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ABSTRACT

Digital communications, either voice, messaging, video or other media content, have become
an essential part of the modern society. As a consequence, the demand for advanced digital
communication systems is increasing. Currently, mobile networks have a total of 7.3 billion
subscriptions worldwide, from which 1.4 billion belong to the latest fourth generation (4G)
network. In 2022, 8.9 billion subscriptions are expected, being 4.3 billion for 4G. Moreover,
applications that require a high throughput such as virtual reality (VR) are also foreseen.
The communication systems should also fit increasing demands of machine to machine com-
munications, including Internet of things (IoT) and vehicular ad hoc networks (VANETS),
such as vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. To
support this demand, a 100 fold increase in data rate is being considered as a requirement
for future fifth generation (5G) standards, whose deployment starts as early as 2020.

One of the key technologies to allow for a better exploitation of the scarce spectrum is the
incorporation of antenna arrays into communication devices. In particular, this work focus
on beamforming techniques that can virtually adapt the irradiation pattern of the antenna
array based device in order to amplify the signals from a desired direction and to cancel out
the interference from other angles. Therefore, beamforming provides the spatial separation
of multiple sources sharing the same spectrum band, and can also be applied to mitigate
jamming and radio interference.

In this work beamforming techniques and frameworks to deal with colored noise scenarios,
uniform rectangular arrays (URA) and broadband scenarios are developed. For colored
noise scenarios, prewhitening techniques, rank reduction techniques and a transformation
are used. For the URA and the broadband scenarios, a tensor notation is adopted and
the parallel factor analysis (PARAFAC) tensor decomposition is used along with frequency
invariant beamformers (FIBs). Finally, a low computational cost evaluation method that

uses the unscented transformation is developed.






KURZFASSUNG

Die digitale Kommunikation ist in ihren verschiedenen Formen zu einem wesentlichen Teil
des Alltags unserer Gesellschaft geworden. Dies hat die zunehmende Nachfrage nach dig-
italen Nachrichtensystemen zur Folge. Mobilfunknetze haben derzeitig insgesamt 7,3 Mil-
liarden Abonennten weltweit, wovon 1,4 Milliarden zur aktuellsten Mobilfunktechnologie
der vierten Generation (4G) gehoren. Bis 2022 soll die Gesamtmenge der Abonennten auf
etwa 8,9 Milliarden und fiir 4G auf 4,3 Milliarden anwachsen. Ferner werden Anwendungen,
die einen hohen Datendurchsatz bendétigen, wie z.B. virtuelle Realitétssoftware, vorausgese-
hen. Die Kommunikationssysteme sollten die ebenfalls ansteigende Nachfrage nach machine
to machine communications abdecken. Darunter sind Internet der Dinge (IoT) und vehic-
ular ad hoc networks (VANETS) ebenso einbezogen wie die Fahrzeug-zu-Fahrzeug (V2V)
und Fahrzeug-zu-Infrastruktur (V2I) Kommunikation. Um eine derartige Nachfrage unter-
stiitzen zu konnen, wird ein Wachstum der Dateniibertragungsrate in der Grofenordnung
von 100 derzeit als Anforderung fiir die Standards der fiinfte Generation (5G), die bereits

2020 im Einsatz sein sollten, betrachtet.

Um eine bessere Ausnutzung des knappen Spektrums zu ermoéglichen, bietet sich der
Einbau von Mehrantennensystemen in Kommunikationsgerite als Schliisseltechnologie an.
Die vorliegende Arbeit legt den Schwerpunkt besonders auf Beamforming-Techniken, die
das Strahlungsmuster des in Mehrantennensystemen angeordneten Gerite virtuell anpassen
konnen, um das Signal aus einer erwiinschten Richtung zu verstirken beziehungsweise die
Storung aus weiteren Winkeln zu neutralisieren. Beamforming ermdglicht somit die rdum-
liche Trennung von mehreren Quellen, die dasselbe Spektrum teilen, und kann ebenso ver-

wendet werden, um elektronische Stérer und Interferenzquellen abzuschwéchen.

In der vorliegenden Arbeit wurden Beamforming-Verfahren und Frameworks entwickelt,
um unterschiedliche Fille des farbigen Rauschen, zweidimensionalen Mehrantennensystemen
(URA) und breitbandigen Signalen zu untersuchen. Fiir Systemen mit farbigen Rauschen
wurden Prewhitening, Rank Reduction und eine Transformation verwendet. Fiir URA und
breitbandige Systemen wurde die Tensordarstellung benutzt und dabei ist die Tensorzer-

legung anhand der Parallel Factor Analysis (PARAFAC) zusammen mit frequency invariant



beamformers (FIBs) verwendet worden. Zuletzt wurde mittels der Unscented Transforma-

tion mit geringem Rechenaufwand eine Evaluationsmethode entwickelt.



RESUMO

Comunicagoes digitais, seja por voz, mensagens instantaneas, video ou outro conteido de
midia, se tornaram uma parte essencial da sociedade moderna. Como consequéncia, a de-
manda por sistemas avancados de comunicacao estd aumentado. Atualmente, as redes de
comunicagao movel tém um total de 7,3 bilhoes de assinaturas em todo o mundo, das quais
1,4 bilhao pertencem a rede mais nova da quarta geragao (4G). Para 2022, sdo esperadas
8,9 bilhoes de assinaturas, sendo 4,3 bilhoes de assinaturas 4G. Além disso, também sao
previstas aplicagoes que requerem uma alta taxa de transmissao como a realidade virtual
(VR). Os sistemas de comunica¢do também devem alocar a crescente demanda de comu-
nica¢oes maquina a maquina, incluindo a internet das coisas (IoT), redes veiculares e ad
hoc (VANETS), como as redes veiculo a veiculo (V2V) e comunicagoes veiculo a infraestru-
tura (V2I). Para suportar esta demanda, um aumento na escala de 100 vezes esta sendo
considerado como um requisito para os padroes de comunicacao da futura quinta geracao

(5G), & qual tem seu emprego previsto para 2020.

Uma das tecnologias chaves para permitir uma melhor exploracao do escarco espectro é
a incorporacao de arranjos de antenas aos dispositivos de comunicacao. Particularmente,
este trabalho tem foco em técnicas de formacao de feixe, que podem virtualmente adaptar
o padrao de irradiacao de um arranjo de antenas de forma a amplificar sinais vindos de
uma direcao desejada e cancelar sinais vindos de outros angulos. Portanto, formadores de
feixe promovem a separacao espacial de multiplas fontes de sinal, que compartilham uma
mesma banda do espectro e, além disso, também podem ser aplicados para mitigacao de

interferéncia.

Neste trabalho, técnicas e frameworks de formadores de feixe sao desenvolvidos levando
em conta ruido colorido, arranjos uniformes retangulares (URAs) e sinais banda larga. Para
cenarios com ruidos coloridos, técnicas de branqueamento, reducao de posto e uma transfor-
macao sao utilizadas. Para a URA e casos banda larga é utilizada uma notacao tensorial e
a decomposigao por meio da anéalise de fatores paralelos (PARAFAC) ¢ aplicada juntamente
com formadores de feixe invariantes em frequéncia (FIBs). Por fim, um método de avaliagao

com baixo custo computacional é desenvolvida por meio da transformada da incerteza (UT).
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INTRODUCTION

Radio communications play a key role in modern society. For instance, it is estimated that
in 2016, 7.3 billion mobile users were connected to the network and from these users, 6.3
billion are smartphone subscriptions. From these subscriptions, 1.5 billion belong to the
latest long term evolution (LTE) or fourth generation (4G) technology [12|. Even though
these devices are already practically ubiquitous, the demand for more data rate, better
navigation accuracy and reliability will still grow at an estimated pace of 5 % to 10 % a
year and it is expected to reach the mark of 8.9 billion subscriptions by 2022, from which
approximately half billion should already be fifth generation (5G) subscribers [12].

This demand is expected to increase 100 fold by means of data rate per radio link in the
5G network. One of the reasons for the need of this growth is the addition of devices such
as cars, machines and consumer electronics to the network, forming the so called Internet of
things (IoT), and the insertion of new media content in form of virtual reality (VR) [71]. In
order to increase data rate, antenna arrays are a natural evolution of communication systems,
being adopted in a small scale of up to 8 antennas in current LTE cellular networks [33] and

a larger number is expected for 5G systems [55].

Still according to [71], the currently used mobile spectrum, approximately between 800
MHz and 4 GHz, does not suffice the band needs for next generation wireless communication
systems. This spectrum can only provide channels with bands not wider than 20 MHz. In
order to increase bandwidth, the 5G next generation standard is suggesting the use of high
frequency spectrum above 20 GHz. At this frequency range, the wavelengths are very small,
only of a few millimeters and, thus, is the antenna size. The reduction of size reduces
the amount of power received by the antenna, and, in addition, pathloss is greater at this
frequency region. In order to compensate for the antenna size reduction and pathloss,
antenna arrays can be used. The envisioned next generation mobile network is expected to
start its deployment in 2020 and the usage of tens or even hundreds of antennas is under

discussion [56,75]. When multiple antennas are present on both communication ends, the
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system is often called a multiple input multiple output (MIMO) system. When the number
of antennas is high, the system is called a massive MIMO system. As the number of antennas
is increased towards a massive MIMO application, the number of simultaneous transmissions
to various users also increases [55].

A key technology in antenna arrays is beamforming. In essence, beamformers perform
delay and sum operations in order to create constructive interference towards a desired
signal direction [82]. The constructive interference towards a desired signal is the so called
beam. In addition, extra information about interference position or statistical information
extracted from received signals can be used to construct destructive interference towards
the non desired signal direction. The usage of beamformers in practical applications still
have some challenges such as cases where the signals are corrupted by noise, better ways to
deal with big arrays, or even broadband signals. Each one of these challenges are depicted
in Section 1.1.

This chapter is divided into five sections. In Section 1.1 makes an introduction about
beamformers, their challenges and how they are exploited in this work. Section 1.2 de-
scribes the importance of an antenna array system evaluation and how it is approached in
this dissertation, while the objectives of the work are depicted in Section 1.3. Section 1.4

describes how this work is divided. Section 1.5 shows the used mathematical notation.

1.1 Beamforming

Beamformers work from the simple idea of summing up similar waveforms from different
antennas that in principle differ only by a delay. The delays can be electronically or dig-
itally adjusted creating constructive and destructive interference in order to increase the
desired signal’s quality. Figure 1.1 shows beams formed from a constructive interference of
6 antennas.

The simplest is the delay and sum (DS) beamformer [82] which, as its name suggests,
properly delays the signal acquired by each antenna and sums them up in order to form a
constructive interference in the direction of the desired signal. More sophisticated beamform-
ing solutions are found in the form of the linearly constrained minimum variance (LCMV),
also known as the Capon beamformer [19] and the generalized sidelobe canceller (GSC)
beamformers [40]. The last two beamformers require the estimation of the correlation ma-
trices of received signal in order to compute the beamforming filters. In the system design
these beamformers regard the noise as uncorrelated white noise, where in practice, they can
also be correlated |25|, causing their degradation. This work tackles colored noise scenar-
ios for beamforming by using prewhitening techniques. On the other hand, prewhitening

techniques also increase the systems computational complexity. Therefore a block wise
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Figure 1.1: Senusoidal waves were generated at 5 Hz and virtually steered, for the sake of
visualization of the beamforming. The constructive patterns are clearly visible
and appear in dark red.

GSC algorithm is developed to allow for more flexibility and control of the final systems

complexity by choosing a block size and number of iterations.

This work shows that when the array has a 2-dimensional separable structure such as
an uniform rectangular array (URA) [73]|, beamformers can also be computed separately.
When the structure is separated, the each column of the array can be regarded as snapshot
containing information on the y-direction and each row as a snapshot containing samples of
the z-direction. This virtually increases the number of snapshots at the price of resolution
that may be desirable in massive MIMO scenarios [75|. This work also shows that besides
increasing the number of snapshots and, therefore, enhancing correlation matrix estimation,
the use of two smaller matrices instead of a bigger one can also reduce the computational

time associated with beamforming algorithms.

For most beamformers in communications, the narrowband assumption is used for the



18 I INTRODUCTION

beamformer design. In cases where the narrowband scenario no longer holds, the signal
band can be separated into shorter band ones so that each smaller band can be considered
as narrow |64]. To avoid the increased complexity, extra antennas, such as in the of mas-
sive MIMO schemes, can be used to create frequency invariant beamformers (FIBs) [76].
The output of several independent FIBs contains instantaneous mixtures, similar to those
found in narrowband scenarios. Therefore, these outputs can serve as input to narrowband
algorithms which have rich literature [50].

Previous works using a bank of FIBs have tackled the narrowband beamforming step
using independent component analysis (ICA) algorithms. Traditionally, ICA is based on the
measure of the Gaussianity computed via Kurtosis, and, due to the central limit theorem,
the greater is the Kurtosis, the more separated are the output signals [50]. Since the
Guassianity is used to separate the signals, then the standard ICA cannot be applied for
Gaussian distributed signals.

One way to avoid the Gaussianity measurement problem is to use methods based on the
non-whiteness of the signal. When a signal is uncorrelated, i.e. there is no time dependency
between its samples, the signal is said to be white, since its spectrum should have about the
same power for all frequencies. When there is a time correlation, the signal is, on the other
hand, said to be non-white. In this work, the Gaussianity measure problem is avoided by
the use of an algorithm that exploits non-whiteness [57].

In [57] the non-whiteness is exploited firstly by stacking time correlation matrices one
on the side of the other in order to form a three dimensional representation, the so called
tensor, as illustrate in Figure 1.2. Secondly, this tensor is decomposed via the parallel
factors analysis (PARAFAC) multilinear decomposition [46], also known as the canonical
decomposition (CANDECOMP) [21]. This decomposition results in factor matrices that

contain estimators for the desired beamforming weights.

P

N N
XECMXN XG(CMXNXP

Figure 1.2: Tllustration of a matrix of size M x N and 3-dimensional tensor of size M x N x P

In this work, in order to reduce its the complexity of [57] to online implementation levels,

an adaptive approach is used [70]. However, the approach in [70] was originally proposed to
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signals that have its statistical characteristics changing over time, i.e. non-stationary. Hence,
this work proposes modification for the adaptive PARAFAC algorithms to be incorporated

to beamforming by exploiting the non-whiteness property.

1.2 Low Complexity Array Evaluation

The beamforming techniques should be evaluated for different scenarios. For instance,
scenarios with colored noise and positioning errors of the array assembly should be taken
into account. With that in mind, it is desirable to study the impact that imperfections from
non ideal equipment will cause to a beamformer. This task, however, may require a lot of
computational power. One way to overcome this complexity is to make use of numerical
analysis to simplify the computations.

One of the important imperfections that arises from a practical implementation of beam-
formers is the estimation of the direction of arrival (DOA). In the development of beam-
formers, engineers usually consider the DOA as known, however, in practice, the DOA
estimation is not perfect and has errors associated to it. In this work, the DOA estimation
impact on the SINR is evaluated by usage of the unscented transformation (UT) numerical
tool for very low computational complexity when compared to very popular Monte Carlo
simulations with good results [8].

Another problem from array implementation is the placement of the array elements that
also brings along positioning deviations. Since the positioning errors occur for all the ele-
ments, for this computation, an amount of variables equal to the number of array elements
has to be considered, creating a multi-variate problem for the UT. Even though the multi-
variate complexity is increased, this work shows that depending on the deviation caused by
these imperfections and the number of antennas, the low complexity computation using the

UT is still advantageous.

1.3 Objectives

Next generation communication systems are predicted to have an increased number of an-
tenna elements. The broad objective of this work is to increase current wireless systems data
rates via beamforming. Beamforming allows for better signal to noise ratio and interference
mitigation.

The implementation of beamformers in real scenarios has some challenges. One of them
is to maintain proper function under colored noise. In colored noise scenarios, the noise
from each antenna is correlated to the other, a situation that should be encountered in

practical arrays. Therefore, the first specific objective of this work is to develop beam-
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forming techniques that work under colored noise scenarios. In this work, the usage of two
prewhitening techniques to mitigate the colored characteristics of the noise is proposed.
Since the prewhitening step increases the complexity, a block-wise processing beamforming
technique is proposed to increase the system design flexibility in terms of complexity.

When the number of antennas increases, the computational complexity also grows. There-
fore, the second specific objective of this work is to reduce computational complexity when
a high number of antennas is available, yet, maintaining a good interference mitigation. For
that, two schemes are proposed. The first approach computes smaller correlation matrices
for each dimension and each corresponding beamformer is computed. Then, the beamform-
ers for each dimension are combined. The second scheme considers a broadband scenario
and converts it into a narrowband one by using a bank of FIBs. The output of this bank of
FIBs is used to create a correlation tensor which can be decomposed. Such decomposition
generates a demixing matrix that is used to form a final broadband beamformer.

Finally, beamformers should be robust against estimation errors of the source direction of
arrival (DOA) and imperfections on the placement of the array elements. The performance
assessment of beamformers for different scenarios can be time demanding. Therefore, the
final specific objective is to reduce the complexity of the evaluation of beamforming in
the presence of DOA estimation error and positioning estimation error. In this work, the

evaluation using the UT numerical tool is proposed.

1.4 Overview and Contributions

This thesis is divided into five chapters including this introduction. Chapter II contains
a description of antenna arrays in colored noise scenarios and how to reduce its effects
on adaptive beamforming. Moreover, reduced complexity is also achieved after deriving
a block-wise adaptation algorithm. The main contributions found in Chapter II are the
usage of deterministic and stochastic prewhitening prior to the beamformer, the usage of
the Vandermonde invariant transformation (VIT) to increase beamforming accuracy and
the derivation of a block-wise GSC for computational complexity reduction.

Chapter III describes how the data received from separable arrays can be modeled into a
multidimensional form using the tensor notation. Moreover, with the insights eased by the
use of this notation, the multidimensional structure is used to virtually increase the amount
of samples improving beamforming filter quality and reduce computational complexity. In
Chapter ITI, the contribution is the adoption of the concept of array separability allowing
for the application of multidimensional operations to virtually increase the number of sam-
ples. Also, the multidimensional operations generate a group of smaller correlation matrices

instead of a big one, which in turn, reduce computational complexity of batch algorithms.



