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Resumo Geral 

A interação entre as variáveis do solo e a microbiota influencia os processos que ocorrem 

no solo, tanto que, em ambientes terrestres o N é reciclado primariamente pela microbiota. 

No ciclo do N, a nitrificação é a etapa em que nitrato se torna disponível no solo para as 

plantas, mas também N é perdido por lixiviação de nitrato ou pela emissão de gases 

nitrogenados. Entretanto, as mudanças climáticas, a modificação do uso da terra e a 

aplicação de fertilizantes nitrogenados veem alterando a dinâmica de N. Um especial 

interesse é direcionado à maior savana na América do Sul, o bioma tropical sazonal seco 

que é o Cerrado, cuja paisagem vem sendo alterada pela agricultura. Fazendo uso da 

técnica de metagenômica, os atributos funcionais da microbiota do solo do Cerrado quanto 

ao ciclo do N foram comparados entre dois parques de conservação do bioma, distantes 

500 km entre si, com variação na textura e no conteúdo de água do solo. Os tipos de 

vegetação amostradas dentro de cada parque mascararam os efeitos de altitude e distância 

entre os parques, e todas as amostras apresentaram uma maior abundância de genes para 

assimilação de amônia e amonificação. Isso corrobora a literatura encontrada sobre o 

metabolismo de amônia como forma principal de N no Cerrado. Em particular, o Campo 

limpo alagado, presente somente em um dos parques, apresentou a maior abundância de 

genes fixadores de nitrogênio. Ainda, foram detectados genes para denitrificação, mas 

somente dois hits foram observados para nitrificação. Sucessivamente, foi acessado o 

impacto do manejo do solo sobre a abundância de Archaea e Bacteria oxidantes de amônia 

por quantificação do gene marcador amoA ao longo do cultivo da soja no bioma Cerrado. A 

análise molecular, tal como as técnicas clássicas e de isótopos mostraram um maior 

conteúdo de C orgânico e de NH4
+-N no pousio em comparação à área nativa de reserva 

legal adjacente ao plantio da soja. De mesma forma, observou-se um aumento na 

abundância de oxidantes de amônia e da taxa de nitrificação no solo agrícola em 

comparação à área nativa, com a menor razão amônia/nitrato observada no solo após 

revolvimento. A abundância de AOB apresentou correlação com o aumento de pH ao longo 

do cultivo da soja. Experimentos seguintes testaram o efeito de água e de pH em 

microcosmos contendo solo do Cerrado, tal como a possível inibição de nitrificação em 

slurries contendo uma mistura de solo do Cerrado com um solo agrícola (Craibstone) com 

reconhecida atividade de oxidação de amônia. No entanto, o acúmulo de NO3
-  estava 

abaixo do nível de detecção na maior parte das amostras, tanto naquelas com aumento no 

teor gravimétrico de água ou com aumento de pH, independente da alta concentração de 

amônia. A nitrificação não foi inibida nas misturas de slurries incubadas, e, ainda, após 21 
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dias de incubação foi possível detectar transcritos de amoA de AOA no slurry de solo de 

Cerrado. Os perfis de DGGE mostraram um maior número de bandas de AOA amoA nos 

slurries de Craibstone e das misturas dos dois solos, do que o perfil observado nos slurries 

incubados somente com solo do Cerrado. Considerando o exposto acima, este foi o 

primeiro trabalho apresentado sobre o metabolismo de N e mais especificamente sobre a 

oxidação de amônia, utilizando dados de metagenomas e de PCR em tempo real. A baixa 

detecção de nitrato nas amostras de campo e de incubações em laboratório sugerem que 

algum outro mecanismo ocorre nos solos do bioma Cerrado no sentido de preservação de 

N inorgânico preferencialmente na forma de amônia. Sugerimos que a nitrificação depende 

da presença de oxidantes de amônia, mas também da composição da comunidade 

microbiana, sendo que a sua diversidade afeta a dinâmica de N no solo. Provavelmente 

condições abióticas e bióticas influenciam na limitação de crescimento da comunidade de 

oxidantes de amônia autotróficos no Cerrado. Por exemplo a competição por amônia entre 

esses oxidantes autotróficos e plantas ou com microorganismos heterotróficos. Ainda a 

redução dissimilatória de nitrato a amônia ou a imobilização abiótica de nitrato podem 

influenciar o desenvolvimento daquela comunidade 
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General abstract 

Interactions between soil characteristics and microbiota influence the processes in soil 

ecosystem, as the terrestrial N is primarily cycled by the microbiota. In the N cycle, 

nitrification enables plants’ access to nitrate, although N can be lost through nitrate 

leaching, or N trace gas emission.  These N dynamics are being disturbed by climate change, 

land use modification and the employment of nitrogenous fertilizers. A special interest goes 

to the largest savanna in South America, the seasonally dry Cerrado biome, where 

agriculture is changing the biome landscape. Shotgun metagenomics was used to compare 

the functional attributes of N cycling from the soil microbiota present in two conservation 

parks of the Cerrado biome, 500 km distant from each other, with varying soil texture and 

water content. Types of vegetation sampled within each park masked the altitude and 

distance effects, but all samples showed higher abundance of genes for assimilation of 

ammonia and ammonification. This corroborates Cerrado literature of ammonia as the main 

soil N form. In addition, a flooded grassland presented the highest abundance of N fixation 

genes.  Despite the detection of denitrification genes, only two hits for the nitrification 

process were described. Subsequently, we assessed the impact of soil management on the 

abundance of Archaea (AOA) and Bacteria (AOB) ammonia oxidizers by quantification of the 

marker gene (amoA) during different stages of soybean cultivation within the Cerrado. 

Molecular analysis and classic and isotope techniques exhibited higher content of organic C 

and NH4
+-N during fallow than in the adjacent undisturbed field, and an increase in ammonia 

oxidizers abundance and nitrification rates in the agricultural soil than in the undisturbed 

site, with the lowest ammonium/nitrate ratio in tilled soil. AOB abundance was correlated 

with the increase in pH during soybean cultivation. Further experiments tested the effect of 

moisture and pH in microcosms containing Cerrado soil, and the possible nitrification 

inhibition in slurries assembled with a mixture of Cerrado and agricultural soil known for 

actively oxidizing ammonia (Craibstone soil). Nevertheless, very little NO3
- accumulation 

was observed in Cerrado microcosms with either increasing moisture or pH, despite high 

ammonia concentration. Nitrification was not inhibited in the mixed soil slurries, and after 

21 days it was possible to detect the activity of AOA with the quantification of amoA 

transcripts. Moreover, DGGE profiles showed a higher number of AOA amoA gene in the 

Craibstone-only slurries and similar to the mixed slurries, but lower in the Cerrado-only 

slurries. This was the first assessment of the N metabolism with metagenomic data and 

qPCR for ammonia oxidation in the Cerrado. However, the little accumulation of NO3
- in the 

field soils or in the treated microcosms or slurries advocates that some other mechanism 
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occurs in this ecosystem to preserve inorganic N preferentially in the NH3 form. Taken these 

findings together, it is likely that not only the presence of ammonia oxidizers is 

fundamental for nitrification to occur, but that the microbial community composition and 

diversity affects the direction in which N process occur in soil. Most possibly there is a 

correlation between abiotic and biotic conditions that limits the abundance of autotrophic 

ammonia oxidizers, as for example the competition for NH4
+ by plants or heterotrophic 

microbes or through dissimilatory reduction of NO3
- to NH4

+.  
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Motivação  

 Micro-organismos aprovisionam diversos serviços ecossistêmicos, tais como a 

reciclagem de nutrientes e a decomposição de matéria orgânica, a reciclagem de dejetos e 

o controle biológico de pestes. Na economia mundial atual, esses serviços representam um 

terço da contribuição anual dos serviços ecossistêmicos terrestres, significando uma média 

global estimada de 1,6 trilhões de dólares por ano. Além disso, a interação entre micro-

organismos e plantas, especialmente na rizosfera, é responsável pela nutrição e saúde das 

plantas, que dependem de reações catalisadas pelos micro-organismos no solo. 

Consequentemente, o crescimento populacional mundial depende do fornecimento de 

comida pela agricultura e pecuária, por sua vez condicionado à reciclagem de nutrientes por 

micro-organismos no solo.  

Todavia, o objetivo dos micro-organismos é o de obter energia para seu próprio 

metabolismo ou produção de biomassa. Por sua vez, se o substrato é provido em excesso 

no ambiente, uma maior concentração de produtos será liberada e não incorporada à 

biomassa microbiana (e de plantas). Por exemplo, o uso de fertilizantes nitrogenados em 

excesso na agricultura pode potencialmente levar ao aumento de emissão de gases 

nitrogenados causadores do efeito estufa (N2O), e também às perdas de nitrato que levam 

à contaminação de cursos de água.  

A aquisição de energia em solos não é tarefa simples: formas de vida diferentes 

competem para a viabilidade de substratos, ou também colaboram para a troca de 

substrato/produto. Essa competição acontece a todo momento, em micro hotspots do solo; 

uma batalha entre plantas e micro-organismos e entre diferentes micro-organismos. 

No último dezembro, na COP 21, a maior parte dos países concordou que devem ser 

tomadas ações para a redução do aquecimento global, que está notadamente associado à 

emissão de gases de efeito estufa. No entanto, os micro-organismos não foram 

protagonistas nas discussões da reunião acima citada, apesar de estarem diretamente 

relacionados à capacidade de um ambiente de ser fonte ou captador dos gases de efeito 

estufa. Nesse contexto, a ecologia microbiana de solo tem como foco a identificação de 

genes que controlam especificamente as funções relativas à emissão desses gases ou 

outras vias metabólicas da ciclagem de nutrientes. Desta forma é possível monitorar as 

mudanças no ecossistema e aquelas relativas aos serviços ecossistêmicos providos pelos 

micro-organismos.  



12 

 

Mudanças climáticas, pluviometria e o regime de fogo devem ser considerados nos 

estudos da savana tropical sazonalmente seca no Brasil Central. Esta, o Cerrado, é a savana 

de maior biodiversidade, e em grande parte endêmica. Ainda mais, sua área está em 

constante modificação devido à fronteira agrícola, envolvida na produção de commodities 

brasileiras.  

Tal como referido anteriormente, as comunidades microbianas são os atores das 

transformações bioquímicas que ocorrem nos solos, e as técnicas moleculares são usadas 

para descrever e compreender as modificações que ocorrem nas comunidades microbianas 

de acordo com as mudanças no ambiente amostrado. Nesse contexto, e para nosso 

conhecimento, esta tese é o primeiro trabalho que considera a variação dos grupos 

funcionais relacionados à ciclagem do N no Cerrado, medida pela abundância de genes 

microbianos no solo.  
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Objetivos e hipóteses 

 Objetivos  Hipóteses 

Gerais Descrever a microbiota do solo 
do Cerrado nativo e 
convertido à plantação da soja, 
fazendo uso de técnicas 
moleculares e com foco no 
metabolismo do N 

Estudar as baixas taxas de 
nitrificação líquida observadas 
nesses solos ao analisar a 
comunidade microbiana 

Analisar a relação entre 
biodiversidade microbiana e a 
provisão de serviços 
ecossistêmicos como a 
ciclagem de nutrientes 

Determinar o impacto da 
agricultura na abundância de 
oxidantes de amônia e seu 
funcionamento 

 

A comunidade de oxidantes de amônia 
será menos abundante nos solos do 
Cerrado, considerando as baixas taxas 
de nitrificação  

A abundância relativa dos genes 
relativos ao ciclo do N irá variar 
conforme as qualidades físico-químicas 
dos solos amostrados 

O solo agrícola apresentará uma 
estrutura diferente da comunidade de 
oxidantes de amônia em relação ao solo 
nativo 

 

Específicos Capítulo 2 Analisar a diversidade 
taxonômica e funcional dos 
micro-organismos do solo do 
Cerrado, usando dados de 
metagenômica 

Identificar genes dos grupos 
microbianos responsáveis pelo 
metabolismo do N 

Estabelecer a correlação entre 
a abundância relativa dos 
genes do metabolismo do N e 
as características do solo e da 
vegetação entre e dentro dos 
parques de conservação 

A comunidade microbiana irá diferir de 
acordo com a distância biogeográfica e 
as características físico-químicas dentro 
e entre os parques de conservação 

A abundância dos genes anotados para 
o metabolismo do N irá refletir a razão 
C:N, o pH, o teor gravimétrico de água e 
os conteúdos de N e C dos solos 
amostrados dentro e entre os parques 

Capítulo 3 Investigar a variação temporal 
e espacial da abundância de 
archaeas e bactérias oxidantes 
de amônia por PCR 
quantitativa ao longo do 
cultivo da soja no bioma 
Cerrado 

Elucidar as variáveis físico-
químicas que explicam a 
mudança na abundância dos 
oxidantes de amônia 

A razão entre archaeas e bactérias 
oxidantes de amônia irá modificar ao 
longo do cultivo da soja devido ao 
aumento do pH e à adição de 
fertilizantes nitrogenados 

A comunidade de archaeas oxidantes de 
amônia será maior em número que 
aquela de bactérias no solo nativo de 
Campo sujo e na área de manejo da soja 
durante o pousio devido ao pH mais 
ácido e à provisão de NH4+ 
principalmente por mineralização 
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Capítulo 4 Incubar solos em microcosmos 
para testar o efeito da água e 
do pH na habilidade do solo de 
acumular nitrato 

Testar o potencial biológico de 
inibição para nitrificação em 
solos do Cerrado contra um 
solo exótico agrícola com alta 
capacidade de nitrificar 

Exsudatos naturais de algumas plantas 
estarão relacionado à potencial inibição 
biológica e, portanto, à redução do 
crescimento e atividade de oxidantes de 
amônia 

O baixo teor gravimétrico de água e o 
baixo pH dos solos do Cerrado limitará o 
crescimento e atividade de oxidantes de 
amônia 
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Organização de capítulos 

 

Capítulo 1 – Introdução apresenta a revisão da literatura quanto ao conhecimento dos 

processos enzimáticos microbianos envolvidos na ciclagem de nitrogênio em solos, com 

uma perspectiva direcionada ao bioma Cerrado, que é o foco desta tese 

 

Capítulo 2 – Análise metagenômica da microbiota do solo de Cerrado nativo, com 

especialmente interesse na abundância relativa de genes anotados para o metabolismo do 

nitrogênio 

 

Capítulo 3 – Cultivo de soja na Fazenda Tabapuã dos Pirineus pela primeira vez foi escolhido 

para investigar o efeito a curto prazo do manejo agrícola sobre a abundância de archaeas e 

bactérias oxidantes de amônia 

 

Capítulo 4 – Limitação da oxidação de amônia em solos do Cerrado foi avaliada em 

microcosmos e culturas puras para testar o efeito da água, pH e potenciais inibidores 

biológicos produzidos por plantas sobre a nitrificação  

 

Capítulo 5 – Discussão com o objetivo de retornar aos principais pontos apresentados nos 

capítulos anteriores e também estabelecer novas considerações sobre regulações bióticas e 

abióticasdo ciclo do nitrogênio e, mais especificamente, da nitrificação, que ocorrem nos 

solos 

 

Capítulo 6 – Conclusão 
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Chapter 1 – N cycle, nitrification and the Cerrado biome: literature 
review 1 

 

 

 

“We became scientists because we are curious – we are driven to solve the puzzles that nature 
presents.”  

Joshua Schimel 

 

 

 

 

itrogen cycling is mainly controlled by microorganisms in a multitude of 

processes and regulations. Advances in research presents novelties that were 

sometimes anticipated based in N thermodynamics. For example, just recently it has been 

discovered the “comammonas” process, which is the ability of ammonia oxidation to nitrite 

and subsequently to nitrate in a same organism; metabolism predicted by the higher gain of 

energy when are substrate- and spatial-limited (Daims et al., 2015; van Kessel et al., 2015). 

Plants and microorganisms can assimilate N in the form of ammonia, nitrate, and 

sometimes organic N, or N2 for a few Bacteria and Archaea. N2 enters the lithosphere and is 

biologically transformed to NH4
+. In turn, NO3

- is made available by the dissimilatory process 

of ammonia oxidation by autotrophic Archaea, Bacteria or heterotrophic Bacteria and Fungi. 

Microorganisms compete within themselves and with plants to use the NO3
- available in 

soil, which can be either assimilated or used as electron donor. The balance of processes 

                                                           
1 A modified version of this thesis introduction and discussion will be submitted as a review on the N 
cycle of the Cerrado soils.  

N 
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and the soil conditions determines the availability of N returning to NH4
+ or being 

completely reduced to N2.  

N is essential to primary productivity and, in nature, is mainly dependent on 

biological nitrogen fixation, which produces reactive N.  On the other hand, the non-natural 

chemical conversion of atmospheric N2 to NH3 in the Haber-Bosch process, increased the 

reactive N concentration in the environment, presenting consequences due to N loss to the 

atmosphere as N trace gases, or to water courses as nitrate produced during nitrification 

(Galloway and Cowling, 2002). 

 

Nitrification 

Nitrification can be measured as gross or net rates; the first is quantified by the 

assimilatory or dissimilatory processes calculated for example by the 15N pool dilution 

methods (Davidson et al., 1991). Net nitrification is obtained by the variation of NO3
--N 

concentration in incubated soil (either in laboratory or field conditions) during an 

established period of time. However, only the first method can assess if 15NO3
- pool is 

diluted with 14NO3
- produced by autotrophic nitrifiers from 14NH4

+ or by heterotrophic 

organisms from organic 14N (Davidson et al., 1991). Net nitrification in native undisturbed 

Cerrado soils is low and sometimes undetectable. These soils present high NH4
+-N:NO3

--N 

ratio (Nardoto and Bustamante, 2003) and insignificant N2O emissions (Cruvinel et al., 2011; 

Pinto et al., 2006; Pinto et al., 2002). Thus, the investigation of nitrification in the Cerrado 

biome is of particular interest for its N-limitation (Araujo et al., 2012), with higher rate of N 

immobilization than mineralization (Nardoto and Bustamante, 2003), which leads to a need 

of fertilizers and liming when land use is changed for agriculture.  

Cerrado is the savanna of Central Brazil and, as such has a plant cover distribution 

dependent on the interaction between water and nutrient availability (Medina, 1987) in 

(Bustamante et al., 2006), with weathered soils with   low   nutrient availability (Reatto et 

al., 1998). The Cerrado presents a range of herbaceous and tree/shrub strata from grassland 

to savanna and forest formations, that are related to the type of soil (Reatto et al., 1998), 

which may present varying contents of nitrogen according to the tree-shrub layer density, 

the fire regime and the land use change (Bustamante et al., 2006).  

Bustamante et al. (2006) reviewed N concentration and N dynamic in ecosystem 

compartments for the tropical savannas, but it remains to be discussed the microorganisms 
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associated with N metabolism. Microbial ecology has been used in the last couple of 

decades to improve knowledge on biogeochemical processes in the environment. The 

presence of genes can be directly measured by PCR quantification or the taxonomic 

categories can be assigned through sequencing (Figure 1). Metagenomics’ studies are 

primer-independent thus allowing a more holistic description of genes abundance in the 

ecosystem. Nevertheless, the current culture-independent methods depend on database 

search and a great number of genes is still unclassified. Therefore, classical microbiology 

approach with isolated microorganisms is complementary.  

Nitrification involves two groups of specialized organisms phylogenetically 

unrelated: the ammonia-oxidizers and the nitrite-oxidizers. The oxidation of ammonia is 

often the focus of research, because it is the limiting-step for nitrification to occur. 

However, and as mentioned above, in the end of 2015 two groups were able to identify an 

organism, “Candidatus Nitrospira inopinata able to perform the complete oxidation of 

ammonia to nitrate, isolated from a biofilm in a pipe under hot water flow (Daims et al., 

2015) and from an ammonium-oxidizing biofilm from an aquaculture system filter (van 

Kessel et al., 2015). 

 
Figure 1. N cycle processes in oxic and anoxic environments. Special 
highlight to nitrification and denitrification. In italic genes often used to 
quantify these processes BNF: Biological nitrogen fixation. DNRA: 
dissimilatory nitrate reduction to ammonium. Ananmox: anaerobic 
oxidation of ammonia. 
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The presence of ammonia oxidizers is quantified by the amoA gene coding for the 

subunit A of the enzyme ammonia monooxygenase, and it is catalyzed by autotrophic 

Bacteria (AOB) – Nitrosomonas (β-proteobacteria), Nitrosospira (β-proteobacteria) 

(Kowalchuk and Stephen, 2001) and Nitrosococcus (γ-proteobacteria) – or autotrophic 

Archaea (AOA), phylum Thaumarchaeota.  The ammonia monooxygenase is a protein of 

membrane that converts NH3 to NH2OH (hydroxylamine, HAO), then released into the 

periplasm to be oxidized by HAO to NO2
- in AOB (De Boer and Kowalchuk, 2001). No hao 

gene has been detected in AOA genomes, but N. maritimus seems to produce NH2OH, 

possibly through a different enzyme complex (Vajrala et al., 2013). AOA and AOB appear to 

be mechanistically similar even though differ, within other things, in the dependence of 

copper (AOB) rather than iron as the redox active for AOA (Stahl and de la Torre, 2012) and 

in the organization of the operon AMO. In AOB the AMO operon has a conserved 

organization as amoCAB (Bothe et al., 2000; Nicol G.W., 2006; Norton et al., 2002), while in 

Thaumarchaeota the organization as amoAxCB varies between lineages (Bartossek et al., 

2012; Blainey et al., 2011). 

The majority of studies with soils show AOA as more abundant than AOB and more 

frequently associated with nitrification rates (Leininger et al., 2006; Mao et al., 2011; Prosser 

and Nicol, 2012). In addition, AOA seem to prefer ammonia generated from the 

mineralization of organic N and are the predominant ammonia oxidizers in acidic soils 

(Levičnik-Höfferle et al., 2012; Prosser and Nicol, 2012; Zhang et al., 2012) or in environments 

with little availability of NH4
+ (Gubry-Rangin et al., 2011; Gubry-Rangin et al., 2010; Nicol et al., 

2008). This apparent niche differentiation (Prosser and Nicol, 2012) might be important to 

consider in view of the economic and ecological costs of fertilization and nitrogen losses.  

 

Heterotrophic nitrification 

The structure and functioning of ammonia oxidation in heterotrophic nitrifiers is not 

as well described. Most of the heterotrophic nitrifying bacteria have similar enzymes as the 

autotrophic counterparts as reviewed in (De Boer and Kowalchuk, 2001); and the amoA 

gene is at least partially homologue to that of N. europaea (Bothe et al., 2000). 

Nevertheless, the broad range of phylogenetic heterotroph bacteria able to nitrify 

complicates the use of a molecular assay to determine their presence in the environment. 

Furthermore, their potential metabolic activities do not ensure the contribution to the N 

metabolism (Kowalchuk and Stephen, 2001), since heterotrophic nitrifiers can use organic 
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or inorganic N, but ammonia oxidation is not linked to cellular growth as in autotrophs. The 

presence of heterotrophic nitrifiers in soil can be presumed by the accumulation of nitrate 

in soils incubated with acetylene, a specific inhibitor of autotrophic nitrification, as 

suggested for Cerrado soils (Poth et al., 1995). On the other hand, nitrification in Fungi 

seems to involve the reaction of N compounds with hydroxyl radicals formed potentially 

during cell lysis or lignin degradation (De Boer and Kowalchuk, 2001).  

Moreover, some of the bacteria able to perform nitrification heterotrophically can 

combine nitrification-denitrification processes; where denitrification is used by the 

organism to dissipate reducing equivalents (NADH) under low oxygen conditions, allowing 

a greater growth rate on an environment with substrate in excess (De Boer and Kowalchuk, 

2001) , which is less likely in Cerrado soils. 

