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Abstract. This study investigated the rifting mechanism that

preceded the prolonged subsidence of the Paleozoic Parnaíba

basin in Brazil and shed light on the tectonic evolution of this

large cratonic basin in the South American platform. From

the analysis of aeromagnetic, aerogravity, seismic reflection

and borehole data, we concluded the following: (1) large

pseudo-gravity and gravity lows mimic graben structures but

are associated with linear supracrustal strips in the basement.

(2) Seismic data indicate that 120–200 km wide and up to

300 km long rift zones occur in other parts of the basins.

These rift zones mark the early stage of the 3.5 km thick sag

basin. (3) The rifting phase occurred in the early Paleozoic

and had a subsidence rate of 47 m Myr−1. (4) This rifting

phase was followed by a long period of sag basin subsidence

at a rate of 9.5 m Myr−1 between the Silurian and the late

Cretaceous, during which rift faults propagated and influ-

enced deposition. These data interpretations support the fol-

lowing succession of events: (1) after the Brasiliano orogeny

(740–580 Ma), brittle reactivation of ductile basement shear

zones led to normal and dextral oblique-slip faulting con-

centrated along the Transbrasiliano Lineament, a continental-

scale shear zone that marks the boundary between basement

crustal blocks. (2) The post-orogenic tectonic brittle reac-

tivation of the ductile basement shear zones led to normal

faulting associated with dextral oblique-slip crustal exten-

sion. In the west, pure-shear extension induced the forma-

tion of rift zones that crosscut metamorphic foliations and

shear zones within the Parnaíba block. (3) The rift faults ex-

perienced multiple reactivation phases. (4) Similar processes

may have occurred in coeval basins in the Laurentia and Cen-

tral African blocks of Gondwana.

1 Introduction

The transition between the late Neoproterozoic and early

Cambrian was marked by the final assembly of West Gond-

wana via closure of the Brasiliano/Pan-African ocean basins,

amalgamation of cratonic fragments and incorporation of

accretionary complexes into mobile belts (Dalziel, 1997;

Oliveira and Mohriak, 2003; Cordani et al., 2013). The clo-

sure of the Goiás–Pharusian ocean sutured the Laurentian–

Amazonian–West African and Gondwanan Central African

blocks along the Transbrasiliano–Kandi megashear zone and,

secondarily, the Araguaia suture zone (Cordani et al., 2013;

Stampfli et al., 2013; Brito Neves and Fuck, 2014) (Fig. 1).

Widespread post-orogenic extension occurred, separating

Laurentia and Baltica from the proto-Andean margin of West

Gondwana and opening the Iapetus Ocean (Bond et al., 1984;

Dalziel, 1997). During the late Cambrian–early Ordovician,

changes in the stress state of the continental lithosphere

caused crustal extension and rifting, which were occasion-

ally accompanied by abundant intrusions (Stampfli et al.,

2013). The rifting and magmatic episodes occurred primarily

along regional lithospheric anisotropies in West Gondwana

and Laurentia, and these episodes did not result in continental

breakup. Early Paleozoic cratonic basins formed on the failed

rifts and occupied large regions of North America (e.g., the

Michigan, Illinois and Hudson Bay basins), Africa (e.g., the

Congo, Chad and Taoudeni basins) and South America (e.g.,

the Amazonas, Parecis, Paraná and Parnaíba basins) (Hartley

and Allen, 1994; Armitage and Allen, 2010).

The Parnaíba basin is one of the largest cratonic

basins in the West Gondwanan South American platform.

This roughly circular sag basin is broadly saucer-shaped
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Figure 1. Reconstruction of West Gondwana at ca. 540 Ma, show-

ing major crustal domains and continental shear zones discussed

in the text. Key: red lines represent shear zones; blue lines repre-

sent continents; thick black lines represent West Gondwana conti-

nental blocks. Adapted from Cordani et al. (2013) and Stampfli et

al. (2013).

and featured relatively slow, long-lived subsidence events

(∼ 355 Myr in duration) from the Silurian to the late Cre-

taceous (Góes and Feijó, 1994). Preceding the sag sedimen-

tation, fault reactivation of the Brasiliano shear zones con-

trolled the formation of a set of rift basins (Jaibaras, Cococi,

and others). Therefore, changes in the stress state and ther-

mal structure of the lithosphere along the Transbrasiliano

megashear zone induced motion of fault-bounded blocks

in the lithosphere and/or asthenosphere during this exten-

sional event, driving the long-term thermal subsidence of

the Parnaíba basin. According to De Rito et al. (1983) and

Sloss (1990), movement of anomalous mass is the most suc-

cessful mechanism associated with the formation of cratonic

basins.

Over the years, researchers have proposed that the onset

of the long-term thermal subsidence of the Parnaíba cratonic

basin was preceded by a rifting process, which terminated

in the Ordovician (Brito Neves et al., 1984; Cordani et al.,

1984). However, several uncertainties regarding the tectono-

sedimentary evolution of the Parnaíba basin remain. First,

the driving mechanisms, which are responsible for the ac-

commodation space in the large Paleozoic Parnaíba basin,

rifting and thermal subsidence, and the relative timing of

these events is still not completely understood. In addition,

after the Brasiliano orogeny, a tectonic inversion occurred

in West Gondwana, generating linear grabens controlled by

the Precambrian structures (metamorphic foliations and duc-

tile shear zones), such as the Jaibaras basin (Fig. 2). De

Castro et al. (2014) proposed a rifting stage preceding the

Jaibaras graben based on gravity and magnetic anomalies and

on borehole data reported by Cordani et al. (1984). However,

the existence of this ancient rifting system remains specula-

tive due to a lack of direct evidence from seismic data and

exploratory wells.

The second uncertainty is associated with the geophysi-

cal signature of the basin and the interpretation of its ar-

chitecture. The early Paleozoic extensional episode formed

a complex system of aborted rift basins, which are par-

tially exposed at the boundaries of the Parnaíba basin. The

Jaibaras trough is the primary outcropping example of these

rift basins (Oliveira and Mohriak, 2003) (Fig. 2). The loca-

tion of these basins appears to be restricted to the Brasil-

iano shear zones. Nevertheless, previous geophysical data,

seismic sections and well logs suggest that the majority of

the Parnaíba basin is underlain by graben-like structures

(Nunes, 1993; Cordani et al., 2009). More recently, de Cas-

tro et al. (2014) proposed a more accurate distribution of the

rifts beneath the Parnaíba basin. Based primarily on grav-

ity and magnetic anomaly patterns, they describe two dis-

tinct rifting stages between the late Neoproterozoic and the

early Paleozoic, preceding deposition in the major cratonic

sag. These authors mapped the concealed grabens using gen-

eral gravity minima and low-amplitude magnetic anomalies

to identify the depocenters of sedimentary basins. However,

this premise can be easily violated where causative sources

within a heterogeneous basement interfere with the potential

field anomalies. Thus, independent geophysical and geologi-

cal data are often used to constrain the gravity and magnetic

models.

The third uncertainty involves the broad implications of

the evolution of the Parnaíba basin, which still needs to be

assessed and compared to other basins in South America and

Africa. The view of sag basin evolution in the Paleozoic has

led many studies to overlook the possibility of multiple rift

mechanisms in other sedimentary basins.

A previous study by de Castro et al. (2014) attempted to

map the complex lithospheric structure beneath the Parnaíba

basin, using solely airborne and satellite magnetic and grav-

ity data. They proposed two rift stages before sag sedimenta-

tion, but that model needed confirmation by more specific

geophysical and/or geological information. Airborne geo-

physical data are used worldwide to map large-scale crustal

structures (e.g., Nabighian et al., 2005; Grauch and Hud-

son, 2007; Anudu et al., 2014), especially in large sedimen-

tary basins, such as the Parnaíba Basin (970 000 km2). To

minimize the reduced resolution of airborne data for map-

ping the basin internal geometry, we introduced seismic and

well data, which are the most appropriate geophysical meth-

ods for investigations of basin architecture and served to re-

duce ambiguity in the interpretation of magnetic and gravity

data. In the present study, however, we interpret the poten-

tial field maps on the basis of new seismic sections and well

logs to determine the rift distribution, structural inheritance
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Figure 2. Schematic geological map of NE Brazil showing the Parnaíba basin (blue line) and its Precambrian basement structures (red

lines) (adapted from de Castro, 2011, and Oliveira and Mohriak, 2003). Gray areas correspond to Mesozoic to recent sedimentary covers.