1.5 NOTATION 21

Chapter IV reviews the concept of FIBs and its applications as a bank of FIBs. The
PARAFAC decomposition is also reviewed and it is applied with the bank of FIBs concept.
The contribution in Chapter IV is creation of a framework that applies a bank of FIBs
with the PARAFAC decomposition. The framework also includes a novel way to create the
adaptive tensor and an adaptive filter estimation step is added to the adaptive PARAFAC
tracking algorithm for faster convergence and improved accuracy.

Chapter V evaluates the impact of imperfections on beamformers. In Chapter V, the ef-
fects of these imperfections are modeled in a novel manner by using the unscented transfor-
mation (UT). The proposed UT based evaluation assessment shows a considerable reduction
in computational time for antenna array systems.

Finally, Chapter VI draws the conclusions about this work.

1.5 Notation

Along this work, the following notation is used. Scalars are denoted by lower-case letters
(a,b,---), vectors are written as boldface lower-case letters (a, b, ---), matrices as boldface

capitals (A, B, - ), and tensors as boldface calligraphic letters (A, B, - - - ). The superscripts
T H

)

respectively. The notation A(:, i) € C®*! represents a column vector denoting the i-th

and * represent transpose, Hermitian transpose and complex conjugate of a matrix,

column of A € C*!. The operator vec(A) results in a vector by concatenating the columns
of the matrix A one on top of the other. The notation [T, is the r-mode matrix unfolding of
T and T x, A is the r—th mode product between the tensor 7 and the matrix A. Moreover,
the Kronecker product and outer product operators are denoted by ® and o, respectively.
The Khatri-Rao operator denoted as ¢ is defined as the column-wise Kroenecker product.The

operator E{-} stands for the expected value operation.
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BEAMFORMING IN COLORED
NOISE SCENARIOS

Signal processing is an important field in many areas such as satellite communications [5,7],
navigation [77], speech [3,10,11,78], RADAR [87] and many communication systems in-
cluding antenna array communications [6,47,64|, in which beamforming plays an important
role [48,69,80,87]. In the literature, there are several adaptations of Direction of Arrival
(DOA) estimation schemes for colored noise scenarios [25,28,44], since the DOA informa-
tion is crucial for the beamformer. The addition of such constraints led to the develop-
ment of beamformers such as the Direct Form Processor (DFP), which includes the Lin-
early Constrained Minimum Variance (LCMV) and Linearly Constrained Constant Modulus
(LCCM) [84], and the Generalized Sidelobe Canceler (GSC) [47]. For real time applications,
the necessity for adaptive algorithms grows and, with this need, adaptive versions of the
GSC were proposed in earlier works |23, 84, 85].

However, when the number of elements in a sensor array is high in the sense that there are
more antennas at the receiver than users, e.g. in future 5G networks, these algorithms suffer
from computational complexity increase. Therefore, recently, adaptive reduced rank DFP
and GSC schemes were also proposed in order to reduce the dimensionality of the adaptive
filters. The rank reduction step also has a noise removal effect, thus showing an enhanced
performance [84,85]. These works use the constant modulus (CM) cost function [23] due to
its improved accuracy for constant envelope signals. Yet, adaptive beamforming techniques
using the GSC usually assume uncorrelated white noise in the receivers, which is not realistic
since noise is usually colored, i.e. spatially correlated [25].

For colored noise scenarios, prewhitening schemes have been successfully applied in com-
bination with DOA estimation [28, 44| and audio signal processing schemes [45]. The
prewhitening schemes are divided into stochastic [44,45] and deterministic prewhitening [28].

In deterministic prewhitening, the noise may have a specific structure which can be exploited,



24 IT BEAMFORMING IN COLORED NOISE SCENARIOS

while in the stochastic prewhitening, no structure is assumed. Moreover, there are also mul-
tidimensional prewhitening schemes for the case that the data has a tensor structure [26].
In this work, the least mean squares GSC (LMS-GSC) and the Reduced Rank LMS-GSC
(RR-LMS-GSC) are extended for colored noise scenarios by incorporating a prewhitening
step. The prewhitened GSC schemes considering the deterministic prewhitening [28] and
the stochastic prewhitening [44,45] are proposed. The colored noise is usually concentrated
in certain direction. Therefore, to further enhance the GSC, the Vandermonde Invariance
Transformation (VIT) [51] is also applied as a preprocessing step. The colored noise can
be also concentrated close to the desired signal direction, therefore a prewhitening step is
also still needed along the VIT. The stochastic prewhitening needs the computation of one
SVD at each iteration. In order to reduce the complexity of the stochastic prewhitening, the
block-wise reduced rank stochastic gradient GSC (BW-RR-GSC) beamformer is proposed.
This chapter is divided into four sections including this introduction. Section 2.1 describes
the used data model. In Section 2.2 the state-of-the-art beamformers are reviewed. In
Section 2.3 a high accuracy and low complexity GSC schemes are proposed by incorporating
prewhitening steps, the VIT and a block-wise modification for colored noise scenarios. In
Section 2.4, simulations are shown and the results are drawn. Finally, Section 2.5 makes

the conclusions.

2.1 Data Model

We assume that d sources are transmitting different symbols at the n-th time instant. Since
the sources are far away from the receiver, the narrowband wave fronts are considered planar.
A uniform linear array (ULA) is assumed and contains M isotropic sensor elements with an
inter-element spacing of A wavelengths. Therefore, the received symbols are mathematically

represented as
x(t) = a(f0)s(t) + Aint(Bint)sine (1) + 0 (), (2.1)

where x(t) = [zo(t),...,zy_1(t)]T is the vector containing the received symbols at time
instant ¢, s(t) is the desired signal, s, (t) is a vector with the interference symbols from the
d — 1 interferes and n(®)(¢) contains colored noise samples at the sensor elements. Note that
n®(t) = Ln(t), where n(t) contains i.i.d. noise samples with circularly symmetric complex
Gaussian distributions. The matrix L € CM*M gstands for the correlation factor matrix.
For the special case where L is the identity matrix the noise becomes white at the sensors.

The vector a(fp) is the steering vector with a Vandermonde structure

a(fy) = [1,e7%0, e . ,ej(M_l)‘z’O]T, (2.2)
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where 6 is the azimuth of the DOA and j = /—1. The matrix A;,(6;,) is the steering

matrix containing all the steering vectors of the interfering signals

1 1 o 1
et eJ®2 o eiPa—1
Aint(eint) — 201 o292 o eJ20d—1 c (CM><d—17 (2'3)

where their corresponding DOAs are comprised in the vector 8;,; € C*~1*! and the DOAs are
represented by the spatial frequencies, i.e. spatially related phase delays, ¢g = —27A sin 6,
and @iy = —27Asin 0y, € C1¥1,

More generally, assuming a sliding window in which at time ¢ a snapshot of the current
and the N — 1 previously transmitted symbols are allocated into a vector s and collecting
the interfering signals into a matrix Sy (t) € CV*971 the model is rewritten in a compact
format

X () = a(0,)s"(£) + At (Bin)ST, () + N € CMN, (2.4)
where X (t) = [x(t — N +1),...,x(t)] and N = L-N € CM*¥_ The matrix N € CM*V
contains the N white noise samples for all M sensors in the same manner as X contains N
signal plus noise samples from the M sensors. The variable s(t) € CV*! has the N latest
samples for the desired signal and S;y(t) € CV*9~! has the N latest samples for the d — 1
interfering sources.

Here, the received symbols X(¢) and the DOA of the desired signal 6, are assumed as
known by the receiver and it is desired to find §(¢), which is an estimate of s(¢). To find the
DOA, the reader is referred to [1,25,28,44] or, alternatively, it is assumed that the position

of the transmitter with respect to the receiver is known.

2.2 State-of-the-art beamformers

2.2.1 Batch GSC

The GSC algorithm turns a constrained problem into an unconstrained one by introducing
a blocking matrix, which is the orthogonal complement of the constraint a(fp). In this case,
the constraint is formed based on the steering vector of the desired signal, formed with the
DOA estimate.

The classical GSC [40] block diagram is depicted in Figure 2.1.
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a(th)

Figure 2.1: Batch GSC block diagram

First, in the upper part of Figure 2.1, the signal d(t) = a'(0y)x(t) is extracted by a delay
and sum filter a(fy) with taps computed in the same manner as (2.3) and steered in the
direction of the signal s(¢). This signal is considered the desired signal, thus the notation
d(t), and the remaining d — 1 signals are the interference signals in accordance to Section
2.1.

In the bottom part of Figure 2.1, a blocking matrix B € CM~Y*M ‘guch that B-a(f,) = 0,
is used to extract the interference signals x5 (t) = B-x(t). Consequently, B blocks the desired
signal and lets ideally only Ay (fing)Sing(f) pass. Details on the computation of the blocking
matrix B are shown in Appendix 6.2. In an ideal system, the filter w is computed as the
Wiener solution of |d(t) — wixp(t)|* to give an interference-removing, or sidelobe canceller,
filter:

W = R;;prd, (2.5)

where, Ry, and ry,4 are the correlation matrix of xp(t) and the cross correlation vector
between x5(t) and d(t), respectively. The total filter is

Weee = a(f) — Bll'w, (2.6)
thus the left-hand part of Figure 2.1 corresponding to a(6y) and B are the static part of the
system and the right-hand part corresponding to w is adaptive.

The batch GSC follows the same principle of 2.5, but replaces the correlation and cross

correlation with their estimates using N samples:

1

R, = NBX(t)XH(t)BH, (2.7)
By = %BX(t)d(t)*, (2.8)

where d(t) = [d(t — N +1),...,d(t)]*. The batch algorithm can be either adapted snapshot

by snapshot via a sliding window or in a block-wise manner by storing snapshots.
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2.2.2 Least Mean Squares GSC (LMS-GSC)

The Least Mean Squares GSC (LMS-GSC) is similar to the batch GSC except that the
correlation and cross correlation are roughly estimated with a single snapshot. In Fig.
2.2, the input signal x(¢) passes through a beam pointed at the desired signal direction 6,
generating d(n) = al(6)x(t). The same input signal also passes through a blocking matrix
B which is the orthogonal complement of the constraint a(6y). The filter w should then be
adjusted so that it generates the interference signal y(¢) that is subtracted from the desired

signal d(t).

a(Ho) d(n)
x(n)
xp(n) \
B w
\
adaptive
algorithm

Figure 2.2: LMS-GSC block diagram
In Fig. 2.2, y(t) is given by
y(n) = whxp(n), (2.9)

where xp(n) = Bx(t). As shown in Fig. 2.2, the error signal e(t) is used by the adaptive
algorithm to adjust w. Once w converges, 5(t) = e(t). Note that e(t) is free from interference
is also the system’s output signal.

The adaptation of w is computed via stochastic gradient of the following cost function
Jims(W) = E{\d(t) — WHXB(t)|2} (2.10)
which gives the update rule for the adaptive part
w(t+1) = W(t) + fims VwJims(W) (2.11)

with pums being the step size for the LMS-GSC.
We use the instantaneous estimates Ry = x(n)x"(n) and f4x = d(n)x(n) [47] to find the

stochastic gradient:

Vwims = 2Bx(8)x" (t)Bw — 2Bd(t)x(t). (2.12)
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Now the stochastic gradient is inserted into LMS update rule for the GSC [47]:

w(n + 1) = w(n) + wmsBx(n)x" (n) (a(6y) — B"'w). (2.13)

2.2.3 Reduced Rank Least Mean Squares GSC (RR-LMS-GSC)

Regular LMS algorithms have been reported to have a slow convergence for high number
of sensor elements M [85]. To overcome these drawbacks, a reduced rank (RR) adaptive
algorithm for the GSC scheme was developed in [84,85| and is depicted in Fig. 2.3. The

a(6o)

xp(n) Xp(n)
B T |—— W
} : /()

: =P adaptive | o exr(n)
L p| algorithm

x(n)

Figure 2.3: RR-LMS-GSC block diagram

process is similar to that described in Section 2.2.2, except that the blocked signal passes
through a transformation matrix T € CM~1D*" that performs a dimensionality reduction
prior from being filtered by a reduced filter. As derived in [23], X(t) = eX.(t)x(t) is used
instead of x(t) for the input signal, where e, (t) = wi(¢)x(t) is the output signal for the
RR algorithm as indicated by the subscript and w(¢) = a(fy) — BET(t)W(¢). The CM error

and its quadratic mean describes the CM cost function:
Jem(W) = E{|W"x(t) — v|*}, (2.14)

where v is constant set to 1 for unit variance signals. The filter w can be represented in
terms of time evolving T(¢) and w(t) for the adaptation process. Thus, the expanded cost

function becomes
Jem (T(t),W(t)) = E{|[a(90) - BHT(t)W(t)]ch(t) - 1/\2}, (2.15)

with W(t) being the reduced rank filter of size r, where d < r < M. Therefore, it can
be clearly seen that there is a trade off between the reduced rank size and the number of
the degrees of freedom. As shown in [84, 85|, the choice of r for values equal or slightly
above d gives the best results, where the estimation of d can be performed by several

methods [27,29,30]. The stochastic gradient of the previous cost function with respect to
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T(t) and W(t) gives their LMS update rules respectively

T(t + 1) = T(t) + prrel () Zn () F (1), (2.16)
W(t+1) = W(t) + pwen, (1) XB(1), (2.17)

where e, = 1 — w(t)"x(¢) is the CM error. Also note that a new variable is introduced in
(2.17) which corresponds to the filter input signal Xg(t) = THxg(t), i.e. after the blocked

signal transformation.

2.3 Proposed Solutions

In this section, different variations for the prewhitened adaptive GSC and prewhitened adap-
tive RR-GSC are proposed. The High Accuracy Stochastic Prewhitening (HASP) method
that makes usage of one SVD per sample is shown in Section 2.3.1. The VIT is also used
along the HASP to create the VIT-HASP solution. In the phase perspective, the VIT
keeps the Vandermonde structure in a desired direction and changes the directions of the
interferent sources. From the spatial power sense, it acts as beamformer conserving power
at a direction of interest and reduces the power in other directions. The VIT results in
a virtual array that is further used by the adaptive GSC. Since the direction where the
noise power is concentrated is not known, it can be close to the desired signal making the
prewhitening still required, thus forming the VIT-HASP. In Section 2.3.3, the Deterministic
Prewhitening (DP) method is shown for the cases where the correlation structure of the
noise is known. Since the prewhitening step requires one SVD per sample for sample-wise

adaptive algorithms, a new block-wise reduced rank stochastic gradient GSC beamformer
(BW-RR-SG-GSC), which requires only one SVD per block, is also presented.

2.3.1 High Accuracy Stochastically Prewhitened LMS-GSC
(HASP-LMS-GSC)

We start with the traditional stochastic prewhitening method for estimation of the noise
correlation factor matrix and reduction of the effects of colored noise as proposed by [45].
First, it is assumed that samples are free from signal components, i.e., only with noise, so

that the noise sample correlation matrix can be given as

1

Ran =
NN =

N© . (N©NHH (2.18)

where Ny stands for the number of signal free samples and N’ is the colored noise snap-

shots matrix. Since Ryn is Hermitian and positive-definite the Cholesky decomposition can
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be performed such that

Ran = LT (2.19)

with the estimated correlation factor matrix L one can perform a prewhitening trying to
revert the effects of the correlated noise in (2.1) by simply multiplying the data by the

inverse of the estimated correlation factor matrix:
X'(t) = L7 X(¢), (2.20)

where X'(t) is the prewhitened matrix of X(¢). Once the number of signals d is known,
an SVD low rank approximation on X'(t) can be applied, resulting to XF(¢). In order
to estimate d, the reader is referred to model order selection schemes [27,29,30]. It is
important to notice that this low rank approximation is not related to the rank reduction step
performed by the adaptive algorithms. Finally, the noise and signal subspace are separated
using the dewhitening step, which means multiplying it by the estimated correlation factor
matrix L. This leads to the final input data:

XE () = L - XBF(4). (2.21)

In Fig. 2.4, (2.4) is used as input of the system for the HASP solution. Then, the SVD
is applied in each iteration with the purpose of dewhitening. This results in a dewhitened
data vector x*(t). The dewhitened data can now be inserted into the adaptive LMS-GSC
or RR-LMS-GSC that will update the beamforming filter.

O @ ® OR—

samples X[S]/(n filter
X (n) —] prewhitening SVD low rank adaptive

! g approximation —» dewhitening ——»1 GS0

i

> W (n)

Figure 2.4: High accuracy stochastic prewhitening block diagram

If the algorithm is element-wise adaptive, then only the latest dewhitened snapshot x*’ (1)
is used at the iteration keeping in mind that X' (t) = [xI*V'(t — N +1),--- ,xIV'(¢)]. This
snapshot can be directly inserted into the update rule (2.11) and update rules (2.17) and
(2.16). The block-wise adaptation in Section 2.3.4 uses all the N snapshots.
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2.3.2 Vandermonde Invariance Transformation (VIT) based
HASP-LMS-GSC

The purpose of the VIT is to transform the input signal in a way that the Vandermonde
structure is preserved [51]. Since there are always imperfections on the array, the reader
is referred to [66] for array interpolation in order to compensate such imperfections. First,
the VIT matrix Ty € CM*M ig defined and it is multiplied with a vector that has a

Vandermonde structure v = [1, €%, ..., e/M=1DT Tn [51] it is shown that
1
M-1 ,
e? — K el”
Ty — . , 2.22
v tV ( 11—« ) : ( )
ej(M—l)V

where k is a complex parameter that originates a phase gain. From Eq. (2.22) it is inferred
that the original phase ¢ is mapped into a new phase v, but the Vandermonde structure is

still present. More specifically, the new virtual phase is

2K -si
v= arctan( Sin ¢ > : (2.23)

1 - K24 (1+ K2)-cos¢

where K = (k+1)/(k—1). From (2.23) it is clear that the phase remains the same for ¢ = 0.
Relating these phases to the spatial frequencies ¢g and ¢y, one shall shift the sources prior
to applying the VIT by multiplying the input signal by Py, = diag([1,e 7%, ... =i =Deo])
so that the desired signal virtually impinges from 0° and no phase amplification is noticed.

