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Abstract

One of the main error sources on Global Navigation Satellite Systems (GNSS) position-
ing solutions for users of single frequency receivers is the propagation refraction of the GNSS
signals as they pass through the ionosphere. The estimation of the Total Electron Content
(TEC) is very important for the correction of ionosphere propagation effects on GNSS sig-
nals. In order to correct the ionospheric range errors, GNSS single-frequency users need to
rely on TEC models. In this framework, the present investigates the use of Artificial Neural
Network models (ANN) to estimate TEC derived from GNSS measurements in Brazil. More
specific, the investigations start the development of a regional model that can be used to de-
termine the vertical TEC (vTEC) over Northeast, Central-West and South regions of Brazil,
aiming future applications on a near real-time frame estimations and short-term forecasting.

This work uses GNSS data from the GLONASS network for research and development,
and from the Brazilian Network for Continuous Monitoring of the GNSS (RBMC). The
input parameters of the ANN models are based on features known to influence TEC values,
including the geographic location of the GNSS receiver, geomagnetic activity, seasonal and
diurnal variations, and solar activity. The proposed ANN model is used to estimate the GNSS
TEC values at void locations, where no dual-frequency GNSS receiver that may be used as
a source of data for GNSS TEC estimation is available.

Different analyses are carried out divided into three case studies. These analyses include
spatial performance evaluation, evaluation of different ANN structures, short-term forecast-
ing ability and performance comparison against CODE (Center for Orbit Determination in
Europe) Global Ionospheric Maps during the geomagnetic storm registered on 13th and 14th
October 2016. The results obtained from the described analysis suggest that the proposed
ANN models provides good spatial performance and presents to be a promising tool for
short-term forecasting applications.
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Resumo

Uma das principais fontes de erro no posicionamento baseado em Sistemas Globais de
Navegação por Satélite (GNSS) para usuários de receptores de uma frequência é o atraso de
propagação nos sinais GNSS ao atravessarem a ionosfera. Esse atraso, em uma aproximação
de primeira ordem, é diretamente proporcional ao Conteúdo Total de Elétrons (TEC). Assim,
estimar o TEC é uma tarefa bastante relevante para correção dos efeitos ionosféricos sobre
a propagação dos sinais. Para corrigir os erros de distância devido à ionosfera, os usuários
de receptores GNSS de uma única frequência necessitam de modelos que representem o
TEC. Neste cenário, este trabalho propõe a utilização de Redes Neurais Artificiais (ANN)
para estimar o TEC obtido a partir de medidas GNSS na região do Brasil. As investigações
apresentadas neste trabalho iniciam o desenvolvimento de um modelo regional que possa
ser usado para determinar o TEC vertical sobre as regiões Nordeste, Centro-Oeste e Sul do
Brasil, visando futuras aplicações em estimação próxima a tempo real e em previsão de curto
prazo.

Neste trabalho são utilizados dados GNSS das redes GLONASS para pesquisa e desen-
volvimento, e da Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS (RBMC).
Os parâmetros de entrada da rede neural baseiam-se em fatores que influenciam os valores do
TEC, incluindo localização geográfica do receptor GNSS, atividade geomagnética, variações
sazonais e diurnas e atividade solar. O modelo de ANN proposto é utilizado para estimar os
valores de GNSS TEC vertical em regiões desprovidas de receptores GNSS de duas bandas
de frequência que possam ser utilizados para tal fim.

Diferentes análises são realizadas, divididas em três estudos de caso. Estas análises
incluem a avaliação de desempenho espacial, avaliação de diferentes estruturas ANN, ha-
bilidade de previsão em curto-prazo e comparação de desempenho em relação aos Mapas
Ionosféricos Globais (Global Ionospheric Maps) fornecidos pelo Centro para Determinação
de órbita na Europa (CODE) durante a tempestade geomagnética registrada nos dias 13 e
14 de Outubro de 2016. Os resultados obtidos a partir das análises conduzidas sugerem que
os modelos de NN propostos fornecem bom desempenho espacial e apresentam-se como
ferramentas promissoras para aplicações de previsão de TEC de curto-prazo.
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Chapter 1

Introduction

With the development of maritime navigation, the need of knowledge of the vessels po-
sition on the Earth became crucial. The exploration and the conquest of new territories in
a way that the vessels movement were safe required the abilities to move from one place to
another and also to determine geographic positions (MONICO, 2008). Several developments
have been made to allow the navigation activities including the invention of some tools such
as the compass, quadrant, astrolabe and also the development of radio navigation systems
such as the LORAN (LOng-RANge navigation system) and the OMEGA. In this scenario,
what has most significantly changed navigation techniques is the advent of Global Navi-
gation Satellite Systems (GNSS), which started with the launch of the U.S. Department of
Defense Global Positioning System (GPS) in the late 1970s (MONICO, 2008; Novatel Inc.,
2015).

Following the development of the GPS, other GNSS have been made available, such as
the GLONASS, Galileo and Beidou making the use of this technology widespread, including
applications in navigation, air-craft landing, high-precision agriculture and others. Nowa-
days, vehicles, whether on land, in the air or at sea, routinely rely on the accurate positioning
information provided by GNSS technology. In fact, the ready adoption of the technology,
from mining to unmanned, and the increasingly complex requirements for positioning, any-
where and anytime, are driving innovation in the industry that includes the integration of
GNSS technology with a variety of other sensors and methodologies (Novatel Inc., 2015).

The observables used to determine position using the GNSS technology are subject to
different errors, that can be classified into random, systematic and gross errors. The sources
of these several errors can be related to the satellite (e.g orbit errors, satellite clock errors),
the receiver/antenna (e.g receiver clock errors), station (e.g. coordinates errors, multipath)
and errors related to the signal propagation (MONICO, 2008).

When traveling through a static electric or magnetic fields in a linear medium such as a
vacuum an electromagnetic wave is not affected. However, when traveling in a dispersive
medium, such as the atmosphere, different aspects cause variation in the propagation speed,
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polarization and signal power (BORRE; STRANG, 2012; HOQUE; JAKOWSKI, 2015).
The medium where the GNSS signals propagate consists of the troposphere and ionosphere,
essentially. Each one of these atmospheric layers has its particular characteristics and has
particular impact on the propagation of the GNSS signals, leading to errors in the positioning
determination (MONICO, 2008).

In the context of GNSS L band signals, the ionospheric refraction introduces most of the
delay that may cause range errors in the positioning system of up to 100 m (JAKOWSKI
et al., 2011). The first order ionospheric delay is directly proportional to the Total Electron
Content (TEC) that is the number of electrons in a column with cross-sectional area of 1 m2

along the path from the satellite to the receiver (CESARONI et al., 2015). The ionospheric
effect in GNSS applications is even worst in the equatorial and low-latitude regions, since in
these areas the TEC presents strong temporal and spatial variation due to mainly three differ-
ent dynamic processes: the equatorial ionization anomaly, post-sunset plasma enhancement
and evening plasma bubbles (TAKAHASHI et al., 2014).

Some benefits of knowing the correct TEC value within a good spatial resolution is
related with the improvement of accuracy in global navigation satellite systems position-
ing solutions, as well as a better understanding of the different parameters that affect it,
such as solar and magnetic activities, and the ability for monitoring and forecast space
weather events (DENARDINI; DASSOB; G.-ESPARZAD, 2016a; DENARDINI; DASSOB;
G.-ESPARZAD, 2016b). In this context, the use of ANNs has provided good results in ap-
plications for regional TEC modelling being capable of recovering TEC values with good
performance, higher than 80% on average (LEANDRO; SANTOS, 2007; HABARULEMA
et al., 2009; MACHADO, 2012). This fact is related to the abilities of an ANN to learn, gen-
eralize and adapt to different patterns of input/output sets with nonlinear behavior (HAYKIN,
1999).

Some works have been carried out by using neural networks for prediction and modelling
of ionospheric parameters. An ANN model for Brazil, considering only the geographic posi-
tion as ANN input is proposed in LEANDRO; SANTOS, (2007). TEC prediction and mod-
elling of TEC in South Africa and Nigeria, using ANN, can be found in HABARULEMA;
MCKINNELL; CILLIERS, (2007), HABARULEMA et al., (2009) and OKOH et al., (2016),
respectively. MACHADO, (2012) presents a methodology to predict the vertical TEC, re-
gionally, by using an ANN structure, aiming to generate virtual reference stations, to be
employed in positioning techniques, over São Paulo state, in Brazil.

1.1 Goals and contributions

In this framework, this work aims to use ANNs to estimate TEC values based on GNSS
measurements in three Brazilian sectors. The idea is based on the work of Leandro and San-
tos 2007, but considering different activation functions for the ANNs, more input parameters
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similar to the approach presented in Habarulema et al. 2009 and using data from the new
GLONASS R&D network. In order to assess the performance of the proposed NN model, the
investigation is divided into three studies of case, each one presenting different approaches
and characteristics.

Different to the approach adopted by LEANDRO; SANTOS, (2007), the present work
considers input parameters related to time variability of the ionospheric activity. Since TEC
is influenced by the solar activity, diurnal and seasonal variations, magnetic field of the Earth
and geographic location of the GNSS receiver (HOFMANN-WELLENHOF; LICTHENEG-
GER; WASLE, 2008), the input parameters are chosen to include this information. Further-
more, the spatial performance of the proposed ANN model is assessed during the geomag-
netic storm registered on October 13th and 14th 2016 and compared with Global Ionospheric
Maps, provided by the Center for Orbit Determination in Europe (CODE). In addition, the
ANN model ability to perform short-term forecasting using low amount of data is assessed.

It is worth mentioning that this work is the first one using data from the GLONASS
R&D network recently inaugurated in Brazil. This network consists of three ground stations
(BRAJ, RSFJ, SMBJ) inaugurated from the middle of 2014 to the beginning of 2016. These
stations are installed in different regions of Brazil (North-east, Center-West and South) al-
lowing to investigate the applicability of the ANN model in different latitudes.

1.2 Presentation of the manuscript

Chapter 2 presents an overview to provide some fundamental information about the
GNSS technology, including some features of the global navigation satellite systems avail-
able, some positioning calculation concepts and also some sources of errors that affect the
GNSS positioning solutions. A brief discussion about Artificial Neural Networks is also pre-
sented in the chapter, emphasizing the Multilayer Perceptron (MLP) structure that formed
the basis for the vTEC estimations performed in this work.

Chapter 3 presents the three case of studies conducted in this work, giving particular
information about each case. The results obtained by using the ANN model are presented
and discussed. This manuscript is concluded in Chapter 4 summarizing the obtained results
and suggesting ideas for future work.
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Chapter 2

Fundamentals

The purpose of this chapter is to present a brief overview of the global navigation satellite
systems available to the user, some characteristics of each system and also the basic GNSS
positioning concepts. Following this brief discussion, the sources of errors that affect the
GNSS observables are presented. More emphasis is given to the ionospheric refraction which
is one of the major sources of error on GNSS and is directly proportional to the TEC, the
parameter to be estimated in this work.

A brief discussion about the Artificial Neural Networks is presented, more specific the
Multilayer Perceptron (MLP) structure that formed the basis for the TEC estimations carried
out in this manuscript.

2.1 Global Navigation Satellite Systems

The mankind has always been interested in positioning determination. Human beings
have always interested to know their locations in space; at the beginning they are interested
to know their positioning in the vicinity of home. Since then the area of interest has increased
to all the globe.

Several technologies were used in order to enable the navigation activities, including
observation of Sun, stars and planets and the development of navigation tools, such as the
compass and astrolabe. These technologies evolved constantly, aiming to provide better
accuracy.

In this scenario, the advent of Global Navigation Satellite Systems changed significantly
the navigation techniques, starting with the development and launch in the 1970s of the
Global Positioning System (NAVSTAR-GPS) (Novatel Inc., 2015). In the sequence of GPS
launch, other initiatives such as GLONASS, Galileo and Beidou have emerged in the GNSS
environment. These radio-navigation systems are composed of satellites orbiting the Earth
and the basic operation principle is the measurement of the distance between the user and
four satellites. In the following sections, the available GNSS systems and some of their
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features will be briefly presented.

2.1.1 Global Positioning System (NAVSTAR-GPS)

The NAVSTAR-GPS developed by the US Department of Defense (DoD-USA), was con-
ceived with the purpose to be the main navigation system of the North-American military
forces. This system was originated after the fusion of two projects funded by the USA gov-
ernment for development of a global navigation system: Timation and System 621 B, under
the responsibility of Navy and Air Force, respectively (MONICO, 2008). The original goals
of the NAVSTAR-GPS were an instantaneous determination of position, velocity and time
in a common reference system anywhere on or near the Earth (HOFMANN-WELLENHOF;
LICTHENEGGER; WASLE, 2008).

Although this system was originally designed for military activities, it has been massively
used by the civilian community in activities such as navigation, surveying and agriculture.
(MONICO, 2008; HOFMANN-WELLENHOF; LICTHENEGGER; WASLE, 2008). The
basic concept on GPS navigation is based on the range measurement between the user re-
ceiver and at least four satellites. By the knowledge of the satellite positions in a suitable
reference system, it is possible to estimate the receiver position coordinates at the same ref-
erence system. From a geometric point of view, only three satellites would be necessary
to allow the receiver position calculation. However, due to the non-synchronism between
the receiver and satellites clocks, one more unknown is added to the position determination
problem. It is common to have more than four satellites in view, which allows a better con-
trol of the quality of the solution. In this case, the least squares method is usually used to
process the redundant measurements, leading to an improvement in the positioning solution
(KAPLAN; HEGARTY, 2006; MONICO, 2008).

This system is divided into three segments: the spatial segment, control segment and
user segment. The spatial segment is formed by the 24 satellites, orbiting in approximated
altitude of 20.200 km and distributed in six equally spaced orbital planes with inclination
of 55◦ with respect to the Equator. This configuration allows that at least four satellites are
visible in any part of Earth at any time.

The system was declared operational on 27th April 1985. It has been improved and
modernized since then. The driven force for modernization was both the military and
civilian interests and requests. Also, the development of other systems such as the Euro-
pean Galileo and the Chinese BeiDou, stimulated the modernization process (HOFMANN-
WELLENHOF; LICTHENEGGER; WASLE, 2008). The first launched satellites, the Block
I, were prototypes and the last satellite of the Block was disabled at the end of 1995. The first
and second generation of satellites ate the Blocks II and IIA, respectively. When the system
was declared fully operational in 1995 all the satellites pertained to these blocks. A new
generation of satellites is in production, the GPS III satellites, with the first launch expected
to occur in 2018 (US Department of Defense, 2017).
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The GPS now effectively operates as a 27-slot constellation with improved coverage in
most parts of the world. As of October 17, 2017, there was a total of 31 operational satellites
in the GPS constellation, not including the decommissioned, on-orbit spares (US Department
of Defense, 2017).

The control segment consists of a master control station, monitor stations and ground
antennas (HOFMANN-WELLENHOF; LICTHENEGGER; WASLE, 2008). The main pur-
poses of the control segment is to continuously monitor and control the satellite system;
determine the GPS time system; predict the satellite ephemeris; calculated the satellite clock
corrections; and continuously update the navigation message of each satellite (MONICO,
2008; Novatel Inc., 2015). The ground antennas operations are under the master control sta-
tion and are equipped to transmit data and commands to the satellites and to receive teleme-
try and ranging data from the satellites (HOFMANN-WELLENHOF; LICTHENEGGER;
WASLE, 2008).

