

Universidade de Brasília — UnB Faculdade de Economia, Administração e Contabilidade - FACE Programa de Pós-Graduação em Administração - PPGA

BRUNO SABOYA DE ARAGÃO

FATORES INTRÍNSECOS E SUA INFLUÊNCIA NA ADOÇÃO DE TECNOLOGIAS: Um Estudo no Mercado de Livros Eletrônicos.

BRUNO SABOYA DE ARAGÃO

FATORES INTRÍNSECOS E SUA INFLUÊNCIA NA ADOÇÃO DE TECNOLOGIAS: Um Estudo no Mercado de Livros Eletrônicos.

Dissertação apresentada ao programa de Pósgraduação em Administração da Universidade de Brasília como requisito parcial à obtenção do título de Mestre em Administração.

Professora orientadora: Doutora Solange Alfinito.

Bruno Saboya de Aragão

FATORES INTRÍNSECOS E SUA INFLUÊNCIA NA ADOÇÃO DE TECNOLOGIAS: Um Estudo no Mercado de Livros Eletrônicos.

Dissertação apresentada ao programa de Pósgraduação em Administração da Universidade de Brasília como requisito parcial à obtenção do título de Mestre em Administração.

Professora orientadora: Doutora Solange Alfinito.

Banca examinadora	
Solange Alfinito, doutora Universidade de Brasília – PPGA	
Cláudio Vaz Torres, doutor Universidade de Brasília – PPGA	
Cândido Vieira Borges Júnior, doutor	

Universidade Federal do Goiás – PPGADM

Aragão, Bruno.

Fatores Intrínsecos e sua Influência na Adoção de Tecnologias: Um Estudo Aplicado ao Mercado de Livros Eletrônicos.

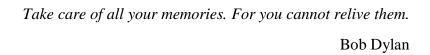
XX f.: il.

Dissertação (mestrado) — Universidade de Brasília, Departamento de Administração, 2016.

Orientadora: Prof^a. Dr^a. Solange Alfinito, Programa de Pós-Graduação em Administração.

Livros Eletrônicos.
 Comportamento do Consumidor.
 Adoção de Tecnologia.
 Valores Humanos.
 Consciência Ambiental.
 Título: Subtítulo

AGRADECIMENTOS


Agradeço primeiramente à minha mãe, Marisélia Barros, por sempre ter sido um dos pilares de sustentação da minha vida, me apoiando em todas as minhas decisões, inclusive na minha decisão por seguir a carreira acadêmica. Se não fosse por você, não teria chegado aqui.

Agradeço à minha orientadora Solange Alfinito, por ter sido, além de excelente orientadora e professora, uma excelente pessoa e amiga nos momentos bons e ruins dessa caminhada de dois anos. Com certeza esse caminho foi mais fácil porque você estava junto. Uma bela parceria foi criada, e espero que continue perpetuando por bastante tempo.

Agradeço à minha namorada Gabriela Malvar, pelo companheirismo, paciência, auxílio e amizade de sempre, não só relacionado a esse trabalho. Que venham mais anos de muito trabalho e dedicação por parte de nós dois, para continuarmos nos ajudando para o que der e vier.

Agradeço aos colegas do PPGA – UnB, principalmente Everton e Ricardo Ken, pelas ajudas prestadas; aos colegas do grupo Culti, principalmente aos professores Cláudio Torres, Eda de Souza e Eluiza Watanabe pelas reuniões, feedbacks, dicas e conselhos passados para que esse trabalho fosse concluído; agradeço também à professora Josivânia Farias, pelo auxílio e pelos conselhos na avaliação do projeto de pesquisa.

Finalmente, agradeço a todos os amigos que tomaram um pouco de seu tempo me ajudando a tornar essa pesquisa a mais completa e relevante possível, seja respondendo ao imenso instrumento, seja divulgando-o para pessoas próximas, ou de qualquer outra maneira. Espero retribuir a ajuda a todos um dia.

Lose your dreams and you might lose your mind.

Mick Jagger

RESUMO

O objetivo desse trabalho foi analisar o consumidor do mercado de livros eletrônicos, mais especificamente a influência de características intrínsecas, a saber: valores humanos, consciência ambiental e formação de julgamento e significado do produto, na preferência por esse tipo de produto. Para tal, foi conduzida uma pesquisa quantitativa com amostra representativa da população brasileira, durante o mês de outubro de 2015. Para chegar-se ao objetivo final, foi necessária, primeiramente, a validação e tradução de uma escala de aceitação de tecnologia, além da análise dos dados relacionados a valores humanos, consciência ambiental e formação de significado e julgamento de livros eletrônicos. Os resultados mostraram uma forte relação entre valores humanos e consciência ambiental, porém a amostra estudada não demonstrou poder de predição das variáveis intrínsecas estudadas em relação à adoção de livros eletrônicos, no que tange sua facilidade de uso e sua utilidade percebidas, além da pretensão de uso do produto. Nota-se, a partir dos achados da pesquisa, que novos estudos são necessários no campo de adoção de tecnologias, tanto com foco em novas variáveis intrínsecas que possam explicar essa adoção quanto com foco em outros produtos relevantes ao tema.

Palavras-chave: Livros Eletrônicos. Comportamento do Consumidor. Adoção de Tecnologia. Valores Humanos. Consciência Ambiental.

ABSTRACT

The objective of this research was to analyse the consumers from the e-book market, specifically the influence of intrinsic characteristics, namely: human values, environmental awareness and the formation of the product's judgment and meaning, in the preference for that kind of product. For such, a quantitative research was conducted with a representative sample of the brazilian population, during October 2015. To get to the main objective, it was necessary, primarily, the validation and translation of a technology acceptance instrument, besides the human values, environmental awareness and judgment and meaning formation data. The results show a strong relation between human values and environmental awareness, however the studied sample did not showed prediction power of the intrinsic variables regarding the adoption of electronic books, in reference of the perceived ease of use, the perceived utility and the intention of use of the product. As such, based on the findings of this study, new studies are necessairy in the technology acceptance field, both with focus in new intrinsic variables that can explain this phenomenon, such in new products that are relevant to the theme.

Keywords: E-books. Consumer Behavior. Technology Adoption. Human Values. Environmental Awareness.

LISTA DE FIGURAS

Figura 1. Modelo de aceitação de tecnologia (TAM)
Figura 2. TAM2 – Extensão do modelo de aceitação de tecnologia
Figura 3. TAM3 – Extensão do modelo de aceitação de tecnologia
Figura 4. Continuum de 19 valores da teoria de valores refinada
Figura 5. Modelo teórico da pesquisa
Figura 6. Modelo final e hipóteses de pesquisa
Figura 7. Gráfico de sedimentação de autovalores na escala de aceitação de tecnologia 37
Figura 8. Análise do aumento do efeito total da relação PEOU-IU com a inclusão de mediação
Figura 9. Análise do aumento do efeito total da relação PU-IU com a inclusão de mediação 60

LISTA DE TABELAS

Tabela 1. Resumo dos instrumentos utilizados
Tabela 2. Resumo da análise fatorial realizada
Tabela 3. Médias, desvios padrões e alfas de cronbach das variáveis estudadas
Tabela 4. Regressão linear entre Hábitos Domésticos e Valores Humanos
Tabela 5. Regressão linear entre Alimentação e Saúde e Valores Humanos
Tabela 6. Regressão linear entre Ação e Mudança e Valores Humanos
Tabela 7. Regressão linear entre Produto e Valores Humanos
Tabela 8. Regressão linear entre Reciclagem e Reutilização e Valores Humanos 4
Tabela 9. Regressão linear entre Consumo de Energia e Valores Humanos
Tabela 10. Resumo dos achados relacionados à hipótese 1 da pesquisa
Tabela 11. Regressão linear entre Julgamento Afetivo e Valores Humanos
Tabela 12. Regressão linear entre Julgamento Fragmentado e Valores Humanos 4
Tabela 13. Regressão linear entre Significado Simbólico e Valores Humanos
Tabela 14. Regressão linear entre Significado Utilitário e Valores Humanos
Tabela 15. Resumo dos achados relacionados à hipótese 2 da pesquisa 4
Tabela 16. Regressão linear entre Julgamento Fragmentado e Consciência Ambiental 4
Tabela 17. Resumo dos resultados encontrados relacionados à hipótese 3 4
Tabela 18. Regressão linear entre Facilidade de Uso Percebida e Valores Humanos 5
Tabela 19. Regressão linear entre Utilidade Percebida e Valores Humanos
Tabela 20. Regressão linear entre Facilidade de Uso Percebida e Consciência Ambiental 5
Tabela 21. Regressão linear entre Facilidade de Uso Percebida e Julgamento e Significado . 5
Tabela 22. Regressão linear entre Utilidade Percebida e Julgamento e Significado
Tabela 23. Regressão linear do modelo final para influência em Facilidade de Uso Percebida
Tabela 24. Regressão linear do modelo final para influência em Utilidade Percebida 5

Tabela 25. Correlações entre as variáveis do TAM de Davis (1989)
Tabela 26. Regressão linear entre Facilidade de Uso percebida e Utilidade percebida 54
Tabela 27. Regressão linear entre Facilidade de Uso percebida, Utilidade percebida e Intenção de Uso
Tabela 28. Regressão linear entre Intenção de Uso e diversas variáveis intrínsecas 56
Tabela 29. Avaliação da moderação do julgamento fragmentado
Tabela 30. Avaliação da moderação do valor humano auto direção ação
Tabela 31. Avaliação da moderação do valor humano auto direção pensamento
Tabela 32. Avaliação da mediação de julgamento fragmentado nas relações do TAM 59
Tabela 33. Avaliação da mediação de auto direção ação nas relações do TAM 59
Tabela 34. Avaliação da mediação de auto direção pensamento nas relações do TAM 59
Tabela 35. Resumo das hipóteses de pesquisa estudadas

SUMÁRIO

INTRODUÇÃO	1
Contextualização e justificativas	1
Objetivos do Estudo	4
.2.1 Objetivo Geral	4
.2.2 Objetivos Específicos	4
REFERENCIAL TEÓRICO	5
Comportamento do Consumidor de livros Eletrônicos	5
.1.1 Modelo de Aceitação de Tecnologia (TAM)	9
Valores Humanos	. 15
Julgamento, Significado e Comportamento de Consumo	. 20
Consciência Ambiental	. 22
Modelo Teórico e Hipótese de Pesquisa	. 26
MÉTODO	. 31
Participantes da Pesquisa	. 31
Instrumento	. 32
Procedimento de coleta e análise de dados	. 35
RESULTADOS	. 36
Evidências de validade da Escala de Aceitação de Livros Eletrônicos para o Brasil	. 36
Verificação das hipóteses teóricas de pesquisa	. 38
Análises de moderação e mediação	. 56
DISCUSSÃO	. 62
CONSIDERAÇÕES FINAIS	. 73
REFERÊNCIAS	. 76
dice 1 – Instrumento Completo da Pesquisa	. 88
	Contextualização e justificativas

Apêndice 2 – Resultados das Correlações entre Variáveis	99
Apêndice 3 – Resultados das Análises de Moderação e Mediação	114

1. INTRODUÇÃO

1.1. Contextualização e Justificativas

O mercado de livros continua em pleno crescimento no âmbito nacional e internacional. O relatório anual de 2014 da IPA (*International Publishers Association*) mostra o crescimento de vendas e de publicações por todo o mundo, incluindo países emergentes como a China, o Brasil e a Coréia do Sul (Lee, 2013). Mais especificamente sobre o mercado nacional, o relatório anual de 2013 da SNEL (Sindicato Nacional dos Editores de Livros) mostra um aumento de faturamento constante desde a década de 90, e um aumento de aproximadamente 7,5% entre os anos de 2012 e 2013, e dados de 2015 mostram um aumento de aproximadamente 5% no faturamento das organizações do setor (SNEL, 2014). De maneira geral, o cenário desse mercado demonstra ser favorável, tanto para leitores quanto para a indústria de editoras, tanto pelo aumento no número de vendas quanto pelo aumento no número de títulos e autores (Reimão, 2011). Esses aumentos se dão, principalmente, pela adaptabilidade desse tipo de produto aos novos paradigmas de consumo do século XXI, orientados pela internet e pela utilização da tecnologia existente (Mota & Gomes, 2013). Essa adaptabilidade pode ser observada em duas mudanças significativas no mercado de livros: a venda de livros pela internet e a venda de livros eletrônicos, ou *e-books*.

