

FACULDADE DE CEILÂNDIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS E TECNOLOGIAS EM SAÚDE

MARINA LIMA RODRIGUES

PRODUÇÃO E CARACTERIZAÇÃO DE MICROPARTÍCULAS DE POLIÉSTERES CONTENDO LÁTEX DA EUPHORBIA TIRUCALLI

> BRASÍLIA-DF 2017

MARINA LIMA RODRIGUES

PRODUÇÃO E CARACTERIZAÇÃO DE MICROPARTÍCULAS DE POLIÉSTERES CONTENDO LÁTEX DA EUPHORBIA TIRUCALLI

Dissertação apresentada ao Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, da Faculdade de Ciências/ Campus Ceilândia da Universidade de Brasília-UnB, como requisito à obtenção de título de Mestre em Ciências e Tecnologias em Saúde.

Área de concentração: Mecanismos básicos e processos biológicos em saúde.

Linha de Pesquisa: Nanobiotecnologia Aplicada à Saúde.

Temática: Síntese, caracterização e aplicação de materiais nanoestruturados para a entrega de compostos bioativos com ênfase em tratamentos contra o câncer, microorganismos e/ ou inflamação.

Orientador: Prof. Dr. Anderson de Jesus Gomes.

Coorientadora: Prof. Dra. Claure Nain Lunardi Gomes.

PRODUÇÃO E CARACTERIZAÇÃO DE MICROPARTÍCULAS DE POLIÉSTERES CONTENDO LÁTEX DA EUPHORBIA TIRUCALLI

Dissertação defendida no Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, da Faculdade de Ceilândia – Universidade de Brasília, como parte das exigências para obtenção do grau de Mestre em Ciências e Tecnologias em Saúde. Defendida em 12 de dezembro de 2017 pela Banca Examinadora, constituída pelos seguintes professores:

Prof. Dr. Anderson de Jesus Gomes (Presidente) Universidade de Brasília-Campus Ceilândia

Prof. Dr. Christopher William Fagg Universidade de Brasília-Campus Ceilândia

Prof. Dr. Elton Clementino da Silva Universidade de Brasília-Campus Ceilândia

Prof. Dr. Vicente de Paulo Martins (Suplente) Universidade de Brasília- Campus Darcy Ribeiro

Dedico este trabalho aos meus pais, familiares, amigos, aos professores Dr. Anderson e Dra. Claure, que acreditaram que eu era capaz.

AGRADECIMENTOS

Quero agradecer aos meus pais, a Deus, minha irmã e família pelo apoio. Aos meus orientadores Doutor Anderson de Jesus Gomes e a Doutora Claure Nain Lunardi Gomes por me ajudarem em todas as etapas do meu projeto. Ao meu professor da faculdade e orientando de Trabalho de Conclusão de Curso Doutor Alvaro Carlos Galdos Riveros por toda a base e amizade.

Ao Doutor e químico Diego Dias por toda ajuda no meu projeto desde a produção das nanopartículas até testes de caracterização das nanopartículas, o meu muito obrigada.

Aos doutorandos Odair Barbizan e Antônio Costa, por me ajudarem e darem dicas no laboratório e na dissertação.

Aos alunos de PIBIC Amanda Monici, Mirella Paula, Pedro Sepulveda e Beatriz Gallan, agradeço pela amizade e pela coleta do látex da planta que gera muito tempo de trabalho.

Aos técnicos de química do laboratório da Faculdade de Ceilândia- UnB, Renata e Telles pela amizade e por sempre estarem prontos a ajudar.

Aos guardas Alisson e Antônio pela amizade e por sempre serem prestativos e a todos os funcionários da FCE, o meu muito obrigada.

"Apesar de todo meu ceticismo, sinto que há uma força superior que rege o universo".

