. Pallasch, S. Rheinheimer, B. Meder, C. Stähler, E. Meese, A. Keller, Distribution of miRNA expression across human tissues, Nucleic Acids Res. 44 (2016) 3865–3877. doi:10.1093/nar/gkw116.
- [11] P. Preece, N.J. Cairns, Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance, Mol. Brain Res. 118 (2003) 60–71. doi:10.1016/S0169-328X(03)00337-1.
- [12] N. Samarasekera, R.A.-S. Salman, I. Huitinga, N. Klioueva, C.A. McLean, H. Kretzschmar, C. Smith, J.W. Ironside, Brain banking for neurological disorders, Lancet Neurol. 12 (2013) 1096–1105. doi:10.1016/S1474-4422(13)70202-3.
- [13] M.A. Valencia-Sanchez, J. Liu, G.J. Hannon, R. Parker, Control of translation and mRNA degradation by miRNAs and siRNAs., Genes Dev. 20 (2006) 515–24. doi:10.1101/gad.1399806.
- [14] C. Nagy, M. Maheu, J.P. Lopez, K. Vaillancourt, C. Cruceanu, J.A. Gross, M. Arnovitz, N. Mechawar, G. Turecki, Effects of Postmortem Interval on Biomolecule Integrity in the Brain, J. Neuropathol. Exp. Neurol. 74 (2015) 459–469. doi:10.1097/NEN.000000000000190.
- [15] M.P. Gantier, C.E. McCoy, I. Rusinova, D. Saulep, D. Wang, D. Xu, A.T. Irving, M.A. Behlke, P.J. Hertzog, F. Mackay, B.R.G. Williams, Analysis of microRNA turnover in mammalian cells following Dicer1 ablation, Nucleic Acids Res. 39 (2011) 5692–5703. doi:10.1093/nar/gkr148.
- [16] C. Chen, D.A. Ridzon, A.J. Broomer, Z. Zhou, D.H. Lee, J.T. Nguyen, M. Barbisin, N.L. Xu, V.R.

Mahuvakar, M.R. Andersen, K.Q. Lao, K.J. Livak, K.J. Guegler, Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res. 33 (2005) e179–e179. doi:10.1093/nar/gni178.

- [17] T.H.D. Nguyen, W.P. Galej, X. Bai, C.G. Savva, A.J. Newman, S.H.W. Scheres, K. Nagai, The architecture of the spliceosomal U4/U6.U5 tri-snRNP, Nature. 523 (2015) 47–52. doi:10.1038/nature14548.
- [18] H. Zhang, P. Zhang, K.-J. Ma, Y.-H. Lv, W.-C. Li, C.-L. Luo, L.-L. Li, Y.-W. Shen, M. He, J.-Q. Jiang, L. Chen, The selection of endogenous genes in human postmortem tissues, Sci. Justice. 53 (2013) 115– 120. doi:10.1016/j.scijus.2012.11.005.
- [19] J. Ma, H. Pan, Y. Zeng, Y. Lv, H. Zhang, A. Xue, J. Jiang, K. Ma, L. Chen, Exploration of the R codebased mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures, Forensic Sci. Med. Pathol. 11 (2015) 530–537. doi:10.1007/s12024-015-9703-7.
- [20] A. Koppelkamm, B. Vennemann, S. Lutz-Bonengel, T. Fracasso, M. Vennemann, RNA integrity in postmortem samples: Influencing parameters and implications on RT-qPCR assays, Int. J. Legal Med. 125 (2011) 573–580. doi:10.1007/s00414-011-0578-1.
- [21] M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, T. Tuschl, Identification of Tissue-Specific MicroRNAs from Mouse, Curr. Biol. 12 (2002) 735–739. doi:10.1016/S0960-9822(02)00809-6.
- [22] E.A. Miska, E. Alvarez-Saavedra, M. Townsend, A. Yoshii, N. Šestan, P. Rakic, M. Constantine-Paton, H.R. Horvitz, Microarray analysis of microRNA expression in the developing mammalian brain, Genome Biol. 5 (2004) R68. doi:10.1186/gb-2004-5-9-r68.
- [23] P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice, A.O. Kamphorst, M. Landthaler, C. Lin, N.D. Socci, L. Hermida, V. Fulci, S. Chiaretti, R. Foà, J. Schliwka, U. Fuchs, A. Novosel, R.-U. Müller, B. Schermer, U. Bissels, J. Inman, Q. Phan, M. Chien, D.B. Weir, R. Choksi, G. De Vita, D. Frezzetti, H.-I. Trompeter, V. Hornung, G. Teng, G. Hartmann, M. Palkovits, R. Di Lauro, P. Wernet, G. Macino, C.E. Rogler, J.W. Nagle, J. Ju, F.N. Papavasiliou, T. Benzing, P. Lichter, W. Tam, M.J. Brownstein, A. Bosio, A. Borkhardt, J.J. Russo, C. Sander, M. Zavolan, T. Tuschl, A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing, Cell. 129 (2007) 1401–1414. doi:10.1016/J.CELL.2007.04.040.
- [24] X. Liu, F. Li, S. Zhao, Y. Luo, J. Kang, H. Zhao, F. Yan, S. Li, X. Ji, MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke., Stroke. 44 (2013) 1973–80. doi:10.1161/STROKEAHA.111.000613.
- [25] W.C. Rodriguez, W.M. Bass, Decomposition of Buried Bodies and Methods That May Aid in Their Location, J. Forensic Sci. 30 (1985) 11017J. doi:10.1520/JFS11017J.
- [26] J. Wiersema, Mark Tibbet, David O. Carter (eds): Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains, Forensic Sci. Med. Pathol. 4 (2008) 269–269. doi:10.1007/s12024-008-9050-z.
- [27] M.T. Ferreira, E. Cunha, Can we infer post mortem interval on the basis of decomposition rate? A case from a Portuguese cemetery, Forensic Sci. Int. 226 (2013) 1–6. doi:10.1016/j.forsciint.2013.01.006.

4. CONCLUSÕES GERAIS

- A análise da integridade do RNA total extraído de cérebro de camundongo, mostrou ser possível se obter RNAs íntegros até 96 horas, com uma degradação maior no IPM de 192 horas.
- No transcriptoma *post-mortem* foram encontrados 502 genes diferencialmente, sendo 444 expressos entre o IPM zero e o IPM 48 horas, dos quais 72,77% estavam *down-regulated* e 27,23% *up-regulated*.
- Com relação aos diferentes tipos de ocultação de cadáver, observou-se 58 genes diferentes exclusivos das comparações entre os grupos ar e água, ar e terra, e água e terra.
- Foram sugeridos dois potenciais biomarcadores, F3 e Fabp7, para a estimativa de IPM, propondo modelos matemáticos para descrever a dinâmica dos mesmos ao longo de 192 horas post-mortem.
- Foi observada estabilidade dos mir-9, mir-124, e mir-134 ao longo de 192 horas post-mortem.
- Não foi observada diferença com relação ao ambiente *post-mortem* na estabilidade dos miRNAs testados.
- Conclui-se que seja possível estimar IPM utilizando mRNA, não sendo possível distinguir o ambiente de ocultação de cadáver considerando a simulação com parâmetros controlados.

5. REFERÊNCIAS GERAIS

- [1] A.M. Christensen, The impact of Daubert: implications for testimony and research in forensic anthropology (and the use of frontal sinuses in personal identification)., J. Forensic Sci. 49 (2004) 427–30. http://www.ncbi.nlm.nih.gov/pubmed/15171154 (accessed June 30, 2018).
- [2] J.A. Siegel, P.J. Saukko, Encyclopedia of Forensic Sciences, 1st ed., San Diego, 2000. doi:10.1006/rwfs.2000.0587.
- [3] A. Brown, T.M.-F. science, Body temperature as a means of estimating the time of death, Elsevier. (1974). https://www.sciencedirect.com/science/article/pii/0300943274900934 (accessed July 22, 2018).
- [4] C. Henßge, B. Madea, Estimation of the time since death in the early post-mortem period, (2004). doi:10.1016/j.forsciint.2004.04.051.
- [5] H. Gill-King, Chemical and ultrastructural aspects of decomposition, Forensic Taphon. Postmortem Fate Hum. Remain. (1997) 93–108. https://scholar.google.com/scholar_lookup?title=Chemical and ultrastructural aspects of decomposition&author=H. Gill-King&publication_year=1996.
- [6] M. Lee Goff, Early post-mortem changes and stages of decomposition in exposed cadavers, Exp. Appl. Acarol. 49 (2009) 21–36. doi:10.1007/s10493-009-9284-9.
- [7] K.A. Hauther, K.L. Cobaugh, L.M. Jantz, T.E. Sparer, J.M. DeBruyn, Estimating Time Since Death from Postmortem Human Gut Microbial Communities, J. Forensic Sci. 60 (2015) 1234–1240. doi:10.1111/1556-4029.12828.
- [8] T. Ralebitso-Senior, M.P.-F. Ecogenomics, Implications of the Investigative Animal Model, Elsevier. (2018.). https://www.sciencedirect.com/science/article/pii/B9780128093603000047.
- [9] S.L. Forbes, B.H. Stuart, B.B. Dent, The effect of the burial environment on adipocere formation, Forensic Sci. Int. 154 (2005) 24–34. doi:10.1016/J.FORSCIINT.2004.09.107.
- [10] A.V.-M. today, Beyond the grave-understanding human decomposition, Cbsd.Org. (2001). http://www.cbsd.org/cms/lib010/PA01916442/Centricity/Domain/2361/decomposition article.pdf.
- [11] J.W. Fredette, Bacteriemias in the agonal period, Transl. Res. 2 (1916) 180–188. https://www.translationalres.com/article/S0022-2143(16)90022-2/abstract.
- [12] G.T. Javan, S.J. Finley, Z. Abidin, J.G. Mulle, The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death, Front. Microbiol. 7 (2016). doi:10.3389/fmicb.2016.00225.
- [13] Z. Burcham, J. Hood, J. Pechal, ... K.K.-F. science, Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration, Elsevier. (2016.). https://www.sciencedirect.com/ science/article/pii/S0379073816301050.
- [14] W.C. Rodriguez, W.M. Bass, Decomposition of buried bodies and methods that may aid in their location., J. Forensic Sci. 30 (1985) 836–52. http://www.ncbi.nlm.nih.gov/pubmed/4031811 (accessed July 14, 2018).
- [15] J. Pinheiro, Decay Process of a Cadaver, in: Forensic Anthropol. Med., Humana Press, Totowa, NJ, n.d.: pp. 85–116. doi:10.1007/978-1-59745-099-7_5.
- [16] T. Simmons, R. Adlam, C.M.-J., Debugging decomposition data—comparative taphonomic studies and the influence of insects and carcass size on decomposition rate, Wiley Online Libr. (2010.). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1556-4029.2009.01206.x.
- [17] S. Fiedler, M. Graw, Decomposition of buried corpses, with special reference to the formation of