The user segment consists of the GPS receivers which use the information transmitted
by the satellites to calculate user’s three dimensional position and time (US Department of
Defense, 2017). The equipments used to process the received GPS signals varies from smart-
phones and handheld receivers used by hikers, to sophisticated and specialized receivers used
in surveying and mapping applications (Novatel Inc., 2015).

In the GPS, the satellites transmit messages using the same frequencies, but each satellite
can be identified by its exclusive code. This technique is referred to as code division multiple
access (CDMA). The GPS satellites can transmit information on the L1 and L2 carrier waves,
both generated based on the fundamental frequency fo = 10.23 MHz, multiplied by 154 and
120, respectively (MONICO, 2008). The satellites belonging to the Block IIF also transmit
on the carrier frequency L5, which is obtained by multiplying the fundamental frequency by
115. The available GPS signals are presented in Table 2.1.

Table 2.1: Carrier frequency per signal in the GPS (MONICO, 2008).

Signal Carrier frequency (MHz)
L1 1574.42
L2 1227.60
L5 1176.45

The L1 is modulated by the Coarse/Acquisition (C/A) code and the Precision (P) code,
which are available for civilian and military/authorized users, respectively. The L2 signal
is modulated by the P code and it was included in the system in order to allow users to
correct automatically for the effects of both the range and the range rate errors due to the
ionosphere (KLOBUCHAR, 1987). A new civilian signal referred to as L2C is available in
the satellites belonging to Block IIR-M and later. This signal allows the direct measurement
and correction of the ionospheric delay error, for a particular satellite, using civilian signals
on both L1 and L2. The L5 signal was incorporated into the GPS in order to meet demanding
requirements for safety-life transportation and other high-performance applications. The L5
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is broadcast in a radio band exclusively reserved for aviation safety services (Novatel Inc.,
2015; US Department of Defense, 2017).

2.1.2 GLONASS

Developed in the 1970s decade, by the former Union of Soviet Socialist Republics
(URSS), the GLONASS (Global’naya Navigatsionnaya Sputnikovaya Sistema) was con-
ceived with the purpose to provide 3-D positioning, velocity and time information under
any climate condition in local, regional and global levels. Operated by the Russian mili-
tary forces, the GLONASS is a military system, however, the Russian government has done
several declarations offering the system for civilian uses (MONICO, 2008; HOFMANN-
WELLENHOF; LICTHENEGGER; WASLE, 2008).

The first satellite was launched on October 12 (ALKAN; KAMMAN; SAHIN, 2005).
In 1995 the system was declared operational, with a constellation of 24 satellites divided
into three orbital planes and orbiting in approximated altitude of 19 100 km. Since it was
declared operational, the number of available satellite decreased due to the lack of funding
and the launching of new satellites, reaching only ten operational satellites in the end of
2006 (MONICO, 2008; HOFMANN-WELLENHOF; LICTHENEGGER; WASLE, 2008).
In December 2017, the system had 24 operational satellites and one satellite in flight test
phase (GLONASS information and Analysis Center, 2017)

Like GPS, each GLONASS satellite provides navigation signals in two L-band frequen-
cies, theG1 andG2 signals. This notation enables a distinction from GPS carriers L1 and L2.
However, it is possible to find in the literature the notation L1 and L2 referring to GLONASS
signals (HOFMANN-WELLENHOF; LICTHENEGGER; WASLE, 2008).

Although the GLONASS presents two carriers modulated by two binary codes, and the
navigation messages, in this system each satellite transmit carrier signals at different fre-
quencies, which corresponds to the frequency division multiple access (FDMA) (BORRE;
STRANG, 2012). The G1 frequencies are given by:

fG1 = f0 + k ×∆fG1 k = 0, 1, 2, ..., 24 (2.1)

where f0 = 1602 MHz, ∆fG1 = 0.5625 MHz and k means the frequency number of the
satellite. The carriers G1 and G2 have the following relation (SEEBER, 2003)

fG1

fG2

=
9

7
. (2.2)

In addition to the FDMA, the code division multiple access (CDMA) has been incorpo-
rated in the GLONASS since 2011. In the CDMA technology the satellites are allowed to
transmit messages using the same frequencies. In this case, each satellite is identified by a
different code. This technology is employed in all other GNSS (BORRE; STRANG, 2012).
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2.1.3 Galileo

Developed by the Europan Space Agency (ESA), the European Commission (EC) and
European industry, the Galileo is Europe own global navigation satellite system. The system
is under civilian control and is interoperable with GPS and GLONASS (European Space
Agency, 2017). In the full configuration, the system will have 24 satellites divided into three
orbital planes and orbiting at an altitude of the order of 23 222 km. In addition to the 24
operational satellites, each orbital plane will have two spare satellites in case any operational
satellite fail (European Space Agency, 2017).

The system was declared operational in 15 December 2016. Its first satellite was
launched in December, 28, 2015 and by the end of December, 2017 the system presented
fourteen operational satellites, three satellites under testing and four satellites under commis-
sioning. The full constellation of 30 satellites is expected to be completed by 2020 (European
Space Agency, 2017).

The Galileo signals are transmitted in three band frequencies (E5, E6 and E1) using four
carriers (E5a, E5b, E6 and E1). Galileo carrier frequencies are shown in Table 2.2

Table 2.2: Carrier frequency per signal in the Galileo system (The European Comission,
2016).

Signal Carrier frequency (MHz)
E1 1575.420
E6 1278.750
E5a 1176.450
E5b 1207.140

2.1.4 BeiDou

China, that in the past revolutionized the navigation with the development of the compass,
has started the implementation of its GNSS BeiDou Navigation Satellite System (BDS). This
implementation was divided into two phases: the initial phase, which provides regional cov-
erage and the second phase that will provide global coverage. The first phase was declared
operational on December 2012 and the second phase is expected to be concluded by the end
of 2020 (Novatel Inc., 2015).

Different from the other systems presented previously, the space segment of the second
phase of BDS will consist of five Geostationary Earth Orbit (GEO) satellites, three Inclined
Geosynchronous Orbit (IGSO) satellites and twenty-seven Medium Earth Orbit (MEO) satel-
lites, orbiting at altitudes of 35 787 km, 35 787 km and 21 528 km, respectively (Novatel
Inc., 2015).

The system provides three types of service: public service for civilian use and free to
users; licensed service available only to users who have a subscription and the restricted mil-
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itary service (Novatel Inc., 2015). Some characteristics of the BeiDou signals are presented
in Table 2.3.

Table 2.3: Signal characteristics in the BeiDou system (Novatel Inc., 2015).

Designation Frequency (MHz) Description
B1 1207.140 Provides both public and restricted service signals
B2 1278.750 Provides both public and restricted service signals
B3 1268.520 Provides restricted service signals only

2.2 The GNSS observables

The determination of the receiver position consists of the computation of its three coor-
dinates with respect to the origin of a coordinate system. For this purpose, it is more con-
venient to use a coordinate system that rotates with the Earth, known as an Earth-centered
Earth-fixed (ECEF) system (KAPLAN; HEGARTY, 2006). The basic GNSS observables
that allow this computation are the pseudorange measured through the code; and the carrier
phase (MONICO, 2008; TEUNISSEN; KLEUSBERG, 1996):

2.2.1 The pseudorange

Considering the ECEF coordinate system, the receiver positioning problem can be graph-
ically represented as shown in Figure 2.1.

Figure 2.1: Receiver positioning calculation.

The purpose is to determine the vector u, which is equivalent to determine the unknown
position of the receiver with respect to the ECEF coordinate system origin. The receiver
coordinates are represented by (Xr, Yr, Zr). The vector r represents the distance between the
receiver and the satellite coordinates which are represented by (Xsv, Y sv, Zsv). The vector s
represents the satellite location with respect to the origin of the coordinate system and can be
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calculated using the ephemeris data transmitted to the user (KAPLAN; HEGARTY, 2006).
The subscript r and the superscript sv refer to as the coordinates of the receiver and the
satellite, respectively.

The measurement of the range between the satellite and the receiver antenna is based on
the code generated in the satellite and a replica generated in the receiver. These codes are
represented by Gs(t) and Gr(t), respectively. By measuring the delay between a particular
transition in the code Gs(t) and the replica code Gr(t), the propagation time of the signal in
the path from the satellite to the receiver is obtained. The receiver measures this delay by
using the code cross-correlation. Figure 2.2 illustrates this principle (MONICO, 2008).

Satellite-generated

           code

  Receiver-generated

      replica code

�t

Transmisson time

Arrival time

Propagation time

Figure 2.2: Use of replica code to determine the satellite code travelling time (MONICO,
2008; KAPLAN; HEGARTY, 2006) (adapted).

The replica generated in the receiver is shifted until a high correlation between the signal
transmitted by the satellite and the replica generated at the receiver is reached. If the satellite
clock and the receiver clocks were perfectly synchronized, the correlation process would
yield true propagation time. By multiplying the propagation time ∆t by the speed of light, c,
the true (i.e. geometric) satellite-to-user range would be obtained. However, this is an ideal
scenario that considers the clocks synchronism. In general, the satellite and receiver clocks
are not synchronized (KAPLAN; HEGARTY, 2006).

The receiver clock generally presents a bias with respect to the system time. Furthermore,
although the time and frequency generation of the satellite is based in high accuracy atomic
clocks (cesium and rubidium), the satellite clock also presents an offset with respect to the
system time as well (KAPLAN; HEGARTY, 2006). Thus, due to the clock errors, the range
calculated by using the correlation process is denoted as the pseudorange P (KAPLAN;
HEGARTY, 2006).

The GNSS satellites have high precision atomic clocks operating in the satellite time
system (tsv), to which all generated and transmitted signals are referenced. The receivers,
in general, have lower quality oscillators that operate in the receiver time system (tr), to
which the received signals are referenced. For the GPS, these time systems, tsv and tr, can
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be related to the GPS time system (tGPS) according to Equation (2.3) (MONICO, 2008).

tGPSsv = tsv − dtsv

tGPSr = tr − dtr,
(2.3)

where, dtsv is the satellite clock error with respect to the GPS time at the instant tsv and dtr
is the receiver clock error with respect to the GPS time at the instant tr. The subscripts and
superscripts refer the parameters related to the receiver and satellite, respectively (MONICO,
2008).

The pseudorange (P sv
r ) is obtained by multiplying the velocity of light by the difference

between the time tr registered at the receiver in the instant of signal reception and the time tsv,
registered at the satellite in the instant of signal transmission. Using the correlation process
to obtain the propagation time, one can obtain the following expression for the pseudorange
(MONICO, 2008; TEUNISSEN; KLEUSBERG, 1996):

P sv
r = c(tr−tsv) = c(tGPSr−tGPSsv)+c(dtr−dtsv)+εP = cτ svr +c(dtr−dtsv)+εP , (2.4)

where τ svr is the propagation time of the signal, counted from its generation at the satel-
lite until the correlation at the receiver, c is the velocity of light at vacuum, and εP is the
pseudorange measurement error (MONICO, 2008).

The propagation time τ svr multiplied by the velocity of light on vacuum does not result
in the geometric distance ρsvr between the antenna of the satellite and the receiver due to
other sources of errors, such as the propagation effects of the atmosphere (e.g tropospheric
and ionospheric delays) and multipath. Thus, a more complete form for Equation (2.4) is
(MONICO, 2008):

P sv
r = ρsvr + c(dtr − dtsv) + T svr + Isvr + dmsv

r + εP , (2.5)

where

ρsvr is the geometric distance from the satellite to the receiver;

T svr is the tropospheric delay (in meters);

Isvr is the ionospheric delay (in meters);

dmsv
r is the multipath effect.

The coordinates of the receiver and the satellite are implicit in the term ρsvr as presented
in Equation (2.6).

ρsvr =

√
(Xsv −Xr)

2 + (Y sv − Yr)2 + (Zsv − Zr)2. (2.6)

Applying (2.6) in (2.5), the pseudorange expression with the receiver and satellites coor-
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dinates presented explicitly is given by:

P svr =

√
(Xsv −Xr)

2 + (Y sv − Yr)2 + (Zsv − Zr)2+c(dtr−dtsv)+T svr +Isvr +dmsv
r +εP . (2.7)

Given the spatial satellite distribution on GNSS orbits, it is very common to have pseu-
dorange measurements from more than four satellites. Thus, an overdetermined system is
available to calculate the variables of interest (receiver coordinates and receiver clock bias).
This observable is nonlinear with respect to the satellites and receivers coordinates. More
information about the linearization of Equation (2.7) can be found in the Appendix B.

2.2.2 The carrier phase

The carrier phase observable (Φsv
r ) is more precise than the pseudorange and it is the

most common observable employed in applications that require a high accuracy.

Ideally, the carrier phase observable would be equal to the sum of the total number of full
carrier cycles and the fractional cycles between the antennas of a satellite and a receiver at
any instant (LANGLEY, 1996). However, only the fractional carrier phase can be measured
by the receiver. The number of full cycles N sv

r is unknown and have to be estimated with the
other unknowns (TEUNISSEN; KLEUSBERG, 1996; LANGLEY, 1996). This observable
is presented in Equation (2.8)

Φsv
r = ρsvr + c(dtr − dtsv) + λN sv

r − Isvr + T svr + dmsv
r + εΦsvr , (2.8)

where λ is the wavelength of the carrier, N sv
r is the ambiguity and εΦsvr is the carrier phase

error. It is important to note that in the carrier phase observable the ionospheric effect is neg-
ative, whereas in the pseudorange this effect is additive (MONICO, 2008). More information
about this fact is presented in the section 2.3.4.

2.3 GNSS observables error sources

The GNSS observable are subject to random, systematic and gross errors, like all ob-
servables involved in measurements activities. Systematic errors can be parametrized or re-
duced (or even eliminated) by suitable techniques. Random errors, however, do not present
functional relation with the measurements and generally are the remaining errors in the ob-
servations, after all systematic and gross errors are reduced or minimized (MONICO, 2008).
In the next sections, some of the common errors in GNSS observations will be presented,
specifically the clock errors, multipath, tropospheric and ionospheric effects. Other sources
of errors can be found in Appendix E.
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2.3.1 Clock errors

2.3.1.1 Satellite clock errors

The satellite atomic clocks are monitored by the GNSS control segment and are very
precise, however, they do not work perfectly synchronized with the GNSS reference time.
From the data provided in the navigation message, it is possible to obtain the satellite clock
correction dtsv for a satellite sv by the following second order polynomial (MONICO, 2008):

dtsv(t) = a0 + a1(tsv − toc) + a2(tsv − toc)2 + ∆tR, (2.9)

where

δsv is the satellite clock error on the instant t of the GNSS time scale;

tsv is the satellite reference epoch;

toc is the reference time of clock data;

a0 is the satellite clock offset coefficient, in seconds;

a1 in the satellite clock drift coefficient;

a2 is the satellite clock frequency drift coefficient;

∆tR = −2∗X ∗Ẋ/c2 is the correction for the relativistic effect on the satellite clock (X ,
Ẋ and c are the position of the satellite, its velocity and the velocity of light, respectively).

2.3.1.2 Receiver clock errors

Differently from satellite clock errors, the receiver clock corrections in point positioning
applications need to be performed by the user. A brief description about point positioning is
presented in Appendix F. This procedure is done by the estimation of an additional parameter
that refers to the receiver clock synchronization error for every observation epoch. Using this
procedure allows for the employment of small and inexpensive oscillators in the receivers,
such as quartz crystal oscillators (WEINBACH; SCHöN, 2011; MONICO, 2008).