 

Denitrification 

Denitrification alone is represented as the reduction of NO3
- to NO2

-, and 

subsequently to NO, N2O and N2 by the same organism or more commonly by different 

organisms, thus considered a modular process (Graf et al., 2014). The reduction of NO2
- to 

NO is catalyzed either by a copper-containing enzyme, that can be identified by the 

measurement of the gene nirK abundance; or the nitrite reductase encoded by nirS which is 

a cytochrome cd1 (Mohan et al., 2004). These are dissimilatory enzymes associated with 

electron transport phosphorylation. However, nitrite reductases can also be assimilatory 

when the reduction of NO2
- leads to NH4

+. These use reduced pyrimidine nucleotides or 

ferredoxin as electron donor: the cytoplasmatic NirB is more common in fermentative 

bacteria and the periplasmic nitrite reductase, deduced by the presence of the gene nrfA in 

the environment, is found in a wider range of bacteria than the above (Mohan et al., 2004).  

Denitrification is dominant on nitrate-rich environment with low electron donors’ 

concentration; however, NO3
- and NO2

- reduction to NH4
+ predominates on an electron-rich 

environment where NO3
- is in low concentration. Dissimilatory nitrite reduction to 

ammonium (DNRA), known also as fermentative reduction of nitrate or ammonification, is 

the concurrent process to denitrification, representative in reduced and C-rich 

environments. Available soil literature is smaller for DNRA than denitrification, even though 

DNRA is also a process widespread among bacteria (Mohan et al., 2004). DNRA was 

suggested as a short-circuit of N cycle, returning NO3
- to NH4

+ (Cole and Brown, 1980), and 

despite not frequently considered in terrestrial experiments, since it is an anaerobic 
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process, it can be relevant in soils (Rütting et al., 2011).  On the other hand, anammox, the 

anaerobic ammonia oxidation to N2 seems to be strictly present in anoxic environments. 

 

Denitrifiers guilds and N trace gases emission 

A microbial guild is described as a group of organisms occurring in the same space 

and time, and that use same resources (Fauth et al., 1996). The relative abundance of 

different microbial guilds is dependent on soil characteristics. An increase in soil water 

content after the first rains that follow the dry season in the Cerrado promoted higher 

mineralization (Nardoto and Bustamante, 2003), reflecting a higher microbial activity and 

nitrification (da Silva, 2004). More specifically, AOA and AOB differ in their niches in soil 

according with different pH and ammonia availability. Similarly, denitrifier’s guilds, meaning 

organisms containing either nirK or nirS genes, also respond differently to the environment 

(Enwall et al., 2010; Jones and Hallin, 2010) as well as the nosZ organisms from clade I or II 

(Jones et al., 2013). The ratios of nirS/nirK type and nosZ clade I/clade II are related and have 

an effect on the soil N2O sink capacity, more significant in environments dominated by nosZ 

clade II (Jones et al., 2014). 

In turn, the balance between the processes described above controls N trace gases 

emissions (Conrad, 1996). Emission of NO and N2O can occur either during nitrification or 

denitrification. A special attention is given to agricultural fields as fertilization increases the 

microbial transformation of reactive N (Galloway and Cowling, 2002). N2O is a significant 

greenhouse gas after CO2 and CH4, and is also a relevant ozone depleting gas (Ravishankara 

et al., 2009) when oxidized to NO, as reviewed recently (Kanter et al., 2013). In addition, N 

oxides (NO and NO2) are removed from the troposphere as nitric acid, contributing to 

ecosystems acidification.  

Emissions of nitric oxide (NO) represents 0.4 kg N ha-1 year-1 loss of N in the Cerrado 

(Bustamante et al., 2006) and is emitted in higher concentration than N2O in those soils, as 

expected by the dry and well-aerated characteristic of these soils (Pinto et al., 2002). The 

“hole-in-the-pipe” concept states that soil water content is the principal control on the 

balance of production, consumption and diffusive transport between NO, N2O and N2 in 

soils (Davidson et al., 2000). The ratio of emission between N2O and NO should be 1 in soils 

with water filled pore space (WFPS) at 60% (Davidson et al., 2000). Pinto et al. (2002) also 

emphasized that soil moisture and vegetation were more strongly associated with NO 

emission than fire regime.  In addition, N availability influences both gases emission, 



22 

 

however, in a wet soil N2O is more prevalent and the analysis of only NO would lead to false 

conclusions that nitrogen availability does not matter (Davidson et al., 2000).  

Cerrado soils can experience short moments of flooding during the first rainfall 

after the dry season, but they are often described as well-drained, leached and oligotrophic 

soils (Ribeiro and Walter, 2008). The first rains after the dry season promote an increase of 

100 fold on the emission of NO in the Cerrado, which does not continue during the wet 

season (Pinto et al., 2002). Although denitrification can occur in aerated soils (Braker et al., 

2015), it is not expected in the Cerrado soils, especially because of the low accumulation of 

NO3
- in these soils, and the dominance of N form as NH4

+ is associated with low N trace 

gases emission (Davidson et al., 2000).  

 

N fixation and other sources of N 

Reactive N enters the system through biological or chemical N fixation, which is the 

conversion of the inert gas N2 to NH4
+. In the Cerrado soils, the biological nitrogen fixation 

(16 a 44 kg N ha-1 year-1) exceeds the abiotic fixation through electrical discharges (4 kg N ha-

1 year-1) (Bustamante et al., 2006; Cleveland et al., 1999). This important source of N is 

possibly related with the high abundance of plant species from the Fabaceae family in the 

Cerrado (Filgueiras, 2002), even though very few studies have focused on the nodular 

activity of these plants (Bustamante et al., 2012c).  It is recognized though that O2, P, Ca and 

Al concentrations, soil moisture, bacterial density and plant needs of N determine the ability 

of nodulation by symbiotic dyazotrophs (Bustamante et al., 2006). As well as for 

denitrifiers, the genes encoding the enzyme nitrogenase (nifH being the gene used to 

quantify N fixation) are widespread in the Bacteria and Archaea domains.  Although 

nitrogenase is an enzymatic complex sensible to oxygen, dyazotrophs are not necessarily 

anaerobic (Falkowski et al., 2008).  

Organic matter mineralization recycles N in soils, which can then be assimilated by 

plants and microorganisms, or lost via NH3 volatilization, enzymatic denitrification and NO3
- 

leaching as discussed above. These losses depend on climatic and edaphic conditions, but, 

in general, increase with land use change. Volatilization of ammonia increases with soil 

alcalinization, leaching with increased nitrification and consequently higher substrate for 

denitrification and emissions of N trace gases. Despite the fact that the Haber-Bosch 

method allowed the increase for food production, there were consequences to the 

ecosystem functioning, as N2O is a greenhouse gas, NO catalyzes the ozone layer 
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destruction, and nitrate causes eutrophication in water courses due to increased leaching. 

Furthermore, only half of N added in crops is used by the plants (Galloway and Cowling, 

2002).  

NO3
- is considered the main form of nutrition used by plants in well aerated soils, 

where nitrification is more prone to happen. However, in Cerrado soils, the greatest part of 

inorganic N is found in the form of ammonia (Nardoto and Bustamante, 2003), suggested 

to be related with the low pH found in these soils, or competition between plants and 

microorganisms. Furthermore, the availability of inorganic N in soil depends on organic 

matter mineralization, which is lower than N immobilization in Cerrado soils (Nardoto and 

Bustamante, 2003). For example, some forests in their climax are more efficient in N use, 

potentially by inhibiting nitrification, and so maintaining predominantly ammonia than 

nitrate in the soil solution, which leads to lower losses of N as reviewed recently (Subbarao 

et al., 2015). Therefore, the observation of dynamics between plants and microbial 

community in the belowground can help understand the balance in N transformations and 

N retention and therefore provide a model for a more sustainable crop productivity. 

 

Land use impact on microbial communities 

Brazil is the fourth worldwide country in agriculture production, which depends on 

inorganic fertilizers. The progressing frontier of agriculture and managed pasture for cattle 

breeding promoted the change of approximately 53% change of the Cerrado’s original area 

(Beuchle et al., 2015). Soybean, maize, cotton and sugarcane stand out as the major crops 

cultivated in the Cerrado region, in which only the first is partially independent on the 

addition of fertilizers (Mendes et al., 2003). A study published in 2010 showed that 81% of 

exported soybean was produced in Brazil, EUA and Argentina together. This reflects a 

global trade of biogeochemical N cycling represented in 25% by the soybean commodity 

(Lassaletta et al., 2014). 

Land use impacts soil microbiota and consequently the terrestrial ecological 

services it provides (e.g. decomposition and nutrient cycling), it modifies C and N dynamics 

(Bustamante et al., 2012c), and it changes C and N stocks and sink and greenhouse gases 

emission (Carvalho et al., 2009). In turn, the alteration in N dynamics leads to a reduction of 

biodiversity (Bustamante et al., 2012c; Jacobson et al., 2011), facilitates the invasion by 

exotic species (Lannes et al., 2012) and modifies decomposition and nutrient cycling 

(Kozovits et al., 2007). 
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Then again, governmental initiatives are also concerned with preserving the 

Brazilian biomes biodiversity in conservation unities. However, only 2.2% of this biome is 

under unities of integral protection and other 1.9% in unities of sustainable use (Klink and 

Machado, 2005; Marris, 2005) ensuring its status of a hotspot for biodiversity conservation 

(Myers et al., 2000). In this context, it is important to have in mind that soil is the main actor 

in the ecosystem conservation, especially in seasonally dry environments as the Cerrado, 

where climatic change will probably modify rain distribution and regime, changing also the 

fire frequency and potentially nutrients and biomass loss (Bustamante et al., 2012c).  

More specifically, soil microbial diversity contributes to the resistance/resilience of 

the system, which means that the lower diversity after land use change can alter the 

stability of the ecosystem. Mao et al. (2011) observed that N fertilization for bioenergy crops 

(Zea mays and Miscanthus giganteus) altered the microbial communities, and induced the 

modification on 15% to 30% of the relative abundance of nitrification and denitrification 

genes. This is an example of how agriculture impacts microbial potential ecological 

functions. Same results were observed in the Cerrado soils, where soybean cultivation 

reduced microbial N independent on the soil management or the plant growing stage in 

comparison to a soil under native Cerrado (Perez et al., 2005).  Moreover, land use 

management in the Amazonian forest changed the composition and abundance of soil 

microbial communities, related with the modification in soil pH and OM (Paula et al., 2014).  

Despite the known functionality of soil microbiota regulating fertility and health by 

decomposing organic matter and through biogeochemistry we still have a lot to understand 

from microbial patterns of distribution in terrestrial ecosystems. Free-living microorganisms 

also present patterns of biogeography (Martiny et al., 2006), and should be included in 

models for biome sustainability specially in biomes threatened as the Cerrado. As discussed, 

these correlations of change in soil characteristics and microbial communities can be 

monitored targeting specific genes with molecular techniques that complement ecological 

and edaphic research in the quest to value ecosystems services provided by soil biota. This 

work main objective is to link soil characteristics with N cycling dynamics and the microbial 

functional potential in the Cerrado biome, as a step to identify key drivers of sink/source of 

N in those soils, and allow further incorporation of biological drivers into predictive models.  
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Chapter 2 – Distribution of microbial communities in two Cerrado 
conservation parks with a metagenomics approach, with special focus 
on the N metabolism 2 

 

 

“everything is everywhere” and why do we care 

Baas Becking 

Abstract 

Nitrogen is the base for primary productivity, and primarily cycled by the soil microbiota. 

Climate change, land use side effects and nitrogenous fertilizers employment are changing 

the global N budget. The Cerrado is the largest savanna in South America, and as others 

savannas in the world, is suffering from the land use change to agriculture and pasture. Yet, 

little is known of how these changes affect soil microbial communities. Undisturbed areas 

are essential to understand the natural processes rates that occur in soil. We used shotgun 

metagenomics to compare the functional attributes of N cycling from the soil microbiota 

present in two parks for conservation of the Cerrado biome, 500-km distant from each 

other, with varying altitude, soil texture and water content. Types of vegetation sampled 

within each park masked the altitude and distance effects.  The soils with greater and lower 

soil water content presented the highest levels of α-diversity, which may relate with greater 

evenness of species to overcome a less enabling environment. N fixation, nitrosative stress 

and ammonification from nitrate and nitrite differed significantly between the sites 

sampled. Across all soils, the assimilation of ammonia and ammonification were the most 

abundant subsystem of nitrogen cycle, corroborating the Cerrado literature that states 

ammonia as the main nitrogen form. We detected genes for denitrification enzymes, but 

only two hits for the nitrification process were described. This study suggests that the N 

cycle processes occurs differently between the sites. Furthermore, we suggest that each 

type of vegetation is relevant for N conservation in this biome. 

 

Keywords: Brazilian savanna, Cerrado, N cycle, ammonia, nitrification, denitrification

                                                           
2 A modified version of this manuscript will be submitted to publication, possibly including a discussion 
on the cycle of C and S.  
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Introduction 

Savanna ecosystems hold almost   one   fifth   of   the   world’s   population.  Cerrado 

is the main tropical savanna in the south hemisphere. It is a representative biome in central 

Brazil, the second largest in South America, and a wildlife corridor for species from the 

Amazon and Atlantic rainforests. As others savannas, Cerrado is controlled by the 

interaction between water and nutrient availability (Bustamante et al., 2006). Cerrado has 

an alternating wet and dry seasons and fire frequency that might change attributable to the 

global climatic changes, as higher temperatures, decreased rainfall and longer dry season 

may have an impact on net ecosystem exchanges and reduced nutrient stocks (Bustamante 

et al., 2012c). 

The Cerrado is characterized by a continuous herbaceous layer over which stands a 

discontinuous tree/shrub stratum, resulting on a range of ecosystems from grassland to 

savanna and forest formations. This variation on the types of vegetation found in the 

Cerrado biome is related to the type of soil, mostly weathered with   low   nutrient   

availability (Reatto et al., 1998), which may present varying contents of nitrogen according 

to the tree-shrub layer density, the fire regime and the land use change (Bustamante et al., 

2006). Plant type and soil texture influence microbial community structure in the 

rhizosphere soil (Tkacz et al., 2015). 

Due to its progressively land use change - approximately 53% of the Cerrado 

landscape has been transformed (Beuchle et al., 2015) – the Cerrado is considered a hotspot 

for biodiversity conservation (Myers et al., 2000), and approximately 2% of this biome is 

under protection (Marris, 2005). However, conservation unities designated for environment 

protection are not necessarily continuous (Beuchle et al., 2015). In addition, a special 

attention for conservation is paid to forest formations bordering water courses in the 

Brazilian legislation. Nevertheless, ecological insurance theory assumes that a better 

occupation of space by higher diversity leads to a better system productivity (Yachi and 

Loreau, 1999), i.e. the distribution of Cerrado in different vegetation patches. Similarly, we 

suggest that microbial community performs differently in these patches, due to the 

different resources and soil characteristics.  

The relative abundance of microbial phylogenetic groups varies according to 

Cerrado types of vegetation, i.e. savannas grassland and shrubland or riverbank (Araujo et 

al., 2012; Catão et al., 2013; de Castro et al., 2008; Quirino et al., 2009). Soil pH is directly 
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linked to nutrient availability in soil and is often associated with the distribution of bacterial 

communities in soil (Bru et al., 2011; Griffiths et al., 2011; Kuramae et al., 2012; Rousk et al., 

2010) (Lauber et al., 2009). However, in the Cerrado soil moisture is more strongly related 

with microbial community structure (Catão et al., 2014; Pereira de Castro et al., 2016; Viana 

et al., 2011), which can be associated with soil texture and its water retention capacity. 

Recently, Pereira de Castro et al. (2016) discussed the general metabolic potential 

distribution in the Cerrado biome besides the taxonomy approach. Nonetheless, until now 

no work has focused on the microbial genes associated with nitrogen cycling in the 

Cerrado, despite the need to understand microbial governed N pathways in undisturbed 

ecosystem and the use of high- throughput shotgun sequencing to characterize the N 

metabolism in other environmental samples (Andreote et al., 2012; Cobo-Díaz et al., 2015; 

Pfister et al., 2010). 

Nitrogen is mainly recycled in soils through nitrogen fixation, SOM mineralization, 

ammonification, nitrification and denitrification.  In undisturbed ecosystems, N leakage is 

minimized, and nitrification is restricted, but little is understood about this in the Cerrado 

biome.  The ecology of N dynamics between compartments has been reviewed beforehand 

for this biome (Bustamante et al., 2006), which is characterized by a high NH4:NO3 ratio, low 

nitrification and low N gas emission.  

This work was conducted to investigate the variation of relative abundance of 

taxonomic and functional potential genes in the soil of Cerrado. It was considered the 

range of types of vegetation found in two 500-km distant parks of conservation with 

different altitudes, and pluviometry. The first hypothesis assumes that vegetation and 

edaphic characteristics, which vary within and between parks, will reflect on the microbial 

diversity, due to different resource use or environment constraints. Secondly, we 

hypothesized that genes related to N metabolism would vary with the soil characteristics 

specific to each vegetation type as carbon and NH4
+ availability, pH and soil moisture. To 

test these, 24 metagenomes (eight areas in triplicates) were sequenced to describe the 

functional and taxonomic categories of Cerrado soils microbiota at a regional scale. We 

believe that microbial controls of N conservation - the balance of assimilative and 

dissimilative processes - in the Cerrado soils can help future works of biogeochemical 

models or soil management improvement. 
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Material and methods  

Soil sampling and physicochemical analyses 

 This study was performed in two sites: the National Park of the Chapada dos 

Veadeiros (PNCV) and State Park of Serra Azul (PESA) both located in Central Brazil (Figure 

9), classified as the Cerrado biome and approximately 500 km distant (coordinates provided 

in Table S1). The two sites diverge in altitude (Table S1). The climate of these regions is 

classified as Koppen Aw and the annual mean rainfall is of 1500 mm mostly during the rainy 

season, which happens from October to May.  Sampling was performed at the end of the 

rainy season: the accumulated rain and the mean temperature from the month of April 

(2013) until the sampling day in the PNCV was of 2.2 mm and 21 oC; for the PESA no rain was 

measured on the month of May (2013) and an average 27 oC were measured. In total 8 areas 

and 6 different vegetation types were sampled.  

 In the PNCV and the PESA, beside some other parks, it was installed modules of 

standardized sampling thanks to the project financed by CNPq “Diversidade biológica do 

Cerrado: estruturas e padrões”.. These modules were created within the “Rede 

ComCerrado” (Portaria MCT 319, 7 May 2009), which is a network founded by several 

research groups from public institutions in Brazil to monitor Cerrado’s biodiversity. These 

modules establish 5 km2 area bordered by 2 lines oriented east-west 1 km apart and 5 km 

long as standardized in the literature to sample extensive biomes as the Amazon rainforest 

(Magnusson et al., 2005). Along these 5 km, 10 parcels (5 in each line) were established, one 

per km and a perpendicular line of 250 m was draw along the terrain level curve (Figure 9C).   

Soil was sampled from a total of 24 points (8 sites in triplicates from the upper 10 

cm. Replicates in each site were taken approximately 50 m apart (at 50, 100 and 150 m 

inside the parcel line (red line in Figure 9C), soil was sieved through a 2-mm mesh and 

stored on ice upon collection and on -20oC in the laboratory before physicochemical and 

molecular analysis. Soil texture and content of macro and micronutrients were measured by 

using standard methods (Soils Embrapa–SNLCS) at SoloQuímica, Inc, Brasília, Brazil. 

Inorganic N was determined as described previously (Catão et al., 2016).  

 The PNCV was created in 1981 and includes the municipal areas of Alto Paraíso de 

Goiás, Cavalcante and Colinas do Sul (state of Goiás) (MMA, 2011). Soils are poor in nutrients 

and, with varying types of soil, as Neossolos litólicos (Entisol, Udorthent), Plintossolos 

(Oxisol), Cambissolos (Inceptisol), hydromorphic soils and Latossolos (Oxisol) (Haridasan, 
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2007). In the PNCV, soil samples were obtained in a Cerrado sensu stricto (SS), in a riverbank 

gallery forest, hereafter called “Mata de galeria” (MG), a flooded grassland, hereafter 

named “Campo limpo” (CL) and a Cerrado “rupestre” (CR), (Figure 2). The physicochemical 

variables observed in the sampled soils are described in Table 1.  

 

Table 1. Physicochemical variables (mean ± SE) of the sampled sites in PNCV 
Park National Park of the Chapada dos Veadeiros 
Type MG CL SS CR 
SWC (% H20 g-1 DS) 45.8* 48.1 ± 8.8 17.8 ± 1.8 6.0 ± 0.6 
Clay  (g kg-1) 233 ± 8 167 ± 22 333 ± 22 133 ± 8 
Sand (g kg-1) 617 ± 22 758 ± 22 608 ± 17 842 ± 8 
Silt (g kg-1) 150 ± 29 75 ± 14 58 ± 8 25 ± 0 

pH in H20 5.70 ± 0.06 5.27 ± 0.34 4.93 ± 0.09 5.00 ± 0.06 
pH in KCl 3.97 ± 0.12 4.20 ± 0.06 3.73 ± 0.03 3.70 ± 0.06 

P (mg dm-3) 10.83 ± 2.88 4.73 ± 0.66 1.17 ± 0.19 2.53 ± 0.20 

Ca (cmolc dm-3) 1.10 ± 0.45 0.57 ± 0.12 0.50 ± 0.06 0.57 ± 0.15 

Mg (cmolc dm-3) 0.53 ± 0.09 0.30 ± 0.00 0.33 ± 0.03 0.30 ± 0.00 

K (cmolc dm-3) 0.17 ± 0.02 0.02 ± 0.01 0.09 ± 0.01 0.04 ± 0.00 

Na (cmolc dm-3) 0.02 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 

CTC (cmolc dm-3) 9.33 ± 0.33 6.00 ± 0.58 7.67 ± 0.33 5.67 ± 0.33 

Al (cmolc dm-3) 2.33 ± 0.52 0.90 ± 0.15 1.80 ± 0.15 1.00 ± 0.10 

H+Al (cmolc dm-3) 7.27 ± 0.64 5.13 ± 0.35 6.53 ± 0.17 4.43 ± 0.38 
C (g kg-1) 182.07 ± 51.98 47.17 ± 13.20 29.33 ± 2.60 11.97 ± 1.24 
OM (g kg-1) 313.17 ± 89.42 81.13 ± 22.68 50.43 ± 4.47 20.60 ± 2.15 

B (mg dm-3) 0.63 ± 0.06 0.70 ± 0.01 0.69 ± 0.07 0.58 ± 0.10 

Cu (mg dm-3) 0.13 ± 0.04 0.19 ± 0.04 0.17 ± 0.02 0.15 ± 0.03 

Fe (mg dm-3) 72.47 ± 16.51 158.33 ± 9.02 246.00 ± 54.99 136.27 ± 27.79 

Mn (mg dm-3) 5.68 ± 0.88 3.31 ± 0.10 3.41 ± 0.12 2.94 ± 0.03 

Zn (mg dm-3) 0.85 ± 0.18 0.52 ± 0.17 0.40 ± 0.03 0.19 ± 0.02 

S (mg dm-3) 25.03 ± 8.79 43.30 ± 7.40 12.70 ± 2.04 10.43 ± 1.21 
SWC: Soil water content. *Measurement from only one sample. MG: Mata de galeria; CL: 
Campo limpo; SS: Cerrado sensu stricto, CR: Cerrado rupestre  
 

 The PESA is located entirely in the municipal area of Barra do Garças (state of Mato 

Grosso) and occupies 11,002.4 ha, in which the topography can vary (350-730 m). Soils are 

predominantly Litólicos (Udorthent) and Latossolo amarelo (Oxisol, Udox) (in the plain 

areas). PESA was created in 31 May 1994, accordingly with the State Law of Matogrosso 

6.439. More about the vegetation types in this park can be found in the literature 

(SANCHEZ, 2011). Soil samples were obtained in a Cerrado sensu stricto (SS), in a riverbank 
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gallery forest, hereafter called “Mata de galeria” (MG), a semi-deciduous forest (FSD) and a 

shrubland (CD) (Figure 2).    