Labeled dark gray areas correspond to exposures of Cambrian–Ordovician troughs and their supposed prolongation beneath the sag basin: 1

– Jaguarapi; 2 – Jaibaras; 3 – Cococi; 4 – São Julião; 5 – São Raimundo Nonato; 6 – Correntes; 7 – Monte do Carmo. Brasiliano shear zones:

AR – Araguaia; PA – Patos; PE – Pernambuco; SP – Senador Pompeu; TB – Transbrasiliano; TG – Tentugal. Basins cited in text: Araripe

(Ar) and Tucano–Jatobá (Tu-Ja). Inset: the South American continent.

and internal geometry of the Parnaíba basin (Fig. 2). Fur-

thermore, 2-D gravity and magnetic joint modeling along the

seismic sections allowed us to understand how the basement

heterogeneities interfere with the potential field anomalies.

Based on the new seismic data and geophysical models, we

recognized at least three tectonic styles in the basin. These

styles are related to the type and kinematics of faults (nor-

mal, strike-slip, reverse or thrust) and intensity of deforma-

tion (number and amount of fault offset and size of faults and

folds). These tectonic styles have an influence on the final

basin architecture. We discuss the influence of the Eopaleo-

zoic rifting process in the prolonged periods of subsidence

experienced by the Parnaíba cratonic basin and the mecha-

nisms for its formation. Finally, we assess the broad impli-

cations for other sedimentary basins in South America and

West Africa.

2 Geological Setting

2.1 General features and main sedimentary–volcanic

units

The Parnaíba basin is a large Paleozoic cratonic basin lo-

cated in northeastern South America (Fig. 2). This basin is

∼ 1000 km long and ∼ 970 km wide and occupies a complex

region of West Gondwana, which was subjected to crustal

collisions involving cratonic blocks, extensive fold belts and

concealed basement inliers (Parnaíba block). The basement

area stabilized when the late Proterozoic Brasiliano/Pan-

African orogeny (720–540 Ma) ceased (Cordani et al., 1984,

2009; de Castro et al., 2014).

The evolution of the Parnaíba basin involved five primary

tectono-sedimentary sequences, two magmatic pulses and an

area that was at least 5 times larger than that affected by the

aborted rifts (Fig. 3 and Table 1). The present-day sag basin

consists of at least four tectono-sedimentary sequences sep-

arated by regional unconformities, comprising distinct depo-

sition history (Góes and Feijó, 1994). The sedimentary infill

in the sag basin is up to 3.5 km thick and is primarily com-

posed of early Silurian to Cretaceous sediments in the form

of several unconformity-bounded packages (Table 1). Recent

seismic sections reported by the Brazilian Petroleum Agency

(Alves, 2012; Ferreira, 2013) reveal graben-like structures

beneath the sag sequences that have been filled with∼ 3.0 km

of pre-Silurian sequences.

The basin is composed of thick, primarily siliciclastic, epi-

continental sequences (Góes and Feijó, 1994). Sequences I to

V are the Cambrian–Ordovician (Jaibaras Group), Silurian–

www.solid-earth.net/7/529/2016/ Solid Earth, 7, 529–548, 2016
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Table 1. Chronostratigraphic chart illustrating various divisions of the Phanerozoic stratigraphy of the Parnaíba basin.

Chronostratigraphic scale Lithostratigraphy Lithologic column

Age (Ma) Period Phase Sequence Group Formation

94–200 Jurassic–

Cretaceous

Sag/South

Atlantic rift

V – Mosquito, Pastos

Bons, Sardinha,

Corda, Itapecuru

sandstones, pelites and

shales, basalts

223–310 L. Carboniferous–

E. Triassic

Sag IV Balsas Piauí, Pedra de

Fogo, Motuca,

Sambaíba

shales, siltstone,

limestones, sandstones

334–400 M. Devonian–

E. Carboniferous

Sag III Canindé Itaim, Pimenteiras,

Cabeças, Longá,

Poti

siltstones, shales and

sandstones

400–443 Silurian–

E. Devonian

Sag II Serra Grande Jaicós, Tianguá,

Ipu

fluvial and deltaic

sandstones,

pelites

500–527 Cambrian Rift I – Jaibaras conglomerates,

sandstones,

phyllites and shales

> 540 Precambrian basement

 

Figure 3. Simplified geological map of the Parnaíba basin (adapted

from CPRM, 2015). Stratigraphic units: 1 – Silurian; 2 – Devonian–

Carboniferous; 3 – Permian–Triassic; 4 – Jurassic; 5 – Cretaceous;

6 – volcanic rocks; 7 – early Cretaceous São Franciscana basin; 8 –

Cenozoic to recent sedimentary cover. Brasiliano shear zones: AR

– Araguaia; PA – Patos; PE – Pernambuco; SP – Senador Pompeu;

TB – Transbrasiliano; TG – Tentugal.

Early Devonian (Serra Grande Group), Middle Devonian–

Early Carboniferous (Canindé Group), Late Carboniferous–

Early Triassic (Balsas Group) and Jurassic–Cretaceous

(Fig. 3 and Table 1). Furthermore, Cenozoic alluvial and

aeolian deposits overlay large areas of the Parnaíba basin.

Coastal sediments cover the northern limits between the Par-

naíba Basin, the surrounding Precambrian basement and the

Amazon Basin.

2.2 Main tectonic features

Continental-scale shear zones (lineaments) played a major

role in the Brasiliano orogeny and in the evolution of the

Parnaíba Basin. These shear zones mark sutures associated

with continental collisions such as the Araguaia and Trans-

brasiliano lineaments (Fig. 2). The 1000 km long Araguaia

suture zone represents the final Neoproterozoic collision be-

tween the Amazonian craton, overlain by the allochthonous

Araguaia belt, and the pre-Neoproterozoic Parnaíba block

(Brito Neves and Fuck, 2014). Another important shear zone

is the Transbrasiliano Lineament. Many studies considered

the Transbrasiliano Lineament to be a continental-scale dis-

continuity characterized by strong long-wavelength magnetic

anomalies and by low S wave velocities in the mantle (e.g.,

Fairhead and Maus, 2003; Feng et al., 2004; Fuck et al.,

2008; Brito Neves and Fuck, 2014). On the NE side of the

Parnaíba basin margin, the Transbrasiliano Lineament sepa-

rates two Neoproterozoic crustal domains of the Borborema

province (Médio Coreaú and Ceará Central; Fig. 2). The

Transbrasiliano Lineament also controlled the internal rift

geometry and formed a 150 km wide rift zone in the east-

ern portion of the basin. Later reactivations of the Brasil-

iano shear zones deformed post-rift sequences, including
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post-Devonian tectonic inversion (Destro et al., 1994). These

lineaments also form Precambrian lithospheric-scale bound-

aries. They were identified in a deep crustal, seismic reflec-

tion profile across the Parnaíba basin (Daly et al., 2014) and

represent the collisional sutures of the Amazonian and the

São Francisco cratons (de Castro et al., 2014).

Following the Brasiliano/Pan-African orogeny, tectonic

inversion generated elongated grabens controlled by Precam-

brian structural fabric, which is mainly marked by ductile

shear zones in the basement. The best examples of these

grabens are the Jaibaras basin and other smaller Cambrian–

Ordovician rift basins that are partially exposed at the north-

ern and eastern edges of the Parnaíba basin (Fig. 2). The

Jaibaras is the best known of these basins. It crops out at

the NE boundary of the Parnaíba basin (Fig. 2), forms a

NE-trending, 120 km long and 10 km wide graben generated

by the reactivation of the Transbrasiliano Lineament in the

Cambrian–Ordovician basin (Oliveira and Mohriak, 2003).

3 Mapping Cambrian–Ordovician grabens

In sedimentary basins, gravity and magnetic lows are gen-

erally related to depocenters because the sedimentary infill

is less dense and less magnetic than crystalline basement

rocks. Based on this assumption, de Castro et al. (2014) iden-

tified magnetic and gravity lows, which they interpreted as

graben-like structures buried by the sag units of the Parnaíba

basin. These authors recognized a direct correlation between

a series of Cambrian–Ordovician grabens, partially exposed

at the E and SW edges of the basin (Fig. 2), and negative

pseudo-gravity anomalies. Thus, according to their interpre-

tation, two sets of troughs occurred in the basin, particularly

along the Brasiliano shear zones in the eastern portion of the

basin. Two rift systems were active prior to the widespread

sag deposition, likely in the late Neoproterozoic and early

Paleozoic (Nunes, 1993; Cordani et al., 2009; de Castro et

al., 2014).

However, the premise that magnetic and gravity lows indi-

cate buried rifts can be easily violated by causative sources

within the basement (Blakely, 1996; de Castro et al., 2007).

The residual magnetic and gravity anomalies, after extrac-

tion of the long-wavelength regional component associated

with the deeper crustal structure, depend on the combined

effects of the basement units and the internal geometry of

the sedimentary basin. In this study, we tested the hypothesis

that negative anomalies represent either buried rifts or litho-

logical units in the basement using two different approaches.