adipocere, Naturwissenschaften. 90 (2003) 291-300. doi:10.1007/s00114-003-0437-0.

- [18] J. Wiersema, Mark Tibbet, David O. Carter (eds): Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains, Forensic Sci. Med. Pathol. 4 (2008) 269–269. doi:10.1007/s12024-008-9050-z.
- [19] V. Heaton, A. Lagden, C. Moffatt, T. Simmons, Predicting the Postmortem Submersion Interval for Human Remains Recovered from U.K. Waterways, J. Forensic Sci. 55 (2010) 302–307. doi:10.1111/j.1556-4029.2009.01291.x.
- [20] M.E. Benbow, J.L. Pechal, J.M. Lang, R. Erb, J.R. Wallace, The Potential of High-throughput Metagenomic Sequencing of Aquatic Bacterial Communities to Estimate the Postmortem Submersion Interval, J. Forensic Sci. 60 (2015) 1500–1510. doi:10.1111/1556-4029.12859.
- [21] N. Hobischak, G.A.-J. of F. Science, Time of submergence using aquatic invertebrate succession and decompositional changes, Astm.Org. (2002.). http://www.astm.org/DIGITAL_LIBRARY/ JOURNALS/FORENSIC/PAGES/JFS15215J.htm.
- [22] E.R. Hyde, D.P. Haarmann, A.M. Lynne, S.R. Bucheli, J.F. Petrosino, The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition, PLoS One. 8 (2013) e77733. doi:10.1371/journal.pone.0077733.
- [23] I. Joseph, D.G. Mathew, P. Sathyan, G. Vargheese, The use of insects in forensic investigations: An overview on the scope of forensic entomology., J. Forensic Dent. Sci. 3 (2011) 89–91. doi:10.4103/0975-1475.92154.
- [24] J. Amendt, C.S. Richards, C.P. Campobasso, R. Zehner, M.J.R. Hall, Forensic entomology: applications and limitations, Forensic Sci. Med. Pathol. 7 (2011) 379–392. doi:10.1007/s12024-010-9209-2.
- [25] D.R. Green, Cell death and the immune system: getting to how and why, (2017) 4–8. doi:10.1111/imr.12553.
- [26] M.L. Escobar-sánchez, L. Sánchez-sánchez, J. Sandoval-ramírez, Steroidal Saponins and Cell Death in Cancer, Intech (2015) http://dx.doi.org/10.5772/61438.
- [27] J. Kerr, A. Wyllie, A.C.-B., Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics, Nature.Com. (1972). https://www.nature.com/articles/bjc197233 (accessed July 23, 2018).
- [28] L. Sibbens, W. Van de Voorde, R. Decorte, B. Bekaert, The development of a forensic clock to determine time of death, Forensic Sci. Int. Genet. Suppl. Ser. 6 (2017) e162–e163. doi:10.1016/j.fsigss.2017.09.059.
- [29] D. Klionsky, S.E., Autophagy as a regulated pathway of cellular degradation, Science.Sciencemag.Org. (2000). http://science.sciencemag.org/content/290/5497/1717.short..
- [30] M. Ankarcrona, J.M. Dypbukt, E. Bonfoco, B. Zhivotovsky, S. Orrenius, S.A. Lipton, P. Nicotera, Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function, Neuron. 15 (1995) 961–973. doi:10.1016/0896-6273(95)90186-8.
- [31] S. Fink, B.C.-I. and immunity, Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Am Soc Microbiol. (2005). http://iai.asm.org/content/73/4/1907.short .
- [32] G.L. Semenza, HIF-1 and mechanisms of hypoxia sensing, Curr. Opin. Cell Biol. 13 (2001) 167– 171. doi:10.1016/S0955-0674(00)00194-0.
- [33] H. Maeda, B. Zhu, T. Ishikawa, T. Michiue, Forensic molecular pathology of violent deaths, Forensic Sci. Int. 203 (2010) 83–92. doi:10.1016/j.forsciint.2010.07.024.

- [34] D. Li, B. Zhu, T. Ishikawa, D. Zhao, T.M.-L. Medicine, Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases, Elsevier. (2006). https://www.sciencedirect.com/science/article/pii/S1344622305001185,
- [35] D. Rossi, T. Oshima, D.A.- Nature, Glutamate release in severe brain ischaemia is mainly by reversed uptake, Nature.Com. (2000). https://www.nature.com/articles/35002090 (accessed July 23, 2018).
- [36] M. Nedergaard, R.P. Kraig, J. Tanabe, W.A. Pulsinelli, Dynamics of interstitial and intracellular pH in evolving brain infarct, Am. J. Physiol. Integr. Comp. Physiol. 260 (1991) R581–R588. doi:10.1152/ajpregu.1991.260.3.R581.
- [37] R.A. Swanson, K. Farrell, B.A. Stein, Astrocyte energetics, function, and death under conditions of incomplete ischemia: A mechanism of glial death in the penumbra, Glia. 21 (1997) 142–153. doi:10.1002/(SICI)1098-1136(199709)21:1<142::AID-GLIA16>3.0.CO;2-S.
- [38] A.J. Hansen, Effect of anoxia on ion distribution in the brain, Physiol. Rev. 65 (1985) 101–148. doi:10.1152/physrev.1985.65.1.101.
- [39] R. Alaeddini, S.J. Walsh, A. Abbas, Forensic Science International : Genetics Forensic implications of genetic analyses from degraded DNA — A review, Forensic Sci. Int. Genet. 4 (2010) 148–157. doi:10.1016/j.fsigen.2009.09.007.
- [40] N. Di Nunno, F. Costantinides, ... S.C.-T.A. journal, What is the best sample for determining the early postmortem period by on-the-spot flow cytometry analysis?, Journals.Lww.Com. (2002).
- [41] W.L. Perry, W.M. Bass, W.S. Riggsby, K. Sirotkin, The Autodegradation of Deoxyribonucleic Acid (DNA) in Human Rib Bone and Its Relationship to the Time Interval Since Death, J. Forensic Sci. 33 (1988) 12445J. doi:10.1520/JFS12445J.
- [42] L.A. Johnson, J.A.J. Ferris, Analysis of postmortem DNA degradation by single-cell gel electrophoresis, Forensic Sci. Int. 126 (2002) 43–47. doi:10.1016/S0379-0738(02)00027-0.
- [43] H.-S. Huang, A. Matevossian, Y. Jiang, S. Akbarian, Chromatin immunoprecipitation in postmortem brain, J. Neurosci. Methods. 156 (2006) 284–292. doi:10.1016/J.JNEUMETH.2006.02.018.
- [44] J. Guhaniyogi, G.B.- Gene, Regulation of mRNA stability in mammalian cells, Elsevier. (2001.). https://www.sciencedirect.com/science/article/pii/S037811190100350X (accessed July 23, 2018).
- [45] M. Bauer, I. Gramlich, S. Polzin, D. Patzelt, Quantification of mRNA degradation as possible indicator of postmortem interval - A pilot study, Leg. Med. 5 (2003) 220–227. doi:10.1016/j.legalmed.2003.08.001.
- [46] I.D. La Sierra-Gallay, L. Zig, ... A.J.-N. structural &, Structural insights into the dual activity of RNase J, Nature.Com. (2008). https://www.nature.com/nsmb/journal/v15/n2/abs/nsmb.1376.html (accessed July 23, 2018).
- [47] N.L. Garneau, J. Wilusz, C.J. Wilusz, The highways and byways of mRNA decay, 8 (2007) 113– 126. doi:10.1038/nrm2104.
- [48] Q. Liu, J. Greimann, C.L.- Cell, Reconstitution, activities, and structure of the eukaryotic RNA exosome, Elsevier. (2006). https://www.sciencedirect.com/science/article/pii/ S00928674 0601427
- [49] J. Houseley, D. Tollervey, The Many Pathways of RNA Degradation, Cell. 136 (2009) 763–776. doi:10.1016/j.cell.2009.01.019.
- [50] M. Vennemann, A. Koppelkamm, mRNA profiling in forensic genetics I: Possibilities and limitations, Forensic Sci. Int. 203 (2010) 71–75. doi:10.1016/j.forsciint.2010.07.006.