 

Table 2. Physicochemical variables (mean ± SE) of the sampled sites in the PESA 

Park State Park of Serra Azul  
Type MG CS FSD SS 
SWC (% H20 g-1 DS) 16.7 ± 2.4 14.8 ± 1.6 17.7 ± 4.3 10.0 ± 1.2 
Clay  (g kg-1) 283 ± 8 408 ± 8 283 ± 22 283 ± 8 
Sand (g kg-1) 600 ± 29 383 ± 22 542 ± 30 658 ± 8 
Silt (g kg-1) 117 ± 22 208 ± 17 175 ± 25 58 ± 8 

pH in H20 4.83 ± 0.09 4.73 ± 0.09 5.00 ± 0.17 5.07 ± 0.03 
pH in KCl 3.50 ± 0.06 3.67 ± 0.03 3.90 ± 0.26 3.67 ± 0.03 

P (mg dm-3) 4.57 ± 0.35 0.77 ± 0.09 8.90 ± 6.06 3.17 ± 0.79 

Ca (cmolc dm-3) 0.77 ± 0.12 0.57 ± 0.09 0.70 ± 0.06 0.63 ± 0.09 

Mg (cmolc dm-3) 0.53 ± 0.15 0.33 ± 0.09 0.47 ± 0.12 0.40 ± 0.00 

K (cmolc dm-3) 0.10 ± 0.01 0.10 ± 0.01 0.35 ± 0.04 0.13 ± 0.01 

Na (cmolc dm-3) 0.01 ± 0.00 0.01 ± 0.00 0.04 ± 0.02 0.01 ± 0.00 

CTC (cmolc dm-3) 6.67 ± 0.33 5.33 ± 0.33 7.00 ± 1.15 6.33 ± 0.33 

Al (cmolc dm-3) 1.87 ± 0.23 1.50 ± 0.10 1.40 ± 0.81 1.40 ± 0.20 

H+Al (cmolc dm-3) 5.27 ± 0.13 4.50 ± 0.10 5.60 ± 1.14 5.27 ± 0.13 
C (g kg-1) 23.97 ± 2.40 21.83 ± 0.60 43.00 ± 9.00 24.40 ± 1.18 
OM (g kg-1) 41.20 ± 4.13 37.20 ± 0.99 73.97 ± 15.49 41.97 ± 2.02 

B (mg dm-3) 0.20 ± 0.04 0.21 ± 0.07 0.29 ± 0.06 0.35 ± 0.06 

Cu (mg dm-3) 0.32 ± 0.01 0.32 ± 0.01 0.44 ± 0.05 0.42 ± 0.04 

Fe (mg dm-3) 337.67 ± 33.89 157.67 ± 8.51 135.67 ± 34.37 288.00 ± 15.28 

Mn (mg dm-3) 44.40 ± 18.09 4.06 ± 0.16 53.27 ± 23.20 17.90 ± 7.11 

Zn (mg dm-3) 1.80 ± 0.32 0.98 ± 0.04 3.22 ± 0.80 1.55 ± 0.23 

S (mg dm-3) 5.40 ± 1.39 7.33 ± 0.54 4.97 ± 1.35 6.13 ± 1.71 
, SWC: Soil water content. +Measurement from only one sample. MG: Mata de galeria; SS: 
Cerrado sensu stricto, CS: Campo sujo, FSD: Floresta semi-decídua.  
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Figure 2. Photographs of the sites sample in the two parks: PNCV – Parque Nacional 
da Chapada dos Veadeiros; PESA – Parque Estadual da Serra Azul. (SS) Cerrado sensu 
stricto, (MG) Mata de galeria, (CL) Campo limpo, (CR), Cerrado rupestre, (FSD) 
Floresta semi-decídua, (CS) Campo sujo.  
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DNA extraction and sequencing 

 DNA was extracted from 0.5 g of soil with the FastDNA Spin Kit (MP Biomedicals) 

with additional treatment using solutions steps 2 and 3 from the PowerSoil DNA Isolation 

Kit (MO Bio Laboratories Inc.) to achieve maximum DNA yields with least of organic 

contaminants. The extraction was evaluated in 1% agarose gel electrophoresis. The average 

concentration of each 24 DNA samples was of 100 ng/µL (Invitrogen Qubit fluorometer 

dsDNA BR Kit). 

 Approximately 2 µg of DNA was sent to sequence on 454 platform GS FLX + 

technology (Macrogen, Inc., South Korea) from each sample. Two 454 plates were used to 

sequence, one for each park; DNA from each site constituted one-quarter of the plate.  Raw 

sequences were uploaded to the MG-RAST server, assigned to the projects 

SISBIOTA_PESA_2013 (ID 6701; accession numbers 4549601.3-4549612.3) and 

SISBIOTA_PNCV_april_13 (ID 5456; accession numbers 4530784.3-4530795.3), and 

processed with default quality control pipeline.   

A total of 1,364,104 sequences (average size of 746bp and 515 bp, before and after 

quality control in MG-RAST) for PNCV and 992,685 sequences (average size of 659 bp and 

382 bp, before and after quality control in MG-RAST) for PESA.  After quality control, 

unassembled sequences were assigned to the taxonomic annotation with BLASTX against 

the M5NR non redundant databases, e-value of 10-5, 80% of identity cutoff and 50 bp 

alignment. Functional annotation was performed against the metabolic subsystems SEED 

database with e-value of 10-5, 60% of identity cutoff and 15 bp alignment, as default. The MG-

RAST table format of sequences associated with total organism abundance (best hit 

classification), total bacteria assignment, total subsystems, and nitrogen metabolism were 

downloaded and transformed to wide format to R analysis.  

In addition to the analyses of N metabolism annotated genes in PNCV and PESA soils, we 

compared our results with other metagenomes obtained in the Cerrado biome in a study of 

comparison between native and managed areas: MG-RAST ID’s 4577669.3 to 4577672.3, 

4578924.3 to 4578927.3 and 4578714.3 (Souza et al., 2016). 

 

Statistical analysis  

All analyses were conducted in R version (3.2.2). One-way ANOVA tests were used to make 

multiple comparisons within each park. Tukey-Kramer post-hoc tests was used when 

statistical difference was significant (p<0.005). Differences for physicochemical and 
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metagenomics data between parks and between SS or MG present in both parks were 

tested with T-test or the non-parametric Wilcoxon test. Statistical analysis with the relative 

abundance of either annotated taxonomy or metabolisms did not consider unclassified 

reads. Relative abundance is meant as the number of annotated genes for a certain 

classification (either of taxonomy or functional) divided by the total of annotated genes for 

each sample. Principal component analysis (PCA) were constructed in R with prcomp 

function set to TRUE for correlation, considering that physicochemical variables have 

different scales and variance. PCA were made with FactoMineR and factoextra packages. All 

graphs in the boxplot format were prepared in R with the ggplot2 library as described 

previously (Catão et al., 2016).  
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Results 

Study sites and soils characteristics  

Soil NH4
+-N and NO3

- -N concentration, pH and water soil content were very similar in all 8 

sites sampled in the two parks (Figure 3). The content of soil water, NO3
- -N, NH4

+-N, and 

organic carbon, was measured in only one of the PNCV riverbank replicates due to the 

abundant presence of roots on the other replicates, which did not allow accurate 

measurements. The replicate of MG in PNCV had the highest NH4
+-N and NO3

- -N. NO3
- -N 

was higher in the PESA MG than CD or SS, but no difference compared to FSD.  pH was 

higher in the sites sampled in PNCV than PESA, but were not different within each park. 

However, MG sites from the two parks differed in pH. Sites sampled in PESA did not differ 

in soil water content, but in PNCV, CL had higher soil water content than SS and CR.  CR had 

the soil with the least water content in the two parks. Soil in the PNCV SS was slightly 

moister than the PESA SS.  

 
Figure 3. Boxplots on soils (A) NH4

+-N and (B) NO3
- -N concentration, (C) 

pH and (D) water soil content. One-way ANOVA or T- tests with tukey–
Kramer post hoc tests to compare group means (R with the ggplot2 
package) are represented with letters or with one asterisk (*) if only one 
site was significantly different from others. Two smaller asterisks (**) 
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depict statistical difference between MG or between SS present in the two 
parks.   

 

On the other hand, considering several physicochemical variables in a PCA, the two 

parks form segregated clusters (Figure 4). PNCV is a conservation unity representative of 

“Altitude Cerrado”, at 1200 m of altitude approximately, oppositely to PESA, that is at 650 

m altitude. As altitude masked the effect of other variables, it was not considered in the 

PCA. Besides altitude, pH, clay (and sand), C content, Al+3, cation exchange capacity, S, Fe, K 

and other micronutrients as B, Cu, Mn and Zn differ between the sampled vegetation, and 

consequently create two clusters according to the two parks.  

The parks have different soil texture, PESA presenting a greater clay content then 

PNCV, except for the Cerrado sensu stricto, which had the highest clay content within the 

PNCV sites (Figure 4). Therefore, clay content in both SS from the two parks were not 

different. On the other hand, MG from PESA had higher clay content than MG in PNCV. In 

PESA, CD had the highest clay content.  

Carbon content was similar along the sites sampled, except on the MG in PNCV. The 

soil in this same site had the highest cation exchange capacity (CEC), which was significantly 

different from the MG site in PESA (Figure 4). Similarly, SS sites differed in CEC between 

parks. Sulfur concentration was different between parks, especially due to S concentration 

in CL and MG in PNCV. Al+3 concentration was high in all sites sampled, but significantly 

higher in the PNCV MG. On the other hand, Fe concentration changed between sites within 

each park: SS in PNCV had significantly higher Fe content. Similarly, MG and SS had higher 

Fe concentration than CD and FSD in the PESA. Furthermore, MG sites from the two parks 

differed in Fe concentration.  
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Figure 4. Soil physicochemical variables in the two parks and their sites. (A) Principal 
component analysis (PCA) of soil physicochemical properties based on a correlation matrix 
performed with R. Each vector points in the direction in which the respective value 
increases. Boxplots of soils (B) clay content, (C) C content, (D) cation exchange capacity, (E) 
S concentration, (F) Al+3 concentration, (G) Fe concentration. One-way ANOVA or T- tests 
were performed in R. Tukey–Kramer post hoc tests to compare group means (R with the 
ggplot2 package) are represented with letters or with one asterisk (*) if only one site was 
significantly different from others. Two (or three) smaller asterisks depicted statistical 
difference between MG or between SS present in the two parks.   
 

Phylogenetic and functional analyses 

A total of 1,364,104 sequences were obtained from PNCV and 992,685 from PESA; an 

average of 7 and 11.7% did not pass on the quality control, respectively (Table S1), and 2.7 to 

8.7%, respectively, were considered sequences’ replicates and were excluded from the 

analysis. The percentage of sequences annotated to known protein was 61.4 (± 3.5) % and 

46.5 (± 1.4) % for the PNCV and the PESA, respectively, and only a small fraction (around 

0.5%) of the reads was annotated as ribosomal, or to the N metabolism (around 1%).  

The number of ribosomal sequences annotated varied from 88 to 775 and 

taxonomical assignment was against the non-redundant protein M5NR database. According 

to this database, most of the genes annotated were from Bacteria (around 97%), with the 

remaining being part either of the Domain Archaea (0,9%), the Domain Eukarya (1,6%) or 

unknown (0,18%). Archaea was mainly present in soil as Thaumarchaeota and 

Crenarchaeota; CR and MG from PNCV and FSM and SS from PESA – presented low values 

of Euryarchaeota. The most abundant phyla in the Bacteria domain were Actinobacteria, 

Proteobacteria and Firmicutes, especially the class Bacilli, Clostridia (both from Firmicutes), 

α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria. Ascomycota, Basidiomycota, 

Streptophyta and Arthropoda were within the most Eukarya annotated sequences.  

  Contrary to the PCA constructed with the physicochemical variables, the PCA 

representing the phylum relative abundance shows no separation between the parks 

(Figure 5). The vectors point to a greater relative abundance present in some of the 

replicates as for example Proteobacteria and Spirochaetes for the Campo limpo site at the 

PNCV.  
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Figure 5. Principal component analysis (PCA) constructed with the relative abundance of 
annotated genes for (A) phylogenetic assignment of phyla and (B) subsystems functional 
classification based on a correlation matrix performed with R. Each vector points in the 
direction in which the respective value increases.  
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Distribution of the relative abundance of the SEED subsystems classification 

presents a greater separation of sites sampled in each park (Figure 5B). PESA presented 

significantly higher relative abundance than PNCV for most of the subsystems as seen in the 

PCA, but more specifically for respiration (p-value=0.014), potassium metabolism (p-

value<0.0001) and phages, prophages, transposable elements and plasmids (p-

value=0.044) (Figure 6). On the other hand, PNCV had more virulence, disease and defense 

(p-value<0.0001) annotated sequences than PESA. Despite the broad potential for 

metagenomes analysis, this work focused on the nitrogen metabolism.  
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Figure 6. Bar plots for the relative abundance of SEED subsystems according to each site × park. (A) Most abundant SEED subsystems, (B) less 
abundant SEED subsystems.  
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The greatest part of annotated genes to N metabolism were related to the 

ammonia assimilation (37%), followed by nitrate and nitrite ammonification (17%), nitric 

oxide synthase (12 %) and allantoin utilization (9%) as shown in Figure 7 that concatenates all 

genes annotated to N metabolism in the 24 metagenomes. The arrows are proportional to 

the number of genes annotated in our metagenomes. The least abundant were the cyanate 

hydrolysis (6%), the denitrification (5%), the dissimilatory nitrite reductase (5%), the nitrogen 

fixation (4%), the nitrosative stress (4%) and some genes related to the amidase clustered 

with urea and nitrile hydratase functions (1%) and nitrilase subsystems (<1%). Only two hits 

were found for ammonia monooxygenase, which is an enzyme part of nitrification process, 

but classified in the transport system according to SEED subsystems. No nitrite 

oxidoreductase was detected in the metagenomes, therefore both ammonia and nitrite 

oxidation were represented by slim arrows. 

 

 

Figure 7. Schematic representation of the N cycle according to the SEED subsystems 
annotated genes performed with e!Sankey 2. The total number of genes annotated from 
PESA and PNCV metagenomes.  The arrows are proportional to the number of genes 
annotated for each process.  

 
PNCV and PESA were not different for the annotated genes of N metabolisms, 

except for the ammonia assimilation metabolism, as PNCV had significantly (p-

value=0.01727) lower relative abundance than PESA (Figure 8). Ammonia assimilation was 

mainly represented by ammonium transporter, glutamate synthase and glutamine 

synthetase type I. No other N-related metabolism was different between parks. Likewise, 
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the Cerrado sensu stricto (SS) and the Mata de galeria (MG- riverbank) from both parks had 

similar relative abundance for the N processes displayed in Figure 8. The process of input of 

nitrogen to the soil system through nitrate and nitrite ammonification (genes for 

assimilatory nitrate reductase and nitrate/nitrite transporters) was not different between 

parks, but within the PNCV, the Campo limpo site was significantly lower from the Cerrado 

rupestre (p-value=0.0237). In contrast, Campo limpo soil had the highest relative abundance 

of genes annotated for nitrogen fixation (p-value=0.0249), represented by genes for 

nitrogenase.  Similarly, Mata de galeria in PESA had higher annotated genes for 

denitrification than Campo sujo (p-value=0.0202), and higher annotated genes for 

nitrosative stress than Campo sujo and Floresta semi-decídua (p-value=0.0117). 

Denitrification process includes genes for nitrite, nitric oxide and nitrous oxide reductases. 

In all soils, the copper nitrite reductase was found, usually monitored by the nirK gene, but 

only in one soil from PNCV we could detect the cytochrome cd1 nitrite reductase. 

Annotated genes for the nitric oxide reductase quinol-dependent were significantly more 

numerous than other denitrification genes. Nitrosative stress, denoted by anaerobic nitric 

oxide reductase flavorubredoxin and hydroxylamine reductase, was also higher in the PNCV 

Campo limpo than Cerrado sensu stricto and Mata de galeria (p-value=0.00622).  
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Figure 8. Boxplots of soils (A) ammonia assimilation, (B) nitrate and nitrite ammonification, 
(C) nitrogen fixation, (D) dissimilatory nitrite reductase, (E) denitrification, (F) nitrosative 
stress. One-way ANOVA or T- tests were performed in R. Tukey–Kramer post hoc tests to 
compare group means (R with the ggplot2 package) are represented with one asterisk (*). 
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Discussion 

Here we present the first metagenomic description on the N cycling functional and 

phylogenetic genes from Cerrado soils microbiota in Central Brazil. This biome is composed 

by a gradient of trees/shrubs layer ranging from grasslands to forests and savannas. 

Analysis of phospholipid fatty acids and 16S rRNA genes have showed that vegetation cover 

influences the soil taxonomic microbial composition (Araujo et al., 2012; Mendes et al., 2012; 

Viana et al., 2011). Nevertheless, our first hypothesis was rejected, since we could not find 

patterns that explained distribution of functional guilds according to the macro distribution 

of Cerrado’s vegetation. 

The types of vegetation sampled here differed in terms of soil physicochemical 

variables and were more similar within each park. The world literature shows pH as  the 

factor that better explains soil microbial distribution (Lauber et al., 2009). Though, for the 

Cerrado it has been shown that the first rains on the beginning of the rainy season or 

experimentally the addition of water promote greater difference on the microbial 

community either with increase on microbial biomass (da Silva, 2004; Nardoto and 

Bustamante, 2003), microbial activity and nitrification rates (da Silva, 2004), or change on 

the bacterial composition with the transition between the dry and rain seasons (Bresolin et 

al., 2010; Nardoto and Bustamante, 2003; Pinto et al., 2006). Furthermore, water effect on 

the microbial community masks the fire effect (Viana et al., 2011). Truly, water promoted a 

change in the microbial community performing the N cycling, particularly in the Campo 

limpo. This confirms our second hypothesis that considers a variation in N metabolism 

according to soil characteristics between types of vegetation.  

In fact, the soils in the PNCV had higher pH and S concentration than soils in PESA, 

which, in turn, presented higher clay content. However, no significant correlation was 

observed between pH and phylogenetic or functional genes relative abundance. Microbial 

community described with these metagenomes seem to differ more due to soil 

characteristics than the type of vegetation or the geographic distance.  The similarity found 

between the Cerrado sensu stricto (SS) and the Mata de galeria (MG- riverbank) from both 

parks refutes the hypothesis of geographical differentiation between islands of Cerrado 

distant from each other in terms of soil microbial community. On the other hand, it 

reinforces the observed differences accordingly to type of soil and vegetation.  

Assuming that types of vegetation would influence microbial distribution, the MG 

sites from the two parks should be similar within each other and with the FSD, as they are 
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forest formations. However, they should be less similar to the savanna sites - SS and CR - or 

the sites with predominant herbaceous layer as the CS and the CD. On the other hand, 

geographic distance is informative, since microbial communities are similar in the parks, and 

are distant 500km, therefore, there is an indication that Cerrado biome has a particular soil 

microbial community. This will have to be confirmed in a biogeographical model, as for 

example the use of mantel test with other Cerrado areas and other biomes.  

As microbes are confined to a thin layer of water in the soil particles, it is reasonable 

to think that water is the major limitation of prokaryotic life in soil (Fenchel, 2012). The soil 

texture influences the water retention according to the percentage of clay, sand and silt 

particles, which has an impact on the gravimetric soil water content and consequently on 

the microbial community. The Cerrado rupestre was the driest soil sampled with the greater 

composition of sand in comparison to clay. This type of vegetation is only present in some 

fragments of the biome Cerrado specially in higher altitudes between 800 and 2000 m, 

characterized by rocky outcrops with high vegetal endemism and usually found in Leptosols 

(neossolos litólicos, Brazilian soil classification). The metagenomes found in this vegetation 

had the greatest α-diversity of Shannon (data not shown), potentially a greater diversity in 

response to the nutrient and water stress.  

 The theory of pore connectivity favors the idea that low contact between 

organisms because of low water potential allows for greater microbial diversity (Carson et 

al., 2010). However, in the metagenomes, both the CR and the CL presented the highest 

Shannon diversities and they have also the two most distinct soil water content. Therefore, 

we considered that in this case, the higher diversity is due to disturbance (water lodging in 

the case of CL) promoting stochasticity for different groups to prevail instead of a higher 

abundance of one or another set of microorganisms.  

 Bacteria was the predominant domain of annotated sequences as expected 

because of this domain abundance in soil, the technique and the databases, and as 

described in the literature (Delmont et al., 2012; Fierer et al., 2012a). The phyla more 

abundant in these soils were Actinobacteria, Proteobacteria and Firmicutes. However 

previous work on Cerrado samples had shown by 16S rRNA pyrosequencing that the 

Acidobacteria was the most abundant phyla (Araujo et al., 2012). These contrasting results 

might be because of the two different techniques used and may be an indicative of the 

amplicon sequencing bias as the taxonomic classification of the metagenomes here was 

produced by the annotation of all sequences against the protein non-redundant database 

M5NR. It can be also that the soil samples used in that work were different from the one 
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used here, since Fierer et al. showed a high correlation (r2=0,81, p<0,001) of 16S rRNA and 

metagenomic results from soil samples of different types of biomes (Fierer et al., 2012b). 

The greater number of the Actinobacteria and Firmicutes found here might be 

associated to organic matter degradation, especially Actinobacteria which are able to 

degrade high C:N ratio organic matter as those found in Cerrado soils (Nardoto and 

Bustamante, 2003). Actinobacteria are also related to the antibiotic and secondary 

metabolic production (Gomes et al., 2000; Petinate et al., 1997) and have genes involved on 

ultraviolet and hydric stress  (LeBlanc et al., 2008) besides the apparent resistance to heavy 

metals (Gremion et al., 2003) that might be an interesting characteristic considering the 

high aluminum content present on Cerrado soils.  

Cerrado soils are typically N-limited, with a higher concentration of NH4
+ than NO3

- 

(Bustamante et al., 2006; Nardoto and Bustamante, 2003). In addition, Nardoto and 

Bustamante (2003) observed during the rainy season an increase of mineralization and 

nitrification rates, but inorganic nitrogen concentration decreased (Nardoto and 

Bustamante, 2003), which could be interpreted as an assimilation of N by the vegetation. 

This corroborates the high percentage of ammonia assimilation genes annotated in the 

metagenomes (37%), that was significantly different between the parks, although these did 

not show a significant difference for NH4
+-N concentration. Ammonia assimilation collected 

genes for the enzymes related to glutamate and glutamine synthase pathways (EC 1.4.1.13 

and EC 6.3.1.2, respectively). These enzymes use one molecule of ammonia to synthesize 

central amines for the cell and were specially related to Bacteria, but also in Archaea, 

Cyanobacteria, Ascomycota and Streptophyta sequences.  

Moreover, only two ammonia monooxygenase were retrieved in the annotated 

genes in the transporter membrane subsystem, which is also corroborated with the 

literature that suggests low levels of nitrate in Cerrado soils and correspondent low levels 

of nitrification rate (Bustamante et al., 2006; Nardoto and Bustamante, 2003). Nitrification 

genes were absent in other metagenomes from Brazilian mangroves sediments (Andreote 

et al., 2012). These AMO genes are potentially from genomes of Methylococcus, a methane 

oxidizing bacterium able to ammonia oxidation (Dalton, 1977).  Although, 2 hits are too low 

to take conclusions from, further studies should consider amoA and pmoA comparison in 

Cerrado soils.  

