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Abstract: Typically, digital image processing for burned-areas detection combines the use 

of a spectral index and the seasonal differencing method. However, the seasonal 

differencing has many errors when applied to a long-term time series. This article aims to 

develop and test two methods as an alternative to the traditional seasonal difference. The 

study area is the Chapada dos Veadeiros National Park (Central Brazil) that comprises 

different vegetation of the Cerrado biome. We used the MODIS/Terra Surface Reflectance 

8-Day composite data, considering a 12-year period. The normalized burn ratio was 

calculated from the band 2 (250-meter resolution) and the band 7 (500-meter resolution 

reasampled to 250-meter). In this context, the normalization methods aim to eliminate all 

possible sources of spectral variation and highlight the burned-area features. The proposed 

normalization methods were the standardized time-series and the interannual phenological 

deviation. The standardized time-series calculate for each pixel the z-scores of its temporal 

curve, obtaining a mean of 0 and a standard deviation of 1. The second method establishes 

a reference curve for each pixel from the average interannual phenology that is subtracted 

for every year of its respective time series. Optimal threshold value between burned and 

unburned area for each method was determined from accuracy assessment curves, which 

compare different threshold values and its accuracy indices with a reference classification 

using Landsat TM. The different methods have similar accuracy for the burning event, 

where the standardized method has slightly better results. However, the seasonal difference 
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method has a very false positive error, especially in the period between the rainy and dry 

seasons. The interannual phenological deviation method minimizes false positive errors, 

but some remain. In contrast, the standardized time series shows excellent results not 

containing this type of error. This precision is due to the design method that does not 

perform a subtraction with a baseline (prior year or average phenological curve). Thus, this 

method allows a high stability and can be implemented for the automatic detection of 

burned areas using long-term time series. 

Keywords: normalization; fire; savanna; digital image processing; image differencing 

 

1. Introduction 

In the savanna ecosystem, the fire regime is a key component to the vegetation succession cycles, 

plant regeneration, maintaining biodiversity, and environmental management. Thus, the continuous 

mapping of wildfire activity provides fundamental spatio-temporal information about the ecosystem 

dynamics and vegetation patterns. Accurate information of natural and human influences about fire 

regimes are critical to prevent future events and restore areas already affected. Remote sensing is one 

of the main techniques for assessing the damage effects from fire events because of its synoptic nature, 

cost-efficiency, rapid wildfire damage assessments, and acquisition of long-term information about 

ecosystem dynamics [1–3]. Several remote sensing techniques have been proposed to assess burned 

areas [4,5]. The most commonly used technique to enhance the burned areas combine two procedures, 

which adopt simple algebra formulations: (a) spectral index from the sensitive bands to variations in 

char, ash, moisture and living and dead vegetation; and (b) temporal image differencing between pre- and 

post-fire images, as a technique for minimizing environmental variations and seasonal changes. 

The spectral indices continue to be prevalent in the vegetation studies because of its computational 

simplicity and straightforward application. Two spectral indices are typically used to highlight the 

burned areas: Normalized Difference Vegetation Index (NDVI) (e.g., [6–10]) and Normalized Burn 

Ratio (NBR) (e.g., [11–14]). The NDVI shows greater inaccuracy when the fire occurs on areas with 

dry vegetation or with little vegetation [15,16]. The NBR index based on near infrared (NIR) and  

short-wave infrared (SWIR) reflectance obtains a better scaled index of burned-area detection, 

providing the highest accuracies [14]. Furthermore, band ratios between near and mid IR promote the 

minimization of illumination effects [17]. Besides the NDVI and NBR, other indices have been 

suggested and tested for burned-area detection [18,19]. 

In addition, the change detection from difference between pre- and post-burn index images enables 

highlighting the fire-event changes, such as NDVI difference (dNDVI) [20], NBR difference 

(dNBR) [21], relative dNBR (RdNBR) [22] and relativized burn ratio (RBR) [23]. The dNBR shows 

greater capacity to assess fire severity levels than dNDVI [21,24–26]. The dNBR method demonstrates 

efficiency in mapping burned areas within tundra ecosystems [27], temperate forests [12,28], heathland 

vegetation types [29], pine flatwood forests [30], and boreal forests [13], although some studies have 

obtained inconsistent results [31–33]. The main disadvantages of the post-fire index are low distinction 

between burned areas and water surfaces, bare soil, or areas with little vegetation [34]. 
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In the seasonal differencing, an important factor to be assessed is the influence of the temporal 

range between pre-fire and post-fire images in the burned-area detection. Two temporal constraints are 

described: Lag timing and seasonal timing [35]. The lag timing is the time since fire for sampling. 

Inappropriate lag timing can disfigure or hide the fire effects [27,36]; for example, the temporal 

difference may present inaccuracy with the onset of post-fire vegetation regrowth [12,37]. Picotte and 

Robertson [38] find that the burned-area detection using NBR or dNBR decreases almost immediately 

after fire because of rapid post-fire response of vegetation in the Apalachicola National Forest. The 

NBR and dNBR estimates with greater than > 70% accuracy require image acquisition within three 

months of burning during the dormant season and two months during the growing season [38]. 

The seasonal timing is independent of the fire event and represents the phenological and sun angle 

changes during image acquisition. As an example of this constraint, the post-fire analysis still in dry 

weather can endanger the burned area detection, while the presence of photosynthetically active 

vegetation enables a better contrast and delimitation of burned area [39]. In mitigating this effect,  

post-fire and pre-fire image must be at yearly intervals [21]. Thus, pre- and post-fire datasets are 

equivalents for the sun angles and phenology, resulting in a differenced-value close to zero for unburned 

areas. However, many sensors have a low temporal resolution (such as Landsat with 16-day repeat 

cycles), which may restrict the availability of images at similar dates, because of potential problems 

stemming from cloud cover or image acquisition after a long time from the fire event [38,40]. In this 

context, Loboda et al. [41] adapted the dNBR for the MODIS sensor because of its high temporal (near 

daily repeat coverage) and moderate spatial (250 and 500 meters) capability. The dNBRMODIS adopts the 

NBR index from eight-day composite data containing the fire scar and the same compositing periods one 

year prior [41,42]. Nevertheless, dNBR has the largest amplitude of values and the highest  

signal-to-noise ratio, particularly during the period immediately following burning [41]. Therefore, this 

seasonal difference approach may not yield a consistent pattern when applying a long-term time series of 

a MODIS dataset, affecting the development of an automatic-detection method of burned areas within a 

time-series, especially in a location with a high fire recurrence. 