However, this type of clock estimation presents some associated drawbacks, such as the
need to observe at least four-satellites at the same time to determine the receiver position
(three coordinates and one receiver clock off-set). Another point that has to be taken into
account is the degradation of the vertical position accuracy. This effect occurs due to the
asymmetry on the observations, since only satellites in the hemisphere above the horizon are
observed. This fact leads to a mathematical correlation between receiver clocks, troposphere
parameters and station height estimates (WEINBACH; SCHöN, 2011; M.ROTHACHER;
G.BEUTLER, 1998).

In the relative positioning, the clock errors are almost eliminated, being not necessary to
use highly stable clocks for the majority of applications. However, the simultaneity of the
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observations has to be carefully taken into account. For high accuracy results, the receiver
clock error in the relative positioning for each receiver involved in this technique has to be
known to 1 microsecond (1µs) with respect to the time system and the differences between
them cannot exceed 1 ms (MONICO, 2008).

2.3.2 Multipath

Considered one of the most significant sources of errors in satellite-based navigation sys-
tems, the multipath may introduce errors in positioning calculations that could jeopardize
high-precision applications (CLOSAS; FERNÁNDEZ-PRADES; FERNÁNDEZ-RUBIO,
2009). Multipath is the phenomena in which the signal reaches the receiver by multiple
paths due to reflection and diffraction (BRAASCH, 1996). In other words, the receivers will
get the signal which reaches directly the antenna and also signals reflected in the surfaces
nearby. An illustration of the multipath is presented in Figure 2.3.

water

 direct signal

reflected signal

Figure 2.3: Multipath illustration.

The signal received can present distortions on the carrier-phase and on modulation of the
carrier, and since the geometrical features in each place changes in an arbitrary way, there
is no model available to mitigate multipath. However, some techniques can be applied in
order to reduce this effect, including the use of antennas designed to supress low-elevation-
angle signals, such as the choke ring and pinwheel, and its well-placement in suitable sites
(ARBESSER-RASTBURG; ROGERS, 2013; BISHOP; KLOBUCHAR; DOHERTY, 1985;
MONICO, 2008).

2.3.3 Tropospheric effect

The troposphere is the layer of atmosphere that starts from the Earth surface and extends
until 50 km, approximately. It behaves like a non-dispersive medium for frequencies below
30 GHz, i.e. the refraction of the transmitted signal does not depend on the signal frequency.
It depends only on the thermodynamic properties of the air (MONICO, 2008). The specific
tropospheric effects on the GNSS L-band signals include tropospheric attenuation, tropo-
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spheric scintillation and tropospheric delay (SPILKER, 1996). This section presents a quick
overview of the tropospheric effect on GNSS signals. Additional information can be found
in the Appendix C.

2.3.3.1 Tropospheric attenuation

The tropospheric attenuation varies for each frequency and corresponds to the reduction
of power of the electromagnetic wave due to the elements that compose the atmosphere
(MONICO, 2008; SPILKER, 1996). In the 1-2 GHz frequency band, it is dominated by
oxygen attenuation. For a satellite at zenith, the attenuation is about 0.035 dB. The effects of
water vapor, rain and nitrogen attenuation is negligible at GNSS frequency bands (SPILKER,
1996). For GNSS signals it is not recommended to use observations obtained at elevation
angles lower than 5◦, since the ray path to the satellite penetrates the lower troposphere in
a more nearly horizontal direction leading to a higher signal attenuation (SPILKER, 1996).
In practice, it is common to use elevation angles higher than 15◦, commonly referred to as
elevation mask (MONICO, 2008). More information about the tropospheric attenuation as a
function of the elevation angle can be found in Appendix C.

2.3.3.2 Tropospheric delay

The delay on the GNSS signals when traveling through the troposphere is caused mainly
by the neutral hydrostatic atmosphere (composed of dry gases), corresponding to 90% of
the total effect. The remaining 10% depends on the water vapor 3D distribution (non-
hydrostatic component), which is hard to estimate, due to its high temporal and spatial vari-
ations (HADAS et al., 2013; SAPUCCI, 2001).

The hydrostatic component of the tropospheric delay corresponds to 2.3 m on zenith
and varies with temperature and local atmospheric pressure. Since its variation is small (in
the order of 1% over several hours), this component is predicted with reasonable precision.
The wet effect, caused by the atmospheric water vapor influence, is less than the hydrostatic
component, varying from 1 to 35 cm in zenith, corresponding to 10% of the total tropospheric
delay (SEEBER, 2003; MONICO, 2008). However, although its low effect, its variation
is considerable, reaching 20% in a few hours, making impossible its prediction with good
precision, even when there is availability of superficial humidity measurements (MONICO,
2008).

In general, the models to estimate tropospheric delay in the path between the receiver
antenna r and the satellite sv are presented as

T sr = 10−6

∫
NTds. (2.10)

The troposphere refractivity is given by NT = (n − 1) × 106, where n is the refractive
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index. The hydrostatic and wet components of the tropospheric delay can be written as the
product between the zenith delay and a mapping function which relates the vertical delay
with the slant delay. Therefore, the tropospheric delay can be expressed as

T sr = TZH ×mh(ε) + TZW ×mw(ε), (2.11)

where TZH and TZW corresponds, respectively, to the hydrostatic and wet components of
the tropospheric delay in the zenith direction. The mh(ε) and mw(ε) values are the cor-
responding mapping functions used to convert the zenith delay to slant delay (MONICO,
2008).

In order to determine the tropospheric delay T sr it is necessary to obtain the refractiv-
ity NT . By the knowledge of NT and its hydrostatic (NH) and wet (NW ) components it is
possible to determine the terms TZH and TZH , and consequently, T sr by using the mapping
functions. The determination of the refractivity along the signal path is almost impossible
(SAPUCCI, 2001). This is the reason why several models have been developed to describe
the behavior of this variable. More information about the tropospheric models and the map-
ping functions can be found in Appendix C.

2.3.4 Ionospheric effect

The ionosphere is the Earth atmosphere region where ionizing radiation causes the ex-
istence of electrons in an amount that affects radio waves propagation (LANGLEY, 1992).
The energy radiated from the sun at ultraviolet and X-ray wavelengths is the primary force
of ionosphere formation. This force ionizes gaseous atoms and molecules in the atmosphere,
producing positively charged ions and negatively charged free electrons (WEBSTER, 1993).
In order to describe the amount of charged particles in the ionosphere, the term electron
density (Ne) is used (HABARULEMA et al., 2009).

The ionosphere is composed of four regions, D, E, F1 and F2, named in order of increas-
ing height. Each region presents particular electron density features (KLOBUCHAR, 1996).
Table 2.4 presents some characteristics of the ionospheric regions, such as the height of each
layer, and information about its impact on GNSS signals.

As described in Section 2.3.3.2, the tropospheric range error at zenith is generally be-
tween two to three meters. The ionospheric range error, on the other hand, can vary from
only a few meters to many tens of meters at the zenith (KLOBUCHAR, 1996). When com-
pared to the tropospheric effect, the variability of the ionospheric effect is much larger and
it is more difficult to model. Furthermore, ionosphere can have significant effects on GNSS,
such as: group delay of the signal modulation, or absolute range error; carrier phase advance,
relative range error; Doppler shift, or range-rate errors; Faraday rotation of linearly polar-
ized signals; refraction or bending of the radio wave; distortion of pulse waveforms; signal
amplitude fading or amplitude scintillation; and phase scintillations. (KLOBUCHAR, 1996;
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Table 2.4: Characteristics of the different regions of the ionosphere (KLOBUCHAR, 1996).

Region Approx. Height (km) Remark
D 50 to 90 Causes absorption of radio signals at frequencies up to

low VHF band. It has no measurable effect on GNSS
E 90 to 140 Normal E region, caused by solar soft

x-rays. It has minimal effect on GNSS.
Intense E region, caused by solar particle precipitation

in aurora region, might cause minimal scintillation.
Sporadic E (still of unknown origin). It is very thin.

The effect on GNSS frequencies is neglected.
F1 140 to 210 It has a highly predictable density from known

solar emissions. Its electron density nicely merges into
the bottomside of the F2 region.

F2 210 to 1000 It is the most dense and it has the highest variability.
The peak of electron density generally varies from 250

to 400 km, but it can differs at extreme conditions.
This region, with to some extension the F1, cause most of the
problems for radio-wave propagation at GNSS frequencies.

HOQUE; JAKOWSKI, 2012).

The interaction between the GNSS radio signals and the ionospheric plasma is one of the
major reasons for the limited accuracy and vulnerability in GNSS positioning solutions or
time estimation (HOQUE; JAKOWSKI, 2012). Even at this relatively high frequency, the
Earth ionosphere can retard radio waves from their velocity in free space by more than 300ns
on a worst case basis, corresponding to range errors of 100m (JAKOWSKI et al., 2011).

An electromagnetic wave is not affected when traveling through a static electric or mag-
netic field in a linear medium such as vacuum. However, traveling through the ionosphere,
which is a dispersive medium (i.e. the velocity of the electromagnetic wave is a function of its
frequency), different aspects cause variation on the polarization, propagation speed and sig-
nal power (BORRE; STRANG, 2012; HOQUE; JAKOWSKI, 2015; HOQUE; JAKOWSKI,
2012). In the context of L band signals of GNSS, the ionospheric refraction, proportional to
the TEC value, introduces most of the delay and may cause link-related range errors in the
positioning system of up to 100 m (HOQUE; JAKOWSKI, 2015). Three different dynamic
processes contribute to strong temporal and spatial variation of TEC in the equatorial and
low-latitude sectors: the equatorial ionization anomaly, post-sunset plasma enhancement and
evening plasma bubbles, leading to an even worst scenario in these regions (TAKAHASHI
et al., 2014).

The propagation of an electromagnetic wave passing through the ionosphere is quantita-
tively described by the refractive index of the ionosphere (HOQUE; JAKOWSKI, 2012). For
radio waves with frequency f greater than 100 MHz, the phase refractive index n and the
group refractive index ngr derived from the Appleton-Hartree equation are given by Equa-
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tions (2.12) and (2.13).

n = 1−
f 2
p

2f 2
±
f 2
p fgcosΘ

2f 3
−

f 2
p

4f 4

[
f 2
p

2
+ f 2

g (1 + cos2Θ)

]
, (2.12)

ngr = 1 +
f 2
p

2f 2
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f 2
p fgcosΘ

f 3
+

3f 2
p

4f 4

[
f 2
p

2
+ f 2

g (1 + cos2Θ)

]
, (2.13)

in which Θ is the angle between the wave propagation direction and the geomagnetic field
vector B and fp and fg are the plasma frequency and gyro frequency given by

fp
2 = Nee

2/(4π2ε0m),

fg = eB/(2πm),
(2.14)

where ε0 is the free space permittivity, B is the geomagnetic induction, and e, Ne, m are the
electron charge, density and mass, respectively (HOQUE; JAKOWSKI, 2012). The expres-
sion presented in Equation (2.13) can be obtained by the relationship ngr = n + f(dn/df)

(HOQUE; JAKOWSKI, 2012; HARTMANN; LEITINGER, 1984; APPLETON, 1932). The
positive and negative signals in the equations ± and ∓ are related with the polarization of
the wave, which means that the (+) sign represents the refractive index for left-hand cir-
cularly polarized wave, whereas the (-) represents the right-hand circularly polarized wave.
(HOQUE; JAKOWSKI, 2012; HARTMANN; LEITINGER, 1984). The GPS signals are
transmitted in right-hand circular polarization (DoD, 2012).

By analyzing Equations (2.12) and (2.13) one can note that the phase refractive index
is less than the unity resulting in a phase velocity that is greater than the speed of light in
the vacuum (i.e., phase advance). Thus, when GNSS signals propagate through the iono-
sphere, the carrier-phase experiences an advance and the code experiences a group delay.
The carrier-phase pseudoranges are measured too short and the code pseudoranges are mea-
sured too long compared to the geometric range between a satellite and a receiver (HOQUE;
JAKOWSKI, 2012).

2.3.4.1 Total Electron Content

By using Equations (2.12) and (2.13) and assuming a right-hand circularly polarized
signal, the ionospheric group delay dIgr and the carrier phase advance dI , written in units of
length, in the path s from the satellite to the receiver are given by (HOQUE; JAKOWSKI,
2012)

dIgr = d
(1)
Igr + d

(2)
Igr + d

(3)
Igr =

∫
s

(ngr − 1)ds =
p

f 2
+

q

f 3
+

u

f 4
, (2.15)

dI = d
(1)
I + d

(2)
2 + d

(3)
I =

∫
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(1− n)ds =
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f 2
+
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2f 3
+

u

3f 4
, (2.16)
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in which the terms d(1)
Igr / d(1)

I , d(2)
Igr / d(2)

2 , and d(3)
Igr / d(3)

I are the first, second and third order
ionospheric group delays / phase advances, respectively. The coefficients p, q and u are
given by

p = 40.3

∫
s

Neds, (2.17)

q = 2.2566× 1012

∫
s

NeBcosΘds, (2.18)

u = 2437

∫
Ne

2ds+ 4.74× 1022

∫
s

NeB(1 + cos2Θ)ds. (2.19)

The result of the integration of Ne along the signal path
∫
s
Neds is known as the slant

Total Electron Content (slant TEC). This parameter is defined as the amount of electrons in a
column of cross sectional area of 1 m2 along the path of the signal through the ionosphere and
is expressed in TECU (1 TECU is equivalent to 1 x 1016 electrons/m2) (HABARULEMA
et al., 2009). Considering the GPS, 1 TECU corresponds to a ionospheric delay of 0.163 m
on L1 and 0.267 m on L2 signals (DYRUD et al., 2008).

When the GNSS signals are transmitted in two different signals, the non-dispersive ef-
fects, such as, tropospheric delay, satellite and receiver clocks biases affects equally both
frequencies. The ionospheric effect, however, affects differently each frequency. Therefore,
by differencing the code/carrier-phase pseudoranges measurements of the two frequencies
it is possible to estimate the TEC along the path between the satellite and the receiver, as
shown in Equations 2.20 and 2.21 (HOQUE; JAKOWSKI, 2012).

TEC =
f 2

1 f
2
2

40.3(f 2
1 − f 2

2 )
[(P2− P1) + noiseP1−P2], (2.20)

TEC =
f 2

1 f
2
2

40.3(f 2
1 − f 2

2 )
[(Φ1− Φ2) +Bambiguity + noiseΦ1−Φ2], (2.21)

where P1 and P2 are pseudoranges obtained using the L1 and L2 signals, respectively; Φ1

and Φ2 are the carrier-phase measurements, the noiseP1−P2 and noiseΦ1−Φ2 are noises (e.g
thermal noises, etc) in the code and carrier-phase combinations, Bambiguity is the carrier-
phase constant ambiguity which is equal to λ2N2 − λ1N1, with λ1 and λ2 corresponding
to the wavelengths and N1 and N2 corresponding to the integer ambiguities on frequencies
f1 and f2. The terms corresponding to other effects, such as, multipath and inter-frequency
satellite and receiver biases are not presented in Equations 2.20 and 2.21 for simplicity rea-
sons (HOQUE; JAKOWSKI, 2012).