This is also validated by the low abundance of ammonia oxidizers detected with 

qPCR (10+3 to 10+5 amoA gene abundance g-1 soil) in undisturbed Cerrado soils (Catão et al., 

2016). Therefore, the low detection of genes for nitrification in the metagenomes was most 
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likely due to depth of sequencing. Another study with Cerrado metagenomes sequenced 

with Ion torrent technology (mean 2.326.852 annotated genes) obtained an average of 3 

ammonia mono0xygenases in native soil compared to 30 and 34 hits for no-tillage and 

conventional tillage, respectively (Souza et al., 2015). These were from Archaea 

(Thaumarchaeota, Nitrosopumilales) and Bacteria from Alfa- (Rhodospirillales), Beta- 

(Burkholderiales and Nitrosomonadales) and Gamma-Proteobacteria (Pseudomonadales, 

Methylococcales).  

In order to ammonia to be available No3
- and No2

- can be reduced to NH4
+ in a 

process called ammonification, that corresponded to 17% of genes related to the N 

metabolism in the metagenomes. These were in majority nitrate transporters, nitrate (EC 

1.7.99.4) and nitrite reductases (EC 1.7.1.4) from bacteria, although another work found 

these from plants and fungi in snowpacks (Larose et al., 2013). In soil the greatest part of 

inorganic N is made available through mineralization from soil organic matter, and 

nitrification was thought to be inhibited in the acidic Cerrado soil (Catão et al., 2016). 

Further studies should evaluate nitrate absorption, since little nitrate accumulation in soil 

might be a result of a rapid assimilation after nitrification.   

In the Cerrado soils, 16 to 44 kg of N ha-1 year-1 enter the lithosphere via biological N 

fixation, constituting the main form of input of N in the lithosphere, compared to N 

deposition (Cleveland et al., 1999). N fixation is responsible for the rates of N cycling in the 

Cerrado ecosystems together with type of vegetation, fire frequency and land use 

modification (Bustamante et al., 2012c).  The metagenomes showed that 4% of the total of N 

metabolism annotated genes were of N fixation genes, and significantly higher number of 

genes were annotated in the Campo limpo than in the other vegetation types. 

Bradyrhizobium genera and other from Rhizobiales family had been already described in a 

Cerrado native soil (Araujo et al., 2012). Moreover, the lower values of genes for 

ammonification in the Campo limpo might be a confirmation the input of N as N2 to this 

system, as presented by a significantly higher abundance of N fixation genes. Similarly, the 

increase in water content in the Campo limpo was possibly related with the higher 

abundance of genes for nitrosative stress.  

Despite the numerous species of the Fabaceae family (around 780 species) found in 

the Cerrado (Filgueiras, 2002), known to comprise leguminous species, the Campo limpo 

here sampled is a grassland. Furthermore, few works have measured the nodular activity in 

these associations (for revision see (Bustamante et al., 2012c)). In fact, Bradyrhizobium are 

abundant in soils that lack leguminous plants (VanInsberghe et al., 2015). These authors 
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described the high abundance of a Bradyrhizobium OTU that lacks nif and nod genes, and 

suggest this is a group of free-living ecotypes with potential aromatic degradation role 

(VanInsberghe et al., 2015). Contrarily, Campo limpo metagenomes have nitrogenase genes, 

suggesting potential activity of nitrogen fixation in these soils, most likely of free-living 

rhizobia.  

As described above, mineralization and nitrification rates are greater during the first 

rains on the rainy season (Nardoto and Bustamante, 2003). Recently it was proposed that 

climate change will impact the rain frequency and increase the length of the dry season 

(Bustamante et al., 2012c), which might result in changes on the N cycle balance and fluxes 

in the Cerrado ecosystems and N trace gas emission. These are produced during 

nitrification and denitrification. Denitrification is a modular process responsible for the 

return of N2 to the atmosphere and is favored in anaerobic environments (Graf et al., 2014), 

but have been described in dry soils (Braker et al., 2015). This trait is not centered in few 

clusters as the nitrification step of the nitrogen cycle, but spread within phylogenetic 

groups of heterotrophic organisms capable of reducing nitrate and nitrite.  

Although the annotated denitrifying genes indicates that these process might be 

occurring in Cerrado soil particles microhotspots, N trace gases were not measured in this 

work. In previous studies, low N gas emissions detected in Cerrado soils were shown to be 

influenced by the type of vegetation and soil water gravimetric content (Pinto et al., 2002). 

Water addition resulted in an increase of 100× on NO emissions in a Campo sujo site (Pinto 

et al., 2002), but N2O emissions in the Cerrado are almost always under the detection limit 

(Bustamante et al., 2006). In the metagenomes we found all the enzymes required to 

denitrification: nitrite reductase (often measured by the genes nirK, nirS), nitric oxide 

reductase (referred to the gene norB), nitrous oxide reductase (measured by the presence 

of nosZ gene). The copper nitrite reductase (nirK gene) was significantly more abundant 

than its cytochrome cd1 nitrite reductase counterpart (nirS), as showed for other soils 

previously (Jones et al., 2014) and in another study in the Cerrado (Souza et al., 2015). In 

most of bacterial genomes, organisms that hold nirK do not possess nirS and vice-versa, and 

seems that these nirK and nirS denitrifiers respond differently to environmental gradients 

(Graf et al., 2014). In the same way as other soils (Jones et al., 2014), the abundance of 

nitrous-oxide reductase genes was lower than that for nitric-oxide reductase genes. Soil 

sink capacity for N2O was related especially with the presence of nosZ denitrifiers of clade II, 

but the greater diversity of both clades I and II, the greater capacity of soil to reduce N2O in 

excess (Jones et al., 2014).  
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Genes for nitric oxide production from arginine were detected as 12% of genes 

annotated for the nitrogen metabolism. Another indicative of denitrifiers activity in Cerrado 

soils is the presence of nitrosative stress genes (4% of total nitrogen metabolism). This 

stress is promoted by high exposure of cells to nitric oxide or oxidant peroxinitrite, formed 

by the interaction of NO with superoxide anions. NO inhibits cell respiration and can react 

with multiple cell components in both prokaryotic and eukaryotic cells (Poole, 2005) and it 

is toxic for organisms sharing the habitat with denitrifiers (Choi et al., 2006). The flooded 

grassland had the greatest number of enzymes related to the nitrosative stress process 

probably as a consequence of the anaerobic environment with higher water gravimetric 

content than the other Cerrado sites. On the other hand, MG from PESA had significant 

higher annotation of denitrification genes than other PESA sites, which was not correlated 

with the soil water content.  

Metagenomes studies do not discuss why so often denitrification genes are 

annotated but fewer or none of nitrification genes are identified in the metagenomes. 

Some hypotheses are proposed here: 1) as denitrification is a polyphyletic characteristic, 

genes are widespread and have higher probability to be found, but are not necessarily 

active; 2) nitrification in Cerrado soils is performed by heterotrophic organisms also able to 

denitrify so nitrate does not accumulate (Kuenen and Robertson, 1994); 3) databases are 

less complete for nitrification genes than denitrification.  The last assumption was tested by 

performing a blast of all metagenomes here sequenced against a specific amoA database 

(Pester et al., 2012), and no results were found. Further studies should consider 

investigating heterotrophic nitrification and nitrifier-denitrification in Cerrado soils. The 

amoA gene used to monitor ammonia oxidizers targets only autotrophic organisms. One 

study performed in a Cerrado soil, using an inhibitor (e.g. acetylene) for the autotrophic 

AMO complex suggested that nitrifiers in those soils were heterotrophic (Poth et al., 1995).  

These results are the first set of metagenomic data representing the relative 

abundance of microbial genes for the N metabolism between different types of vegetation 

and soils from undisturbed areas in the Cerrado biome. These data will be important to 

understand the impact of land use change on soil microbiota on this Brazilian savanna and 

consequently in the ecological processes by them produced. Further investigation with 

these metagenomes will focus on CAZymes database, to search for specific genes related 

with organic matter cycling, testing again the hypothesis of difference between types of 

vegetation and their C and N input to the litter and soil.  
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Supplementary Information 

 

Table 3. Coordinates and altitude of each sampled site  

Park  Type Replicate  Coordinates Altitude  

 
 

  
S W (m) 

PNCV 

 MG 1  14º 06.258'   47º 42.419' 1194 
 MG 2  14º 06.246'   47º 42.428' 1170 
 MG 3  14º 06.174'   47º 42.462' 1159 
 CL 1  14º 06.529'   47º 42.879' 1202 
 CL 2  14º 06.504'   47º 42.888' 1194 
 CL 3  14º 06.480'   47º 42.883' 1196 
 SS 1  14º 07.128'   47º 43.865' 1186 
 SS 2  14º 07.109'   47º 43.893' 1184 
 SS 3  14º 07.117'   47º 43.921' 1185 
 CR 1  14º 05.499'   47º 42.265' 1187 
 CR 2  14º 05.473'   47º 42.271' 1190 
 CR 3  14º 05.454'   47º 42.273' 1185 

PESA 

 MG 1 15º 50.392' 52º 14.791' 555 
 MG 2 15º 50.398' 52º 14.790' 516 
 MG 3 15º 50.412' 52º 14.771' 507 
 CS 1 15º 49.700 ' 52º 13.835' 718 
 CS 2 15º 49.675' 52º 13.816' 723 
 CS 3 15º 49.654' 52º 13.810' 713 
 FSM 1 15º 51.118' 52º 14.854' 617 
 FSM 2 15º 51.112' 52º 14.827' 621 
 FSM 3 15º 51.095' 52º 14.796' 654 
 SS 1 15º 50.906' 52º 14.393' 705 
 SS 2 15º 50.919' 52º 14.417' 713 
 SS 3 15º 50.933' 52º 14.441' 709 
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Figure 9.   (A) Representation of the map of South America with Brazil highlighted in blue and the Cerrado biome in green. Yellow points represent the 
(B) sampled parks PESA and PNCV marked in the Google Earth photography. The elevation gradient shows a difference of 568 m and 511 km between 
parks.  (C) Module experimental design scheme (figure adapted from the document of standard protocol for sampling within the Rede ComCerrado), 5 
km long transects, separated by 1 km and each sampling parcel draw in red. Red lines for the parcels are not straight because they follow the local 
topography. 
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Table 4. Number of sequences for each metagenome, their identification and the number of reads that passed QC, that were annotated and to the N metabolism 

MG-Rast Site ID 
Vegetation 

type 
raw 

reads after QC % mean length 
annotated 

seqs % after QC 

annotated in N 
metabolism 
subsystems 

% of 
annotated 

4530784.3 N500_1 
Cerrado 
rupestre  

70230 62300 88.7 520+-228 42037 67.5 355 0.8 
4530785.3 N500_2 112118 99061 88.4 499+-227 58910 59.5 467 0.8 
4530786.3 N500_3 130778 115537 88.3 505+-227 79126 68.5 657 0.8 
4530787.3 S1500_1 

Mata de 
galeria 

155186 137419 88.6 520+-227 95724 69.7 824 0.9 
4530788.3 S1500_2 124049 109897 88.6 506+-228 74067 67.4 590 0.8 
4530789.3 S1500_3 111995 99193 88.6 497+-228 68485 69.0 616 0.9 
4530790.3 S2500_1 

Campo limpo 

93793 87153 92.9 533+-235 60647 69.6 553 0.9 
4530791.3 S2500_2 110995 102792 92.6 516+-235 67936 66.1 540 0.8 
4530792.3 S2500_3 117700 109072 92.7 518+-233 71091 65.2 541 0.8 
4530793.3 S4500_1 

Cerrado sensu 
stricto 

134824 125346 93.0 530+-232 89215 71.2 775 0.9 
4530794.3 S4500_2 109725 101547 92.5 528+-233 69763 68.7 611 0.9 
4530795.3 S4500_3 92711 85968 92.7 516+-230 60202 70.0 468 0.8 
4549601.3 3-1 

Mata de 
galeria 

29,300 26,477 90.4 369 ± 197 13490 50.9 125 0.9 
4549602.3 3-2 97323 87,225 89.6 367 ± 198 42619 48.9 427 1.0 
4549603.3 3-3 158,046 143,133 90.6 405 ± 206 75947 53.1 741 1.0 
4549604.3 5-1 

Campo sujo 

90,820 81,438 89.7 363 ± 195 40957 50.3 361 0.9 
4549605.3 5-2 70,945 64,366 90.7 394 ± 204 33387 51.9 295 0.9 
4549606.3 5-3 138,667 124,865 90.0 382 ± 202 64187 51.4 548 0.9 
4549607.3 6-1 

Floresta semi-
decídua 

61,706 55,778 90.4 401 ± 206 29867 53.5 258 0.9 
4549608.3 6-2 58,538 52,355 89.4 377 ± 200 26786 51.2 285 1.1 
4549609.3 6-3 55,249 49,503 89.6 390 ± 202 26254 53.0 254 1.0 
4549610.3 7-1 

Cerrado sensu 
stricto 

68,945 61,970 89.9 384 ± 204 31671 51.1 281 0.9 
4549611.3 7-2 84,655 76,224 90.0 392 ± 205 40552 53.2 418 1.0 
4549612.3 7-3 78,491 70,321 89.6 371 ± 198 36068 51.3 352 1.0 
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Chapter 3 - Short-term impact of soybean management on ammonia oxidizers in a 

Brazilian savanna under restoration as revealed by coupling different techniques 3 

 

 

 “Nem tudo o que é torto é errado: veja as pernas do Garrincha, veja as árvores do Cerrado” 

Nicolas Behr 

 

Abstract  

Interactions between soil characteristics and soil microbiota influence soil ecosystem 

processes such as nitrification however, their complexity makes interpretation difficult. 

Furthermore, the impact of soil management systems on abundance and activity of soil 

microbial community is poorly understood, especially in the Neotropics. To investigate 

these interactions, the effects of tillage, inorganic fertilization, and plant cover on the 

abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) 

were assessed by quantification of the marker gene (amoA) during different stages of 

soybean cultivation in a site under restoration from gravel extraction in the Central Brazilian 

Savanna (Cerrado). Results of molecular analysis and classic and isotope techniques 

showed that levels of organic C and NH4
+-N were higher in the soybean field during fallow 

than in an adjacent undisturbed field (Campo sujo). Ammonia oxidizer abundance and 

nitrification rates were also higher in the agricultural soil than in the undisturbed site, with 

the lowest ammonium/nitrate ratio in tilled soil. Soil δ15N was lower in the undisturbed soil 

than the agricultural soil. Both AOA and AOB were more abundant during soybean crop 

transitional stages, and this increase positively correlated with soil pH, particularly for AOB 

abundance, in tilled soil and within the soybean rhizosphere. The results suggest that AOB 

have more copiotrophic characteristics than AOA and are better able to change available 

ammonium in the soil. The combination of standard soil ecological methods and modern 

molecular analysis show the short-term modification of ammonia oxidizer abundance and 

soil N dynamics in a managed system within the Cerrado biome. 

                                                           
3Catão, E. C. P.; Lopes, F. A. C.; Rubini, M. R.; Nardoto, G. B.; Prosser, J. I.; Krüger, R. H. (2016) Short-
term impact of soybean management on ammonia oxidizers in a Brazilian savanna under restoration 
as revealed by coupling different techniques. Biology and Fertility of Soils, 1-12. DOI 10.1007/s00374-
015-1086-0 
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Introduction 

The impact of land use on the functioning of soil microbiota has consequences for the 

processes governed by these organisms and consequently for the terrestrial ecological 

services that they provide (e.g., decomposition and nutrient cycling). Agriculture and 

managed pasture for cattle breeding have converted approximately 53% (117,870 km2) of 

the Cerrado biome landscape in the last two decades (Beuchle et al., 2015), with increasing 

alterations in floristic composition and edaphic characteristics due to fertilization, liming, 

and crop monoculture itself. Changes in soil use and management likely modify the C and N 

dynamics in these areas, leading to changes in soil C and N stocks and increases in 

greenhouse gas emissions to the atmosphere (Carvalho et al., 2009). 

Soil management and monoculture crops are associated with a decrease in total 

and microbial N, particularly in conventional tillage systems (Hernández-Hernández and 

López-Hernández, 2002). In contrast, no-till management is associated with better soil 

quality and higher enzyme activity (Peixoto et al., 2010) and microbial C biomass (Vinhal-

Freitas et al., 2012). In addition, no-till farming appears to have fewer effects on the 

composition of microbial communities (Rachid et al., 2013). Previous research has shown 

that the soybean plant influences the composition of the soil microbial community, with 

lower microbial diversity observed during plant development in soils under soybean 

cultivation (Bresolin et al., 2010).  

In the Amazonian forest, land use change alters functional gene diversity and the 

composition and abundance of soil microbial communities, with differences in soil pH and 

organic matter content linked to differences in the composition of genes, including those 

associated with C and N cycles (Paula et al., 2014). For example, 15% to 30% of genes related 

to the N cycle have their abundances affected by the cultivation of bioenergy crops (Zea 

mays and Miscanthus giganteus) (Mao et al., 2011), indicating that agriculture has an impact 

not only on microbial taxonomic composition but also on its potential ecological functions.  

In view of the economic and ecological costs of fertilization and N losses, it is 

important to investigate nitrifiers in Cerrado soils to develop better soil management 

practices. Undisturbed Cerrado soils under native vegetation have low pH and a high NH4
+-

N:NO3
--N ratio but very low nitrification rates (Nardoto and Bustamante, 2003) and 

insignificant N2O emissions (Cruvinel et al., 2011; Pinto et al., 2006; Pinto et al., 2002). These 

characteristics are often associated with a greater abundance of ammonia-oxidizing 

archaea (AOA) (Gubry-Rangin et al., 2011; Gubry-Rangin et al., 2010; Nicol et al., 2008), which 
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appear to prefer ammonia generated from the mineralization of organic N and are the 

predominant ammonia oxidizers in acid soils (Levičnik-Höfferle et al., 2012; Prosser and 

Nicol, 2012; Zhang et al., 2012). In contrast, ammonia-oxidizing bacteria (AOB) are more 

commonly associated with nitrification in soils with higher ammonia input (Jia and Conrad, 

2009); therefore, the addition of inorganic or organic N fertilizers may influence the relative 

abundance of AOA and AOB. The abundance of ammonia oxidizers, which perform the rate-

limiting step of nitrification, can be estimated by amplification of the amoA gene, which 

encodes subunit A of ammonia monooxygenase.  

Investigation of nitrification in the Cerrado biome is of particular interest because 

this ecosystem is N-limited (Bustamante et al., 2012b) , with low nitrate content 

(Bustamante et al., 2006; Nardoto and Bustamante, 2003) and low rates of nitrification 

(Bustamante et al., 2006; Nardoto and Bustamante, 2003). These characteristics are usually 

associated with a high litter level and soil C:N ratio, leading to low availability of N and a 

higher rate of N immobilization than mineralization (Bustamante et al., 2006; Nardoto and 

Bustamante, 2003).  

Long-term land use is believed to modify the composition of soil microbial 

communities (Jangid et al., 2011; Paula et al., 2014), but few studies have described the 

short-term impacts (Lazcano et al., 2013). This study investigated the short-term effects of 

land use change, over 134 days, on ammonia oxidizers and tested the following hypotheses: 

(1) AOA are more abundant than AOB in undisturbed Campo sujo soil and in soybean site 

during the fallow period because of lower pH and provision of ammonium mainly by net N 

mineralization; (2) the relative abundance of AOB is greater in agricultural fertilized soil; and 

(3) the relative abundance of AOB increases during crop establishment due to the increase 

in pH and addition of inorganic fertilizers, which are associated with an increase in nitrate 

content and nitrification. To test these hypotheses, changes in archaeal and bacterial amoA 

gene abundance were determined by qPCR analysis in a soybean field and in soil from an 

adjacent undisturbed site (Campo sujo). This work describes short-term changes in the 

abundance of ammonia oxidizers in soil being restored after decades of gravel extraction in 

the Cerrado biome by evaluating the impact of soil management on microbial communities. 
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Materials and methods 

Study sites and soil characteristics 

The field sites are located in the Cerrado biome within a commercial farm, Fazenda Tabapuã 

dos Pireneus, in the municipality of Cocalzinho de Goiás (Federal State of Goiás, Brazil). 

Average precipitation and temperature during sampling (134 days between the first and last 

days of sampling, October 13, 2012 and March 24, 2013, respectively), measured at the 

nearest meteorological center (approximately 30 km from the farm; Pirenopolis, GO, 

Station 83376, 15°50'60"S 48°57'36"W), were 270 mm per month (Figure 9) and 24.8°C 

(range 19°C–32.5°C). The climate in the Cerrado biome is tropical (Köppen Aw), and all soil 

samples were collected during the wet season (October to April), when 90% of the annual 

precipitation occurs.  

 

 
Figure 10. Gravimetric soil water content. Boxplot created by R version 3.0.2 with the ggplot2 
library. Letters and corresponding colors correspond to significant differences among groups 
after the Tukey–Kramer post hoc test. In (B) letters represent when soils were sampled, C 
Campo sujo, F Fallow, T Tilled, Fe Fertilization, B Blossom.  
 
 

This study focused on two sites: an undisturbed site dominated by grass and 

dispersed shrubs, known as Campo sujo (Ribeiro 2008) (15°46'01''S, 48°48'57''W) and an 

adjacent site (approximately 200 m away) converted to soybean crop (15°46'06''S, 

48°48'55''W) (hereafter called the “soybean site”). Both sites have the same average 

altitude (1,118 m), rainfall, and air temperature. The soybean site, which was degraded 

because of gravel removal activity that occurred over decades, is in the process of 

restoration to become an integrated livestock-forest system. It was first cultivated in 2012, 
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with the establishment of maize followed by natural fallow. For maize cultivation a solution 

of 100 kg ha-1 of NPK (8:30:16) and 200 kg ha-1 urea were applied to the soil after plowing. 

Soybean seeds were then sowed after a 1-year fallow period. For soybean cultivation, an 

NPK mixture (8:30:16) and 8% micronutrient mixture (FPE BR12) were added to the soil at 5 

cm depth. The transgenic soybean Glycine max Bayer variety 810 was sowed (after 

inoculation with rhizobia) every 10 cm in rows separated by 50 cm. Soil from the soybean 

site was sampled four times: after 9 months of natural fallow since the last maize 

cultivation (F; mid-October 2013); the day after the soil was tilled to a depth of 20 cm (T; 

first week of December 2012); 1 month after fertilization (FE, first week of January 2013); 

and at the blossom soybean stage of development (end of February 2013), at which time 

bulk soil (B) and rhizosphere soil (soil in direct contact with the root) (Rz) were sampled. To 

obtain soil from the rhizosphere, plants near the bulk soil sampling location were removed, 

the soil loosely surrounding the plant was released, and adherent soil at the rhizosphere 

was collected mechanically in a plastic bag. Figure 10 illustrates the treatments and the two 

study sites. Although crops in this farm are usually cultivated using no-till management, the 

history of gravel extraction in the soybean site necessitated use of a plow in deeper soil (20 

cm). The farmer did not initially consider plowing, and only the top 10 cm (more active 

layer) was sampled. 

 Soil was obtained at nine locations at the two adjacent sites. The nine replicates 

were used for N concentration, pH, and soil water content measurements. However, for 

the remaining physicochemical data, molecular, and δ15N analysis, the samples were 

combined into triplicate samples, according to the column numbers presented in Figure 10. 

In the soybean site, samples were taken from the rows. At each location, 10 soil core 

samples (10 cm deep, 5 cm diameter) (Figure 10) were obtained, passed through a 2-mm 

mesh sieve, combined, and then stored at –20°C for subsequent physicochemical and 

molecular analyses. Inorganic N was extracted by agitating the soil sample for 1 h in 1 M KCl 

(1:5 soil/solution ratio). NH4
+-N was determined using the Nessler colorimetric method 

(Embrapa 1999) with a spectrophotometer set at 425 nm. NO3
--N was determined by 

spectrophotometry (Mulvaney 1996) at 218 nm, subtracting interference caused by organic 

matter at 254 and 280 nm (Meier 1991). These measurements were considered time zero 

and compared with NH4
+-N and NO3

--N measurements after samples were incubated in the 

laboratory in separate closed plastic bags for 7 days at room temperature in the dark 

(Piccolo et al. 1994). Net N mineralization and nitrification rates were expressed as changes 
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in NH4
+-N + NO3

--N or NO3
--N, respectively, during the 7 days of incubation. All results are 

expressed in per g oven-dried (105°C) soil. 