The first approach consists of carefully analyzing the mag-

netic and gravity signatures of the outcropping Jaibaras basin

and the Araguaia belt at the NE and W boundaries of the

Parnaíba basin, respectively. The second approach consists

of 2-D modeling potential field profiles constrained by new

seismic data and well logs.

3.1 Airborne magnetic and gravity data set

De Castro et al. (2014) compiled several airborne and satel-

lite potential field data sets to determine the crustal domains

beneath the Parnaíba basin. In this study, we focus on map-

ping the aborted rift system buried by the sag sedimentation

using only the more recent aerogeophysical survey flown in

2005 and 2006 for the Brazilian Petroleum Agency (ANP).

This airborne magnetic and gravity survey was conducted

along E–W-oriented 6 km spaced flight lines, with a 24 km

tie-line spacing in a N–S direction and a 1100 m nominal

flight height (Fig. 4). Data were recorded at intervals of

0.04 s (gravity) and 0.01 s (magnetic). ANP performed all

necessary magnetic and gravity data reductions and level-

ing. The total magnetic field of the Earth was corrected for

diurnal variations, the main geomagnetic field (IGRF) and

leveling errors. The raw airborne gravity data correction in-

volved vertical and horizontal accelerations, latitude, free-air

and Bouguer reduction. The resulting total magnetic inten-

sity and Bouguer anomaly data were interpolated onto 500

and 1500 m cell size grids, using bi-directional and minimum

curvature methods, respectively. The bi-directional gridding

technique was developed to cope specifically with the prob-

lem of different magnetic data density along and across flight

lines (Redford, 2006). The minimum curvature interpola-

tion algorithm fits a minimum curvature surface to the given

data values nearest the coarse grid nodes (Briggs, 1974).

This method is best for gravity data that have no dominant

trend direction. The data processing routine, which was opti-

mized by de Castro et al. (2014), was also applied to the cur-

rent data set to enhance short- to medium-wavelength nega-

tive magnetic and gravity anomalies directly associated with

shallow causative features within the upper crust. The pro-

cessing stages include reduction to the magnetic pole (RTP),

regional-residual separation and pseudo-gravity transforma-

tion for the residual magnetic data and regional-residual sep-

aration for the gravity data (Fig. 5a to c). The RTP trans-

formation is a standard magnetic technique that corrects for

shifts of anomalies from the centers of their magnetic sources

related to the oblique orientation of the magnetic field with

respect to Earth’s surface (Blakely, 1996). The parameters of

the RTP filter include a magnetic inclination of −11.16◦ and

declination of −21.26◦, which we calculated for the central

location of the aerogeophysical survey. A pseudo-inclination

factor of 60◦ was used to provide a stable RTP computa-

tion in and near the declination direction at low magnetic

latitudes (absolute inclination less than 20◦). We removed

the regional anomalies (wavelength more than 125 km) from

the magnetic and gravity data (Fig. 5a, b) using a Gaussian

filter with a standard deviation of the Gaussian function of

0.008 cycles km−1 as the spatial cutoff.

Baranov (1957) proposed a pseudo-gravity transformation

to convert the total-field magnetic anomaly into the gravity

anomaly that would be observed if the magnetization distri-

bution were to be replaced with an identical density distri-
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Figure 4. Location of the airborne gravity and magnetic survey

(gray area), seismic profiles (blue and black) and drilling wells

(green).

bution (Blakely, 1996). Actually, the pseudo-gravity trans-

formation converts the magnetic field to magnetic poten-

tial, leading the magnetic anomaly to a single edge response

for each source border, making easier the interpretation of

magnetic maps (Blakely and Simpson, 1986). This tech-

nique also reduces directional anisotropy of the magnetic re-

sponse to the source distribution, once the pseudo-gravity

anomaly of a magnetic source is proportional to the mag-

netic potential of the same source with vertical magnetiza-

tion (Blakely, 1996). In practice, we derived the pseudo-

gravity transformation via an integration of the residual mag-

netic data reduced to the pole using a standard density of

2670 kg m−3. Since this technique involves reduction to the

pole, a same pseudo-inclination factor of 60◦ was applied

to make the pseudo-gravity transformation stable (Fig. 5c).

Finally, Fig. 5d presents a new interpretative map, and we

highlight the low gravity and pseudo-gravity anomalies as-

sociated with potential Cambrian–Ordovician grabens at the

base of the Parnaíba basin.

The magnetic and gravity maps presented in this study

(Fig. 5) differ from those maps shown by de Castro et

al. (2014) because these authors used several airborne mag-

netic surveys and gravity data derived from satellite, which

are more comprehensive than the data set described in this

paper. In addition, de Castro et al. (2014) used an expanded

data set in order to investigate in a more regional scale the

crustal domains that encompass the structural framework of

the Parnaíba basin. That data set comprises several airborne

magnetic surveys with different data acquisition setups (i.e.,

flight height, spacing between lines, flight direction), over-

flight areas and magnetometers. However, this study focused

on the basin internal geometry. Thus, we opted to use the

newest survey, whose measurements are distributed homo-

geneously throughout the entire basin and carried out with

the same parameters and instruments.

In addition to the airborne surveys of the Parnaíba basin,

we also included potential field data from the Jaibaras basin

(Fig. 2). The Geological Survey of Brazil (CPRM) acquired

high-resolution aeromagnetic data in 2009 with a flight line

spacing of 500 m and a nominal height of 100 m. The data

set was reduced to the magnetic pole (RTP), and the regional

component of the geomagnetic field was subtracted to en-

hance the upper crustal structure (Fig. 6a). The gravity data

set consists of 671 measurement stations from several terres-

trial surveys conducted by Brazilian public universities and

other research institutions. Although the gravity stations are

sparse and irregularly distributed across the basin, the result-

ing Bouguer anomaly map provides an appropriate image

of the regional-scale structures. The residual gravity values

were obtained by applying the same Gaussian filter used for

the airborne geophysical data (Fig. 6b).

3.2 Potential field data analyses

The difference between the magnetic and gravity patterns in

the Parnaíba basin is the primary characteristic in the geo-

physical maps (Fig. 5a, b). The magnetic anomalies exhibit

a NE–SW trend near the Transbrasiliano Lineament and a

more complex magnetic pattern to the west (Parnaíba block),

with lineaments oriented E–W, N–S and NW–SE. To the

east (Borborema Province), extensive NE-oriented magnetic

anomalies are related to the Brasiliano shear zones along the

E and SW edges of the basin (E in Fig. 5a). In particular, the

Transbrasiliano Lineament (TB) can be traced throughout the

basin, following a series of NE-trending magnetic anoma-

lies (Fig. 5a, c). Interestingly, the Araguaia suture zone (F in

Fig. 5) exhibits no marked trend in the magnetic data.

The residual gravity map presents a different anomaly pat-

tern. The gravity lineaments trend N–S and curve to the east

in the central part of the basin, where they are apparently an-

chored by the Transbrasiliano Lineament (G in Fig. 5b). This

lineament appears to be an important crustal boundary be-

cause it separates areas with different gravity and magnetic

signatures, i.e., the Parnaíba block to the west and the Bor-

borema province to the east. In the Parnaíba block, a series of

N–S-elongated gravity lows and highs represent the Araguaia

suture zone (F in Fig. 5b), as well as the northward extension

of the Goiás magmatic arc beneath the western boundary of

the Parnaíba basin (de Castro et al., 2014). Nevertheless, this

feature is not evident in the magnetic anomaly map. In areas

closer to the magnetic equator (absolute magnetic inclination

less than 10◦), the anomalies derived from N–S sources may
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Figure 5. Residual reduced-to-pole magnetic (a), gravity (b) and pseudo-gravity (c) anomaly maps of the Parnaíba basin. Main pseudo-

gravity and gravity lows are highlighted in (d). Brasiliano shear zones: AR – Araguaia; PA – Patos; PE – Pernambuco; SP – Senador

Pompeu; TB – Transbrasiliano; TG – Tentugal. Labeled anomalies are discussed in the text. Magnetic and gravity anomalies along seismic

lines L304 and L507 are shown in Fig. 12.

not be detected. Because the geomagnetic field is horizon-

tal in this case, no magnetic boundaries are crossed along

the north–south direction with respect to the east–west edges

(Murthy, 1998).

The pseudo-gravity transformation attenuated the high-

frequency content of the magnetic anomalies (Fig. 5a and c).