MARINA LIMA RODRIGUES

RESUMO

O encapsulamento de fármacos em sistemas micro e nanoestruturados tem se mostrado uma estratégia adequada para superar mecanismos de resistência celular e aumentar a seletividade da droga por sitio-específicos, diminuindo assim efeitos colaterais. Nesse trabalho foram produzidas partículas à base de poliéster (ácido polilático-co-glicólico) utilizadas para encapsular o látex da planta Euphorbia tirucalli, contendo o princípio ativo Eufol. Após o preparo das partículas, houve a avaliação dos parâmetros físico-químicos, morfológicos e citotóxicos. As partículas contendo o látex, apresentaram elevada eficiência de encapsulamento (>70 %), com um perfil de liberação lento e constante durante 6 horas. Através da técnica de espalhamento dinâmico de luz verificou-se que as partículas possuem diâmetro variando de 440 a 480 nm e uma tendência de agregação devido ao valor de potencial zeta (-6,44 a -21,7 mV). Na espectroscopia de FTIR, medidas das nanopartículas de PLGA apresentaram picos das vibrações que confirmaram composição do PLGA. Análise do pó da E. tirucalli no FTIR apresentou banda com deformação axial do grupo O-H ou N-H em comprimento de onda entre 3.500 e 3.200 cm⁻¹, vibrações de estiramento do grupo C-H em 2.900 cm⁻¹ e estiramento do grupo C=O próximo a 1.660 cm⁻¹. E as medidas da nanopartículas contendo a droga apresentaram tanto as características da droga e quanto do PLGA. Na espectroscopia de fluorescência apresentaram três picos entre 200 e 350 nm. As análises termogravimétricas e a calorimetria exploratória diferencial mostram uma tendência para o processo endotérmico, como principal evento a fusão.

Palavras-chaves: PLGA; Euphorbia tirucalli; nanopartículas; encapsulação.

ABSTRACT

The encapsulation of drugs in micro and nanostructured systems has been a suitable strategy to overcome mechanisms of cell resistance and increase drug selectivity by site-specific sites, thus reducing side effects. In this work, polyester-based particles (polylactic-co-glycolic acid) were used to encapsulate the latex of the Euphorbia tirucalli plant, containing the Eufol active ingredient. After the preparation of the particles, the physical-chemical, morphological and cytotoxic parameters were evaluated. The particles containing the latex presented high encapsulation efficiency (> 70%), with a slow and constant release profile for 6 hours. Through of dynamic light scattering technique, the particles had a diameter varying from 440 to 480 nm and a tendency of aggregation due to the zeta potential value (-6.44 to -21.7 mV). In FTIR spectroscopy, measurements of PLGA nanoparticles showed vibration peaks that confirmed PLGA composition. Analysis of powder E. tirucalli in the FTIR showed a band with axial deformation of the OH or NH group at wavelengths between 3,500 and 3,200 cm⁻¹, CH group stretching vibrations at 2,900 cm⁻¹ and the stretching C = O group to about at 1660 cm⁻¹ ¹. The measurements of nanoparticle containing the drug showed both the characteristics of the drug and the PLGA. In fluorescence, spectroscopy showed three peaks between 200 and 350 nm. The thermogravimetric analyzes and the differential exploratory calorimetry show a tendency for the endothermic process, as the main event the fusion.

Key words: PLGA; Euphorbia tirucalli; nanoparticles; encapsulation.

LISTA DE FIGURAS

Figura 1 - Fórmula estrutural reduzida do copolímero PLGA, sendo X o número de
unidades de ácido láctico e Y o número de unidades de ácido glicólico23
Figura 2 - Camada de Stern
Figura 3 - Euphorbia tirucalli L. na cidade de Brasília- DF
Figura 4 - Estrutura química do Eufol
Figura 5 - Fatores que influenciam no surgimento do câncer43
Figura 6 - Exsicata
Figura 7 - Preparo das nanopartículas51
Figura 8 - Tamanho das nanopartículas vazias realizado em triplicata
Figura 9 - Potencial zeta da nanopartículas vazias realizado em triplicata58
Figura 10 - Potencial zeta das nanopartículas vazias realizado em triplicata58
Figura 11 - Potencial Zeta das nanopartículas com 1 mg realizado em triplicata59
Figura 12 - Tamanho das nanopartículas com 5 mg realizado em triplicata59
Figura 13 - Potencial Zeta das nanopartículas com 5 mg realizado em triplicata60
Figura 14 - Medidas do pó do látex nas concentrações de 1 mg ,2 mg ,3 mg ,4 mg e
5 mg61
5 mg61 Figura 15 - Curva de calibração das soluções contendo o pó da Euphorbia tirucalli
5 mg61 Figura 15 - Curva de calibração das soluções contendo o pó da Euphorbia tirucalli nas concentrações de 1, 2, 3, 4 e 5 mg
5 mg
5 mg
5 mg
5 mg
5 mg
5 mg
5 mg
5 mg
5 mg
5 mg
5 mg