 

 
Figure 11. Satellite view and photographs of the sample site on the Tabapuã dos Pireneus 
Farm. (A) Schematic representation of the sampling design on a Google Earth picture from 
the sample site. 1–3 represent composite samples for molecular analysis. (B)–(F) Photos of 
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the soil collection sites. (B) Undisturbed Campo sujo site, (C)–(F) Soybean site at four 
different time points: (C) after 9 months of natural fallow, (D) 1 month after fertilization, (E) 
during the blossom stage of soybean development, (F) soybean plants with beans. 
 

 

Physicochemical and molecular analyses were performed in biological triplicates. 

Soil texture and concentrations of macro- and micronutrients were determined by using 

standard methods (Soils Embrapa–SNLCS) at SoloQuímica, Inc, Brasília, Brazil. Both soils are 

well-aerated and well-drained. The undisturbed Campo sujo soil is classified as sandy loam 

with 20.8% clay, and the soybean site is a sandy clay soil with 31.7% clay. Both soils are 

considered to have a medium clay texture (Embrapa 2006) (Table 1). This work is not meant 

to compare the sites but to describe the rapid change in ammonia oxidizer abundance 

during the establishment of a soybean crop. The undisturbed site was used as a control to 

represent nitrification in a pristine Cerrado area.  

 

Table 5. Soil physicochemical properties for each one of the replicates in all treatments 

 
Campo sujo Fallow Tilled Fertilized Bulk - Blossom 

SWC (% H20  g-1 DS) 16.1 ±0.9 21.7 ±2.063 22.9 ±1.873 26.3 ±1.583 19.8 ±1.675 

Clay ( g kg-1) 208.3 ±8.3 308.3 ±8.333 325.0 ±14.434 333.3 ±8.333 300.0 ±14.434 

Sand ( g kg-1) 733.3 ±8.3 600.0 ±14.434 541.7 ±8.333 550.0 ±14.434 558.3 ±16.667 

Silt ( g kg-1) 58.3 ±8.3 91.7 ±8.333 133.3 ±16.667 116.7 ±8.333 141.7 ±8.333 

pH (in H20) 5.4 ±0.1 5.5 ±0.058 6.0 ±0.033 6.0 ±0.033 6.0 ±0.058 
pH (in KCl) 3.6 ±0.1 4.3 ±0.100 5.2 ±0.033 5.2 ±0.058 5.0 ±0.058 

CEC (cmolc dm-3) 6.0 ±0.6 6.0 ±0.577 6.3 ±0.333 6.7 ±0.333 6.7 ±0.333 
Al (cmolc dm-3) 1.2 ±0.1 0.1 ±0.033 0.0 ±0.000 0.0 ±0.000 0.0 ±0.000 

N (%) 0.11 ±0.00 0.12 ±0.01 0.12 ±0.01 0.12 ±0.00 0.10 ±0.00 

δ15N 5.64 ±0.08 7.05 ±0.12 7.15 ±0.16 7.16 ±0.10 7.57 ±0.14 

C (%) 1.76 ±0.03 2.04 ±0.16 1.99 ±0.12 1.92 ±0.10 1.63 ±0.06 
OM ( g kg-1) 42.6 ±2.4 45.0 ±4.159 39.1 ±1.258 38.1 ±2.118 36.5 ±2.586 

P (mg dm-3) 1.8 ±0.1 1.2 ±0.418 14.6 ±6.053 14.1 ±1.510 20.9 ±11.767 

Ca (cmolc dm-3) 0.4 ±0.06 0.7 ±0.115 2.7 ±0.067 2.7 ±0.338 2.7 ±0.088 
Mg (cmolc dm-3) 0.1 ±0.03 0.6 ±0.145 0.8 ±0.033 0.7 ±0.120 0.8 ±0.033 

B (mg dm-3) 0.24 ±0.04 0.10 ±0.039 0.46 ±0.012 0.49 ±0.040 0.48 ±0.026 
Cu (mg dm-3) 1.72 ±0.04 1.57 ±0.113 0.06 ±0.020 0.05 ±0.012 0.05 ±0.028 
Fe (mg dm-3) 165.40 ±41.01 86.03 ±6.731 106.40 ±4.277 141.00 ±7.000 92.37 ±29.453 
Mn (mg dm-3) 68.74 ±58.82 9.01 ±2.865 7.70 ±0.141 7.43 ±1.017 8.64 ±0.380 
Zn (mg dm-3) 1.75 ±1.71 0.22 ±0.101 1.65 ±0.405 2.34 ±0.418 3.54 ±1.033 
S (mg dm-3) 6.03 ±0.15 3.20 ±0.100 3.13 ±0.145 4.13 ±0.865 4.63 ±0.835 

AT: average temperature; SWC: Soil water content; CEC: cation exchange capacity; DS: dry 
soil; OM: organic matter. 
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Isotope analysis 

All soil samples were air-dried and ground to a fine powder. A sub-sample of 15 to 20 mg 

was sealed in a tin capsule and loaded into a ThermoQuest-Finnigan Delta Plus isotope ratio 

mass spectrometer (Finnigan-MAT; CA, USA) coupled with an elemental analyzer (Carlo 

Erba model 1110; Milan, Italy). These analyses were performed at Centro de Energia Nuclear 

na Agricultura (CENA - USP) in Piracicaba, Brazil. The natural abundance of stable isotopes 

of C and N were measured in relation to recognized international standards. As standard 

laboratory procedure, internal working standards (atropine and soil standard no. 502-308 

from LECO Corporation) were included in every run. Relative stable isotope values are 

reported in “delta” notation, as δ values in parts per thousand (‰) according to the molar 

ratio (R) of the rare to abundant isotope (15N/14N; 13C/12C), i.e. δ‰ = (R sample / R standard – 1) × 

1,000. The precision of measurements was ±0.3 and 0.5‰ for δ13C and δ15N, respectively. 

 

DNA extraction  

DNA was extracted from 0.5 g soil using the FastDNA Spin Kit (MP Biomedicals) with 

additional treatment using solutions 2 and 3 from the PowerSoil DNA Isolation Kit (MO Bio 

Laboratories Inc.) to achieve maximum DNA yields with the least organic contamination. 

The DNA was analyzed by 1% (w/v) agarose gel electrophoresis. The average concentration 

of each 18 DNA sample was 100 ng µL-1 (Invitrogen Qubit fluorometer dsDNA BR Kit). 

 

Real-time PCR 

Thaumarchaeota 16S rRNA and archaeal and bacterial amoA genes were amplified in an 

Eppendorf Mastercycler and quantified using standard curves. Each 20-µl reaction 

contained 1X QuantiFast master mix (for AOA) or QuantiTect master mix (for AOB) 

(Qiagen), 0.4 µM primers (archaeal 16S rRNA, AOA amoA) or 0.6 µM primers (AOB amoA), 2 

µg µl-1 bovine serum albumin (Promega), and 5 ng DNA. The thaumarchaeal 16S rRNA gene 

was amplified with the 771f and 958r primers (Ochsenreiter et al. 2003), the AOA amoA 

gene with the crenamo23f and crenamo616r primers (Tourna 2008), and the AOB amoA 

gene with the amoA1F and amoA2R primers (Rotthauwe et al. 1997). Cycling conditions 

were as follows: 15 min at 95ºC followed by 40 cycles of 15 s at 94ºC and 1 min 30 s at 60ºC 

for the AOA amoA gene; and 15 min at 95ºC followed by 45 cycles of 1 min at 94ºC, 1 min at 

55ºC, and 1 min at 72ºC for the AOB amoA gene. Fluorescence was measured after 5 s at 
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80ºC (AOA amoA) or 8 s at 83ºC (AOB amoA) to exclude fluorescence contamination of 

potential primer-dimers. Melting curves between 65ºC and 95ºC were analyzed for each run.  

Standards were made from 10-fold dilutions of the fragment of the gene of interest. 

This fragment was obtained by amplification of the genes with the respective primers from 

a composite of the soil samples used in this work. The fragment was cloned into a pGEM®-T 

Easy Vector (Promega) and re-amplified using M13 primers that recognize sites flanking the 

cloned fragment. Three clones of each gene were selected and verified by Sanger 

sequencing. The longer and more accurate sequence was chosen as the standard. Plasmid 

DNA concentrations were verified using a Qubit 2.0 fluorometer (Life Technologies) and 

NanoDrop 1000 spectrophotometer (Thermo Scientific). To verify the correct size of 

individual PCR products, melting curve and agarose gel electrophoresis analyses were 

performed. To exclude the fluorescence from potential primer-dimers, fluorescence was 

captured after each amplification cycle above 80°C. Efficiency of amplification and r2 values 

were 0.86 and 0.990 for archaeal 16S rRNA, 0.92 and 0.995 for archaeal amoA, and 0.86 and 

0.994 for bacterial amoA, respectively. No inhibition was detected in assays consisting of 

soil DNA diluted in water or with a known amount of standard DNA.  

 

Statistical Analysis 

Statistical analyses were performed in R (v 3.0.2), and all qPCR and physicochemical data 

were analyzed for normality and homoscedasticity with both Kolmogorov–Smirnov and 

Levene’s test statistics. Data that did not follow a normal distribution were log-

transformed. One-way ANOVA tests were used to make multiple comparisons, with Tukey–

Kramer post hoc tests to compare the group means shown in the graphs with different 

letters and corresponding colors. All graphs in the boxplot format were prepared in R with 

the ggplot2 library, in which the default is to present the upper and lower sides of the box 

as the first and third quartile, whiskers corresponding to the highest and lowest values 

within 1.5 interquartile range (IQR), and dots representing outliers outside the IQR. The 

Pearson correlation was used to evaluate relationships between qPCR data and 

physicochemical variables with relevant biological implications (i.e., pH, net nitrification 

rate, δ15N). The Bonferroni (Rice 1989) or Benjamini–Hochberg (BH) (Benjamini and 

Hochberg 1995) methods were used to correct p values for multiple comparisons; the 

Bonferroni correction is more conservative. 
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Results  

Description of study sites and soil physicochemical characteristics 

Water content of the undisturbed soil was lower than that of the soybean site at all time 

points, including soil collected on the same day in the soybean site during fallow. This 

finding may reflect differences in soil texture (Figure 9). Fallow soil from the soybean site 

contained residual material from the previous maize cultivation. Before sowing, 2 ton ha-1 

limestone was applied to the soil, which increased soil pH in H2O from 5.5 (4.3 in KCl) to 6 

(5.2 in KCl). The undisturbed Campo sujo soil had lower pH values (5.4 in H2O and 3.6 in KCl) 

(Table 1). 

 Principal component analysis of soil physicochemical data (Figure 1) indicated that 

the physicochemical characteristics in the fallow soil differed significantly from soil 

collected in the soybean site at the other time points (Figure 11A). The undisturbed soil also 

differed from the fallow soil from the soybean site, which had higher organic C and NH4
+-N 

concentrations (Figure 11B). However, other soils obtained from the soybean site clustered 

together, indicating similar physicochemical characteristics. In particular, these soils had 

higher pH and levels of nitrate, water, and micronutrients compared to the undisturbed 

Campo sujo soil and fallow soil (Figure 11B).  
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Figure 12. Principal component analysis (PCA) of soil physicochemical properties 
based on a correlation matrix performed in PAST v.3.01 (Hammer et al., 2001). (A) 
Analysis of soybean site samples; (B) all samples including soil from the 
undisturbed Campo sujo site. Each vector points in the direction in which the 
respective value increases.  

 

Ammonium and nitrate concentrations and soil δ15N 

NH4
+-N concentration in the undisturbed Campo sujo soil generally ranged from 5 to 8.3 µg 

g-1 dry soil, with two outliers of 11.8 and 48.7 µg g-1 dry soil (Figure 12A). The potential net N 

mineralization rate, determined by incubation of soil in the laboratory at room 

temperature, indicated that NH4
+-N was becoming available in these soils at a rate of 0.8 to 

3.29 NH4
+-N µg g-1 dry soil day-1 (Figure 12C).  

NH4
+-N concentration was higher than NO3

--N concentration in every soil sample but 

was particularly high in the undisturbed Campo sujo soil (Figure 12E). Fallow, tilled, and 

fertilized soils of the soybean site had similar average NO3
--N concentrations, which were 
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higher than that of the bulk soil and rhizosphere soil collected during the blossom stage 

(Figure 12B). Nitrification was greater in fallow soil from the soybean site than in 

undisturbed Campo sujo soil (Figure 12D). Analysis of the soybean site samples showed a 

decrease in NH4
+-N concentration as the crop developed, with significantly lower 

concentration in tilled soil and soil collected during the blossom stage of soybean 

development (both bulk and rhizosphere soils) than in fallow soil (Figure 12A). Nitrogen 

immobilization was greater than mineralization in fallow soil, recently tilled soil, bulk soil 

during the blossom stage, and especially in soil collected 1 month after fertilization. 

Nonetheless, the average net N mineralization differed significantly only between fertilized 

soil and soil collected during the blossom stage (both bulk and rhizosphere soils) (Figure 

12C). Because fertilization was carried out at the same time as sowing, plant growth may 

have influenced the results obtained from soil collected 1 month after fertilization through 

NH4
+-N uptake and the low inorganic N content in soil collected during the blossom stage. 

However, net N mineralization and nitrification occurred in a plant-free soil bag under 

laboratory conditions; therefore, NH4
+ would have been assimilated by microorganisms or 

oxidized to NO3
- by nitrifiers.  

Another informative parameter was the NH4
+-N:NO3

--N ratio, with the lowest ratio 

observed in tilled soil, emphasizing the need for mineral N by the plants and soil microbial 

community during the blossom stage (Figure 12E). Figure 12E also shows the high 

ammonium/nitrate ratio in the undisturbed Campo sujo soil.  
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Figure 13. One-way ANOVA tests on soil N values, with Tukey–Kramer post hoc tests to 
compare group means (R with the ggplot2 package). Concentrations of (A) NH4

+-N and (B) 
NO3

--N in soil samples under each condition. (C) Net mineralization and (D) nitrification 
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determined by inorganic N and NO3
- -N content, respectively, measured after soil incubation 

in the laboratory for 1 week;(E) NH4
+-N: NO3

--N ratio and (F) integrated values of soil δ15N 
(‰). Letters represent significant differences in inorganic N content between soil samples 
after post hoc tests: upper case letters represent difference between undisturbed Campo 
sujo and fallow soil from the soybean site; lower case letters present differences among 
soybean site samples. Soil samples obtained during the blossom stage of soybean 
development are represented by Blossom–B for bulk soil and Blossom–R for rhizosphere 
soil.  
 

These results were supported by the integrated stable isotope ratios of C and N in 

these soils. The first soybean (C3 plant) cultivation did not change the δ13C signal that 

remained from maize (C4 plant) cultivation or from the grassland before agriculture 

installation (Figure 13); however, the integrated soil δ15N values were more labile. Soil δ15N 

was significantly lower in the undisturbed Campo sujo soil than in fallow soil from the 

soybean site (Figure 12F). Although soil δ15N did not significantly change during the soybean 

cultivation period, an increase was observed during the blossom stage (p value 0.0795, 

results of ANOVA between samples from the soybean site) (Figure 12F). These integrated 

isotope values are congruent with instantaneous values for mineralization and nitrification 

obtained from each sample in which significant changes in N cycle dynamics were observed, 

compared to the adjacent undisturbed site.  

 
Figure 14. Relationship between soil δ13C and δ15N in ‰. 
Each point represents samples from each soil condition, 
marked with different symbols.  
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Abundance of archaeal and bacterial amoA genes 

Archaeal 16S rRNA and archaeal and bacterial amoA genes were amplified with specific 

primers to quantify the abundance of these genes in the undisturbed site and in the 

soybean site.  

The mean abundances of AOA and AOB amoA genes in the undisturbed Campo sujo 

site were 3.4×105 and 1.6×103 g-1 dry soil, respectively, representing an average AOA/AOB 

ratio of 212.9 (Figure 14C). In addition, AOA and AOB were, respectively, 26-fold and 49-fold 

less abundant in the Campo sujo site than the soybean site during the fallow period (Figure 

14). The thaumarchaeal 16S rRNA:archaeal amoA gene ratio in the Campo sujo site varied 

from 785 to 1340 and was significantly higher than that of fallow soil from the soybean site.  

The abundance of thaumarchaeal 16S rRNA and bacterial amoA increased during 

soybean development, but AOA amoA gene abundance decreased by 45% in the tilled soil 

compared to fallow soil. Tillage did not have the same effect on AOB, as demonstrated by 

the lack of significant change in AOB amoA gene abundance between fallow and tilled soil 

samples (Figure 14B). In fertilized soil AOA amoA gene abundance increased 2.6-fold and 

AOB amoA abundance increased 2-fold (Figure 14). However, AOB amoA gene abundance 

was more affected by soybean cultivation than AOA amoA gene abundance, as 

demonstrated by comparing rhizosphere soil with bulk soil during the blossom stage of 

soybean development. Furthermore, the increase in AOB abundance from fallow soil to 

rhizosphere soil was 2.9 greater than the increase in AOA abundance. 
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Figure 15. Changes in (A) AOA amoA gene abundance, (B) AOB amoA gene abundance, (C) 
AOA:AOB amoA gene abundance ratio, and (D) archaeal 16S rRNA:amoA gene abundance 
ratio. One-way ANOVA tests were performed, followed by Tukey–Kramer post hoc tests to 
compare group means (R package with the ggplot2 library). Different letters represent 
significant differences in gene abundance after post hoc tests: upper case letters represent 
difference between undisturbed Campo sujo and fallow soil from the soybean site; lower 
case letters present differences among soybean site samples. Soil samples obtained during 
the blossom stage of soybean development are represented by Blossom–B for bulk soil and 
Blossom–R for rhizosphere soil. 
 
 Soybean cultivation affected the abundance of both bacterial and archaeal 

ammonia oxidizers. The correlation between pH measured in H2O and log10[AOB] (R2 0.75, p 

value < 0.05 with the Bonferroni correction) was higher than the correlation between pH 

and log10[AOA] (R2 0.63, p value < 0.05 with the BH correction). Similarly, the pattern of δ15 

N was more strongly associated with log10[AOB] (R2 0.96, p-value < 0.05 corrected by 

Bonferroni method) than with log10[AOA] (R2 0.88, p value < 0.05 with the Bonferroni 

correction). Nevertheless, when analyzing only soils from the soybean site, AOA abundance 

did not correlate with pH, and the correlation between pH and AOB abundance was lower 
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(R2 0.55, p value=0.72 with the Bonferroni correction). Similarly, the correlation between δ15 

N and log10[AOA] was not significant (R2 0.24, p value=0.64 corrected by BH method) when 

analyzing only soils from the soybean site, but the correlation was still significant between 

δ15 N and Log10[AOB] (R2 0.68, p-value < 0.05 with the BH correction). 
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Discussion  

In assessing links between environmental characteristics, nitrification, and the abundance 

of ammonia-oxidizer communities in the soil, it is important to assess abundances of both 

AOA and AOB, given the predominance of AOA amoA genes in many soils (Isobe 2012; 

Leininger 2006; Prosser and Nicol 2012). To assess the impact of land use conversion to 

soybean cultivation, ammonia oxidizer abundance and nitrification were evaluated in a 

soybean site after fallow, tillage, and fertilization and during the blossom stage of soybean 

development. These measurements were compared with those of an adjacent undisturbed 

Campo sujo site with low nitrate concentration, which is typical of Cerrado soil. These 

measurements support our hypothesis that both fertilization and soybean cultivation 

decrease the AOA/AOB ratio in association with increases in pH (Nicol et al. 2008; Prosser 

and Nicol 2012) and inorganic NH4
+ (Levičnik-Höfferle et al. 2012), which is consistent with 

studies reporting that AOA are predominant in low-nutrient, low-pH environments (Erguder 

et al. 2009; Prosser and Nicol 2012). However, this study highlights the rapidity of changes in 

nitrifiers, N dynamics, and yields that occur in Cerrado soils after conversion to soybean 

cultivation.  

The cultivation of soybeans in Brazil has been successfully implemented with 

inoculation of Bradyrhizobium strains to decrease or even completely eliminate the need for 

N fertilizers (Mendes et al. 2003). Nevertheless, the soybean site studied here required 

tillage and fertilization. Our results showed the effect of plant cover during the fallow 

period on soil recovery in the soybean site. Soil collected during the fallow period had soil 

characteristics similar to those of the undisturbed Campo sujo site, despite the different soil 

texture.  

The undisturbed soil had the highest net N mineralization rate (average of 2 µg 

NH4
+-N g-1 dry soil day-1) and the lowest net nitrification rate, suggesting the inhibition of 

nitrification or low abundance of nitrifiers despite the presence of NH4
+-N. However, 

potential nitrification was negative, indicating that the microbial community used nitrate at 

a faster rate than it was produced by nitrification. The soil was incubated in plastic bags; 

nitrate loss through leaching is negligible. Denitrification is unlikely at the moisture content 

of the soil used, and previous studies report that the loss of N gases is undetectable in 

undisturbed Cerrado soils (Bustamante et al. 2006; Pinto et al. 2002). 

Both NH4
+-N and NO3

--N concentrations were particularly low in the soybean site 

during the blossom stage of soybean development, possibly because of N uptake by the 
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soybean plants. N mineralization exceeded immobilization in the rhizosphere soil but not in 

the bulk soil, which suggests greater N availability due to symbiotic N fixation. The soil C:N 

ratio > 20 (data not shown) in the bulk soil may partly explain the greater N immobilization, 

leading to depletion of N by both microbiota and plants. The decrease in NH4
+-N and NO3

--N 

during soybean growth was expected and is associated with periods of intense plant 

growth (Cruvinel et al. 2011). Nevertheless, Cruvinel et al. (2011) reported higher 

concentrations of NO3
- -N  (1–52 mg kg-1, depending on the period) and NH4

+-N (21.3–50.7 mg 

NH4
+-N kg−1 soil) in soils during soybean cultivation higher than the levels of NO3

- -N  and 

NH4
+-N concentration in the soybean site in recovery, supporting our finding that the soils 

sampled in our study were relatively depleted in mineral N. Cruvinel et al. (2011)also 

discussed possible competition between plant roots and microorganisms in the planted 

rows during cotton cultivation in the Cerrado because of the lower inorganic N availability 

and NO-N fluxes than that observed between rows. Low abundance of AOA and AOB in 

Cerrado soils may be due to competition with soil fungi for ammonium or inhibition by 

bioactive compounds synthesized by fungi (Yu et al. 2014). Nardoto and Bustamante (2003) 

showed that in both burned and unburned Cerrado areas, inorganic N content decreases 

during the rainy season, despite the observed increase in net N mineralization and net 

nitrification after the first rainfall events of the dry season (Nardoto and Bustamante 2003). 

These studies are consistent with our findings, as soils have higher levels of ammonia than 

nitrate, and the ammonium:nitrate ratio was lowest in the tilled soil, likely due to N release 

from organic matter. Similarly, the ammonium:nitrate ratio is high in integrated agricultural 

systems in Cerrado but is lower in crop-livestock and crop-livestock-forest systems 

compared to agroforestry and exotic pasture (Carvalho et al., personal communication). 

The same study also reports higher N2O emissions from all of these agricultural systems 

compared with native Cerrado soils, with crop-livestock having the highest levels (Carvalho 

et al., personal communication). 