It is noteworthy that pseudo-gravity lows coincide with pro-

longations of the Cambrian–Ordovician troughs, which are

partially exposed at the eastern and southeastern edges of

the Parnaíba basin (Fig. 2). Based on this pseudo-gravity

anomaly pattern, we interpret the negative anomalies as main

candidates for the magnetic response of the concealed rifts

(Fig. 5d). The different gravity and pseudo-gravity signa-

tures indicate that the assumption of same source causing

gravity and magnetic anomalies is violated in the survey

area. A possible explanation is the difference between the

contrasts of the physical properties combined with decay

rates of the gravitational and magnetic fields. Apparently,

the pseudo-gravity anomalies reflect the contrast of the mag-

netic susceptibilities between sedimentary and crystalline

rocks, whilst the gravity anomalies are strongly influenced

by deeper sources within the basement. This hypothesis is

tested by the 2-D magnetic–gravity joint modeling in Sect. 4.

www.solid-earth.net/7/529/2016/ Solid Earth, 7, 529–548, 2016



536 D. L. de Castro et al.: Pre-sag rifting in the Parnaíba basin

Figure 6. Residual reduced-to-pole magnetic (a) and gravity (b) anomaly maps of the Jaibaras basin. Geological contacts were extracted

from Cavalcante et al. (2003). Tectonic domains: MC – Médio Coreaú; CC – Ceará Central. Geological units: E – granulites and eclogites;

G – granites; MS – low-grade metasedimentary units; V – volcanic rocks. TB – Transbrasiliano Lineament.

3.3 Magnetic and gravity anomaly patterns in the

Jaibaras basin

We used the Jaibaras basin as an analogue of the graben sys-

tem beneath the sag’s sedimentary cover. Figure 6 presents

the residual magnetic and gravity anomaly maps of the

Jaibaras basin. Elongated positive magnetic and gravity

anomalies occur in the area of the Jaibaras basin. These

anomalies are associated with surface and near-surface,

moderate-to-high susceptibility, dense volcanic rocks within

the basin and with basement units, particularly high-grade

metamorphic rocks, such as granulites and eclogites, which

crop out in both crustal domains (Cavalcante et al., 2003;

Santos et al., 2009). The high-amplitude anomalies related

to basement causative sources conceal the relatively weak

magnetic and gravity effects associated with the shallow sed-

imentary basin infill. In fact, the expected magnetic and grav-

ity lows are observed outside the basin, where low-density

granites and metasedimentary sequences are exposed. This

geophysical setting can be projected to the Parnaíba basin.

Rather than the graben systems proposed by previous studies

(Cordani et al., 1984; Nunes, 1993), the magnetic and grav-

ity signatures in the Jaibaras basin suggest that lithological

heterogeneities in the basement may be responsible for the

negative anomalies in some degree.

Other clues along the western border of the Parnaíba basin

can also be used to understand the sources of the gravity

lows. A series of N–S-striking negative and positive anoma-

lies occupy a 200 km wide zone along the basin edge, par-

allel to the Araguaia suture zone (F in Fig. 5b). Accord-

ing to Ussami and Molina (1999), this region is related to

the northern extension of the Neoproterozoic Goiás mag-

matic arc, the easternmost branch of the Tocantins province

(Fig. 2), beneath the Parnaíba basin. The westernmost grav-

ity lows (H in Fig. 5b) correspond to low-grade metamorphic

supracrustal sequences in the Araguaia belt, a marginal fold

belt thrusted onto the Amazonian craton during the Brasil-

iano orogeny (Alvarenga et al., 2000). Thus, the gravity highs

and lows reveal upper crustal undulations due to a colli-

sional fold-and-thrust belt and lateral accretion associated

with the closure of the Goiás–Pharusian Ocean between the

Amazonian and São Francisco cratons (Cordani et al., 2014).

From this perspective, certain N–S-elongated and weakly ar-

cuate gravity lows (G in Fig. 5b) could be associated with

supracrustal terrains involved in the collision that formed

West Gondwana during the Neoproterozoic–early Paleozoic.

The subsequent Cambrian–Ordovician rifting developed on

this tectonic framework, creating a complex pattern of grav-

ity anomalies.

3.4 Seismic and well data set

In this study, we introduced seismic reflection data and well

logs, which were acquired in the 1970s, 1980s and in recent

years (2006–2010) by ANP. ANP provided the seismic sec-

tions already processed and time migrated, which revealed

the tectono-sedimentary sequence and basin architecture. We

also used these seismic sections and well logs to constrain

the interpretation and modeling of the gravity and magnetic

data. We analyzed 17 2-D stacked and migrated seismic pro-

files to map key reflections and discontinuities using stan-

dard seismic sequence stratigraphic criteria and lithological

calibration derived from two well logs and one exploratory

borehole, crossed by the seismic line L507 (Fig. 4). We in-

directly obtained seismostratigraphic information on Profile
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Figure 7. Detailed well-logging curves of exploratory wells 1FL

(left) and 2BAC (right). The well tops of the main tectono-

sedimentary sequences were defined based on the reference lithos-

tratigraphic chart described by Góes and Feijó (1994).

L103 from an interpreted seismic section that was recently

published by ANP (Ferreira, 2013). In addition, information

on the basement depth and rock types from six boreholes

(Cordani et al., 1984) and new seismic sections published

by Ferreira (2013) were taken into consideration to form an

overall picture of the tectonic styles present in the basin.

Based on these data, we recognized three different tectonic

patterns in the eastern, northern and western portions of the

Parnaíba basin, which are described below.

We analyzed two well logs: the first (1FL) located to

the west of the Transbrasiliano Lineament and the second

(2BAC) located in the central portion of the Parnaíba basin

(Fig. 4). Multi-parameter downhole logs included self po-

tential (SP), natural gamma ray (GR), electrical resistivity

(IDL) and density (Rho). We were able to identify the major

tectono-sedimentary sequences in both wells (Fig. 7 and Ta-

ble 1) primarily on the basis of the logging curve responses

and their lithological associations, as described by Góes and

Feijó (1994) and Vaz et al. (2007).

We correlated the well rock units with the seismic re-

flections using time–depth curves provided by ANP for this

study (Fig. 8). The well-log correlation between well 1FL

and line L509 and well 2BAC and line L305 (Fig. 4) allowed

Figure 8. Time–depth conversion and well-seismic tie of wells 1FL

and 2BAC and seismic lines L509 and L305. Data locations in

Fig. 4.

us to accurately identify the major sequence limits and vol-

canic sills. We performed the seismic interpretation using the

seismic data and well ties. In addition, interval velocity was

used in the time-to-depth conversions of the seismic sections.

Since we have no well data, the seismic interpretation of seis-

mic line L103 was mainly based on the interpretation of the

same seismic data by Ferreira (2013). Although our geophys-

ical data set are relatively limited in space in face of the vast

area of the Parnaíba basin, the uncertainty in the seismic in-

terpretation does not compromise the tectonic analysis of the

internal basin geometry in a regional scale.

3.5 Seismic and well-log correlation

We found no sedimentary strata of the Cambrian–Ordovician

syn-rift unit (sequence I) in both 1FL and 2BAC wells.

However, Petersohn (2010) described a 4700 m deep bore-

hole (2PI in Fig. 4) that contained a stratigraphic interval at

3000 m that they interpreted as the lowermost rift unit. In

well 1FL, the low-grade metasedimentary rocks at 2250 m

depth have low SP, low IDL and middle GR values (Fig. 7).

Rb–Sr dating of these basement samples provided age of

670 Ma (Cordani et al., 1984). In contrast, the basement

rocks have high values of SP, GR, IDL and Rho in well
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2BAC, revealing different geological units in the central por-

tion of the basin.

The lower post-rift sequences II and III were deposited

during the Silurian to Early Carboniferous (Table 1). They

are widely distributed across the entire basin (Fig. 3) and

are almost 2000 m thick in wells 1FL and 2BAC (Fig. 7).

The SP values increase upwards, especially at the upper

part of sequence III. Shale layers have generally high GR

value with bell-shaped curves, whereas box-shaped curves

and low GR value and high IDL value match volcanic rocks.

The density log is available only in the last 1000 m of the

well 2BAC (Fig. 7). The imaged siliciclastic layers have in-

creased bulk density, whose Rho value ranges from 2470

to 2660 kg m−3, indicating intense compaction. Rho value

higher than 2900 kg m−3 reveals at least two more than 50 m

thick volcanic rocks in sequences II and III. The 110 m thick-

ness of the shallow sequence IV occurs at the top of well

1FL. The thickness of this unit increases to 600 m to the

west, toward the central part of the basin (well 2BAC in

Fig. 7). Sequence IV has upwards increasing SP value and

middle to high GR value, whose both curves are finger-

shaped or zigzag (well 2BAC in Fig. 7). Interdigital GR

and SP curves with high value are related to intercalation of

shales, siltstones, limestones and sandstones. The IDL curve

is dominated by low-resistivity lithology, but a few isolated

IDL peaks could be associated with layers of mixed sands

and anhydrite in a sabkha plain, as interpreted by Góes and

Feijó (1994). The uppermost 530 m thick Mesozoic sequence

V is restricted to well 2BAC. Sandstones with fine intercala-

tion of pelites and shales deposited in continental to shallow

platform environments have high SP value, low GR value

and middle IDL. Unfortunately, IDL log shows no meaning-

ful data in the first 250 m. The thicker sedimentary infill in

well 2BAC indicates a considerably longer duration of subsi-

dence, which lasted until the Cretaceous in the central part of

the Parnaíba basin. In contrast, the deposition ceased in the

Carboniferous at the eastern border of the basin (well 1FL in

Fig. 7).