In addition, heterogeneous landscape has diverse composition in the pre-fire (percentage tree cover, 

soil moisture, substrate, etc.) and post-fire conditions (ash, char, exposed soil, etc.), which affects 

differently the values of NBR, NDVI and other spectral indices [41,43]. According to Chu and 

Guo [44], the environmental variation and the vegetation stratification should be considered to achieve 

a reasonable operating model for monitoring fire effects. Therefore, burned-area mapping in 

environments with high natural variability can adopt a flexible approach, considering specific 

adjustments for each landscape. Loboda et al. [41] consider particular threshold values of dNBR for 

different ecosystems in order to detect burned area and avoid misclassification. Although the 

vegetation stratification is the main procedure to normalize heterogeneous landscapes, a challenge is to 

establish a reliable automatic method for normalization of different environments such that it can be 

equally measured at all different sites. 

In this context, this paper aims to develop new algorithms for normalization of long-term time 

series in order to improve the burned-area detection and minimize error that occurs in the seasonal 

differencing. The proposed methods for time-series normalization are: (a) standardized time series; and 

(b) interannual phenological deviation using different values of central tendency (mean, median or 
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trimmed mean). These two new strategies are tested for MODIS-NBR time series during a 12-year 

period in order to define a method with better accuracy. 

2. Study Area 

The study area is the Chapada dos Veadeiros National Park (CVNP) (655 km2) located in Central 

Brazil. This park was included in the World Heritage List by UNESCO in order to preserve the flora, 

fauna and key habitats that characterize the Brazilian Savanna (Figure 1). 

 

Figure 1. Chapada dos Veadeiros National Park location. 



Remote Sens. 2015, 7 6954 

 

The CVNP has a stunning natural beauty, especially due to the waterfalls, vertical escarpments, 

canyons and rivers [45]. The CVNP corresponds to the uppermost parts of the Brazilian Central 

Plateau (BCP), having its peak in the region of Pouso Alto with an altitude of 1676 meters. The 

geomorphology has a strong lithological and structural control. The CVPN is in the northern sector of 

the Brasília fold-and-thrust-belt, which is a major tectonic unit of the Tocantins Province in Central 

Brazil, resulting from the Neoproterozoic collision episode between São Francisco and Congo 

cratons [46]. In the CVNP, the predominant rocks are quartzites and meta-siltstones that due to its high 

resistance to physical and chemical weathering generate shallow soils with low fertility [45]. 

The CVNP is contained in the Cerrado Biome, the most diverse tropical savanna and one of the 

world’s biodiversity hotspots [47,48]. Furthermore, in this biome, the number of native vascular 

plants is higher than most regions of the world, containing 6429 records, however, the total 

estimate may be as high as 10,500 [49,50]. The savanna physiognomies express a ratio between the 

continuous herbaceous and discontinuous layer of shrubs and trees [51]. In the CVNP, the most 

representative vegetation in the range of densities of the woody plant layer are: (a) Grassland 

(grasses, herbs and some very low shrubs or trees) (Figure 2); (b) Savanna on rocky outcrops 

(Figure 3); (c) Savanna (tree–grass mixtures); (d) Closed Savanna Woodland (densely covered by 

trees) (Figure 4) [52]. 

The region has a tropical precipitation regime characterized by well-defined wet (October to April) 

and dry (May to September) seasons. This ecosystem shows hydrological constraints in the dry season, 

which propitiates a fire-event concentration in just a few months of the year. During the dry season, the 

grassy herbaceous biomass becomes especially dry and very flammable [53]. Therefore, the Cerrado 

species are adapted to a natural fire regime. Furthermore, the CVNP and its surrounding areas are very 

susceptible to fire events caused by human activities [53,54]. In the areas with human intervention, the 

burning usually happens at intervals of three years in order to induce the vegetation regrowth and the 

increase food availability for the cattle. 

 

Figure 2. Panoramic photographs of the open grasslands in the Chapada dos Veadeiros 

National Park. 
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Figure 3. Panoramic photographs of the savanna on rocky outcrops in the Chapada dos 

Veadeiros National Park. 

 

Figure 4. Panoramic photographs of the Closed Savanna Woodland in the Chapada dos 

Veadeiros National Park. 

3. Materials and Methods 

3.1. MODIS/Terra Time-Series Data 

In this study, we used the MODIS/Terra Surface Reflectance 8-Day composite data, which includes 

seven spectral bands at 500-meter resolution (MOD09A1) and two bands at 250-meter resolution 

(MOD09Q1). The MODIS/Terra data are freely distributed through the Earth Observing System Data 

Gateway. MOD09 product yields the best surface spectral-reflectance data for each 8-day period with 

the least effect of atmospheric water vapor. The images already have atmospheric corrections for 
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gases, thin cirrus clouds and aerosols [55]. The MODIS data is increasingly used to monitor burned 

areas and active fire over large geographic areas (e.g., [56–63]). The study area is contained in just one 

MODIS scene (tile h13v10). We specifically used the band 2 (0.841–0.876 μm) at 250-meter and the 

band 7 (2.105–2.155 μm) at 500-meter. The band 7 was resized from 500-meter to 250-meter 

resolution using the nearest neighborhood resampling. The NBR index is calculate using the bands 2 

and 7 as follows: NBR = (Band 2 − Band 7)/(Band 2 + Band 7). In this research, we used 552 images 

for the period 2001–2012 over the same area. A representation of the NBR image collection can be 

obtained by building the cube of MODIS temporal series [64,65]. The cube is formed by images of the 

temporal series with its three dimensions: x, y and z (NBR temporal curve) acquired in the same 

geographical area at different times. 