Despite lower soil nitrate concentrations than those reported by other studies, N 

losses from the soybean site compared with the undisturbed Campo sujo site are suggested 

by higher δ15N values and greater nitrate accumulation in the managed system. The 

integrative soil δ15N signal, which provides historical information on soil N dynamics, 

indicates that soybean cultivation affects soil N accumulation, as the expected values for 

symbiotic N fixation were lower, at 0–2‰ (Delwiche et al. 1979). Nonetheless, the results 

demonstrate the labile characteristics of N compared to C, as δ15N tended to increase 

during soybean cultivation, changing the short-term N dynamics in the cultivated soil, 
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whereas no significant changes in δ13C were observed. A recent study reported that the 

δ15N signature reflects a strong pattern of change according to land use, mainly due to soil C 

dynamics and clay content (Craine JME 2015). 

Many soil characteristics are associated with changes in soil nitrification, including 

pH (Gubry-Rangin et al. 2011; Nicol et al. 2008), NH3 and NH4
+ concentration (Levičnik-

Höfferle et al. 2012; Stopnisek 2010), O2 (Erguder et al. 2009), temperature (Tourna 2008), 

soil moisture (Placella and Firestone 2013; Thion and Prosser 2014), and organic C (Erguder 

et al. 2009); however, pH and ammonia concentration have received greatest attention as 

potential drivers of ammonia oxidizer communities (Prosser and Nicol 2012). Kinetic studies 

of ammonia oxidation by Nitrosopumilus maritimus suggest that AOA have a higher affinity 

for ammonia (Martens-Habbena et al. 2009), but AOA may also be more sensitive than AOB 

to inhibition by high ammonia concentration (Prosser and Nicol 2012). In terms of pH, there 

is strong evidence for the selection of AOA, rather than AOB, in acid soils (Gubry-Rangin et 

al. 2011; Nicol et al. 2008; Zhang et al. 2012). However, AOA also contribute to nitrification in 

soils with pH > 5.5 (Gubry-Rangin et al. 2011; Gubry-Rangin et al. 2010), and there is evidence 

for long-term pH selection of both AOB and AOA phylotypes in soil (Nicol et al. 2008; 

Stephen et al. 1998). The increased pH observed during soybean cultivation was associated 

with a lower AOA:AOB ratio in our study, but no significant effect on nitrification was 

detected, and the expected decrease in pH that frequently accompanies nitrification was 

not observed. This may be due to liming or the low rates of ammonia oxidation observed in 

these soils. Therefore, pH may limit ammonia oxidizer growth in these low-nitrate Cerrado 

soils.  

 In this study we observed that tillage, fertilization, liming, and soybean monoculture 

altered soil pH, moisture, and inorganic N contents, all of which can influence the 

abundance and diversity of microbial communities and their functional potential, thereby 

influencing the production of nitrate, nitrite, NO, and N2O (Mao et al. 2011). The change in 

land use had differential effects on the abundance of AOA and AOB communities, 

reinforcing the idea that these two microbial groups have distinct ecological niches 

associated with environmental variables. Specifically, samples from recently tilled soil and 

soil collected from the rhizosphere had smaller AOA:AOB ratios, and AOB showed a greater 

response to changes occurring during soybean cultivation. The lower abundance of AOA in 

undisturbed soil can be also related to the higher thaumarchaeal 16S rRNA:archaeal amoA 

ratio, which, in the absence of primer bias, indicates a great abundance of non-ammonia–

oxidizing Thaumarchaeota (e.g., belonging to group 1.1c) (Weber et al. 2015).  
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  A recent metagenomic study reported that Thaumarchaeota representatives were 

more abundant in no-till soils than in soils under conventional tillage (Souza et al., 2013), 

possibly because of greater organic matter content or sensitivity to tillage. Although the 

AOA amoA gene was more abundant in all of our soil samples, the increase in AOB amoA 

abundance in tilled soil was greater. This finding may reflect the disruption of soil structure 

and release of C and N substrates previously not available to the microbiota. 

Our results provided evidence for our hypothesis that both AOA and AOB 

abundance increase during soybean cultivation, with AOB increasing more than AOA, as 

predicted. Although AOA were more abundant, nitrification was better explained by the 

increase in AOB abundance, as predicted by the current view that AOB contribute more to 

ammonia oxidation than AOA in fertilized oxic soils at near-neutral pH. Wertz et al. (2012) 

reported an increase in AOB abundance with fertilizer application and nitrification in pine 

forests (Wertz et al. 2012).AOB abundance was more highly correlated with potential 

nitrification (Meyer et al. 2014), indicating that other factors can influence ammonia 

oxidizer communities. Moreover, although AOA abundance is potentially stable during the 

cultivation of bioenergy crops (Zea mays and Miscanthus giganteus), AOA diversity 

decreases, and AOB abundance increases, with this differential response to fertilization by 

AOA and AOB observed even 2 years after the fertilization (Mao et al. 2011).  

 A similar increase in the abundance of AOB, rather than AOA, was reported for a 

fertilized maize crop (Mao et al. 2011), and Mendes et al. (2014) recently showed that 

soybean plants select for the rhizosphere a specific subset of the soil bulk microbial 

community, which appears to be related to growth promotion and nutrition (Mao et al. 

2011; Mendes 2014). Further studies are required to elucidate the differential effect of 

soybean cultivation on AOA and AOB abundance to determine whether these differences 

are direct effects of the soybean plant or due to fertilization promoting the growth of AOB.  
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Chapter 4 – Ammonia oxidizers in a non-nitrifying Brazilian savanna 
soil4 

 

“Guid gear comes in sma’ bulk.” 
Scottish saying 

 

Abstract 

Nitrification rate in tropical Brazilian savanna (Cerrado) soil is low to undetectable, puzzling 

researchers for decades. It was proposed that inhibitors in these soils, potentially produced 

by plants, could hamper ammonia oxidation. Recently we linked the absence of nitrification 

in an undisturbed Cerrado soil to low soil pH and a significantly lower abundance of 

archaeal (AOA) and bacterial (AOB) ammonia oxidizers than an adjacent Cerrado site 

changed to agriculture management. We also hypothesized that rain after the dry season 

allows higher microbial activity, including organic nitrogen mineralization and subsequent 

ammonia oxidation. To test these hypotheses, we (i) manipulated moisture and pH in 

microcosms containing Cerrado soil and (ii) tested nitrification inhibition in slurries 

assembled with a mixture of Cerrado and agricultural soil known for actively oxidizing 

ammonia. Very little NO3
- accumulation was observed in Cerrado microcosms with either 

increasing moisture or pH, despite high ammonia concentration. In the Cerrado slurries, 

AOA amoA transcripts were detected after 14 and 21 days but not in all replicates. Besides, 

nitrification was not inhibited in the mixed soil slurries, final NO3
- content being 

proportional to initial agricultural/Cerrado soil ratios, indicating a dilution of the ammonia 

oxidizer community, but no inhibition. In addition, DGGE profiles of the AOA community 

were similar in the mixed and nitrifying soils. Together, these results suggest that neither 

water availability, ammonia availability, low pH nor inhibition by soil compounds 

constrained nitrification in Cerrado soils. This distinctive pattern, i.e. the absence of 

nitrification despite the presence of AOA and AOB, might be associated with a particular 

community, specialized in high N immobilization in organic matter rather than in N loss 

through nitrification.  

                                                           
4 Catão, E. C. P.; Thion, C.; Prosser, J. I. & Krüger, R. H. (2016) Ammonia oxidizers in a non-nitrifying 
Brazilian savanna soil. To be submitted to FEMS Microbiology Ecology.  
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Introduction 

Nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a major 

cause of N loss in terrestrial environments, especially in agricultural systems, where 95% of 

total N is transformed through nitrification and denitrification, potentially leading to nitrate 

(NO3
-) leaching and emission of nitric (NO) and nitrous (N2O) oxides. In these systems the 

use of synthetic inhibitors of nitrification decreases nitrogen losses (Powell and Prosser, 

1992). These inhibitors target the first step in nitrification, ammonia oxidation, which is 

carried out by both bacterial and archaeal ammonia oxidizers. In contrast, some natural 

systems have lower rates of nitrification and higher nitrogen use efficiency than managed 

systems (Ste-Marie and Paré, 1999). An example is the tropical savanna biome in Central 

Brazil, also called Cerrado, which has low to undetectable NO3
- concentration (Nardoto and 

Bustamante, 2003), high NH4
+:NO3

- ratio and low abundance of nitrifiers (Catão et al., 2016).  

These ecosystems may therefore provide a model for greater and more sustainable crop 

productivity and reduced demand for nitrogen fertilizers. 

There are several potential explanations for low nitrification rates. Plants may 

reduce nitrification rates through competition for NH4
+-N, supply of carbon from the plant, 

increasing C:N ratio and promoting higher rates of immobilization, or through inhibitory 

compounds in plant litter and root exudates (Subbarao et al., 2006). More specifically, some 

plants release biological nitrification inhibitors (BNI) to the rhizosphere. These compounds 

target ammonia oxidation and reduce competition for ammonium by ammonia oxidizers 

(Subbarao et al., 2006; Subbarao et al., 2015), although the relatively high ammonium 

concentrations in Cerrado soil (3 – 22 ppm (Nardoto and Bustamante, 2003); 5 – 49 ppm 

(Catão et al., 2016)) suggest that ammonia oxidizers are not limited by ammonia 

concentration. In addition, BNI-compounds are released by roots of plants grown with NH4
+ 

but not with NO3
- (Subbarao et al., 2009), which could explain the inhibition of ammonia 

oxidation in the Cerrado soils.  

Low rates of nitrification in acidic soils have been described for many years (De Boer 

and Kowalchuk, 2001) and rates often increase when acidic soils are amended with bases 

such as calcium carbonate (Fraps and Sterges, 1932), as also shown in Cerrado soil (Rosolem 

et al., 2003). Inhibition of ammonia oxidation at low pH was traditionally considered to be 

due to the low availability of ammonia (NH3), through ionization to NH4
+, but may be 

alleviated in soil by growth in aggregates or on surfaces (Allison and Prosser, 1993; De Boer 
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et al., 1991), urease activity (Burton and Prosser, 2001; de  Boer et al., 1989) or through 

growth of acidophilic archaeal ammonia oxidizers (Gubry-Rangin et al., 2011; Lehtovirta-

Morley et al., 2011) at low pH.  

Low water availability also reduces nitrification rate (Placella and Firestone, 2013; 

Thion and Prosser, 2014). The Cerrado biome has well defined dry and wet seasons, and 

rainfall or artificial water addition results in N2O pulses and 10-times more NO emission 

(Pinto et al., 2006; Pinto et al., 2002), leading to the hypothesis that ammonia oxidation can 

be limited during dry seasons in this biome.  

Reasons for low nitrification rates in the Cerrado biome are unclear, but both 

archaeal and bacterial ammonia oxidizers are present in these soils (Catão et al., 2016). The 

aim of this study was to test three hypotheses for potential mechanisms explaining low 

rates of nitrification. The first, the presence of plant-derived nitrification inhibitors, was 

tested by (i) analysis of the growth of cultures of ammonia oxidising bacteria (AOB) and 

archaea (AOA) in the presence of Cerrado soil aqueous extract, and (ii) by the effect of 

increasing amounts of Cerrado soil on ammonia oxidation by a nitrifying soil (Craibstone) in 

soil slurries. To second and third hypotheses, nitrification inhibition by low water availability 

or low pH, respectively), were tested by manipulation of Cerrado soil water content and pH 

in microcosms. 
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Materials and methods 

Soil sampling 

Triplicate soil samples were obtained from the upper 10 cm at each site and were 

pooled before sieving (2-mm mesh size) and stored at 4 oC.  Cerrado soil was sampled from 

an undisturbed shrubland, termed Campo sujo, described previously (Catão et al., 2016). 

The average monthly precipitation and temperature at this site, measured at the nearest 

meteorological center in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 

15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4oC (range 21 - 25.6oC), 

respectively. The climate in the Cerrado biome is tropical (Köppen Aw) and samples were 

collected at the beginning of the dry season (May 2014). The soil, well-aerated and well-

drained, is classified as sandy loam with 20.8% clay and had an initial pH of 5.6 (±0.04). 

Craibstone soil, used in this study as a reference nitrifying soil, was sampled from an 

experimental agricultural field (Scottish Agricultural College, Craibstone, Scotland, Grid 

reference NJ872104), maintained at pH 5.5 since 1961. 

Cultures with or w/o soil aqueous extracts 

Craibstone and Campo sujo soil aqueous extracts were prepared by blending 20 g 

soil in 2 volumes of sterile distilled water for 40 s and rotating in 50 mL sterile tubes for 1h. 

Aqueous extracts were then obtained by centrifugation (3,000 x g for 15 min) and sterilised 

by progressive filtration through 10-mm, 5-mm, 0.45-µm and 0.22-µm size pore filters. NH4
+ 

and NO3
- concentrations in the filtrates were below the level of detection (data not shown).  

Pure strains of AOA (‘‘Candidatus Nitrosocosmicus franklandia’’) and AOB 

(Nitrosospira briensis, Nitrosospira tenuis, Nitrosospira multiformis and Nitrosomonas 

europaea) were cultivated in the dark without shaking, in inorganic growth medium. 

‘Candidatus Nitrosocosmicus franklandia’ (paper in revision) was cultivated at 40 oC in a 

previously described medium (Lehtovirta-Morley et al., 2011) modified by addition of 1 mL L-1 

vitamin solution (Widdel and Bak, 1992), 1 mL L-1 selenite-tungstate solution (Widdel and 

Bak, 1992) and 2 mM NH4Cl. pH was maintained at ~7.5 by addition of 10 mL L-1 1 M HEPES 

buffer. AOB were grown in SW medium (Skinner and Walker, 1961) at 30 oC. Triplicate 

cultures were prepared in 30 mL universal tubes by adding 5 mL of the appropriate medium 

previously inoculated with an exponentially growth culture (1 mL of innocula per 100 mL 2x 

concentrated medium) to other 5 mL medium of either sterile distilled water, Craibstone or 

Campo sujo soil aqueous extracts, or 100 µM allylthiourea (ATU) (final concentration), a 
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commercial ammonia oxidizer inhibitor.  without agitation (Figure 15). Growth was 

monitored during 26 days (AOA) and 13 days (AOB) by measuring nitrite accumulation 

(Shinn, 1941) and maximum specific growth rate was estimated as the slope of semi-

logarithmic plots of nitrite concentration vs time.  

 

 
Figure 16. Graphical representation of the three experimental designs.  
 

Soil incubation in slurries  

Soil slurries were established in 250-ml sterile Erlenmeyer flasks containing 20 g soil 

and 100 mL sterile distilled water, stirred at 100 rpm and maintained at 30 oC in the dark 

(Figure 15). Flasks contained either Campo sujo soil, Craibstone soil or 1:1 or 4:1 ratios of 

Campo sujo and Craibstone soils. Soil slurry samples (8 mL) were centrifuged at 3,000 xg for 

15 min. Supernatant (2 mL) was used for immediate measurement of pH, while the 

remaining supernatant (6 mL) was stored at -20 oC for quantification of inorganic N (see 

below). The soil pellet was frozen in liquid nitrogen and stored at -80 oC for nucleic acid 

analysis.  

Soil incubation in microcosms  

Cerrado Campo sujo soil was incubated in sealed microcosms consisting of 140-ml 

sterile serum glass bottles containing 10 g soil (Figure 15). Soil had an initial water content 

of 24.9 ± 0.03 g H20 g-1 dry soil, corresponding to a matric potential of -0.15 ± 0.01 MPa.  

Microcosms were incubated for 4 days in the dark at 30ºC (acclimation period), and then 
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divided in two groups. One group was left to air-dry, reaching a moisture content of 8.66 g 

H20 g-1 dry soil (-6.34 ± 2.98 MPa matric potential), while the moisture content of the other 

was adjusted to 37.9 ± 0.3 g H20 g-1 dry soil by addition of sterile distilled water. Soil in half 

of the ‘dried soil’ microcosms was rewetted to 39.6 ± 1.92 g H20 g-1 dry soil (-0.11 ± 0.02 MPa) 

(‘Water Pulse’ treatment), while soil in the remaining microcosms was kept dry (‘Dry’ 

treatment). Finally, the pH of soil in half of the moist soil microcosms was increased to 6.34 

± 0.09 with CaCO3 (‘pH’ treatment hereafter). The pH of soil in the remaining microcosms 

(‘Dry’, ‘Water Pulse’ and ‘Moist’ treatments) was 5.21 ± 0.02, which was slightly lower than 

the initial value of sampled soil, and was not adjusted. The four treatments were performed 

in triplicates, with or without addition of acetylene (0.01% of headspace volume). 

Microcosms were sampled destructively after 6 h and 1, 3, 7, 14 and 21 days (an additional 

time after 28 days was included for the pH treatment). For each microcosm, half of the soil 

was stored at -80ºC for molecular analysis and the remaining soil was used for chemical 

analysis. Microcosms were incubated in the dark at 30ºC and aerobic conditions were 

maintained by removing seals for 5 - 10 minutes twice weekly.  ‘Moist’ and ‘Water Pulse’ 

microcosms were watered weekly to maintain moisture content.  

Soil physicochemical analyses  

Water matric potential was measured using a WP4C Dewpoint PotentiaMeter 

(Decagon, Pullman, UK) and pH was determined in water. Soil NH4
+ and NOx (NO2

- + NO3
-) 

concentrations were determined colorimetrically by flow injection analysis (FIA star 5010 

Analyser, Foss Tecator AB, Höganäs, Sweden) (Allen, 1989) after extraction from 2 g of wet 

soil in 10 ml of 1 M  KCl for the microcosm soil, or directly from slurry supernatant. As NO2
- 

concentration was below the level of detection, NOx is expressed as μg NO3
--N g-1 dry soil 

(ppm). Inhibition was assessed as the percentage reduction in nitrate concentration in 

comparison to that of Craibstone soil at each time point.  

Molecular analysis 

 Nucleic acids were extracted from 0.5 g soil as previously described (Nicol et al., 

2005), suspended in DEPC-treated water and immediately stored at -80 oC. cDNA was 

produced from an aliquot by DNAse treatment and RNA reverse-transcription as described 

previously (Tourna, 2008). Nucleic acid not used to for cDNA generation was considered as 

DNA only and the concentration was estimated using a NanoDrop 1000 Spectrophotometer 

(Thermo Scientific, Loughborough, UK).  
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Archaeal and bacterial amoA genes were quantified in MasterCycler (Eppendorf), 

using standard curves as reference based on fragments obtained as described previously 

(Catão et al., 2016) and primers crenamo23f and crenamo616r (Tourna, 2008) and bacterial 

amoA with amoA1F and amoA2R (Rotthauwe et al., 1997), respectively. Each reaction had a 

final volume of 20 µl containing 1X QuantiFast (for AOA) or QuantiTect (for AOB) (Qiagen), 

0.4 µM (AOA amoA) or 0.6 µM (AOB amoA) of each primer, 2 µg µl-1 BSA (Promega) and 2 µL 

of DNA (or cDNA). Archaeal amoA genes and transcripts were amplified according to the 

cycling conditions: 15 min at 95ºC, followed by 40 cycles of 15 s at 94ºC, 1 min 30 s at 60ºC. 

AOB amoA genes were amplified using the following cycling conditions:  15 min at 95ºC, 45 

cycles of 1 min at 94ºC, 1 min at 55ºC, 1 min at 72ºC. SybrGreen fluorescence was measured 

after 5 s at 80 ºC or 8 s at 83 ºC, for AOA and AOB, respectively, to exclude fluorescence 

contamination of potential primer-dimers. Melting curves between 65 ºC and 95 ºC were 

analysed for each run. AOB amoA transcripts were below the detection limit (5 copies µl-1). 

Efficiency of amplification and r2 for DNA were, respectively, 0.92 and 0.998 for archaeal 

amoA and 104.6 and 0.993 for bacterial amoA.  

AOA community composition in soil slurries was assessed by denaturing gradient 

gel electrophoresis (DGGE) analysis of amoA genes using the above primers in a linear 

gradient of 15 – 55% denaturant, as described previously (Nicol et al., 2005).  

Statistical analysis  

All analyses were conducted using R version (3.2.2). The effect of soil aqueous extracts on 

pure AOA and AOB cultures was analysed by testing the difference between specific 

growth rates with a one-way analysis of variance (ANOVA) between treatments. The 

significance of differences between nitrification rates in soil slurries was tested using a 

linear mixed model (package nlme) (Pinheiro et al., 2015) for repeated measures. Each slurry 

was considered a subject with random effect to analyse the effect of the fixed factors, i.e.  

treatment (mixed soil, Campo sujo or Craibstone slurries), time and their interaction, over 

the response variables: inorganic N concentration and amoA gene (and transcript) 

abundance. NO3
- concentration in the Campo sujo slurries was below the limit of detection, 

and these samples were excluded from the analysis. Gene abundance data were log-

transformed to achieve a normal distribution. When the interaction between the 

independent variables was not significant, it was removed to analyse the effect of time or 

treatment over the concentration independently. Two-way ANOVAs, with treatment and 
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time as independent factors, were performed to evaluate statistical differences in 

mineralization and NO3
- in microcosms.  
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Results  

Effects of soil extracts on ammonia oxidizer cultures 

To assess the presence of potential nitrification inhibitors in soil, pure cultures of 

four AOB and one AOA were grown in liquid batch culture in medium amended with 

aqueous extracts. Soil aqueous extracts from both Campo sujo and Craibstone soils had no 

significant effect on the growth of any of the AO strains tested (Figure 16). Allylthiourea 

was used as a control for inhibition at 100 µM final concentration and completely inhibited 

all AOB cultures tested but interestingly did not inhibit growth of the AOA, Candidatus N. 

franklandia (Figure 16).  

 

 

Figure 17. Specific growth rate calculated during exponential nitrite 
production batch cultures of the soil C13 and four soil AOB (Nitrosospira 
briensis, Nitrosomonas europaea, Nitrosospira multiformis, Nitrosospira 
tenuis) after addition of water (control), aqueous extracts of Campo 
sujo or Craibstone soil or 100 µM allylthiourea. Error bars represent 
standard errors of the means from triplicate cultures.  
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Effects of Campo sujo soil on nitrification in Craibstone soil  

Soil slurries were established with mixtures of Campo sujo and Craibstone soils at ratios of 

1:1 to 4:1, and with each soil alone, and were incubated in for 21 days. In all slurries, pH 

increased slightly after the first day of incubation, but did not change significantly during 

subsequent incubation.  

Net NH4
+ accumulation in the microcosms after 21 days ranged from 0.62 (±0.02) to 

1.76 (±0.39) ppm for Craibstone and 0.87 (±0.02) ppm to 2.20 (±0.02) for Campo sujo (Figure 

17). Ammonium concentrations were greater in mixed slurries than in controls, but 

accumulated less NH4
+ during incubation, and the increase in NH4

+ concentration after 21 

days was greatest (2.9-fold) in Craibstone soil. 

NO3
- accumulated in all soil slurries (p<0.0001, Figure 17B) except those containing 

Campo sujo-only, in which no NO3
- was below the detection limit. In the mixed slurries, NO3

-  

production was equivalent or higher than the 50% and 20% expected for the 1:1 and 4:1 slurry 

(Figure 17C), thereby providing no evidence for inhibition of Craibstone soil nitrification by 

Campo sujo soil. Furthermore, the variance among replicate slurries (intra-treatment) was 

greater than 0, therefore significant, but smaller than the variance associated between 

subjects (inter-treatment) for both the ammonia and NO3
- concentrations.  
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Figure 18. Changes in inorganic N concentration during incubation of slurries of Craibstone 
and Campo sujo soils and mixtures of these soils. (A) NH4

+-N concentration, (B) NO3
—N and 

(C) NO3
- concentration in mixed slurries as a percentage of that in Craibstone slurry. 

Statistical difference is shown by p value calculated with linear mixed model considering 
repeated measures (lme4 package, R version 3.2.3) for each independent variable and their 
interaction, and the marginal r2 associated with the fixed effects. Error bars represent 
standard errors of the means from triplicate cultures. 