Interval velocities were calculated from time–depth curves

(Fig. 8). The velocities rise downward from 2000 to

4800 m s−1 due to the natural compaction of the sedimen-

tary infill. Velocities up to 5100 m s−1 indicate the concentra-

tion of volcanic sills intercalated in the sequences II and III

(Fig. 8). The correlation between the well lithologies and the

seismic reflections allowed us to characterize the four post-

rift tectono-sedimentary sequences, as well as the basement

top and volcanic sills (Fig. 8). Although the syn-rift sequence

I is not present in wells 1FL and 2BAC, its related seismic

facies can be identified by a section of discontinuous, in-

clined, low-amplitude reflections, enclosing two sets of high-

amplitude reflections related to volcanic rocks (Fig. 9a). The

overlying sedimentary sequences II to V are characterized

by parallel reflections with low to middle amplitudes (Figs. 8

and 9).

For this study, we used 17 seismic lines, selected from

available data (Fig. 4), to characterize the tectonic styles in

the Parnaíba basin (Figs. 9 and 10). The first style occurs

in the eastern part of the basin, where seismic line L507 re-

veals a 120 km wide and 4.5 km deep rift zone. This rift zone

is marked by a major graben and several secondary troughs

(Fig. 9a). The eastern part of the graben represents the brittle

reactivation of basement shear zones and coincides with the

Transbrasiliano Lineament at the surface (Figs. 4 and 9). The

almost symmetric central graben is 25 km wide. Four ma-

jor sedimentary sequences overlie the Precambrian basement

(Table 1). A sedimentary sequence that is up to 2.5 km thick,

which is correlated to the Cambrian–Ordovician Jaibaras

Group (Oliveira and Mohriak 2003), fills the lower part of

the rift zone (I in Fig. 9a). The upper sequences extend be-

yond the rift limits and were deposited between the Silurian

and the Early Triassic (II, III and IV in Fig. 9a). Large vol-

canic sills and dikes were emplaced in the basin infill. The

entire volcanic and sedimentary package is deformed by nor-

mal and listric faults. Several faults, which reactivated and in-

verted ancient features, were active until the Early Carbonif-

erous (Morais Neto et al., 2013) and even formed Devonian–

Carboniferous grabens at the eastern edge of the rift zone

(Fig. 9a). In summary, the seismic lines indicate that the

basement faults deform the entire sedimentary sequence and

that the offsets related to these faults decrease from sequence

I to sequence IV. These observations suggest that post-rifting

tectonic episodes could reactivate faults, which partially af-

fected the sedimentary sequences deposited during the sag

period.

The second tectonic style occurs in the central part of

the Parnaíba basin, where a different tectonic scenario is

observed in seismic line L304 (Fig. 9b). No graben-like

structure occurs in this part of the basin, and the faults

are less abundant, suggesting that deformation was less in-

tense away from the Transbrasiliano Lineament. However,

the compressional tectonic regime, which reactivated certain

faults as reverse-related structures, is more evident in this re-

gion (e.g., the deep fault highlighted in the inset of Fig. 9b).

These faults are consistent with the post-Carboniferous tec-

tonic inversion that affected the entire Parnaíba basin. From

a stratigraphic perspective, the Paleozoic post-rift volcanic-

sedimentary package is thicker in the central portion of the

basin, where it is partially overlain by the upper Jurassic–

Cretaceous sequence V.

The third tectonic style occurs in the western portion of

the Parnaíba basin and is evident in the seismic line L103

(Fig. 9c) and seismic sections in Fig. 10c. The imaged rift

zone consists of two main asymmetric grabens separated

by basement highs and listric faults (Fig. 9). These grabens

are up to 100 km wide, are divided by smaller troughs, and

trend NW–SE (Fig. 10), roughly perpendicular to the NE–

SW Transbrasiliano Lineament. As in the other basin regions

(Fig. 9), large volcanic sills occur in different stratigraphic

levels. However, the brittle deformation appears to be less
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Figure 9. Seismic sections of lines L507 (a), L304 (b) and L103 (c), showing different structural settings within the Parnaíba basin. Inset in

Line L304 shows reverse-related structures affecting Late Carboniferous to Early Triassic sequences.

intense in the western portion of the basin. The different in-

ternal basin architectures within the basin will be discussed

in Sect. 5.

The three tectonic styles described above based on

the existing geophysical data indicate that the tectonic–

sedimentary evolution of the basin is diachronic in space and

time. It follows that pre-sag rifting and post-rifting defor-

mations are not homogenous across the basin. For example,

preexisting ductile fabric controls fault reactivation along the

Transbrasiliano Lineament, but fault reactivation is less evi-

dent away from the lineament. In addition, reverse faulting,

not commonly observed in the Transbrasiliano Lineament

area, clearly occurs in the central part of the basin.

3.6 Simplified subsidence curves

The subsidence pattern of any sedimentary basin can be eval-

uated from plots of sediment age versus depth record in ex-

ploratory wells (Quinlan, 1987; Allen and Allen, 2005). Nev-

ertheless, some corrections for sediment compaction, varia-

tions in paleobathymetry and the isostatic amplification ef-

fects of the sedimentary load are necessary to obtain a re-

liable subsidence history (Steckler and Watts, 1978). Since

providing a detailed modeling of basin subsidence is not the

intent of the present paper, due to lack of sediment ages from

the available wells, we constructed simplified subsidence

curves of the Parnaíba basin based on three exploratory wells

and the seismic line L103 (Fig. 11). These curves include two

periods of accelerated subsidence rates, with amplitudes of

3500 and 2000 m during the Cambrian–Ordovician and be-

tween the Silurian and Carboniferous, respectively. Accord-

ing to Quinlan (1987), the rapid syn-rift sediment accumu-

lation certainly involves mechanical and thermal subsidence

of the previously thermally uplifted lithosphere. During the

rift phase (sedimentary sequence I), the subsidence rate was

up to 47 m Myr−1. After the rift became inactive, the Par-

naíba basin experienced less rapid subsidence during the long

period of subsequent cooling. The sedimentary sequences II

and III (the Serra Grande and Canindé groups) featured a sed-

imentation rate of approximately 22 m Myr−1 for 100 Myr

(Fig. 11). From the late Carboniferous onwards, the ther-

mal subsidence slowed to a rate of 6.5 m Myr−1, the cratonic
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Figure 10. Interpreted seismic sections showing different tectonic

styles in the eastern (a), northern (b) and central (c) regions of the

Parnaíba basin.

Figure 11. Sediment thickness as a function of sediment age for

wells 1FL, 2BAC and 2PI and seismic line L103 (at the distance

of 40 km – Fig. 9). Labels I to V indicate stratigraphic sequences

described in the text.

basin stabilized and the thin volcano-sedimentary sequences

IV and V were deposited in the Jurassic and Cretaceous.

4 Magnetic and gravity joint modeling

Based on a comparison of the potential field (Fig. 5) and

seismic (Figs. 9 and 10) data, the pseudo-gravity and grav-

ity lows clearly do not match the graben limits derived

from seismic sections. This mismatch suggests that base-

ment causative sources interfere with the anomaly patterns

produced by the basin internal geometry. In this study, we

performed a 2-D joint inversion of magnetic and gravity data

along four seismic profiles to determine the contribution of

each type of sources, i.e., the basement heterogeneities and

the basin infill.

The aim of this study is to determine the relationship be-

tween pseudo-gravity and gravity lows and the rift zones

revealed in the seismic sections. Using the internal geom-

etry of the basin derived by seismic interpretation, we can

establish its gravity and magnetic effects and model the re-

sulting anomalies to identify structures within the basement.

Thus, the 2-D joint modeling inverts the contrasts of mag-

netic susceptibility and density of vertical prisms, which sim-

ulated the intra-basement crustal heterogeneities. As a result,

we can extrapolate the estimated distribution of Cambrian–

Ordovician rifts beneath the whole Parnaíba basin.

4.1 Two-dimensional joint modeling approach

For decades, many researchers have studied joint or coopera-

tive inversion of two or more geophysical methods as a pow-

erful tool to improve modeling (Santos et al., 2006; Zhou et

al., 2015). Vozoff and Jupp (1975) were the first to invert

jointly data sets derived from different geophysical meth-

ods in order to enhance inversion resolution of the models

obtained separately from each method. A joint inversion of

magnetic and gravity data, which are related to the same un-

derlying geologic structures and thus may contain comple-

mentary information, can reduce the inherent nonuniqueness

and the limitations of the inverse problem of individual geo-

physical methods (e.g., Lines et al., 1988; Haber and Olden-

burg, 1997; Gallardo and Meju, 2003). Examples of joint in-

version of magnetic and gravity data were presented and dis-

cussed by several studies, such as Fedi and Rapolla (1999),

Gallardo et al. (2005) and de Castro (2011).