The ionospheric effect is still one of the major error sources of GNSS positioning for
single-frequency users (LIU et al., 2016). The first order term presented in Equations (2.15)
and (2.16) includes about 99% of the total ionospheric effect. Therefore, if the frequency
and the related slant TEC are known, the first order propagation effect can easily be com-
puted and corrected. To compensate this effect, several approaches can be adopted. The
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ionosphere free combination (IF) takes advantages of the dispersive character of the iono-
sphere to eliminate this first-order effect (ELMAS et al., 2011). This approach is based on
multi-frequency satellite-receiver communication. Single-frequency receivers, however, can
not take advantage of IF. In this case, observations need to be corrected by the use of external
models in order to eliminate the first order ionospheric error contribution (PAPARINI et al.,
2016). Information about some models available are presented in the next section.

2.3.4.2 Ionospheric models

The ionospheric models available are classified into empirical and physics based. The
empirical models are developed based on long-term measurements and statistical analy-
sis, whereas the physics-based models rely on a complete understanding of the under-
lying physics and commonly starts from an empirical model of the neutral atmosphere
(MITCHELL, 2013). Some common ionospheric models are presented below:

a) Klobuchar - The Klobuchar model received the name of his proposer John A.
Klobuchar and was developed at the Air Force Geophysics Laboratory, U.S. This is a
very known simple mathematical model that represents the ionosphere using a heuris-
tic approach to finding a fit to some known observations. The purpose in designing
this model is to provide a simple and fast ionospheric time-delay correction algorithm
for the single-frequency users of GPS. The idea is to use a few coefficients, leading
to a lesser computational effort to compensate for 50% of the ionospheric time-delay
(KLOBUCHAR, 1987; MITCHELL, 2013).

The algorithm, incorporated in the GPS system for single-frequency users, consists of a
cosine representation of the diurnal curve, allowed to vary in amplitude and in period,
with user latitude. Its shape is determined by using eight coefficients, transmitted
as part of the satellite message. Figure 2.4 presents an example in which a positive
half cosine-shaped curve has been made to fit a typical monthly average TEC diurnal
variation from an station in Jamaica using the referred model (KLOBUCHAR, 1987).

b) NeQuick - The NeQuick model is a quick-run model for transionospheric applications
developed at the Abdus Salam ICTP Aeronomy and Radiopropagation Laboratory,
Italy, with collaboration of the University of Graz Institute for Geophysics, Astro-
physics and Meteorology, Austria. This model provides electron concentration at the
given location in space and time (Ne) and its basic inputs are position, time, and solar
flux (or sunspot number). The NeQuick package allows to compute the electron den-
sity along any-ray path and by numerical integration provides the TEC to the user. Its
original version has been used by the European Navigation Overlay Service (EGNOS)
of the European Space Agency (ESA) for system assessment analysis.

One very important use of the NeQuick model is its adoption as the model for iono-
spheric corrections for single frequency users on the GALILEO system. To be used in
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Figure 2.4: Example of actual monthly average time-delay data, along with cosine model fit
to data (KLOBUCHAR, 1987).

GALILEO the model is driven by an effective ionization level (Az), defined as:

Az = an0 + an1µ+ an2µ
2, (2.22)

where µ is the modified dip coordinate (modip). The coefficients an0, an1, an2 allow
the Az computation and are broadcast to the user.

The improvements made in the original NeQuick model resulted in a new version of
it, named NeQuick 2. Its on-line version is available at:
<https://t-ict4d.ictp.it/nequick2/nequick-2-web-model>.

c) Global Ionospheric Map (GIM) - The Global Ionospheric Maps are provided in the
IONEX format (IONosphere map Exchange format) with the vertical TEC (vTEC)
values presented in grids with spatial resolution of 5◦ x 2.5◦ longitude and latitude, re-
spectively, distributed from 87.7◦ (North) to 87.5◦ (South) in latitude and 180◦ (West)
to 180◦ (East) in latitude. These GIMs are provided by the centers that contribute
to the IGS, such as, CODE (Center for Orbit Determination), ESA (European Space
Agency), JPL (Jet Propulsion Laboratory), and UPC (Polytechnic University of Cat-
alonia).

The Global Ionospheric maps also provide the Differential Code Biases (DCB) for
the codes P1-P2 and P1-C1. The precision of the vTEC provided by the map varies
with the location, amount of GNSS stations used, level of ionosheric activity, and
others. In addition to the GIMs, the Regional Ionospheric Maps (RIMs) have been
investigated and developed by the scientific community. In Brazil, one can cite the
developments done under the EMBRACE project (Brazilian Study and Monitoring
of the Space Weather) of the INPE (National Institute for Spatial Research), and the
RIM Mod_Ion developed at the Cartography Department of UNESP (São Paulo State
University). The model allows estimating the error due to ionosphere in the carrier L1

and also TEC. By using the coefficients provided by this model it is possible to correct
the L1 GPS observables (ROCHA; MARQUES; GALERA, 2015; AGUIAR, 2005).
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In addition to the models presented herein, some modeling activities based on Artificial
Neural Networks (NNs) have been carried out. The use of NNs has provided good results in
the modeling of the regional TEC, being capable of recovering TEC values with good per-
formance (HABARULEMA et al., 2009; LEANDRO; SANTOS, 2007). This fact is related
to the abilities of a NN to learn, generalize and adapt to different patterns of input/output sets
with nonlinear behavior (HAYKIN, 1999).

In this framework, this manuscript presents a NN regional model to estimate TEC behav-
ior based on GNSS measurements in three different regions in Brazil (Northeast, Central-
West and South regions). The next section presents general information and concepts about
the Neural Networks, emphasizing the Multilayer Perceptron (MLP) structures since this
class of NN formed the basis for the vTEC estimations performed in this work.

2.4 Artificial Neural Networks

An Artificial Neural Network (ANN) is a massively parallel distributed processor made
up of simple processing units that has a natural propensity for storing experiential knowledge
and making it available for use (HAYKIN, 2009). This network is inspired in biological
neuronal systems (HAYKIN, 2009) and has been employed in studies in different fields,
including applications on ionospheric modelling (HABARULEMA et al., 2009; LEANDRO;
SANTOS, 2007; WILLISCROFT; POOLE, 1996).

The ANNs are formed by the massive interconnection of information-processing units
called artificial neurons. Figure 2.5 presents the block diagram which depicts the model of
an artificial neuron.

Inputs

Activation

function

Synaptic Weights

(Includng bias)

Summing 

junction
Output

Fixed

input
x0= +1

x1

x2

xm

=

Figure 2.5: Artificial neuron model (HAYKIN, 2009) (adapted).

The three basic elements of the neuron model are presented in Figure 2.5: a set of
synapses (or connecting links), an adder and an activation function. Each synapse is char-
acterized by a weight or strength of its own. Specifically, a signal xj at the input of synapse
j connected to neuron k is multiplied by the synaptic weight wkj . The adder constitutes a
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linear combiner in which the input signals weighted by the respective synaptic strengths are
summed. The role of the activation function is also to limit the amplitude of a neuron. It
limits the permissible amplitude range of the output signal to some finite value. The model
presented in Figure 2.5 also includes an externally applied bias, bk, which has the effect of
increasing or lowering the net input of the activation function, depending on whether it is
positive or negative, respectively (HAYKIN, 2009).

2.4.1 Rosenblatt perceptron

The Rosenblatt perceptron is built around a single neuron and is the simplest form of a
neural network. It consists of a neuron as the one presented in Figure 2.5 with adjustable
free parameters (synaptic weight and bias). For a given set of inputs, the neuron produces
an output equal to +1 if the activation function input is positive, and -1 if it is negative. The
algorithm used to adjust the free parameters of this type of NN appeared for the first time in
a learning procedure developed by Rosenblatt (1958, 1962) for his perceptron brain model
(HAYKIN, 2009).

The goal of the single-neuron perceptron is to classify the input set into one of two classes
C1 or C2. Depending on the output of the network, +1 or -1, the point represented by inputs
x1, x2, ..., xm will be assigned to class C1 or C2, respectively.

To develop insight into the behavior of a pattern classifier, it is customary to plot a map
of the decision regions in the m-dimensional signal space spanned by the m input variables
x1, xm, ..., xm. In the single-neuron perceptron, there are two decision regions separated by
a hyperplane, which is defined by

m∑
i=1

wixi + b = 0. (2.23)

For the case of two input variables x1 and x2, the hyperplane is given by w1x1 +w2x2 +

b = 0. In this case, the decision boundary (hyperplane) takes the form of a straight line.
A point (x1, x2) which lies below the line can be classified as C2 and a point (x1, x2) above
the line can be classified as C1. Figure 2.6 illustrates this decision boundary. It is possible
to see that the bias b plays the role of shifting the decision boundary away from the origin
(HAYKIN, 2009).

2.4.2 Multilayer Perceptron

The Rosenblatt perceptron, which is basically a single-layer neural network, is limited
to the classification of linearly separable patterns (HAYKIN, 2009). To overcome this limi-
tation a neural network structure that can be used is the Multilayer Perceptron (MLP). This
structure contains one or more layers that are hidden from both the input and output and
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0

Decision boundary

Figure 2.6: Hyperplane as a decision boundary for a two-dimensional, two-class pattern-
classification problem (HAYKIN, 2009) (adapted).

presents a high degree of connectivity between the neurons. In addition, the neuron model
used in the network includes a nonlinear activation function that is differentiable (HAYKIN,
2009). The sigmoid functions are the most common type of activation functions applied in
neural networks. Its name is derived from the shape of its graph which is presented in a "S-
shape" (HAYKIN, 2009). One example of sigmoid function is the logistic sigmoid function
described by

Φ(v) =
1

1 + exp(−av)
, (2.24)

where a is the slope parameter of the function.

In some cases, it is desirable that the activation function assumes positive and negative
values, from -1 to +1. This kind of activation function may yield practical benefits over the
logistic function described in Equation (2.24). In this case, the hyperbolic tangent function
described in Equation (2.25) can be used.

Φ(v) =
exp(v)− exp(−v)

exp(v) + exp(−v)
. (2.25)

2.4.2.1 Function approximation

The MLP structure can be employed in the function approximation task (HAYKIN,
2009). Consider a nonlinear input-output mapping described by

d = f(x) (2.26)

where x and d are the input and output vectors, respectively. The vector-valued function f

is assumed to be unknown. In order to compensate the lack of knowledge about f , the set of
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training samples T composed of labeled examples is given

T = {(xi,di)
N
i=1}. (2.27)

The requirement is to develop a neural network that approximates the unknown function f in
a certain way that the following Euclidean distance over all inputs, such that

‖F(x)− f(x)‖ < ε, for all x, (2.28)

where ε is a small positive number and F describes the input-output mapping actually re-
alized by the NN. Considering that the size N of the training set T is large enough and
the network has the suitable number of free parameters, then the approximation error can
be made small enough for the proposed task. This sort of approximation can be seen as a
candidate for the supervised learning procedure, which requires the availability of a target
response for performing a specific input-output mapping by minimizing a cost function of
interest, with xi being the input vector, di being the desired response, in which the index i
represents the i-th input-output pair of the training set. In this function approximation sce-
nario, a MLP containing only one hidden layer is capable to approximate any continuous
function (CYBENKO, 1989; MACHADO, 2012).

In order to perform the supervised learning of the MLPs, the Back-Propagation algorithm
is frequently used. During the training procedure, the parameters (degrees of freedom or
synaptic weights and bias) are adjusted aiming to minimize a cost function which allows
assessing the quality of the solution (MACHADO, 2012). This procedure is an iterative
process in which the updates of the synaptic weight connecting neuron k to neuron j are
calculated according to the following equation

wkj(n+ 1) = wkj(n) + ∆wkj(n) (2.29)

where w is the synaptic weight, n is the update step and ∆w is the correction applied to
the synaptic weight (MACHADO, 2012). The correction ∆wkj(n) is defined by (HAYKIN,
2009)

∆wkj(n) = ηδj(n)yk(n), (2.30)

where η is the learning-rate, the term δj(n) is the local gradient and its value depends on
whether the neuron j is located in the output layer or in the hidden layer (HAYKIN, 2009):

1 If the neuron j is located in the output layer, δj(n) is equal to the product of the
derivative Φj

′(vj(n)) and the error signal ej(n), which is defined by the difference
between the NN output yj(n) and the desired output dj;

2 If the neuron j is located in a hidden layer, δj(n) is equal to the product of the asso-
ciated derivative Φj

′(vj(n)) and the weighted sum of the δ values computed for the
neurons in the next hidden or output layer that are connected to neuron j.
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As presented previously, this work proposes the use of NN for TEC modelling in the
Brazilian region. The detailed information about the investigated NN models is presented in
the next section.
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Chapter 3

Results and analysis

This work presents different studies performed in order to investigate the use of Artificial
Neural Networks on vTEC estimation in the Brazilian region. These distinct studies consider
different input parameters for the network, distinct vTEC calibration techniques, different
periods and, in some cases, different stations. The studies will be, henceforward, referred to
as Case study 1, 2 and 3. In the first two case studies, the spatial performance of the ANN is
assessed. The third case study presents an extended analysis of the ANN model, including
its capability to perform short-term forecasting and its comparison with the GIMs.

To perform the analysis, data from some stations of the Brazilian Network for Contin-
uous Monitoring of the GNSS (RMBC) were used on TEC calibration and from the first
GLONASS network for research and development (GLONASS R&D network) installed in
Latin America were used in this work.

3.1 Preliminaries

This preliminary section presents to the reader some common information for the three
Case studies shown in this work. This section includes information about the types of input
parameters, employed TEC calibration techniques and the adopted indexes to assess the
network performance.

3.1.1 NN model input parameters

TEC magnitude is influenced by solar activity, geographic location, Earth magnetic field
and presents diurnal and seasonal variations (HOFMANN-WELLENHOF; LICTHENEG-
GER; WASLE, 2008; MONICO, 2008). Therefore, the chosen input parameters for the
cases under investigation presented in this work can include the latitude, longitude, solar ra-
dio flux (F10.7), time of the day, day of year (doy), Dst-index and Kp-index. The set of input
parameters for each case study will be presented in its corresponding section.
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Geographic location

Geographic location has a strong influence in the ionosphere electron density variation
(BHUYAN; BORAH, 2007; MONICO, 2008). Although a gross generalization, equato-
rial regions are characterized by high levels of electron density, mid-latitude regions are
considered relatively free of ionospheric anomalies and polar regions of the Earth are very
unpredictable (WEBSTER, 1993).

Solar radio flux

The solar radio flux (F10.7) index is a determination of the strength of the solar radio
emission in a 100 MHz-wide band centered on a 2800 MHz, corresponding to a 10.7 cm
wavelength. It is one of the most common indexes used to interpret solar activity. Although
it is commonly referred to as a flux, this index is a flux density (TAPPING, 2013). Several
fields can be benefited by the research and prediction of F10.7, such as the safety of spacecraft,
the safety of space and air travel, and others (ZHAO; HAN, 2008).

Solar radio flux data used in this work were obtained from Laboratory for Atmospheric
and Space Physics - University of Colorado Boulder (LASP) database, available on-line 1.

Seasonal variation

Season is another factor that influences electron density variation due to changes in
the zenith angle of the Sun and in the radiation flux intensity. During equinoxes, iono-
spheric effects are greater, whereas during the solstices the ionosphere effects are smaller
(HOFMANN-WELLENHOF; LICTHENEGGER; WASLE, 2008; MONICO, 2008).