O mercado de livros eletrônicos, assim como o de livros impressos, já é relevante no contexto mundial: relatórios acusam um volume maior de vendas de livros eletrônicos em comparação aos livros impressos em países como os Estados Unidos (Zhang & Kudva, 2013), evidenciando uma mudança de paradigma no que diz respeito ao consumo de informação de maneira geral (Gibson & Gibb, 2011). Também são evidenciados por pesquisas feitas na área o crescimento de vendas de livros impressos em lojas virtuais. De acordo com o relatório anual da IPA, as vendas online representaram 35,4% da receita de livros nos Estados Unidos em 2013, mostrando a importância desse tipo de venda (IPA, 2014). No contexto brasileiro também se observa a importância dessas mudanças no mercado: o relatório anual da SNEL mostra um aumento de livros eletrônicos vendidos entre 2011 e 2012 de 343%, além de identificar que 30% das vendas realizadas por diversas livrarias se dão de maneira virtual, e não na loja física (SNEL, 2014).

Esses novos paradigmas e mudanças no padrão de consumo fizeram com que diversas perguntas fossem levantadas por pesquisadores, como descrito por Zhang e Kudva (2013):

livros eletrônicos substituirão os livros impressos definitivamente? Os livros impressos serão abandonados no futuro? Quem são os consumidores, atuais e potenciais, de livros eletrônicos? De acordo com os autores, os livros eletrônicos não estão posicionados, até o tempo presente, para tomar todo o mercado de livros impressos, apesar de já estarem estabelecidos no contexto social. Vasileiou, Hartley e Rowley (2009) confirmam essa visão, e defendem que a adoção da tecnologia dos livros eletrônicos deve ser mais estudada no contexto do consumo e da utilização do produto. Zhang e Kudva (2013) também afirmam que livros impressos e eletrônicos possuem atributos únicos e servem diferentemente ao consumidor, o que pode variar por fatores demográficos, contextuais e situacionais destes. Esses achados levantam algumas outras perguntas, como, por exemplo, quais fatores influenciam o consumidor de livros na escolha do tipo de produto e do tipo de canal de vendas?

Diante do exposto, o presente estudo foca nessa última questão: fatores intrínsecos ao consumidor que influenciam a preferência e o comportamento de consumidores por livros eletrônicos. O entendimento desses fatores, segundo Zhang e Kudva (2013) e Lee (2013), é de grande relevância para diversas partes da sociedade atual, como bibliotecas, outros institutos de informação, e principalmente editoras e organizações envolvidas nesse tipo de mercado, que procuram entender as necessidades e o comportamento dos seus consumidores a fim de obter vantagem competitiva e sobreviver nesse mercado competitivo e de constante crescimento.

Seguindo essa visão, nos estudos encontrados sobre o tema, em sua maioria são pesquisados os fatores de adoção da tecnologia por instituições de ensino, como o estudo de Martin e Quan-Haase (2013), e por bibliotecas e instituições de pesquisa, como em Rojeski (2012). Pouco se pesquisou sobre fatores ligados ao consumo de livros eletrônicos, lacuna essa evidenciada tanto por pesquisas quanto por autores estudiosos do tema, como Zhang e Kudva (2013) e Mota e Gomes (2013). Lee (2013) ainda afirma que se deve estudar em profundidade o tema em relação aos consumidores, tanto em questão de adoção de tecnologia quanto em preferência por produtos, e que outros diversos construtos devem ser avaliados como influenciadores de preferências dos consumidores.

A partir das lacunas na literatura identificadas acima, a presente pesquisa procura suprir a necessidade de estudos identificada no campo de comportamento do consumidor, no que tange a preferência dos consumidores no mercado de livros, buscando descrever como diferentes fatores influenciam nessa preferência. Tem-se, portanto, a pergunta principal do estudo: Como determinados fatores intrínsecos influenciam a preferência de consumidores por livros eletrônicos?

Como fatores intrínsecos estudados na presente pesquisa, serão utilizados diversos construtos existentes na literatura de comportamento do consumidor e apresentados como variáveis capazes de explicar mudanças em preferência e comportamento de consumo. Sendo assim, os valores humanos de Schwartz (1992) e a formação de julgamento e significado, de maneira semelhante ao apresentado por Allen e Ng (1999), serão utilizados fatores preditores em relação à preferência dos consumidores de *e-books*. Conforme sugerido por Alfinito, Nepomuceno e Torres (2012), essas variáveis são capazes de predizer preferências por produtos, serviços e até marcas, tornando-as relevantes também para o fenômeno estudado na presente pesquisa. Sendo assim, essas variáveis intrínsecas, ou seja, escolhas feitas internamente pelo consumidor, foram analisadas como preditoras de preferência por livros eletrônicos.

Além de utilizar as variáveis valores humanos, julgamento e significado, a presente pesquisa procurou analisar os consumidores de livros eletrônicos no que tange a sua consciência ambiental. Mais especificamente, será observado como essa consciência ambiental e seus diversos fatores (Pato & Tamayo, 2006), influenciam na escolha do tipo de produto (livro impresso ou eletrônico). Segundo Soyez (2012), o consumo e os consumidores possuem um papel vital no contexto da consciência ambiental, e esse papel deve ser analisado por pesquisadores de todo o mundo, sendo assim a consciência ambiental torna-se importante para a análise das escolhas dos consumidores de qualquer produto ou serviço, inclusive no mercado de livros. Em suma, observa-se que diversos construtos e variáveis serão analisados para as comparações citadas anteriormente em relação aos consumidores de livros, a saber: valores humanos, a formação de julgamento, o significado atribuído ao produto e a consciência ambiental.

O presente estudo possui justificativas e valor tanto gerencial quanto acadêmico. Do ponto de vista acadêmico, nota-se a utilização de diversos construtos para o estudo de um fenômeno, construtos esses normalmente estudados em separado, fazendo com que estes formem um modelo mais amplo. Esta pesquisa é relevante também no que diz respeito a ocupação de lacunas na teoria, como exposto por Zhang e Kudva (2013) e Lee (2013), quando confirmam a necessidade de a academia realizar mais estudos sobre o mercado de livros. Zhang e Kudva (2013) ainda alertam para a necessidade de estudos deste mercado tendo em vista diversos fatores, o que é pretendido por este estudo. Além disso, a utilização das variáveis valores humanos, julgamento e significado em estudos com diversos produtos e serviços é citada como possível agenda de pesquisa por Alfinito, Nepomuceno e Torres (2012). Por fim, o presente estudo também apresenta valor acadêmico quanto à criação de um modelo de adoção

de tecnologia, a partir do já existente Modelo de Aceitação Tecnológica (TAM) (Davis, 1989), apresentado no capítulo a seguir, levando-se em conta fatores intrínsecos ao consumidor ainda não pesquisados com tal finalidade. Estima-se que o modelo de pesquisa utilizado nesse estudo possa servir como fonte de pesquisa para estudiosos do tema posteriormente, levando-se em conta que as variáveis envolvidas ainda não foram pesquisas de maneira conjunta.

Do ponto de vista gerencial, a presente pesquisa fornece a gestores da indústria de livros um melhor entendimento do comportamento de consumo de seus clientes e um melhor entendimento de como os construtos estudados impactam neste comportamento. Além disso, o mercado de livros se mantem em crescimento constante nos últimos anos (SNEL, 2014; IPA, 2014). Esse crescimento faz com que a competitividade por esse mercado aumente, o que traz a necessidade de gestores de melhor entender seu público alvo e possuir ferramentas para conquista-lo ou mantê-lo, gerando vantagem competitiva. Zhang e Kudva (2013) alertam para a necessidade do entendimento desse mercado, tanto por gerentes de editoras, quanto por responsáveis por bibliotecas e instituições de ensino, evidenciando assim a importância de estudos relacionados ao tema. De uma maneira geral, o presente estudo fornece a gestores da indústria de livros uma ferramenta para o melhor entendimento do comportamento e da necessidade de seus consumidores, tornando-se uma ferramenta importante para a competição nesse mercado.

1.2. Objetivos do estudo

1.2.1. Objetivo geral

Analisar determinados fatores intrínsecos ao consumidor e sua influência na preferência por livros eletrônicos.

1.2.2. Objetivos específicos

Avaliar a formação de julgamento e a atribuição de significado dos consumidores em relação aos livros eletrônicos;

Identificar valores humanos relevantes para a análise dos consumidores de livros eletrônicos;

Identificar o papel da consciência ambiental na preferência por livros eletrônicos;

Identificar o papel da consciência ambiental e de valores humanos na formação de julgamento e na atribuição de significado por parte dos consumidores de livros eletrônicos;

Identificar o papel da consciência ambiental e de valores humanos na facilidade de uso e na utilidade percebidas pelo consumidor de livros eletrônicos.

Essa dissertação se divide em seis partes: a introdução, já apresentada; o referencial teórico, contendo os principais achados da literatura relacionados ao tema estudado: consumidores de livros, valores humanos, julgamento, significado e consciência ambiental; o método, uma explicação de como se dará a parte metodológica do estudo; os resultados, abrangendo os dados obtidos e comparações com a literatura metodológica existente; a discussão, com as comparações entre os resultados e a literatura existente sobre os temas abordados; e, finalmente, as considerações finais contendo os principais achados dessa pesquisa, juntamente com suas limitações, implicações teóricas e gerenciais e propostas de futuras agendas de pesquisa.

2. REFERENCIAL TEÓRICO

O referencial teórico do presente estudo se divide em quatro partes. A primeira relaciona o comportamento dos consumidores de livros e teorias ligadas à adoção e aceitação de tecnologias. A segunda parte discorre sobre valores humanos e julgamento e significado atribuídos ao produto, construtos importantes para o estudo proposto. Já a terceira seção apresenta a discussão sobre a consciência ambiental dos consumidores, outro construto importante. Por fim, a seção seguinte se propõe a relatar o modelo de pesquisa para o trabalho proposto, além das hipóteses de pesquisa propostas. A busca por artigos foi realizada tanto em bases internacionais quanto bases nacionais, através do portal de periódicos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Como os temas abordados no presente capítulo não se restringem a temas de administração de empresas, foram também pesquisados artigos relacionados a outras áreas de conhecimento, como psicologia, pedagogia e educação.

2.1. Comportamento do Consumidor de Livros Eletrônicos

O mercado de livros sofreu mudanças drásticas nas últimas duas décadas, com o crescimento das tecnologias de informação e comunicação – TICs (Gunter, 2005). O impacto dessas tecnologias na sociedade atual é sentido na vida social, no lazer, na vida profissional, nas relações interpessoais e também no comportamento de compra e consumo dos indivíduos (Morigi & Pavan, 2004), evidenciando assim a importância do entendimento e do estudo sobre as escolhas dos consumidores.

O crescimento dessas TICs trouxe junto inovações na indústria de livros, como a venda de produtos por lojas virtuais e a comercialização cada vez maior de livros eletrônicos, ou *e-books* (Kang, Wang & Lin, 2009). Livros eletrônicos foram utilizados pela primeira vez no início dos anos 70, no projeto Gutenberg (Embong, Noor, Ali, Bakar & Amin, 2012), e foram definidos por Armstrong, Edwards e Lonsdale (2002), de maneira generalizada, como qualquer texto eletrônico, independente de tamanho ou composição, disponível de maneira digital para qualquer dispositivo que possua uma tela. Lam, Lam, Lam e McNaught (2009) definem os livros eletrônicos de maneira semelhante: versões eletrônicas de livros que podem ser visualizados em um computador ou dispositivo móvel.

Apesar de sua existência chegar aos quarenta anos, apenas com o advento da internet e a tecnologia dos leitores eletrônicos chamados e-readers houve um grande crescimento na venda e na comercialização de livros eletrônicos (Lee, 2013). A partir dessa maior circulação, os livros eletrônicos tornaram-se objeto de pesquisa de diversos estudos, sobretudo a questão da sua utilização. Kang, Wang e Lin (2009) estudaram a utilização desse tipo de livro, e compararam as diferenças em relação ao livro impresso. O estudo foi aplicado em estudantes, e concluiu-se que os *e-books* causam maior fadiga ocular, além de menor performance de aprendizado. Esses resultados foram confirmados por Jeong (2012), porém, nessa pesquisa, foi evidenciado que apesar das condições fisiológicas negativas em comparação ao livro impresso, os leitores se mostraram satisfeitos pelo uso do livro eletrônico, identificando diversas vantagens (Jeong, 2012). Vasileiou, Hartley e Rowley (2009) afirmam que a utilização de livros eletrônicos é cada vez maior em todos os segmentos da sociedade, e que sua utilização acarreta em mudanças no comportamento das pessoas, visão compartilhada por Lam et al. (2009). Outro tipo de estudo foi o de aceitação das diversas marcas e modelos de e-readers, como o estudo de Richardson Jr e Mahmood (2012), que investigou a satisfação e a usabilidade desses aparelhos. Existem também relatos da mudança de paradigma no mercado de livros, como o estudo de Benício e Silva (2005).