Therefore, the shift and transformation are applied to (2.1) leading to

)v((t) = TvitP¢0a(90)5(t) -+ TvitP¢oAint<0int)sint(t) + TvitP¢0n(C) (t) (224)
= a(00)5(t) + Asnt (Ot )Sime (t) + 02 (2). (2.25)

The vector &(fy) and the matrix Ay (6iy) still have a Vandermonde structure and i(®) (t)
is still a colored noise with its original color changed by the VIT so that a(®)(¢t) = L’ - n(¢)
and L' = Ty - Py, - L. As shown in [51]|, Equation (2.22) does not change the amplitude
of v at ¢ = 0 but it is changed for ¢ # 0. By setting K < 1 the amplitude away from 0° is
diminished making the VIT to operate as a beamformer. Thus, the interference and noise

not in the direction of the desired signal is reduced.
The noise can have most of its power close to the desired signal and thus only being
partially removed by the VIT. Therefore, the usage of prewhitening is still needed. With

the transformed noise correlation model, the HASP can now be directly applied using the
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estimate
L/ =Ty Py, - L. (2.26)

Figure 2.5 summarizes the VIT-HASP process. First the noisy signal is shifted by Pg,. At

by D @ ® @

beamforming

| .
SAMPES | Phase shift vIT Hasp  [xV(n) | o | o fiter
X(n)—» p = —> > G%C —» W(n)
o Tt L' = T.iPy,L
Po K

Figure 2.5: VIT-HASP block diagram

Step 2 the VIT is incorporated. After that, the signal is ready to pass through the modified
HASP, where L/ is used in place of L. The result is a dewhitened data %[*/(t) to be used as
input to the adaptive GSC algorithms. Details on the computation of T\ are found in [51].

2.3.3 Deterministic Prewhitening (DP)

In Subsections 2.3.1 and 2.3.2, the structure of the noise covariance matrix is unknown.
However, for highly correlated environments and for known covariance structure, a deter-
ministic prewhitening (DP) can be employed with the expense of one sensor as explained
in [28]. In Fig. 2.6 signal-free samples are first inserted into the system in order to estimate
the noise structure with its correlation level. With the noise structure and correlation level
in step 2 of Fig. 2.6, the prewhitening matrix in step 3 of Fig. 2.6 can be built. In the last
step the input data is multiplied by the generated matrix to produce the whitened data.

Here, it is assumed that the noise is correlated as proposed by [22]:

N\ (1) = p - () + /1= [p2 - npia (1), (2.27)

where 0 < p < 1 stands for the noise correlation coefficient. Once the noise correlation
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Figure 2.6: Deterministic prewhitening diagram.

structure (2.27) is known, the correlation factor L is built

1 0 0
p V1=|p]? 0 0

LYY= p/I-]P VI-PF 0 . (228
P PN T = PV T V1=

For the known correlation structure the superscript (k) is inserted. The goal is to find a

matrix D that will decorrelate the noise. In this work, it is assumed that the same structure

of the noise as shown in |28]. Therefore, the prewhitening matrix is given by

where J, and J; are the selection matrices [Og-1)x1  In-1] and
Lar—1 Oar—1)x1) for the last M — 1 sensors and the first M — 1 sensors, respectively. By
applying the matrix D on the colored noise matrix, the prewhitened noise becomes white
but with a smaller power proportional to the factor \/1—7]p]2

N =D -N¢Y9=D.LY®.N (2.30)
=J, - L® -N—p-L(k) -Jq (2.31)

=/1—p|?-J5-N. (2.32)

Equation (2.30) shows that the noise is not only white but has its variance reduced. It
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can also be verified that the Vandermonde structure of the steering vectors and the relative
power of the sources are preserved [25]. The matrix Jo on the last line of (2.30) shows
that one sensor is sacrificed as a cost for the dewhitening process. For applying the DP the
whole data vector is multiplied by the DP matrix. This results in the prewhitened input

data vector

x'(t) =D - x(¢). (2.33)

2.3.4 Block-wise Reduced Rank Stochastic Gradient GSC
(BW-RR-SG-GSC)

In this section, an alternative way to compute the reduced rank GSC beamformer is shown
by using the whole information contained in one block to estimate the expected values and
correlation matrices. The objective of doing block-wisely computations is to reduce compu-
tational complexity in the prewhitening steps. The prewhitening requires the computation
of the SVD, as seen in Section 2.3.1, and computing the GSC in blocks reduces the amount
of SVDs to one per block.

First the CM input signal block is defined as

X =X, - diag(en), (2.34)

where X,, = X(mN), e, = [ex(N(m — 1) +1),...,ex(mN)]" and m denotes the block
index. The previous definitions are used to write the estimates of the covariance matrix and

expected values X(t)

N 1~ =~

Rz = Zmei, (2.35)
. 1~
E{x} = 7Xm 1y, (2.36)

where 1y is a column vector of ones of length N. Inserting the estimates into the gradient
of (2.15), one can write the stochastic gradient (SG) for both T and W

Videm = —%BXm (em +1.)W", (2.37)
Vidom = —%THBX,H (em + 1n). (2.38)

By defining an incremented error e, = e,, + 1y, (2.37) and (2.38) can be further simplified
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to generate the BW-RR-SG-GSC update rules (2.39) and (2.40).

T(t+ 1) = T(t) + prXge,, W, (2.39)
W(t+ 1) = W(t) + p T X ge,n, (2.40)

where X5 = BX,,. The full derivation can be found in Appendix 6.2. The VIT and
prewhitening schemes depicted in Sections 2.3.1-2.3.3 work in the same manner for the
block-wise algorithm. The only difference is that the whole data from the output matrix is
used in the HASP and VIT-HASP solutions. The SG nomenclature is used in this technique
for distinction with the sample-wise LMS algorithms types.

2.3.5 Computational Complexity Analysis

In this section, the computational complexities of the classical and proposed solutions are
compared. Sums and multiplications are considered for the computation of the complexity
cost. The sum of the total amount of sums and multiplications are considered flops, which is
the used measure unity [38]. In previous works [84,85], tables with a number of additions and
multiplications are given for various GSC adaptive algorithms. Table I shows the complexity
per sample of the used algorithms computed using the criteria and methods found in [38].
The LMS-GSC and BW-RR-LMS-GSC algorithms in Table II.1 have no colored noise
treatment and have a quadratic number of operations. By using a DP, one matrix vector
operation is added resulting in 2M? — 2M flops, thus keeping the quadratic complexity
as seen in lines DP-LMS-GSC and DP-LMS-GSC. However, when the HASP algorithms
are used, the SVD and a few matrix multiplications are required. This means that the
computational cost becomes cubic. The SVD alone costs 4M?N + 22N3 |38].

The BW-RR-LMS-GSC alleviates the SVD cost effect. Since the filter is updated block-
wisely, only one SVD per block is needed. If 4, iterations per block are set, then one
should process in average i, /N SVDs per sample. In schemes HASP-BW-RR-LMS-GSC and
VIT-HASP-BW-RR-LMS-GSC in Table II.1, if 4, = N, the cubic factors vanish reducing

drastically the computational cost.

2.4 Simulations and Results

For the simulations, a ULA with 32 elements was considered and random uniformly dis-
tributed QAM signals with unitary [>-norm for seven sources were generated, one relative

to desired signal positioned and six relative to the interferes. The source and interferes are
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Table II.1: Computational costs in flops

Algorithm Cost

LMS-GSC 4M? +4M — 4

Section 2.2.2

RR-LMS-GSC 8M? +4M + 14Mr — 10r + 2

Section 2.2.3

DP-LMS-GSC 6M?2 +2M — 4

Sections 2.2.2 and 2.3.3

HASP-LMS-GSC 8M2N +2dMN +22N3 +2dM +4M? +

Sections 2.2.2 and 2.3.1 AM — 4

VIT-HASP-LMS-GSC SM?2N +2dM N +22N3 +2dM +4M? +

Sections 2.3.2 and 2.2.2 4M — 4

DP-RR-LMS-GSC 10M? +2M + 14Mr — 107 + 2

Sections 2.2.3 and 2.3.3

HASP-RR-LMS-GSC 8M2N +22N3+2dMN +2dM +8M? +

Section 2.2.2 and 2.3.1 4M + 14Mr — 10r + 2

BW-RR-LMS-GSC 8M? + 8Mr +4MN + 2M — 6r — 2N

Section 2.3.4

VIT-HASP-RR-LMS-GSC 8M2N +22N3 4+ 2dMN + 2dM +8M? +

Sections 2.2.3 and 2.3.2 4M + 14Mr — 10r + 2

IS-IAtS_P—B\27VéI}R—LC11\/IQSé(iSC i - (8M2N + 22N3 + 2dM N + 2dM) +
ections 2.3.1 and 2.3. in 9 o

ip iterations per block n (8M7+8Mr+4MN +2M —6r—2N)

VIT-HASP-BW- RR LMS GSC L. (8M2N + 22N3 + 2dM N + 2dM) +

Sections 2.3.2 and 2.3.4 P (SM2-+8Mr +AMN +2M — 67— 2N)

i, iterations per block N’ TeMrY oM —br—

HASP-BW-RR-SG-GSC 16M?2+22N? +2dM +2dM /N +8Mr +

SecthnS 231 and 234 4MN 4 2M _ 6T _ 2N

N iterations per block

VIT-HASP-BW-RR- LMS GSC 16 M2 +22N? +2dM +2dM /N +8Mr +

Sect10n52323nd23 4MN+2M_6T_2N

N iterations per block

positioned at 10°, -63°, -43°, -21°, 28°, 39° and 61°, respectively. For all simulations, 600
samples were generated. Also, white Gaussian noise is added according to (1) and is latter
correlated by using the structure seen in (2.28). The correlation is set to p = 0.2 and p = 0.9
and the signal to noise ratio (SNR) is fixed at 10 dB. The reduced rank is set to » = 10 and

the results are evaluated according to the root mean squared error (RMSE):

RMSE(t) = /E{|s(t) — &(1)[2}. (2.41)

Table T1.2 summarizes the notation used in the legends of figures of this section. It is
worth noting that by default colored noise is used. When white Gaussian noise is used the
term “white noise” is written after the abbreviation.

The results are shown in a Monte Carlo fashion after 1000 trials. For comparison draw
the RMSE for the LMS-GSC in both white and colored noise is drawn. The Standard

LMS-GSC is used since to the best of our knowledge there is no state-of-the-art beamformer
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for colored noise environments. Moreover, the noise structure given by (2.28) is assumed.
Previous works consider noise as directional interference [13,68] or beamformers designed
with known interference direction [61|. The step size is set to fyms = 0.0006 in order to give
a similar curves as in [84,85] and yet not to diverge in colored noise scenarios. The same
Mims 18 adopted for the other simulations in this section. This same approach is used for
step size choice in the other simulations seen in this section. The optimization of p,s for
colored noise scenarios is a topic for a future work. Results for the LMS-GSC algorithms

are seen in Figure 2.7.

102 : . : . . 102
Batch GSC white noise Batch GSC white noise
LMS-GSC white noise LMS-GSC white noise
LMS-GSC colored noise LMS-GSC colored noise
Proposed DP-LMS-GSC Proposed DP-LMS-GSC
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Figure 2.7: RMSE of the LMS-GSC type algorithms versus samples for N = 50 and an SNR
of 10 dB

Note that in Figure 2.7b, the degradation of performance of the LMS-GSC white noise to
the LMS-GSC. The only difference between both curves is that in LMS-GSC white noise,
the noise correlation is 0 and, in LMS-GSC, the noise correlation is 0.9. If noise-only samples
are available, the proposed HASP solution represented by the dark blue curve can be used.
The RMSE of the HASP-LMS-GSC scheme is drastically reduced in comparison with the
standard LMS-GSC. For a VIT-HASP solution an even further reduction of RMSE can be
observed. For comparison, the batch GSC solution is plotted, i.e. the non-adaptive solution
using all the samples to estimate beamforming filter [47]. As the system evolves in time,
the proposed VIT-HASP-LMS-GSC, which run in colored noise scenario, almost reaches the
batch GSC white noise curve. Applying the proposed DP-LMS-GSC for a known correlation
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Table I1.2: Notation of the legends used in the figures

Abbreviation
Batch GSC white noise

Description

State-of-the-art GSC using all samples to estimate
w in a white noise scenario

LMS-GSC white noise

State-of-the-art adaptive GSC in a white noise sce-
nario

LMS-GSC

State-of-the-art adaptive GSC in a colored noise sce-
nario

Proposed DP-LMS-GSC

Adaptive GSC with deterministic prewhitening in a
colored noise scenario

Proposed HASP-LMS-GSC

Adaptive GSC with high accuracy stochastic
prewhitening in a colored noise scenario

Proposed VIT-HASP-LMS-GSC

Adaptive GSC with Vandermonde invariance trans-
formation based high accuracy stochastic prewhiten-
ing in a colored noise scenario

RR-LMS-GSC white noise

State-of-the-art reduced rank adaptive GSC in a
white noise scenario

RR-LMS-GSC

State-of-the-art reduced rank adaptive GSC in a col-
ored noise scenario

HASP-RR-LMS-GSC

Adaptive reduced rank GSC with high accuracy
stochastic prewhitening in a colored noise scenario

VIT-HASP-RR-LMS-GSC

Adaptive reduced rank GSC with Vandermonde
invariance transformation based high accuracy
stochastic prewhitening in a colored noise scenario

Proposed BW-RR-LMS-GSC
white noise

Block-wise reduced rank adaptive GSC in a white
noise scenario

Proposed HASP-BW-RR-SG-GSC

Block-wise reduced rank adaptive GSC with high ac-
curacy stochastic prewhitening in a colored noise sce-
nario

Proposed VIT-HASP-BW-RR-LMS-GSC

Block-wise reduced rank adaptive GSC with Van-
dermonde invariance transformation based high ac-
curacy stochastic prewhitening in a colored noise sce-
nario
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structure makes the algorithm performs better than in a white noise environment, since the
noise is reduced.

In Figure 2.8, the simulations for the RR algorithms are rerun. The step sizes are set to
tw = 0.0001 and pp = 0.00001. Also the standard RR-LMS-GSC is used for comparison.
For the block-wise algorithm pg = 0.0001/N and py = 0.00001/N. For the VIT-HASP
schemes the step sizes were slightly decreased to uw = 0.00005 and pr = 0.000008 for sake of
implementation stability. In Figure 2.8, it is also seen that even though the RR schemes have
a superior overall performance, the colored noise provokes a large reduction of performance
and shows a clear necessity of whitening the noise. The deterministic prewhitening has a
positive, but not large, effect by decreasing RMSE. The proposed HASP-RR-LMS-GSC was
shown to outperform the other methods. The combined VIT-HASP-RR-LMS-GSC has an
even smaller RMSE outperforming the HASP-RR-LMS-GSC.
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Figure 2.8: RMSE of the RR-LMS-GSC type algorithms versus samples for N = 50 and an
SNR of 10 dB

Since the SVD increases significantly the computational complexity of the algorithms
using a HASP solution, the BW-RR-SG-GSC is also shown as an alternative when compu-
tational power is not sufficiently available. The computational savings come at the cost of

response time. The block size is chosen to N = 50 and the number of iterations within each
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block is 2N. Even though a slower convergence is noticed, the HASP-BW-RR-SG-GSC gets
close to the HASP-RR-LMS-GSC on the final RMSE. Also, the VIT plays an important
role in reducing the RMSE. As shown in Fig. 2.8, the VIT does most of the filtering task
and the gain of the adaptive GSC becomes smaller. The steep descent seen on the first
50 samples of the VIT-HASP-RR-LMS-GSC curve is basically due the data length when
performing the low rank approximation. Once the data reaches its limit, here set to 50, the

RMSE remains almost constant.

RMSE
RMSE

Proposed BW-RR-LMS-GSC white
Proposed HASP-RR-LMS-GSC
Proposed VIT-RR-LMS-GSC

Proposed HASP-BW-RR-LMS-GSC

= = = Proposed VIT-HASP-BW-RR-LMS-GSC

L L L L L -1 L L L L L
0 100 200 300 400 500 600 10 0 100 200 300 400 500 600

samples samples

(a) RMSE for p = 0.2 (b) RMSE for p =0.9

Figure 2.9: RMSE for LMS-GSC type algorithms with a varying N and an SNR of 10 dB

In Figure 2.9, the BW-RR-SG-GSC in white noise scenarios is compared with the HASP-
BW-RR-LMS-GSC and the VIT-HASP-BW-RR-LMS-GSC. The HASP-RR-LMS-GSC and
the VIT-HASP-RR-LMS-GSC curves are left for reference. The BW-RR-SG-GSC does not
improve RMSE in a colored noise scenario with p = 0.9. In Figure 2.9, the HASP-BW-
RR-SG-GSC has a similar RMSE when compared to the BW-RR-SG-GSC in a white noise
environment and the VIT-HASP-BW-RR-LMS-GSC has a similar RMSE to the VIT-HASP-
RR-LMS-GSC.

In Figure 2.10a the evolution of the RMSE in terms of block size is shown for the full
rank algorithms. The HASP-LMS-GSC has a better RMSE than the DP-LMS-GSC when
N > 80 and the VIT-HASP-LMS-GSC has its RMSE almost unchanged for N > 50. In
Figure 2.10b, the evolution of the RMSE in terms of block size is shown for the reduced rank
algorithms. As shown in Figure 2.10b, the block size plays an important role in the reduced
rank algorithms, specially for the HASP-only prewhitening schemes. The VIT based HASP
algorithms have the best performance in comparison to the other schemes. The final plots

shows the final RMSE after 600 snaphots for a varying correlation p in Figure 2.11. Figure
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Figure 2.10: Final RMSE for algorithms with a varying N, an SNR of 10 dB and p = 0.9.

2.11a shows that the RMSE for the proposed DP-LMS-GSC remains basically constant with
the increase in p. The proposed HASP-LMS-GSC has very low RMSE and increases with
the increase of p, but still ending with an RMSE comparable to that of the white noise case.
Figure 2.11b shows the RMSE for the reduced rank algorithms. In Figure 2.11b, it is seen
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Figure 2.11: Final RMSE after N = 600 snapshots with a varying p and an SNR of 10 dB

that besides the DP case, all the proposed schemes operate with RMSE levels bellow of that
in the white noise case.
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2.5 Summary

In this chapter, the adaptive GSC and the reduced rank adaptive GSC are extended for
colored scenarios. As shown in this chapter, the colored noise degrades significantly the
performance of the GSC and RR-GSC algorithms. To reduced RMSE in these scenarios,
the DP-LMS-GSC, the HASP-LMS-GSC and the VIT-HASP-LMS-GSC algorithms for the
full rank adaptive GSC and the DP-RR-LMS-GSC, HASP-RR-LMS-GSC and VIT-RR-
LMS-GSC for the reduced rank adaptive GSC are proposed. These algorithms are based on
the DP, on the stochastic prewhitening and on the VIT. The DP is used when the correlation
structure of the noise is known and the stochastic prewhitening when it is unknown. The
VIT acts as a pre-beamformer reducing the power that is not in direction of the desired
signal.