Different periods are considered in this work, the first (from doy 154 to 163) is a ten-
days period at the end of Brazilian autumn, and the second period (from doy 282 to 291) is
a ten-days period on Brazilian spring. A third period, from doy 264 to 268, which includes
the September equinox of 2016 is investigated in the Case study 2.

Dst-index

The Disturbance Storm Time (Dst) index was designed to reveal the global magnetic
field reductions during storms. This is one of the most widely used indexes to describe space
storm activity. This index is given in nanotesla and it is provided on an hourly basis.

Dst data used in this work were obtained from the World Data Center (WDC) for Geo-
magnetism archive available on-line 2.

1<http://lasp.colorado.edu/lisird/data/noaa_radio_flux/>
2<http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html>
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Geomagnetic Kp-index

One way to measure the response of Earth magnetosphere due the solar activity is by
analyzing the Kp-index. For each three hours, this index indicates the intensity of magnetic
activity. Its scale varies from 0 to 9 and is expressed in the following order 0o 0+ 1- ... 8+
9- 9o, in a scale of thirds (i.e 0+ corresponds to 0 + 1/3) (BARTELS, 1957). Therefore,
one-day data can be expressed as an eight-length vector, with the first value valid from 00 to
03 UT and so on (BARTELS, 1957).

According to the National Oceanic and Atmospheric Administration (NOAA) Geomag-
netic Storm scale available on-line3, a Kp-index value greater than 5o indicates geomagnetic
storm condition. Kp-index data used in this work were obtained from the GFZ German
Research Centre for Geosciences archive available on-line 4.

3.1.2 Calibration techniques

The vTEC values employed in this work were obtained by using two different calibration
techniques. For the Cases of study 1 and 2, the calibrated vTEC values were obtained using
the GPS-TEC Analysis Software and for the Case study 3 the ICTP calibration technique
was adopted. More information about both methods is presented below.

ICTP calibration technique

Based on the first order approximation described in Section 2.3.4.1, one can obtain an
ionospheric observable related to the satellite receiver slant TEC (sTEC) from the subtrac-
tion of simultaneous observations made at different frequencies. This ionospheric observ-
able can be obtained from either carrier-phase or code-delay measurements (CIRAOLO et
al., 2007). It is important to note that, although carrier-phase measurements observations are
much less affected by measurement noise and multipath when compared to code-delay ob-
servations, carrier-phase observations present the inconvenient of being biased by unknown
ambiguities (CIRAOLO et al., 2007; MANUCCI et al., 1998).

In order to reduce ambiguities from the carrier-phase ionospheric observables, the level-
ling carrier to code algorithm is widely employed. In this procedure, the carrier-phase ob-
servable (L̃I,arc) is levelled to code-delay ionospheric observable, as shown in Equation (3.1).

L̃I,arc = sTEC + bR + bS + 〈εP 〉arc, (3.1)

where 〈εP 〉arc is the average of the effect of noise and multipath for code-delay observations
in a continuous arc. One can note that the carrier-phase inter-frequency biases (IFBs) are

3<http://www.swpc.noaa.gov/NOAAscales/>
4<ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/>
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replaced by code-delay receiver and satellite biases bR and bS . Note that there is no ambigu-
ity term in code-delay observations and the noise and multipath on carrier-phase measure-
ments has been neglected since it is around 100 times less than for code-delay observations
(BRAASCH, 1996; CESARONI et al., 2015; CIRAOLO et al., 2007).

Although it is usually assumed that 〈εP 〉arc can be disregarded (CESARONI et al., 2015;
BRAASCH, 1996), an experiment carried out by Ciraolo et. al 2007 using co-located sta-
tions suggests maintaining the term 〈εP 〉arc trying to estimate bias by arc. Therefore, Equa-
tion (3.1) can be written as

L̃I,arc = sTEC + βarc, (3.2)

which is the basic relation used to TEC calibration, where βarc corresponds to a constant off-
set to be determined for each arc of observations for a given receiver-satellite pair. βarc rep-
resents the contribution of any non-zero error over an arc of observations, e.g. the multipath,
and also represents the contribution of receiver and satellite biases, bR and bS respectively
(CESARONI et al., 2015). In order to define the mapping function from slant TEC to vertical
TEC, a two-dimensional thin shell model at 350 km is used. For some stations it is possible
to perform TEC calibration from the described method by using an on-line tool provided by
ICTP 5. The calibrated vTEC values used in this work were obtained in collaboration with
the ICTP.

Gopi Seemala calibration technique

The calibrated vTEC values derived from this technique were obtained by using the soft-
ware GPS-TEC Analysis Application v 2.9.3 available on-line 6 and developed by Dr. Gopi
Seemala.

The software was used to process the RINEX (Receiver Independent Exchange Format)
files for each station and then used to calibrate the vTEC values used in the Case studies 1
and 2. Like ICTP calibration method presented previously, this software also considers a
two-dimensional thin shell model at 350 km to define the mapping function from slant TEC
to vertical TEC (SEEMALA, 2017).

3.1.3 The ANN models

The MLP ANN with two layers of neurons is used in all case studies presented in this
work. Moreover, only one hidden layer was used since it has been shown that the in-
clusion of additional hidden layers do not lead to much difference in the result accuracy
(HABARULEMA et al., 2009).

Figure 3.1 illustrates a ANN structure containing latitude, longitude, doy, time of the day,

5<http://t-ict4d.ictp.it/nequick2/gps-tec-calibration-on-line>
6<http://seemala.blogspot.com.br/>
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Dst-index and solar radio flux as input parameters. Since the problem under investigation
is a non-linear process, the activation functions applied to the hidden neurons can be the
hyperbolic tangent sigmoid function presented in Equation (2.25) or the logistic sigmoid
function described in Equation (2.24) depending on the case study.

The number of artificial neurons in the hidden layer also varies depending on the case
study. For the Cases studies 1 and 3, this amount is fixed and it is equal to ten. For the Case
study 2, the number of neurons in the hidden layers changes from 1 to 20 in order to obtain
the suitable structure as will be presented in Section 3.2. After this procedure, the selected
structure is used to estimate the vTEC in the regions and period of interest.

Figure 3.1: Schematic representation of one ANN structure.

Training procedure

In a training process, the ANN provides an estimated output vTEC value (NNvTEC)
for a known input vector. This NNvTEC is then compared with the expected output value
(calibrated vTEC), and the error for each training pattern is sent back to the hidden layers
by the back-propagation algorithm for the update of the ANN synaptic weights. The Mean
Square Error (MSE) for training patterns are monitored and training procedure continues as
long as the MSE decreases. If the MSE continues decreasing, but the maximum number of
iterations (equals to 1,000) is reached, the training is stopped.

3.1.4 NN performance evaluation

For each case study, the assessment of the proposed ANN model performance is done in
terms of average error, standard deviation of the error, average relative correction, root mean
squared error (RMSE) and the normalized root mean squared error (NRMSE).

The average error (α) is defined as the mean value of the difference between vTEC esti-
mated using the ANN model (NNvTEC) and calibrated vTEC, as shown in Equation (3.3).
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The average relative error (ε) is represented in Equation (3.4) (LEANDRO; SANTOS, 2007;
HABARULEMA; MCKINNELL; CILLIERS, 2007).

α =
1

N

N∑
i=1

NNvTECi − vTECi, (3.3)

ε =
1

N

N∑
i=1

|NNvTECi − vTECi|
vTECi

× 100, (3.4)

where NNvTEC and vTEC are vTEC values obtained by the ANN model and the calibra-
tion technique, respectively. The difference (100 − ε) gives the percentual average relative
correction, indicating the approximated vTEC prediction accuracy for the proposed ANN
model, that is, an average relative error of approximately 10% means that the ANN can pre-
dict about 90% of the vTEC in average (LEANDRO; SANTOS, 2007; HABARULEMA;
MCKINNELL; CILLIERS, 2007).

The RMSE and NRMSE measure the error with respect to the data used to assess the
model quality. These values are defined by Equations (3.5) and (3.6) (HABARULEMA;
MCKINNELL; CILLIERS, 2007; MARTINS; NEPOMUCENO; BARROSO, 2013):

RMSE =

√√√√ 1

N

N∑
i=1

(vTECi −NNvTECi)2. (3.5)

NRMSE =

√∑N
i=1 (vTECi −NNvTECi)2√∑N
i=1 (vTECi − vTECi)2

, (3.6)

where NNvTEC is ANN estimative of vTEC, whose average is vTEC with N corre-
sponding to the number of observations. When NRMSE index is less than one, the models
are considered representative, which means that the error is, on average, less than the error
given by the mean of the time series (MARTINS; NEPOMUCENO; BARROSO, 2013).

3.2 Case study 1

In this Case study the performance of different MLP ANN structures on the estimation
of vTEC are assessed. The ingestion of different parameters which measure solar and ge-
omagnetic activity levels is investigated, including Kp-index, solar radio flux (F10.7) and
Dst-index. Furthermore, different activation functions and different amount of neurons are
adopted in order to determine the more suitable structure to estimate vTEC in the analyzed
period.
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3.2.1 Training the NN

In total, 120 MLP structures with different input parameters, different amount of neurons
in the hidden layer, different activation functions were tested in order to obtain the more
suitable structure to be employed in vTEC for this Case study. The input-output pairs used
to train the network consist of an input vector, which varies depending on the structure, and
the output is the calibrated vTEC obtained from the GPS-TEC Analysis Software.

Table 3.1 presents the different structures employed in this Case study. The input param-
eters latitude, longitude, doy and time of the day are not shown in the Table 3.1, since these
parameters are adopted in all structures. For each one of the listed structures, the amount of
neuron in the hidden layer varies from 1 to 20.

Table 3.1: NN structures under investigation - Case study 1.

Structure Input Parameters Activation Function
A Kp-index, F10.7

logsigB Dst-index, F10.7

C Dst-index
D Kp-index, F10.7

tansigE Dst-index, F10.7

F Dst-index

The activation functions described in Table 3.1 are obtained from Equations (2.24) and
(2.25).

As presented previously, the purpose of this investigation is to select one structure among
the structures listed in Table 3.1 to obtain a vTEC model in the South and Central-West
regions of Brazil. In order to obtain the most suitable MLP structure, the data from the South
region were used. Several structures were tested and the RMSE were assessed. Data from
stations RSAL, RSCL, RSPE, SCLA from doy 264 to 268 were presented to the network
during the training procedure. The location of the stations are presented in Table 3.2

Table 3.2: Summarized information of the stations under investigation in the South region -
Case study 1.

Data Station City in Lat. Lon. Type of Use
Network Name Brazil (◦S) (◦W) (vTEC Data)

RBMC

RSPE Pelotas (RS) 31.802 52.418 NN training
RSCL Cerro Largo (RS) 28.141 54.755 NN training
RSAL Alegrete (RS) 29.789 55.769 NN training
SCLA Lages (SC) 27.792 50.304 NN training
SMAR Santa Maria (RS) 29.718 53.716 NN testing
POAL Porto Alegre (RS) 30.659 51.120 NN testing

After the training procedure, the different structures were used to estimate vTEC on
SMAR station during the same period of training. It is important to note that no data from the
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test station (SMAR) were presented to the network during the training procedure. Figure 3.2
shows the RMSE obtained for each structure.
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Figure 3.2: RMSE values for each NN structure tested - Case study 1.

By analyzing the Figure 3.2, one can note that the structure D presented the best RMSE
when compared to the other structures. The input parameters of this structure are latitude,
longitude, doy, time of the day, Kp-index, and solar radio flux (F10.7). It has 9 neurons on the
hidden layer and the adopted activation function is the tansig described by Equation (2.25).
The RMSE obtained using this structure is 1.795 TECU.

3.2.2 Results and discussion

South region

The structure D was employed on vTEC estimation on POAL and SMAR stations during
the September equinox of 2016 (doy 266). Whereas the SMAR station was chosen because it
is located inside the region delimited by the training stations, the POAL station was selected
to test the spatial extrapolation performance of the network, since this station is located out
of the region limited by the training stations.

Figures 3.3(a) and 3.3(b) present the vTEC profile estimated by the NN for SMAR and
POAL stations, respectively. As shown in Table 3.4, the RMSE obtained was 1.187 and
1.263 TECU for SMAR and POAL, respectively. One can note that the station located inside
the region delimited by the training stations, i.e SMAR, presented lowest RMSE.

Central-West region

Aiming to assess the performance of the structure proposed in Section 3.2.1 in different
latitude regions, the same estimation procedure of vTEC profile used in the South region was
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Figure 3.3: Calibrated vTEC and NN vTEC on the September equinox of 2016 for the South
region - Case study 1. (a) SMAR station, (b) POAL station.

employed in the Central-West region. In this case, the stations BRAJ, GOJA, GOUR and
MGUB were adopted as training stations and the stations GOGY and MTNX were chosen to
be the testing stations. The GOGY station was selected because it is located inside the area
delimited by the training stations, whereas the MTNX was selected because it is located out
of this area. Table 3.3 presents the geographic location of the referred stations.

Table 3.3: Summarized information of the stations under investigation in the Central-West
region - Case study 1.

Data Station City in Lat. Lon. Type of Use
Network Name Brazil (◦S) (◦W) (vTEC Data)

GLONASS R&D BRAJ Brasília (DF) 15.772 47.866 NN training

RBMC

GOJA Jataí (GO) 17.883 51.726 NN training
GOUR Uruaçu (GO) 14.509 49.144 NN training
MGUB Uberlândia (MG) 18.919 48.257 NN training
MTNX N. Xavantina (MT) 14.697 52.349 NN testing
GOGY Goiânia (GO) 16.664 49.255 NN testing

Figures 3.4(a) and 3.4(b) present the estimated vTEC profile for the September equinox
of 2016 for the stations GOGY and MTNX, respectively. Also in this case, one can verify
that the better results were obtained in the station located inside the area delimited by the
training stations. The RMSE values obtained for GOGY and MTNX stations were equal to
1.791 and 3.370, respectively. The results obtained in this Case study are summarized in
Table 3.4.

3.3 Case study 2

In this Case study a MLP ANN is used to estimate the vTEC in the Central-West region
of Brazil, more specifically on GOGY station. The hidden layer of the MLP consists of
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Figure 3.4: Calibrated vTEC and NN vTEC on the September equinox of 2016 for the
Central-West region - Case study 1. (a) GOGY station. (b) MTNX station.

Table 3.4: Spatial performance of the NN model - Case Study 1.

Station (region) Analysis RMSE α Std. dev. Rel.
period (doy) NRMSE (TECU) (TECU) of the error (TECU) correction (%)

POAL (SO) 266 0.2057 1.253 0.544 1.129 89.15
SMAR (SO) 266 0.1769 1.187 -0.365 1.130 89.67
GOGY (CW) 266 0.2126 1.791 0.062 1.791 89.59
MTNX (CW) 266 0.4311 3.730 -1.049 3.580 79.94

10 artificial neurons and the output layer has only one artificial neuron. For each set of
input data (latitude, longitude, doy, time of the day, Kp-index, and solar radio flux), the
network provides an estimated vertical TEC (NNvTEC) value. Since the problem under
investigation is a non-linear process, the activation function applied to the hidden neurons
is the non-linear sigmoid function shown in Equation (2.24), with a equals to 1. A linear
function was considered for the output layer.

Table 3.5 presents location information of the stations used in this study. A map to
illustrate the station distribution is presented in Figure 3.5.

Table 3.5: Summarized information of the stations under investigation - Case study 2.