Figura 24 - Nanopartículas contendo 5 mg da droga no pH 1 ácido durante 6 horas
Figura 25 - Nanopartículas contendo 5 mg da droga no pH 10 básico durante 6 horas
Figura 26 – Espectro do FTIR das nanopartículas vazias (PLGA) em pastilha de KBr.
Figura 27 – Espectro do FTIR do pó obtido do látex 0,003 mg (droga) em pastilha de KBr72
Figura 28 – Espectro do FTIR das nanopartículas com a droga contendo 1 mg, em pastilha de KBr
Figura 29 – Espectro do FTIR das nanopartículas com a droga contendo 5 mg, em pastilha de KBr73
Figura 30 - Picos encontrados na emissão de fluorescência
Figura 32 – Curva DSC da droga aquecida de 30 à 400 ° C77 Figura 33 – Curva DSC de nanopartículas contendo 1 mg da droga aquecidas de 30 à 400 ° C
Figura 34 – Curva DSC de nanopartículas contendo 5 mg da droga aquecidas de 30 à 400 ° C
Figura 35 – Análise de TGA/DTA das Nanopartículas vazias, curva TGA (— vermelha) /DTA (— azul)
Figura 36 - Análise de TGA/DTA da droga curva TGA (— vermelha) /DTA (— azul).
Figura 37 - Análise de TGA/DTA das Nanopartículas de 1 mg curva TGA (vermelha) /DTA (azul)
vermelha) /DTA (— azul)83

LISTA DE TABELAS

Tabela 1 – Taxonomia da Euphorbia tirucalli L.	34
Tabela 2 - Compostos químicos e respectivas indicações medicinais	37
Tabela 3 – Comparação das médias das nanopartículas	30
Tabela 4 – Eficiência de encapsulamento das nanopartículas de 1 e 5 mg	54
Tabela 5 - Comparação do perfil de liberação das nanopartículas em diferentes pl	٦s
e massas	70
Tabela 6 - Bandas de absorção no FTIR dos espectros de NPs com a droga, apena	as
a droga e da NP vazia de PLGA	74
Tabela 7 - Eventos térmicos obtidos no DSC nas respectivas regiões (°C)	79
Tabela 8 - Eventos térmicos observados durante as análises simultâneas o	de
TGA/DTA para as amostras da droga, nanopartículas vazias e nanopartícula	as
contendo a droga	33

LISTA DE ABREVIATURAS E SIGLAS

A - Absorbância

- ΔT Diferença de temperatura
- BSA Albumina Soro Bovino
- CH₂Cl₂- Diclorometano
- DCNT- Doença crônica não-transmissível
- DLS- Dynamic light scattering (Espalhamento Dinâmico de Luz)
- DMEM- Dulbecco's Modified Eagle Medium
- DMSO Dimetilsulfóxido
- DNA Ácido desoxirribonucleico
- DSC Differential Scanning Calorimetry (Calorimetria Exploratória Diferencial)
- DTA Análise diferencial térmica
- ε Coeficiente de absortividade molar
- EBV Vírus Epstein Barr
- EE Eficiência de encapsulamento
- ER Receptor de estrogênio
- EUA Estados Unidos da América
- FDA Food and Drug Administration
- FTIR Fourier-transform infrared spectroscopy
- HCI Ácido clorídrico
- HSA Albumina de soro humano
- IFN-γ Interferon-gama
- IPs Inibidores de protease

KBr - Brometo de potássio

- L. Linnaeus
- LTR Repetição terminal longa
- MAMs Macrófagos associados a tumores
- MTT- 3-(4,5-Dimethyl-2-Thiazyl) -2,5- Diphenyl-2HTetrazolium bromide
- MW Molecular weight (Peso molecular)
- NIH National Institutes of Health
- nm nanômetro
- NNRTIs Inibidores de transcriptase reversa não-nucleósidos
- NPs Nanopartículas
- NRTIs Inibidores de transcriptase reversa de nucleósidos
- PBS Phosphate Buffered Saline (Tampão fosfato-salino)
- PGA ácido poliglicólico
- PKC Proteína quinase C
- PL Perfil de liberação
- PLA ácido poliláctico
- PLGA ácido (polilático-e-glicólico)
- PR Receptor de progesterona
- PVA Álcool polivinílico
- RNA Ácido ribonucleico
- RPM Rotações por minuto
- So- Estado fundamental
- S_1 Singlete excitado
- SBF Soro fetal bovino

- T Temperatura
- T_a Temperatura da amostra
- T_r Temperatura da referência
- TNF-α- Fator de necrose tumoral
- TGA Análise Termogravimétrica
- UC Ultracentrifugação
- UF Ultrafiltração
- UV Ultravioleta
- VEGF Vascular endothelial growth fator (Fator de Crescimento Endotelial Vascular)
- VIS Visível
- WHO World Health Organization