The stochastic prewhitening requires one SVD to be computed at each sample. To reduce
the number of SVD computations, a block-wise SG-RR-GSC was proposed. The algorithm
adapts its filter block by block making only one SVD per block necessary reducing compu-
tational cost. The block-wise SG-RR-GSC in colored noise scenarios led to the development
of the HASP-BW-RR-SG-GSC and VIT-BW-RR-SG-GSC algorithms.

The incorporation of prewhitening schemes transforms back the colored noise into white
noise allowing a significant improvement of the GSC and RR-GSC. Based on that, several
algorithms were proposed for colored noise scenarios. A block-wise algorithm was proposed
to reduced the number of SVD computations to one per block. By means of simulation, a

lower RMSE was achieved in the final result when compared to the sample-wise methods.
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MULTIDIMENSIONAL
BEAMFORMER FOR SEPARABLE
ARRAYS

The tendency for a high number of antennas in 5G standards may create many practical
cases in which antenna arrays have structures that can be exploited via multidimensional
techniques. If the array manifold is said to be separable, i.e. it can be built from outer
products of one dimensional arrays, it can be written in a natural and convenient form [73|. A
practical example with this structure is the uniform rectangular array (URA). The classical
approach to beamforming ignores the multidimensional nature of the data by vectorizing
the array prior to applying the algorithm [4, 82].

Even though the exploitation of the tensor structure of the data reduces parameter es-
timation error |25, 43|, there has only been very little prior work on the exploitation of
multidimensionality for beamforming. In [39], a translation invariant array is considered
for creating a tensor. Then, a parallel factor (PARAFAC) decomposition [54] is applied
to find the filter weights in a constrained filtering problem. In this work, the generalized
sidelobe canceller (GSC) [40] is used. The GSC solves a constrained problem by decou-
pling the constraints so that the adaptive part of the filtering is unconstrained. Moreover,
the several tensor data rearrangements, unfoldings, are jointly used, thereby, exploiting the
multidimensional separable structure. This breaks the solution into R smaller dimension
GSCs, reducing the overall system complexity. Finally, tensor unfoldings are used to vir-
tually increase the number of samples, thus enhancing the quality of the beamformer and
creating a novel approach to beamforming, the proposed R-Dimensional GSC (R-D GSC).

This chapter is divided into six sections including this introduction. Section 3.1 shows the
data model. Section 3.2 describes the classical GSC algorithm. Then, Section 3.3 presents

the proposed R-D GSC for multidimensional array processing. Simulations and results are
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shown in Section V. Finally, a summary is made in Section VI.

3.1 Data Model

Consider a vector s; = [s;(1), ..., 5;(IV)]T containing the transmitted symbols s;(t) associated
with the i-th source. These symbols reach the antennas of an R-dimensional array. For
clarity of illustration, a uniform rectangular array (URA) is used, as depicted in Figure 3.1.

Later in this section, the extension for higher dimension arrays will be made.

Figure 3.1: Elevation ¢; and azimuth 6; of the direction of arrival of the i-th source

An impinging planar wavefront from the i-th source reaches the array with azimuth 6,

and elevation ¢; causing them to be received with phase-delays

a(mme) — omilmiglVtmagl) 3.1
gpgl) = A, cos(0;) cos(;), (3.2)
gpgg) = A sin(6;) cos(¢;), (3.3)

where m; and my are the corresponding antenna positions in the x and y directions respec-
tively, and A, and A, are the inter-element spacings. The phases for a URA of size M; x M,
are grouped in the matrix A; € CM1*Mz of the same size. In the presence of d sources, the

received signal can be represented by
X(t) =) Aisi(t) + V() € CMMe, (3.4)

where V(t) contains zero mean complex white Gaussian (ZMCWG) noise. As shown in

Section 3.2, classical systems frequently use the vectorized form of X(¢),

x(t) = vec(X(t)), (3.5)
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as input of the system. Therefore, the 2-Dimensional system is transformed into a unidi-
mensional one.

To avoid vectorization and obtain a more compact notation, d steering matrices A; can be
stacked along the 3" dimension to form a steering tensor A € CM1*M2xd - Also. consecutive
signal symbols are further grouped in the matrix S = [sg, ...,s41]T € C™*¥. The received

signal model (3.4) can be then extended to a tensor model
X = Ax3 ST 4V e CMxMxN, (3.6)

where V is the M; x M5 x N noise tensor containing ZMCWG noise. Figure 3.2 illustrates

the process of formation of the received tensor.

URA
OO0 - O| capture N M,
(o)o) snapshots
So(t), caey Sd_l(t) —> : .., : M1 —> X
O O N
MQ M2

Figure 3.2: Using a URA to form a 3-D data tensor

For (3.6) to be valid the antenna array must be separable [73]. This is equivalent of
saying that the steering matrix A; can be formed by the outer product between two vectors.
From Equation (3.1) it is also clear that URAs have a separable structure since A; =
a; (M) o a;(0®), where a;(p™M) = [a®?, . a™ ] and a;(p?) = [a["?, ..., a!"M ]
are the vectors formed by varying one dimension and zeroing the others. To generalize
the following derivations, the data model is extended to arrays with R dimensions, i.e.
A; = a;(pM) o a;(¢?) o ... 0 a;(¢p™), the received tensor model in Equation (3.6) can be
further extended to

X = A X Bt ST + v c CMl><M2><...><MR><N7 (37)

where the steering tensor A has size My x My X ... X My x d. Please note that in the case

of antenna arrays, R < 3.

3.2 Batch GSC for multiple dimensions

In this section, the application of the classical batch GSC to a multiple dimension antenna

array is shown. Thus, the same steps shown in Section 2.2.1 are repeated with a slight
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notation change to support multidimensional data. The classical GSC [40] block diagram is

depicted in Figure 3.3.

x(t)

Figure 3.3: Classical GSC for R dimensions.

First, in the upper part of Figure 3.3, the signal d(t) = aH(wél), o tpéR))X(t) is extracted

by a delay and sum filter a(gp(()l), s ap(()R)) with taps computed in the same manner as (3.1)
and steered in the direction of the signal so(¢). This signal is considered the desired signal,
thus the notation d(t), and the remaining d — 1 signals are considered interference. The
phase-delays @él) are computed from the estimated direction of arrival (DOA) angles, e.g.

0o and ¢g. For estimating the DOA the reader is referred to [43].

In the bottom part of Figure 3.3, a blocking matrix B € CMi Mz Mp=1)xMMz..Mp  gyych
that B - a(go(()l), e cp(()R)) = 0, is used to extract the interference signals xg = B -x(t). In an
ideal system, the filter w is computed as the Wiener solution of |d(t) — wixg()|? to give

an interference-removing, or sidelobe canceller, filter:

where, Ry, and ry,4 are the correlation matrix of xp(t) and the cross correlation vector
between xg(t) and d(t), respectively. The total filter is
) (2 R
WgSC:a(QOE])ﬂO((J)au()Oé )>_BHW7 (39)
thus the upper part of Figure 3.3 corresponds to the static part of the system and the

bottom part is adaptive.

For practical algorithms, the ideal Wiener solution in Equation (3.8) is not reached.
Instead, batch algorithms can be used to estimate Ry, by capturing N snapshots. This is
equivalent to using the (R + 1)-th mode unfolding of the tensor X, since

Vec(X(:,:,...,l))T
Vec(X(:,:,...,Q))T

(X (Ry1) = g CN*MiMz- Mg, (3.10)

VGC(X(Z,Z7...,N)>T
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Hence, the estimates can be computed as

R, = 3B (X)) B, (3.11)
. 1 .
Prpd = NB[X](TRH)d , (3.12)

where d = [d(1),d(2), ..., d(N)]".

3.3 Proposed R-Dimensional GSC

The classical GSC uses the vectorized form x(t) of X and in this process it loses its mul-
tidimensional structure. To take full advantage of the tensor structure of the data, one
can analyze the unfoldings of X. This is done to take advantage of parallel computations,
smaller size matrix inversions and to virtually increase the number of samples. In the URA

case, it is analyzed that the 1-st and 2-nd mode unfoldings are

(X)) =[X(:,1,1),., X(:,1,N), X(:,2,1), ..., X(:, Ma, N)], (3.13)
(X)) =[X(1,:,1),.., X(My,:,1), X(2,:,2),..., X(My,:, N)]. (3.14)

Along the columns of (3.13) and (3.14), the phase delays (3.2) and (3.3) are preserved, in
that order. Therefore, the columns of (3.13) and (3.14) can be used to separately compute
R components of an enhanced new filter. This enhancement is possible since the number of
snapshots is virtually increased to ) N M, against N snapshots in the classical GSC.

The basic concept behind the R-D GSC is to use the R+ 1 mode unfoldings of the tensor
X to take advantage of the tensor structure of the data. Figure 3.4 shows the R-D GSC

block diagram taking advantage of this feature.

(X (1) (5 k1)

[X](2)(:a k2)

1-D GSC

11

1-D GSC

(X (r)(:,kr) mmpl1-D GSC

(K1) G by —

i

X
Figure 3.4: Block diagram of the R-D GSC algorithm
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First, the tensor X is unfolded into its R+ 1 modes. R classical GSC blocks, as explained
in Section 3.2, are fed columns of the of the r-th mode unfoldings [X],, indexed by k().
This contrasts with the with Section 3.2, where only time samples are considered as input
to the system. The 1-D GSC blocks would ideally find the Wiener solutions of |d™(k,) —

[wEx{) (k,)|? for each r-th dimension:
wl) = [ROV]-1p0) (3.15)

where xg)(k‘(r)) = B®[X],(:, k), R is the correlation matrix of Xg)(k‘(r)) and r(™ is the
crosscorrelation vector between xg)(kz(”) and d™(k,). Similarly as in Section 3.2, d™(k,)
is the output of the delay and sum filter corresponding to the desired signal extracted from
the r-th mode unfolding. The total filters are computed as follows

wii = alpy)) - [BUw. (3.16)

gsc

To estimate the correlation matrices and the crosscorrelation vectors for the batch GSC
algorithms, the unfoldings [X](,) are computed and then applied in the same manner as in

(3.11) and (3.12) except by the Hermitian and transpose on the unfoldings:

1

RO = ZBOX] [ X]f, [BU), (3.17)
alr 1 T 7)1%
i = B X [d7]" (3.18)

Once the R filters are computed, they should be combined to form the final filter with
length M;M,...Mg. Since a separable array is considered, the final filter computed as the

Kronecker product of both static and adaptive part is proposed:

W = alpy) @alpl) ® - @ a(pl?) -
BYiw® @ BOHw® g ... @ [BEHw®), (3.19)

Besides virtually increasing the number of samples, this scheme has the advantage of
allowing each term [f{(”]’lf‘(r) to be computed separately. This gives the possibility of
parallel computations in receivers with such capability, thus reducing computational time.
Also, there is a computational advantage in using the multidimensional structure due the
complexity of matrix inversions. The classical GSC requires the inversion of a matrix with
size My Ms...Mp x M M,...Mpg. By exploiting the multidimensionality of the data, the R-D

GSC requires R matrix inversions of size M, x M,.
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3.4 Diagonal Loading

In order to perform beamforming and symbol estimation in antenna array systems, matrix
inversion operation are typically necessary. In an antenna array system, when the number of
snapshots is small in comparison to the number of antennas, the covariance matrix estimate
tends to be bad conditioned. According to [60], the inversion of a bad conditioned covariance
matrix causes noise (or clutter) amplification, degrading the filter quality. Diagonal loading
alleviates this bad conditioning by adding a constant, or loading level, to the elements of
the diagonal to the covariance matrix estimate [20]. In massive MIMO scenarios, such noise
amplification becomes even stronger due to the small number of snapshots in comparison
with the amount of antennas
The diagonally loaded correlation matrix is created by summing a diagonal matrix to the
correlation matrix [36|
R,=R+1-[ (3.20)

where I is the identity matrix, R is the correlation matrix and [ is the loading level. The
load reduces the eigenvalue spread by acting as if power was added impinging from every
direction. To analyze the diagonal loading effect on the beam shape, the spatial response of
the computed filter is computed after diagonal loading is applied:

P(0,¢) = [wy.a(0. )|. (3.21)

gsc

The effect of diagonal loading on the GSC’s spatial power response is shown in Figure 3.5.
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(a) Spatial response without diagonal loading (b) Spatial response with a diagonal loading of
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Figure 3.5: Magnitude of the spatial response of the GSC filter

In Figure 3.5a, it is seen that the filter succeeds in reducing power from the interference.
The constraint also sets P(6, ¢) = 1 in the desired signal direction. However, the beamformer
filter spatial power response is high in the directions where no source is present what can

degrade signal quality. Moreover, the global maximum is not at the desired signal direction
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what can cause thermal noise amplification. Figure 3.5b shows P(f,¢) after a diagonal
loading is applied. In Figure 3.5b the spatial power response is as expected with a maximum
at the desired signal direction, very low power in the interferences directions and low power
elsewhere.

As long as the loading level is considerably lower the sources related eigenvalues in the
correlation matrix, the loading should not greatly affect the systems capability of mitigating
interference [36]. This concludes that diagonal loadings can be used when the desired signal
quality is not as expected and the spatial power response is similar to that shown in Figure

3.5a. Therefore, this technique will be used in Section 3.5.

3.5 Simulations and Results

For the simulations, a URA with size 8 x 8 is used and QPSK samples are created. Then, 5
uncorrelated signals with unitary variance are inserted into the simulation scenario: one de-
sired and 4 interferers at (6;, ¢;) € {(0°,45°); (—75°,55°); (352, 80°); (—20°,10°); (80°,35°)}.
The desired signal DOA (6, ¢o) is considered known in order find go(()l) and go((]Q) for the
computation of both Classic and R-D GSC approaches. Noise is added and the signal to
noise ratio (SNR) is set to 0 dB. To verify the algorithms the signal to interference and noise

ratio (SINR) for uncorrelated signals with unitary variance is computed as:

wi Ay (. LA, Dwig

SINR = ,
wi ([Al s (2 d)[.A}g)( ,2:d) + 02)wyg

(3.22)

x5 and R with a
loading level [ = 0.8 for the GSC and [ = V0.8 for each R-D GSC correlation matrix.

The plot of the SINR for the classical GSC and R—D GSC is shown in Figure 3.6 with
a varying number of samples N. The classical GSC shows a low SINR level for small N,
while the R—D GSC is above 8dB at N = 20.

Then, the same scenario as previously is kept and the amount of samples is fixed to
N =100 and the SNR is varied from 0 to 60 dB. The result is shown in Figure 3.7. Figure
3.7 shows that the SINR is better for the R-D GSC when the SNR is very or high and about
the same between 10 dB and 20 dB.

For the third simulation, the previous scenario is kept and the number of samples is fixed

where o2 is the noise variance. Diagonal loading was applied [20] to R

to N = 50 samples. Then, the size of the array is varied keeping the dimensions with same
length My = M,. The results are shown in Figure 3.8. For this simulation, the classical
GSC SINR starts at 7.6 dB and settles roughly at 12 dB as the number of antennas is
increased. For the R—D GSC, since the dimensions of the final filter wq are computed

separately, the number of degrees of freedom is limited to the M, — 1 for each dimension.
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Figure 3.6: Effective SINR after applying the Classical and proposed 2-D GSC for a varying
number of temporal snapshots N
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Figure 3.7: Effective SINR after applying the Classical and proposed 2-D GSC for a varying
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This means that the algorithm properly attenuates the interference sources when M, > d,
as observed in Figure 3.8. For M; = M, <5, the R—D GSC SINR is below 8 dB. However,
for My = My > 5, the R—D GSC can reach SINRs of more than 20 dB.

To verify the computational time difference between both schemes, the same scenario is
kept and N is varied. Also two cases are considered. One when the unfoldings are already
accomplished by hardware with such a capability and a second where the unfoldings are

computed via software. The results are depicted in Figure 3.9.
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Figure 3.9: Computational time versus N

In Figure 3.9, the dashed curves show the computational time considering that the unfold-
ings are computed via software. The R-D GSC shows a mean computational time 30% faster
than the Classical GSC. Considering that the samples are delivered already unfolded by the
hardware, the R-D GSC shows a mean computational time 43% lower then the Classical

GSC.
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3.6 Summary

As the number of antennas and array dimensions at the receivers increase, the possibility of
using multidimensional schemes arises. This chapter shows how to take advantage of this
multidimensionality in order to enhance the performance of beamformers. Also, by usage of
R mode unfoldings allows for parallel computations of reduced size matrix inversions, giving
a lower computational complexity to the system. With this goal, the R-Dimensional GSC
was presented. This scheme uses R mode unfoldings to take advantage of the multidimen-
sionality and the simulation results show the SINR with a varying the number of samples
and number of antenna elements. The results show SINR increases significantly when the
number of antennas in each dimension is higher than the number of source signals.

In the future the limitation due to the reduced degrees of freedom, when the number of
antennas in each dimension is lower than the number of source signals, should be addressed.
Also, the R-D GSC should be extended to its adaptive form giving more flexibility and

tracking capability to the beamformer.
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IV

BROADBAND BEAMFORMING VIA
FREQUENCY INVARIANCE
TRANSFORMATION AND PARAFAC
DECOMPOSITION TRACKING

Frequently, beamformers assume narrowband signals. However, the adoption of cognitive
radio implies into the opportunistic exploitation of several frequency slots requiring a broad-
band beamforming. Moreover, millimeter wave communication systems should also deal
with broadband signals. Finally, MIMO-OFDM systems assume only a small amount of
OFDM channels so that the channel can be assumed as flat. Therefore, broadband beam-
forming can be incorporated into MIMO-OFDM systems in order to increase their through-
put taking into account a huge amount of frequency slots. In the broadband scenario, the
time delays cannot be considered as pure phase delays, but as time delays represented by
time convolutions as it is described in the signal model in Section 4.1. Techniques de-
signed for narrowband signals are not suitable for broadband scenarios. Therefore, bank
of frequency invariant beamformers (FIBs) [76] is applied for broadband scenarios. The
output signals of such bank of FIBs are represented as instantaneous mixtures, and, as a
consequence, simpler separation techniques for instantaneous mixtures can be used.