We performed the integrated approach on both residual

RTP magnetic and gravity anomalies constrained by seis-

mic data and well logs, using GM-SYS software (Geosoft,

2013). The model geometry consists of the basement top,

four main sedimentary sequences and volcanic sills, all ex-

tracted from the seismostratigraphic interpretation tied with

well logs. The seismic horizons geometry was obtained us-

ing time–depth curves from 2BAC and 1FL wells. The den-

sity of each modeled sedimentary sequence was derived

from density logs and density–velocity conversions using

Gardner’s formula. The magnetic susceptibilities were ini-

tially obtained from average values reported in the literature

(Telford et al., 1998). Since the sedimentary basin is filled by

almost nonmagnetic deposits, the assumed magnetic suscep-

tibilities play a secondary role, if any, in the observed mag-

netic anomalies. Table 2 presents the physical parameters of

the modeled layers. Due to the nonuniqueness of the poten-

tial field solution, we limited our modeling exercise fixing

the seismic derived basin internal architecture and the phys-
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Table 2. Bodies used in 2-D geophysical profile models. AMS: assigned magnetic susceptibility (mathematical representation that incorpo-

rates both magnetic susceptibility and a remnant component, if applicable).

Stratigraphic sequence Geological unit Lithology Density (kg m−3) AMS (SI)

V Mearim sandstones, pelites and shales 2250 0.0001

Mosquito basalt 2690 −0.006–0.055

IV Balsas shales, siltstone, limestones, sandstones 2400 0.0001

III Canindé siltstones, shales and sandstones 2450 0.0001

II Serra Grande fluvial and deltaic sandstones, pelites 2530 0.0001

I Jaibaras conglomerates, sandstones, phyllites and shales 2570 0.0001

Precambrian basement – Unknown basement rocks 2569–2792 −0.010–0.041

ical properties of each layer. Synthetic magnetic and grav-

ity data, as described below, show that differences of a few

dozens of meters in the seismic horizons provide variations in

the magnetic and gravity signatures lower than 0.05 nT and

0.5 mGal, respectively. In turn, the regional airborne mag-

netic and gravity anomalies exhibit amplitudes on the order

of 40 nT and 25 mGal. Thus, we assume that uncertainties

of seismic horizons should cause no measurable effect in the

magnetic and gravity anomalies due to the regional scale of

data acquisition (flight height of 1100 m and flight line spac-

ing of 6 km).

Before performing the joint modeling, we calculated the

theoretical magnetic and gravitational effects of the seismic-

derived models along lines L304 and L507 (Figs. 5 and 12).

The flight elevation of 1100 m was properly incorporated into

the anomaly calculation. Considering the magnetic suscepti-

bilities and densities of the basin infill listed in Table 2 and

assuming that the basement possessed constant magnetic sus-

ceptibility of 0.041 SI units and density of 2750 kg m−3, the

calculated anomalies related to the basin internal geometry

(purple curves) do not match the residual reduced to pole

magnetic and residual gravity anomalies (green curves). The

difference between observed and calculated anomalies (red

curves) represents the magnetic and gravity contribution of

unknown basement rocks, which have no obvious expression

in the seismic sections (Fig. 12). The basement causative

sources yield high-amplitude anomalies, partially masking

the geophysical signatures of the basin internal architecture.

Interestingly, the volcanic contribution to both potential field

anomalies (blue curves) is almost negligible, which means

that mapping of the magmatic events is difficult in the Par-

naíba basin using airborne geophysical data collected at a

flight height of 1100 m with a spacing of 6 km.

To create a 2-D joint magnetic–gravity model along the

seismic profiles, we were required to introduce vertical

prisms beneath the basin to correspond to the geotectonic

units within the basement. In fact, a heterogeneous struc-

tural framework is expected from the geological setting in

the Jaibaras basin (Fig. 6), whose basement consists of sev-

eral deformed Precambrian metasedimentary sequences and

Neoproterozoic–early Paleozoic syn-rift granite and volcanic

bodies (Oliveira and Mohriak, 2003).

We applied a semi-automatic source detection method to

guide the location of the vertical prism boundaries in the

geophysical models. The chosen analytic signal technique

computes discrete depth solutions at a moving spatial win-

dow along magnetic and gravity profiles (Phillips, 1997).

After fixing both the seismic basin internal architecture and

prism geometry, a non-linear Marquardt inversion procedure,

implemented in the GM-SYS inversion routine, iteratively

obtained the densities and magnetic susceptibilities of the

prisms (Table 2). The base of all prisms was fixed at a depth

of 10 km. Figure 13 shows the final 2-D models along pro-

files L304, L507, L103 and L001, which were used to inves-

tigate different rift geometries and tectonic styles within the

basin (Fig. 4). Profile L001 is the only profile not constrained

by seismic data. Nevertheless, to ensure that the modeling

will provide a geologically reasonable result we used the fi-

nal model of profile L507 as the initial model of the profile

L001. In this way, based on the seismic data (Fig. 9a) we as-

sumed the premise that the rifting style should be the same

along the Transbrasiliano Lineament, changing only in lat-

eral extent and depth. Thus, we performed the joint modeling

of this profile by carefully modifying these variables until the

calculated anomalies were adjusted to the observed data. We

opted to not introduce volcanic rocks into this model due to

the lack of seismic constraints.

4.2 Basin tectonic styles revealed by 2-D joint modeling

In the north-central part of the basin, where no rift-related

structures were observed in the seismic lines, the gravity

lows at both edges of profile L304 indicate the existence of

less dense basement blocks rather than a steady westward in-

crease in basin thickness (Fig. 13). The assigned magnetic

susceptibilities (AMS) and densities vary between 0.00214

and 0.00385 (SI) and between 2594 and 2704 kg m−3, re-

spectively, within the basement. In the other tectonic do-

mains of the basin, the rift zones are over 150 km wide and

feature a main central symmetric graben and a set of sec-

ondary troughs (Figs. 10 and 13). Anchored by the Trans-
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Figure 12. Observed and calculated residual reduced-to-pole magnetic and gravity anomalies along seismic lines L507 (left) and L304 (right)

(location in Fig. 4). The basin anomalies are calculated from the seismic basin geometry. The theoretical basement curves were obtained by

subtracting the basin anomalies from the observed data.

 

Figure 13. Joint modeling of residual reduced-to-pole magnetic (a) and gravity (b) anomalies along seismic profiles. Final adjusted mag-

netic (c) and gravity (d) models. HDB: high-density crustal block; LDB: low-density crustal block.

brasiliano Lineament at its eastern flank, the main graben

crossed by lines L507 and L001 is up to 25 km wide and

4.5 km deep (Fig. 13). A low-density and low-AMS base-

ment block either occurs to the west of or beneath the rift

zone, as evidenced by profiles L507 and L001, respectively,

and this block serves to conceal the gravity effect of the rift

geometry. The low-density crustal block (LDB) exhibits an

average contrast of −375 kg m−3, which may represent the

low-grade metamorphic sequences and/or granite bodies of

the Jaibaras basin structural framework (Fig. 6). No expres-

sion of the LDB is observed in the seismic profiles (Figs. 9a

and 10a), making it difficult to identify its geological nature

and internal geometry.

Solid Earth, 7, 529–548, 2016 www.solid-earth.net/7/529/2016/



D. L. de Castro et al.: Pre-sag rifting in the Parnaíba basin 543

Figure 14. Simplified tectonic domains of the Parnaíba basin, show-

ing outcropping marginal troughs (dark gray areas), seismic derived

Cambrian–Ordovician rift zones (green areas) and gravity lows

(light gray areas). Arrows indicate Brasiliano collisional (black)

and post-orogenic extensional (blue) stresses. Red triangles indicate

low-grade metasedimentary rocks drilled in exploratory wells. SFB:

São Franciscana basin. Brasiliano shear zones: AR – Araguaia; PA

– Patos; PE – Pernambuco; SP – Senador Pompeu; TB – Trans-

brasiliano; TG – Tentugal.

In profile L103, the main graben is characterized by a

60 km wide, flattened and symmetric structure (Figs. 10

and 13). The gravity low is shifted from the main graben to

the SE due to a narrow low-density block with a density con-

trast of −91 kg m−3. The WNW–ESE-trending master faults

are oblique or orthogonal to those associated with the Trans-

brasiliano Lineament (Fig. 14). This peculiar rift architec-

ture suggests an important change in the faulting mechanism

within the basin. In this sense, the Transbrasiliano Lineament

was reactivated in the early Paleozoic by a brittle regime with

a significant transtensional component, which controlled the

NE–SW-elongated grabens. To the west, pure-shear exten-

sion appears to have prevailed, forming grabens crosscut-

ting the NE–SW-oriented basement fabric (metamorphic fo-

liations and ductile shear zones).