- [51] M.A. Valencia-Sanchez, J. Liu, G.J. Hannon, R. Parker, Control of translation and mRNA degradation by miRNAs and siRNAs., Genes Dev. 20 (2006) 515–24. doi:10.1101/gad.1399806.
- [52] J.Y. Kim, Y. Kim, H.K. Cha, H.Y. Lim, H. Kim, S. Chung, J.-J. Hwang, S.H. Park, G.H. Son, Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications., Mol. Cells. 40 (2017) 410–417. doi:10.14348/molcells.2017.0039.
- [53] M. Ha, V.N. Kim, Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol. 15 (2014) 509– 524. doi:10.1038/nrm3838.
- [54] E.P. Murchison, G.J. Hannon, miRNAs on the move: miRNA biogenesis and the RNAi machinery, Curr. Opin. Cell Biol. 16 (2004) 223–229. doi:10.1016/j.ceb.2004.04.003.
- [55] E. Lund, S. Güttinger, A. Calado, J.D.- Science, Nuclear export of microRNA precursors, Science.Sciencemag.Org. (2004). http://science.sciencemag.org/content/303/5654/95.short
- [56] I. MacRae, K. Zhou, F. Li, A. Repic, ... A.B., Structural basis for double-stranded RNA processing by Dicer, Science.Sciencemag.Org. (2006.). http://science.sciencemag.org/content/311/ 5758/195.short.
- [57] S. Asgari, Role of MicroRNAs in Insect Host–Microorganism Interactions, Front. Physiol. 2 (2011)
 48. doi:10.3389/fphys.2011.00048.
- [58] T. Fukuda, K. Yamagata, S. Fujiyama, ... T.M.-N. cell, DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs, Nature.Com. (2007). https://www.nature.com/articles/ncb1577 (accessed July 23, 2018).
- [59] M. Bauer, A. Kraus, D. Patzelt, Detection of Epithelial Cells in Dried Blood Stains by Reverse Transcriptase-Polymerase Chain Reaction, J. Forensic Sci. 44 (1999) 14593J. doi:10.1520/JFS14593J.
- [60] T. Ohshima, Y.S.-I. journal of legal medicine, Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality, Springer. (1998).
- [61] F. Sampaio-Silva, T. Magalhães, F. Carvalho, R.J. Dinis-Oliveira, R. Silvestre, Profiling of RNA Degradation for Estimation of Post Morterm Interval, PLoS One. 8 (2013). doi:10.1371/journal.pone.0056507.
- [62] Y.H. Lv, K.J. Ma, H. Zhang, M. He, P. Zhang, Y.W. Shen, N. Jiang, D. Ma, L. Chen, A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen, J. Forensic Sci. 59 (2014) 1286–1294. doi:10.1111/1556-4029.12447.

Declaração de aprovação do projeto no CEUA (Comitê de Ética do Uso Animal) do Instituto de Biologia da Universidade de Brasília

Declaração de aprovação do projeto no CEUA (Comitê de Ética do Uso Animal) do Instituto de Biologia da Universidade de Brasília

Protocolo do fabricante do experimento de Array de expressão realizado no

Cápitulo II

Chapter 2

Protocol

Procedural Notes

To minimize sample-to-sample variation that is caused by subtle procedural differences in gene expression assays, consider implementing a detailed procedural plan. The plan standardizes the variables in the procedure and should Implement a Plan to Maintain Procedural Consistency

Method of RNA isolation

include the:

- Amount of input RNA that is used for each tissue type
- RNA purity and integrity
- Equipment Preparation
- Workflow stopping points
- Reagent Preparation

Equipment Preparation

Recommended Thermal Cycler

Make sure that the heated cover of your thermal cycler either tracks the temperature of the thermal cycling block or supports specific temperature programming.

Program the Thermal Cycler

Set the temperature for the heated lid to or near the required temperature for each step. An alternate protocol may be used for thermal cyclers that lack a programmable heated lid. This is not the preferred method. Yields of cRNA may significantly decrease cRNA yields. For In Vitro Transcription cRNA Synthesis, we recommend incubating the ranscription cRNA Synthesis steps. We recommend leaving the heated lid open during Second-Strand cDNA Synthesis. A small amount of condensation will form during the incubation. This is expected, and should not be greatly reduced if a heated lid is used during the Second-Strand cDNA Synthesis or during the In Vitro eaction in a 40°C hybridization oven if a programmable heated lid thermal cycler is unavailable.

Incubation temperatures and times are critical for effective RNA amplification. Use properly calibrated thermal evelers and adhere closely to the incubation times.

 $\rm NOTE:$ Concentration fluctuations that are caused by condensation can affect yield. Ensure that the heated lid feature of the thermal cycler is working properly. þ

GeneChipTM WT PLUS Reagent Kit Manual Target Preparation for GeneChipTM Whole Transcript (WT) Expression Array ∞

Progr
Cycler
Thermal
2.1
able

lable 2.1 Inermal Cy	/cler Progra	ams					
Program	Heated Lid Temp	Alternate Protocol*	Step 1 S	tep 2 Step	3 Step 4	Volum	Ð
First-Strand cDNA Synthesis	42°C	105°C	25°C, 60 4 min	2°C, 60 min	4°C, 2 min	10 µ	_
Second-Strand cDNA Synthesis	RT or disable	Lid open	16°C, 60 6 min	5°C, 10 min	4°C, 2 min	30 µ	
In Vitro Transcription cRNA Synthesis	40°C	40°C oven	40°C, 16 hr	4°C, hold		60 µ	_
2nd-Cycle Primers- cRNA Annealing	70 °C	105°C	70°C, 5 min	25°C, 5 min	4°C, 2 min	28 µ	
2nd-Cycle ss-cDNA Synthesis	70 °C	105°C	25°C, 10 min	42°C, 90 min	70°C, 10 min	4° 40 μ C, hol d	_
RNA Hydrolysis	70 °C	105°C	37°C, 45min	95°C, 5 min	4°C, hold	44 µ	
Fragmentation	93° C	105°C	37°C, 60 min	93°C, 2 min	4°C, hold	48 µ	
Labeling	70° C	105°C	37°C, 60 min	70°C, 10 min	4°C, hold	60 µ	
Hybridization Control	65° C	105°C	65°C, 5 min			Variabl	0
Hybridization Cocktail	99°	105°C	95°C or 99°C, 5 min	45 °C, ni		Variabl	0
*For thermal cyclers that lack Reagent Preparation	a programma. ON	ble heated lid.					

IMPORTANT: You can freeze and thaw the reagents in the 12 and 30 reaction kits ${\leq}3$ times.

Handling kit components as follows:

- Enzymes: Mix by gently vortexing the tube followed by a brief centrifuge to collect contents of the tube, then keep on ice. •
- Buffers and Primers: Thaw on ice, thoroughly vortex to dissolve precipitates followed by a brief centrifuge to collect contents of the tube. If necessary, warm the buffer(s) at $\leq 37^{\circ}$ C for 1 to 2 min, or until the precipitate is fully dissolved, then keep on ice.
- Purification Beads: Allow to equilibrate at room temperature before use. •
- Prepare master mixes for each step of the procedure to save time, improve reproducibility, and minimize pipetting error. .

6 GeneChipTM WT PLUS Reagent Kit Manual Target Preparation for GeneChipTM Whole Transcript (WT) Expression Array

lys				Viduo of onby	(100110
			1:10	0,000	
phe			1:5(0,000	
thr			1:2:	5,000	
dap			1:6	667	
The controls are then an intensities of these cont of the starting RNA san	nplified and labe rols on GeneChip nples.	led together with the T TM arrays helps to m	total RNA sample: nonitor the labeling	s. Examining the l process independ	nybridization ently from the qual
The Poly-A RNA Contr Kit to prepare the appro- total RNA is used as siz needed in order to perfo spike-in controls in the	ol Stock and Pol- priate serial dilut arting material. For mu the appropria samples.	y-A Control Dil Buf ions based on Table or starting sample an te dilutions to arrive	For are provided in 2.3. This is a guide nounts other than th at the same propor	the GeneChip TM F eline when 50, 100 tose listed here, cc rionate final conco	oly- A RNA Contr), 250, or 500 ng oi deulations are entration of the
			2		
Total RNA Input Amount		Serial Dilutions			Volume of 4 Dilution to Ad Total RNA
	1 st Dilution	2 nd Dilution	3 rd Dilution	4 th Dilution	
50 ng	1:20	1:50	1:50	1:20	2 µL
100 ng	1:20	1:50	1:50	1:10	2 µL
250 ng	1:20	1:50	1:50	1:4	2 µL
500 ng	1:20	1:50	1:50	1:2	2 μL
I IMPORTANT • Avoid pi consiste	: petting solutic ncy when prep	ons less than 2 µL baring the dilutior	- in volume to m is.	aintain precisio	n and
Use non	-stick nucleas	e-free tubes to pr	epare all of the c	dilutions (not in	cluded).
 After ea followed 	ch step, mix th by a quick ceı	e Poly-A Control ntrifuge to collect	dilutions thorou contents of the	ighly by gently tube.	vortexing
For example, to prepare	the Poly-A RNA	A dilutions for 100 ng	g of total RNA:		
 Add 2 µL of the Pc Add 2 µL of the 1s Add 2 µL of the 2n Add 2 µL of the 2n Add 2 µL of the 3n Add 2 µL of the 3n Controls should not 	ly-A Control Sto t Dilution to 98 µ d Dilution to 98 J Dilution to 18 h Dilution to 10 h Dilution to 100 exceed 5 µL.	ck to 38 µL of Poly- L of Poly-A Control alL of Poly-A Contro alL of Poly-A Contro L of Poly-A Contro 'ng of total RNA. Tl	A Control Dil Buff I Dil Buffer to prep ol Dil Buffer to prep I Dil Buffer to prep I Dil Buffer to prep he final volume of t	for for the 1st Dilu are the 2nd Diluti are the 3rd Diluti are the 4th Diluti total RNA with th	tion (1:20). on (1:50). on (1:50). on (1:10). e diluted Poly-A
TIP: The firs	t dilution of the at -20°C and fr	Poly-A RNA cor ozen/thawed up t	ntrols can be sto to eight times. La	red up to 6 wee abel the storage	ks in a non-fro tube with the