This chapter proposes a framework composed of a bank of FIBs [65], combined with the
PARAFAC tensor decompositions [46,54]. Moreover, the framework exploits the adaptive
PARAFAC recursive least squares tracking (RSLT) technique [70] in order to adaptively
track the PARAFAC decomposition.

The original PARAFAC recursive least squares tracking (RLST) technique proposed
in [70] was designed to exploit a time growing tensor, requiring the sources to be non-

stationary. In this chapter, the correlation tensor is built in a novel cyclical manner, so that
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the PARAFAC decomposition for non-white sources [57] can also be applied adaptively.
Finally, a recursive pseudoinversion of the estimated steering matrix is proposed via the
Ben-Israel and Cohen iterative pseudoinversion method [16| and it is compared with the

widely used minimum mean squared error-based algorithm proposed by Frost [35].

4.1 Broadband Signal Model

Figure 4.1 illustrates a scenario containing two radio base stations equipped with antenna

arrays such as those found in Chapters Il and III. Each antenna receives a combination of

Interference

SOl

Figure 4.1: Scenario cointaing a URA and a ULA. Each signal has a single path to each
antenna.

the signal of interest (SOI) and the interference. The signals have bandwidth B and, since
their directions of arrival are different, their relative delays are different for each antenna.
Therefore, the received signal at the m-th antenna can be written as a sum of time-delayed

signals

T
=

Tm(t) =Y si(t — Tim) + vm(t), (4.1)

%

Il
=)

where 7; ,,, is the propagation delay between source i and the antenna m and v,,(¢) is additive

Gaussian white noise. The received signal can be considered as a filtered version of the
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original signals, where the filters represent pure delays

T (t) =) 8i(t) % 0(t — Tim) + vin(t), (4.2)
i=0

where % denotes the convolution operator and 0(t = 0) = 1, while §(¢ # 0) = 0. Therefore,
the difference between (4.2) and the models on Chapters IT and IIT is that the delay is caused

by the convolution with §(¢ — 7) instead of the multiplication by a phase shifting term.
When designing beamformers, the goal is to find an estimate §;(t) for each s;(t) source
at the outputs y;(t) of the beamformer. Simple narrowband models regard the propagation
delay as a phase delay and, therefore, should be valid only for a specified frequency. Since in
this case the source signal has a band B = [wyin, Wmax], all frequencies within B should be
taken into consideration. One way to achieve this in the digital domain is to approximate
the convolution by a discrete filtering process. The filtering is achieved using tap-delay lines

as shown in Figure 4.2.

Zo(t) p{z ! iz ! —{z !
| | 1 ]
XWo,0 XWo,1 XWo,2 XWo, -1
z1(t) sl -1 -1
7 e R Z
><w1 ,0 ><w1 1 XW1,2 XW1,L—1 (t)
Yy
T
M— 1(t) _ _1 -1
-7 —» 17—
wpg— 10>< ><wM 1,1 XwM 1,2 wa 1,L—1

B S S

Figure 4.2: Tap-delay line. Each antenna m receives a broadband signal filtered by an FIR
filter containing L taps.

For each sensor and delay, a group of weights w,,;, for [ = 0,...,L — 1 and M =
0,...,M —1, creates M finite impulse response (FIR) filters of length L. With the weights,

the reconstruction of the original signals can be attempted

M—

,_.
h
,_.

T (t — 1T5) X Wy, (4.3)

Il
=)

m=0 1
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where T is the sampling rate, M is the number of antennas and L is the total length of the

delay line. To allow for a compact notation, a received signal matrix is introduced as

zo(t) ro(t —Ts) ... xo(t— (L —1)Ty)
x1(t) r(t—Ts) ... x(t—(L—1)Ty)
X(t) = | z1(t) ot —T,) ... wm(t—(L—1T,) | e cM. (4.4)
_$M_1(t) [L’]w_l(t — TS) c. [L‘]W_l(t — (J — 1)Ts)_

Even though the notation in Equation (4.4) has a more natural form since it clearly
distinguishes between the space and time-delay dimensions, a vector notation is usually
more practical where, instead, a received vector x(t) = vec(X(t)). The operator vec(:)
vectorizes its argument by stacking its columns. In a similar manner, a vector w; containing

all filter coefficients wy,, is created to write the compact form of Equation (4.3).

yi(t) = wi'x(t). (4.5)

From the frequency domain representation, Equation (4.2) can be rewritten by regarding

the propagation delays as a different phase delay for each frequency bin

U
—

Xoni(w) = A1 (Pi, w)Si(w) + Vin(w), (4.6)

i

Il
o

where w is the angular frequency and the array is at the origin of the coordinate system,

the i-th source is at position p; and a,,;(pi,w) are elements of the steering vector defined

as
a(p;,w) = vec(A(pi,w)) e CMLx1 (4.7)
e—JwTio e—jw(Ti,0+Ts) o e—jw(7i70+(L—1)T5)
e~ IwTi1 e—Jw(Ti1+Ts) o e—iw(Ti1+(L-1)T5)
Apow)=| o | cOML
e dwTim-1  e—jw(mim—1+Ts) o—jw(Tim 1+ (L-1)Ts)

For a ULA, a(p;,w) is dependent on the unidimensional DOA 6; instead of the three di-
mensional coordinate p; in such a way that wr,,, = mA\"127sind. For generalization of

the central frequency one may also use the normalized frequency 2 = w7, and make the



4.1 BROADBAND SIGNAL MODEL 29

substitution u = A, /(cTy) to rewrite Equation (4.8) as

1 =79 eI -1)
e —inQsin6; e~ nsinbi+1) —jQ(psin 0;+(L—1))

Ce €
A6;,w) = _ . _ . e CMxL,

e—jp,QsinGi(M—l) e—j,u,Q(sinQi(M—l)—l-l) e—j,uﬂ(sinGi(M—l)—l—(L—l))

(4.9)

Even though Equations (4.7) and (4.8) are not practical for the creation of simulation

scenarios, they are useful for the computation of the spatial and frequency response of the
designed filter w:

P(0,w) = wha(h,w). (4.10)

As an example, let us consider the response of the filter w = %[0 00000001111
0000000 QO0]" in Figure 4.3 for M = 4 and L = 5. To obey the Nyquist theorem,
T = 0.5T i, and A, = 0.5\, where T, is the period of the highest frequency component
and Ay, its wavelength, thus p = 1. Figure 4.3 clearly shows the frequency dependency

3.5

25
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o w
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Magnitude response [dB]

-100 -50 50 100
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(a) Top view (b) Angle view

Figure 4.3: Spatial and frequency response of w steered to 0°

of the broadband beamformer. Section 4.2 reviews a technique for the construction of

frequency invariant beamformers.
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4.2 Multi-Dimensional Inverse Fourier Transform

Frequency Invariant Beamformer (FIB) Design

In this section, the work first proposed in [76] that is based on the bidimensional inverse
DFT (IDFT2) is reviewed. Detailed extensions for more dimensions can be found in [64].
To review the method in |76] let us first consider the Fourier transform-based response of a

continuous space and time beamformer w(z,t) for and ULA

P(0,w) :/ / w(z, t)e esn0 LIt gy iy (4.11)

where ¢ is the wave speed and x represents sensor location along a linear axis. The basic
idea is to design filter w(z,t) by defining a frequency invariant response P(f,w) and take
its bidimensional inverse Fourier transform to find the desired tap-delay weights [76]. The

process can be facilitated by the substitutions

wy =wc 'sinf (4.12)

Wy = w (4.13)

in order to find the spatial-temporal spectrum that allows for the application of the inverse

bidimensional Fourier transform:
P(wy,wy) = / / w(x,t)e I eIt dydt. (4.14)

By analyzing the equality formed from (4.12) and (4.13) w; = wyc!sind, it is easily
verified that

| (S

—~<1<o (4.15)

ol
ol

&
N

Given that a signal is band limited at maximum frequency of wy.x, one may further limit
the spatio-temporal spectrum to the region wy < wpax. Also, the dependency on w has
to be eliminated so that the response is frequency independent. This independence can
be obtained when the spectrum obeys the relation P(w;,ws) = P(cwy/wy). This results in
cwy /we = sin @, thus, asserting that the spatio-temporal spectrum is only dependent on 6.
For the discrete case, the frequency is replaced by the normalized frequency 2 = w7, and

the integral by discrete sums

[e.9] o0

P(6,Q) = Z Z wlm, n|e I¥musind g=jn, (4.16)

m=—0o0 N=—0o0
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where m is the antenna index, n is the discrete time index and the brackets || are used to
point out the discrete function. In the same manner as in (4.14), substitutions are made for
Q= Qusinf and Qs = (2 leading to the bidimensional DFT form of the spatial-temporal

response

P(Qy,Q,) = Z Z e IShm=ittan, (4.17)

m=—0o0 N=—00

By choosing A, = 0.5\, and Ty = 0.57,,,, it is found that © = 1 and Q. = 7.
Therefore, condition (4.15) reduces to —1 < (€;/€%) < 1. This region of existence is
depicted in Figure 4.4.

A &22
&22 = —&21 s Ql = QQ

Y

[ Jregion of existence

Figure 4.4: Region of existence of the spatio-temporal response

The final desired spatial-temporal response of the beamformer is

F(Q/Q) if [Q,/Q] < 1,
P, Q) = ¢ a(Q, Q) if [Q/Q] > 1, (4.18)
a(O, 0) if Ql == QQ = 0.

A common choice for F'(2;/€) is the narrowband delay and sum filter [82] as a prototype
filter:

[Mprot /2]

Z efjmﬂ'sine’ (419)

m=—[Mprot/2]

1

F(Ql/92> = M .
pro

where [-] is the rounding operator to the biggest neighbor integer and || is the rounding
operator to the smallest neighbor integer. Since ({24, {25) lies outside the region of existence
of P(£,€s), it can be chosen arbitrarily. At the point ; = Qs = 0, the DC component,
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which is usually removed, is found and it carries no spatial information, therefore, it can be
set to zero. The resultant beamformer is the bidimensional inverse discrete Fourier transform
(IDFT2) of P(24,85) sampled along €, and set to proper values of (2, 2s) outside
the region of existence.

As an example, the IDFT2(P(€y, 2s)) of size 32 x 32 is computed for M = 10 and L = 20
and set a(€, Q) = 0. The beamformer coefficients w[m, n] are obtained via translation and
truncation of the 32 x 32 result of the IDF'T2 to the desired M x L size. After assigning the
coefficients properly inside the vector w, the response is computed using Equation (4.10).

The result is shown in Figure 4.5.
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Figure 4.5: Spatial and frequency response of a FIB

In Figure 4.5, it is verified that the frequency independence of the designed filter up to

Q) = 0.47. For reference, the coefficients are shown in Figure 4.6.

4.3 Bank of FIBs as a Virtual Array of

Instantaneous Mixtures

By using the concepts in Section 4.2, it is shown how a bank of FIBs can be created for
spatial filtering of broadband signals. By creating a bank of FIBs that has independent
FIB responses, one can use the output from each FIB as virtual array element, where the
frequency dependency, i.e. broadband characteristics, is removed. Hence, the output from
the bank of FIBs can be considered as a virtual array containing instantaneous mixtures

instead of convolutive ones [63-65]. To elaborate this model, the two responses shown in
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Figure 4.6: Taps of the filter w[m, n]

Figure 4.7 are considered.

Magnitude response [dB]
Magnitude response [dB]

60l L i 1 J .60 L L i
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sin{t) sin(t)

(a) FIB focused at sin(f) =0 (b) FIB focused at sin(§) = —0.4

Figure 4.7: Responses of FIBs inside the frequency invariant region; (a) gain at sin(f) = —0.4
is almost -35 dB and 0 dB at sin(f) = 0. (b) the gain at sin(f) = 0 is roughly
-30 dB and 0 dB at sin(¢) = —0.4.

In Figure 4.7a, the lines show the frequency response over the invariant frequencies for a
FIB focused at sinf = 0, while Figure 4.7b shows the frequency response over the invariant
frequencies for a FIB focused at sinf = 0.4. When two signals impinging on the array from

these exact same angles are considered and since the responses are practically frequency
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invariant over the signal spectrum, the output from each FIB is an instantaneous sum of

the source signals

Zaibo(t) = Pooso(t) + Prosi(t), (4.20)
Tapa (t) = Po1so(t) + Prasi(t), (4.21)

where zgp(t) is the k-th FIB output signal. Generalizing for K FIBs, one can rewrite (4.20)

and (4.21) in a compact matrix form
Xﬁb(t) =P- S(t) € CKXI, (422)

where P is the matrix containing the gain coefficients P, ;. This model is very similar to
models one may find in narrowband scenarios such as the independent component analysis
mixture model [50]. Therefore, narrowband algorithms may be applied with little or no
modifications. Figure 4.8 shows a block diagram of a narrowband algorithm working via a

bank of FIBs or the so called frequency invariance transformation.

// _Bank of FIBs _

Virtual array

w >

: Ni
/// N adaptive
] algorithm

-

Figure 4.8: Diagram of a filtering scheme composed of a bank of FIBs and narrowband
adaptive algorithm

According to [76], the maximum number of FIBs that can be used and still assure inde-

pendence is Kp.x = [M/3]. Liu et. al. [65] developed a technique to shift the responses
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appropriately to construct independent FIBs, avoiding the previous empirical method [76].
The concept of independence is important since an increased number of FIBs with dependent
responsesould cause an increase in computational complexity without interference cancel-
lation gain. Liu et. al. [65] also showed that the maximum number of degrees of freedom
of the prototype filter should be M, = min{|M/3],|L/3]|}. Liu’s method to provide
independent responses consists on shifting the frequency axis of the k-th FIB by %, which
can be seen as a multiplication in the frequency domain by the DFT coefficients e~/ 7 oof

a DFT of size K. A way to accomplish the invariance is to shift the prototype filter (4.19)

accordingly
1 [ Mprot /2] S
F(/Q) =+ > erimmlintzeinto), (4.23)
prot

m=—[Mprot /2]

where 6y is the direction to which the main beam is shifted. Using the DF'T method, the
k-th frequency invariant prototype filter is

1 M /2 —jmsin 6 —jmm
Fie(0/Q2) = - Y. e IR (4.24)
prot

m=—[Mprot /2]

As an example, a bank of K = 5 FIBs is computed and the FIBs are plotted simultaneously

in Figure 4.9 for a single frequency inside the invariance region.

10 T T T T T T T T T

Magnitude response [dB]

_60 1 1 1 1 1 1 1 1 1

Figure 4.9: Response of a bank of 5 FIBs at a frequency inside the invariant range
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4.4 Tensor Decomposition for Steering Matrix

Estimation

In this section, the PARAFAC tensor model/decomposition is reviewed in Section 4.4.1 and

a technique to estimate steering matrices using such model is revised in Section 4.4.2.

4.4.1 A Review on the PARAFAC Tensor Decomposition

Several tensor decompositions have been developed in the several years and have been
revised, for example, in [54,73]. One of the most used decompositions is the PARAFAC
decomposition. One of the original works on this decomposition was published in 1970 [46]
and also independently in the psychometrics field under the name canonical decomposition
(CANDECOMP or CP) [21]. A 3-dimensional rank d PARAFAC decomposition is a sum

of the outer products of vectors (rank-1 tensors) in all 3 dimensions

d
X =) tof®of? (4.25)

r=1

where £ € CMx1, The process is also illustrated in Figure 4.10.

f1(3) f(§3)

- [(TTTTI P+~ [ILITIP
£%)

£l

1
X f1(1) f(g )

Figure 4.10: Tllustration of a PARAFAC decomposition of a 3-dimensional (or three-way)
array

It is also worth noting that the rank of the tensor is not directly related to the rank of
a matrix, where its maximum rank is dpy., = min{M;, M,}. For a tensor, only an upper
bound is known which states that dya, > min{M;, My, M3}. In the case of array signal

processing, this loose upper bound may allow for an underdetermined signal processing.

Since in the end matrices are what is usually estimated, another useful way to write the



4.4 TENSOR DECOMPOSITION FOR STEERING MATRIX ESTIMATION 67

PARAFAC decomposition is in a r-mode product notation 73]
X =T3 x, FU x, FO) 5 FB) ¢ M MaxMs, (4.26)

where Zs is a 3-dimensional identity tensor of size r and F® are the factor matrices contain-
ing all r vectors in its columns. Another useful notation that allows for signal processing

insights is a stacked matrices version
X =[FW -diag([F(?’)]L;) FO g iy FO -diag([F(?))]M&;), F@)] (4.27)

where [F(g)]m,: are the rows of F®) and Us; denotes concatenation over the 3-rd dimension.

4.4.2 Alternate Least Squares for Steering Matrix Estimation

When trying to A very diffused approach to estimate the factor matrices of the PARAFAC
decomposition is to use the alternate least squares (ALS) algorithm [54]. Tts main idea is to
write the D-dimensional tensor into D matrix forms (unfoldings) and apply the least squares

solutions in each one of them. For a 3rd order tensor these matrices could be

(X)) = FY - (F@ o FONT ¢ CM MMy, (4.28)
(X (o) = F® . (F® o FO)T ¢ cM2xMs M1 (4.29)
(X)) = F® . (FO o FO)T ¢ cMax MMz, (4.30)

where ¢ is the Khatri-Rao operator, i.e. a column-wise Kroenecker product.

Then, after a random initialization of the factors one can compute the least squares

solution for each factor in an alternate manner:

FO = (X)) - [(F®) o FO)TJ*, (431)
FC) = (X)) - [(F®) o FO)TJ*, (4.32)
FO = (X - [(FD o FO)T], (4.33)

Steps (4.31) to (4.33) run iteratively until a threshold condition € is reached
X — Ty, FO x, FO 5, FO <, (4.34)

where || - ||%4 is the higher order equivalent of the Frobenius norm and it is equal to the
Frobenius norm of any of the unfoldings (4.28) - (4.30).