Outra corrente de estudos sobre o tema discorre sobre a utilização de livros eletrônicos em diversos segmentos da sociedade, como bibliotecas e universidades. A partir daí diversos objetivos de estudo foram encontrados, como avaliar as preferências de estudantes e professores em relação à preferência ao tipo de livro (Woody, Daniel & Baker, 2010; Tosun, 2014; Rowlands, Nicholas, Jamali & Huntington, 2007; Khalid, 2013), a mudança que livros eletrônicos acarretam a bibliotecas e outras instituições de informação e ensino (Anderson & Pham, 2013; Hourcade, Bederson, Druin, Rose, Farber, & Takayama, 2003), entre outros temas não relacionados à administração de empresas ou ao comportamento do consumidor.

Além de estudos sobre fatores fisiológicos e o impacto dos livros eletrônicos na integridade física e no aprendizado, um menor número de estudos centrou seus objetivos na aceitação dos consumidores em relação a esse produto. Zhang e Kudva (2013), por exemplo, investigaram a preferência e a escolha dos consumidores de livros entre livros impressos e eletrônicos. Os autores afirmam, após a pesquisa de campo realizada, que livros eletrônicos não estão posicionados para substituir os livros impressos até o momento, e que a aceitação desse tipo mais novo de leitura está ligada a diversos fatores demográficos, contextuais e situacionais.

Dos poucos estudos encontrados que analisam a aceitação de consumidores, a maioria deles se concentra em analisar fatores que influenciam a preferência por e-books, como o estudo

de Lee (2013), que investiga quais fatores levam a adoção de livros eletrônicos na Coréia do Sul. Para tal, são utilizados modelos de adoção de tecnologia. O processo da utilização de modelos de aceitação tecnológica é a principal corrente teórica utilizada para avaliar a aceitação, preferência e utilização de livros eletrônicos e lojas de livros virtuais (Lee, 2013; Jin, 2014; Huang & Hsieh, 2012; Read, Robertson & McQuilken, 2011).

Os estudos sobre o tema utilizam, em sua grande maioria, três teorias principais: a teoria de difusão de inovações, ou DIT (*Diffusion of Innovations Theory*) de Rogers (1962), a teoria de prontidão para tecnologia (TR – *Technology Readiness*) de Parasuraman (2000) e Parasuraman e Colby (2001), e, finalmente, o Modelo de Aceitação Tecnológica, ou TAM (*Technology Acceptance Model*) (Davis, 1989; Davis, Bagozzi & Warshaw, 1989). As três teorias descritas sofrem críticas no mesmo sentido, que se traduz na falta de uma análise que observa fatores internos ao consumidor e sua influência na adoção de tecnologias.

Liao, Chou e Chen (2014) afirmam que o DIT, assim como o TAM, não leva em conta ligações afetivas ou emocionais dos consumidores com produtos, deixando de lado na teoria esses aspectos internos. Lee (2013) também faz essa crítica à teoria, ainda adicionando que o DIT não leva em conta tais construtos provavelmente por ser originado do TAM, modelo de Davis (1989) que também sofre com críticas quanto à importância dada a aspectos internos ao consumidor na adoção de tecnologias (Read, Robertson & McQuilken, 2011). Lin e Hsieh (2006) utilizaram o TR em seu trabalho sobre adoção de tecnologias, mais especificamente autosserviço, e concluíram que a teoria também deixa uma lacuna no que tange aspectos e pensamentos internos do consumidor, focando principalmente em fatores externos, como atributos e facilidades de compra. Lai e Ulhas (2012) estudaram a adoção de livros eletrônicos por estudantes do ensino superior utilizando a DIT, e encontraram que apenas um fator, a saber, compatibilidade, foi considerado relevante para a adoção da tecnologia, concluindo, portanto, que a teoria não foi suficiente para explicar esse fenômeno. Já Read, Robertson e McQuilken (2011) utilizaram o TAM para avaliar o mercado de livros, e afirmam que o modelo original de Davis (1989) não basta para explicar a adoção de tecnologias, necessitando da inclusão de novos construtos.

Nesse sentido, diversos autores procuraram a adaptação das teorias e modelos já existentes, tendo como objetivo a criação de um novo modelo que utilize aspectos internos ao consumidor como variáveis independentes da adoção de tecnologia. No presente estudo, o Modelo de Aceitação Tecnológica de Davis (1989) foi escolhido como modelo base por ter sido o mais utilizado na literatura da área, como defendem Read, Robertson e McQuilken (2011), e, apesar das críticas relacionadas à falta de importância dada a aspectos internos ao consumidor,

conforme citado anteriormente, o TAM, após inclusões de variáveis diversas, como será exposto a seguir, mostrou-se um modelo robusto para a análise do comportamento de consumidores.

2.1.1. Modelo de Aceitação de Tecnologia (TAM)

O modelo de Aceitação Tecnológica, ou simplesmente TAM, teve como seus percursores os trabalhos de Davis, Bagozzi e Warshaw (1989) e Davis (1989). Criado a partir do estudo de duas outras teorias, saber: a *Theory of reasoned actions* e a *Theory of planned behavior*, de Fishbein e Ajzen (Davis, 1989), o TAM tem como foco a aceitação e o comportamento de uso em contextos específicos, como sistemas de informação e novas tecnologias de mídia (Lee, 2013). A principal premissa do modelo é que a adoção e uso de uma tecnologia são resultados de dois construtos: utilidade percebida e facilidade de uso percebida, que levam à atitude e intenção de adoção de determinada tecnologia por parte do consumidor (Davis, 1989; Venkatesh & Bala, 2008). A figura 1 mostra o modelo original.

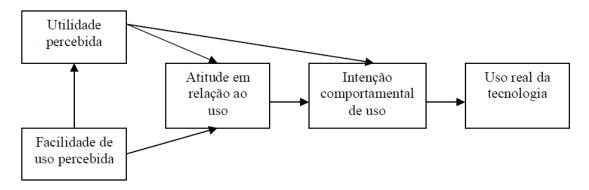


Figura 1: Modelo de aceitação de tecnologia (TAM).

Fonte: Adaptado de DAVIS, F.D.; BAGOZZI, R.P. & WARSHAW, P.R. (1989). User Acceptance of Computer Technology: A Comparision of Two Theoretical Models, *Management Science*, *35*(8), 982-1003.

Conforme definido anteriormente, a utilidade percebida e a facilidade de uso percebida do produto levam o consumidor a ter uma atitude em relação ao uso da nova tecnologia, posteriormente levando a intenção comportamental e ao uso efetivo. Davis (1989) define utilidade percebida como o grau que um indivíduo acredita que, utilizando determinada tecnologia, melhorará sua performance, e a facilidade de uso percebida como o grau que um indivíduo acredita que a utilização de determinada tecnologia não demandará esforços de

aprendizagem ou uso. O autor também elaborou escalas para as variáveis em seu artigo seminal sobre o tema, validando os instrumentos em pesquisa de campo.

Apesar de ter sido muito utilizada na área de aceitação de tecnologia por parte de funcionários de organizações, a teoria sofreu críticas envolvendo sua estrutura: o modelo não se preocupa com ligações afetivas e emocionais dos consumidores, e também a explicar possíveis resistências psicológicas que causam bloqueios em relação à adoção de novas tecnologias de mídia (Lee, 2013; Read, Robertson & McQuilken, 2011). Wu e Wang (2005) corroboram com as críticas, e afirmam que o modelo de aceitação de tecnologia deveria incluir mais variáveis para ter um poder de predição maior.

As críticas levaram Venkatesh e Davis (2000) a criar uma extensão do modelo de aceitação de tecnologia, contendo outras variáveis que deveriam explicar a intenção de uso de determinadas tecnologias. O novo modelo, denominado TAM2, ou extensão do modelo de aceitação tecnológica, incluiu no processo de adoção de tecnologia diversas variáveis, como demonstra a figura 2.

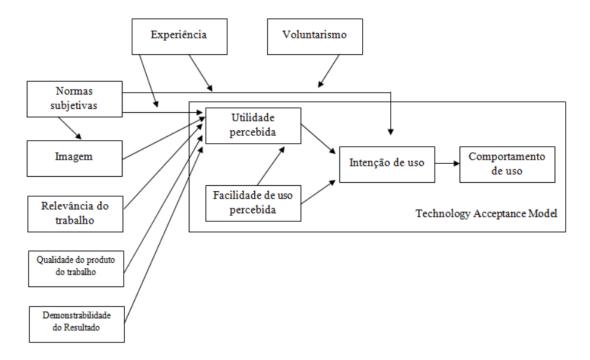


Figura 2: TAM2 – Extensão do modelo de aceitação de tecnologia.

Adaptado de VENKATESH, V. & DAVIS, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. *Management Science*, 46(2), 186-204.

Criado a partir do TAM, o TAM2 incorpora construtos teóricos que envolvem processos de influência social e de instrumentos cognitivos (Venkatesh & Davis, 2000). Os processos de influência social envolvem três forças: normas subjetivas, imagem e voluntarismo, já os processos de instrumentos cognitivos envolvem quatro variáveis: relevância do trabalho, qualidade do produto do trabalho, demonstrabilidade do resultado e facilidade de uso percebida. Nota-se também a retirada da variável "atitude em relação ao uso", por conta de seu fraco poder de predição (Venkatesh & Davis, 2000; Wu & Wang, 2005). Para testar o novo modelo, quatro estudos longitudinais foram realizados pelos autores em diferentes organizações, durante três etapas: pré implementação da nova tecnologia, após um mês da implementação e três meses após a implementação.

Os resultados mostraram que o modelo foi muito bem suportado em todos os estudos realizados, e também mostraram a força de fatores cognitivos na adoção de tecnologia, fato que o modelo anterior não abrangia e que foi motivo de críticas pela literatura. Porém, o TAM 2 continuou recebendo críticas quanto às variáveis utilizadas para a predição de adoção de tecnologias, abrindo assim mais agendas de pesquisa para o tema (Read, Robertson & McQuilken, 2011). Pela existência de tais críticas, o modelo foi novamente adaptado, desta vez por Venkatesh e Bala (2008) e denominado TAM 3.

Combinando o TAM 2 com o modelo de determinantes de facilidade de uso percebida (Venkatesh & Bala, 2008), os autores criaram uma rede completa de determinantes de adoção e uso de tecnologias, incluindo diversas variáveis inéditas para o tipo de estudo. Em relação ao modelo anterior, o TAM 3 inclui novos determinantes de facilidade de uso e utilidade percebidas. Os determinantes da facilidade de uso percebida foram: auto eficácia ao computador; percepção de controle externo; ansiedade por computadores; lucidade no computador; satisfação percebida; e utilidade objetiva. Já os determinantes da utilidade percebida são: normas subjetivas; imagem; relevância do trabalho; qualidade do produto; demonstrabilidade de resultado. A figura 3 mostra o TAM 3 e suas relações.

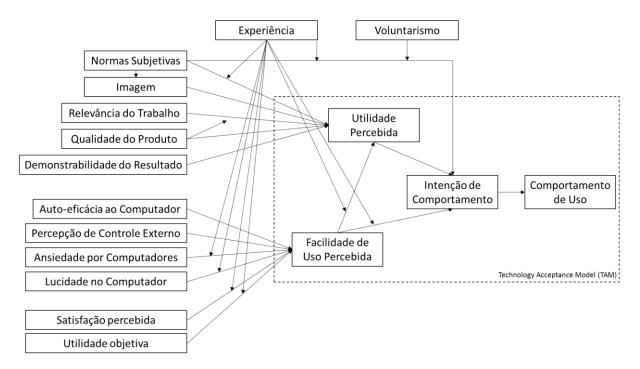


Figura 3: TAM 3 – extensão do modelo de aceitação de tecnologia (TAM). Adaptado de VENTATESH, V. & BALA, H. (2008). Technology acceptance model 3 and a research agenda on interventions. *Decision sciences*, 39(2), 273-315.

O novo modelo diferencia-se também por não possuir relações cruzadas entre as duas variáveis, como destaca os autores, ou seja, os determinantes de facilidade de uso percebida não influenciam na utilidade percebida, e a recíproca é verdadeira. A moderação da experiência tanto nas relações envolvendo a utilidade percebida quanto a facilidade de uso percebida também foi incluída no modelo, diferente do TAM 2 (Venkatesh & Bala, 2008).

Desde a primeira versão do modelo de aceitação de tecnologia, os autores se preocuparam em entender como usuários desenvolvem suas atitudes e pensamentos sobre determinada tecnologia nova. Durante a evolução dos modelos, observa-se que mais e mais variáveis foram incluídas a fim de entender melhor essa preferência. Porém, outra crítica também voltada à teoria se dá ao fato de que o TAM foi desenvolvido para o estudo de adoção de tecnologia da informação em espaços de trabalho, como afirmado por Venkatesh, Davis e Morris (2007), e não com consumidores como foco principal, apesar de ser utilizada com esse intuito.