3.2. Noise Elimination 

Temporal quality in orbital images is difficult to be maintained due to atmosphere interferences 

(aerosols, clouds and shadows effects), which cause serious problems and hinders the identification 

and quantification of targets. Therefore, different methods have already been proposed to reconstruct  

remote-sensing time series (e.g., [66–69]). In this work, we used Savitzky and Golay (S-G)’s method 

to remove noise contamination in the images, which is based on local polynomial fits. The S-G filter 

was originally developed for the smoothing of noisy data from chemical spectrum analyzers [70]. The 

great advantage of S-G filter is to combine the effective noise removal and the waveform-peak 

preservation considering the following attributes: height, shape and asymmetry. This peak-preservation 

property is very attractive for the phenological analysis from remotely sensed data. Thus,  

Chen et al. [71] propose a method based on the S-G filter to smooth the effects of cloud contamination 

and atmospheric variability on the NDVI time-series. Based upon this study, different researches show 

the successful application of the S-G filter in the MODIS vegetation indices, by minimizing overall 

noise and preserving higher vegetation-index values (e.g., [69,71,72]). Geng et al. [67] compare eight 

techniques for smoothing multi-temporal NDVI data, considering different vegetation types and 

sensors, and conclude that the S-G filter achieve best results in most situations. 

In the fire analysis using time series, the preservation and maintenance of negative peaks of NBR 

and NDVI values become important for the detection and characterization of the burned areas. The  

S-G method is suitable for this proposal, since other smoothing methods cannot capture a sudden 

change of the temporal values, for example Fourier series or least squares fitting to sinusoidal 

functions [73–75]. The choice of the window width in the S-G filter is essential to provide smoothing 

without loss of resolution. The wide windows can eliminate significant changes in temporal series, 

while a narrow window can hold more noise [71]. In this work, we developed a program for time 

series analysis containing the S-G filter. The S-G method is used both for smoothing the time series as 

to remove the noise contamination. The method for detecting outliers effects the subtraction between 

the S-G curve and the original data. Therefore, the point is marked as an outlier if the absolute value of 

the subtraction exceeds a distance threshold set by the user (either positively or negatively). The 

distance-based outliers are replaced by the value obtained by linear interpolation between the points 

before and after the outliers (Figure 5). In this procedure, only the outliers are modified and the 

remaining points are from the original curve. The software allows the user to test and visualize the 
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resulting temporal curve considering different window sizes and distance thresholds for a given pixel 

of your choice before processing the whole image. In the pre-processing of the MODIS NBR time 

series, the two procedures were performed in sequence, first the removal of outliers and then 

smoothing the temporal curve. The window size of the S-G filter in both procedures was nine. The 

distance threshold of 0.07 NBR was used in the outlier detection. 

 

Figure 5. Procedures for reconstruction of a NBR-MODIS time series using two-step 

filtering approach through the S-G method. (A) Outlier detection using the absolute value 

of the difference between the original data and the S-G curve (distance threshold of 0.07).  

(B) Time-series curve with the outliers replaced by a linearly interpolated value.  

(C) Time-series curve after the second filtering by S-G method (window size of 9). 

3.3. Standardized Time-Series 

The Cerrado biome has a high natural variability with a continuous range of percent tree cover, 

resulting in different phenological signatures. One way to harmonize the different temporal curves is 

using the z-score standardization [76,77], defined as: 
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where “” and “” are the mean and standard deviation of the temporal series, respectively. Initially, 

the algorithm generates mean and standard deviation for each temporal curve. A new set of images is 

generated, containing transformed temporal curves of “z” values, i.e., mean equal to zero and variance 

of one. The “z” value is positive when raw score is above of temporal mean and negative when below. 

Figure 6 shows the standardization effect at temporal curves considering two Cerrado-vegetation 

types. Burned areas cause a fall in the NBR values, but present distinctions for each environment. The 

red curve shows higher values than the black curve even after burning. A simple threshold would not 

be able to differentiate simultaneously the burned areas in both types of vegetation. Temporal curves 

after the standardization procedure acquire a similar behavior, where the burned areas have compatible 

values and able to be separated by a single cutoff. 

The fire is an isolated event characterized by low NBR values in the time series. The burned areas 

occur at confidence interval described by a threshold value from the mean time series. A constant 

expressed in standard deviation determines lower limit. This measure allows the comparison of 

different vegetation simultaneously. The best threshold can be determined based on the comparison 

with known burned areas. 

 

Figure 6. NBR-MODIS time series of savanna (black curve) and Closed Savanna Woodland 

(red curve) before and after the standardization. The standardized temporal curves homogenize 

and highlight the fire event, which reached different types of vegetation. 

3.4. Interannual Phenological Deviation 

A reference curve of interannual phenological behavior for each pixel creates a baseline from which 

the time series are subtracted, minimizing the seasonal component and emphasizing the fire changes. The 
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dNBRMODIS method performs a seasonal difference, in which the baseline is the previous year. Thus, the 

procedure is carried out by subtracting the value of each observation exactly one year earlier. However, 

this approach is susceptible to high signal-to-noise ratio [41]. If the previous year contains fire events, the 

seasonal-difference values are very high, though it does not represent a change event to the date 

concerned. Furthermore, the result of seasonal difference has one year less than the original time series. 

In this context, seasonal phenological curves from measures of central tendency may have greater 

advantages as baseline than the use of the previous year. The central-tendency curves enable to 

distinguish long-term trends of random fluctuations. These measures emphasize the vegetation 

behavior in order to minimize the fire effects. The adoption of this approach can reduce the  

signal-to-noise ratio, and the output data has the same size as the input time series. The measures of 

central tendency used in this work were mean, median and trimmed mean. 

The mean curve calculation is the sum of the NBR values for a same eight-day period in the 

different years divided per year range (Figure 7). This measure is appropriate when the fire recurrence 

is very low. The fire recurrence provokes a decrease in the NBR mean values, impairing an adequate 

representation of the annual cycle of vegetation. 

 

Figure 7. Procedure for calculating interannual mean curve, considering a pixel and  

five-year period. 

The median is known for being particularly effective in removing changes of short duration. The 

median is a particular case of the ith order statistic (or rank statistic) of a finite set of real numbers. 

Arranging all the observations from lowest to highest value, the median value is the middle one. 