An alternative is to use transposed forward cyclical unfoldings [73| leading to the same
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results
[X]fi? = (FD o F®) . [FOT ¢ CMrMsx Mz, (4.35)
[X]%“ = (F® o FO) . [FOT e CMaMxMs, (4.36)
XS = (F®) 0 F) . [FOJT ¢ CHobtdts (4.37)

where, []%T ) is used to represent the forward cyclical form of the r-th mode unfolding. This

form of unfolding is specially useful to derive adaptive tracking algorithms of the PARAFAC

decomposition as explained in Section 4.5.

Now let us write the sampled time-delay correlation matrices of the noiseless data model
(4.22)

R(r) %Xﬁb(t)ng(t _ 1) e O, (4.38)
R(7) = P-Ry(7) - P (4.39)

where Xgp(t) = [xab(t) Xap(t — 1) ... Xap(t — N +1)] and Rg(7) is the sampled time-delay
correlation matrix of the source signals. In the case that the source signals are non-white,

i.e. signals are time correlated, set of J time-delay correlations can be written

R(Tl) :P'Rs(’ﬁ) '].:)H7

R(.TQ) =P RS(.TZ) ’ PH’ (4.40)

By considering that Rs(7) is approximately diagonal, a direct link to the PARAFAC
model via (4.27) can be made by considering F) = P, F?) = P and F® = C, where
[C);,; = diag(Rs(7;)) [57]. Hence, Equation (4.40) can be written in tensor form as

R=T X1 P X9 PH X3 Ce CKXKXJ. (441)

In practice, a noise correlation term will be added to R such that R,y = R + V.
However, if V is sufficiently small, the ALS algorithm can be applied means of (4.31), (4.32)

and (4.33) in order to find approximations of the factor matrices.
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4.5 Proposed Adaptive Framework for Broadband
Signals

The method proposed in this section is based on the PARAFAC recursive least squares
tracking (RLST) algorithm proposed by Nion and Sidiropoulos |70]. The algorithm in [70|
is suited for non-stationary narrowband signals. Therefore, a modification for the case where
signals can be stationary yet having their non-whiteness explored is proposed. The result
is a framework that applies the RLST with bank of FIBs for compatibility with broadband
scenarios.

The basic idea of the RLST is to append a new slice to the correlation tensor for every
newly acquired snapshot, as depicted in Figure 4.11. With a new snapshot, recursive update
rules are applied in order to estimate the tensor factors. Also note that in Figure 4.11, the
tensor is concatenated in the second dimension so that the forward cyclic notations can
be used. Even though forward cyclic and reverse cyclic are equivalent, the forward cyclic
unfoldings allow for a direct applications of the recursive least squares algorithms without

the need to reshape the unfoldings.

RLST
update

R(t+1):IX1P XgCXgPHE

updated factors

Figure 4.11: Concatenation of a new slice in the second dimension for a tensor with 3 di-
mensions

In [70], the correlation tensor grows with time, since the signals are considered are non-
stationary and there is a different set of correlations for every time frame. In this work,
the correlation tensor is practically stationary or slowly varying. However, for non-white
signals, information from the time-delay correlations (4.42) can be extracted. The first
problem arises from the broadband signal model, since the stack correlation matrices only
contain information about the instantaneous mixtures. The second problem comes from the
fact that the non-whiteness is only valid for a limited J time-delay and, therefore, the tensor

no longer grows among one of the dimensions.
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In order to solve the first problem above, a bank FIBs may be applied to the array output,
as explained in Section 4.2, and a virtual array containing instantaneous mixtures Xgp () is
obtained. For now, the input signal is generalized as an array signal x(¢). For non-stationary
signals, the PARAFAC RLST algorithm can be used directly by considering xgp(t) as its
signal input. From the second problem above, the PARAFAC RLST no longer applies, and

a modification to the original algorithm output is needed.

To solve the second problem, the J time correlation matrices are updated via a weighted

average (4.40) [83] for every new snapshot x(¢ + 1)

.

R(t+1,7m1) =NR(t,7n)+x)x(t —n),

R(t+1,7) = AR, 7) +x(O)x(t - 72), (4.42)

\R(t +1,77) = NR(t,77) +x(t)x(t — 7)),

where A, is a forgetting factor for the correlation matrices estimation. From (4.42), an
updated tensor is obtained as whole, while [70] appends a new correlation matrix to the
tensor. In order to still be able to use the PARAFAC RLST, a new correlation matrix
is cyclically appended to the tensor and its older updated matrix is removed. The set of
Equations (4.43) to (4.45) show and example on how the correlation tensor is updated. The

same process is illustrated in Figure 4.12.

R(t—1)=[R(t—J 1)L RE—JT+1,7)Uy-- L R(t—1,75-1)], (4.43)
R(t) = [R(t —J+ 1,7'1) Lo R(t —J+ 2,7’2) Ly -+ - Loy R(t, TJ)], (444)
R(t+1)=[R({t—J+2,m) U R(t—J+3,73)Us - L R(t+ 1,7)], (4.45)

where R(t — j, 7;) has size K x 1 x K. It is worth noting that the first time delay in (4.43)
is not fixed to 7. It is only important that at the next snapshot, the delay shifts cyclically.

In the following, the PARAFAC RLST algorithm [70] is reviewed while using the cyclic
updates as shown in (4.42) to (4.45) as input to the algorithm. First, the transposed forward
cyclic 1st-mode unfolding of the tensor R is taken

RG] = (FU (1) o FO (1)) [F (1)) (4.46)

The factors F(Y)(¢) and F®)(t) usually represent the channel matrices and should be slowly
varying, hence, H(t) = F(t) o F®) (¢) may be used for further derivations. If the columns
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gselect ‘remove Dappend

Figure 4.12: Process of selecting, removing and appeding a new slice to the PARAFAC
RLST input correlation tensor. After R(t + J — 1) is updated, the process is
restarted and the tensor is updated of with the new correlation matrix for the
first time-delay 7.

of [’R,(t)]%)g are analyzed, it is verified that

R(t+ 1) = [[[’R(t)]?g]:j r(t + 1)}, (4.47)

where [-] ; corresponds to the operation of removing the first column of a matrix, r(t+1) =
vec(R(t+1,7;)) and 7; is chosen cyclically from {7, 7,...,7,}. From the almost constant
characteristics of H(t) it is found that

PO+ 1)]" ~ [[FOO]T] ; [ +1)]7] e € (4.48)

With knowledge of H(t), the new (transposed) line of the factor [F(®)(¢)] can be estimated
using the least squares solution and, once [f®) (¢ +1)]" is estimated, the new matrix H(¢+1)

can also be estimated via the least squares solution, thus

[F@ @+ D))" =H (t)r(t + 1), (4.49)

H(t + 1) = [R(t + )] [FP (¢ + 1) (4.50)
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In the next part, the focus is on finding a recursive the update for H(t). By writing the

least squares cost function for a truncated window it is found that
J
Jrgo = Y Ir(u+1) = H(t + DED (u + )72, (4.51)
j=1

where u =t + 1 — J. In the original algorithm [70], a forgetting factor is also used. In this
proposed framework case, only the newest correlations matrices are of interest, therefore,
older estimates are vanished, which is equivalent to considering a rectangular window. In
order to minimize the cost function (4.51) the gradient with respect to H(t + 1) is taken

and the result is solved for Jy ¢e2) =0

VarTuge =2 (e() = Ht + DIED (w+ DI (w+ )" =0, (4.52)
H(t+1) = (Yortu+ D+ ))) (D@ M@ r) . @5

The left side and right-side content inside parenthesis can be computed recursively as [70]

Hy(t+1) = Hy(t) + r(t + DFD ¢ + D] — r(u) [P ()], (4.54)
Ho(t+ 1) = Hq(t) + £t + DI ED (¢ + D] = £ (u)] T [FP ()], (4.55)

and update rule for H(¢ + 1) can then be written as
H(t+1) = Hy(t + DH_ (¢ + 1). (4.56)

In (4.56) the problem of high computational cost of a matrix inversion arises. However,
from (4.56) two nested rank one matrix inversion lemmas can be written *. Once H(¢) is
updated, it is used to update [f®)(¢)]T by means of (4.49)

[FP(t+1)]" = Ho(t + DHI (¢ + Dr(t + 1), (4.59)

where an inversion problem arises one more time, this time, in the form of the pseudoinverse

of Hi (t +1). From (4.54), one can conclude that a recursive update can be obtained by

! The matrix inversion lemma for a matrix A € CMxM,

At +1) = (A7 (t) +beh)™! (4.57)
A~1(t)bcHA (1)

=AMt
)+ 1+ cHA-1(t)b

(4.58)
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applying the pseudoinverse lemma twice? Finally, the factors F) (¢ +1) and F®) (¢ +1) have
to be decomposed from H(¢+1). By analyzing the Khatri-Rao product that forms H(¢+1),
it is concluded that its r-th column is fT(l)(t +1)® £ (t4+1) = vec (ffl) (t+1) [fT(S) t+1)]7),
where fr(')(t 4 1) is also the r-th column of FO)(¢ + 1). By undoing the vec operation, a
rank-1 matrix H,(t + 1) = unvec([H(¢ + 1)].,) can be formed. Thus, a rank-1 SVD can

be performed to separate fﬁl)(t + 1) and £9(t + 1) from H(¢ + 1). This can be adaptively

achieved by executing one iteration of the Bi-iterative SVD [79] as follows

£ +1) =HI (¢ + D[S ()], (4.62)

H, (¢t + DD (¢ +1)

£ +1) =
IH (¢ + 1)]7

(4.63)

Running the Bi-iterative SVD step along all » = 1, ..., d, the final factor matrices F(V(t41)
and F®) (¢ 4 1) are estimated.

Making the correspondence with the previous tensor model (4.41), it is found that P =
FO F® = C and PH = FO, Matrix P contains in its rows information regarding each
source. Since there is interference information in the remaining lines of P, a solution based on
its pseudo-inverse where W = P+ can be found. However, due to the extra high complexity
involved, it should be avoided. Unfortunately, the inversion of P does not have a rank-
1 update as previously occasions. The proposed solution is to apply one iteration of the
Ben-Tsrael and Cohen [16] algorithm * at each update step of the RLST algorithm, such
that

W(t+1)=W(t)(2Ig — P(t + )W (1)), (4.67)

% The pseudo-inverse lemma for a matrix A € CM*N M > N [18]:

AT (t4+1) = (AT (t) + cd™)t (4.60)
= AT (t) + A+(t2:HuH - ’B*qu, (4.61)

where § = 1+ d"A*(t)c , h = d"A*, u = (Iy — A()AT()c, p = —(|lul?/B*AT(H)h" + k),
k = A*(t)c, a = — (Jh]2/8"u" + h) and o = [B|ju]? + |81

3 The Ben-Israel and Cohen iterative method [16] estimates the pseudo-inverse of A € CM*N after
convergence of the following series

AT(0) = aAl (4.64)
At(t+1)=AT(t) (20 — AAT (1)), (4.65)

where a can be chosen inside the interval:

2
0<ac< (4.66)

mas S ATAT

In the case an estimate of AT is already available, it can be used to initialize the algorithm.
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where I is the identity matrix of size K and W(0) can be initialized with a good estimate
of PT, e.g. by taking the pseudo-inverse during the initialization of the PARAFAC RLST.
To avoid non-convergence problems due to variations the input data, it may be useful to

apply a time average over P (¢ + 1)
W(t+1) = W(t)(2Ix — (P(t +1)),W(t)), (4.68)

where (-); is a moving average such as (P(t+1)); = AP(t+1)+(1—\)P(t) for 0 < A, < 1.
The above solution is denoted as RLST-Ben.

Alternatively, in order to remove interference in a direct and computationally efficient
way, one can apply a narrowband adaptive beamformer where each row is a beamformer

constraint. One of such algorithm is the Frost algorithm [35] with filter update

w) = .
i (t+1) P(t+ D[P+ 1)),

-+ Qu(wi (1) — e (m)xin (1)), (4.69)

where Q; = I, — [P(t + 1)]1([15(15 + 1)]1{1[15(15 + 1)]:,1-)_1[15(15 + D]E and pg is the step

size. This method is denoted as the RLST-Frost. It is also worth noting that the time
average ([P(t + 1)].;)¢ is also important, since it allows enough steadiness of state so that
the algorithm can converge.

In summary, this section proposed a new cyclical manner to construct the correlation
tensor. This new tensor can be seen as a time growing tensor multiplied by a truncated
rectangular window. This truncated tensor can be directly applied to the PARAFAC RLST
adaptive algorithm to track the tensor decomposition. To find the final filter adaptively,
Frost’s algorithm and Ben-Israel and Cohen’s algorithms where proposed as an extra step
to the RLST algorithm. Table IV.1 summarizes the entire FIB-RLST-Ben and FIB-RLST-

Frost process.

4.6 Simulations and Results

In this section, simulations for evaluation of the proposed scheme are conducted. First,
set three sources impinging from 0°, 40° and -50° are set. Each signal is a QPSK signal
containing 8 samples per symbol and filtered by raised cosine filter with a rolloff factor of
0.3. The signal of interest (SOI) is located at 0° and has its center frequency shifted to
the normalized frequency 2 = 0.65m. The interferences are centered at 2 = 0.757 and
2 = 0.857, respectively. The signals are received by a ULA of size M = 17 and the tap-
delay line has length L = 80. A bank of FIBs is constructed for P = 5 virtual sensors. The
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Table IV.1: Proposed FIB-RLST-Ben and FIB-RLST-Frost

Step Description Complexity
1. Initialization a. Compute a bank of FIBs as described is Sec. 4.2-4.3
b. Find initial estimates for F(), F(2) and
F®), e.g. via ALS algorithm and W = [F()]+
2. First update [E@(t+ 1)]7 = Ho()H] (¢)r(t + 1)
of [fT 8K*(R+1)d
3. Update H H,(t+1)=H,(t) +r(t+ )P (t + 1)
(@O W) 14
4. Update H, Hy(t+1) = Hy(t) + [fP @+ D]TEPD (¢ + 1))
— £ )] TE) ()] 14K2d
5. Update H,, 1 Apply the inverse matrix lemma twice to the result
of Step 3 to find H,'(t + 1) 48d? + 20d
6. Update H;r Apply the pseudoinverse matrix lemma twice
to the result of Step 4 to find Hf (t +1) 96 K2d
7. Update H H(t+1)=H,(t+ l)H(;l(t +1) S8K2d?
8. Update FD and F® | forr=1,....d
£+ 1) =H (¢ + V)[ED 1) 8K2d
(3) _ H @+ DD (141) 2
9. Second update
of [T [f@(t 4+ 1)]" =Hg(t + DHS (¢t + D)r(t + 1) 8d* + 8K?d

10. Update F(®) [F@(t+ D))" = |[[[FA@)]T] 5 @t +1)T
11. Update W W(t+1)=2W(t) - W(t)F @ (t+1)W(t) 2Kd + 16K%d ™)
(fr) [P(t+1)] 2 (%)
orw; '(t+1)= B DIm, PG 10K + 8K
+ Qi (W (1) = pe” (n)xan(t)) 10dK + 8dK?2 (*)

(*) for d sources, (**

) for 1 source

used parameters are summarized in Table IV.2 and the resulting SINR averaged over 1000

simulations is shown in Figure 4.13.

Table IV.2: Parameters for the first scenario

Parameter | Value

M 17 antennas

L 80 taps

N 10000 snapshots
SNR 20 dB

P 5 virtual antennas
Z\/jprot P

p 0.999

At 0.98

€ 10~°

In Figure 4.13, the batch PARAFAC estimated with ALS algorithm is used for comparison
with the state of the art and upper bound. The FIB-RLST-Ben and the FIB-RLST-Frost

are initialized at N = 1000 snapshots. The FIB-RLST-Ben tracks the batch PARAFAC
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Figure 4.13: SINR for QPSK signals

very well with an SINR only roughly 2 dB bellow. The FIB-RLST-Frost still needs data
input to reduce power from interference directions, however, its slower convergence may be
compensated by its low computational complexity. In Figure 4.14, the beam responses show
the interference cancellation at the respective direction for the FIB-RLST-Frost in Figure
4.14a and for the FIB-RLST-Ben in Figure 4.14b.

For the second set of simulations random complex Gaussian signals limited in band to the
region () > 0.47 are generated. Each signal has a different spectrum changed by bandstop
filter with cutoff frequencies at [0.5 0.6]m, [0.6 0.7]7 and [0.7 0.8]7, respectively. The inter-
ferences start at a DOA of 30° and -55° and, at snapshot 5000, they are allowed to move
7° in a clockwise direction at the course of 100 snapshots. The obtained SINR after 1000
simulations is shown in Figure 4.15.

The resulting beam patterns are plotted in Figure 4.16 for the proposed FIB-RLST-Ben
filter after N = 5000 snapshots and in 4.17 after N = 10000 snapshots.

For the final simulation the proposed method is compared with the method proposed
in [63|, which is based on the classic Gaussianity minimization approach [24]. For the
simulation, two sources are set to impinge from 0° and 40°. The source at 0° is a BPSK
signal containing 8 samples per symbol and filtered by the same raised cosine filter as in the

first simulation. The SOI coming from 0° has its center frequency shifted to the normalized
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(a) Spatial reponse for the FIB-RLST-Frost (b) Beam reponse for the FIB-RLST-Ben

Figure 4.14: Spatial response over the invariant frequency band
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Figure 4.15: SINR for a varying DOA

frequency Q = 0.657 and is also considered as the signal of interest (SOI). The second signal
(interference) has a Laplacian distribution and its band is limited to the region Q > 0.45,

i.e. the invariance range of a FIB. The remaining parameters are configured as previously
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Figure 4.16: Beam response after N = 5000 of the proposed FIB-RLST-Ben filter
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Figure 4.17: Beam response after N = 10000 of the proposed FIB-RLST-Ben filter

shown in Table TV.2. After the raised cosine filtering operation, the SOI has a measured
kurtosis of -0.65 and the interference has a measured kurtosis of +1.1 after having its band
limited and th SNR is 20 dB. The output of the bank of FIBs is then processed by a kurtosis
based ICA algorithm for comparison with the Batch ALS PARAFAC every 10 snapshots
and the proposed adaptive schemes. The PARAFAC RLST algorithms are initialized after
800 snapshots. The SINR is computed and the result is shown in Figure 4.18.