Sendo assim, diversos estudos foram feitos para que o modelo de aceitação de tecnologia fosse testado também para estudos de comportamentos de consumidores. A partir daí, não só novas variáveis foram testadas juntamente com o TAM, mas também novos contextos de pesquisa para a utilização do modelo (Read, Robertson & McQuilken, 2011). Gefen, Karahanna e Straub (2003), por exemplo, propuseram um modelo adaptado do TAM, onde a confiança em

compras online também é apresentada como um construto. Além dos resultados promissores, que indicam a necessidade de mais estudos utilizando a TAM para consumidores, seu instrumento de pesquisa apresentou altos índices de confiabilidade para o tipo de estudo.

Wu e Wang (2005) adaptaram o TAM para avaliar a aceitação de comércio eletrônico (e-commerce) por parte dos usuários. Para tal, os autores utilizaram variáveis da teoria de difusão de inovação de Rogers (1962), além de risco percebido e custos. Os autores encontraram dois resultados relevantes: a falta de influência da percepção de facilidade de uso na adoção de tecnologia, contrariando todos os achados por parte da teoria até o momento, e a influência positiva do risco percebido nesta adoção, contrariando também a literatura utilizada pelos autores. Tais achados mostram que o modelo de aceitação de tecnologia deve ser ainda mais examinado em contextos diversos, além da incorporação de outras variáveis no modelo.

Jung, Chan-Olmsted, Park e Kim (2011) estudaram como os fatores descritos no TAM afetam o interesse e a intenção de uso dos usuários de *e-books*. Através de um levantamento de dados, pôde-se concluir que os fatores relacionados ao consumidor mais relevantes para predizer o comportamento destes são demográficos, capacidade de inovação individual e a percepção dos atributos dos *e-books* em si. Em outro estudo que utilizou o TAM para pesquisar a aceitação de livros eletrônicos, Lai e Chang (2011) salientam também a importância dos atributos do produto, como conveniência e compatibilidade com sistemas de leitura.

Read, Robertson e McQuilken (2011) testam a utilização de uma versão estendida do TAM, denominada TAME (TAM com *emotional attachment*, ou ligação emocional) (Read, Robertson & McQuilken, 2011) para a adoção de livros eletrônicos e leitores digitais para leituras de lazer. Os autores criticam a TAM por sua negligência no que tange o afeto e a emoção do consumidor na adoção de novas tecnologias, incluindo assim variáveis relacionadas a ligações emocionais do consumidor. Os autores encontraram que esse tipo de variável, condições do consumidor, influenciam a adoção de tecnologias. Encontrou-se também a existência de um elo entre ligação emocional e o consumo de livros eletrônicos.

Lee (2013) também propôs um modelo baseado no TAM, onde o risco percebido, além da utilidade e da facilidade de uso percebidas, influenciam na resistência à inovação, que leva ou não a intenção de uso de determinada tecnologia. Os resultados de sua pesquisa de campo comprovaram a forte influência de fatores individuais nas percepções de utilidade e facilidade de uso, e, por conseguinte, na adoção ou não de tecnologias. O autor também encontrou que resistência à inovação tem uma relação forte e inversamente proporcional à adoção de tecnologias. Por fim, o autor afirma que novos construtos e variáveis devem ser testados para a adoção de tecnologias por meio do TAM.

Em suma, após a adaptação do TAM para o estudo de comportamento de consumo, houveram estudos onde os pesquisadores procuraram diversas variáveis com forte poder de explicação para o fenômeno adoção de tecnologias. Porém, apesar da inserção de novos construtos e variáveis através do tempo e da utilização em grande escala deste modelo, as principais críticas ao TAM foram mantidas: o modelo não se preocupa com ligações afetivas e emocionais dos consumidores, e também a explicar as possíveis resistências que podem causar um bloqueio nos usuários no momento da adoção a novas tecnologias de mídia (Lee, 2013; Read, Robertson & McQuilken, 2011), e, apesar dos esforços da literatura, não foi encontrado ainda um modelo que explique de maneira plena influência de fatores intrínsecos na adoção de tecnologias. Além disso, os modelos criados ainda não possuem poder de explicação muito grande (Lee, 2013; Wu & Wang, 2005; Read, Robertson & McQuilken, 2011).

Essas afirmações abrem agendas de pesquisa para variáveis ainda não exploradas juntamente com o TAM para explicar adoção de tecnologia, fortalecendo e justificando a importância da presente pesquisa. Nas seções seguintes, são apresentados os construtos que serão utilizados como preditores de adoção de tecnologia: valores humanos individuais, julgamento formado, significado atribuído ao produto e consciência ambiental.

As variáveis aqui estudadas foram selecionadas por duas questões principais. A primeira relaciona-se com a capacidade de explicação delas em relação a comportamentos de consumo. Alfinito, Nepomuceno e Torres (2012) defendem a utilização das variáveis julgamento e significado em estudos onde o comportamento de consumo é o principal objeto de estudo, assim como Isomursu, Ervasti, Kinnula & Isomursu (2011) defendem a utilização de valores humanos nos estudos de adoção de tecnologias, e outros, como Straughan e Roberts (1999) e Akehurst, Afonso e Gonçalves (2012) defendem que a consciência ambiental pode explicar fenômenos de consumo.

A segunda questão envolve a falta de estudos na literatura relacionando as variáveis aqui estudadas com o fenômeno de adoção de tecnologia. Apesar das tentativas de adaptação do Modelo de Aceitação de Tecnologia com diversas variáveis internas ao consumidor, as variáveis escolhidas não fizeram parte de nenhuma dessas tentativas de adaptação. Essa defasagem, juntamente com as evidências de que esses construtos possuem relação com o comportamento de consumo, mostram a necessidade de estudos relacionados ao tema desta pesquisa.

2.2. Valores Humanos

Rokeach (1973) define valores humanos como uma crença duradoura de que determinado modo de conduta ou estado-final de existência é pessoalmente ou socialmente preferível a outro modo de conduta ou estado-final oposto. O autor ainda defende a quantificação e mensuração dos valores humanos, tanto para modos de conduta, chamados de valores instrumentais, quanto para estados-finais, denominados valores terminais. Rokeach (1973) ainda afirma que valores humanos possuem uma importante função motivacional em relação ao comportamento humano.

Rohan (2000) afirma que, apesar da grande contribuição de Rokeach para a teoria de valores, seu trabalho não possuía uma estrutura em relação ao sistema de valores, tornando a teoria de Rokeach uma lista de valores sem relações entre si, tornando improvável a compreensão de efeitos entre essas variáveis. A maior contribuição do autor, segundo Almeida e Sobral (2009), foi provavelmente a forma como foi estudada a natureza dos valores humanos, integrando-se filosofia, psicologia e teorias sociais.

A partir do estudo de Rokeach (1973), diversas teorias de valores humanos foram criadas. A mais utilizada, referenciada e aceita, segundo diversos autores (Almeida e Sobral, 2009; Smith, Bond & Kagitcibasi, 2006; Cieciuch & Schwartz, 2012), é a teoria de valores humanos de Schwartz. O autor define valores humanos individuais como metas situacionais desejáveis, variando em importância, que servem como princípios na vida de uma pessoa ou uma entidade social (Schwartz, 1994). Ainda segundo o autor, o que distingue um valor de outro é o objetivo motivacional expressado por ele (Schwartz, 1994). Observa-se que as críticas ao trabalho de Rokeach (1973) são supridas pelos trabalhos de Schwartz (1994) e Schwartz (1992), pois, em seu modelo teórico de relações entre tipos de valores e dimensões bipolares, são apresentadas relações entre essas variáveis, tornando possível a interpretação de relações entre elas.

Observam-se no modelo apresentado por Schwartz (1992) dez valores humanos postados em duas dimensões opostas. Os tipos motivacionais se apresentam da seguinte maneira (Schwartz, 1994): poder, realização e hedonismo (dimensão autopromoção); hedonismo, estimulação e autodeterminação (dimensão abertura para mudança); universalismo e benevolência (dimensão autotranscedência); conformidade, tradição e segurança (dimensão conservação). Schwartz (1994) afirma que o elemento chave para a identificação da estrutura de relações entre valores é a suposição de que as ações tomadas a fim de se atingir determinado

tipo de valor possuem consequências psicológicas, práticas e sociais que vão em conflito, ou ao encontro, à outras ações voltadas para outros valores. A partir das análises desses conflitos e compatibilidades, foi possível a criação do modelo teórico dos valores humanos individuais de Schwartz (1992). As posições e as dimensões opostas apresentados no modelo de Schwartz (1992), conforme citado anteriormente, suprem a crítica feita por Rohan (2000) à teoria de Rokeach (1973) e tornam a teoria de Schwartz a mais relevante para o estudo de valores humanos.

A teoria de valores humanos foi testada sob diversos aspectos. Schwartz e Boehnke (2004) realizaram o primeiro teste estatístico da teoria de Schwartz (1992), e através de análise fatorial confirmatória, foram confirmados os dez valores básicos e a hipótese de que valores formam um *continuum* motivacional. Schwartz e Bardi (2001) e Schwartz e Sagie (2000) procuraram validar a teoria em estudos multinacionais. Já outros estudos focaram na utilização da teoria em países específicos, como Almeida e Sobral (2009) e Tamayo (2007) no Brasil.

Após uma série de estudos demonstrando a necessidade de mudança do continuum e das posições e possível existência de subtipos motivacionais, como os estudos de Davidov (2008), Davidov, Schmidt e Schwartz (2008) e Knoppen e Saris (2009), essas descobertas foram investigadas por Cieciuch e Schwartz (2012) e Schwartz et al. (2012), levando a um refinamento na teoria de valores humanos. Schwartz et al. (2012) utilizaram um novo instrumento, denominado PVQ-57, composto por 57 itens, aplicando-o em quinze amostras de dez países, totalizando 6.059 observações. Foram identificados dezenove tipos motivacionais através de uma análise fatorial confirmatória, e o escalonamento multidimensional foi feito para confirmar o poder preditivo dos valores humanos (Schwartz et al., 2012).

A figura 4 mostra o novo *continuum* de valores humanos, extraído de Schwartz et al. (2012). Entre as principais mudanças, se destacam: o tipo motivacional poder foi dividido em poder dominância e recursos; o tipo motivacional autodeterminação foi dividido em pensamento e ação; universalismo em tolerância, natureza e preocupação; benevolência em dependência e cuidado; o tipo motivacional segurança foi dividido em segurança pessoal e social; o tipo motivacional conformidade foi dividido em conformidade com regras e interpessoal. Com relação às dimensões propostas, os tipos motivacionais de valores continuam dispostos em abertura à mudança ou conservação; autotranscedência ou autopromoção. Porém, no *continuum* apresentado por Schwartz et al. (2012), a primeira dimensão (abertura à mudança ou conservação) ordena tipos motivacionais quanto à tendência de independência de pensamento ou preservação de *status quo*; já a segunda dimensão (autotranscedência ou autopromoção) ordenam tipos motivacionais no que tange bem-estar coletivo ou individual.

Schwartz et al. (2012) afirmam que a teoria de valores refinada oferece maior poder e maior precisão de previsão de comportamento.

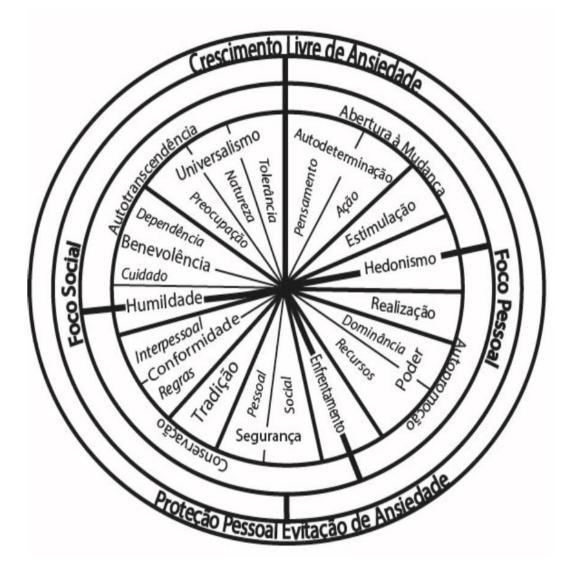


Figura 4: Continuum de 19 valores da teoria de valores refinada.

Adaptado de SCHWATZ, S.H.; CIECIUCH, J.; VECCHIONE, M.; DAVIDOV, E.; FISCHER, R.; BEIERLEIN, C.; ... & DIRILEN-GUMUS, O. (2012). Refining the theory of basic individual values. Journal of personality and social psychology, 103(4), 663-688.

A teoria refinada de valores humanos foi então testada em diversos estudos. Torres, Schwartz e Nascimento (2015) realizaram um estudo com o objetivo de verificar a variância de valores humanos básicos no Brasil, utilizando a teoria de Schwartz e dividindo o território nacional em suas cinco regiões administrativas. Os resultados mostraram poucas diferenças significativas em algumas hierarquias de valores, quando se comparou as regiões.