To include premixed controls from the GeneChipTM Poly-A RNA Control Kit, add the reagents to the total RNA samples. Follow the Prepare Total RNA/Poly-A RNA Control Mixture. We strongly recommend the use of Poly-A RNA Controls for all

A supplied set of poly-A RNA controls is designed specifically to provide exogenous positive controls to monitor the Each eukaryotic GeneChipTM probe array contains probe sets for several B. subtilis genes that are absent in eukaryotic samples (*tys, phe, thr,* and *dap*). These poly-A RNA controls are *in vitro* synthesized, and the polyadenylated transcripts for the *B. subtills* genes are premixed at staggered concentrations. The concentrated Poly-A Control Stock can be diluted with the Poly-A Control Dil Buffer and spiked directly into RNA samples to achieve the final concentrations (referred to as a ratio of copy number) summarized in Table 2.2.

entire target preparation. It should be added to the RNA prior to the First-Strand cDNA Synthesis step.

If frozen, the Poly-A Control Dil Buffer may take 15 to 20 min to thaw at room

temperature.

•

reactions that will be hybridized to GeneChipTM arrays.

ng/µL). Follow the Prepare Total RNA/Poly-A RNA Control Mixture, but use 2 µL of the diluted Control RNA (50 ng) in

the control reaction.

ä

NOTE:

Ø

1. On ice, dispense 2 µL of the Control RNA in 78 µL of Nuclease-free Water for a total volume of 80 µL (25

To prepare the Control RNA for positive control reaction:

included with the kit.

Measure concentration of HeLa Control RNA using a NanoDrop Spectrophotometer and use the measured concentration for calculation and preparing the 25 ng/µL

The positive control reaction should produce >15 µg of cRNA and >5.5 µg of 2nd-

cycle ss-cDNA from 50 ng Control RNA.

working stock

Prepare Poly-A RNA Controls

NOTE:

þ

To verify that the reagents are working as expected, a Control RNA sample (1 mg/mL total RNA from HeLa cells) is

Return the components to the recommended storage temperature immediately after use. Enzyme should be added last and just before adding the master mix to the reaction.

Prepare Control RNA

•

Prepare Control RNA

Use non-stick nuclease-free tubes to prepare the master mix

losses when preparing the master mixes.

Prepare Master Mixes as follows:

• . . .

Prepare only the amount needed for all samples in the experiment plus \sim 5% overage to correct for pipetting

11

RNA
Total
Prepare

Evaluate RNA Quality

Total RNA samples should be free of genomic DNA and we recommend including a DNase treatment or genomic DNA removal ised with the RNA purification method. The contaminating genomic DNA may be amplified along with the RNA, which will lead to inaccurate measurement of whole transcriptome expression. In addition, the contaminating genomic DNA could cause over-estimations of the RNA amount.

RNA quality affects how efficiently an RNA sample is amplified using this kit. High-quality RNA is free of contaminating proteins, DNA, phenol, ethanol, and salts. To evaluate RNA quality, determine its A260/A280 ratio. RNA of acceptable quality is in the range of 1.7 to 2.1.

Evaluate RNA Integrity

The integrity of the RNA sample, or the proportion that is full length, is an important component of RNA quality. Reverse transcribing partially-degraded mRNA may generate cDNA that lacks parts of the coding region.

Two methods to evaluate RNA integrity are:

- Microfluidic analysis, using the Agilent 2100 Bioanalyzer with an RNA LabChip Kit or equivalent instrument.
- Denaturing agarose gel electrophoresis.

With microfluidic analysis, you use the RNA Integrity Number (RIN) to evaluate RNA integrity. For more information on how to calculate RNN, go to www.genomics.agilent.com

With denaturing agarose gel electrophoresis and nucleic acid staining, you separate and make visible the 28S and 18S rRNA bands. The mRNA is likely to be full length if the:

- 28S and 18S rRNA bands are resolved into two discrete bands that have no significant smearing below each band.
- 28S rRNA band intensity is approximately twice that of the 18S rRNA band

Determine RNA Quantity

Consider both the type and amount of sample RNA that are available when planning your experiment. Because mRNA content varies significantly with tissue type, determine the total RNA input empirically for each tissue type or experimental condition. The recommended total RNA inputs in Table 2.4 are based on total RNA from HeLa cells. Use these values as reference points for determining your optimal RNA input.

NOTE: Avoid pipetting solutions less than 2 µL in volume to maintain precision and consistency. High-concentration RNA samples should be pre-diluted with Nuclease-free Water before adding to first-strand cDNA synthesis reaction.

Table 2.4 Input RNA Limits

Total RNA	100 ng	50 ng	500 ng
RNA Input	Recommended	Minimum	Maximum

Prepare Total RNA/Poly-A RNA Control Mixture

Prepare total RNA according to your laboratory's procedure. A maximum of 5 µL total RNA can be added to first-strand synthesis reaction. If you are adding Poly-A Spike Controls to your RNA, the volume of RNA must be 3 µL or less (Table 2.5). See *Prepare Poly-A RNA Controls* for more information. For example, when performing the Control RNA reaction, combine 2 µL of RNA (25 ng/µL), 2 µL of diluted Poly-A Spike Controls, and 1 µL of Nuclease-free Watr.

12 GeneChipTM WT PLUS Reagent Kit Manual Target Preparation for GeneChipTM Whole Transcript (WT) Expression Array

NOTE: If you are adding Poly-A Spike Controls to your RNA, the volume of RNA must be 3 µL or less. If necessary, use a SpeedVac or ethanol precipitation to concentrate the RNA samples.

Table 2.5 Total RNA/Poly-A RNA Control Mixture

Component	Volume for One Reaction
Total RNA Sample (50-500 ng)	variable
Diluted Poly-A RNA Controls (4th Dilution)	2 µL
Nuclease-free Water	variable
Total Volume	5 µL

Synthesize First-Strand cDNA

In this reverse transcription procedure, total RNA is primed with primers containing a T7 promoter sequence. The reaction synthesizes single-stranded cDNA with T7 promoter sequence at the 5' end.

NOTE: Avoid pipetting solutions less than 2 µL in volume to maintain precision and consistency. High-concentration RNA samples should be pre-diluted with Nuclease-free Water before adding to first-strand cDNA synthesis reaction.

- 1. Prepare First-Strand Master Mix.
- a. On ice, prepare the First-Strand Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the total RNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

Table 2.6 First-Strand Master Mix

Component	Volume for One Reaction
First-Strand Buffer	4 µL
First-Strand Enzyme	1 µГ
Total Volume	sμL

- b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube. Proceed immediately to the next step.
- c. On ice, transfer 5 μL of the First-Strand Master Mix to each tube or well.
- 2. Add total RNA to each First-Strand Master Mix aliquot.
- a. On ice, add 5 μL of the total RNA (Table 2.5) to each (5 μL) tube or well containing the First-Strand Master Mix for a final reaction volume of 10 μL. See Prepare Total RNA/Poly-A RNA Control Mixture for more information.
 - b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.
 - c. Incubate for 1 hr at 25°C, then for 1 hr at 42°C, then for at least 2 min at 4°C.
- Incubate the first-strand synthesis reaction in a thermal cycler using the First-Strand cDNA Synthesis program that is shown in Table 2.1.

GeneChipTM WT PLUS Reagent Kit Manual Target Preparation for GeneChipTM Whole Transcript (WT) Expression Array

 Immediately after the incubation, centrifuge briefly to collect the first-strand cDNA at the bottom of the tube or well. Dlace the semule on ice for 2 min to cool the place is then proceed immediately to Surface's Second. 	Synthesize Second-Strand cDNA In this procedure, single-stranded cDNA is converted to double-stranded cDNA, which acts as a template for <i>in vitro</i>
b. Frace the sample on ice for z min to cool the plastic, then proceed immediately to <i>synthesize second</i> - Strand $cDNA$.	transcription. The reaction uses DNA polymerase and RNase H to simultaneously degrade the RNA and synthesize second-strand cDNA.
IMPORTANT: Transferring Second-Strand Master Mix to hot plastice may cignificantly	IMPORTANT: Pre-cool thermal cycler block to 16°C.
rent over statisticating occurs or and make in a to prosper and of granutating and the first-strand CDN Synthesis reaction at 4°C for longer than 10 min may significantly reduce cRNA vields.	1. Prepare Second-Strand Master Mix.
	a. On ice, prepare the Second-Strand Master MIX in a nuclease-tree tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the first-strand cDNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.
TIP: When there is approximately 15 min left on the thermal cycler you may start reagent preparation for Second-Strand cDNA Synthesis.	Table 2.7 Second-Strand Master Mix
	Component Volume for One Reaction
	Second-Strand Buffer 18 µL
	Second-Strand Enzyme 2 µL
	Total Volume 20 µL
	 Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube and proceed immediately to the next step.
	c. On ice, transfer 20 μL of the Second-Strand Master Mix to each (10 μL) first-strand cDNA sample for a final reaction volume of 30 μL .
	d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.
	2. Incubate for 1 hr at 16°C, then for 10 min at 65°C, then for at least 2 min at 4°C.
	 Incubate the second-strand synthesis reaction in a thermal cycler using the Second-Strand cDNA Synthesis program that is shown in Table 2.1.
	IMPORTANT: Disable the heated lid of the thermal cycler or keep the lid off during the Second-Strand cDNA Synthesis.
	b. Immediately after the incubation, centrifuge briefly to collect the second-strand cDNA at the bottom of the tube or well.
	c. Place the sample on ice, then proceed immediately to Synthesize cRNA by In Vitro Transcription.
	TIP: When there is approximately 15 min left on the thermal cycler you may start reagent preparation for In Vitro Transcription.