In comparison to the ICA, the PARAFAC algorithm has a fast convergence. The idea of
using an adaptive track of the PARAFAC algorithm is to take advantage of its fast conver-
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Figure 4.18: SINR comparison between ICA and the PARAFAC-based agorithms. The re-
sult is filtered by a moving average of length 10 for clarity.

gence and reduce its complexity to online processing levels. The proposed FIB-RLST-Ben
pseudoinversion succeeds in tracking the PARAFAC decomposition and achieves practically
the same SINR levels. The proposed FIB-RLST-Frost filtering showed a convergence simi-
lar to the ICA but achieves a final SINR roughly 8 dB bellow. Figure 4.19 shows the final
beampatterns of the FIB-RLST-Ben and FIB-RLST-Frost algorithms with a clear null at
the interference direction.

Magnitude response [dB]
Magnitude response [dB]

L L L L 60 L— L L
20 40 60 80 -80 -60 -40

20 40 60 80

-80 -60 -40

20 0 20 0
theta [deg] theta [deg]

(a) Plot over the ivariant frequency band of the (b) Plot over the ivariant frequency band of the
FIB-RLST-Ben filter FIB-RLST-Frost filter

Figure 4.19: Beampattern of the resulting FIB-RLST-Ben beamformer
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4.7 Summary

Handling broadband signal may lead to high complexity algorithms. FIBs implement a
frequency invariant transformation that transforms convolutive mixtures into instantaneous
ones. The output signals have narrowband properties, which allow for the application of
simpler techniques for separation of instantaneous mixtures. In this work, a framework
for separating the signals that includes FIBs banks and the PARAFAC decomposition is
proposed for adaptive scenarios. This adaptation is possible via a new method do construct
the correlation tensor. Also, the framework includes two beamforming algorithms that are
adapted over the PARAFAC decomposition output mixing matrices. The first algorithm has
a low computational complexity, while the second has a high SINR that is comparable to
batch algorithms. Finally, the proposed framework outperforms state-of-the-art ICA based

approaches both in terms of SINR and in terms of faster convergence.



v

BEAMFORMER PERFORMANCE
ASSESSMENT VIA THE
UNSCENTED TRANSFORMATION

Applications such as speech and audio acquisition [3,9,48, 88|, wireless communications [14]
and RADAR [87] make use of array signal processing in order to enhance their capabilities.
One of the most common uses of antenna arrays is spatial filtering by the use of beam-
formers [82]. However, idealistic assumptions such as a known direction of arrival (DOA)
of the desired signal or perfectly spaced array elements are usually made [42|. Therefore,
a performance assessment in the presence of deviations should be considered for practical

implementations.

Geometry based beamformers, e.g. delay and sum (DS), generalized sidelobe cancellers
(GSC) and minimum variance distortionless response (MVDR), take one or more DOAs
as input parameters of the associated optimization problem. Though, DOA estimation is
always prone to a certain degree of error. Moreover, the positioning of the antenna elements
is not always perfectly known and it may affect the beamformer’s quality. In this paper,
the quality is measured as the average of the achieved signal to interference and noise ratio
(SINR). The average is important, since the random nature of these perturbations will lead
to random SINR values that may cause inconclusive results. For example, a simulation in a
more favorable scenario may result in an SINR that is lower than that of a simulation in a
less favorable one. However, these values vary around a mean and computing the average
gives the system designer an overall SINR, i.e. which SINR level is expected when the
system is subject to a certain degree of error.

The Monte Carlo (MC) method [41] is a commonly used simulation technique for the
computation of the average SINR [62] due to its simplicity and easiness of implementation.

However, it requires a large number of trials [17] to converge to a satisfactory result, implying
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a long simulation time. Currently, performance assessment of embedded systems takes
30 % of the development time and it could increase to 70 % [86]. Therefore, improving the
efficiency of performance assessment tools implies reducing production costs and delivering

new solutions faster to the market.

Previous works derive analytical expressions to assess the system’s quality by using first
order expansions of the perturbed parameters [59,74|. These analytical expression evaluate
the perturbation due to noise and are exact for high signal to noise ratio (SNR) values, but
they do not present a good fit for low SNR cases. In this paper, the effect of other type of
perturbations are studied, more precisely the DOA estimation error and antenna element
positioning error on the SINR. It is shown that, in these cases, the computation of such
analytical expressions is hard or not practical and the use of the unscented transformation
(UT) to numerically evaluate the SINR is proposed. The UT maps a continuous probability
distribution into a discrete one with the same statistical moments [52]. When a non-linear
function is applied to the mapped distribution, in this case the SINR function, the results
give us a good fit in comparison to the traditional MC approach, yet with a negligible com-
putational time for univariate perturbation models. When the perturbation is multivariate,
e.g. error in the position of each antenna element, the complexity grows exponentially with
the number of antennas. Therefore, the complexity is still lower than the MC method’s
complexity for a small number of antennas and greater for a large number of antennas. In
order to alleviate the effect of the array spacing perturbation using the UT, the reader is
referred to [67].

In this work, two perturbations are considered, a DOA estimation error and array element
positioning error. We assume uncorrelated and equipowered sources so that the source signal
covariance is an identity matrix and the covariance matrix can be computed as explained
in Section 5.3. The evaluation of these perturbations gives raise to a univariate and a
multivariate UT, respectively. For the sake of demonstration, one type of perturbation is
considered for each case. In future work, the UT may also be applied for other types of
perturbations such as frequency shift, mutual coupling, amplitude error and phase error.
Also, other integration methods such as the quadrature and cubature transforms [15] showed
better results than the UT for filtering purposes. Even though the quadrature and cubature
transforms might also be considered for sensor array performance assessment, we regard

them as future work and focus on the simplicity and ease of implementation of the UT.

The remainder of this paper is divided as follows. Section 5.1 shows the data model
containing the considered perturbations. In Section 5.2, we overview basic concepts of the
UT. In Section 5.3, we propose the performance assessment of a beamformer using the UT.
Section 5.4 presents the simulations results. Finally, Section 5.5 draws the conclusions of

this work.
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5.1 Data Model

We start with the received signal model of an ideal uniform linear array (ULA) containing

M antenna elements

x(t) =Y _a(6;)s;(t) + v(t) € C", (5.1)

where a(6;) is the steering vector, 0; is the DOA azimuth of i-th source signal s;(¢) and v(t)

is the additive noise term. Since we are dealing with a ULA, the steering vector contains the

phase delays a,,; = /™ where pu; = (m — 1)% cos 6;, m is the antenna element index and

d is the inter-element spacing in wavelengths. If d is given in wavelengths, the wavelength
can be dropped from the phase delay ;.

Let us consider the case where DOA and element positioning errors are present as depicted

in Figure 5.1.

wavefront &

Figure 5.1: Illustration of a plane wavefront impinging on an antenna array containing DOA
and element positioning errors

Figure 5.1 shows that a plane wavefront reaches the ULA with a DOA angle 6; and is
subject to an additive deviation represented by the Gaussian distributed random variable
© ~ N(0,02). Therefore, the received signal in the presence of DOA estimation error

becomes:

x© () = a® (8y)s0(t) + Z a(0;)s(t) + v(t) € CM*t (5.2)
i#0

where a(® (6,) = a(f, + ©) is the steering vector perturbed by a random variable © and the
signal of interest (SOI) corresponds to the i = 0 source signal. Note that (5.2) models the
DOA estimation error as a physical change in the signal’s direction.

Also, in Figure 5.1, the solid dots represent the antenna element positions. The first
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element is the reference of the Cartesian axes. The remaining elements are positioned at
(m — 1)d along the z axis. Each of the elements, except the reference element, is subject
to a positioning error in all of the 3 space dimensions z,y and z and are modeled by the

random variables D,, D, and D, respectively.

When the three dimensions are considered, not only the azimuth 6; of the DOA, but also

its elevation ¢; matters. Expanding the phase delays for the three dimensions we obtain

fm.i =(m — 1)d cos 6; cos ¢; + D, cos 0; cos ¢;
+ Dy sinb; cos ¢; + D, ,, sin ¢y, (5.3)

where the subscript m indicates the antenna index, since the random variables are indepen-

dent with respect to each other.

The received signal for a random array positioning can be written as

xP)(t) = " aP)(0;, ¢:)si(t) + v(t) € CM, (5.4)

where a(P)(0;, ¢;) = [e/11i, el eIt is the steering  vector perturbed by the
random  vector

D = [D$,17 Dy,l; Dz,17 Dx,27 v 7DZ,M]-

5.2 Unscented Transformation

The Unscented Transformation (UT) is based on the mapping of a continuous probability
distribution into a discrete one and can be used to compute the moments of non-linear
transformations of a random variable [53]. Traditionally, such moments are computed via
MC simulations. However, this approach requires large computational efforts and, depending
on the accuracy, the computational complexity can be prohibitive.

In this section we review the concepts of the UT. The UT for a single random variable is
reviewed in Section 5.2.1 and its extension for multiple i.i.d. random variables is reviewed

in Section 5.2.2, respectively.

5.2.1 Univariate UT

Let us define the k-th moment of a continuous distribution [72]

p =E{U"} = /_OO fo(u)u"du, (5.5)
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where fy(u) is the probability density function (PDF) of the random variable U. Then, we

make a discrete approximation of f(-),
fU( ~w pn an u_pn (56)

where p,, is the n-th UT sigma point, w, is the n-th weight and 6(u)|,—o = 1 and 6(u) = 0

for any other values of u. Using (5.6), we write the discrete version of (5.5) [31]:
A(ut) - anp'nj (57)

To summarize, w(p,) is a discrete approximation of fy(u) with value (weight) w, at the
sigma point p,. The number of sigma points is chosen in accordance with the application
and the desired accuracy. The weights and sigma points are calculated by solving the
nonlinear system generated from the expansion of Equation (5.7) and by setting different

values for k, as follows:

(

W1+WQ+...:1

wip1 + wapa + ... :E{U} (5 8)

\wlp{( + wopk + ... = E{UF},

where K is the highest order used for the computations. The moments are known and the
variable K depends on the number of sigma points and the type of distribution. Note that

some moments might be zero depending on the distribution.

For instance, in the case of a Gaussian random variable with zero mean, we can take
advantage of symmetry, i.e. w; = w3, p1 = —ps3 and py = 0. Using this symmetry, we use
3 moments in order to find the 6 parameters resulting in p; = —p3 = V302, pr =0, w; =
wg = 1/6 and wy = 2/3. Figure 5.2 compares a continuous PDF with its approximation
using a 3-point UT and a 5-point UT. Note that the increase in UT points translates to a
better PDF approximation such that the UT with infinite sigma points is equivalent to the

continuous PDF.

The mapped points and weights hold the same moments as fy(-) up to the biggest values
used for k. Therefore, we can replace the mean computed using MC simulation by the UT,

i.e. the mean of a non-linear function of a random variable [31]

E{Q(U)} = ang(pn)a (5.9)
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Figure 5.2: Comparison between a continuous PDF and a 3-point UT and 5-point UT PDF
approximation

where g(+) is a non-linear function which depends on the application and scenario (in Section
5.3 we use the SINR function).

The fastest way to acknowledge Equation (5.9) is to expand g(U) in its Taylor series

dg(u) 1 d?g(u) 2
E{g(U)} =E{g(0) + u+ — - u
{ ) { du |,_g 20 du? |,
1 d’g(u) 3
FR | +} (5.10)
= ap+a,E{U} + a;BE{U?} + asE{U?} + ..., (5.11)

where a; is the i-th Taylor series coefficient. Therefore, if the moments (5.5) and (5.7) are
equal, Equation (5.9) is exact. However, by computing the UT, (5.11) is truncated at the
K-th moment as defined in (5.8).

The condition on ¢(-) is that the derivatives should be continuous. Also note that the
probability distribution of the original function is unknown and only its statistical moments

are needed to compute the UT.

5.2.2 Multivariate UT

In the case where multiple random variables are present in the system model, a random
vector U = [Uy,Us, ...,Up]" is considered. For ii.d. random variables, the expected

values of the cross-products are zero. Thus, the expected values of U result in a set of
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univariate integrals
E[U, ..U UM = / fo,,, (W )urm du,,, (5.12)
R

where K, € {1,2,...} and Kjz, = 0. Therefore, computing the UT for ii.d. random
variables simplifies to (5.8). Also, the expected value of g(U) : RM — R is expressed as

Elg(U)] = flui,uz, ... unr)g(a)du

RM

- /RM 11 fo.. (um)g(w)du. (5.13)

Since the multivariate polynomial can be written as the product of univariate polyno-
mials [32] and by considering that ¢g(U) is approximated by a multivariate polynomial,
Equation (5.13) can be easily computed if U is i.i.d. Hence, (5.13) becomes a product of
univariate integrals leading to the final result in Equation (5.18). However, the polyno-
mial approximation can be dropped by using (5.6) and the i.i.d. assumption to get the
multivariate PDF

fU(u) ~ H anmd(um - pnm>- (5.14)

m Mm

Via (5.14), E[g(U)] can be evaluated without the polynomial assumption in the following

way

E[g(U)] = / g(u) H anmé(um — Dn,, )du (5.15)

RM

= [ o) 2 S T i = pi i (1)

= Z . Z /RM g(u) Hwnm5(um — Pn,,)dU. (5.17)

nyp

Using the multidimensional sifting property in (5.17), the UT mapping is found for the

i.i.d. multiple random variables

)]~ Y o(pu.. >(Hw) (5.18)

where Puy .y = [Prys -+ > Py, 18 the vector of sigma points.
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5.3 Proposed Performance Assessment of Array

Response via UT

In this section, a beamforming performance evaluation technique in the presence of DOA
and positioning deviations using the UT is proposed. For the beamformer, the classical
Delay and Sum (DS) technique [37] is chosen. The DS filter is w = a(f) and the goal is
to evaluate the signal to interference plus noise ratio (SINR). The SINR for uncorrelated

signals is

wiR W
wH(Ryy + 02w’

SINR = (5.19)

where o2 is the white noise variance. For uncorrelated signals, the SOI correlation matrix

R.. and the interference correlation matrix R, become

R = a(fy)a" (), (5.20)
Rie = Y _a(6;)a"(6;). (5.21)
i#0

The result of inserting perturbations, as modeled in (5.2) and (5.4), implies the replace-
ment of a(6;) for a®)(6;) in (5.20) and (5.21) for the case where DOA estimation error is
considered. When perturbations on the antenna element positions are considered, a(6;) is
replaced by a®)(6;). From the random nature of a(® (¢;) and a®)(6;), it becomes clear that
the SINR is also random. However, it is expected that the random SINR values vary around
a mean. The mean can be used as a reference by the system designer to verify the impact
of the DOA estimation error and element positioning error on the output SINR. In Sections
5.3.1 and 5.3.2, the classical MC approach and the proposed UT approach are presented for
the computation of the SINR mean. In this paper, the averaged SINR will be denoted as
SINR.

5.3.1 Univariate case: Evaluating the SINR under DOA

estimation error

First, the univariate case is considered, i.e. a DOA estimation error is present. This error
is univariate because the same perturbation equally affects all the elements of ag(6y + ©).
When the random variable is independent for each element of the steering vector, it is said

to be multivariate (see Section 5.3.2).

The traditional method for evaluating the SINR is to compute the mean of the SINR over
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N realizations of ©. The average value is then expressed as:

© _ 1y~ W'RI(@)w
MO N Z W RO (On) + o T)w

int

SINR (5.22)

where O[n] is the n-th realization of ©, and the resulting correlation matrices are given by:

Rgg)(@[n]) =a(fy + @[n])aH(Ho + O[n]), (5.23)
R{(O[n]) = > a(f; + ©[n))a" (6; + O[n)). (5.24)
i#0

Note that this average can be very time consuming since it could take thousands of
realizations to average the SINR to a reasonable level. In order to reduce the computational
burden of such calculations, the use of (5.9) to average the SINR in a more computationally
efficient way is proposed. Typically, less than 10 samples need to be generated, reducing
drastically the computational time in comparison to MC simulations. With the knowledge
of a few first moments of the random variable O, the UT weights and sigma points are
deterministically computed as described in Section 5.2. The UT average of the SINR is
obtained by replacing ¢(-) in Equation (5.9) by the SINR and ©,, by )

Nut HR (9)( (©)
==(9) W Res (pn )W
SINRyp = > wn . (5.25)
T LR ) +

Since typically Nyt < Ny, Equation (5.25) turns out to be an efficient way to compute
the SINR average. Figure 5.3 shows the comparison between Nyt and Ny for the 3 and

5-point UT and Nyc ranging from 10 to 10° realizations.

Method

Figure 5.3: Number of generated random samples
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5.3.2 Multivariate case: Evaluating the SINR under antenna

element positioning error

In this Section, the case where a beamforming system is perturbed by an antenna element
positioning error is considered. Since the perturbation occurs independently in each element,
a multivariate case needs to be taken into consideration. The traditional Monte Carlo

method consists of taking the mean over N realizations of the random vector D yielding

N Hp (D)
=D 1 w'Rss ' (Dn))w
SINR =— E . 5.26

METN = w1 (RE) (D)) + 021w (5.26)

int

In a similar manner as in (5.23) and (5.24), the SOI and interference correlation matrices

in the presence of element positioning perturbations are written as:

Rg)) (Dln]) = a(D[n])(em ¢o)[a(D[nD(90, d0)]", (5.27)
R{Y (D[n]) = > a®"(6;, 6,)[a®")(6;, 6,)]". (5.28)
i#0

By analyzing Equation (5.18) to find a UT equivalent for (5.26), it is seen that a sum
over all random variables is needed. Therefore, the result is a sum over the three dimension

for each antenna element

Nur Nur Nur Nur

SVEE - Y 3 Y Y

ng1=1ny1=1n;1=1ngz2=1

Nyt

E wn%lwn%lwnz’lwnma e wnz"M-
ny pm=1

WHRSE) (pnz,1,...,nz,M )W

| WH (R(D) (pnm,h...,nz,M) + UZI)W’

int

(5.29)
where Do, 1 near = [Proas Pry.is Prots Pros oo Proag)

Even though Gaussian distributions have non-zero tails, the actual generation of very
large or very small numbers is unlikely. This work, as in common practice [34, 58], uses
Gaussian distributions to model the array elements positioning errors in order to simplify
the UT validation while making very little to no compromise to the validation process.
For a theoretically more precise distribution, the reader is referred to the circular normal
distribution, also known as the Von Mises distribution [49]|. The characteristic of a Gaussian
distribution allows us to simplify (5.29) by considering D,, D, and D, as zero mean Gaussian
random variables with variance o3. Since the sum of Gaussian random variables results in

a Gaussian distribution with variance equal to the sum of the original variances [72], the
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simplified perturbed phase delays are considered
u,(ﬂD} = (m — 1)d cos 0; cos ¢; + D, (5.30)

where Dy, ~ N (0,0%). The total variance 03 = 03 (cos? 6; cos® ¢; + sin® 6; cos® ¢; + sin® ¢;)
is actually equal to o3, given that the sum inside the parenthesis is equal to 1 after the use
of trigonometric identities. Therefore, the mean SINR computed via the UT for a perturbed

element positioning can be simplified to

Nyt Nyt Nyt

SINRUyY = 3% 3 Wty -y

ni=lns=1  ny=1
D
) WHRgs )(pnhnz,..-,nM)W
> .
WH(R( )(pn1,n27---7nM) + OQI)W

int

(5.31)

In the multivariate case, the amount of points to be averaged by the UT varies not only
with the amount of sigma points, but also with the amount of antenna elements. The
comparison between the number of points needed for the MC and UT averages are shown

in Figure 5.4.