Considering an order statistic of N real numbers (x(i)...,x(N)), where N is number of years, the 

minimum is then x(1), the maximum x(N), and the median X((N + 1)/2). The calculation of the 

interannual median is performed separately for each eight-day period in the several studied years. In 

this way, the method initially gathers the first 8-day period of every year (e.g., 1st 8-day: 2001;  

1st 8-day: 2002, etc.) and calculates the median, which is contained in the first band of the result 

image. Then, the same procedure is performed for the second 8-day period (e.g., 2nd 8-day: 2001; 2nd 

8-day: 2002, etc.) composing the second band, and so forth. Therefore, the z-profile from median 

interannual image has the same dimension as one particular year (Figure 8). The implementation of a 

median requires a very simple digital nonlinear operation. In this case, if the fire events are present in a 

few years over a time series, the median can eliminate their influence. 
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Figure 8. Procedure for calculating the interannual median curve, considering one pixel 

and five years. 

Most environments, the annual median curve eliminates the fire events. However, the median can 

be mistaken if the fire recurrence surpassing half years in analysis. For this case, we propose the 

trimmed mean as an adaptation of the alpha-trimmed mean. The alpha-trimmed mean is a measure 

between median and mean values [78]. This method also made a rank statistic (x(i)...,x(N)), where N is 

number of years. The user indicates an alpha value, percentage of the trimmed sample, which is used 

to eliminate samples that are more distant from the median. Alpha values vary between 0 and 0.5. 

Thus, the method performs the mean calculation considering only the inner sample values (the ones 

close to the median). The result is equal to median when alpha is close to 0.5 and mean when alpha is 

close to 0. The proposed algorithm in this paper allows the user to choose the maximum and minimum 

position in an ascending order of NBR values for calculating the mean (Figure 9). This procedure 

allows choosing higher NBR values to ensure exclusion of the noisy data. In this research, all possible 

alpha values were considered. Each point on the interannual curve has a set with N = 12 

(corresponding to the study period), where the data is ordered followed by elimination of extreme 

values. The inner sample quantity may be equal to 10, 8, 6 and 4 (12 is equivalent to the mean, while 2 

is equivalent to median), i.e., with alpha values equal to 0.1, 0.2, 0.3, and 0.4, respectively. 

The interannual phenological deviation is the difference between the value of an observation and 

the average interannual for the same pixel and calendar day. Deviation-image analysis enables 

highlighting the changes in the time series. Burned areas show a marked drop of deviation values in 

the temporal curve, favoring its delimitation by a threshold value. 

Besides, we compute the interannual standard deviation among the seasonal NBR curves (result 

with the number of samples throughout the year) and the intra-annual standard deviation (result with 

the number of analyzed years). The interannual standard deviation demonstrates the days of the year 

with the highest rates over the time series. While the intra-annual standard deviation show the years 

with greater variation. 
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Figure 9. Procedure for calculating the interannual trimmed mean curve, considering one 

pixel and five years. 

3.5. Optimal Threshold-Value Definition 

A key procedure in the burned area detection is the appropriate selection of an optimal threshold 

value between burned area and unburned area. The threshold values are often determined empirically 

and depend on the image and the analyst’s knowledge [79]. In this paper, we used a specific method 

for definition of the optimal threshold value [79–81], which compare the classified maps from different 

threshold values with a reference map elaborated from accurate image classification, usually with 

higher spatial resolution. Confusion matrices were calculated between the reference maps and a set of 

classified maps, considering a continuous sequence of threshold values. The optimal threshold value is 

the point with the maximum Kappa or Overall coefficient, i.e., accuracy indices extensively used to 

assess accuracy [82]. The overall accuracy is the sum of the number of pixels classified correctly 

divided by the total number of pixels. The Kappa coefficient (K) is an accuracy measure of the 

classification described by the following equation: 
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where “r” is the number of rows in the error matrix, “sii” is the number of observation on row “i” and 

column “i”, “si+” and “s+i” are thus the marginal totals on row “i” and column “i”, respectively, and 

“m” is the total number of observations. 

In addition, the sensitivity (true positive rate, expressed as a percentage) and specificity (true 

negative rate, expressed as a percentage) curves were calculated to evaluate the best threshold. The 

increased specificity implies a decreased sensitivity and back again. Each sensitivity/specificity pair 

corresponds to a particular decision threshold. Normally, the intersection of the two curves represents 

the threshold point near the highest Overall Accuracy and Kappa coefficient. Therefore, the closer the 

curve intersection is to the upper (100%), the higher the accuracy of the test. 
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Furthermore, the algorithm developed for the detection of the optimum threshold value allows as 

input data more than one image pair containing different dates. The method calculates a unique 

confusion matrix from several image pairs (reference and normalized images). The same effect can be 

obtained from the sum of the confusion matrices of independent image pairs. The accuracy indices are 

calculated from the resulting confusion matrix. 

In this purpose, we elaborated two reference maps of the burned areas from the digital image 

processing and visual interpretation of Landsat TM (30-meter resolution) in order to determine the 

optimal threshold value. The image dates were 25 October 2007 (Julian day 274) and 29 September 

2010 (Julian day 266) because of the extensive burned area and no cloud cover. The first image 

contains a burned area of 660 km2 corresponding to 39.6% of the studied image while the second 

image contains a burned area of 1030 km2 that matches 61.7%. 

The optimal threshold value from accuracy analysis was applied to all time series (12 years) 

generating a mask series of burned areas (Figure 10). An inverse validation with independent data was 

used to quantify the goodness/advantages of the proposed methods. An additional reference map of 

burned areas from the Landsat TM image (22 September 2004) was compared with the burned-area 

masks of the respective day extracted from the MODIS image and the proposed methods. 

 

Figure 10. Mask series of the fire events detected in the time series. 

4. Results 

4.1. Results of the Standardized Time-Series Method 

4.1.1. Standardized Images 
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The standardization of the time series for each pixel reduces the differences between vegetation 

types and highlights the episodic fire events. Z-score model provides a measure in relation to its mean 

expressed as a percentage of the standard deviation. Figure 11 compares the original and standardized 

images and its respective horizontal slice images. Horizontal slice image combines spatial and 

temporal profile of a multi-band image, where all the bands of a single line make up a grayscale image 

in which the number of bands is equal to the number of lines. The slice image from the NBR image 

shows a strong differentiation between areas with forest formation (highlighted in light tones) and the 

savanna and grassland formations (with darker tones) (Figure 11A). In contrast, the slice image of 

standardized data has seasonal variations as the main tonal variation (Figure 11B). 