Cieciuch, Davidov, Vecchione, Beierlein e Schwartz (2014) também testaram a teoria refinada e, adicionalmente, compararam os resultados obtidos utilizando a nova teoria com os

resultados anteriores, utilizando a teoria de dez valores humanos e seu instrumento, aplicando as duas medidas em oito países diferentes. Concluiu-se que a teoria refinada possui poder de predição muito maior do que a sua antecessora, e que o instrumento PVQ-57 possui mais robustez estatística se comparado com o instrumento anterior. Sobre a aplicação e comparação de resultados da teoria refinada com dados coletados anteriormente, Cieciuch, Schwartz e Vecchione (2013) procuraram aplicar a teoria refinada de valores humanos a dados coletados anteriormente em diversos países, a fim de verificar a melhora prática da mudança na teoria. Os autores encontraram que o poder de explanação e de predição da nova teoria é substancialmente maior do que sua antecessora, defendendo assim a sua utilização em detrimento da outra.

Isomursu et al. (2011) estudaram a influência de valores humanos na adoção de tecnologias, observando diferentes grupos para avaliar se existe essa relação. Foram analisados grupos de alunos, alunos especiais, pais de alunos e pais de alunos especiais do ensino médio. A teoria de Schwartz foi utilizada nesses grupos e em sua aceitação à novas tecnologias instauradas nos seus cotidianos, e concluiu-se que valores humanos são uma parte relevante no que tange a explicação de aceitação ou não de determinada tecnologia.

A teoria de valores de Schwartz foi utilizada também em diversos estudos sobre comportamento do consumidor. Como exposto por Zhou, Thogersen, Ruan e Huang (2013), valores humanos possuem grande poder de predição, e também de moderação, nas escolhas de consumidores. Schultz, Gouveia, Cameron, Tankha, Schmuck e Franek (2005) defendem o mesmo ponto, afirmando que valores humanos podem predizer comportamentos não só de consumidores, mas também comportamentos de uma maneira geral.

Cai e Shannon (2012) investigaram o comportamento de compra de consumidores de *shoppings* na China, objetivando comparar seus resultados com estudos feitos no ocidente, principalmente com o estudo de Arnold e Reynolds (2003). Os resultados encontrados foram parcialmente semelhantes em ambos os estudos, com a dimensão de autopromoção sendo a mais direcionada. Fotopoulos, Krystallis e Anastasios (2011) procuraram validar o instrumento PVQ-57 na escolha da qualidade dos alimentos comprados pelos consumidores, divididos em seus respectivos locais de moradia, entre campo e urbano. Utilizando a teoria ainda não refinada, foram identificados como valores mais importantes para a classe urbana a segurança, o universalismo e a benevolência. De maneira geral, foi confirmada a utilidade do PVQ para o mercado estudado.

Zhou et al. (2013) mediram o papel moderador de valores humanos na intenção de compra de alimentos orgânicos na China. Para tal, utilizaram a teoria refinada de Schwartz e

seus círculos maiores (auto transcendência, abertura à mudança, autopromoção e conservação) para avaliar a intenção de compra e o comportamento efetivo dos consumidores. Encontrou-se que valores ligados à auto transcendência moderam a atitude e a percepção de controle comportamental em relação a produtos orgânicos nos consumidores chineses. Os autores ainda defendem um maior número de pesquisa sobre os temas valores humanos e intenção de compra. Vale salientar que os autores não utilizaram a teoria refinada de Schwartz et al. (2012), portanto, conforme exposto anteriormente, os resultados encontrados poderiam ter sido melhores. Caracciolo et al. (2015) também estudaram a influência de valores humanos na escolha por produtos mais saudáveis, encontrando que valores ligados à auto transcendência e abertura a mudança influenciam positivamente a escolha por produtos menos agressivos ao ambiente.

Maduro-Abreu e Brasil Jr (2013) investigaram a relação entre os valores individuais e a frequência de consumo. Para tal, utilizaram a teoria de Schwartz para validar uma escala de ideologia, valores individuais e frequência de consumo. Foi possível, segundo os autores, identificar indivíduos que buscam, a partir do consumo, demonstrar poder, autoridade e status, independentemente de grupos.

Porto e Torres (2012) objetivaram estudar o mercado de automóveis, comparando a influência dos valores humanos, dos atributos do produto e de variáveis demográficas sobre a preferência e a posse por tipos de carros. Foi encontrado que os atributos dos veículos foram os preditores mais fortes de comportamento. Já Porto e Torres (2014) testaram o poder de moderação e supressão dos valores humanos na preferência dos consumidores por marcas e produtos, e confirmam que essas variáveis possuem esse poder na relação decisão-preferência.

De uma maneira geral, os estudos aqui descritos mostram a relevância e a influência dos valores humanos no comportamento de consumo, independente do produto, serviço ou marca estudado. Espera-se, portanto, que exista uma relação entre valores humanos e o tipo de livro adquirido pelos consumidores, seja ele eletrônico ou impresso. Valores humanos ocupam uma lacuna relacionada à crítica aos modelos de adoção de novas tecnologias, no que diz respeito a questões intrínsecas ao consumidor, conforme exposto anteriormente por Read, Robertson e McQuilken (2011) e Lee (2013). Sendo assim, esperou-se que o modelo proposto na presente pesquisa ocupe essa lacuna, e que esse construto possua relação direta na escolha do consumidor, assim como os construtos apresentados a seguir. A seguir, são apresentadas as demais variáveis estudadas na presente pesquisa, a saber: julgamento, significado e, posteriormente, consciência ambiental.

2.3. Julgamento, Significado e Comportamento de Consumo

O processo decisório de um consumidor não é puramente racional. Os estudos sobre o tema mostram que existem questões normativas e descritivas. As questões normativas envolvem a racionalidade e a lógica na decisão; já as questões descritivas envolvem crenças e preferências, e o choque entre esses dois construtos caracteriza os estudos sobre o tema (Kahneman & Tversky, 1984). Levy (1959) defende que indivíduos não consomem apenas por fatores utilitários, mas principalmente pelo significado atribuído ao produto em questão. De acordo com Kahneman e Tversky (1984), o julgamento atribuído pelo consumidor a determinado produto envolve questões descritivas, e é de suma importância no processo de decisão de consumo. Sendo assim, como os valores humanos, o julgamento e o significado atribuídos a um determinado produto podem influenciar na decisão de um consumidor (Allen, 2001).

Fournier (1991) define três dimensões para o significado atribuído a produtos: possuir fontes compartilhadas ou personalizadas, alta ou baixa resposta emocional e possuir natureza objetiva ou simbólica. Sendo assim, o autor mostra, primeiramente, a influência de fatores intrínsecos ao consumidor no significado atribuído, além de segmentar o significado e sua formulação em caminhos objetivos ou simbólicos.

Allen (2000) define significado como uma reação ou percepção afetiva de um indivíduo em relação a um determinado objeto, e é construído no tipo de julgamento formulado, sendo ele racional ou emocional. Alfinito, Nepomuceno e Torres (2012) diferenciam significado e atitude quanto à abstração, afirmando que atitudes estão ligadas à avaliação e intenções comportamentais, enquanto o significado é o resultado dessa avaliação.

Além do significado atribuído a um produto, o julgamento formulado sobre esse também influencia no processo de escolha. Mittal (1988) defende que a forma de julgamento é relevante para a formação de preferências. Allen (2000) argumenta que o significado de um objeto se baseia na formulação do tipo de julgamento envolvido, e o julgamento pode ser construído tanto de forma afetiva quanto fragmentada. Mittal (1988) ressalta que o julgamento afetivo possui três características: é holístico, ou seja, encara o produto como um todo, e não como componentes ou atributos; é influenciado por características internas ao consumidor; e é de difícil explicação, por se tratar de um construto subjetivo. Já o julgamento fragmentado, ainda de acordo com Mittal (1988), se baseia na avaliação de atributos tangíveis e funcionais do produto, influenciado majoritariamente pela racionalidade.

Unindo os conceitos apresentados, Allen e Ng (1999) criaram o Modelo de Duas Rotas (*Two Routed Model*, ou MDR), e, neste trabalho, visam observar como os valores humanos influenciam na escolha de determinado produto, se posicionando como uma alternativa aos modelos originários da teoria da expectância (Assumpção, 2013), propondo subsistemas que ampliem o entendimento do sistema maior valores-atitude-comportamento (Allen & Ng, 1999; Allen, 2000).

Como sugere o nome, o modelo de Allen e Ng (1999) apresenta duas maneiras que valores humanos influenciam a escolha do consumidor em relação a algum produto, serviço ou marca: uma rota indireta, onde os valores humanos possuem uma relação indireta com o comportamento, mediado pela importância aos atributos tangíveis do produto. Isso ocorre quando o consumidor avalia o significado utilitário de um produto e faz um julgamento fragmentado (Allen, 2000). Já a rota direta diz respeito a influência direta dos valores humanos no comportamento do consumidor, e ocorre quando o consumidor avalia o significado simbólico do produto e faz um julgamento afetivo com relação ao mesmo (Allen & Ng, 1999).

Tal modelo foi testado por Allen e Ng (1999) nos mercados de automóveis e óculos de sol, obtendo resultados promissores no que diz respeito à predição de comportamento de consumo. Allen e Ng (2003) testaram o modelo no mercado de carnes, encontrando resultados semelhantes. Já Alfinito, Nepomuceno e Torres (2012) adaptaram o modelo e a escala de julgamento e significado para o Brasil, através de diversos estudos realizados, e também constataram a influência dos construtos no processo decisório e nas atitudes e comportamentos de consumidores.

Em resumo, Allen e Ng (1999) e Allen (2000) propõem pelo MDR que valores humanos e a formação de determinado julgamento e significado podem exercer influência e possuem poder de predição na escolha de produtos direta ou indiretamente, a depender do significado do produto e o tipo de julgamento utilizado para a avaliação do significado, deixando mais claro, portanto, o papel dos valores humanos na avaliação e escolha de produtos por parte do consumidor.

A análise apresentada por Allen e Ng (1999) no MDR mostra a importância de fatores intrínsecos e cognitivos no processo de decisão de consumidores. Aliando essa visão às críticas apresentadas aos principais modelos de adoção de tecnologia na seção 2.1 dessa pesquisa, principalmente Read, Robertson e McQuilken (2011), pode-se inferir que a utilização, tanto de valores humanos quanto de julgamentos e significados atribuídos a produtos para o estudo de consumidores de livros, no que tange a escolha do tipo de livro, é importante para suprir lacunas literárias e teóricas existentes e apresentadas neste estudo. Assim como no estudo de

Assumpção (2013), espera-se que a análise através das variáveis apresentados amplie a perspectiva desse tipo de estudo para além da racionalidade. A fim de complementar as análises que serão realizadas, outro construto será utilizado para ampliar o poder de predição do modelo final e auxiliar no entendimento do comportamento do consumidor de livros. A variável consciência ambiental e o comportamento ecológico do consumidor são analisados na seção seguinte. Conforme exposto anteriormente, essa variável também é considerada na literatura como de grande importância no contexto de comportamento de consumo (Akehurst, Afonso & Gonçalves, 2012).

2.4. Consciência Ambiental

A consciência ambiental é um construto multidimensional, composto por elementos cognitivos, atitudinais e comportamentais (Bohlen, Schlegelmilch & Diamantopoulos, 1993). Para Roberts e Bacon (1997), o comportamento ambientalmente consciente consiste em tomadas de decisão ecologicamente conscientes, ou seja, a preocupação com questões ambientais e sociais, como a utilização de energia e a reciclagem de materiais, tem papel importante nas escolhas realizadas pelos consumidores. Stern (2000) ainda afirma que a consciência ambiental trata de papéis ativos ou passivos no ativismo ambiental.

O comportamento ambientalmente consciente se diferencia dos demais pelo fato de o consumidor não dar a mesma importância a benefícios individuais de curto prazo, como os custos do produto, e sim a benefícios que serão observados no futuro e com impactos positivos para a sociedade de uma maneira geral, representando ganhos que não podem ser calculados (Zabkar & Hosta, 2013). Webster Jr. (1975) também define o consumidor consciente como o que leva em consideração as consequências sociais de seu consumo individual. Sendo assim, a consciência ambiental no comportamento de consumo envolve o valor dado pelo consumidor a benefícios que aparecem no longo prazo relacionados à sociedade em detrimento de benefícios individuais imediatos.