GII

15

nd-strand cDNA samples to room temperature for >5 min while ter Mix. ar is thawed completely, leave the IVT Buffer at room temperature preparing the IVT Master Mix.	seginning the CKNA Purincation
d cDNA samples to room temperature for >5 min while wed completely, leave the IVT Buffer at room temperature ng the IVT Master Mix. room temperature.	IMPORTANT:
wed completely, leave the IVT Buffer at room temperature ng the IVT Master Mix. t room temperature.	 Preheat the Nuclease-free Water in a heat block or thermal cycler to 65°C for at least 10 min.
tt room temperature.	 Mix the Purification Beads thoroughly by vortexing before use to ensure that they are fully dispersed. Transfer the appropriate amount of Purification Beads to a nuclease-free tube or container, and allow the Purification Beads to equilibrate at
t room temperature.	room temperature. For each reaction, 100 μ L plus ~10% overage will be needed.
	 Prepare fresh dilutions of 80% ethanol wash solution each time from 100% ethanol (Molecular Biology Grade or equivalent) and Nuclease-free Water in a nuclease- free tube or container. For each reaction. 600 uL plus ~10% overage will be
/T Master Mix in a nuclease-free tube. Combine the components in the Prepare the master mix for all the second-strand cDNA samples in the tume to correct for pipetting losses.	needed. Transfer the cRNA sample to room temperature while preparing the Purification Beads.
Volume for One Reaction	
24 µL	
6 µL	 Occasionality, the bead/sample mixture may be prownish in color and not completely clear when placed on magnet. In those situations, switch to a different
30 µL	position of magnet on the magnetic stand, a new magnetic stand, or spin out pellets.
ig the tube. Centrifuge briefly to collect the mix at the bottom of the tube, ext step.	This entire procedure is performed at room temperature.
ıL of the IVT Master Mix to each (30 μL) second-strand cDNA sample for 1.	. Bind cRNA to Purification Beads.
gs the tube. Centrifuge briefly to collect the reaction at the bottom of the ately to the next step.	 Mix the Purification Beads container by vortexing to resuspend the magnetic particles that may have settled. b. Add 100 μL of the Purification Beads to each (60 μL) cRNA sample, mix by pipetting up and down, and
	transfer to a well of a U-bottom plate.
rmal cycler using the In Vitro Transcription cRNA Synthesis program that	TID.
ciefly to collect the cRNA at the bottom of the tube or well.	 Anvirumed walls clearly ha consead with a data cades or that the data can acfet he served
ceed to $Purify cRNA$, or immediately freeze the samples at -20° C for	 University of reasons of obvious with a place search so that the place that starty of reasons. Use multichannel pipette when processing multiple samples.
	c. Mix well by pipetting up and down 10 times.
NA samples can be stored overnight at −∠u°C.	 d. Incubate for 10 min. The cRNA in the sample binds to the Purification Beads during this incubation. e. Move the plate to a magnetic stand to capture the Purification Beads. When capture is complete (after ~5 min), the mixture is transparent, and the Purification Beads form pellets against the magnetic stand. The exact capture time depends on the magnetic stand that you use, and the amount of cRNA generated

- f. Carefully aspirate and discard the supernatant without disturbing the Purification Beads. Keep the plate on the magnetic stand.
- 2. Wash the Purification Beads.
- a. While on the magnetic stand, add 200 µL of 80% ethanol wash solution to each well and incubate for 30 sec.
- b. Slowly aspirate and discard the 80% ethanol wash solution without disturbing the Purification Beads.
 - c. Repeat Step A and Step B twice for a total of 3 washes with 200 μL of 80% ethanol wash solution. Completely remove the final wash solution.
- d. Air-dry on the magnetic stand for 5 min until no liquid is visible, yet the pellet appears shiny.
- e. Additional time may be required. Do not over-dry the beads as this will reduce the clution efficiency. The bead surface will appear dull, and may have surface cracks when it is over-dry.
 3. Elute cRNA.
- a. Remove the plate from the magnetic stand. Add to each sample 27 μL of the preheated (65°C) Nuclease-free Water and incubate for 1 min.
- b. Mix well by pipetting up and down 10 times.
- c. Move the plate to the magnetic stand for ~ 5 min to capture the Purification Beads.
- d. Transfer the supernatant, which contains the eluted cRNA, to a nuclease-free tube.
- e. Place the purified cRNA samples on ice, then proceed to Assess cRNA Yield and Size Distribution, or immediately freeze the samples at -20° C for storage.

NOTE:

- Minimal bead carryover will not inhibit subsequent enzymatic reactions.
- It may be difficult to resuspend magnetic particles and aspirate purified cRNA when the cRNA is very concentrated. To elute the sample with high concentration cRNA, add an additional 10-30 µL of the preheated Nuclease-free Water to the well, incubate for 1 min, and proceed to Step 3B.

TIP: STOPPING POINT. The purified CRNA samples can be stored overnight at – 20°C. For long-term storage, store samples at –80°C and keep the number of freeze-thaw cycles to 3 or less to ensure cRNA integrity.

(Gill

Assess cRNA Yield and Size Distribution

Expected cRNA Yield

The cRNA yield depends on the amount and quality of non-rRNA in the input total RNA. Because the proportion of non-rRNA in total RNA is affected by factors such as the health of the organism and the organ from which it is isolated, cRNA yield from equal amounts of total RNA may vary considerably.

During development of this kit, using a wide variety of fissue types, 50 ng of input total RNA yielded 15 to 40 µg of eRNA. For most tissue types, the recommended 100 ng of input total RNA should provide >20 µg of cRNA.

Determine cRNA Yield by UV Absorbance

Determine the concentration of a cRNA solution by measuring its absorbance at 260 nm. Use Nuclease-free Water as blank. We recommend using NanoDrop Spectrophotometers for convenience. No dilutions or cuvetts are needed; just use 1.5 fL of the cRNA sample directly. Samples with cRNA concentrations greater than 3,000 ng/µL should be diluted with Nuclease-free Water before measurement and reaction setup. Use the diluted cRNA as the input to prepare 15 µg cRNA in 2nd cycle 2NA synthesis reaction. Alternatively, determine the cRNA concentration by diluting an aliquot of the preparation in Nuclease-free Water and reading the absorbance in a traditional spectrophotometer at 260 nm. Calculate the concentration in µg/mL using the equation shown below (1 A260 = 40 µg RNA/mL).

A260 \times dilution factor \times 40 = μg RNA/mL

(Optional) Expected cRNA Size Distribution

The expected cRNA profile is a distribution of sizes from 50 to 4500 nt with most of the cRNA sizes in the 200 to 2000 nt range. The distribution is quite jagged and does not resemble the profile observed when using a traditional dT-based amplification kit such as 3' IVT Express kit. This step is optional.

Determine cRNA size distribution using a Bioanalyzer.

We recommend analyzing cRNA size distribution using an Agilent 2100 Bioanalyzer, a RNA 6000 Nano Kit (PN5067-1511), and mRNA Nano Series II assay. If there is sufficient yield, then load approximately 300 ng of cRNA per well on the Bioanalyzer. If there is insufficient yield, then use as little as 200 ng of cRNA per well. To analyze cRNA size using a Bioanalyzer (jour the manufacture's instructions.

■ TIP: STOPPING POINT. The purified cRNA samples can be stored overnight at -20°C.

Synthesize 2nd-Cycle Single-Stranded cDNA

In this procedure, sense-strand cDNA is synthesized by the reverse transcription of cRNA using 2nd- Cycle Primers. The sense-strand cDNA contains dUTP at a fixed ratio relative to dTTP. 15 µg of cRNA is required for 2nd-cycle single-stranded cDNA synthesis.

Prepare 15 µg of cRNA.

On ice, prepare 625 mg/µL cRNA. This is equal to 15 μ g cRNA in a volume of 24 µL. If necessary, use Nuclease-free Water to bring the cRNA sample to 24 µL.

NOTE: High-concentration cRNA samples (>3000 ng/µL) should be diluted with Nucleasefree Water before measurement and reaction setup. Use the diluted cRNA as the input to prepare 15 µg of cRNA.