 

Figure 11. Original (A) and standardized time-series (B) images and its respective 

horizontal slice images. 

Figure 12 shows the use of the standardized times series in the enhancement of the burned areas. 

The comparison between the NBR and standardized time-series images evidences that the method 

provides a better detailing of burned areas. In both images, the burned areas are demarcated in a dark 

tone. In the NBR image, burned areas on close woodland savanna (red point in the Figure 13) exhibit 

intermediate grayscale, which makes these features hard to see. In these places, the NBR values show a 

decrease but not enough to become noticeable in the image. In contrast, the standardized time-series 

images can detect the burned areas with continuous extension through different vegetation types. 

Therefore, the automatic mapping of burned area from long-term time series is facilitated using 

standardized image. 

In this procedure, the burned areas are expressed with negative values of standard deviation. 

Figure 12 shows the temporal curve of a red point on the image for a period of 12 years and the 

different behavior of burned and unburned events. All burned events are easily detectable by having 

standard deviation values much lower than other periods of the temporal curve. 
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Figure 12. Comparison between the NBR and NBR standardized data: (A) NBR-MODIS 

composite image (Julian day 281–2003) and its respective standardized image, (B) NBR 

temporal curves for the savanna (red point) and Closed Savanna Woodland (green point), 

and (C) NBR standardized temporal curves for the same points. 
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Figure 13. Temporal curve for the 12-year period emphasizing some standardized images. 

The red dot in the images demarcates the location of the time curve. The images in the 

upper part correspond to the unburned period. While the images at the bottom point out 

burned events, during the analyzed period. 

4.1.2. Threshold Value for Burned-Area Detection Using Standardized Time-Series Images 

The MODIS-NBR standardized time-series images were classified using an optimum threshold 

value obtained from the best fit with the Landsat TM classification. Therefore, the optimum threshold 

value is determined from accuracy assessment curves, which considers different threshold values on 

the x-axis plotted against its respective accuracy indices on the y-value (i.e., Kappa coefficient, Overall 

Accuracy, Sensitivity and Specificity). The confusion matrices of the two reference images  
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(25 October 2007 and 29 September 2010) were integrated to generate a single set of curves for the 

optimum-threshold selection. The best-fit threshold was −2.565 standard deviations, containing 

87.73% of the Overall Accuracy and 0.75 of the Kappa coefficient (Figure 14). The intersection 

between Sensitivity-Specificity curves had a consistent position with the Kappa coefficient and the 

Overall Accuracy. The threshold value set by Kappa coefficient was applied to the whole time series, 

generating mask series relating to fire events for each image of the time series. 

 

Figure 14. Identification of the optimal threshold values for burned-area detection from the 

standardized temporal series images. The accuracy assessment curves refer to the following 

indices: (A) Overall accuracy, (B) Kappa coefficient, and (C) Sensitivity-Specificity pair. 

4.2. Results Interannual Phenological Deviation 

4.2.1. Results of the Average Interannual Phenology 

The NBR average annual corresponding to a 12-year period (2001–2012) evidenced the 

phenological behavior at each pixel of the image. The measures of central tendency (mean, median and 
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trimmed mean) lead to a noise minimization and provide an appropriated baseline to be compared over 

time for each pixel. The key issue is to establish for each pixel a phenological curve to be employed in 

the burned-area detection, instead of the previous year used in the seasonal differencing. 

Figure 15 shows the mean phenological signatures for major vegetation types in the CVNP. 

Savanna on rocky outcrops has the lowest NBR values, probably due to interference and mixed 

spectral with the areas of outcropping rocks. NBR values increase gradually with the increment of 

arboreal covering open grassland to dense Cerrado. The phenological curve of the dense Cerrado 

presents the highest NBR values and a delay of leaf senescence compared to other vegetation. 

Carvalho et al. [83] observe that the dense Cerrado at the beginning of the dry season (June) has the 

following characteristics: chlorophyll a and b concentrations were higher, chlorophyll a/b ratio was 

lower, and total chlorophyll/carotenoids ratio is significantly greater to the higher chlorophyll 

concentration. This distinct behavior of the dense Cerrado is evidenced in temporal curves. 

 

Figure 15. Mean annual curves of the savanna types: Savanna on rocky outcrop, 

Grassland, Savanna and Dense Savanna Woodland. The mean phenology was calculated 

from a 12-year period. 

The differences between the phenological curves obtained by the mean and median are usually very 

small. The main differences occur in the maximum and minimum points, where the median values tend 

to be less pronounced than mean values (Figure 16). This characteristic demonstrates that the median 

nullifies the interference of extreme values such as the presence of clouds, shadows, and burned areas. 

However, the mean temporal curve has a more smoothed contour than the median curve. The 

interannual curves from the trimmed mean show an intermediate behavior between the mean and 

median curves. The annual information of the time series are subtracted from the average interannual 

curves generating the deviation images. The fire event changes the cyclical behavior of temporal curve 

causing a drop in the NBR values, which is marked in the deviation image by lower values 

(dark areas). 
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Figure 16. Comparison between the mean annual curve (green line) and (A) median 

annual curve (red line), and (B) difference curve (mean–median). 

4.2.2. Threshold Value for Burned-Area Detection Using Deviation Images 

The accuracy assessment to detect the optimum threshold values was performed between the 

reference data from Landsat-TM classification and MODIS-NBR deviation images from the methods 

of median, mean and alpha-trimmed mean (alpha equal to 0.1, 0.2, 0.3, and 0.4). The alpha-trimmed 

mean is a symmetric trimming, which adopts the central part of the ordered array defined by the alpha 

parameter ranging from 0 (mean) to 0.5 (median). The reference images were the same adopted in the 

standardized-image analysis on 25 October 2007 and 29 September 2010 in order to facilitate 

comparison among the methods. 