1012

Points

Antennas

Figure 5.4: Comparison between the number of points generated by MC and the UT with
a varying number of array elements

The total number of points computed by the UT grows exponentially in a N} manner
while the MC has a linear growth. However, the UT can be advantageous since MC sim-
ulations may require millions of randomly generated points. In Figure 5.4, it is seen that
the usage of the 3-point UT can be advantageous for up to 15 antennas if compared to

10° generated positions in a MC fashion. The same is true for 10 antenna elements in the
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5-point UT case.

5.4 Simulation Results

In Section 5.3, it is shown how the SINR is computed using the UT and the number of
points required for both MC and the UT simulations. In this section, the SINR averages
are simulated and plotted.

One fundamental question that arises from figures 5.3 and 5.4 in Section 5.3 is: over how
many points do we need to compute MC mean? The answer is not straight forward. The
number of MC simulations has a direct impact on the precision of the mean, i.e. how close
the sample mean is to the ground truth. The ground truth is hard to compute and, in
this case, not known. Therefore, the achieved precision is not verifiable. However, it may
be considered that the error of the computed mean as a random variable that also has an
associated variance and, of course, the smaller the variance, the better the estimate.

To illustrate the statement above, the light gray line in Figure 5.5 shows the change in
the sample variance of the SINR mean from Equation (5.22) after 100 samples for a varying

number of trials. The scenario is the same using 5 antennas as described further in this
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Figure 5.5: Sample variance versus the number of trials in Monte Carlo simulations

section. In Figure 5.5, it is seen that a few tenths of thousands of trials are needed so that
the variance is bellow 1073 dB, i.e. small in comparison to the 10 dB SINR range that
is shown in Sections 5.4.1 and 5.4.2. The dark line in Figure 5.5 shows the result for the

multivariate case of Equation (5.26). The result shows that the variance is slightly lower for
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the multivariate case, as the number of points increases. Therefore, by inspection of Figure
5.5, it can be considered that the variance needed to accomplish a reasonable precision is at
least one thousandth of the range in investigation, in this case, 1073 dB.

For the simulations, 5 antenna elements and 2 impinging signals are considered. Also,
one SOI is positioned at 90° and two interfering signals are positioned at 65° and 117°,
respectively. The DOAs are then varied and SINR mean is computed using the 3 and 5-
point UT and 5 and 10% MC realizations. The results are shown in Figure 5.6. In order to

[—"1MC variance

16 oy MC10°
- = UT3

14+

=12t

SINR (dB
)
(6]

0 1 2 3 4 5 6 7 8 9 10
Tq (degrees)

Figure 5.6: SINR vs 0g due to DOA estimation error

guarantee a precise estimate of the mean and after inspecting Figure 5.5, 10¢ MC realizations
are used as a reference. From Figure 5.6, it is seen that the SINR estimated using the 3-point
UT follows almost exactly the 106 MC realizations SINR for up to 3° of standard deviation.
The same holds for the 5-point UT for up to og = 4°. To get a better estimation, more
points are needed, however, a standard deviation of 4° is already a large value for most
applications. It is also important to remind that the UT computations are done with a
small fraction of the computational cost of the MC simulations.

For the simulations, it is assumed that the mean over 10 MC realizations, represented

by SINRyc106, is very close to the ground truth mean. Therefore, the error is defined as
Error = |[SINR — SINRyic106]- (5.32)

Equation (5.32) is used in Sections 5.4.1 and 5.4.2 for the validation of the proposed UT-
based methods.

In Section 5.4.1 the SINR, the error and the computational time of the univariate U'T are
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evaluated. In Section 5.4.2, the SINR, the error and the computational time are evaluated

for the multivariate case.

5.4.1 Performance Evaluation of the Univariate UT

In Figure 5.6, the region between the average SINR and the variance of the estimation is
shown by the shaded area. The variance was estimated for 100 trials of 10° generated points,
where the mean over the 100 trials gives the final 10° points average. The shaded region
gives a degree of confidence in the estimated MC. At the bottom-left corner, the graphic is
zoomed in the region where the UT5 leaves the region of confidence around 4°.

Figure 5.7 shows the relative error between the UTs and the reference MC simulation after
10% realizations. From Figure 5.7, it is seen that the 5-point UT still follows the MC10°
SINR up to 0g = 6° with a less than 0.5 dB error margin. It is also worth noting that the
error does not grow monotonically, however, the growth trend can be clearly seen. In [62],
op is varied up to 2.63° using 1000 MC trials. In Figure 5.7, it is seen that the UTH give

practically zero error up to this level, therefore, the 5-point UT can be used to compute the

SINR.
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Figure 5.7: Error vs og due to DOA estimation errors

The standard deviation is then fixed in two values g = {1,6}° and vary the SNR as
shown in Figure 5.8. The darker plots show the SINR for 0o = 1° and the brighter ones are
for g = 6°. For a small standard deviation, both UTs follow the MC simulation exactly.
For a larger deviation, the UT fits the MC SINR up to an SNR of 2 dB for the 3-point UT
and 8 dB for the 5-point UT. The reason is that, for low SNRs, the noise variance on the
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denominator of equations (5.22), (5.25), (5.26) and (5.31) is greater than the other terms
impact on the SINR than the error due to DOA estimation.
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Figure 5.8: SINR vs SNR with fixed og = {2,10}°

In the next simulation, the computational time is assessed and the results are shown in
Figure 5.9. The 3-point UT and the 5-point UT are compared for a varying number of MC
trials. The results show that the 3-point UT and the 5-point UT have a low computational
time in comparison to the MC simulations even when only tens of trials are performed. It is
clearly seen that these results are tied to the number of points generated as shown in Figure
5.3.

5.4.2 Performance Evaluation of the Multivariate UT

In Figure 5.10, the multivariate case with fixed SINR and a varying op is simulated for
random element positions. Again, the SINRs averaged using the 3-point UT follows the MC
curve very closely for small deviations. For larger deviations, the 5-point UT fits the MC
SINR . Such large deviations are, however, improbable to occur in an array manufacturing
process. In a case where the deviation is large, e.g. cooperative array 2], the MC curve can
be followed further by increasing the number of points, although care should be taken due to
the rapid increase in complexity in multivariate scenarios (see Figure 5.4). For comparison,
a comparable computational complexity with the one in Figure 5.4 is used. As in Figure
5.6, the region between the variances is shaded. Also, the the zoomed curves are shown in
the top-right corner focusing the point where the UT5 leaves the shaded region around 0.09
A
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Figure 5.9: Computational time of the univariate UT in the presence of DOA estimation
error
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Figure 5.10: SINR vs op due to array element positioning imperfections

Figure 5.11 shows the error for the multivariate case. From Figure 5.11 it is verified that
the error is virtually zero for the 3 and 5-point UT with a standard deviation of up to 0.03
and 0.05, respectively. Also, the 3-point UT error grows faster than the 5-point UT as
expected. Similarly as in the previous scenario, one may not expect a monotonic growth in
the error computation for a increasing op. The error for the 625 realizations SINR average
varies largely. Therefore, it is not possible to conclude the error levels.

In Figure 5.12, the standard deviation op is fixed to {0.03, 0.12} and the SNR is varied.
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Figure 5.11: Error versus op due to array element positioning imperfections

Similarly as in the univariate case, the UT3 and UT5 SINRs follow the MC SINR average.
When the noise is low and the positioning error is high, the UT SINRs deviate from the
MC mean. However, this deviation is small and the positioning error is high most of the

practical applications.

20 T T T T T T T
15 |
10 |
m 5t
=
Z
7 Or
MC 10° 5 = 0.03
-5 = =UT305,=003 .
..... UT5 0, =0.03
MC 10% 5 =0.12
-10 _9 1
UT3 0, =0.12
UT5 0, =0.12
|
_15 1 1 1 1 1 1 1
-20 -15 10 5 5 10 15 20

0
SNR
Figure 5.12: SINR vs SNR with fixed op = {0.03,0.12}

The final simulation assesses the computational time of the multivariate UT and the
results are depicted in Figure 5.13. The 3-point UT and the 5-point UT are compared
for a varying number of MC trials. The results indicate that the 3-point UT has a low

computational time in comparison to the MC simulations when roughly more than 100 MC
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trials are needed. The 5-point UT is advantageous from the computational point of view
when roughly more than 1000 MC trials are required. This result is in accordance with the
number of points that need to be generated for the UT and MC simulations as shown in
Figure 5.4.
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Figure 5.13: Computational time of the multivariate UT in the case of element positioning
pertubations

5.5 Summary

This chapter shows a novel method that used the UT for assessing the SINR average of a
beamformer. It is shown that the computational burden of the evaluation of a beamformer
can be greatly reduced while maintaining the reliability of the simulations. The DOA
estimation error and imperfections of the array elements positions are chosen in order to
assess the SINR average of a DS beamformer using the proposed method and compared
with the traditional MC simulations. The simulations shows that the UT is very reliable

even only 5 points are computed for small to medium error.



VI

CONCLUSIONS

6.1 General Conclusions

Array signal processing is already present in the everyday life of modern society. This
presence, however is still restricted to a few type of communication devices or to a few,
not more than a handfull, antennas. Proposed requirements for the next generation mobile
networks suggests that these networks will support tens to hundreds of antennas. Also, to
allow full coverage, the usage of small satellites to inter-operate with the 5G network is
being proposed. Current mobile networks have difficulties to reach mountains and other
remote areas. By inserting satellites into these networks such problem should be overcome.

When it comes to array signal processing, beamforming is a key topic. In previous works,
usually only simplistic scenarios containing only white noise are considered. However, in
real applications this is usually not the case. In this work we first investigated prewhitening
techniques to mitigate the introduction of colored noise into the signal model. Moreover,
other techniques enhance the interference mitigation were used such as rank reduction and
the VIT. These techniques have better effect when the number of antennas is large, i.e. they
should work seamlessly in next generation systems.

When applying beamforming to multidimensional antenna arrays, the data is usually
vectorized prior to filter estimation. By vectorizing the multidimensionality of the data
is not explored. In this work the muiltidimensionality of the data was explored in GSC
beamformers. It was seeing that the classical approach is equivalent to using the highest
or the R-th dimension unfolding. In the proposed algorithm, all the R — 1 unfoldings to
achieve better interference mitigation.

It is possible to apply frequency invariant transformations to allow for broadband signal
processing. By usage of a bank of FIBs the transformation is achieved and the extracted
signal can be processed via PARAFAC decomposition. The decomposition used explores the

non-whiteness of the signals and require a novel manner to construct correlation tensors so
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that it can be applied for adaptive PARAFAC decomposition tracking algorithms. Results

habe a better SINR when compared to state of the art independent component analysis.

6.2 Recommendations for Future Research

For future research it is recommended that RLS-type adaptive algorithms are tested. RLS-
type adaptive algorithms are known to have decreased convergence time in exchange for
higher complexity. However, for current hardware, this complexity increase may not limit
its implementation for many cases. This tests can also be done for colored noise scenarios
and along with rank reduction and the VIT. Also the proposed block-wise algorithm works
for CM algorithms such as the 4-QAM or QPSK signals. Tt is also of interest the development
of similar solutions for more generic QAM or other type of modulations.

For the multidimensional beamformer, a preliminary research on adaptive algorithms was
conducted for an LMS adaptation. However a deeper investigation is on its characteristics
is recommended and the RLS adaptation should also be considered. Moreover, the multidi-
mensional GSC has shown to have a bad behavior when any of the dimensions of the array
is smaller than the number of sources. Alternatives of resolution or mitigation of this effect
may also be considered.

For broadband scenarios, a bank of FIBs where used so that narrowband techniques could
be applied. The application of the novel correlation tensor construction for a broadband
signals in the frequency domain may also be applied, since the DFT may also be considered
as a filter bank. In this case, the permutation problem will occur for each frequency and
extra complexity will be added to the algorithm, however the decreased number of antenna

elements may be worth by decreasing RF hardware complexity.



A
BLOCKING MATRIX
COMPUTATION

This appendix reviews popular methods for computing the blocking matrices [81] found in
Chapters IT and TII.

The blocking matrix has its name for blocking the desired signal. In this process it
lets interference only signal pass through the system so that the filter can be adapted in
order to form nulls in the interference directions. The blocking matrix is defined as the
orthogonal compliment of the desired signals steering matrix yielding BA(6) = 0, where B
is the blocking matrix, A is the steering matrix and @ is a vector containing the DOAs of
the desired signals. For the purpose of illustration we can use a 3 antenna array so that
3 dimensional space is possible to be drawn. In the case where 2 constrains, or 2 desired

signals, are present, we end up with the scenario illustrated in Figure A.1.

Figure A.1: Illustration of an 1-D blocking “matrix”

In Figure A.1, the desired signal steering vectors span a plane. Therefore, we are left
with only one degree of freedom what yields into the blocking matrix being a vector instead.
Also note that the solution for b is not unique since b’ is also orthonormal to the plane. In

Sections to three methods on how to find B will be explained.
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Now we get to the practical implementations of the blocking matrix computation. Let us

consider one desired signal with steering vector a(fy). The projection operator of a(fy) is:

Py, = T—a(lo) (@ (6)a(0)) *a(f). (A1)

The projection operator (A.1) gives vectors that are orthogonal to a(6). In the case where
3 antennas are considered, thus giving us a 3-D space, we can represent is as depicted in
Figure A.2.

oo a(fp) |2 | ‘ a(0o)

06|
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(a) Left view (b) Right view

Figure A.2: Projections of a blocking matrix for M =3 and d =1

The desired signal steering vector is represented in blue white the orthogonal plane is
shown in green. The red line are all candidates for the columns of B. Since there is no
unique solution, we might simply choose d —1 = 2 and orthogonalize them using the Gram-
Schmidt orthogonalization.

Another way to get the orthogonalized vectors is to take SVD of the projection operator
(A.1). Then d-1 columns of the right side singular vectors matrix associated with the largest

singular values are chosen as illustrated in Figure A.3.

1 —
Pa(eO) B l

Figure A.3: Illustration of the right side singular vectors matrix associanted with the largest
singular values

Another simple method to find B is to directly take the SVD of a(fy) and then take the
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d-1 columns of the right side singular vectors matrix associated with the smalled singular

values. This process is illustrated in Figure A.4.

-1

Figure A.4: Tllustration of the right side singular vectors matrix associanted with the small-
est singular values
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B

DERIVATION OF THE BLOCK-WISE

STOCHATISC GRADIENT GSC

This appendix makes the derivation of the block-wise stochastic gradient GSC from Chap-

ter II. We start by expanding the CM cost function (2.14) for the GSC:

Jom (T, w) = E{|a(fy) — B'"Tw)"x — 1]°}
=E{(a"(6y)x — HTHBX) - (a"(fo)x — W' T"Bx)"}
= E{a"(0y)xx"a(dy) — W' T"Bxx"a(fy) + a" (fo)X—
wiTHBxx"a(fy) + w'THBXX"B"Tw + a™ ()%
wiT'Bx — w'T'Bx + 1}
= a"(0y)Rzza(fy) — 2w T"BRsza () +
2a" (00)E{x} + W' T"BRxB"Tw — 2w"T"BE{x} + 1

Now we take the gradient with respect to w:

Vwdom = —2T"BRzza(fy) + 2T"BRxzB"Tw — 2T"BE{x}
= —2T"B(RxxB"TwW — Rsza(by) — E{x})

And with respect to T:

VrJom = —2BRzza(fp)Ww' + BRzzB"Tww' — 2BE{x}w"

(B.4)

(B.5)

(B.6)

(B.7)

Since we have a whole block stored in memory, we try to use all the information available

to build the stochastic gradients. We compute the correlation and the expected values of x
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as.
N lsoH
Ris = 7 XX, (B.8)
1 (m+1)L—-1 1
E{xl == %(n) = —-X-1 B.

where 1, is a column vector of ones of size L. The matrix X is the matrix containing N
time samples of the X(n) vector. Extending the definition X(n) = y*(n)x(n) for the matrix

notation we have that:
X = X - diag(eyn), (B.10)

where e,, = [e(mL),e(mL+1),...,e((m+ 1)L — 1)]". Then we insert the approximations
into (A.5) for W:

) THR . - o (m+1)L—1
VseJon = 2= (XX"B"Tw — XX"a(6) - Y %(n))
n=mL
H _ _ (m+1)L—-1
By Rat - S x(w)
n=mL
2 - -
= —ZTHB(Xem +X-1;)
= —%THBX(em +15), (B.11)

where the vectors y,, and d,,, are vectors over the time dimension, i.e. column vectors, with

the samples from the m-th time block. We also insert the approximations into (A.6) for T:

~ o H ~~H
XX XX 1.
a(fp)wh + QBTBHTWWH — ZBE[X 1w

@TJCM =-2B

— —%Bf{(em +1,)w! (B.12)

This leads to the block-wise “joint" update rule

=
N
_|_
=
I

T(n) + prXg(eq, + 1) wH (B.13)
W(n+1) =W(n) + pT'Xp (e, + 11), (B.14)



6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 107

where 1, and pr are represented in terms of 1/L. If we define e,, = e,, + 1, we can further

simplify the update equations

T(n+1) = T(n) 4+ prXpe,w' (B.15)
W(n+1) = W(n) + T X e, (B.16)
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