- 2. Prepare cRNA and 2nd-Cycle Primers Mix.
- b. On ice, combine:
- 24 μL of cRNA (15 μg)
- 4 µL of 2nd-Cycle Primers
- c. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube, then proceed immediately to the next step.
- 3. Incubate for 5 min at 70°C, then 5 min at 25°C, then 2 min at 4°C.
- Incubate the cRNA/Primers mix in a thermal cycler using the 2nd-Cycle Primers-cRNA Annealing program that is shown in Table 2.1.
- Immediately after the incubation, centrifuge briefly to collect the cRNA/Primers mix at the bottom of the tube or well.
- c. Place the mix on ice, then proceed immediately to the next step.
- 4. Prepare 2nd-Cycle ss-cDNA Master Mix.
- a. On ice, prepare the 2nd-Cycle ss-cDNA Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the cRNA/ Primers samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

Table 2.9 2nd-Cycle ss-cDNA Master Mix

Component	Volume for One
	Reaction
2nd-Cycle ss-cDNA Buffer	8 µL
2nd-Cycle ss-cDNA Enzyme	4 µL
Total Volume	12 µL

- b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube and proceed immediately to the next step.
- c. On ice, transfer 12 μL of the 2nd-Cycle ss-cDNA Master Mix to each (28 μL) cRNA/2nd-Cycle Primers sample for a final reaction volume of 40 μL.
 - d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.
- Incubate for 10 min at 25°C, then 90 min at 42°C, then 10 min at 70°C, then for at least 2 min at 4°C.
- Incubate the 2nd-cycle synthesis reaction in a thermal cycler using the 2nd-Cycle ss-cDNA Synthesis program that is shown in Table 2.1.
- Immediately after the incubation, centrifuge briefly to collect the 2nd-cycle ss-cDNA at the bottom of the tube or well.
- c. Place the sample on ice and proceed immediately to Hydrolyze RNA Using RNase H.

łydrolyze RNA Using RNase H	Purify 2nd-Cycle Single-Stranded cDNA
this procedure, RNase H hydrolyzes the cRNA template leaving single-stranded cDNA.	After hydrolysis, the 2nd-cycle single-stranded cDNA is purified to remove enzymes, salts, and unincorporated dNTPs.
Add RNase H to each 2nd-cycle ss-cDNA sample.	tuis step prepares the CLIVA for itaginemation and latering.
a. On ice, add 4 μ L of the RNase H to each (40 μ L) 2nd-cycle ss-cDNA sample for a final reaction volume of 44 μ L.	beginning the Single-Stranged CDNA Purification
b. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.	I IMPORTANT:
Incubate for 45 min at 37° C, then for 5 min at 95° C, then for at least 2 min at 4° C.	 Preheat the Nuclease-free Water in a heat block or thermal cycler to 65°C for at least 10 min.
 Incubate the RNA hydrolysis reaction in a thermal cycler using the RNA Hydrolysis program that is shown in Table 2.1. 	 Mix the Purification Beads thoroughly by vortexing before use to ensure that they are fully discovered. Transfer the appropriate amount of Durification Boads to a
b. Immediately after the incubation, centrifuge briefly to collect the hydrolyzed 2nd-cycle ss-cDNA at the bottom of the tube or well.	are furly unperseed. It alister ure appropriate amount or university breaks to a nuclease-free tube or container, and allow the Purification Beads to equilibrate at room temperature. For each reaction, 100 µL plus ~10% overage will be needed.
c. Place the samples on ice and proceed immediately to the next step.	Prepare fresh dilutions of 80% ethanol wash solution each time from 100% ethanol
Add Nuclease-free Water to each hydrolyzed 2nd-cycle ss-cDNA sample.	(Molecular Biology Grade or equivalent) and Nuclease-free Water in a nuclease- free tube or container. For each reaction. 600 uL blus ∼10% overage will be
 On ice, add 11 µL of the Nuclease-free Water to each (44 µL) hydrolyzed 2nd-cycle ss-cDNA sample for a final reaction volume of 55 µL. 	needed. Transfer the cDNA sample to room temperature while neonaring the Durification
d. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the reaction at the bottom of the tube or well.	Beads
 Place the sample on ice, then proceed to Purify 2nd-Cycle Single-Stranded cDNA, or immediately freeze the samples at -20°C for storage. 	NOTE
TIP: STOPPING POINT. The hydrolyzed ss-cDNA samples can be stored overnight at -20°C.	Considerable the bradiometic mixture way to braunial in calculated act
	completely clear when placed on magnet. In those situations, switch to a different position of magnet on the magnetic stand, a new magnetic stand, or spin out pellets.
	 This entire procedure is performed at room temperature.
	1. Bind ss-cDNA to Purification Beads.
	a. Mix the Purification Beads container by vortexing to resuspend the magnetic particles that may have settled.
	b. Add 100 µL of Purification Beads to each (55 µL) 2nd-cycle ss-cDNA sample, mix by pipetting up and down, and transfer to a well of a U-bottom plate.
	g TIP:
	 Any unused wells should be covered with a plate sealer so that the plate can safely be reused.
	Use multichannel pipette when processing multiple samples.
	с. Add 150 µL of 100% ethanol to each (155 µL) ss-cDNA/Beads sample. Mix well by pipetting up and down 10 times.
	d. Incubate for 20 min. The ss-cDNA in the sample binds to the Purification Beads during this incubation.
	e. Move the plate to a magnetic stand to capture the Purification Beads. When capture is complete (after ~5 min), the mixture is transparent, and the Purification Beads form pellets against the magnetic stand. The exact capture time depends on the magnetic stand that you use, and the amount of ss-cDNA generated by 2nd-Cycle ss-cDNA Synthesis.
	Cana Chin ^{MI} MT DI I IC Basnant Kit Manual Tamat Danapation for Cana Chin ^{MI} Whole Transcript MTD Evonascion Arrou
	הפופרוווה אז דרסי עפמתפוו או ואמוזמם ומותר בפחמומותו ות הפופסווה אזותום וומוזפיוותי ואיז ביאופפיותו שוומי

	(Optional) Expected Single-Stranded cDNA Size Distribution	The expected cDNA profile does not resemble the cRNA profile. The median cDNA size is approximately 400 r This step is optional.	Determine Single-Stranded cDNA Size Distribution Using a Bioanalyzer	We recommend analyzing cDNA size distribution using an Agilent 2100 Bioanalyzer, a RNA 6000 Nano Kit DN1502715110 and aDNA NANG Series II accord 16 decrets in artificiant violal local anarchimetel 250 acc 65 DNI	well. If there is insufficient yield, then use as little as 200 ng of cDNA per well. To analyze cDNA size using a bioanalyzer, follow the manufacturer's instructions.	TIP: STOPPING POINT. The purified ss-cDNA samples can be stored overnight at -20°C of the fraction of the fraction and lab	reaction and store the samples as ss-cDNA.	Fragment and Label Single-Stranded cDNA	In this procedure, the purified, sense-strand cDNA is fragmented by uracil-DNA glycosylase (UDG) and	apurinticarpyrimetime encontoctaset (AFE 1) at the unitatuation of LT resources and or eash the zivery source, inte fragmented cDNA is labeled by terminal deoxymucleotidyl transferase (HT) using the proprietary DNA Labelin or easy of the source of the	Keagent that is covatently inflict to bloth. 5.5 μ g of single-stranged GUNA is required for magnitumon and iau 1. Prepare 5.5 μ g of ss-cDNA.	On ice, prepare 176 ng/µL ss-cDNA. This is equal to 5.5 µg ss-cDNA in a volume of 31.2 µL. If necessary,	Nuclease-free Water to bring the ss-cDNA sample to 31.2 µL. 2. Prepare Fragmentation Master Mix.	a. On ice, prepare the Fragmentation Master Mix in a nuclease-free tube. Combine the components in the	sequence shown in the table below. Prepare the master mix for all the ss-cDNA samples in the experim Include ~5% excess volume to correct for pipetting losses.	Table 2.10 Fragmentation Master Mix	Component Volume for One Reaction	Nuclease-free Water 10 µL	10X cDNA Fragmentation Buffer 4.8 μL	UDG, 10 U/µL 1 µL 1	APE 1, 1,000 U/μL 1 μL	Total Volume 16.8 μL	 Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the t then proceed immediately to the next step. 	c. On ice, transfer 16.8 μL of the Fragmentation Master Mix to each (31.2 μL) purified ss-cDNA sample f final reaction volume of 48 μL .	d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of tube or well, then proceed immediately to the next step.	3. Incubate for 1 hr at 37° C, then for 2 min at 93° C, then for at least 2 min at 4° C.	 Incubate the fragmentation reaction in a thermal cycler using the Fragmentation program that is shown Table 2.1. 	
f. Carefully aspirate and discard the supernatant without disturbing the Purification Beads. Keep the plate on the	magnetic stand. 2. Wash the Purification Beads.	a. While on the magnetic stand, add 200 µL of 80% ethanol wash solution to each well and incubate for 30 sec.	b. Slowly aspirate and discard the 80% ethanol wash solution without disturbing the Purification Beads.	c. Repeat Step A and Step B twice for a total of 5 washes with 200 µL of 80% ethanol wash solution. Completely remove the final wash solution.	d. Air-dry on the magnetic stand for 5 min until no liquid is visible, yet the pellet appears shiny. Additional time may be required. Do not over-dry the beads as this will reduce the elution efficiency. The bead surface will accessed dull and more here enclose enclose the state of dry.	appear unit, anu finay have surface chaeks when it is over-uny. 3. Elute ss-eDNA.	a. Remove the plate from the magnetic stand. Add to each sample 30 µL of the preheated (65°C) Nuclease-free Weter and invertee and invertee for 1 min	b. Mix well by pipetting up and down 10 times.	c. Move the plate to the magnetic stand for ~ 5 min to capture the Purification Beads.	d. Transfer the supernatant, which contains the eluted ss-cDNA, to a nuclease-free tube.	 Place the purified ss-cDNA samples on ice, then proceed to Assess Single-Stranded cDNA Yield and Size Distribution, or immediately freeze the samples at -20°C for storage. 		NOTE: Minimal bead carryover will not inhibit subsequent enzymatic reactions.		 TIP: STOPPING POINT. The numfied ss-cDNA samples can be stored overhight at -20°C. For 	Interference of the second of the proceed to the fragmentation and labeling reaction and store the same search of the proceed to the fragmentation and labeling		Access Single Stranded cDNA Vield and Size Distribution		Expected Single-Stranded CDNA Yield	During development of this kit, using a write variety of itsue types, 1_2 fig of input exists yreaced 2.5 for 0.12 fig of second constraints of the recommended 15 fig of input cRNA should yield >5.5 fig of se-cDNA.	Determine Single-Stranded DNA Yield by UV Absorbance	Determine the concentration of a ss-cDNA solution by measuring its absorbance at 260 mm. Use Nuclease-free Water as blank. We recommend using NanoDrop Spectrophotometers for convenience. No dilutions or cuvettes are needed; just use 1.5 µL of the cDNA sample directly.	Alternatively, determine the ss-cDNA concentration by diluting an aliquot of the preparation in Nuclease-free Water and reading the absorbance in a traditional spectrophotometer at 260 nm. Calculate the concentration in µg/mL using	the equation below (1 A260 = 33 μg DNA/mL). A260 × dilution factor × 33 = μg DNA/mL	2	NOTE: The equation above applies only to single-stranded cDNA.	