A discussão ambiental foi introduzida em diversas disciplinas, como o marketing e a psicologia (Schlegelmilch, Bohlen & Diamantopoulos, 1996; Nair, 2015), e por isso diversos estudos foram realizados sobre o tema, e diversos instrumentos foram criados para medir a consciência ambiental das pessoas (Pato & Tamayo, 2006; Tantawi, O'Shaughnessy, Gad & Ragheb, 2009). Atualmente, um dos maiores problemas associado com problemas ambientais

são os padrões de consumo (Pinto, Nique, Añaña & Herter, 2011), necessitando-se assim de estudos relacionados ao tema.

A partir dessa necessidade, diversos estudos com diversos objetivos foram realizados a fim de pesquisar o padrão de consumo e a consciência ambiental dos consumidores. Gam (2011), por exemplo, avaliou a influência de fatores relacionados ao mercado de roupas no consumo ecologicamente correto. Concluiu-se que alguns fatores ligados ao comportamento de compra, como o bem-estar no local de consumo, e ao comportamento ligado à moda, como se vestir bem, estão positivamente ligados ao consumo consciente de roupas. Liu et al. (2012) destacam que os valores ambientais das pessoas devem ser desenvolvidos por processos educativos, evidenciando a necessidade de programas públicos sobre o tema.

Zabkar e Hosta (2013) propuseram um modelo onde o *gap* entre a predisposição à comportamentos ambientais e o comportamento ambiental em si seria diminuído pela moderação de status sociais. Para os autores, se a consciência e o comportamento ambientais forem observados como atributos de status social, essa mudança levaria consumidores a comportamentos pró-ambientais, e não apenas possuir a predisposição de se comportar positivamente em relação ao meio ambiente. Os pesquisadores concluem que organizações voltadas ao mercado verde devem englobar questões relacionadas ao status social, pois foi encontrado que esse construto influencia na questão atitude-comportamento consciente.

Tantawi et al. (2009) estudaram a atitude do consumidor egípcio em relação ao meio ambiente de maneira geral. Através de um levantamento de dados, foi constatado que não somente as classes mais altas se preocupam com questões ambientais, mas a sociedade como um todo exibe o mesmo nível de consciência ambiental. Akehurst, Afonso e Gonçalves (2012) reavaliaram os fatores determinantes para o comportamento de consumo ecologicamente consciente e para o comportamento de compra verde, analisando fatores sócio demográficos e psicográficos. O resultado indicou que variáveis psicológicas são mais relevantes do que variáveis demográficas na explicação do comportamento de consumo e no comportamento de compra.

González, Felix, Carrete, Centeno e Castaño (2015) tiveram como objetivo segmentar o mercado mexicano com base em fatores sócio demográficos, além de valores sociais e percepção de efetividade de comportamento ecológico, verificando também como a amostra de um país em desenvolvimento se comporta em comparação às amostras de países desenvolvidos, utilizando a literatura anterior para tal. Encontrou-se, primeiramente, que a amostra mexicana não obteve resultados diferentes das amostras desenvolvidas. Por fim, defende-se que gestores de marketing e criadores de políticas públicas voltadas ao meio ambiente devem considerar

questões ligadas a atitudes e valores dos consumidores, a fim de transformar a atitude consciente em comportamento consciente.

Conforme exposto por Nair (2015), diversos estudos foram realizados para o melhor entendimento da consciência ambiental no consumo. O autor realizou um levantamento bibliográfico sobre o assunto, e levantou diversos pontos relevantes para a pesquisa na área. Foi evidenciado, através desse levantamento, que fatores sócio demográficos, como idade, gênero, renda, educação e local de domicílio não são variáveis relevantes para a identificação de um consumidor ambientalmente consciente (Nair, 2015). Esse relato vai ao encontro dos resultados de Tantawi et al. (2009), Diamantopoulos, Bohlen e Schlegelmilch (1994) e Lages e Vargas Neto (2002). Evidencia-se, portanto, a necessidade da utilização de novos parâmetros e construtos para avaliar a consciência e o comportamento ecológico de consumo.

Straughan e Roberts (1999) também observaram a influência de variáveis demográficas e psicológicas na consciência ambiental de consumidores, e também encontraram relações fracas entre as variáveis demográficas e a consciência ambiental, porém identificaram fortes indícios da influência de variáveis psicológicas. Seu estudo resultou em no questionário nomeado *Ecologically conscious consumer behavior* (ECCB), ou Comportamento de consumo ecologicamente consciente. O instrumento foi testado no Brasil por Lages e Vargas Neto (2002), e demonstrou bom poder de predição no que tange o comportamento consciente de consumidores. Akehurst, Gonçalves e Gonçalves (2012) apoiam também a ideia de que variáveis intrínsecas ao consumidor são mais relevantes para a análise de sua consciência e seu comportamento ecológico do que variáveis demográficas, reaplicando o estudo de Straughan e Roberts 13 anos depois. Os autores também reafirmam a veracidade dos resultados do ECCB quanto instrumento para medida de comportamento ecológico.

Diante dos estudos expostos, pode-se inferir a necessidade de se identificar variáveis internas ao consumidor que influenciem a consciência e o consumo consciente. A utilização de valores humanos como preditores de comportamento ecológico, portanto, se torna relevante para as pesquisas sobre consciência e comportamento ecológico. Conforme exposto por Balderjahn (1988) e por McCarty e Shrum (2001), diferentes motivações e benefícios que regem a consciência ambiental implicam em diferentes antecedentes e preditores de comportamento, que podem variar entre atitudes, conhecimentos de impactos, valores pessoais, normas, entre outros.

Especificamente sobre a influência de valores na consciência ambiental de consumo, Dembkowski (1998) foi o primeiro a estudar este construto como preditor de comportamento e consciência ambiental, utilizando o modelo de valores e atitudes (Dembkowski, 1998). O autor

conclui que valores possuem uma ligação relevante com a consciência ambiental, e que mais estudos deveriam ser realizados sobre o tema. Chan e Lau (2000) estudaram a influência de valores culturais, afeto ecológico e conhecimento ecológico no comportamento de compra de consumidores chineses. Encontrou-se uma relação moderada entre valores culturais e comportamento de compra consciente, e uma relação forte entre valores culturais e afeto ecológico, evidenciando a importância que o construto de valores possui para o estudo de consciência ambiental.

Riley e Kohlbacher (2015) também pesquisaram sobre a influência de valores na consciência ambiental, porém com foco nos consumidores idosos do Japão e do Reino Unido. Os resultados da pesquisa corroboram com os achados anteriores, mostrando que valores humanos são bons preditores de consciência e comportamento ambientais. Além disso, os autores atestam sobre a importância de estudos sobre o tema nos dias de hoje, quando o consumo exacerbado deve ser posto em pauta.

Pinto et al. (2011) estudaram o consumo responsável de água no Brasil, utilizando como variáveis independentes valores humanos advindos da teoria de Rokeach (1973). Os autores encontraram que estes valores influenciam o consumo consciente de maneira forte, assim como os hábitos de desperdício. Os valores de conformidade foram os mais fortes na relação com a consciência ambiental. Os autores ainda apoiam, como agenda de pesquisa, o estudo em outros contextos e com outros tipos de consumo ecologicamente consciente utilizando a teoria de Schwartz (1992), a fim de comparação de resultados. Tal orientação de Pinto et al. (2011) é um dos motivadores da presente pesquisa: observar como valores humanos, assim como o julgamento formado e o significado atribuído pelo consumidor se relacionam com a consciência ambiental para identificar diferenças e semelhanças entre consumidores de livros, no que tange sua preferência pelos livros eletrônicos, em outras palavras, sua preferência pela adoção destes.

Ligando apenas algumas das variáveis mencionadas acima, apenas um artigo foi encontrado fazendo o *link* consciência ambiental e a preferência entre os dois tipos de livros. Bansal (2010) pesquisou como consciência ambiental, aspectos de personalidade e utilização anterior impactam na compra de *e-books*. Foi encontrado que a consciência ambiental diminui a preferência por livros impressos, aumentando assim a propensão de aquisição de livros eletrônicos. Foi também evidenciada a influência de aspectos de personalidade tanto na preferência por livros impressos quanto por livros eletrônicos. Esses resultados mostram a relevância do tipo de estudo, e também a necessidade de mais estudos que avaliam a influência de fatores ecológicos e cognitivos no objeto de estudo citado.

Tendo em vista todos os argumentos apresentados nesta seção, principalmente os estudos de Bansal (2010) e Pinto et al. (2011), assim como as críticas aos estudos existentes sobre a adoção de livros eletrônicos apresentadas por Read, Robertson e McQuilken (2011), e também a sugestão de Alfinito, Nepomuceno e Torres (2012) de utilização de valores humanos, julgamento e significado como variáveis independentes em produtos ainda não explorados, na seção seguinte são apresentados os modelos teóricos da pesquisa que serão testados no presente estudo, assim como as hipóteses delimitadas pela literatura.

2.5. Modelo Teórico e Hipóteses de Pesquisa

O modelo de pesquisa apresentado a seguir se propõe, baseado na literatura existente e nas lacunas apresentadas, a servir como uma alternativa para a análise do consumidor de livros eletrônicos, objetivando avalia-los no que tange valores humanos, julgamentos realizados, significados dados e consciência ambiental. Conforme apresentado nas seções anteriores, a necessidade de estudos que utilizem construtos intrínsecos e cognitivos por parte do cliente foi evidenciada, tornado o presente estudo relevante tanto na área acadêmica quanto na praticidade gerencial.

Conforme demonstrado na seção 2.1, a escolha por *e-books* gira em torno da adoção de novas tecnologias, fazendo com que o presente estudo se torne uma pesquisa dessa natureza. Sendo assim, de maneira semelhante ao realizado por Venkatesh e Bala (2008), será utilizado um modelo adaptado do TAM a fim de identificar as diferenças e semelhanças entre os consumidores, utilizando fatores intrínsecos a eles: valores humanos, julgamento, significado e consciência ambiental. Para tal, assim como foi feito no TAM2 de Venkatesh e Bala (2008), partir-se-á do princípio que as variáveis internas (fatores intrínsecos) influenciam a utilidade percebida e a facilidade de uso percebida, que por sua vez levam a intenção de uso. A figura 5 mostra a disposição gráfica do modelo final da presente pesquisa.

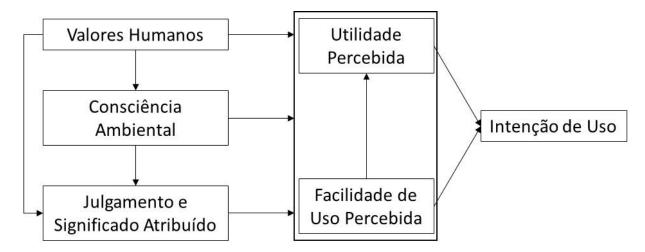


Figura 5: Modelo teórico da pesquisa.

Observa-se pelo modelo relações de variáveis já descritas na literatura, mas que não foram ainda testadas com o intuito de explicar comportamento de adoção de tecnologias. Alfinito, Nepomuceno e Torres (2012), a partir de Allen e Ng (1999), identificaram a influência de valores humanos na formação de julgamentos e significados de produtos, e Pinto et al. (2011) identificaram a influência de valores humanos na consciência ambiental dos consumidores. Observa-se também que as variáveis valores humanos e consciência ambiental serão testadas tanto como preditores diretos da utilidade percebida e da facilidade de uso percebida, quanto mediadas pelos julgamentos e significados atribuídos pelo consumidor.

A partir da figura 6 e do exposto na revisão bibliográfica, algumas hipóteses de pesquisa foram delineadas e testadas com os dados coletados. Pela primeira hipótese foi testada a relação entre valores humanos e consciência ambiental. De acordo com o estudo de Pinho et al. (2011), valores humanos influenciam a consciência ambiental e o comportamento das pessoas, e tal afirmação foi testada no presente estudo no contexto do consumo de livros eletrônicos. Tal afirmação é defendida também por McCarty e Shrum (2001), quando os autores afirmam que valores pessoas são preditores de atitudes e comportamentos ambientalmente conscientes. A fim de mensurar a variável consciência ambiental, os seis fatores extraídos do estudo de Straughan e Roberts (1999) serão considerados como bases da consciência ambiental. Tem-se, portanto:

Hipótese 1: Valores humanos influenciam os fatores de consciência ambiental do consumidor.

Ainda no estudo de Pinho et al. (2011), os autores encontraram também que alguns valores são mais relevantes nesse tipo de análise do que outros. Como resultado do estudo, encontrou-se que valores ligados à conformidade e à propensão a mudança possuem relações positivas com a consciência ambiental, e que valores voltados a questões sociais estão mais ligados à consciência ambiental do que valores voltados a questões individuais (PINTO et al., 2011). Como os autores utilizaram a teoria de valores de Rokeach (1973), algumas nomenclaturas se diferenciam da teoria de valores humanos de Schwartz et al. (2012), e o presente estudo pretende replicar os resultados de Pinto et al. (2011) para o contexto de livros eletrônicos e para a teoria de Schwartz, além de utilizar os fatores de Straughan e Roberts (1999) formando o construto consciência ambiental. Sendo assim, propõe-se as seguintes hipóteses:

H1a: Valores humanos voltados ao foco social influenciam positivamente os fatores de consciência ambiental do consumidor.