There was no evidence for significant changes in ammonia oxidizer amoA 

abundance, even when significant NO3
- accumulation was recorded (Figure 18). AOA amoA 

abundance in the Campo sujo-only slurries were approximately three orders of magnitude 

lower than in Craibstone-only slurries (Figure 18A). AOA amoA abundance in mixed slurries 

was lower than Craibstone-only until 14 days, when we could no longer detect significant 

difference between AOA amoA abundance between the mixed slurries and the Craibstone. 

Similarly, AOB abundance in the Campo sujo-only slurries was also approximately three 

orders of magnitude lower than in Craibstone-only slurries, except after 21 days, when 

abundance was not significantly different (Figure18B).  

AOB amoA gene abundance was lower than AOA in all slurries and the AOA:AOB 

amoA gene ratio did not change in the Campo sujo-only slurries, in contrast to treatments 

with Craibstone soil, where the ratio increased (Figure 18C). AOB amoA transcripts were 

below the level of detection (5 copies µl-1) in all slurries. AOA amoA transcripts were 

detected in all slurries containing Craibstone throughout incubation, but were only 

detected in the Campo sujo-only slurries after incubation for 21 days (Figure 18D).  
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Figure 19. Changes in (A) AOA amoA gene abundance, (B) AOB amoA gene abundance, (C) 
AOA:AOB amoA gene abundance ratio and (D) AOA amoA transcript abundance during 
incubation of slurries of Craibstone and Campo sujo soils and mixtures of these soils. 
Statistical difference is shown by p value calculated with linear mixed model considering 
repeated measures (lme4 package, R version 3.2.3) for each independent variable and their 
interaction, and the marginal r2 associated with the fixed effects  

 

AOA community composition was investigated by DGGE analysis of amoA genes and 

more DGGE bands were detected in DGGE profiles of Craibstone soil than Campo sujo soil 

(Figure 19), but will little evidence of changes in the AOA community during incubation. 

Total AOA community in the mixed slurry 1:1 was very similar to that of Craibstone soil as 

seen in the DGGE pattern of bands of AOA gene, possibly masking the presence of lower 

abundance of Campo sujo bands (Figure 19).  
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Figure 20. DGGE analysis of partial amoA gene products from triplicate soil slurries of (G) 
Campo sujo-only, (CG) 1:1 Campo sujo: Craibstone mixed and (C) Craibstone-only sampled 
after incubation for 0 and 21 days.   
 

Effects of soil pH and moisture content 

The effects of pH and moisture content on nitrification in the Campo sujo soil was 

investigated in soil microcosms. Mineralization in the microcosms was determined by the 

increase of inorganic N (NH4
+-N + NO3

- -N) concentration over time, assuming that other 

nitrogen cycle processes were not significant (Figure 20A). Mineralization in the dry soil did 

not increase after wetting, in contrast to the expected “Birch” effect (Birch, 1964)(Figure 

20A). Soil pH did not change significantly with time in the microcosms and remained at 5.2 

for ‘Water Pulse’, ‘Moist’ and ‘Dry’ treatments, and 6.3 for the ‘pH’ microcosms in which pH 

was increased artificially with CaCO3. There was no evidence of significant increases in 



 

46 

 

nitrate concentration in any of the treatments (Figure 20B), with no significant difference 

between treatments (p treat=0.140).  

Acetylene was used as an inhibitor of ammonia oxidation in half of the samples for 

all four treatments (‘Dry’, ‘Water Pulse’, ‘Moist’ and ‘pH’) to discriminate N utilization by soil 

ammonia oxidizers. No significant difference was observed with and without acetylene, 

except for the NO3
- -N concentration in the moist microcosms after 21 days. After 21 days, 

NO3
- -N concentration was higher in the non-acetylene treated moist microcosms than in 

those with added acetylene. 

 
 
Figure 21. Changes in (A) (NH4

+-N + NO3
--N) and (B) NO3

--N during incubation of microcosms 
containing Campo sujo or Craibstone soil after manipulation of pH and moisture content. 
Open symbols represent treatments with addition of 0.01% acetylene in the headspace. Red 
line represents the threshold limit of detection considered for the FIA technique. Dry: air-
dried soil to 8.66 g H20 g-1 dry soil; Water: rewetted soil to 39.6 ± 1.92 g H20 g-1 dry soil; 
Moist: moist soil; pH: soil treated with CaCO3 with one pH unit higher than the other 
treatments.  
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Discussion 

Nitrification is frequently undetectable in undisturbed Cerrado ecosystems, 

although its management and conversion to agricultural production results in nitrate 

production (Catão et al., 2016). Previous studies provide evidence for low abundance of 

AOA and AOB in Campo sujo soil (Catão et al., 2016), which is a shrubland with some sparse 

shrubs over a continuous grass layer. The aim of this work was to determine whether the 

lack of nitrification and low abundance of AO was due to low pH, low soil moisture or NH4
+ 

limitation or biological inhibition of ammonia oxidation.  

Certain plants release biological nitrification inhibitors (BNI), that suppress 

ammonia oxidation in soils (Subbarao et al., 2015), and some, for example produced by 

Brachiaria (Subbarao et al., 2009) and Sorghum (Zakir et al., 2008), inhibit a recombinant N. 

europaea strain possibly by blocking the ammonia monooxygenase and hydroxylamine 

oxidoreductase enzymes (Subbarao et al., 2008). Exudation of BNI can be promoted by 

exposure to high of NH4
+:NO3

- ratios (Subbarao et al., 2015), which are found in Campo sujo 

soil (Catão et al., 2016). There was, however, no evidence for nitrification inhibitors in the 

Campo sujo soil. Cultures of four AOB and one AOA, all of which were originally isolated 

from soil, were not inhibited by aqueous soil, where allylthiourea, a known inhibitor of AOB, 

prevented nitrification of these organisms, but not that of the AOA culture. This is 

consistent with other studies that indicate greater tolerance of AOA to allylthiourea 

(Hatzenpichler and Lebedeva, 2008; Stempfhuber et al., 2015), highlighting the need to 

testing of potential BNI and other inhibitors against both AOA and AOB, rather than N. 

europaea only.  

The above studies suggest the absence of inhibitors within Campo sujo soil, but are 

based on aqueous soil extracts and a small number of cultivated strains. The potential for 

soil inhibitory factors was tested more directly by mixing Campo sujo soil with Craibstone 

soil, a strongly nitrifying soil (Nicol et al., 2008; Zhang et al., 2010) with similar pH, in soil 

slurries. Soil slurries also provided no evidence of nitrification inhibitors in Campo sujo soil. 

Nitrate accumulation in soil mixtures was lower than in ‘undiluted’ Craibstone soil but 

reductions in mixtures were greater than or equal to those predicted merely through 

dilution, and not through additional inhibition. There was also no evidence for negative 

effects of Campo sujo soil on AOA and AOB amoA gene abundances. AOA amoA genes were 

more abundant than those of bacteria, and no bacterial amoA transcript was detected, as 

found in previous studies with Craibstone soil (Zhang et al., 2010). Neither AOA nor AOB 
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amoA abundance changed significantly during incubation in any of the slurries containing 

Craibstone soil, despite active nitrate production, but there was evidence for an increase in 

the AOA:AOB amoA gene ratio, suggesting greater growth, or lower death, of AOA. There 

was no evidence for growth of AOB or AOA in the Campo sujo soil. The low abundance of 

amoA transcripts in the Campo sujo soil, and smaller number of DGGE bands, compared to 

Craibstone soil, are further evidence of the low abundance and activity of ammonia 

oxidizers in the former soil and the absence of detectable ammonia oxidizer activity. 

Nevertheless, AOA amoA transcripts detection in Campo sujo-only slurries after 21 days 

suggest that AOA had begun to grow in the Campo sujo soil but that their abundance was 

not sufficient for them to generate detectable nitrate. Alternatively, undetectable nitrate 

can reflect the greater variability of amoA community present in the Craibstone-only slurries 

and the mixed slurries.  

Microcosm studies were performed to determine whether low nitrification rates 

were due to low pH or low soil moisture content. Soil pH is considered one of the major 

factors that influences microbial diversity (Fierer et al., 2012a; Lauber et al., 2009); it has 

previously been shown to influence soil ammonia oxidizer abundance and activity (de Boer 

and Kowalchuk, Nicol et al. 2008), with higher transcriptional activity of Archaea than 

Bacteria as pH decreases (Nicol et al., 2008). An increase in soil pH increased the 

mineralization rate but did not lead to detectable nitrate production in Campo sujo soil 

after incubation for 28 days. There was therefore no evidence for limitation of nitrification 

by low pH. Mineralization was lower in moist soil, but again, the increase in moisture did 

not lead to detectable nitrate production. 

Low nitrification, and low AO abundance, in both microcosms and slurries was not 

due to NH4
+ limitation, as NH4

+ concentration was even higher than that measured in the 

Craibstone soil slurries at the beginning of the experiment. Ste-Marie and Paré (Ste-Marie 

and Paré, 1999) described similar results on a jack pine forest soils that accumulated high 

concentrations of ammonium but nitrate was not detectable. None of the treatments 

applied promoted nitrification in Campo sujo soil and no inhibition by this soil on Craibstone 

or pure culture nitrifiers was observed. In the jack pine forest, nitrification was not 

stimulated by an increase in pH or ammonium amendment, but by the addition of nitrifying 

soil from a forest floor (Ste-Marie and Paré, 1999). In our study, both AOA and AOB were 

detectable, but at low levels that are unlikely to lead to detectable nitrate production. As a 

consequent, Cerrado soils have much greater ability to retain N as NH4
+, through ion 

exchange, and leaching NO3
- of nitrate will be low. Our study indicates that low nitrification 
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rates and ammonia oxidizer abundance are not due to low moisture content, low pH or 

ammonia oxidizer inhibitors within the soil.  

Some other process of NO3
- use by the microbiota should be considered in further 

studies, i.e. competition for NH4
+ by plants or heterotrophic microbes, as described in a 

Californian grassland (Jackson et al., 1989); dissimilatory reduction of NO3
- to NH4

+ (DNRA) 

(Chen et al., 2015; Cole and Brown, 1980).  
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Chapter 5 – Abiotic and biotic factors that affect ammonia oxidizers 
and therefore nitrification: final discussion 

 

 

“Le savant n’étudie pas la nature parce que cela est utile; il l’étudie parce qu’il y prend plaisir et 
il y prend plaisir parce qu’elle est belle” 

Henri Poincaré  

 

 

 

 

 

years, at least, have passed since N cycling is the focus of research in the 

Cerrado biome. Each experiment takes us one step ahead to understand N conservation in 

soil ecosystem and the changes that take place in N utilization by soil fauna, flora and 

microbiota after natural or artificial disturbances (i.e. fire episodes and agriculture, 

respectively). The relevance of understanding N dynamics in the biosphere is both related 

with how N limitation controls net primary productivity and the fact that N cycle is one of 

the most affected cycles by anthropogenic impact, having crossed the threshold for 

planetary boundaries (Rockström et al., 2009).  Yet, it is a cycle mainly controlled by 

microbial dynamics, therefore the numerous scientific researches focusing on the 

association of specific groups of microorganisms and the N metabolism.  

20 
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In the Cerrado, microbial community structure varies according to the types of 

vegetation (Araujo et al., 2012; Catão et al., 2013; de Castro et al., 2008; Quirino et al., 2009), 

and to the variations in soil moisture that occurs in Cerrado soils (Catão et al., 2014; Pereira 

de Castro et al., 2016; Viana et al., 2011). Recently, Pereira de Castro et al. (2016) discussed 

the general metabolic potential distribution in the Cerrado biome besides the taxonomy 

approach. Nonetheless, until now no work has focused on the microbial genes associated 

with N cycling in the Cerrado. 

NO3
-, the most oxidized form of N, does not accumulate in native Cerrado soils as 

described in the literature and as found in the three projects developed here (0.03-0.09 µg 

NO3
--N g-1 dry soil). Furthermore, NO3

- were low or undetectable in soils sampled from the 

Campo sujo, contrary to the values obtained in the soil under cultivation of soybean. Net 

nitrification, obtained as the NO3
--N over time, was also insignificant in most of the 

manipulated soils microcosms and slurries, except in the pH and moist microcosms in which 

NO3
- was detectable after 21 days of incubation. In all of the experiments here performed, 

NH4
+:NO3

- was always greater than 10, sometimes greater than 50 (as for example in the 

Cerrado sensu stricto of PNCV, and the Campo sujo in the Farm).  

Low net nitrification in the Cerrado biome seems to be related with different biotic 

and abiotic factors, here described. Soil nutrient dynamics is neither unidirectional nor 

linear, even though most times the variables have to be considered as such. For instance, 

NH3 is the substrate for nitrification, but it can be inhibitory in determinate concentrations, 

especially to AOA that seem to be more sensitive than AOB to ammonia inhibition (Prosser 

and Nicol, 2012). Therefore, to say that oxidation of ammonia by Bacteria or Archaea is 

dependent of the soil pH, or the quantity or quality of N substrate, or moisture, is not 

informative per se. Especially if we want to understand how soil characteristics’ affect the 

microbial community (or vice-versa), and how we can have better manage the land use with 

less   environmental pollution. This discussion focuses on the results obtained along this 

thesis and elaborates on the microbial ecology of nitrification, which is resumed in Figure 21.  

pH 

pH is within the most cited variables that explains bacterial community distribution 

in terrestrial ecosystems whether in local scale (Rousk et al., 2010), regional (Bru et al., 2011; 

Griffiths et al., 2011; Kuramae et al., 2012) or global (Lauber et al., 2009). pH affects microbial 

cells direct or indirectly and different communities have optimal growth pH, as low pH 

seems to be more limiting for bacterial growth than for fungal growth (Bárcenas-Moreno et 
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al., 2016). As an example, acidophilic organisms require high protons concentration to keep 

the integrity of the cytoplasmic membrane, and bacterial communities from acidic soil 

reach their respiration peak twice later than communities from soil with higher pH 

(Bárcenas-Moreno et al., 2016). Nonetheless, bacteria adapted to low pH grow more in 

higher pH, but bacterial communities transplanted from alkaline soil to acidic one are less 

successful to grow (Bárcenas-Moreno et al., 2016). As a result, it is not surprising that we 

find a great correlation between soil pH and microbial distribution.  

Archaeal communities, and more specifically archaeal oxidizers, also present 

ecological coherence with pH in soil and can be classified depending on the soil pH of their 

greatest occurrence (Gubry-Rangin et al., 2011). AOA predominance over AOB (Leininger et 

al., 2006) is often associated with low pH soils (Erguder et al., 2009; Gubry-Rangin et al., 

2011; Lu et al., 2012; Nicol et al., 2008; Prosser and Nicol, 2012). This was also observed in our 

data where both fertilization and soybean cultivation decreased the AOA:AOB ratio in 

association with increases in pH. However, some AOA clusters contribute to nitrification in 

soils with pH > 5.5 (Gubry-Rangin et al., 2011; Gubry-Rangin et al., 2010), and there is 

evidence for long-term pH selection of both AOB and AOA phylotypes in soil (Nicol et al., 

2008; Stephen et al., 1998).  As different groups, either between AOA and AOB or within 

this clades, have different sensibilities to pH (Stempfhuber et al., 2015) nitrification 

measurement should be estimated with original soil pH and not with changed pH in 

buffered potential nitrification assays as performed sometimes.   

We have observed in situ the change in NO3
- –N accumulation along the soybean 

cultivation possibly due to liming and associated with a decrease in the AOA:AOB gene 

abundance ratio. The field study performed in the farm at Cocalzinho de Goiás (GO) showed 

a rapid turnover (nearly 4 months) effect of the agricultural practices on the soil microbial 

community. Whether higher nitrification activity in the soybean soil is due to greater cell 

growth rates or higher NH3 availability, both related with the greater pH, or if it is a 

consequence of the NPK solution and urea provided remains to be tested.  

Increase in the abundance of ammonia oxidizers associated with increased pH in 

the soybean cultivation suggested a pH limitation for ammonia oxidizers growth in the 

Cerrado soils, which lead to the experiment of pH change in soil microcosms. The soil from 

the Campo sujo was mixed with CaCO3 to increase pH in one unit in microcosms. During 

incubation it mineralized more inorganic N than the microcosms incubated with the original 

pH. Net nitrification increased significantly after 28 days of incubation, but nitrate 

accumulation was still little (0.14 ± 0.03 µg NO3
--N g-1 dry soil). We cannot rule out the 
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impact of pH changing the soil microbial community associated with nitrate production in 

the Campo sujo soil, but modification possibly takes more than 1 month to be significant in 

laboratory or field assays.  

On the other hand, the incubation of the Campo sujo soil in slurries with Craibstone 

soil of same pH (original pH of 5.3) in a ratio 1:1 accumulated nitrate due to the activity of 

ammonia oxidizers from the Craibstone soil. In 1932, Fraps and Sterges presented similar 

conclusion that soils with little ability to nitrify has increased nitrate concentration after 

either soil pH modification with calcium carbonate and/or with the addition of nitrifying soil 

(Fraps and Sterges, 1932). 

Experimental liming in Cerrado parcels lead to a greater differentiation in the 

microbial community than in the treatments fertilized with N, P or N+P, with a special 

increase in certain phyla as Gemmatimonadetes (da Silva, 2012). In addition, an increase in 

NO3
- -N concentration was observed most likely due to the increase in pH to 6 (initial pH 

was approximatively 4) (da Silva, 2012), which is expected since liming can increase organic 

matter mineralization a nitrification in soils (Rosolem et al., 2003). Nevertheless, liming was 

performed in those areas for years which differs from our study in the microcosms that 

lasted only 1 month. 

NH4+ 

Furthermore, cells need to be adapted to the availability of nutrients in lower pH. 

NH3 instead of NH4
+ is assumed to be the substrate for ammonia oxidation (Suzuki et al., 

1974) as NH3 diffuses passively but NH4
+ needs active transport inside the cell, which leaded 

to the hypothesis that intracellular urea hydrolysis facilitates autotrophic ammonia 

oxidation in low pH soil and NH4
+ produced in excess can locally increase pH (Burton and 

Prosser, 2001). 

High NH4
+ concentration was considered to be toxic to AOA especially, which seemed 

to be more sensitive to NH4
+ concentration than AOB (Verhamme et al., 2011), and AOA 

were found in higher abundance in the Campo sujo (Catão et al., 2016) soil as expected due 

to the low pH (Prosser and Nicol, 2012). As the undisturbed Campo sujo soil had the highest 

net N mineralization rate (average of 2 µg NH4
+-N g-1 dry soil day-1) and the lowest net 

nitrification rate, an inhibition of nitrification or low abundance of nitrifiers despite the 

presence of NH4
+-N had to be considered. However, inhibition by NH4

+ concentration was 

also ruled out as ammonia oxidizers community from Craibstone was also represented by 

more AOA than AOB gene abundance and activity and was stimulated by the NH4
+ 
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concentration with increased nitrification with time. Others have found similar result were 

NH4+ availability did not constrain net nitrification (Nugroho et al., 2007). 

Heterotrophic nitrification 

Substrate is one of the determinants for the predomination in AOA or AOB in terms 

of ammonia oxidation: AOA dominate soils in which ammonia is available from organic N 

(Levičnik-Höfferle et al., 2012) and in lower concentrations (Prosser and Nicol, 2012). The 

balance between autotrophic and heterotrophic nitrification seems also to be regulated by 

the substrate source in certain soils (Zhang et al., 2014). Poth et al (1995) detected the NO 

formation related to hetetrotrophic nitrifiers in Cerrado (Poth et al., 1995).  

In addition, C substrate, or as often cited, the C:N ratio, influences the nitrogen 

cycling. In less than 4 months we could observe a change in the N dynamic of the soybean 

cultivation area with slight increase in δ15N and nitrification rate and significant increase in 

the abundance of ammonia oxidizers. Soil gross N transformation was modified in a 

conversion from woodland to tea plantation in an acidic oxisol, measured in lands where 

plantation was established after 1, 5 or 30 years; NO3
- -N production by nitrification and N2O 

increased and NO3
- -N immobilization decreased according to the time after conversion. In 

addition, under the woodland, nitrification was mostly heterotrophic, contrary to both 

autotrophic and heterotrophic nitrification in the tea plantation soil as measured by 15N 

trace experiment (Zhu et al., 2014). Finally, nitrification in Cerrado soils might be performed 

by heterotrophic organisms also able to denitrify so nitrate does not accumulate (Kuenen 

and Robertson, 1994).  

In the microcosms experiment, the pH-changed treatments had no significant 

difference between acetylene treated and non-acetylene microcosms, which might suggest 

that the observed increase in NO3
- -N was a result of heterotrophic nitrification. 

Furthermore, there is evidence that the amoA community present in the Cerrado soils is not 

performing ammonia oxidation. Thaumarchaeota are often related to N metabolism in soil, 

but the 1.1c cluster is abundant in soil but not related to ammonia oxidation (Weber et al., 

2015). The higher ratio of thaumarchaeal 16S rRNA:archaeal amoA found in the undisturbed 

soil than in the soybean field is an indicative that a greater part of the archaeal community 

in these soils might be from 1.1c cluster.  
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Inhibition of nitrification  

Nitrification is the main focus of this work and many others, however mineralization 

is the first step to be consider as it is responsible for the release of inorganic N (SCHIMEL). 

As fungal/bacterial abundance ratio increases in lower pH (Bárcenas-Moreno et al., 2016), 

fungi might have higher effect on organic matter mineralization in acidic soils. The low 

abundance of ammonia oxidizers in Cerrado soils may be due to competition with soil fungi 

for ammonium or inhibition by bioactive compounds synthesized by fungi (Suzuki et al., 

1974). 

 In addition, some plants produce inhibitors of nitrification that preserve N in NH4+ 

form in the soil (Kölln et al., 2016), named biological inhibition (BNI) promoted by plants 

(Subbarao et al., 2015) (Subbarao et al., 2009) (Zakir et al., 2008). Root extracts from plants 

used in agriculture (S. spontaneum, species that forms sugarcane hybrids cultivated) or 

pasture (B. humidicola) (Kölln et al., 2016) or soils cultivated with brachiarias (Fernandes et 

al., 2011) (Subbarao et al., 2009) in Cerrado biome decrease NO3
- accumulation in soil, but 

less than the inhibitory effect of DCD.   

Another example is the selection of specific subset of the soil bulk microbial 

community, which appears to be related to growth promotion and nutrition, in soybean 

rhizosphere (Mao et al., 2011; Mendes et al., 2014). Albeit possible for Cerrado native plants, 

this has not been demonstrated yet and neither soil solution from native Campo sujo nor 

soil sampled at same pH in nitrifying Craibstone station, did not inhibit AOA or AOB pure 

cultures. The activation of BNI synthesis depends on the exposition to a higher 

concentration of NH4
+ than NO3

- (Subbarao et al., 2015), which is the case of the Campo sujo 

soil here studied. Despite that, the general assumption of low nitrifiers abundance in bulk 

soil, and the potential ability of hydrophilic BNIs to diffuse in soil, it is still possible that BNIs 

are only relevant in the rhizosphere and for the microbial community present in this 

microhabitat. However, bulk soil from Campo sujo just did not inhibit as it stimulated 

ammonia oxidation from organisms from the Craibstone soil in slurries. In addition, the 

detection of AOA amoA transcript increased after the 21 days in the Campo sujo, indication 

of activity in the AOA community despite undetectable NO3
-.  

Fe     

Moreover, inhibition does not need to be biotic. For example, NO3
- can be 

immobilized biotically and abiotically. The adsorption of NO3
- -N to free Fe oxide might to be 
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considered; especially as Fe concentration was high in the Cerrado soils sampled in this 

study. In temperate forest soils, abiotic immobilization of 15NO3
- to the DO15N occurs within 

minutes (Dail et al., 2001) and is independent of soil N status, contrary to the negative 

correlation observed between microbial N immobilization and soil N concentration 

(Johnson et al., 2000). Net nitrification in subtropical acid soils was also significantly 

inhibited by Fe oxide addition in the form of hematite in cambisols, and AOA and AOB gene 

abundance decreased (Jiang et al., 2015). Total Fe concentration in the Cerrado soils studied 

(ranged from 46 to 375 mg dm-3) here were higher than the values mentioned by Jiang et al. 