- Immediately after the incubation, centrifuge briefly to collect the fragmented ss-cDNA at the bottom of the tube or well. þ.
- Place the sample on ice, then proceed immediately to the next step. ن ن
- Reagent Kit Guide that comes with the RNA 6000 Nano LabChip Kit for detailed instructions. The range in peak size of the fragmented samples should be approximately 40 to 70 nt. On ice, transfer 45 µL of the fragmented ss-cDNA sample to each tube or well. Prepare Labeling Master Mix. (Optional) The fragmented ss-cDNA sample can be used for size analysis using a Bioanalyzer. Please see the 4

 - 6.
- shown in the table below. Prepare the master mix for all the fragmented ss-cDNA samples in the experiment. Include \sim 5% excess volume to correct for pipetting losses. a. On ice, prepare the Labeling Master Mix in a nuclease-free tube. Combine the components in the sequence

Table 2.11 Labeling Master Mix

Component	Volume for One Reaction
5X TdT Buffer	12 µL
DNA Labeling Reagent, 5 mM	1 µL
TdT, 30 U/µL	2 µL
Total Volume	15 µL

- Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube, then proceed immediately to the next step. þ.
- On ice, transfer 15 µL of the Labeling Master Mix to each (45 µL) fragmented ss-cDNA sample for a final reaction volume of 60 µL ن
- Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step. ų.
- 7. Incubate for 1 hr at 37°C, then for 10 min at 70°C, then for at least 2 min at 4°C.
- Incubate the labeling reaction in a thermal cycler using the Labeling program that is shown in Table 2.1. a.
 - Immediately after the incubation, centrifuge briefly to collect the fragmented and labeled ss-cDNA at the bottom of the tube or well. ġ.
- Place the sample on ice, then proceed to Chapter 3, WT Array Hybridization, or immediately freeze the samples at -20°C for storage. ن.
- 8. (Optional) Remove 2 μL of each fragmented and labeled ss-cDNA sample for Gel-shift analysis as described in Appendix A, Gel-Shift Assay to assess the fragmentation and labeling efficiency.

TIP: STOPPING POINT. The fragmented and labeled ss-cDNA samples can be stored overnight at -20°C. For long-term storage at -20°C, we recommend to store the samples as unfragmented and unlabeled ss-cDNA. B

Lista dos genes diferencialmente expressos no experimento de *Array* de expressão do Capítulo II e a numeração das respectivas sondas (*probe id*)

probeset_id	gene_symbol	probeset_id	gene_symbol
17379873	1500012F01Rik	17337118	H2-Q5
17466055	1700025N23Rik	17374053	Hadhb
17514087	2310022B05Rik	17516036	Hepacam
17516952	2900052N01Rik	17295278	Hexb
17469086	4930466124Rik	17466919	Hibadh
17433656	5930403L14Rik	17285938	Hist1h2aa
17293517	6720489N17Rik	17285867	Hist1h2ab
17462492	A2m	17285851	Hist1h2bc
17271399	Abca9	17285834	Hist1h2bg
17352680	Abhd3	17400539	Hist2h2ab
17300251	Abhd4	17408011	Hist2h2ac
17527271	Acsbg1	17400541	Hist2h2be
17268010	Acsf2	17250162	Hist3h2ba
17392690	Acss1	17501250	Hpgd
17504190	Adgrg1	17467269	Hpgds
17211004	Adhfe1	17316392	Hrsp12
17275069	Agmo	17231229	Hsd11b1
17514078	Agt	17483912	Htra1
17424243	AI464131	17517105	ll18
17358103	Aldh1a1	17527661	Islr
17519112	Aldh1a2	17483577	Itgam
17460831	Aldh1l1	17325109	ltgb5
17282518	Aldh6a1	17284839	ltgb8
17253599	Aldoc	17304434	Itih3
17299575	Ang; Rnase4	17366670	Itih5
17504019	Ap3s1-ps2	17220110	Itpkb
17541378	Apln	17326801	Jam2
17487381	Арое	17219536	Kcnj10
17352862	Aqp4	17225253	Kcnj13
17397968	Arhgef26	17257928	Kcnj16
17362544	Asrgl1	17309154	Kctd12
17329568	Atp13a4	17419287	Laptm5
17229891	Atp1a2	17512565	Lcat
17264792	Atp1b2	17444106	Lfng
17334948	Atp6v0e	17476578	Lgi4
17398989	AW047730	17488076	LOC101055953
17488032	Axl	17354345	LOC102635912
17483565	B230325K18Rik	17547793	LOC105246207
17375373	B2m	17537112	Lpar4
17389144	Bbox1	17469217	Lrig1
17239070	BC020402	17373283	Lrp4
17330162	BC117090	17478496	Luzp2
17406629	Bcan	17405737	Lxn
17535558	Bgn	17286587	Ly86
17321768	Bin2	17540378	Maob

17286682	Bmp6	17394160	Matn4
17410729	Bmpr1b	17375997	Mertk
17307093	C030013D06Rik	17342386	Metrn
17431619	C1qa	17492314	Mfge8
17431607	C1qb	17429632	Mfsd2a
17431612	C1qc	17216868	Mir128-1
17387385	Calcrl	17278878	Mir154
17388803	Cat	17217846	Mir181b-1
17516538	Ccdc153	17479703	Mir1839
17219148	Ccdc190	17403864	Mir186
17490149	Cd33	17349549	Mir1949
17437213	Cd38	17417858	Mir1957a
17408960	Cd53	17348398	Mir1b
17238594	Cd63	17278842	Mir300
17264835	Cd68	17278692	Mir337
17226127	Cdh19	17298895	Mir346
17227696	Cfh	17543815	Mir374b
17217399	Chil1	17278838	Mir376b
17243888	Chpt1; Gm40735	17543918	Mir384
17545087	Chrdl1	17366752	Mir466e; Mir466b-8
17302711	Cldn10	17366764	Mir466e; Mir466b-8
17301452	Clu	17278690	Mir493
17468417	Cml3	17278880	Mir496a
17522779	Cmtm6	17278828	Mir543
17402155	Cnn3	17325723	Mir568; Zbtb20
17348282	Colec12	17366754	Mir669a
17423525	Cpne3	17366744	Mir669a-3
17310882	Срq	17366928	Mir669o
17355915	Cpt1a	17387353	Mir684-1
17445543	Crot	17326685	Mir99ahg; Gm31322
17351053	Csf1r	17292327	Mirlet7f-1
17392609	Cst3	17320225	Mlc1
17400375	Ctss	17454692	Mmd2
17532268	Cx3cr1	17300279	Mmp14
17293006	Cxcl14	17357810	Mpeg1
17319625	Cyp2d22	17228353	Mr1
17427401	Cyp2j9	17503942	Mt1
17343488	Cyp4f14	17503937	Mt2
17336013	Cyp4f15	17532641	mt-Tn
17509069	Cyp4v3	17243910	Mybpc1
17306333	Dad1	17218752	Муос
17440775	Dao	17310187	Nadk2
17226302	Dbi	17315570	Nckap1I
17320844	Dbx2	17540396	Ndp
17236800	Dcn	17306147	Ndrg2
17403439	Ddah1	17376272	Nop56

