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Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently
small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases
with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to
investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient
of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for
angular amplitudes up to 90◦. Contrarily to some previous works, our results reveal that the pendulum oscillations
are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great
pedagogical interest for both theoretical and experimental classes on this theme.
Keywords: Simple pendulum, Nonlinear oscillations, Fourier series.

1. Introduction

The measurement of the period of a simple pendulum is
a popular experiment for undergraduates. Its simplicity
is subjected to a singular and important condition that
the initial angular displacement θm rendered to the
bob is small. Mathematically, this reduces the non-linear
equation of motion [1]

d2θ

dt2
= −ω2

0 sin θ (1)

to a linear equation of motion

d2θ

dt2
= −ω2

0 θ , (2)

where ω0 ≡
√
g/L, L being the pendulum length and

g being the local acceleration of gravity. An invariable
problem arising by the imposition of this condition is the
characterization of the small-angle regime. Would it be
θm = 3◦, 5◦, 10◦, or more? A more inquisitive mind would
ask how different would the motion of the pendulum be
if this condition is not adhered. In fact, the time period
is found to increase with the initial angular displacement
θm according to the Bernoulli’s power series [2]

T = T0

(
1 + 1

16 θ
2
m + 11

3072 θ
4
m + . . .

)
, (3)

where T0 is the period of the pendulum in the limit of
small-angle oscillations, in which it exhibits a simple
harmonic motion (SHM). It is only for small initial dis-
placements, namely θm � π/2 rad, that the pendulum
∗Endereço de correspondência: fabio@fis.unb.br.

actually oscillates harmonically, and Eq. (3) reduces to
T = T0. Beyond this small-angle regime, the number of
terms to be included in the above series increases with
θm. The literature is rich on this topic, presenting distinct
approximations for the large-angle period [3–19].

Here in this paper, we address the distinction between
small and large-angle oscillations based upon Fourier
series analysis. This method has not been explored in
literature, except by the works by Gil and co-workers in
Ref. [20] and Simon and Riesz in Ref. [21], standing out
for its simplicity, in contrast to Borghi’s more complex
treatment [22]. The use of Fourier Series is of academic
interest, especially at graduate level where the concepts
of Mechanics, Electronics, Data Acquisition, and Math-
ematical Methods are taught. In fact, a consolidated
approach can be developed following our method for
studying the nonlinear oscillations of a simple pendulum.

2. Fourier series analysis of the
nonlinear pendulum motion

Before we address the problem in hand, for completeness,
we introduce the basic ideas involved. Mathematically,
the solution of Eq. (2) that describes small-angle oscilla-
tions is

θ(t) = A sin (ω0t) +B cos (ω0t) . (4)

Importantly, it can be noted that the solution is written
in terms of trigonometric functions of a single frequency.
Let us assume that the pendulum is released from a state
of rest at an initial displacement θm, with 0 < θm ≤
π/2 rad, and θ̇ (t = 0) = 0. The solution then reduces to

θ(t) = θm cos (ω0 t) . (5)
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The mathematical description of the pendulum oscilla-
tions in this regime of small amplitudes then reduces to
a single cosine term, thus only one frequency suffices and
that is why this motion is called a ‘Simple Harmonic
Motion’. The question of importance that now remains
is, “What would be the nature of the motion beyond the
small-angle regime, when Eq. (1) becomes a poor approx-
imation?” Clearly, even when the pendulum motion has
to be described by Eq. (1), a restoring force exists that
tries to bring the pendulum back to its mean position,
resulting in periodic oscillations. Its motion might not
be ‘simple’ since the restoring force is not directly pro-
portional to the displacement but it would still present a
to-and-fro motion, hence a periodic motion. Mathemati-
cally, any periodic function which is both bounded and
continuous by parts can be expanded in a trigonometric
series (i.e., the Fourier Series), as given by [23]

s(ωt) = a0 +
∞∑

n=1
an cos (nωt) +

∞∑
n=1

bn sin (nωt) , (6)

where ω is the fundamental frequency and nω are its
integral multiples, referred to as the higher harmonics.
The fundamental frequency here is related to the SHM
oscillation’s frequency through Eq. (3), and is given as

ω = ω0

1 + 1
16 θ

2
m + 11

3072 θ
4
m + . . .

, (7)

for 0 < θm ≤ π/2 rad. The term a0 in Eq. (6) of course
acts as a constant term, which does not vary with time.
Then, by identifying the θm value for which the higher
harmonics become significant, one would be in a posi-
tion to identify the transition from SHM to anharmonic
motion. In the case of SHM, for the initial condition
θ(t = 0) = θm and θ̇(t = 0) = 0, one can expect a1 = θm

and b1 = 0, thus enabling us to identify the small-angle
condition. This method is unique when compared to those
found in literature [24]. In order to study the mentioned
transition, we have solved Eq. (1) numerically using a

short Scilab code,1 as given in Appendix A. In Fig. 1, it
is shown the numerical solution of the differential equa-
tion in Eq. (1) for both small and large-angle oscillations
(panel a), as well as the increase of the time period with
the angular amplitude (panel b). To avoid ambiguity, the
large-angle oscillation data was generated for θm = 45◦.
The fundamental frequency ω of the pendulum oscilla-
tions was fixed as 1 rad/s, which corresponds to a time
period of T0 = 2π ≈ 6.28 s. We have truncated the series
to just three terms, which is accurate for oscillations with
θm ≤ 0.7 rad.