5 Discussion

5.1 Mechanisms that generated accommodation space

in the Parnaíba basin

The existence of Cambrian–Ordovician rifts in the Parnaíba

basin poses several important questions. The first is whether

lithospheric extension or thermal subsidence was the driving

mechanism for the growth of accommodation space during

the initial phase in the formation of this large cratonic basin.

This study is just beginning to shed light on these issues.

The Parnaíba basin exhibits three main structural styles

(Figs. 9, 10 and 13). The first style is present in the eastern

part of the basin and encompasses the NE-oriented elongated

rift system formed by right-lateral strike-slip brittle reactiva-

tion of the Brasiliano ductile shear zones. The second tec-

tonic style is present in the central part of the basin, where the

rift architecture trends to WNW–ESE, perpendicular to the

basement fabric (mainly shear zones and metamorphic foli-

ations), as revealed by the magnetic and gravity lineaments

(de Castro et al., 2014). Based on continental-scale geophys-

ical and geotectonic maps (e.g., Fairhead et al., 2003; Fuck

et al., 2008; Brito Neves and Fuck, 2014), no evident crustal

or lithospheric discontinuities within the Parnaíba block con-

tributed directly to the development of the rifting process. Fi-

nally, the third tectonic style is present in the northern part of

the basin and is characterized by sparse or absent graben-like

structures, which are not observed in the available seismic

profiles (Figs. 9b and 10b). This region has been slightly af-

fected by normal and reverse faulting (Fig. 9b), which was

supposedly driven by the opening of the equatorial Atlantic

Ocean in the Early Cretaceous, according to Milani and Za-

lán (1998).

The geophysical data presented here indicate that during

the Cambrian–Ordovician, crustal thinning became more fo-

cused within the Transbrasiliano shear zone (TB in Fig. 14)

along en echelon pull-apart troughs by strike-slip faults and

bounded to the west by the Parnaíba block (first tectonic style

described above). In the vicinity of the TB, a 150 km wide

and 1200 km long rift zone with a central symmetric graben

formed and was anchored by this large shear zone along its

eastern boundary (Figs. 9 and 10). This result clearly in-

dicates that rift faults along the Transbrasiliano Lineament

reactivated the major ductile shear zones, in agreement to

what can been observed in the deep reflection profile (Daly

et al. 2014). However, Daly et al. (2014) interpreted a lat-

eral crustal discontinuity in the deep reflection profile as the

expression of the Transbrasiliano Lineament at depth. This

structure is located 100 km away to the west from the Trans-

brasiliano Lineament originally mapped by previous studies

(e.g., Cordani et al., 1984; Nunes, 1993; Fairhead et al., 2003;

de Castro et al., 2014). Lineaments have been widely con-

sidered to be landscape features that maybe related to deep

structures. The Transbrasiliano Lineament, defined approx-

imately 4 decades ago, exhibits a clear surface expression.
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Figure 15. Schematic reconstruction for the Neoproterozoic–early

Paleozoic, showing the collision of the Amazon–West African block

between the Araguaia and Transbrasiliano shear zones (a) and sub-

sequent post-orogenic rifting (b). Arrows indicate Brasiliano col-

lisional (black) and post-orogenic extensional (blue) stresses. AC

– Amazonian craton; SFC – São Francisco craton; PB – Parnaíba

block; TP – Tocantins province; BP – Borborema province; AR –

Araguaia suture zone; TB – Transbrasiliano shear zone.

These features cross the Parnaíba basin and are associated

with the graben system that we identified in the present study.

The structures identified by Daly et al. (2014), which differ

from the rift system in our study, may mark the boundary

of crustal blocks, but these structures do not agree with the

definition of the Transbrasiliano Lineament that is already

established and recognized in the literature (Schobbenhaus

et al., 1975). Therefore, we assume that the rift system we

observed in the reflection seismic data is the deep expression

of the Transbrasiliano Lineament.

To the west, the rift geometry changes and exhibits a

wider and flattened central graben and a shorter rift zone

(L103 in Fig. 9c). This modification of the tectonic style

reveals the important role of the Transbrasiliano Lineament

in controlling the development of the Cambrian–Ordovician

rift systems (Figs. 14 and 15). Close to the lineament,

oblique-slip crustal extension prevailed, generating an ex-

tensive rift system consisting of several NE–SW-oriented

troughs. These graben-like features are located along the

same structural trend and occur beyond the basin limits, as

far as 960 km southwards (e.g., the Água Bonita and Piranhas

basins, which are located ∼ 1000 km to the south of the

Parnaíba basin along the Transbrasiliano Lineament, Brito

Neves et al., 1984). In contrast, more orthogonal stretching

produced pure-shear extension, crosscutting the basement

fabric (mainly shear zones and metamorphic foliations) in

the central part of the Parnaíba basin (the second tectonic

style defined above).

5.2 Post-rift tectonic activity

Subsequent tectonic episodes occurred during the post-rift

phase, with brittle reactivation of Brasiliano shear zones. Re-

verse faults and folds imaged in the seismic sections de-

formed sedimentary sequences II and III, as well as the di-

abase sills (Fig. 9). Morais Neto et al. (2013) correlated this

transpressional reactivation with the post-Devonian tectonic

inversion reported by Destro et al. (1994), which gave rise

to a kilometer-scale gently plunging drag-shaped fold struc-

ture in the NE portion of the Jaibaras basin. Furthermore,

later extensional reactivation of ancient shear zones espe-

cially deformed sedimentary sequence III, forming troughs

close to the Transbrasiliano Lineament (Fig. 9a). The age re-

lationships suggest that this reactivation postdates the Juras-

sic because the volcanic sills of the Mosquito formation

(∼ 200 Ma) are faulted and tilted. We hypothesize that the

NW–SE-oriented extensional events are related to the Syn-

rift II phase of the Cariri–Potiguar trend in the NE Brazil rift

system, described by Matos (1992).

5.3 Subsidence evolution

In the Ordovician and Silurian, rifting ceased along the

Transbrasiliano Lineament as a result of lithospheric ther-

mal re-equilibration and contraction due to changes in the

lithospheric stress field (Oliveira and Mohriak, 2003). The

resulting negative buoyancy effect was likely the primary

cause of the widespread and long-lived post-rift subsidence

episodes that formed the broad saucer-shaped Parnaíba sag

basin. For example, the simplified subsidence curves of the

Parnaíba basin, extracted from three exploratory wells and a

seismic section (Fig. 11), show two periods with accelerated

subsidence rates, with amplitudes of 3500 and 2000 m, dur-

ing Cambrian–Ordovician times and Silurian–Carboniferous

times, respectively. According to Quinlan (1987), the rapid

syn-rift sediment accumulation involves subsidence of a pre-

viously thermally uplifted lithosphere. After the rift became

inactive, the Parnaíba basin experienced slower subsidence

during the long period of subsequent cooling. The sedimen-

tary sequences II and III of the Serra Grande and Canindé

Groups were deposited with a sedimentation rate of approx-

imately 22 m Myr−1 for 100 Myr (Fig. 11). Analyzing cra-

tonic basins in North America and West Siberia, Armitage

and Allen (2010) noted that the slow extension of relatively

thick continental lithosphere causes permanent, long-lived

thermal subsidence in cratonic basins. In fact, a 40 km thick

crust, derived from receiver functions by Rosa et al. (2012)

and 3-D gravity inversion (de Castro et al., 2014), occurs in

the western part of the Parnaíba basin, where the sag de-

posits are thicker and the thermal subsidence lasted for a

longer time (2BAC curve in Fig. 11). This sedimentation rate

is smaller than that during the rift phase, when mechanical

subsidence was active in the Cambrian–Ordovician.
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Following the Late Carboniferous, the thermal subsidence

slowed to a rate of 6.5 m Myr−1, the cratonic basin stabilized,

and the thin volcano-sedimentary sequences IV and V were

deposited in the Jurassic and Cretaceous. However, fault ac-

tivity was not absent during this period of basin evolution.

We have identified for the first time folds related to a post-

rift inversion phase. This type of fold affected post-Permian

to pre-Albian units and has already been identified in a deep

seismic transect at the western margin of the basin (Daly et

al., 2014).