Table 1 compares the accuracy indices (Overall Accuracy and Kappa Coefficient) of the optimum 

threshold values between the reference data and the deviation images from the different central 

tendency methods. The accuracy values among the methods are very close. The trimmed mean using 

alpha equal to 0.4 achieved the best result with Overall Accuracy of 86.385 and Kappa coefficient 

of 0.7188. 

Table 1. Overall Accuracy and Kappa Coefficient for the optimum threshold values 

between deviation image (mean, trimmed mean and median) and the reference data  

(Landsat-TM classification). 

Deviation-Image Method Overall Accuracy Kappa Coefficient 

Mean 86.118 0.7156 

Trimmed mean(alpha = 0.1) 86.385 0.7188 

Trimmed mean(alpha = 0.2) 86.264 0.7183 

Trimmed mean(alpha = 0.3) 86.259 0.7172 

Trimmed mean(alpha = 0.4) 86.191 0.7157 

Median 86.137 0.7110 

Figure 17 showed the accuracy assessment curves between deviation image from the interannual 

trimmed mean (alpha = 0.1) and the reference data. The accuracy indices determine an optimum 

threshold value of 0.137. The accuracy values of the deviation-image methods are slightly lower than 

the standardized time series method. 
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Figure 17. Identification of the optimal threshold values for burned-area detection from the 

deviation images using trimmed mean interannual phenology (alpha = 0.1). The accuracy 

assessment curves refer to the following indices: (A) Overall accuracy, (B) Kappa 

coefficient, and (C) Sensitivity-Specificity pair. 

The removal of the seasonal component allows emphasizing the fire effects. Usually, the fire event 

exhibits a lower value than that predicted by central-tendency curves. Thus, a negative anomaly with 

asymmetrical shape characterizes the burned area. Initially, the fire event presents a sharp drop in the 

deviation values from NBR, which recovers slowly from the regrowth vegetation to achieve the 

foregoing cyclic values. Figure 18 shows a temporal curve of deviation using the median interannual 

values with three negative anomalies of fire events from threshold value. 
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Figure 18. (A) Temporal curve of deviation from the trimmed mean interannual phenology 

(alpha = 0.1) with three negative anomalies of fire events; (B) deviation image acquired on 

Julian day 289 in 2003; (C) Julian day 281 in 2007; and (D) Julian day 281 in 2012. The 

red dot on the deviation images marks the location of the temporal curve. 

4.3. Results of the Seasonal Differencing 

The seasonal-differencing method, widely used in burned-area detection, was also applied in order 

to be compared with the proposed methods. This procedure showed the loss of a year in the time series 

after the difference calculation. The optimal threshold-value definition was obtained using the same 

procedure and reference images applied to the previous methods. 

Figure 19 demonstrates the accuracy curves, where the optimal threshold value is 0.208 having a 

Kappa Coefficient of 85.72 and Overall Accuracy of 0.70. The optimal threshold value was applied in 

the temporal series obtaining the mask series of burned-areas. 
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Figure 19. Identification of the optimal threshold values for burned-area detection from the 

deviation images using seasonal differencing. The accuracy assessment curves refer to the 

following indices: (A) Overall accuracy, (B) Kappa coefficient, and  

(C) Sensitivity-Specificity pair. 

4.4. Method Comparison 

4.4.1. Analysis in the Fire Event 

In the periods of the fire events, the different methods presented very close accuracy values 

considering the reference data from the Landsat TM images (Figures 14, 18 and 19). In the  

best-threshold detection, the standardized image method had the best result (Kappa coefficient of 0.75 

and Overall Accuracy of 87.73), followed by the interannual phenological deviation method using the 

trimmed mean (alpha = 0.1) (Kappa coefficient of 0.71 and Overall Accuracy 86.38), and finally the 

worst result was for the seasonal difference method (Kappa coefficient of 0.70 and Overall Accuracy 

of 85.72). 
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In addition, a validation using an independent set from Landsat data was utilized to quantify the 

effectiveness of the proposed methods. The available images from the TM Landsat sensor had less 

extensive burned areas than those used in defining the threshold value. The Landsat TM data on  

22 September 2004 (Julian day 266) contains a burned area of 75 km2 that corresponding to 4.5% of 

the used image. Therefore, several smaller fragments of the burned area were classified and compared 

with the burned area masks obtained by different methods. Accuracy results are slightly different to the 

identification step of the optimal threshold values, displaying higher Overall Accuracy and lower 

Kappa coefficient. The ordination among the methods remained, in which the standardized image 

method had the best result with Kappa coefficient of 0.66 and Overall Accuracy of 97. The interannual 

phenological deviation method using the trimmed mean (alpha = 0.1) obtains Kappa coefficient of 0.63 

and Overall Accuracy of 96.79. Lastly, the seasonal difference method had Kappa coefficient of 0.55 

and Overall Accuracy of 96.46. 

Accuracy differences between the phases of best-threshold detection and independent validation 

have a potential source in the burned-area size. Note that difference between spatial resolution of the 

MODIS and Landsat TM images increases the divergence of burned-area mapping using the smallest 

fragments. Smaller fragments have proportionately more pixels in the edge region, which is more 

susceptible to errors resulting from the fit between the spatial resolutions. In contrast, large fragments 

have a higher percentage of internal pixels and thus show fewer propensities to errors due to edge 

effects and spatial resolution. Therefore, the lower efficiency described by Kappa coefficient is 

expected considering the decrease in the fragment. The significant increase in the free-fire areas 

provides an increase in the Overall Accuracy. 

The similar accuracy values among the tested methods during the same period were expected, since 

the reduction of the resulting value for burned areas is very noticeable in all methods. However, the 

major differences among the methods were in the mask series of burned areas that are usually outside 

the fire-event period and caused by errors in the baseline adjustment. 

4.4.2. Baseline-Adjustment Error 

The seasonal differencing and interannual phenological deviation methods are more susceptible to 

errors because these presuppose the presence of a previous baseline, which are not always fitted to the 

temporal data in a meaningful and efficient way. Three main situations cause the baseline-adjustment 

error in these two methods: (a) delay of the dry season, (b) anomalous values of NBR, and (c) other 

changes in land use and land cover both anthropogenic (e.g., agriculture, urbanization) as natural  

(e.g., landslide, inundation). 