17229481	Ddr2	17400813	Notch2
17282970	Dio2	17546790	n-R5s1
17547825	Dleu2	17513974	n-R5s127
17512628	Dpep2	17513976	n-R5s136
17358098	E030003E18Rik	17474128	n-R5s151
17510685	Ednra	17456051	n-R5s160
17309268	Ednrb	17459095	n-R5s162
17247948	Efemp1	17397492	n-R5s196
17546055	Egfl6	17214823	n-R5s213
17247389	Egfr	17542133	n-R5s7
17292058	Elovl2	17252339	n-R5s70
17328062	Emp2	17252754	n-R5s71
17340197	Epas1	17518634	n-R5s85
17402642	Etnppl	17530227	n-R5s89
17402181	F3	17274195	Ntsr2
17233384	Fabp7	17502470	Nwd1
17357460	Fads1	17287175	Ogn
17362595	Fads2	17387628	Olfr1024
17303433	Fam107a	17374198	Olfr1299
17480233	Fam181b	17331247	Olfr191
17305221	Fam213a	17370337	Olfr344
17240186	Fam26f	17219756	Olfr417
17231662	Fbxo30	17481622	Olfr503
17229658	Fcer1g	17484560	Olfr535
17406514	Fcrls	17481252	Olfr635
17436481	Fgfr3	17299487	Olfr740
17388725	Fjx1	17238642	Olfr763
17217373	Fmod	17327035	Olig1
17528557	Foxb1	17327030	Olig2
17489420	Fxyd1	17274021	Osr1
17403224	Gbp7	17405482	P2ry12
17298731	Gdf10	17405478	P2ry13
17270354	Gfap; Gm39395	17358690	Papss2
17233347	Gja1	17211375	Paqr8
17307125	Gjb6	17514460	Pdgfd
17363865	Gldc	17438246	Pdgfra
17218349	Glul; Mir8114	17410748	Pdlim5
17212900	Gm10561	17453140	Phkg1
17421394	Gm13034	17280609	Pik3cg
17548375	Gm13141; LOC102641055	17337796	Pla2g7
17302925	Gm15735	17279404	Pld4
17547941	Gm15776	17416234	Plpp3
17330463	Gm19522	17522167	Plxnb1
17404701	Gm20515	17236307	Pmch
17425278	Gm22042	17431496	Pnrc2
17418213	Gm22154	17464638	Pon2

17464713	Gm22155	17364208	Ppp1r3c
17328040	Gm22224	17211131	Prex2
17440132	Gm22270	17227892	Prg4
17274247	Gm22303	17467690	Ptcd3
17393334	Gm22334	17293607	Ptch1
17291353	Gm22358	17382592	Ptgds
17518318	Gm22455	17401269	Ptpn22
17255258	Gm22456	17456381	Ptprz1
17330945	Gm22459	17356874	Pygm
17491505	Gm22496	17310172	Ranbp3I
17312079	Gm22519	17520624	Rbp1
17289279	Gm22661	17223245	Rftn2
17257593	Gm22711	17236049	Rfx4
17451124	Gm22716	17401357	Rhoc
17231459	Gm22739	17276386	Rhoj
17512117	Gm22780	17541053	Rhox4f
17520288	Gm22866	17340720	Rnaset2a
17470084	Gm22882	17332956	Rnaset2b
17375927	Gm22889	17430791	Rnu11
17520833	Gm22894	17313641	Rnu12
17338470	Gm22978	17400579	Rnu1b1; Rnu1b2
17244862	Gm23041	17400568	Rnu1b6
17536026	Gm23121	17232731	Rnu3a
			Rnu3b1; Rnu3b3;
17416685	Gm23138	17254745	Rnu3b2
17775011	Cm22191	17254740	Rnu3b4; Rnu3b1;
17225811	GIII23181 Cm22220	17254749	RHUSDS;
17402517	GIII23279 Cm22222	17403934	Rpeos
17544156	Gm23322	17316390	Rpi3U Dale
17326982	GIII23400	17441808	Kpio Deeb1
17214039	Gm23444; Gm23472	17305986	Rppn1
17254200	Gm23444; Gm23472	17288302	KSII C100-1
17223720	Gm23448	17407354	S100a1
17278759	Gm23474; Rian	17234494	S1000
17297637	Gm23502	17409621	Sipri
17537518	Gm23586	17545595	Sall
17381587	Gm23608	17307791	SCarao Shi Mir1042o
17482764	Gm23614	17282265	Scarnasp; Mir1843a
17349365	Gm23639	17365098	Scal
17257566	Gm23645	17270848	Scn4a
17528615	Gm23730	17501283	Scrgi
17314049	Gm23/3/	17394175	Sac4
17443060	Gm23761	17451437	Seipig
17221932	Gm23785	1/309/85	Sepp1
1/36109/	Gm23927	1/224//1	Serpine2
1/523186	Gm24044	1/38/517	Serping1
1/407188	Gm24046	1/229212	Stt2d2

17275151	Gm24069	17468340	Sfxn5
17513978	Gm24089; Gm23647	17478511	Siglech
17513980	Gm24089; Gm23647	17394461	Slc13a3
17244189	Gm24119	17465805	Slc13a4
17400586	Gm24136	17265631	Slc13a5
17225171	Gm24148; Ncl	17355565	Slc14a1
17271201	Gm24149	17330218	Slc15a2
17260438	Gm24313	17373696	Slc1a2
17370525	Gm24350	17315860	Slc1a3
17349960	Gm24401	17262783	Slc22a4
17220016	Gm24405	17357107	Slc22a6
17214041	Gm24497	17462395	Slc25a18
17445458	Gm24525	17502233	Slc27a1
17398321	Gm24544	17530967	Slc38a3
17313645	Gm24575	17367139	Slc39a12
17288079	Gm24588	17438832	Slc4a4
17292256	Gm24620	17461852	Slc6a11
17537336	Gm24624	17532509	Slc6a20a
17332120	Gm24695	17288484	Slc6a3
17499392	Gm24698	17476732	Slc7a10
17473957	Gm24701	17405082	Slc7a11
17430885	Gm24762	17500716	Slc7a2
17212121	Gm24826	17258131	Slc9a3r1
17481682	Gm24888	17464063	Slco1c1
17308347	Gm24890	17456721	Smo
17255495	Gm24949	17383129	Snora17; Snhg7
17234190	Gm24984	17333344	Snora20
17425523	Gm25053	17483383	Snora30
17378858	Gm25129	17538425	Snora35
17302354	Gm25133	17220526	Snora36b; Mir664
17285065	Gm25274	17523190	Snora62
17211517	Gm25294	17541008	Snora69
17445751	Gm25335	17535774	Snora70; Rpl10
17214025	Gm25360	17430833	Snora73a
17287243	Gm25394	17349552	Snora74a
17215370	Gm25395	17225169	Snora75; Ncl
17529690	Gm25417	17324398	Snora81; Eif4a2
17425389	Gm25419	17508591	Snord13
17445992	Gm25459	17392401	Snord17
17389645	Gm25514	17428797	Snord38a; Rps8
17367574	Gm25544	17411319	Snord45b; Rabggtb
17540366	Gm25552	17491640	Snord64
17423972	Gm25581	17396878	Sox2
17465339	Gm25589	17257946	Sox9
17232438	Gm25596	17262990	Sparc
17325576	Gm25617	17434864	Speer8-ps1

17318403	Gm25720	17469259	Suclg2
17248424	Gm25799	17290781	Sugct
17509359	Gm25813	17394142	Svs3b
17354757	Gm25834	17514824	Taf1d
17400590	Gm25890; Gm22614	17514834	Taf1d
17408065	Gm25890; Gm22614	17278349	Tcl1b2
17439365	Gm25937	17230331	Tfb2m
17214043	Gm25939	17236182	Timp3
17312052	Gm25987	17469879	Timp4
17283086	Gm26055	17253461	Tlcd1
17219206	Gm26110	17509101	Tlr3
17308827	Gm26197	17255058	Tmem100
17301340	Gm26225	17513176	Tmem170
17530320	Gm26360	17353663	Tmem173
17274188	Gm26449	17466624	Tmem176b
17366748	Gm26491	17536067	Tmem47
17349240	Gm26717	17426365	Tnc
17499647	Gm26853	17451987	Tpcn1
17533946	Gm2825	17300165	Traj43
17249801	Gm2a	17338416	Trem2
17312086	Gm3150	17466932	Tril
17333658	Gm38396	17412092	Ttpa
17473514	Gm5065	17473248	Ttyh1
17286916	Gm5083	17409649	Vcam1
17298991	Gm5798	17294738	Vcan
17347353	Gm6548	17341326	Vmn2r109
17462057	Gm8203	17486261	Vmn2r41
17292491	Gm8672	17304147	Zcchc24
17280270	Gm9292	17288344	Zfp273
17257822	Gna13	17282216	Zfp36l1
17365728	Gpam	17347680	Zfp36l2
17302645	Gpc5	17392660	Zfp442; 3300002108Rik
17286055	Gpld1	17293903	Zfp708
17533446	Gpr34	17243460	Zfp781
17227261	Gpr37l1	17477046	Zfp936
17271803	Grin2c	17343552	Zfp955a
17457876	Gstk1	17333651	Zfp97
17451839	Gstm2-ps1	17543284	Zxda

Tabela das 10 vias metabólicas (*Pathways*) com alterações mais significativas da plataforma *KEGG* geradas pelo *software WebGestalt* utilizado no Capítulo II, a qual mostra o número total de moléculas da via (*Total molecules*) e o número de transcritos modificados (*Transcripts*).

Geneset	Pathway	Total molecules	Transcripts
mmu01212	Fatty acid metabolism	52	12
mmu00071	Fatty acid degradation	49	8
mmu03320	PPAR signaling pathway	85	10
mmu04964	Proximal tubule bicarbonate reclamation	22	5
mmu04610	Complement and coagulation cascades	87	9
mmu01040	Biosynthesis of unsaturated fatty acids	28	5
mmu04810	Regulation of actin cytoskeleton	218	15
mmu05205	Proteoglycans in cancer	207	14
mmu04142	Lysosome	124	10
mmu00564	Glycerophospholipid metabolism	94	8