5.4 Mapping pseudo-graben

The second question to be discussed involves the causes of

the different trends in the pseudo-gravity and gravity lows,

which do not spatially match the grabens identified in the

seismic data (Fig. 9). The new seismic lines revealed not

only the internal architecture of the basin but also a mis-

match between the graben locations mapped from potential

field and seismic data (Fig. 14). In the Parnaíba basin, base-

ment causative sources severely modify the magnetic and

gravity patterns, concealing the anomalies directly related

to the rift structures (Fig. 12). Analyzing the geological set-

ting in the Jaibaras basin, we infer that the causative bodies

responsible for the gravity lows beneath the Parnaíba basin

could also be Neoproterozoic supracrustal sequences of low-

grade metasedimentary rocks and anorogenic granites that

surround the Cambrian–Ordovician Jaibaras rift (Fig. 6). Fur-

thermore, the N–S-elongated gravity lows are parallel to the

Araguaia Suture Zone along the western edge of the basin

(Fig. 14). In this region, low-density and low-grade metamor-

phosed successions, sparse ophiolite mafic and ultramafic

rocks and granitic intrusions represent the Neoproterozoic

Araguaia Belt (Moura et al., 2008). This belt formed as the

result of the oblique collision of the Amazonian and São

Francisco cratons, which also involved the Parnaíba block

and the Tocantins and Borborema provinces (Alvarenga et

al., 2000; de Castro et al., 2014) (black arrows in Fig. 14).

The metasedimentary sequences were thrusted over the east-

ern edge of the Amazonian Craton, forming thick packages

of low-density rocks in the upper crust.

Based on the N–S-oriented gravity lows, we hypothesize

that these supracrustal sequences were also deposited to the

east of the Araguaia Suture Zone within the Parnaíba block.

These sequences in places assume a NW–SE orientation and

are limited by the Transbrasiliano Lineament to the south

and east (Fig. 14). In fact, comparing basement rocks drilled

in exploratory wells in the Parnaíba basin (available in Cor-

dani et al., 1984) with the interpreted residual gravity map

(Fig. 14), we observe a close correlation between the neg-

ative anomalies and the low-grade metamorphic rocks and

felsic intrusive rocks. Cordani et al. (1984) described these

rocks as phyllites, quartzites and syenites. Rb–Sr dating has

provided ages that range from 670 to 504 Ma. At that time,

the Brasiliano–Pan African orogeny was active, leading to

the overall amalgamation of West Gondwana and possibly

causing an elongated supracrustal strip to be thrusted over

the Parnaíba block, similar to the Araguaia Belt, which was

emplaced onto the Amazonian Craton to the west (Fig. 15).

We interpret the low-grade metamorphic rocks and felsic in-

trusive rocks to be the most likely candidates for the LDBs

that have been modeled within the basement (Fig. 13).

Between the Ediacaran and the Ordovician, the

widespread post-orogenic extensional tectonic regime

(blue arrows in Figs. 14 and 15) led to the onset of post-

orogenic magmatism accompanied by the intrusion of

granite bodies and continental rifting along the Brasiliano

shear zones, particularly along the Transbrasiliano Linea-

ment (TB in Figs. 14 and 15) (Brito Neves et al., 1984;

Oliveira and Mohriak, 2003; Cordani et al., 2013). Examples

of post-orogenic granite intrusions occur along both the NE

and SW edges of the Parnaíba basin in the vicinity of the

TB. Additional granite bodies, emplaced along the TB, are

likely concealed beneath the basin, contributing locally to

pseudo-gravity and gravity negative anomalies, in addition

to the supracrustal sequences (Fig. 15).

5.5 Broad implications for other basins in West

Gondwana and elsewhere

The evolution of the Parnaíba basin has implications for other

basins in both South America and Africa. The questions as-

sociated with the development of these basins appear to be

related, and their answers have important implications for

the origin and development of the long-lived and extensive

Parnaíba cratonic basin.

The rifting process related to the breakup of Pangea in the

Jurassic and Cretaceous does not appear to have played a ma-

jor role in the generation of accommodation space in the Par-

naíba basin. This process, however, has been described as

the primary tectonic event responsible for several sedimen-

tary basins along the eastern margin of South America (de

Castro et al., 2007; de Castro and Bezerra, 2015). Therefore,

several basins in northeastern Brazil exhibit both Paleozoic

and Jurassic–Cretaceous sedimentary units (e.g., Araripe and

Tucano–Jatobá basins, Fig. 2). In these cases, the Paleozoic

units have been described as undeformed pre-rift units gen-

erated by a sag deposition (e.g., Matos, 1992; Assine, 2007).

This type of hypothesis is based on the assumption that the

deposits in the Parnaíba basin, which encompasses the ma-

jor Paleozoic sequence in the region, were formed through

sag-related deposition. This study indicates that at least two

rift phases preceded the sag stage. In addition, the geophys-

ical data from our study show that the sag-related depo-

sition was also controlled by the reactivation of rift faults

(Fig. 9). In a few basins, such as the Araripe and Tucano–

Jatobá basins, Paleozoic sedimentary units are intensively

deformed, and this deformation has been attributed to Meso-

zoic rifting (Magnavita et al., 1994; Assine, 2007; Kuchle

et al., 2011). However, early Paleozoic rifting episodes may
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also have affected these basins, which have been subjected to

rifting in the Early Paleozoic and in the Jurassic–Cretaceous.

This hypothesis should not be ruled out and should be inves-

tigated in further studies.

6 Conclusions

The Parnaíba basin is a large, sag-type cratonic basin with

a saucer and roughly circular shape. Its history of long-term

accumulation of terrestrial and shallow-water marine sedi-

ments started following the final assembly of the Amazon–

West African block in an overall collisional scenario involv-

ing the Araguaia and Transbrasiliano megashear zones. Post-

orogenic tectonic inversion occurred during the late Neopro-

terozoic and early Paleozoic, forming a set of troughs. The

sag-related deposition in the failed rift system was similar

to that of many coeval cratonic basins scattered throughout

North America, Africa and South America.

A large geophysical data set, involving airborne poten-

tial field, seismic and well log data, was used to map the

buried graben-like structures to shed light on the driving

mechanisms of the prolonged subsidence of the Parnaíba

cratonic basin. The combined analysis and 2-D joint mod-

eling of the geophysical data revealed a complex basement

framework that includes elongated Neoproterozoic intraplate

aulacogenic-type basins. These approximately N–S-oriented

low-grade metasedimentary strips were formed in the ancient

Parnaíba block during the oblique continental collision be-

tween the Amazonian and São Francisco cratons. The base-

ment heterogeneities strongly interfere in the magnetic and

gravity anomaly patterns; thus, the basin internal geometry

can only be correctly mapped when the potential field data

are constrained by seismic profiles and well logs. Addition-

ally, anorogenic granites also contribute to masking the grav-

ity effects of the basin in the vicinity of the rift zone. Similar

granitic intrusions were emplaced in the Jaibaras rift to the

NE of the Parnaíba basin.

The basin framework can be divided into three main tec-

tonic styles based on the distribution of the graben-like fea-

tures revealed by seismic data. In the easternmost tectonic

domain, the NE–SW-trending Brasiliano shear zones con-

trolled the rifting process, primarily along the crustal bound-

ary between the Parnaíba block and the Neoproterozoic Bor-

borema Province. An elongated rift zone up to 150 km wide

was formed by brittle reactivation of old shear zones in an

oblique-slip crustal extension setting. The 30 km wide sym-

metric central graben is anchored by the Transbrasiliano

shear zone. To the west, in the south-central tectonic domain,

the main axis of the rift zone trends NW–SE, orthogonal to

regional metamorphic foliations and ductile shear zones in

the Parnaíba block. The central graben is larger and deeper

and exhibits a flat bottom. Finally, the northern tectonic do-

main exhibits no seismic evidence of Cambrian–Ordovician

rifting, and the post-rift deformation within the basin is re-

stricted to rare subtle normal and reverse faults.

The simplified subsidence curves from boreholes and seis-

mic lines reveal periods of accelerated subsidence in both

syn- and post-rift phases. During the rifting phase, the com-

bined mechanical and thermal subsidence rapidly generated

accommodation space, resulting in a sedimentation rate of

35 m Myr−1. After the rifting became inactive in the Late Or-

dovician, the subsidence rate decreased, although it remained

relatively high during the Silurian and Carboniferous. Man-

tle flow regime may provide a plausible process for cratonic

subsidence, but geological and geophysical evidence pre-

cludes this type of mechanism in the Parnaíba basin. Addi-

tionally, secondary mechanisms affected the prolonged ther-

mal subsidence established by changing tectonic stresses as-

sociated with plate motion and mantle dynamics. Following

the Late Carboniferous, the thermal subsidence slowed, the

cratonic basin stabilized and thin volcanic–sedimentary se-

quences were deposited during the Jurassic and Cretaceous.

The deposition of these units is likely related to lithospheric

deformation during the opening of the equatorial Atlantic be-

tween the latest Jurassic and the Early Cretaceous.
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