We now proceed to obtain the Fourier coefficients
a0, an and bn of the series given by Eq. (6) using the
Discrete Fourier Series (DFS) program given in Appendix
B. The interesting result we find on the onset is that the
coefficients associated with the sine terms bn are all zero.
It may be pointed out here that only periodic graphs of
an even function, which by definition are symmetrical
about the y-axis (i.e. it is a mirror image about the
y-axis), would give bn = 0 [23]. Thus, the solution of
Eq. (1) for the initial condition θ(t = 0) = θm is an even
function.

In Fig. 2, it is shown how the coefficient a1 varies with
θm. For SHM, i.e. for small values of θm, and θ̇(t = 0) = 0,
we know that Eq. (6) should reduce to Eq. (5), with
a1 = θm. That is, for small-angle oscillations a1 would
be equal to θm, the initial angular displacement. As θm

becomes larger, a deviation from the proportionality is
expected. However, pin pointing would not be possible as
this deviation from SHM to anharmonic behavior would
be gradual. To reflect on this, the values of a1 shown in
Fig. 2 are listed in Table I along with the deviation from
θm (let us call this deviation the ‘error’), which is given
by

Err(%) =
(
θm − a1
θm

)
× 100 , (8)

1Scilab is an open source software for numerical computation, which
is useful for engineering and scientific applications [25].

Figure 1: Theoretical curves for the motion of a simple pendulum. (a) Comparison of a complete cycle for a small and a large-angle
oscillation. The amplitudes have been normalised for a better comparison. (b) Shows the increase of the time period (rounded-off to
the second decimal place) with the initial angle.
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Figure 2: Panel (a): a1 coefficients obtained by DFS calculation for the periodic oscillations of the pendulum shows an almost linear
variation with θm. For small angles the motion of the simple pendulum is described by θm cos (ωt). As the angle of displacement
increases, a1 is found to decrease (trend is given by Eq. (9)). The (b) variation of a0, a3, and a5 coefficients obtained by Fourier
series analysis of the periodic oscillations of the pendulum with θm. The value of a0 becomes appreciable in the third decimal place
for θm > 1.3 rad.

Table 1: Results of the DFS simulations are listed for various θm. All coefficients and deviations in a1 with respect to θm are
rounded-off at the second decimal place. Err(%) is as given in Eq. (8).

θm (rad) 0.1 0.2 0.3 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
a0 (rad) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a1 (rad) 0.1 0.2 0.29 0.79 0.88 0.98 1.07 1.16 1.25 1.33 1.42 1.49 1.55
a3 (rad) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.10 0.13
a5 (rad) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Err (%) -0.08 -0.02 0.05 1.03 1.38 1.77 2.23 2.80 3.41 4.31 5.27 6.65 8.44

as usual. As seen in Table I, below, the magnitude of
deviation in the second place after decimal for small
angles becomes 1% and more for θm ≥ 0.8 rad. On using
the freeware CurveExpert 1.4 to fit data points of Fig. 2,
a low standard deviation of 0.00375 and a very good
correlation coefficient of 0.9999 is found. The trend is

a1 = θm + 0.0181 θ2
m − 0.037 θ3

m . (9)

The deviation then increases with θm according to

Err(%) = 3.7 θm
2 − 1.81 θm . (10)

At panel (b) of Fig. 2 it is shown that the coefficient
a0 tends to zero, with a3 and a5 giving a significant
contribution for θm > 0.8 rad and θm > 1.6 rad, re-
spectively. In Ref. [21], Simon also presented a Fourier
series analysis for large-angle pendulum oscillations and
reported that only odd harmonic terms contribute to the
solution. They explained this feature as being due to the
symmetry of the problem, however Kreyszig [23] explains
that odd or even coefficients disappear if mixed initial
or boundary conditions are imposed. For example (as in
this case), while one condition is position at a given time,
θ(t = 0) = θm, the second condition is velocity at a given
position, dθ/dt = 0 at θ = θm. Hence, the Fourier analy-
sis shows that simulated pendulum undergoing periodic
oscillations can be fully described by

θ(t) ≈ a1 cos (ωt) + a3 cos (3ωt) + a5 cos (5ωt) , (11)

where, from the above discussions, it is clear that the
coefficients are functions of θm and, for small-angle ap-
proximation, a1(θm → 0) = θm, a3(θm → 0) = 0 and
a5(θm → 0) = 0. As can be seen, the result in Eq. (11)
differs from that found by Simon in Ref. [21], so its con-
clusion that the simple pendulum is highly harmonic for
all amplitudes is in contrast to our findings. The pertinent
question as to what is a ‘small angle’ then resurfaces.