Figure 20 shows schematically the effect caused by the delay of the dry season. The subtraction line 

(green line) falls significantly only because of the delay of phenology cycle, not being correlated to the 

fire effect. This error type from the climatic factors is concentrated in a particular period of the year 

and generates extensive features. 

The error caused by anomalous NBR values may be derived from a noise or a vegetation change. 

This error is very common in both methods and is scattered throughout the time series. It may be 

present in one of the methods and absent in the other due to their baseline differences. The seasonal 

difference method is a change detection technique that besides the burned areas, emphasizes other 
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changes in the earth’s surface. In this way, the dNBR values in the agricultural areas generate  

false-positive features that are mistaken for fire events. The baseline adjustments in fire-event studies 

lead to an overestimation of burned area. In order to emphasize this difference, both temporal  

(z-profiles) and spatial (images) comparative analyses were performed. 

 

Figure 20. Baseline-adjustment error from the delay of the dry season, where the green 

line is the time series, the red line is the time series in a previous year, and the blue line isa 

subtraction between the two. The high NBR values are incompatible with burned areas, 

although the seasonal difference presents a significant decrease of values. 

Figure 21 shows the seasonal-difference curve (blue line), MODIS-NBR time series (green line) and time 

series with a one-year delay (red line). The dNBR curve had five fire events, two of which are  

baseline-adjustment errors and three correspond to the burned events (i.e., 40% of fire-event error). The actual 

burned areas were mapped correctly in accordance with the foregoing analysis that shows high Overall 

Accuracy and Kappa coefficient on fire events. The main issue is the mistaken detection of more fire events 

that really happened in the time series. The first error was due to a delay of the rainy season. The second error 

occurs during a rainy period and is not tied to a fall in the NBR value in the time series, revealing an error in 

the demarcation. Figure 22 shows the burned-area detection in the same time series (green line) considering 

the deviation from the median annual phenology (red line). The interannual-deviation curve (blue line) 

detected the same three fire events, but remained a baseline-adjustment error. The standardized time series 

showed the best results, i.e., error-free (Figure 23). 

Most baseline-adjustment error occurs in conditions of high NBR values (not consistent with the burned 

areas) and low dNBR and deviation values (Figures 21 and 22). In contrast, true burned-areas have low 

values for NBR, dNBR and deviation. This distinct pattern allows establishing an independent algorithm 

for error detection. As a precaution, low dNBR on rainy period preceded by fire events during the dry 

season (seven months earlier) were discarded as being baseline-adjustment errors. However, the savannas 

have a rapid recovery of vegetation after the fire event (especially grass species) and achieve normal NBR 

values in the rainy season. In summary, an estimative of baseline-adjustment error can be computationally 

accomplished through the following constraints: (a) burned areas detected by seasonal differencing or 
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deviation image with high NBR values, and (b) absence of burned areas during the last months. Figure 24 

shows the mask images related to baseline-adjustment errors with high NBR values using seasonal 

differencing. The dates are all concerning the rainy season when fire events do not occur. Most errors are 

persistent over time, occurring in the successive images. 

 

Figure 21. Detection of burned areas using the seasonal difference method, where the 

MODIS-NBR time series is the green line, the time series with a one-year lag is the red 

line, the dNBR curve is the blue line and the threshold line is the black line. Fire events 

(FE) and false positive (FP) are marked on the bottom of the chart. 

 

Figure 22. Detection of burned areas using the interannual phenological deviation, where 

the MODIS-NBR time series is the green line, the time series with a one-year lag is the red 

line, the dNBR curve is the blue line and the threshold line is the black line. Fire events 

(FE) and false positive (FP) are marked on the bottom of the chart. 
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Figure 23. Detection of burned areas using the standardized time series (green line). 

Threshold line is the black line. Fire events (FE) and false positive (FP) are marked on the 

bottom of the chart. 

 

Figure 24. Mask images of the false-positive features with high NBR value. The date is 

expressed in Julian day and year. 
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The sum of the error masks in the period 2002 to 2012 shows an approach to assess the importance 

of baseline-adjustment error in the temporal series. The error-summation image from seasonal 

differencing has a mean occurrence of 2.18, standard deviation of 5.43 and varies from 0 to 84 

(Figure 25). The main errors are located in the southwest part of the image at a location outside the 

park with the presence of agricultural cultivation (demarcated by red color in Figure 25). In this area, 

the agricultural changes cause a strong influence on dNBR values that persists for several days. 

The error-summation image from interannual phenological deviation has a mean occurrence of 

2.42, standard deviation of 5.07 and varies from 0 to 63 (Figure 26). Despite that the errors from both 

methods using baseline possess a similar spatial distribution, the intensities are different. The  

error-summation images point out that the standardized time series method obtains a large advantage 

over the other two methods for not having this type of error. 

 

Figure 25. Error-summation image from seasonal differencing in the period 2002 to 2012. 

 

Figure 26. Error-summation image from interannual phenological deviation in the period 2002 to 2012. 
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4.5. Program 

The methods discussed are available in the Abilio software developed in C++ language. The main 

functions of the program are organized in the main window interface, which contains the image input 

boxes, method modules and image display. The program reads general raster data stored as an 

interleaved binary stream of bytes in the Band Sequential Format (BSQ). Each image is accompanied 

by a header file in ASCII (text) containing information to read data file, such as: sample numbers, line 

numbers, bands, interleave code (BSQ) and data type (byte, signed and unsigned integer, long integer, 

floating point, 64-bit integer, unsigned 64-bit integer). This configuration combining image and header 

file allows versatility in the use of different image formats. When the user tries to open an image 

without the header file, an interface requesting the necessary information about the input image 

structure automatically appears. 

In the software, the following modules for time-series normalization were added: (1) standardized 

time-series image method; (2) phenological deviation image method; and (3) traditional method of 

seasonal differencing. These methods consider as input data the NBR-MODIS time-series. In cases of 

using the phenological deviation method, the number of the image by year and the type of central 

tendency value (mean, median and trimmed median) are also required. The standardized time-series 

and phenological deviation images have the same dimension as the input time-series images, while a 

seasonal difference image experiences a reduction of its size in a year. Additionally, a module for 

generating mask series burned areas was also implemented, having as input the normalized images. 