SUMÁRIO

1 INTRODUÇÃO
1.1 NANOTECNOLOGIA18
1.1.1 Drug Delivery System19
1.1.2 Nanopartículas poliméricas20
1.2 POLI (ÁCIDO LÁTICO-CO-ÁCIDO GLICÓLICO)23
1.3 CARACTERIZAÇÃO PARA ESTABILIDADE FÍSICA E QUÍMICA DO SISTEMA NANOESTRUTURADO24
1.3.1 Análise física - Espalhamento dinâmico de luz25
1.3.2 Análise química – Potencial Zeta26
1.3.3 Análise físico-química - Eficiência de encapsulamento27
1.3.4 Análise espectroscópica - Espectroscopia de Absorção Molecular (UV- vis)
1.3.5 Análise físico-química e espectroscópica - Perfil de liberação28
1.3.6 Espectroscopia de Infravermelho com Transformada de Fourier (FTIR) .29
1.3.7 Espectroscopia de emissão de fluorescência
1.3.8 Calorimetria Exploratória Diferencial (DSC)
1.3.9 Termogravimétrica/Diferencial Simultânea (TGA/DTA)
1.4 EUPHORBIA TIRUCALLI LINNAEUS33
1.5 POSSÍVEIS APLICAÇÕES DA NANOPARTÍCULA COM A <i>EUPHORBIA</i> <i>TIRUCALLI L</i>
1.5.1 Câncer
1.5.1.1 Câncer de mama40
2 OBJETIVOS46
2.1 GERAL

	2.2 ESPECÍFICO (S)	.46
3.	. MATERIAIS E MÉTODOS	.47
	3.1 EQUIPAMENTOS	.47
	3.2 REAGENTES	.48
	3.3 MATERIAL VEGETAL	.49
	3.4 PRODUÇÃO DO PÓ A PARTIR DO LÁTEX DA AVELOZ	.50
	3.5 PREPARO DAS NANOPARTÍCULAS DE PLGA	.50
	3.6 CARACTERIZAÇÃO DAS NANOPARTÍCULAS	.52
	3.6.1 Espalhamento dinâmico de luz	.52
	3.6.2 Potencial Zeta	.52
	3.6.3 Eficiência de encapsulamento	.52
	3.6.4 Espectroscopia de Absorção Molecular (UV-vis)	.53
	3.6.5 Curva de calibração	.53
	3.6.6 Perfil de liberação	.54
	3.6.7 Espectroscopia de Infravermelho com Transformada de Fourier (FTIR)	.54
	3.6.8 Espectroscopia de emissão de fluorescência	.55
	3.6.9 Calorimetria Exploratória Diferencial (DSC)	.55
	3.6.10 Termogravimétrica/Diferencial Simultânea (TGA/DTA)	.55
	3.7 ANÁLISES ESTATÍSTICAS E GRÁFICAS	.56
	3.8 REFERENCIAS BIBLIOGRAFICAS	.56
4	3.8 REFERENCIAS BIBLIOGRAFICAS	56 57
4	 3.8 REFERENCIAS BIBLIOGRAFICAS RESULTADOS 4.1 TAMANHO, ÍNDICE DE POLIDISPERSÃO E POTENCIAL ZETA 	56 57 57
4	 3.8 REFERENCIAS BIBLIOGRAFICAS RESULTADOS 4.1 TAMANHO, ÍNDICE DE POLIDISPERSÃO E POTENCIAL ZETA 4.2 CURVA DE CALIBRAÇÃO 	56 57 57 60
4	 3.8 REFERENCIAS BIBLIOGRAFICAS RESULTADOS 4.1 TAMANHO, ÍNDICE DE POLIDISPERSÃO E POTENCIAL ZETA 4.2 CURVA DE CALIBRAÇÃO 4.3 EFICIÊNCIA DE ENCAPSULAMENTO 	56 57 57 60 62
4	 3.8 REFERENCIAS BIBLIOGRAFICAS RESULTADOS 4.1 TAMANHO, ÍNDICE DE POLIDISPERSÃO E POTENCIAL ZETA 4.2 CURVA DE CALIBRAÇÃO 4.3 EFICIÊNCIA DE ENCAPSULAMENTO 4.4 ESPECTROSCOPIA DE ABSORÇÃO MOLECULAR (UV-VIS) 	56 57 60 62 65

4.6 ESPECTROSCOPIA DE INFRAVERMELHO COM TRANSFORMADA	DE
FOURIER (FTIR)	70
4.7 ESPECTROSCOPIA DE EMISSÃO DE FLUORESCÊNCIA	74
4.8 CALORIMETRIA EXPLORATÓRIA DIFERENCIAL (DSC)	76
4.9 TERMOGRAVIMÉTRICA/DIFERENCIAL SIMULTÂNEA (TGA/DTA)	79
5 DISCUSSÃO	84
6 CONCLUSÃO	88
REFERÊNCIAS	89