Data Station City in Lat. Lon. Type of Use
Network Name Brazil (◦S) (◦W) (vTEC Data)

GLONASS R&D BRAJ Brasília (DF) 15.772 47.866 NN training

RBMC

BRAZ Brasília (DF) 15.947 47.878 NN training
GOUR Uruaçu (GO) 14.509 49.144 NN training
MTBA Barra do Garças (MT) 15.876 52.265 NN training
MGUB Uberlândia (MG) 18.919 48.257 NN training
GOGY Goiânia (GO) 16.664 49.255 NN testing
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Figure 3.5: Positions in the world map of the stations under investigation - Case study 2.
Green and blue dots represent training and testing station, respectively.

3.3.1 Training the NN

In this scenario, vTEC data from stations GOUR, MTBA, MGUB and BRAJ were used
in the training process. The pair input-output used to train the network consists of an input
vector containing the latitude, longitude, doy, time of the day, Kp-index, and solar radio flux
and the output is the vTEC calculated using the GPS-TEC Analysis Application described in
Section 3.1.2. Input-output data from doy 154 to 163 were applied randomly to the network
during the training process.

Due to the absence of data for some stations in the considered interval, a total of 43200
samples were presented to the network during the learning process. In order to avoid overfit-
ting or overtraining, 85% of the training set was used to the training procedure and 15% was
used to validate the model. This procedure is important since the network may lose its gener-
alization ability if overtrained (HAYKIN, 2009). The Levenberg-Maquardt backpropagation
algorithm was used to set the ANN weights.

Figure 3.6 presents the performance of the ANN for each epoch during the training and
validation procedures. The best validation performance was obtained at the epoch 159, cor-
responding to a Mean Square Error of 2.750 TECU2.

3.3.2 Results and discussions

After the training procedure, the network is then used to estimate the vTEC profile for
GOGY station from doy 154 to 163. Figure 3.7 presents the vTEC estimated by the ANN
and the vTEC calculated using the GPS-TEC Analysis Application for the GOGY station.

Table 3.6 summarizes some statistics of the results obtained with the proposed ANN
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Figure 3.6: Performance of the ANN during the training and validation procedures - Case
study 2.
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Figure 3.7: Calibrated vTEC and NN vTEC on GOGY station - Case Study 2.

model. As shown in Table 3.6, the average error α of the estimative is -0.016 TECU and the
standard deviation of the error is 1.635 TECU. In terms of relative error ε, it was found an
average value of 11.19%. Alternatively, indicating an agreement in 88.81% of the cases on
average.

Table 3.6: Spatial performance of the NN model - Case study 2.

Station (region) Analysis RMSE α Std. dev. Avg. rel.
period (doy) NRMSE (TECU) (TECU) of the error (TECU) correction (%)

GOGY (CW) 154 to 163 0.1948 1.635 -0.016 1.635 88.81

3.4 Case study 3

In this Case study, the vTEC values on three distinct Brazilian regions (Northeast,
Central-West and South) are estimated. Data from two ten-days periods (from doy 154 to
163 and from 282 to 291) are used to train the ANN. By using this dataset, three distinct
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analyses have been carried out in order to assess time-varying and spatial performance of the
ANN model.

At the spatial performance analysis, for each region, a set of stations is chosen to provide
training data to the ANN and after the training procedure the ANN is used to estimate vTEC
values for the test station which data were not presented to the ANN during the training
process. An analysis is done by comparing, for each testing station, the estimated NNvTEC
delivered by the ANN and the reference calibrated vTEC. As a second analysis, the NN
ability to forecast one day after the time interval (doy 292) based on information of the
second period of investigation is also assessed in order to verify the feasibility of using a low
amount of data for short-term forecasting. In a third analysis, the spatial performance of the
ANN model is assessed and compared against CODE Global Ionospheric Maps during the
geomagnetic storm registered on 13th and 14th October 2016.

3.4.1 Training the NN

Aiming to evaluate the performance of the proposed ANN model, vTEC values of North-
east, Central-west and South regions of Brazil are investigated. To accomplish this task, for
each region, a set of stations is selected to provide training data to the ANN and one station
(out of the training set) is used to test the network and measure its performance. It is impor-
tant to notice that no data from the test station are presented to the ANN during the training
process.

Known input and output data are required to train the network. The input vector consists
of latitude, longitude, doy, time of the day, Kp-index, and solar radio flux, and the output is
the calibrated vTEC using the ICTP calibration technique described in Section 3.1.2.

The map shown in Figure 3.8 presents the positions of the stations under analysis for each
region. The training and test stations are represented by the green and blue dots, respectively.

Data from two different periods in 2016 are used in the training procedure. The first
and second periods will be referred to as Period A and Period B, respectively. Period A
corresponds to doy 154 to 163 (from June 2nd to June 11th, 2016). Average solar radio
flux (10.7 cm) is 84.77 sfu with a standard deviation of 3.59 sfu, for this interval. Period B
corresponds to doy from 282 to 291 (from October 8th to October 17th, 2016) and presents
an average solar radio flux (10.7 cm) of 94.33 sfu with a standard deviation of 10.06 sfu.
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Figure 3.8: Positions in the world map of the stations under investigation - Case study 3.
Green and blue dots represent training and testing stations, respectively.

3.4.2 Results and discussion

3.4.2.1 Assessment of NN spatial performance

Northeast region

In order to train the ANN for this region, data derived from six stations were used. Ta-
ble 3.7 presents information about geographic location of the stations exploited in Brazilian
Northeast region.

Table 3.7: Summarized information of the stations under investigation in the Northeast
region - Case study 3.

Data Station City in Lat. Lon. Type of Use
Network Name Brazil (deg S) (deg W) (vTEC Data)

GLONASS R&D RSFJ Recife (PE) 8.059 34.543 NN training

RBMC

ALAR Arapiraca (AL) 9.749 36.654 NN training
CRAT Crato (CE) 7.228 39.416 NN training
PBCG Campina Grande (PB) 7.213 35.908 NN training
PEPE Petrolina (PE) 9.348 40.507 NN training
RECF Recife (PE) 8.050 34.952 NN training
PEAF Afog. da Ingazeira (PE) 7.714 37.632 NN testing

After the training procedure, the ANN model was used to estimate the vTEC on PEAF
station during Period A and Period B. Figure 3.9 presents the result obtained by using the
proposed ANN model for both periods. In this case, data are provided and plotted on a 15
seconds scale.

One can note that peak vTEC values obtained during Period A are lower than values
obtained on Period B. This result indicates the influence of solar activity in vTEC value,
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Figure 3.9: Calibrated vTEC and NN vTEC on the PEAF station - Case Study 3. (a) Period
A. (b) Period B.

since this parameter is greater on Period B. Furthermore, during doy 287 and 288, it is
possible to verify on Figure 3.9(b) an increasing of vTEC values when compared with the
other days of Period B, indicating some correspondence with the storm occurred on 13th and
14th October 2016. This event and its influence on stations under analysis will be presented
with more details in Section 3.4.2.3.

Considering Period A, the Table 3.10 shows that the ANN model estimated the vTEC
with an average relative correction of approximately 86.6% and an average error of 0.942
TECU. The ANN model estimation for Period B provided an average error of approximately
0.214 TECU and an average relative correction of 89.4%. The NRMSE obtained for the
periods A and B are 0.170 and 0.228, respectively.
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Central-west region

Data from stations BRAJ, BRAZ, GOUR, MTBA, MGUB were used to train the network
in this region. For both periods, station GOGY, located in Goiânia-GO, was used to test the
NN. Table 3.8 indicates geographic position of each station considered in this region.

Table 3.8: Summarized information of the stations under investigation in the Central-West
region - Case study 3.

Data Station City in Lat. Lon. Type of Use
Network Name Brazil (◦S) (◦W) (vTEC Data)

GLONASS R&D BRAJ Brasília (DF) 15.772 47.866 NN training

RBMC

BRAZ Brasília (DF) 15.947 47.878 NN training
GOUR Uruaçu (GO) 14.509 49.144 NN training
MTBA Barra do Garças (MT) 15.876 52.265 NN training
MGUB Uberlândia (MG) 18.919 48.257 NN training
GOGY Goiânia (GO) 16.664 49.255 NN testing

Following the same ANN training and testing procedures described previously, but using
stations listed in Table 3.8, the results shown in Figure 3.10 were obtained. One can note
that vTEC on GOGY station presented similar behavior on doy 287 and 288 when compared
with PEAF station, but presenting peak values slightly greater during these two days.

By observing vTEC values shown in Figure 3.10, one can note that the ANN model
underestimates vTEC for the most of the analyzed period. This fact can be confirmed by
looking at mean values of calibrated vTEC and NNvTEC presented in the Table 3.10. The
average error value of vTEC predicted by the ANN model was 10.39 TECU against 11.70
TECU obtained from the calibrated vTEC, leading to a mean error α of about -1.310 TECU.

By analyzing the Period A, the NN model provided an average relative correction of
approximately 82.9%. For Period B, the average relative correction is about 88.4%. The
ANN vTEC estimative for this station presented a NRMSE of 0.298 and 0.262 for periods A
and B, respectively.

South region

Data from stations RSPE, RSCL, RSAL and POAL were used in the training procedure
for South region in Brazil. Table 3.9 indicates the geographic position of each station under
study. Figure 3.11 presents the results with a temporal resolution of 30 seconds due the data
interval provided by SMBJ station. By comparing Figures 3.9 and 3.10 with Figure 3.11,
it is possible to verify that the vTEC peak obtained on PEAF and GOGY is approximately
two times greater than the vTEC peak calculated for SMBJ in Period A. On period B, the
difference is smaller.

As shown in Figure 3.11(b), during doy 287 and 288, TEC values of this station was
increased, as well. Assessing the results with the criteria described previously, for Period
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Figure 3.10: Calibrated vTEC and NN vTEC on GOGY station - Case study 3. (a) Period A.
(b) Period B.

Table 3.9: Summarized information of the stations under investigation in the South region -
Case study 3.

Data Station City in Lat. Lon. Type of Use
Network Name Brazil (◦S) (◦W) (vTEC Data)

GLONASS R&D SMBJ Santa Maria (RS) 29.718 53.719 NN testing

RBMC

RSPE Pelotas (RS) 31.802 52.418 NN training
RSCL Cerro Largo (RS) 28.141 54.755 NN training
RSAL Alegrete (RS) 29.789 55.769 NN training
POAL Porto Alegre (RS) 30.659 51.120 NN training

A, the ANN model provided an average relative correction of approximately 88.6%. For
Period B, the average relative correction obtained is about 88.9%. At this location, the ANN
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estimative presented NRMSE of 0.265 for period A and 0.214 for period B, respectively.
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Figure 3.11: Calibrated vTEC and NN vTEC on SMBJ station - Case study 3. (a) Period A.
(b) Period B.

Table 3.10 summarizes the results obtained using the proposed ANN model for all three-
stations during both periods. It is possible to note that the minimum average relative correc-
tion obtained was 82.9% indicating that the proposed NN model has provided good estima-
tive for the observed stations in the considered periods.

3.4.2.2 Assessment of short-term forecasting performance

In order to assess the ANN short-term forecasting ability, training stations data from
Period B (doy 282 to 291) were presented to the ANN, and then, the ANN was used to
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Table 3.10: Spatial performance of the NN model - Case study 3.

Station Analysis RMSE α Std. dev. Rel.
(region) period NRMSE (TECU) (TECU) of the error (TECU) correction (%)

PEAF A 0.170 1.762 0.942 1.488 86.6
(NE) B 0.228 3.401 0.214 3.394 89.4

GOGY A 0.298 2.615 -1.310 2.267 82.9
(CW) B 0.261 3.768 0.289 3.757 88.4

SMBJ A 0.265 1.073 0.078 1.070 88.6
(SO) B 0.209 2.663 0.239 2.653 88.9

forecast vTEC on doy 292. It is important to highlight that no data from doy 292 were
presented to the ANN in the training procedure. The results for stations PEAF and GOGY
are presented on a 30s basis and for SMBJ station the results are presented in a 15s basis.
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Figure 3.12: Calibrated vTEC and NN vTEC for short-term forescasting of doy 292 - Case
study 3. (a) PEAF station. (b) GOGY station. (c) SMBJ station.

Table 3.11 presents the results obtained for each region under investigation. One can
note that the maximum RMSE error obtained for short-time forecasting was found at PEAF
station, corresponding to 7.84 TECU. At this station, the average relative correction observed
was 73.5%. Better results were obtained at GOGY and SMBJ stations, with a RMSE of 5.18
and 4.05 TECU, respectively.
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Table 3.11: Short-term forecasting performance of the NN model - Case study 3.

RMSE α Std. dev. Avg. rel.
Station (region) NRMSE (TECU) (TECU) of the error (TECU) correction (%)

PEAF (NE) 0.502 7.84 3.544 6.999 73.3

GOGY (CW) 0.355 5.18 0.577 5.153 82.3

SMBJ (SO) 0.320 4.05 -0.813 3.972 81.6

3.4.2.3 Comparison of calibrated TEC, NN predicted TEC and CODE GIMs

According to the Weekly Space Weather Report 20161020 prepared by The Mexican
Space Weather Service (SCiEMEX) and available on-line 7, the registered Dst and Kp in-
dexes indicated a geomagnetic storm during 13th and 14th October 2016. Data provided by
the World Data Center for Geomagnetism (WDC)8 registered Dst indexes reaching -104 and
-97 nanotesla for 13th and 14th, respectively. Kp-indexes registered during these days, also
indicate geomagnetic storms condition. The registered 3-hours Kp-index are presented in
Table 3.12.

Table 3.12: Registered Kp-index values.

Day Kp-index values
00 UT 03 UT 06 UT 09 UT 12 UT 15 UT 18 UT 21 UT

2016 October 13 2+ 3o 4+ 5- 5- 6+ 6+ 5o
2016 October 14 6- 5- 5- 3o 2- 2- 1- 1-

According to the NOAA Geomagnetic Storm scale described in Section 3.1.1, the geo-
magnetic storm conditions were registered on both days. In order to evaluate the performance
of the ANN proposed model during this period, a comparison with GIMs provided by CODE
is performed.

In the GIMs generated by CODE, the vertical TEC is modeled in a solar-geomagnetic
frame by the use of spherical harmonics expansion and piecewise linear functions are used
for the representation in the time domain (YU et al., 2015). Daily differential code biases
(DCB) for all GPS satellites and ground stations are estimated simultaneously as constant
values for each day (YU et al., 2015). GIMs are generated on a daily basis at CODE using
data from about 300 GNSS sites of the IGS and other institutions. Final CODE GIMs are
provided with a spatial resolution of 2.5◦ in latitude and 5.0◦ in longitude with a latency of
approximately two weeks. Temporal resolution is 1 hour since GPS week 1815. GIMs used
in this work were obtained from the Crustal Dynamics Data Information System (CDDIS)
database available on-line 9.

In this analysis, the purpose is to compare the vTEC values provided at each hour in the
CODE GIMs Ionex files and the vTEC values provided by the ANN in the same epochs.
Performance comparison of both methods will be evaluated by RMSE, average ∆TEC and

7<http://www.sciesmex.unam.mx/>
8<http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html>
9<ftp://cddis.gsfc.nasa.gov/gnss/products/ionex/>
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average relative correction considering calibrated vTEC as the reference. Average ∆Tav is
defined as (HABARULEMA et al., 2009):

∆Tav =
1

N

N∑
i=1

((Tj=1,2)i − Ti), (3.7)

where ∆Tav is the average difference between the calibrated GNSS vTEC (T ) and NN TEC
(Tj=1) or GIM TEC (Tj=2), i = 1, 2, ..., N with N corresponding to the number of observa-
tions at a particular time during the interval.