The need for determining “What a small angle is?”
in undergraduate classes usually arises in experiments
conducted to determine the local acceleration of gravity
g. It is clear from the above arguments that Eq. (2) is
valid only for θm → 0 and beyond this limit some error
is always induced. It is then important to investigate the
error committed in g with the increase of θm. For this
we use the data of Fig. 1.

At panel (a) of Fig. 3, it is shown the variation of g with
θm, whereas at panel (b) the error in the evaluation of g
is depicted. The acceptable small angle is, therefore, the
error acceptable in our result. If we demand an acceptable
error of 0.5%, we find that the acceptable small-angle
boundary would be 0.211 rad or 12◦. This boundary for
the small-angle regime is in good agreement with earlier
reports [24]. Interestingly, if we revisit Eq. (10), we find
that the minimum of this expression is at θm ≈ 0.244 rad
or ≈ 14◦ which again indicates that the simple harmonic
approximation for Eq. (1) within experimental limits is
valid for θm < 12 − 14◦. This method, hence, gives an

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0151 Revista Brasileira de Ensino de F́ısica, vol. 40, nº 1, e1305, 2018



e1305-4 Fourier analysis of nonlinear pendulum oscillations

Figure 3: Panel (a) shows the variation in the local acceleration of gravity (g = 4π2L/T 2) with θm, obtained by using the time
period found in Fig. 1. Panel (b) shows the increase of the error in g calculated for different simulated time periods of the pendulum,
for varying θm w.r.t. the standard value 9.8 m/s2.

alternative way to study the transition from SHM to
anharmonic motion in the simple pendulum.

3. Conclusion

The Fourier series analysis of a pendulum undergoing
large-angle oscillation has revealed itself as an interesting
alternative to the analysis of its nonlinear motion. Indeed,
it could help students to understand the difference of
simple harmonic motion and other more general periodic
motions without going into the involved mathematics of
elliptic integrals and Jacobi elliptic functions [10], which
compose the exact solution of the pendulum nonlinear
differential equation.

Supplementary material

The following online material is available for this article:
Appendix A
Appendix B

References

[1] D. Kleppner and R. Kolenkow, An Introduction to Me-
chanics (Cambridge University Press, London, 2014),
2nd ed.

[2] J.H. Poynting and J.J. Thompson, A Textbook of
Physics, Vol. I (Charles Griffin and Co., London, 1907).

[3] M.I. Molina, Phys. Teach. 35, 489 (1997).
[4] R.B. Kidd and S.L. Fogg, Phys. Teach. 40, 81 (2002).
[5] L.E. Millet, Phys. Teach. 41, 162 (2003).
[6] R.R. Parwani, Eur. J. Phys. 25, 37 (2004).
[7] F.M.S. Lima and P. Arun, Am. J. Phys. 74, 892 (2006).
[8] P. Amore, M.C. Valdovinos, G. Orneles and S.Z. Barajas,

Rev. Mex. Fis. E 53, 106 (2007).
[9] C.G. Carvalhaes and P. Suppes, Am. J. Phys. 76, 1150

(2008).
[10] F.M.S. Lima, Eur. J. Phys. 29, 1091 (2008).
[11] A. Belendez, J.J. Rodes, T. Belendez and A. Hernandez,

Eur. J. Phys. 30, L25 (2009).

[12] Y. Qing-Xin and D. Pei, Eur. J. Phys. 30, L79 (2009).
[13] A. Belendez, J. Frances, M. Ortuno, S. Gallego and

J.G. Bernabeu, Eur. J. Phys. 31, L65 (2010).
[14] M. Turkyilmazoglu, Eur. J. Phys. 31, 1007 (2010).
[15] M.I. Qureshi, M. Rafat and S.I. Azad, Eur. J. Phys. 31,

1485 (2010).
[16] K. Ochs, Eur. J. Phys. 32, 479 (2011).
[17] A. Belendez, E. Arribas, A. Marquez, M. Ortuno and S.

Gallego, Eur. J. Phys. 32, 1303 (2011).
[18] T.G. Douvropoulos, Eur. J. Phys. 33, 207 (2012).
[19] X. De-Sheng, Z. Zhao and G. Mei-Zhen, Chinese Phys.

Lett. 29, 044601 (2012).
[20] S. Gil, A.E. Legarreta and D.E. Di Gregorio, Am. J.

Phys. 76, 843 (2008).
[21] R. Simon and R.P. Riesz, Am. J. Phys. 47, 898 (1979).
[22] R. Borghi, arXiv:1303.5023
[23] E. Kreyszig, Advanced Engineering Mathematics (Wiley,

Singapore, 2010), 10th ed.
[24] N. Aggarwal, N. Verma and P. Arun, Eur. J. Phys. 26,

517 (2005).
[25] H. Ramachandran and A.S. Nair, Scilab – A Free Soft-

ware to Matlab (S. Chand, Delhi, 2012).

Revista Brasileira de Ensino de F́ısica, vol. 40, nº 1, e1305, 2018 DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0151


	Introduction
	Fourier series analysis of the nonlinear pendulum motion
	Conclusion