All inputs and results are shown in the File List, so it is possible to visualize them by choosing 

“Gray Scale” or “RGB” composite. The display interface provides basic functions for image 

visualization such as zoom areas and pixel values. Moreover, the results (output files) can be read from 

other software. 

5. Discussion 

The pre-/post-fire differencing from NBR index is widely applied to burned-area detection. The vast 

majority of studies utilize this methodology adopting images of discrete times that are previously 

selected for a specific analysis, i.e., using pre-fire images constituted by the pixels unaffected by the fire 

or noises. This condition usually guarantees high quality for the dNBR index [13,19,24,34,84]. 

Nevertheless, this procedure for discrete data over time becomes different when applied to the complete 

time series. In this new approach, all images are used together, which favors the error propagation. 

The researches of burned-area detection using time series define a dNBR threshold, which classifies 

as burned when it exceeds the pixel value [74]. All images in the time series adopts the same 

predetermined threshold. Veraverbeke et al. [74] establish a relatively low threshold to minimize the 

omission error in low severity pixels and consider the persistence of the post-fire NBR drop during 

five consecutive observations in time. We suggest an algorithm to establish the best threshold value 

considering a reference mapping. This method reduces subjectivity and adjusts the threshold value in 

order to provide the best accuracy indices. As in the previously adopted procedure, the threshold value 

is applied to the complete time-series. Whereas only one threshold is used, the algorithm allows you to 

attach multiple images in order to achieve a threshold value from different imaging conditions. The 
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combined analysis of multiple images to determine the threshold value decreases the site dependence. 

Despite the advances in the threshold-value detection, further research should be done to improve and 

consider specific situations. 

The seasonal differencing method may introduce errors from phenological changes due to climatic 

constrains. These variations are more pronounced in semi-arid environments such as the Cerrado 

biome. Rainfall is determinant in phenological responses of the Cerrado vegetation, because it 

stimulates green-up onset and determines the duration of growth and flowering of plants [83,85]. 

Therefore, variations of the beginning and end of the rainy season changes dNBR values because they 

cause a gap between the phenological curves of the two subsequent years. In this respect,  

Diaz-Delgado and Pons [86] adopt the difference between burned area and control pixels of unburned 

area within the same image. However, this procedure has limitations when applied on a large scale 

because of the need for intensive fieldwork to select relevant control pixels. Moreover, the reference is 

an average value and does not depict the heterogeneity of the burned area. Lhermitte et al. [36] tries to 

solve this problem from a selection method of pixel control, which considers the similarity between the 

time series of burned pixels and the time series of its surrounding unburned pixels for a pre-fire year. 

However, other factors that are not completely controlled can influence the behavior of the index from 

the neighboring pixels with unburned areas. Very large burned areas can overcome different 

environments, especially in savanna, making it difficult to establish the pixel control points. The 

method is not completely automatic and is in need of supervision. Spatial variability of soil and 

hydrologic properties can also result in neighboring pixels with different environmental behaviors in 

relation to analyzed pixel. 

Three major effects can be considered for the seasonal differencing. First, the time series lost one year. 

Second, seasonal differencing increased the presence of noise, since interference affects both the year under 

analysis and the next year, when it is used as the factor to be subtracted. Third, variations of the 

phenological (e.g., rain delay) and cropping cycles can cause changes in the seasonal-difference values. 

In this study, the two proposed methods have the advantage to be fully automated and restricted to 

the pixel information. The proposed methods and seasonal differencing have similar accuracy for large 

fire events. On this occasion, the NBR values are considerably lower in all methods facilitating its 

detection. This explains the success of dNBR for bi-temporal images related to fire events as shown by 

the various articles [19,24,34]. The accuracy values in this study are consistent with other researches 

for fire detection using MODIS data.  

However, these methods are significantly different over the entire time series. The interannual 

phenological deviation method also presented susceptibility to the presence of errors because it uses 

baseline. Moreover, this method requires a long stable period to achieve a consistent central tendency 

value, becoming more restricted to natural environments. 

In contrast with the traditional approach, the standardized time-series method eliminates this 

interference effect. This method provides a new solution to the problem, not using baseline that is 

subtracted from the time series. Thus, the method does not add false information or noise to the 

temporal data. Instead, the proposed method performs a z-score standardization, which does not alter 

the relative position among the points within the temporal curve and provides equivalence for the low 

values of the burned areas in the different environments. This new method is very helpful in 

maintaining a coherent and common structure of the data, avoiding adding unnecessary information. 
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6. Conclusions 

Typically, the processing for the burned area detection is a combination of a spectral index and a 

data normalization using seasonal differencing. Many studies focus on the comparison between 

spectral indices (e.g., NBR, NDVI, among others). However, the seasonal difference method applied to  

long-term measured time series is very susceptible to false positives errors from the mismatch between 

the successive annual phenological curves. Therefore, a sharp fall in the dNBR occurs at various points 

of the temporal curve that are not related to fire events. Despite the problems created by the seasonal 

difference, no other normalization method has been proposed. 

This research proposes the use of two new procedures for the normalization of time series. The tests 

were performed in savanna areas, composed of different vegetation and environments, which hinders 

the burned-area mapping. All methods perform well for fire events, due to the significant fall in NBR 

values. The standardized method has slightly better results, while the seasonal difference represents the 

worst results. However, the seasonal difference and phenological deviation methods introduce many 

false positive errors throughout the entire time series (disregarding the fire event), because of the 

incompatibility between the input data and baselines (previous year or average interannual). This type 

of error is intensified by the change between the dry and rainy seasons. The standardized time series 

provide a new solution to the problem; maintaining the relative positions inside the time series. The 

points of the time series undergo offset and gain changes by constant values (mean and standard 

deviation, respectively). The procedure afforded compatibility among the time series of different 

environments, enhancing the burned areas without introducing errors. Thus, the proposed method is 

appropriate for automatic image processing of the long-term time series for burned-area detection. 
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