Figure 3.13 presents the calibrated vTEC, NNvTEC and GIM vTEC from doy 286 (0h00
UT) to doy 288 (23h00 UT). Calibrated vTEC and NNvTEC data are not available for PEAF
station in 0h00 UT of doy 287, therefore, this observation will not be plotted or considered
in the computation of performance.
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Figure 3.13: Calibrated vTEC, NN vTEC, and GIM derived vTEC from doy 286 to 288 on
year 2016 - Case study 3. (a) PEAF station. (b) GOGY station. (c) SMBJ station.

As shown in Figure 3.13, the proposed NN presented better results when compared with
CODE GIMs during the period under investigation (considering vTEC provided by the cali-
bration as the reference). In almost all period, GIMs overestimate TEC values in all stations.
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Table 3.13 presents the performance of both applied methods.

Table 3.13: Performance evaluation of NN vTEC and GIM vTEC with respect to calibrated
TEC from doy 286 to 288.

RMSE ∆Tav Std. dev. of Avg. rel.
Station NRMSE (TECU) (TECU) the error (TECU) correction (%)
(region) NN GIM NN GIM NN GIM NN GIM NN GIM

PEAF (NE) 0.226 0.475 3.50 7.34 0.51 6.84 3.48 2.68 90.42 74.49
GOGY (CW) 0.252 0.358 3.98 5.66 0.65 4.56 3.96 3.36 89.00 83.06
SMBJ (SO) 0.206 0.229 2.92 3.24 -0.21 2.35 2.93 2.25 89.85 88.23

By the analysis of Table 3.13, it is possible to note that the ANN model performed better
when compared with CODE GIMs for the period. Minimum and maximum average relative
error obtained by the ANN was approximately 89.00% and 90.43% against 74.49% and
88.23% for CODE GIMs. Furthermore, the average difference between calibrated vTEC and
CODE GIMs confirms the observed over-prediction of TEC values during the period shown
in Figure 3.13. Results presented in Table 3.13 indicate that the ANN model presented better
performance (assuming the calibrated vTEC as the reference) when compared with CODE
GIMs in all stations analyzed in the interval.

48



Chapter 4

Conclusion

The results obtained by the analysis performed in the cases of study presented in this
work indicate that the use of the proposed Artificial Neural Network models for vertical
TEC estimation can provide good estimates in the Brazilian region. The studies performed
in the case study 1 presented the impact of choosing different parameters to compose the
ANN model. For this case study, the use of the Kp-index and the solar radio flux presented
better results. Also, it was possible to note that the number of neurons employed in the
ANN is an important parameter to be considered. A large number of neurons does not lead
necessarily to a performance improvement for the investigated ANNs. For the case study
2, the proposed ANN model has provided an average relative correction of 88.81% and a
RMSE value of 1.635 TECU.

Considering the case study 3, one can verify that the proposed model has provided a
minimum relative correction value of approximately 82.9% and a maximum RMSE of 3.76
TECU. Periods of higher solar activity presented the worst average absolute errors results.
Periods of lower solar activity provided worst relative error results, due to the lower absolute
TEC during days with low solar activities. By analyzing the average absolute error of the
ANN model it is possible to verify that better results were obtained during the lower solar
activity period.

In the forecasting performance analysis presented in the case study 3, the maximum
RMSE value obtained was 7.84 TECU at PEAF station. Best results were obtained for
GOGY and SMBJ stations, reaching RMSE values of 5.18 and 4.05 TECU, respectively.
The obtained estimation suggests that the proposed ANN can be exploited on the develop-
ment of a TEC short-term prediction model in Brazil. Future studies will be carried out in
order to determine the suitable training interval to obtain minimum error values in short-term
forecasting and improve the NN performance in the regions located at lower latitudes. Also,
the use of recurrent ANNs will be investigated.

Investigation of performance during the period from DoY 286 to 288 shows that the ANN
model provided better results when compared with CODE GIMs, assuming the calibrated

49



vTEC as the reference. Performance assessed by this work suggests that the proposed ANN
model is a promising tool for vTEC estimation in void areas even during events such as
the geomagnetic storm registered during 13th and 14th October 2016. It is important to
note that work does not intend to undervalue the estimations provided by CODE Global
Ionospheric Model, but rather, reinforce its important role in studies and improvements of
regional models.

It is worth mentioning that the proposed ANN model does not have the ability to calibrate
vTEC by itself, relying on data provided by the calibration technique. Therefore, if vTEC
delivered by the calibration procedure present negative values, the ANN can incorporate this
results, and as a consequence presents negative vTEC.

The studies presented in this manuscript were the basis for the investigations published
in three papers. The list of publications derived from this research can be found in Appendix
A. In future works, the investigations on the development of a model that includes the five
Brazilian regions can be performed. The applicability in short-term forecasting in a near
real-time scenario will also be investigated. In addition, the performance analysis of low-
cost single-frequency receivers using the TEC values from the proposed ANN to mitigate
the ionospheric range error in positioning systems will also be investigated.
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Appendix B

Linearization of the observable equation

By using the ephemeris sent in the navigation message it is possible to obtain the satellite
positioning coordinates (Xsv, Y sv, Zsv) and the satellite clock bias dtsv. The terms corre-
sponding to ionospheric and tropospheric delays (T svr e Isvr ) can be obtained from a priori
models (BORRE et al., 2007). Some strategies to deal with multipath effect (dmsv

r ) are
presented in Section 2.3.2. Thus, the unknowns of Equation (2.5) are the receiver position
coordinates (Xr, Yr, Zr) and the receiver clock bias.

Since Equation (2.5) is non-linear with respect to the coordinates of the receivers and
satellites, it has to be linearized before applying the least-squares method (BORRE et al.,
2007). Considering the non-linear term of the Equation (2.5) it follows, for an epoch t:

ρsvr (t) =

√
(Xsv(t)−Xr)

2 + (Y sv(t)− Yr)2 + (Zsv(t)− Zr)2. (B.1)

By assuming the approximated values (Xr,0, Yr,0, Zr,0) for the coordinates of the receiver
(station) r, an approximated distance can be obtained by:

ρsvr (t) =

√
(Xsv(t)−Xr,0)2 + (Y sv(t)− Yr,0)2 + (Zsv(t)− Zr,0)2, (B.2)

and the coordinates of the station can be represented by:

Xr =Xr,0 + ∆Xr

Yr =Yr,0 + ∆Yr ,

Zr =Zr,0 + ∆Zr

(B.3)

where ∆Xr, ∆Yr and ∆Zr correspond to the corrections to the approximated values (MON-
ICO, 2008). This initial approximated coordinate is often chosen as the center of the Earth
in the ECEF coordinate system (0,0,0) (BORRE et al., 2007). By applying (B.3) in (B.2) and
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expanding the resulting expression as a first-order Taylor series, one can obtain:

ρsvr (t) = ρsvr,0(t) +
∂ρsvr,0(t)

∂Xr,0

∆Xr +
∂ρsvr,0(t)

∂Yr,0
∆Yr +

∂ρsvr,0(t)

∂Zr,0
∆Zr. (B.4)

The partial derivatives presented in Equation (B.4) are (MONICO, 2008; BORRE et al.,
2007):

∂ρsvr,0(t)

∂Xr,0

= −X
sv −Xr,0

ρsvr,0(t)
,

∂ρsvr,0(t)

∂Yr,0
= −Y

sv − Yr,0
ρsvr,0(t)

,

∂ρsvr,0(t)

∂Zr,0
= −Z

sv − Zr,0
ρsvr,0(t)

.

(B.5)

Now the Equation (B.4) is linear with respect to the unknowns ∆Xr, ∆Yr, ∆Zr and the
pseudorange equation can be written as:

P sv
r = ρsvr,0 −

Xsv −Xr,0

ρsvr,0
∆Xr −

Y sv − Yr,0
ρsvr,0

∆Yr −
Zsv − Zr,0

ρsvr,0
∆Zr

+ c(δtr − δtsv) + T svr + Isvr + dmsv
r + εP . (B.6)

By using the linearized pseudorange equation, it is possible to apply the least-squares method
to perform the receiver positioning calculation.
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Appendix C

Additional tropospheric effect
information

C.1 Tropospheric attenuation as a function of the elevation
angle

By modelling the troposphere as a simple and uniform spherical shell of height hm above
the Earth, the length of the signal path L through the troposphere varies with the elevation
angle (ε) and is given by (SPILKER, 1996)

L =
2hm(1 + a/2)

sin(ε) +
√
sin2(ε) + 2a+ a2

(C.1)

where hm = 6 km, Re corresponds to the Earth radius (Re ≈ 6378 km) and a = hm/Re.
Figure C.1 illustrates the length L of signal path in which cos(ε) = (1 + a)cos(φ).

Troposphere

hm

Earth 
Radius
Re

Earth 
Center

Length L of path through troposphere

Figure C.1: Path length L through an uniform shell troposphere at elevation angle ε
(SPILKER, 1996) (adapted).
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The oxygen attenuation A(ε) has the following approximate value (SPILKER, 1996)

A(ε) ≈ 2A(90◦)(1 + a/2)

sin(ε) +
√

(sin2(ε) + 2a+ a2)
≈


2A(90◦)

sin(ε)+0.043
dB, for small ε but greater than 3◦

A(90◦)
sin(ε)

dB, for ε but greater than 10◦

(C.2)
where a = hm/Re, hm = 6km and Re corresponds to the Earth radius (Re ≈ 6378km).

To illustrate the attenuation effect and its relation to the elevation angle the attenuation
presented in Equation (C.2) is plotted in Figure C.2 for elevation angles greater than 3◦.
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Figure C.2: (Tropospheric attenuation versus elevation angle (SPILKER, 1996) (adapted).

Near the horizon, e.g. below 3◦, the uniform spherical model of Figure C.1 is no longer
accurate, and neither Equation (C.2) and Figure C.2 should be used (SPILKER, 1996). In
addition to attenuation potential effects such as multipath and refraction can be increased at
low elevation angles (SPILKER, 1996).

C.2 Other tropospheric effects

Rainfall attenuation

The effect of rainfall attenuation on GNSS signals is very small. Considering a dense
rainfall (100 mm/h) and a signal with frequency equals to 2 GHz, the attenuation due to this
event is less than 0.01 dB/km. For signals with frequency below 2 GHz, the effect is even
smaller (SPILKER, 1996).

Tropospheric scintillation

The tropospheric scintillation is caused by irregularities and turbulence in the atmo-
spheric refractive index mainly in the first few kilometers above the ground (SPILKER,
1996). A GNSS signal propagating through the troposphere is affected by a combination of
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random absorption and scattering. These effects cause variations in the amplitude and phase
in the received waveform (MONICO, 2008; SPILKER, 1996). Tropospheric scintillation
effect varies with time and depends on signal frequency, elevation angle, and weather con-
ditions, particularly dense clouds. For elevation angles higher than 10◦ the most significant
effect is the scattering caused by the turbulence. In general, for GNSS signals these effects
are small, except for lower elevation angles (SPILKER, 1996; MONICO, 2008).

C.3 Empirical models and mapping functions

The empirical models for tropospheric delay are functions of meteorological parameters,
such as temperature, pressure and humidity. These parameters allow determining the Zenith
Troposphere Delay (ZTD), which is mapped into Slant Tropospheric Delay (STD) by using
the mapping functions (HADAS et al., 2013).

As presented in Section 2.3.3.2 it is necessary to obtain the refractivity index NT along
the path between the receiver and the satellite to calculate the tropospheric delay from Equa-
tion (2.10). The empiric general expression for the refractivity of a non-ideal gas, including
water vapor, is given by (MONICO, 2008):

NT = k1
Ph
T
Z−1
H + k2

e

T
Z−1
W + k3

e

T 2
Z−1
W (C.3)

where:

• Ph and e are the partial pressure of the dry air and water vapor (expressed in milibars);

• T is the temperature expressed in Kelvin;

• ZW and ZH corresponds to the compressibility factors for the wet and hydrostatic
components, respectively;

• the constants k1, k3 e k3 are obtained experimentally with k1 = 77.604 ± 0.0124,
k2 = 64.79± 10 and k3 = 377600± 3000.

By using the gases law, one can obtain the following expressions for the hydrostatic and
wet refractivities,

NH =
k1R

MH

ρ = 22.276ρ, (C.4)

NW =

[
k2 − k1

MW

MH

]
e

T
Z−1
W + k3

e

T 2
Z−1
W . (C.5)

The hydrostatic refractivity presents a low uncertainty (±0.014%) and depends only on the
total density of the atmosphere, therefore it can be determined with good precision. The wet
refractivity, on the other hand, presents considerable uncertainty in its coefficients. This fact
difficults the NW determination (MONICO, 2008).
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Since the refractivity along the way between the receiver antenna and the satellite is very
complicated to obtain, several models have been developed to perform a priori corrections of
the tropospheric delay. In these models, additional parameters can be included in the form of
adjustment parameters. Some common models employed on tropospheric delay correction
are the Hopfield model and Standard Model.

A brief description of these models are as follows:

a) Hopfield model: Among the most knowns models for tropospheric delay, this model
was developed in the decade of 1960 and is given by the following set of equations:

T sr = TZH ×mh(ε) + TZW ×mw(ε)

TZH = 155.2× 10−7P

T
Hd

TZW = 155.2× 10−7 4819e

T 2
Hw

mh(ε) =
1√

ε2 + 6.25

mw(ε) =
1√

ε2 + 2.25

Hd = 40136 + 148.72(T − 273.16)

Hw = 11000 m

(C.6)

where, the terms TZH , TZW , mh(ε) e mw(ε) are the zenith tropospheric components
and the mapping functions described previously in Section (2.3.3.2), and ε is the ele-
vation angle. Other mapping functions can also be employed.

b) Saastamoinen model: In this model, it is assumed a linear decreasing in the temper-
ature until tropopause (about 12 km height); for higher altitudes the stratosphere is
characterized as an isothermal model by a constant value. Other assumptions were
made in order to develop this model, such as: i) atmosphere in hydrostatic equilib-
rium, ii) the water vapor is concentrated in the troposphere and behaves as an ideal
gas. The standard model proposed by Saastamoinen 1972, with some adjustments, is
given by (MONICO, 2008; SPILKER, 1996):

T sr = 0.002277
1

1 +D

1

cosz

[
P +

(
1255

T
+ 0.05

)
e−Btan2z

]
+ ∂R, (C.7)

where P and e represent the superficial pressure (expressed in mBar) of dry air and
water vapor, respectively; T is the temperature in Kelvin; B and ∂R are correction
factors and z = 90◦ − ε. The values of B and ∂R for various users heights can be
found in Spilker 1996. The value D is obtained by

D = 0.0026cos(2φ) + 0.00028H, (C.8)
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where φ corresponds to the latitude and H is the orthometric height in km.

The values of atmospheric pressure and water vapor pressure (P , e) are expressed in
mBar. The temperature value T is expressed in Kelvin and usually is obtained from a
standard atmosphere. Hence, the following values can be employed

P = Pr(1− 0.0000226(H −Hr))
5.225,

T = Tr − 0.0065(H −Hr),

Hu = Hure
−0.0006396(H−Hr),

(C.9)

where Pr, Tr and Hur are the reference values for pressure, temperature and humidity
at the reference height Hr (MONICO, 2008).