(2015) for the subtropical ferralsols with high NO3
- immobilization and low net nitrification, 

supporting the hypothesis that abiotic NO3
- immobilization takes place in soils from the 

Cerrado. The mechanism involves reduction of nitrate to nitrite catalyzed by Fe(II) minerals 

in soil, that being more reactive, reacts with DOC, producing DON which would be available 

to heterotrophic use (Davidson et al., 2003). The model proposed by Zhu et al. considers the 

increase of the abiotic adsorption of NO3
- -N in tea plantation than in the woodland control 

to be related with the higher concentration of Fe oxides measured in the soil under tea 

plantation (Zhu et al., 2014).  

Yet, the low abundance of ammonia oxidizers observed in the Cerrado soils is 

congruent with the low values of nitrate obtained and the hypothesis of N retention in 

those soils. Nonetheless, the possible interference of Fe in the accurate measurement of 

NO3
- concentration is debatable (Colman et al., 2008; Davidson et al., 2008), and different 

methods (Yang et al., 2012) should be further tested with the Cerrado soil. Abiotic retention 

of nitrate should be considered, but is not the only explanation, as the observed increase 

nitrification in the soybean cultivation soils occurred despite the permanence of 

measurable levels of Fe in these soils. In this case, the Fe oxidation state in soil should be 

evaluated as well.  

Soil texture and water contents 

Another variable to be considered is microbial substrate, as microorganisms are not 

planktonic in soil, and are most likely protected from pH fluctuations in soil, as suggested in 

culture with added vermiculite (Allison and Prosser, 1993). Furthermore, clay particles and 

the presence of charcoal shaped the bacterial community structure, which stablished in a 

non-stochastic manner, as shown for the inoculation of artificial soils with different mineral 

composition (Ding et al., 2013).  Similarly, nitrification was stimulated by increasing soil 
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particle surface due to higher abundance and activity of both AOA and AOB in an acidic soil 

(Jiang et al., 2011).  

Nowadays, researchers are aware of the need to consider microhabitats between 

soil particles to understand the microbial response to disturbances in micro-scale (Vos et al., 

2013).  Soil texture influences the size of pores, water capacity, and soil particles charge. 

Potentially this affects the microbial community, as found for the Cerrado conservation 

parks that presented higher α-diversity in sandy soils, therefore lower pore connectivity and 

lower competition between cells or for substrate (Carson et al., 2010). Fine particles allow 

for a greater colonization because of greater surface area as showed for the addition of 

pure culture of Nitrosomonas europaea with ammonia-treated vermiculite (Armstrong and 

Prosser, 1988). Ammonia oxidation occurs preferentially at the surface of vermiculite, but 

not all ammonia is used by the bacteria possibly because of ammonium adsorption to the 

clay particles (Armstrong and Prosser, 1988).  

Soil texture is directly correlated with water soil capacity, soil minerals and metals. 

Such that Cerrado rupestre was the driest soil sampled, and the soil with greatest 

composition of sand. The two conservation parks differ mainly in soil texture, varying from 

loamy sand (CR in PNCV) to clay (CD in PESA). Most of them were classified as sandy clay 

loam (PNCV: MG, SS; PESA: MG, SS, FSD). The soils in PESA have higher clay content than 

those in PNCV, even though there was a significant difference in soil texture within the 

samples in PNCV. Nevertheless, in all of them, the phyla Proteobacteria, Actinobacteria and 

Firmicutes were the most abundant.  

Furthermore, water availability is considered one of the main drivers of the 

vegetation gradient in the Cerrado (Bustamante et al., 2006), and of microbial distribution, 

which is reasonable if we consider that microbes are confined to a thin layer of water in the 

soil particles, and that water limits prokaryotic life in soil (Fenchel, 2012).  This was observed 

in the metagenomes, as Campo limpo, the vegetation type with greatest soil water content, 

had significantly more genes annotated for motility and chemotaxis than the other soils in 

PNCV (p<0.0001). Campo limpo had also a significant higher frequency of genes annotated 

for nitrogen fixation, in accordance with the high abundance of sequences from the order 

Rhizobiales (more than 50% of bacterial sequences, p=0.048), mainly represented by 

Bradyrhizobiaceae. Even though N fixation is often correlated with symbiotic interactions, 

which are major for plant nutrition, in the Campo limpo, the microorganisms performing N 

fixation are most likely free-living.  
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Considering the relevance of water in Cerrado terrestrial ecosystems and the effect 

of rainfall on soil microbial communities (Bresolin et al., 2010; Mendes et al., 2012; Pinto et 

al., 2006; Viana et al., 2011), and that soil moisture may explain potential nitrification rate 

with the soil water content more than pH (Stempfhuber et al., 2015), an experiment was 

designed to test the effect of soil moisture on nitrification in a Cerrado Campo sujo soil. For 

instance, in a Chilean semiarid soil and in the seasonally dry Californian grassland, water 

addition promoted a change in the community of ammonia oxidizers and increased 

nitrification (Bustamante et al., 2012a; Placella and Firestone, 2013). Initially, Campo sujo soil 

was air-dried to 8% soil water content, which is a value previously described as normal 

during dry season in the Cerrado soils, and was also found in the Cerrado rupestre in PNCV. 

It was assumed that by increasing soil water content to 40% with or without previously air-

drying the soil, solute transportation or cell mobility would facilitate ammonium availability 

for ammonia oxidizers. Furthermore, the water addition after drying the soil would lead to 

a birch effect (Birch, 1964) with higher N mineralization, therefore providing substrate for 

AOA especially known to prefer inorganic forms of N (Prosser and Nicol, 2012).  However, 

we could not detect the expected effect of soil moisture over nitrate production. NO3
- -N 

was only detected after 21 days, indicating once more that the time of experiment might 

have been short to promote a change in the community.  

As mentioned before, Cerrado has annual draught during winter and the beginning 

of the rainy season, and also the addition of water experimentally, promotes an increase on 

microbial biomass (da Silva, 2004; Nardoto and Bustamante, 2003),  microbial activity and 

nitrification rates (da Silva, 2004), change the bacterial composition with the transition of 

dry season to the rainy (Bresolin et al., 2010; Nardoto and Bustamante, 2003; Pinto et al., 

2006). Generally, low emissions of NO and N2O are associated with soils in which NH4
+ is the 

dominant form of inorganic N and the pool size can be a good indicator of whether the 

system is open to nitrate leaking or conserves N in ammonia (Davidson et al., 2000). 

Litterfall C:N ratio also reflects N availability and consequently predicts NO and N2O 

emissions from soils (Davidson et al., 2000). Davidson et al (1990) suggested that in low N 

availability soils, nitrifying bacteria starve and low population capacity is associated with 

low nitrification potential (Davidson et al., 1990).   

Heil et al (2015) highlighted the relevance of considering the coupling between 

abiotic and biotic reactions (Heil et al., 2015). For example, the delay between ammonia and 

nitrite oxidizers recovery after rewetting a dry soil can possibly allow for NO2
- accumulation 

(Gelfand and Yakir, 2008), otherwise unusual as ammonia oxidation is considered the rate-
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limiting step of nitrification. Consequently, higher NO2
- concentration after the first rain 

leads to pulses of nitrogen trace gases emissions, as HONO and NO can be abiotically self-

decomposed from NO2
- (Su et al., 2011) or directly produced by AOB (Oswald et al., 2013). In 

the microcosm experiments, conclusions for little influence of soil moisture on nitrification 

were taken from the undetectable concentration of NOx (data not shown). However, if the 

recovery rate of nitrite oxidizers is delayed, follow-up experiments should measure nitrite 

specifically and amoA transcripts, which was not possible with the soil used in the 

microcosms as RNA recovery was not efficient with the methodology used. Special 

attention should be payed to AOA amoA as NO may be an intermediate in the archaeal 

ammonia oxidation pathway (Stahl and de la Torre, 2012), and as studies with gases show 

an increase in NO emission after water addition (Pinto et al., 2002), otherwise NO and N2O 

emission are near limit of detection and lower than the observed in Amazon sites (Verchot 

et al., 1999). 

Most likely the low NO and undetectable N2O emissions are related with the low 

levels of NO3- and nitrification in Cerrado soils, as well as with the high NH4
+-N:NO3

—N ratio 

found. Nonetheless, the N gases emissions are expected to increase after land use change 

(Weitz et al., 1998). N conservation in a Namibian savanna soil was also correlated with the 

low availability of N for nitrification and denitrification; and the use of low amounts of 

fertilizers did not increase significantly the N2O emissions when compared to the native 

savanna (Braker et al., 2015). Nevertheless, the conversion of land use and the increased 

availability of C is expected to change denitrification in these soils, as low N2O emission was 

associated with low organic matter beside soil drainage and low nutrient levels (Castaldi et 

al., 2006).  

Increase in soil moisture is associated with increased N loss either with NO3
- leaching 

or runoff after a rainfall or by emission of N gases during denitrification. Consequently, the 

regulation of NO or N2O emission are genetic, ultimately, as it depends on the abundance of 

microbial guilds for nitrification and/or denitrification. Modular reactions characterize 

denitrification and can be performed by different organisms (Graf et al., 2014). These might 

contain genes for the reduction of nitrite, nitric oxide and nitrous oxide, or just one of the 

above (Graf et al., 2014). Therefore, the greater relative abundance of nosZ gene, especially 

of clade II, the greater sink capacity for N2O (Jones et al., 2014). This trait is a polyphyletic 

characteristic, found in Bacteria, Archaea, and Fungi. Most of the organisms capable of 

reducing nitrate and nitrite are heterotrophic aerobic able to live in anaerobic 

environments. Although Cerrado soils are well-drained these organisms may be able to 
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denitrify in semiarid soils (McLain and Martens, 2006) (Braker et al., 2015). In addition, 

McLain and Martens (2006) highlight the relevance of heterotrophic nitrification-

denitrification in N2O emission by fungi in semiarid soils (McLain and Martens, 2006). 

Cerrado vegetation cover and land use change 

The Cerrado is composed by a gradient of trees/shrubs layer ranging from grasslands to 

forests and savannas. Both analysis of phospholipid fatty acids and 16S rRNA genes have 

showed that this vegetation cover influences the soil microbial composition (Araujo et al., 

2012; Mendes et al., 2012; Viana et al., 2011). However, agriculture and managed pasture for 

cattle breeding changed Cerrado landscape in approximately 53% (Beuchle et al., 2015), with 

increasing alterations in floristic composition and edaphic characteristics due to 

fertilization, liming, and crop monoculture itself.  

Soil management and monoculture crops are associated with a decrease in total 

and microbial N (Hernández-Hernández and López-Hernández, 2002; Peixoto et al., 2010; 

Vinhal-Freitas et al., 2012) (Bresolin et al., 2010; Paula et al., 2014). Land use change can alter 

soil sink (or source) capacity for N gas emissions, which can be produced during nitrification 

and denitrification. In view of the economic and ecological costs of fertilization and N 

losses, it is important to investigate nitrifiers in Cerrado soils to develop better soil 

management practices.  

We showed the short-term modification on AOA and AOB abundance along a 

soybean culture. The change in the abundance of ammonia oxidizers was associated with 

the increase in pH, but in turn, the soil pH decreases the availability of Al+3 and other 

cations, and as we have described above, the presence of Fe in soil can alter its capacity of 

NO3
- absorption. 

Not only we can see that N dynamic changes according to several soil biotic or 

abiotic variables, the change in the microbial community is related with the input and 

output of N forms in soil. Mostly, the input of fertilizers in agriculture, aimed at a higher 

plant productivity, promote a shift in the microorganisms performing mineralization, 

nitrification and other processes, and leads to higher nitrate leaching and N gases emission. 

None of this is new, but clearly more changes towards a more sustainable agriculture is 

needed, as no one expects agriculture to stop growing, but to be more effective. 

Moreover, there is a debate in the use of microorganisms as indicators of soil quality 

(Mendes et al., 2016). 
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Although the work in the present thesis was performed only in one type of soil in a 

farm land area in recovery from gravel, native soil was sampled in two other areas and 

showed similar patterns of low nitrate accumulation and potentially low abundance of 

ammonia oxidizers. Therefore, it is reasonable to assume that similar changes can take 

place in other areas of Cerrado.  The impact of soil history on the microbial community was 

evaluated in the Cerrado: even after 17 years of succession from recovery of agricultural use 

the microbial community was still more similar to that present in the soil under a 

monoculture community than the one found in an adjacent native area (Rosolem et al., 

2003).  

      Considering the above, it is suggested that microbial phylogenetic and/or 

functional potential diversity should be considered in models. As an example, microbial 

stoichiometry is more and more considered in models of carbon or other nutrients cycling. 

For example, the lower microbial carbon use efficiency (the fraction of assimilated C used 

for growth rather respiration) is related with higher C:N (more recalcitrant) plant inputs 

(Averill et al., 2014). In addition, it was suggested that microbial N:P ratios, better than 

those from plants, can help the assessment of nutrient limitation in terrestrial ecosystems, 

at least in the tropical rain forest P-limited in Costa Rica (Cleveland and Liptzin, 2007).  

On the other hand, Graham et al. found that models on edaphic parameters were 

not improved by data on microbial gene abundance, but they also criticized that they might 

have missed environmental factors that better explain microbial community structuring. 

Furthermore, they suggest the inclusion of temporal dynamics in models to understand 

edaphic factors and microbial communities on the ecosystem functioning (Graham et al., 

2014).  

 

Final considerations and new hypotheses 

 Metagenomic studies have been of great importance to show the potential 

diversity of an environment, however it has a tendency of amplifying the most abundant 

microorganisms in the sample, which justifies the fact that 97% of the annotated genes are 

bacterial. This is also related with the fact that only 2 genes were annotated as ammonia 

monooxygenase in the metagenomes, as qPCR analysis showed AOA and AOB abundances 

between 103 to 105 maximum, most likely under the threshold of capturing with the 

coverage used with 454 sequencing.  Considering the higher number observed of AOA in 

the Campo sujo (105), and that microorganisms occupy 5% of the soils pore space, and 
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considering a density of 1.2 g/dm3 for the Cerrado’s soil, we find that microbial cells occupy 

10+15 µm3 of pore space. The average cell size is 0.6 µm3, therefore there are around 67 

millions of microorganisms in 1 g of Cerrado soil, which is accordance to previous culture-

independent descriptions (Roesch et al., 2007). According to this there is 1 amoA of Archaea 

per 107 cells, approximately. Comparing our findings with other metagenomes available (IDs 

4477751.3-4478937.3 (Mendes et al., 2014), IDs 4578924.3-4578926.3, 4577669.3-4577672.3, 

4578714.3 (Souza et al., 2016), project “Biodiversidade microbiana do bioma caatinga” 

(Lopes et al., 2016), IDs 4485218.3-4485219.3, IDs 4493544.3-4493893.3 (Navarrete et al., 

2015)) in the MG-Rast platform there is an average of 1 copy of ammonia monooxygenase 

per 100 thousand sequences, independent of the sequencing methodology or the sample. 

Although there were samples that presented higher abundance as for example the 

environmental samples from the Paraguaçu river (Lopes et al., 2016).   

On the other hand, this is the first assessment of the N metabolism in the Cerrado 

with metagenomic data, and these data might help understand the impact of land use 

change on soil microbiota on this Brazilian savanna and consequently in the ecological 

processes by them produced. Although metagenomics allowed a holistic assessment of the 

N cycling in this study, low abundance genes are ignored and the valuation of relative 

abundance of processes had to be carefully discussed. The direct amplicon sequencing or 

the measurement of abundance of specific genes by qPCR are more advised in studies 

aiming at the balance of microbial community due to biotic or abiotic disturbance. Although 

a recent study highlighted the relevance of metagenomic and single-cell techniques to 

tackle the unclassified sequences obtained with amplicon due to primer bias (Eloe-Fadrosh 

et al., 2016). In addition, when working with databases one should be aware of where to 

look for the genes, as we found the amo genes classified as membrane transporters and 

not in the list of genes for the subsystems of N metabolism. This is reasonable since the 

gene amoA used to quantify the abundance of ammonia oxidizers codes for the membrane-

bound AMO enzyme, that takes NH3 rather than NH4
+ as a substrate.  

The little accumulation of nitrate in the treated microcosms or in the slurries, and 

the absence of the inhibition effect observed in slurries and pure cultures suggests that 

some other mechanism occurs in this ecosystem to preserve inorganic N preferentially in 

the NH3 form. It is likely that not only the presence of ammonia oxidizers is fundamental for 

nitrification to occur, but that the microbial community composition and diversity affects 

the direction in which N process occur in soil, as showed by the higher number of bands in 

the DGGE analysis in the Craibstone AOA community than in the Campo sujo soil. As 
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“narrow processes” have additive functionality (Levine et al., 2011), the lower number of 

bands of amoA gene detected in the Campo sujo soil can be related with the lower 

nitrification activity. On the other hand, we could not detect the expected effect of soil 

moisture over NO3
- production, indicating once more that the time of experiment might 

have been short to promote a change in the community.  

 

Most likely there is a relation between abiotic and biotic conditions that limits the 

microbial community to low abundance of autotropic ammonia oxidizers possibly towards 

an ecosystem N conservation. Figure 21 repeats the basic N cycle that occurs in terrestrial 

ecosystems (annanmox was excluded) presented in Figure 1 and includes now the 

influences evaluated in this work and/or considered in the discussion.  

 

 
Figure 22. Interaction between abiotic and biotic factors and their effect on the N cycle 
processes  

 

Others have showed environmental factors that affect ammonia oxidation (Erguder 

et al., 2009). In this study we observed that tillage, fertilization, liming, and soybean 

monoculture altered soil pH, moisture, and inorganic N contents, all of which can influence 

the abundance and diversity of microbial communities and their functional potential, 

thereby influencing the production of NO3
-, NO2

-, NO, and N2O (Mao et al., 2011). The change 

after fertilization and liming illustrates the prevalence of determinate species in nutrient 

utilization, and highlights the shift in the community related with the nutrient dynamic, loss 

and conservation.  
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 Moreover, microbial ecology research needs to consider microbial cells physiology 

as different organisms have knowingly diverse growth rates and to not observe increase in 

abundance or growth of an organism does not mean necessarily that this one is not active, 

but that something is limiting its growth; limitation that can be either biotic or abiotic as 

exposed above. Allison and Prosser (1993) suggested that even though cells can be actively 

oxidizing ammonia at low pH, the energy produced is enough to maintain cell but not for 

growth (Allison and Prosser, 1993).  In this case, metatranscriptomics helps to better 

determine who is active in certain conditions (Prosser, 2015) regardless of the change in 

gene abundance (as increase in gene abundance is a presumptive measure of growth in 

incubation assays). However, RNA extraction from soil is not as simple as for DNA and in 

this work it was more successful after soil incubations, where we could successfully observe 

an AOA amoA transcripts in the Campo sujo-only slurry incubation after 21 days.  

Some other process of NO3
- use by the microbiota should be considered in further 

studies, i.e. competition for NH4
+ by plants or heterotrophic microbes, as described in 

Californian grasslands (Jackson et al., 1989); dissimilatory reduction of NO3
- to NH4

+ (DNRA) 

(Chen et al., 2015; Cole and Brown, 1980); abiotic NO3
- immobilization according to the 

ferrous wheel hypothesis (Jiang et al., 2015), or the clay fixation of NH4
+.  

The competition for NH3 between plant roots, nitrifying and heterotrophic bacteria 

has been reviewed before (Verhagen et al., 1994). Verhagen et al. showed that 

heterotrophic and plant roots win the competition for ammonium, in this order, against 

nitrifiers, and they also could not find a nitrification inhibition by plants allelochemicals. 

However, the works considered by them have compared heterotrophic organisms with N. 

europaea. New studies should consider the competition for NH3 between hetetrophic with 

AOA and AOB.  

This thesis focused on the understanding of autotrophic ammonia oxidation by 

Archaea and Bacteria in the Cerrado soil, but the results obtained, along with the literature 

suggest that future work should expand on the heterotrophic nitrification in these soils and 

specifically with regard to fungal community. The use of specific inhibitors for bacteria or 

fungi show the capacity of fungi to nitrify NH4
+ and organic N in grassland soils (Laughlin et 

al., 2008). Zhu et al. also suggest that the higher NO3
- immobilization rate in the soils under 

the woodland than in the tea plantation was an efficient way of conservation of produced 

NO3
- by the heterotrophic nitrification (Zhu et al., 2014).  

 This work focused on the microbial perspective of the natural conservation of N in 

the Cerrado soils. Our look is misleading, more preoccupied with the systems that increase 
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N loss than understanding how some systems, and their microbiota, maintain low N losses. 

The input of fertilizers in lower concentration, the maintenance of high C:N ratio with 

addition of organic matter rich in C or the non-continuous supply of nutrients (i.e. the use of 

biochar), which seems to keep a dynamic between plants and microorganisms are some 

solutions to be addressed to lower nutrient loss. But also, the change of land use leads to a 

decrease in soil microbial diversity; in turn, loss of functional diversity has been associated 

with the decrease in ecosystem multifunctionality (Bradford et al., 2014), potentially 

reflecting on the provision of ecological services. So greater aboveground diversity might 

allow similar increase in the belowground and consequently facilitate the sustainability of 

soil functions.  

Paralleling what the philosopher Edgar Morin suggests for complex systems, the 

study of soil needs to distinguish the components that compose the soil and to consider 

that the all is formed by smaller parts, but these, in turn, interact with each other in a way 

that the sum of parts is smaller than the all. The tendency is to have more multidisciplinary 

studies linking soil physics, plant physiology and genetics, soil microbiology, biostatistics, 

network modelling to understand soil’s behavior face to natural or anthropogenic 

disturbances.  
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Capítulo 6 – Conclusões e perspectivas 

 

 Baixas taxas de nitrificação líquida nos solos do Cerrado 

 Alta abundância de genes relative à oxidação de amônia 

 Presença de oxidantes de amônia em solos do Cerrado, dos Domínios Archaea e 
Bacteria, no entanto, em baixa abundância quando comparado a outros solos 

 AOA são mais abundantes que AOB, tal como esperado devido ao baixo pH típico 
dos solos de Cerrado 

 O cultivo da soja (manejo, fertilização, calagem e a monocultura) alteraram a 
abundância de AOA e AOB em um curto período de tempo (134 dias)  

 AOA e AOB podem estar dormentes ou desenvolvendo outras funções nos solos do 
Cerrado 

 A nitrificação não é limitada por pH, água ou inibidores biológicos  

 O perfil de DGGE indica uma composição de baixo número de bandas de AOA, 
sugerindo uma baixa diversidade desse grupo nos solos de Cerrado  

 Em termos de processos de baixo espectro, como aqueles relativos ao ciclo do 
nitrogênio, a diversidade e a estrutura da comunidade microbiana são importantes fatores 
para o funcionamento do ciclo 

 

Considerando o que foi relatado nos trabalhos desta tese, algumas perspectivas para 
trabalhos futuros são enumeradas abaixo: 

 A comunidade fúngica deveria ser considerada em futuras análises da limitação do 
crescimento de oxidantes de amônia 

 A modificação na dinâmica de N dirigida à conservação de NH4
+ pode ser avaliada 

considerando também a taxa bruta de nitrificação pelo método de diluição de 15NO3
-  

 Devido à maior razão entre NH4
+ e NO3

- nos solos do Cerrado, um estudo futuro deve 
avaliar a comunidade de organismos que realizam redução dissimilatória de nitrato a 
amônia  

 O estudo do fluxo de N nos compartimentos do solo e a microbiota associada à 
assimilação de N pode ser acompanhada pelo isótopo 15N  
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