H1b: Valores humanos voltados ao foco individual influenciam negativamente os fatores de consciência ambiental do consumidor.

Também em relação aos valores humanos, e baseando-se nos modelos de Allen e Ng (1999), Alfinito e Torres (2012) e Alfinito, Nepomuceno e Torres (2012), pode-se entender que esta variável possui influência no julgamento e no significado atribuídos ao produto pelos consumidores. Tal relação foi testada no presente estudo no mercado de *e-books*. De forma semelhante, espera-se também que a consciência ambiental influencie essa formulação de julgamento e significado, pois, assim como os valores humanos, essa variável possui relevância no processo cognitivo do consumidor, conforme exposto anteriormente. Portanto, tem-se que:

H2: Valores humanos influenciam o desenvolvimento de julgamento e significado de consumidores de livros eletrônicos.

H3: Fatores de consciência ambiental influenciam o desenvolvimento de julgamento e significado de consumidores de livros eletrônicos.

As hipóteses seguintes estão relacionadas à adoção de tecnologia em si. Espera-se que as três variáveis influenciem as percepções de uso e de utilidade do produto, assim como no modelo TAM2 proposto por Venkatesh e Bala (2008). De acordo com os autores, variáveis intrínsecas devem ser levadas em conta como fatores preditores do modelo TAM convencional, pois influenciam na facilidade de uso percebida e na utilidade percebida em relação ao produto,

tornando uma pessoa mais propensa (ou menos propensa) a aderir a determinada tecnologia. O estudo de Bansal (2010) também leva a crer que a variável consciência ambiental possui influência na adoção de novas tecnologias. Alfinito, Nepomuceno e Torres (2012) defendem a utilização de julgamento e significado para estudar comportamento de consumo. Sendo assim, será verificada a influência desses fatores na adoção de tecnologias.

A partir do proposto, e apesar da lacuna literária ligando os temas valores humanos e adoção de tecnologia, espera-se que valores humanos ligados à abertura a mudança sejam preditores fortes de comportamento positivo em relação à adoção de tecnologia, enquanto valores humanos ligados à conservação sejam preditores fortes, porém negativos. Tal afirmação se liga ao fato de pessoas que sejam abertas a mudanças em seu cotidiano estariam mais receptivas à utilização de produtos de novas tecnologias. Tem-se, portanto, a partir da hipótese 4, que:

H4: Valores humanos influenciam a percepção de facilidade de uso e de utilidade de livros eletrônicos.

H4a: Valores humanos voltados à abertura a mudança influenciam positivamente a percepção de facilidade de uso e de utilidade de livros eletrônicos.

H4b: Valores humanos voltados à conservação influenciam negativamente a percepção de facilidade de uso e de utilidade de livros eletrônicos.

H5: Os fatores de consciência ambiental influenciam positivamente a percepção de facilidade de uso e de utilidade de livros eletrônicos.

H6: Os fatores de julgamento e significado atribuídos aos livros eletrônicos influenciam a percepção de facilidade de uso e de utilidade destes.

As demais relações descritas nas figuras 5 e 6 constituem as relações estabelecidas por Davis (1989) para o TAM. Como essas relações também foram testadas, tanto para o mercado de livros eletrônicos quanto para o mercado brasileiro, cabe então a delimitação de hipóteses de pesquisa para tais relações. Vale ressaltar que a variável comportamento de uso não foi testada nessa pesquisa, devido a sua difícil mensuração, já que o instrumento da pesquisa, conforme será mostrado no capítulo de método, não contém questões relacionadas ao comportamento dos consumidores. Sendo assim:

H7: Facilidade de uso percebida de livros eletrônicos influencia positivamente a utilidade percebida destes;

- H8: Facilidade de uso percebida de livros eletrônicos influencia positivamente a intenção de uso destes;
- H9: Utilidade percebida de livros eletrônicos influencia positivamente a intenção de uso destes;

Assim, a presente pesquisa conta com nove hipóteses e quatro sub hipóteses que foram testadas com base nos dados adquiridos. A figura 6 mostra o modelo da pesquisa juntamente com as hipóteses desenvolvidas.

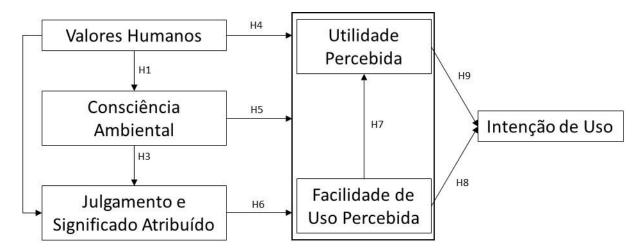


Figura 6: modelo final e hipóteses de pesquisa.

3. MÉTODO

A fim de atingir os objetivos descritos na seção anterior, a presente pesquisa, de natureza quantitativa e descritiva, utilizou um instrumento de coleta de dados, na forma de questionário, a fim de observar e identificar relações entre diversos construtos por meio de um levantamento de dados. Esta seção trata dos procedimentos metodológicos que foram aplicados à presente pesquisa. A primeira subseção apresenta o instrumento que foi utilizado na coleta de dados; a segunda subseção trata dos participantes da pesquisa, ou seja, sua quantidade e seleção; por fim, a terceira trata dos procedimentos de coleta e análise de dados.

Na formulação do instrumento de pesquisa, foi identificada a necessidade de uma tradução e posterior validação de uma escala para as variáveis originadas no TAM, pois nenhuma escala existente na língua portuguesa supriria as necessidades dessa pesquisa. Sendo assim, além do método dos objetivos descritos anteriormente, a seguir estão também descritos os passos para a validação dessa escala.

3.1. Participantes da pesquisa

Durante a coleta de dados realizada em outubro de 2015, ao todo 465 questionários respondidos foram coletados, sendo que nove deles foram excluídos para análises posteriores por estarem em sua maioria em branco. Sendo assim, 456 questionários foram utilizados para a presente pesquisa. A seguir, são apresentados os dados desses respondentes.

Com relação ao sexo, 281 dos respondentes eram do sexo feminino (61,6%), enquanto 175 do sexo masculino (38,4%). Em relação à idade, 35,3% pertenciam a faixa de 18 a 25 anos, 30% a faixa de 26 a 35 anos, 12,1% a faixa de 36 a 45 anos, e o restante (21,1%) tinham 46 anos ou mais. Em relação à escolaridade, 30,8% dos respondentes válidos possuíam pósgraduação completa, e 46,9% possuíam ensino superior completo, enquanto 19,5% possuíam ensino médio completo. 2,9% dos casos possuíam ensino médio ou fundamental incompletos. Por fim, com relação à renda da família do respondente, 34% indicaram uma renda entre R\$ 790,00 e R\$ 5.000,00 reais, 26,9% uma renda entre R\$ 5.001,00 e R\$ 10.000,00 reais, 23,9% entre R\$ 10.001,00 e R\$ 20.000,00 reais, e o restante (15,2%) indicou uma renda maior que R\$ 20001,00 reais. Esses dados demonstram uma amostra balanceada.

3.2. Instrumento

Primeiramente, foi necessária a realização de uma tradução reversa e validação de instrumento para os construtos relacionados ao TAM, a saber: facilidade de uso e utilidade percebidas e intenção de uso. Conforme identificado anteriormente, por falta de um instrumento que englobasse as variáveis contidas no TAM na língua portuguesa, houve a necessidade da realização de tradução e validação para a língua portuguesa de um instrumento voltado para a questão. Isso se deu pois, conforme exposto no referencial teórico, o TAM foi criado para a avaliação de aceitação de tecnologia em ambientes de trabalho, e sua utilização como modelo para consumo ainda não possui uma escala na língua portuguesa.

Por se tratar de uma escala já voltada para o consumo e já ter sido validada originalmente sobre um tema relacionado a livros eletrônicos, *e-readers*, a escala de Read, Robertson e McQuilken (2011) foi selecionada para a presente pesquisa. Os autores ainda utilizam outras variáveis em sua pesquisa, porém foram selecionadas apenas as questões referentes às variáveis facilidade de uso e utilidade percebidas, além de intenção de uso, visto que as demais variáveis estudadas por estes autores não foram incluídas no modelo teórico da presente pesquisa.

A tradução do instrumento original foi feita seguindo instruções de Smith, Bond e Kagitcibasi (2006). Sendo assim, primeiramente o instrumento original passou por uma etapa de tradução reversa, que consiste em duas etapas: na primeira, o instrumento original é traduzido por uma pessoa bilíngue para a língua em que se deseja no final; na segunda etapa, o instrumento obtido é traduzido de volta para a língua original por outra pessoa bilíngue. Após essas etapas, a tradução obtida no final é comparada ao instrumento original, e, dependendo da intensidade de diferenças, o instrumento deve passar novamente pelo processo. Na presente pesquisa, o instrumento de Read, Robertson e McQuilken (2011) foi traduzido por três pessoas diferentes, e retraduzido por mais três pessoas. Os resultados foram semelhantes para todos os onze itens, não contendo diferenças relevantes entre as traduções, nem entre traduções e instrumento original.

Após a tradução, o instrumento já adaptado para a língua portuguesa passou por análises semântica e de juízes, conforme recomendação de Pasquali (1999) para análise teórica. Sendo assim, primeiramente, a análise de juízes foi realizada, onde cada um deveria indicar a qual fator (facilidade de uso percebida, utilidade percebida ou intenção de uso) cada item está contido, em seu entendimento. Foram selecionados cinco juízes para o processo, e nenhum item foi identificado como problemático, ou seja, todos eles apresentaram pelo menos oitenta por

cento de acertos entre os juízes, não havendo assim a necessidade de exclusão ou nova tradução, conforme orientação de Pasquali (1999). Após a avaliação de juízes, o instrumento passou por uma análise semântica, sendo respondido por trinta e cinco pessoas, a fim de identificar dificuldade de entendimento no momento de resposta. Como o instrumento foi respondido por esta amostra e nenhum sinal de mau escrita ou mau entendimento foi identificado, o instrumento foi então anexado ao instrumento final da pesquisa.

O instrumento final utilizado na presente pesquisa foi um questionário formulado utilizando-se diversos instrumentos menores, a fim de conter fatores para a observação de todos os objetivos descritos nesta pesquisa. Portanto, foram necessários instrumentos que contenham medições dos construtos valores humanos, julgamento, significado e consciência ambiental, além das variáveis do modelo TAM, já mencionadas na subseção anterior.

Para a variável valores humanos, foi utilizada o PVQ-RR, validado por Torres, Schwartz e Nascimento (2015) para o Brasil do original de Schwartz et al. (2012), para a teoria refinada de valores humanos. O instrumento conta com 57 itens, três para cada um dos 19 valores humanos medidos na teoria. Os fatores encontrados por Torres, Schwartz e Nascimento (2015) se relacionam às dimensões do modelo de Schwartz et al. (2012): autotranscedência (AT), abertura à mudança (AM), autopromoção (AP) e conservação (CV).

O julgamento e o significado atribuídos ao produto foram medidos pela Escala de Julgamento e Significado de Produto, validada por Alfinito, Nepomuceno e Torres (2012), composta por 20 itens para avaliar o tipo de julgamento e o significado atribuído ao produto pelo respondente, totalizando quatro fatores: julgamento afetivo (JA) e fragmentado (JF), além de significado simbólico (SS) e utilitário (SU), essa escala também obteve bons índices de confiabilidade, conforme exposto no quadro 1.

Para a variável consciência ambiental foi utilizada a *Ecologically conscious consumer behavior*, ou simplesmente ECCB, de Straughan e Roberts (1999), adaptada para o contexto brasileiro por Lages e Vargas Neto (2002). Os autores adaptaram a escala original em uma pesquisa na cidade de Porto Alegre, e encontraram resultados satisfatórios quanto à medição de consciência e comportamento ecológico dos consumidores, sendo assim um instrumento adequado para a presente pesquisa, visto que o original foi revalidado em uma pesquisa mais recente, elaborada por Akehurst, Gonçalves e Gonçalves (2012). A escala conta com 24 itens, divididos em seis dimensões: produto (Prod), reciclagem e reutilização (RR), alimentação e saúde (AS), hábitos domésticos (HD), ação de mudança (AM) e consumo de energia (CE). Conforme atestado anteriormente, espera-se que essas dimensões influenciem na percepção de utilidade e facilidade de uso de livros eletrônicos, e posteriormente na utilização destes.