In addition to the models presented previously, some blind models, which relies on clima-
tological data have been proposed, such as (YIBIN et al., 2016; MöLLER; WEBER; BöHM,
2014; YAO et al., 2015):

• RTCA-MOPS;

• ESA model;

• GPT2;

• GPT2w;

• UNB3, UNB3m, UNB4;

• ITG.

As presented before, it is necessary to use mapping functions in order to convert the
zenith tropospheric delay to the slant tropospheric delay. In some models, such as Saasta-
moinen, the mapping functions are implicit in the model. One simple mapping function to
be used is

mh(ε) =
1

sin(ε)
. (C.10)

This mapping function can be a good approximation for elevation angles near to the zenith
(ε ≈ 90◦). For ε below this value, it is necessary to use more sophisticated approximations.

Among the available mapping functions, one can use the Marini mapping function and its
derivatives, such as Chao, Niell, Vienna, Global Mapping Function, and others (MONICO,
2008).

The mapping function proposed by Marini is given by (MARINI, 1972):

m(ε) =
1

sin(ε) + a
sin(ε)+ b

sin(ε)+ c
sin(ε)

+...

(C.11)
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The Chao mapping function defines the hydrostatic and wet components as follow:

mH(ε) =
1

sin(ε) + 0.00143
tan(ε)+0.0445

,

mW (ε) =
1

sin(ε) + 0.00035
tan(ε)+0.017

.
(C.12)
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Appendix D

Additional ionospheric effect information

Ionospheric scintillation

Plasma density irregularities density along the path of the signal through the ionosphere
causes the ionosphere scintillation phenomena. This phenomenon consists of rapid changes
in the phase and/or amplitude of the received radio signal. It can reduce the accuracy of
GNSS receiver pseudorange and carrier phase measurements and also can result in a loss o
lock on a satellite. In a worst-case scenario, it can lead to a loss in the positioning service,
depending on the number of satellites involved in the loss of lock (CONKER et al., 2003).

The scintillation effects are more severe in the equatorial region of the Earth, followed by
high-latitude (mainly on the poles) and middle latitudes (rare phenomenon, mainly occurring
in the presence of ionospheric storms). In equatorial regions, this effect is related to the
Equatorial Anomaly. However, the formation of large-scale ionospheric bubbles can increase
the occurrence of scintillation in this region. In years near the peak of the solar cycle, this
effect can be observed on a daily basis. The periods of equinox tend to show the strongest
scintillations. In equatorial regions, the ionospheric scintillation tends to occur in the F-Layer
region at the time when the sun sets. (ROCHA et al., 2017; ARBESSER-RASTBURG;
ROGERS, 2013).

Several modelling activities have been made to describe the physical mechanism that
origins scintillation as well statistical distribution of ionospheric density irregularities, such
as WBMOD and GISM models, respectively. The measure of scintillation can be done by
the phase scintillation index σΦ(given in radians) and the amplitude scintillation index S4.
Table D.1 presents the three categories of scintillation according to the σΦ and S4 values
(TIWARI et al., 2011).

Since a large part of Brazil is situated in the geomagnetic equator, it suffers significant
scintillation effect. The highest values of scintillation indexes occur between September to
March, approximately. The minimum values generally occur from April to August (ROCHA
et al., 2017).
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Table D.1: Classification of the scintillation levels.

Classification S4 σΦ

Strong Scintillation S4 > 1.0 σΦ > 0.8

Moderate Scintillation 0.5 ≤ S4 ≤ 1.0 0.4 ≤ σΦ ≤ 0.8

Weak Scintillation 0 ≤ S4 < 0.5 0 ≤ σΦ < 0.4
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Appendix E

Other sources of Errors

Satellite related errors

In addition to the satellite clock error described in Section 2.3.1.1, this section presents
other GNSS errors related to the satellites. These errors are the orbit errors, differential code
biases, and antenna phase center.

a) Orbit errors - In order to obtain position and velocity of the GNSS satellites in a terres-
trial frame, the following sets of data are available: almanac data, broadcast ephemeris,
precise ephemeris and predicted by the International GNSS Service (IGS). These data
differ in accuracy and availability to the user (real-time or with some delay). Essen-
tially, the ephemeris contain records with general information, records with orbital in-
formation, and records with information on the satellite clock. For the GPS the orbital
information is provided in the form of Keplerian parameters together with their tempo-
ral variations, whereas for the GLONASS the orbital information is provided in form
of position and velocity vectors at equidistant epochs (HOFMANN-WELLENHOF;
LICTHENEGGER; WASLE, 2008).

The satellite coordinates calculated from the ephemeris are in general considered fixed
during the process of adjustments of the satellite data. Therefore, the presence of errors
on satellite position (coordinates) will be directly transmitted to the user positioning.
For precise point positioning (PPP), the errors are almost directly propagated to the
user, however, in the relative positioning, the orbital errors are practically eliminated.
As the distance of the baseline becomes longer, the remaining errors can influence and
degrade the accuracy of the base-line components (MONICO, 2008). A more detailed
description about the PPP and relative positioning can be found in Appendix F.

The purpose of the almanac data is to provide the user with adequate data to facil-
itate receiver satellite acquisition and for planning tasks such as the computation of
visibility charts. These data are regularly updated and sent as part of the satellite
message. It contains information for orbit and satellite clock correction (HOFMANN-
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WELLENHOF; LICTHENEGGER; WASLE, 2008).

The broadcast ephemeris are based on observations occurred at the monitoring stations
of the respective control segment. The most recent of these data are used to compute
reference orbit for the satellites. In essence, the ephemerides contain records with
general information, records with orbital information, and records with information
on the satellite clock. The real-time ephemeris transmitted with the observations can
reach accuracy from 1 to 3 m (MONICO, 2008; HOFMANN-WELLENHOF; LIC-
THENEGGER; WASLE, 2008). The precise ephemeris are result of post-processing
and can reach accuracy from 2 to 5 cm. Table E.1 presents the uncertainty related to
the ephemeris according to its type.

Table E.1: Uncertainty of types of ephemeris (HOFMANN-WELLENHOF; LICTHENEG-
GER; WASLE, 2008) (adapted).

Ephemeris type Uncertainty Remark
Almanac Some kilometres Depending on the age of data

Broadcast Ephemeris ≈ 1 m Or even better
Precise Ephemeris 0.025 to 0.20 m Depending on the latency

b) Differential Code Biases (DCBs) - This error, also called Interfrequency Biases (IFB)
is associated with the different frequency dependent processing times of L1 and L2 sig-
nals in RF paths, both for satellites and receivers (MYLNIKOVA et al., 2014; MON-
ICO, 2008). DCB values vary for each satellite and ground receivers. The DCB values
vary between different GNSS satellites and ground receivers. Most DCB estimates
are based on the assumption that the DCB values of GPS satellites or receivers are
constant over 1 day or 1 month, while in fact, they are often changing in hours or 1
day (JIN; JIN; FENG, 2012). The DCB information is routinely produced by the IGS
analysis centers, such as the Center for Orbit Determination in Europe (CODE), the Jet
Propulsion Laboratory (JPL), the European Space Agency (ESA), and the Polytechnic
University of Catalonia (UPC). (JIN; JIN; FENG, 2012; MONICO, 2008).

The Differential Code Biases has to be taken into account for precise Total Electron
Content (TEC) estimations. If DCBs effects are ignored, several meters of error can
occur and it can lead to non-physical negative values of TEC (MYLNIKOVA et al.,
2014; JIN; JIN; FENG, 2012).

c) Relativity effects - The satellite clock changes due to the effects of general and special
relativity. The clocks of the receivers in the ground stations and the clocks aboard the
satellites are under influence of different gravitational fields and are moving at distinct
velocities. These facts cause an apparent frequency changing in the on-board clocks
with respect to the ground clocks. On the GPS, this problem is solved by a reduction
on the clock satellite of 4.55x10−3 Hz before launching (MONICO, 2008).

The correction term with respect to the relative effect (∆tR) is shown in Equation (2.9).
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In relative positioning (presented in Appendix F), the relativity effects are totality neg-
ligible (MONICO, 2008).

c) Antenna Phase Center (APC) - The GNSS antenna is the connecting element between
the satellite and the GNSS receiver. The satellite Antenna Phase Center (APC) is the
reference point for the broadcast ephemeris. This point differs from the center of mass
of the satellite, and it changes for different values of elevation and azimuth angles.
Therefore, for high precision applications, the phase center offset vector has to be
taken into account (EL-HATTAB, 2013; MONICO, 2008; DoD, USA, 1995).

The APC offset vectors, in general, are given with respect to a fixed coordinate frame,
with the origin on the satellite center of mass, and shall be converted to a fixed ref-
erence frame on Earth, such as ITRF2005. These values are calculated by some IGS
analysis centers (e.g. CODE and GFZ) and are provided by IGS (MONICO, 2008).

Receiver related errors

a) Interchannel errors - Nowadays, the majority of geodesic receivers present multiple
channels and in this case, a systematic interchannel error can occur, since the signal
of each satellite will travel through different electronic paths. In order to correct this
effect, the receivers have a device which calibrates and compensates these interchan-
nel biases (SEEBER, 2003; MONICO, 2008). A channel is taken as the reference,
each channel tracks, simultaneously, a particular satellite and determines the errors
with respect to the reference channel. This effect will be correct in all subsequent
observations.
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Appendix F

Positioning techniques

Positioning corresponds to the determination of positions of objects with respect to a
specific reference. It can be divided into absolute positioning, when the calculated coordi-
nated are directly associated with the centre of the Earth, and relative positioning, when the
coordinates are obtained with respect to an object with known coordinates. Also, the posi-
tioning can be classified in static and cinematic, depending on if the object is at rest or under
movement (MONICO, 2008).

In the absolute positioning (also named Point Positioning), when the transmitted
ephemeris are employed, the position of the point is obtained in the reference frame of the
system (WGS 84 for GPS, PZ90 for GLONASS). However, when precise ephemeris and
clock corrections are employed, along with carrier phase data, the reference frame adopted
is related to the precise ephemeris. In addition to the classifications presented previously,
the positioning can be classified as real-time and post-processed. In the first, the estimative
occurs almost at the same time the observations are collected. In the post-processed, the
estimates are obtained after the data collect (MONICO, 2008).

In the following sections the Point Positioning (PP), Precise Point Positioning (PPP) and
Relative Positioning (RP) techniques will be presented.

Point Positioning

Point positioning refers to the determination of the position of a station based on pseudo-
range observation, using orbit and satellite parameters broadcast in the navigation message.
This positioning technique requires only a receiver and is a widely employed method for
low precision navigation. If available, it is possible to include in the processing, besides the
pseudorange, the carrier phase measurements. However, this procedure is not very common
in this technique, since it does not provide an improvement in the solution for one epoch
(MONICO, 2008). Therefore, this positioning technique does not satisfy the precision re-
quirements for geodetic positioning.

71



The major errors that affect this positioning method are related to the quality of the
observable (pseudorange) and the accuracy of the parameters sent in the navigation message,
such as ephemeris and clock. In addition, this method suffers influence of tropospheric
and ionospheric errors, multipath, and others. When real-time positioning is not necessary,
it is possible to use precise ephemeris and satellite clock corrections, leading to a more
precise solution. This technique is called Precise Point Positioning - PPP and will be briefly
presented in the following section (MONICO, 2008).

Precise Point Positioning

Precise Point Positioning (PPP) is a positioning method similar to the Point Positioning.
However, the use of precise satellite orbits and satellite clock corrections provides a better
quality to this method (ROCHA et al., 2017; MONICO, 2008). Besides satellite orbit and
clock corrections, other errors that affect the observations, such as ionospheric and tropo-
spheric effects, have to be corrected in order to allow a more accurate PPP solution (ROCHA
et al., 2017). The types of ephemeris provided by the IGS are presented in Appendix E.

This method presents a great potential to be used in applications that require high-
accuracy, such as geodynamics, and presents great advantages when compared with the
processing of GNSS networks, in which high-computational effort is required (MONICO,
2008). Given the spread of internet use, some PPP on-line services are available to the
users (for free in some cases). These on-line services offer the positioning estimates, in the
post-processing mode, from GNSS observation sent by the users. Several on-line services
are available, such as the Automatic Precise Positioning Service (APPS) provided by the
Jet Propulsion Laboratory (JPL), the MagicGNSS developed by the GMV Aerospace and
Defense S.A., the Canadian Spatial Reference System (CSRS-PPP) provided by the Natural
Resource Canada - NRCan. In Brazil, national initiatives such as the RT-PPP developed at
the School of Sciences and Technology of São Paulo State University (FCT/UNESP) and the
IBGE-PPP provided by the Brazilian Institute of Geography and Statistics (IBGE) are also
available to the users who want to perform the on-line PPP solutions (ROCHA et al., 2017).

In addition to the post-processed PPP, the real-time PPP solution has been investigated
during the last years, achieving good accuracy results. In 2009, van Bree et al. 2009
compared the results obtained in the real-time Single-Frequency PPP solution using IGS
Ultra-Rapid products (satellite clock error) and the REal-Time CLock Estimation (RETI-
CLE) developed by at German Space Operations Center of the German Aerospace Center
(GSOC/DLR) with the IGS Final clocks. The results obtained with the RETICLE satellite
clock presented an accuracy comparable with the IGS Final Products. In the work (BREE;
TIBERIUS, 2012), the authors assessed the SF-PPP solution using satellite clocks and or-
bits provided by RETICLE, and used GIMs and predicted DCB from the Center for Orbit
Determination (CODE). The position accuracy achieved with a kinematic approach reached
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standard deviations of about 0.15 and 0.30 m for the horizontal and vertical coordinates,
respectively, and with 95% error values of about 0.30 m and about 0.65 m, where the 95th
percentile means that 95% the error is below this amount.

The international GNSS service (IGS) has been providing an open-access real-time ser-
vice (RTS) since 2013. The advent of IGS RTS products allows users to carry out real-time
precise point positioning (RT-PPP) anywhere in the world (NIE et al., 2018). In the study
carried out by (ELSOBEIEY; AL-HARBI, 2015), the performance of RT-PPP using the IGS
RTS is assessed. The accuracy obtained using the RTS products presented better accuracy
when compared to the IGS ultra-rapid products (predicted part). In addition to these studies
on Real-Time PPP, a recent study carried out by (NIE et al., 2018) proposes an alternative ap-
proach for GPS clock prediction in case of an outrage on RTS. These investigations in Real-
Time PPP can improve applications such as high-precision agriculture, navigation applica-
tions in the automotive and possibly even automated aircraft landing (BREE; TIBERIUS,
2012).

Relative Positioning

The relative positioning involves the simultaneous observation of a numberm of satellites
and a minimum of two GNSS-receivers (TEUNISSEN; KLEUSBERG, 1996). However,
with the advent of the Active Control Systems (ACS) it is possible to perform the relative
positioning by using only one GNSS receiver. In an ACS, the receivers perform continuous
tracking of the visible satellites and the users can access the data via communication system
(MONICO, 2008).

The advantage of the relative positioning is related to the fact that the parameters of
interest are much less sensitive to interfering uncertainties such as ephemeris, clocks and
atmospheric effects (TEUNISSEN; KLEUSBERG, 1996). By combining the observables
involved in the process of relative positioning it is possible to mitigate some systematic
errors that affect the GNSS observables errors, such as atmospheric effects and satellite clock
errors.
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