Para a percepção de facilidade de uso (FUP) e de utilidade do produto (UP), além da intenção de uso (IU), variáveis essas do Modelo de Aceitação de Tecnologia (TAM) (Davis, 1989), foi utilizado o instrumento citado anteriormente, originado de Read, Robertson e McQuilken (2011). Conforme descrito anteriormente neste subtópico, o instrumento passou por processo de retradução e validação semântica, e conta com onze itens para as três variáveis em questão. A tabela 1 mostra de maneira resumida os instrumentos utilizados para a formulação do instrumento final.

Tabela 1: resumo dos instrumentos utilizados.

Construto	Instrumento Utilizado	Referência	Escala	Alfas
Valores	PVQ-RR	Torres, Schwartz	Tipo Likert de 6 pontos, de	AT – 0,89
Humanos	,	e Nascimento	"Não se parece nada	CV - 0.88
		(2015);	comigo" a "Se parece	AP - 0.84
		Schwartz et al.	muito comigo".	AM - 0.82
Informanto o	Escala de	(2012).	Time I illust de 6 mentes de	CC 0.01
Julgamento e	250414 40	Alfinito,	Tipo Likert de 6 pontos, de "Discordo Totalmente" a	SS - 0.81 JF - 0.81
Significado	Julgamento	Nepomuceno e		
	e C::6:1-	Torres (2012).	"Concordo Totalmente".	JA - 0.74
	Significado			SU - 0.78
	do Produto	G. 1	m: x :1 . 1 . 5	D 1 0.70
Consciência	ECCB	Straughan e	Tipo Likert de 5 pontos, de	Prod - 0.79
Ambiental		Roberts (1999);	"Nunca" a "Sempre".	RR - 0.79
		Lages e Vargas		AS - 0.78
		Neto (2002);		HD - 0.66
		Akehurst,		AM - 0.51
		Gonçalves e		CE - 0.73
		Gonçalves		
		(2012).		
Facilidade de	TAME -	Read, Robertson	Tipo Likert de 7 pontos, de	FUP – 0,94
Uso Percebida,	Validação	e McQuilken	"Discordo Totalmente" a	UP - 0.94
Utilidade		(2011).	"Concordo Totalmente".	IU - 0.97
Percebida e				
Intenção de Uso				

Ao todo, o instrumento contou com 112 itens originados das quatro escalas citadas, mais 4 questões para a obtenção de dados demográficos (idade, sexo, renda mensal da família, escolaridade). Também foram incluídos itens a preferência do consumidor por livros eletrônicos, o meio com que esse consumidor utiliza livros eletrônicos, e, finalmente, uma pergunta indicando o grau de sinceridade do respondente nas respostas dadas. Ao total, o instrumento contou com 123 itens transcritos no instrumento final, e pode ser analisado no apêndice 1 dessa pesquisa. A seguir, são apresentados os procedimentos de coleta e análise dos dados.

3.3. Procedimento de coleta e análise de dados

O instrumento final foi disponibilizado na plataforma Typeform durante o mês de outubro de 2015, por 29 dias consecutivos. A amostragem foi não-probabilística por conveniência e autogerada, conduzida através de divulgação pessoal direta e indireta por diversos meios de comunicação. O link que levava ao instrumento foi disponibilizado na rede social Facebook em diversos grupos de discussão ligados ao tema livros eletrônicos, e, por se tratarem de grupos com muitos membros, a coleta pôde ser realizada apenas no mês de outubro.

Após a coleta de dados, foram realizadas, primeiramente, as análises relativas à validação do instrumento de aceitação de tecnologia, a fim de verificar a validade estatística da escala traduzida e validada semanticamente. Para tal, foi realizada uma análise fatorial exploratória dos itens, a fim de identificar os fatores ou construtos aos quais cada item da escala pertence, simplificando assim as análises posteriores (Ho, 2006; Hair, Black, Babin & Anderson, 2010).

Para a avaliação das hipóteses de pesquisa, serão realizados diversos testes a fim de testar as relações contidas nas nove hipóteses de pesquisa. Como as hipóteses descritas denotam relações de predição entre os construtos, estas foram testadas através da observação das correlações existentes e de regressões lineares obtidas posteriores. Segundo Field (2009), uma correlação entre duas variáveis identifica uma relação forte ou fraca entre elas, enquanto a regressão identifica a intensidade com a qual uma variável independente prediz uma dependente. Além dessas, foram realizadas posteriormente análises de mediação e moderação entre diversas variáveis e a variável dependente do estudo – intenção de uso. Os resultados obtidos através dessas análises foram evidenciados no capítulo a seguir.

4. RESULTADOS

Nessa seção são apresentados os resultados encontrados na pesquisa realizada. O capítulo se divide em três seções. A primeira aborda a verificação de evidências de validade da escala de Read, Robertson e McQuilken (2011) para o Brasil e para o produto livros eletrônicos, por meio de uma análise fatorial exploratória. A segunda envolve a verificação das nove hipóteses de pesquisa, descritas no capítulo 2. Por fim, a terceira subseção aborda outras relações testadas entre as variáveis, a fim de se desenhar mais claramente o modelo final da pesquisa.

4.1. Evidências de validade da Escala de Aceitação de Livros Eletrônicos para o Brasil

Como descrito na subseção 3.1, o instrumento original de Read, Robertson e McQuilken (2011) passou pelos processos de validação teórica, segundo instruções de Pasquali (1999), não sendo necessária nenhuma alteração anterior às análises estatísticas. Por fim, foi submetido a análise fatorial exploratória, a fim de avaliar as cargas dos fatores envolvidos e a fatorabilidade da escala em si. A análise inicial identificou apenas dois fatores e uma variância explicada de 76,15%, porém, a fim de encontrar uma variância explicada maior e melhor identificar a teoria do TAM de Davis (1989), foi realizada uma segunda rodada de análises, definindo como três o número de fatores.

Para a verificação das evidências de validação da escala de aceitação de tecnologias foi conduzida uma análise fatorial exploratória com extração pelo método de eixos principais – principal axis factoring (PAF), com rotação ortogonal varimax, segundo orientações de Ho (2006) para o tipo de variáveis envolvidas nesta análise. O gráfico de sedimentação de autovalores é apresentado na figura 7. Observa-se na figura também a formação de dois fatores significativos, porém a mesma justificativa teórica é utilizada para a utilização de três fatores.

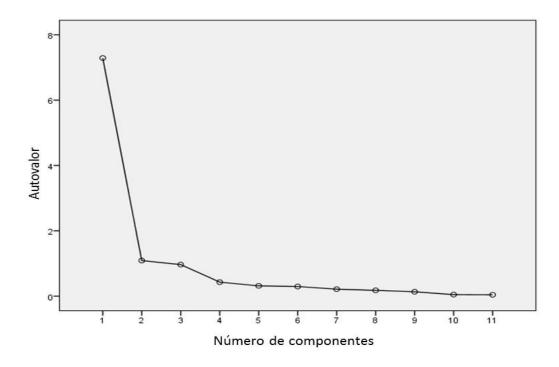


Figura 7: Gráfico de sedimentação de autovalores na escala de aceitação de tecnologia.

Primeiramente, a análise foi conduzida com todos os onze itens contidos na pesquisa original, porém o item "Utilizar um e-book me permite ler em mais localidades" apresentou alta carga fatorial dividida entre dois fatores, sendo necessária assim sua remoção (Ho, 2006; Hair et al., 2010). Após a remoção do item descrito, a análise foi refeita e, mesmo com a remoção de um item, a variância explicada dos três fatores encontrados foi maior em comparação à primeira: 84,94% na primeira tentativa, enquanto na segunda o resultado foi de 87,64%.

Ho (2006) atenta para a necessidade de avaliar alguns pressupostos antes de observar se a amostra está apta a receber uma análise fatorial. Primeiramente, o teste KMO teve valor de 0,89, considerado alto e satisfatório para análises fatoriais. Além disso, o teste de Bartlett obteve significância, mostrando a capacidade da amostra de servir de base para as análises a seguir. Por fim, as comunalidades (h²) mostraram cargas maiores que 0,5. Todos esses resultados apontam que a amostra e os itens obtidos são aptos a receberem análises fatoriais (Ho, 2006). Outra análise realizada foi o cálculo do alfa de cronbach, a fim de avaliar a confiabilidade dos fatores da escala. Os resultados descritos estão ilustrados de maneira resumida na tabela 2.

Os fatores indicados na análise fatorial vão ao encontro da escala de Read, Robertson e McQuilken (2011), conforme proposto anteriormente. O Fator 1 envolve os itens relacionados

à variável facilidade de uso percebida; o segundo fator, utilidade percebida; por fim, o terceiro e último fator apresenta os itens relacionados à variável intenção de uso.

Tabela 2: resumo da análise fatorial realizada.

Item	Fator 1	Fator 2	Fator 3	h²
Eu considero que um e-book seja fácil de utilizar.			0,75	0,71
Eu considero que um e-book seja amigável para o usuário.			0,72	0,71
Eu considero que um e-book não demanda esforços para utilização.			0,72	0,65
Um e-book me permite ler mais frequentemente.		0,80		0,84
Eu considero que um e-book me permite ler mais efetivamente.		0,78		0,78
Utilizar um e-book me permite ler mais.		0,82		0,89
Eu pretendo utilizar um e-book.	0,82			0,87
Eu estou propenso a usar um e-book.	0,87			0,92
Eu prevejo que utilizarei um e-book regularmente no futuro.	0,83			0,88
Eu pretendo usar um e-book regularmente no futuro.	0,83			0,92
Variância explicada por fator (%)	32,54	26,13	20,60	-
Variância total explicada (%)		79,27		-
Alpha de Cronbach	0,97	0,94	0,86	-

De maneira resumida, o instrumento obtido ao fim da análise fatorial exploratória realizada consta com dez itens ao total: quatro para a intenção de uso, três para a facilidade de uso percebida e três para a utilidade percebida. Sendo assim, as variáveis encontradas através dessa escala podem ser utilizadas para as análises de hipóteses descritas na presente pesquisa. Essas análises são descritas a seguir.

4.2. Verificação das hipóteses teóricas de pesquisa

Primeiramente, são apresentados, na tabela 3, os resultados referentes às variáveis utilizadas no presente estudo, obtidos na amostra estudada, a saber: os 19 valores humanos descritos na teoria de Schwartz et al. (2012); os seis fatores de consciência ambiental de Straughan e Roberts (1999), validados por Lages e Vargas Neto (2002); os dois fatores de julgamento e os dois fatores de significado, segundo Alfinito, Nepomuceno e Torres (2012). São apresentados média, desvio padrão e os alfas de cronbach de cada variável.

Tabela 3: Médias, desvios padrão e alfas de cronbach das variáveis estudadas

Escala	Fator	Média	DP	Alfa
Valores Humanos	Auto direção ação	5,18	0,71	0,57
	Segurança social	4,67	1,02	0,61
	Hedonismo	4,88	0,86	0,64
	Conformidade interpessoal	4,10	1,26	0,79
	Universalismo compromisso	5,08	0,94	0,72
	Poder domínio	3,20	1,27	0,72
	Humildade	4,30	0,98	0,49
	Universalismo natureza	4,06	1,30	0,88
	Face	4,52	1,07	0,70
	Estimulação	4,30	1,07	0,69
	Benevolência cuidado	5,23	0,79	0,77
	Poder recurso	3,02	1,28	0,80
	Segurança pessoal	4,92	0,81	0,54
	Universalismo tolerância	5,08	0,94	0,77
	Conformidade regras	4,39	1,27	0,83
	Auto direção pensamento	5,27	0,71	0,68
	Realização	4,50	1,04	0,67
	Tradição	3,26	1,43	0,81
	Benevolência dependência	5,27	0,80	0,68
Consciência Ambiental	Hábitos domésticos	3,46	0,82	0,51
	Alimentação e saúde	3,08	1,02	0,83
	Ação e mudança	3,15	1,05	0,71
	Produto	2,90	0,94	0,86
	Reciclagem e reutilização	2,71	0,98	0,88
	Consumo de energia	3,87	1,00	0,52
Julgamento e Significado	Julgamento afetivo	4,62	1,17	0,65
	Julgamento fragmentado	4,64	1,26	0,75
	Significado simbólico	2,73	1,38	0,69
	Significado utilitário	3,00	0,71	0,71

Como os valores dos alfas são considerados aceitáveis para as análises que serão mostradas, a seguir estão apresentadas as análises empíricas e inferenciais realizadas para a verificação das hipóteses teóricas apresentadas no capítulo 2 dessa dissertação. As hipóteses

são aqui relembradas para facilitar a análise e a explicação das mesmas. Vale salientar que, no caso das regressões realizadas, o poder de predição utilizado para avaliação foi o R² ajustado, pois o objetivo do modelo final dessa pesquisa é a generalização para a população total (Field, 2009). Os resultados das correlações extraídas das análises podem ser observados no apêndice 2 desta pesquisa. Os valores apresentados para as correlações, tanto para a hipótese 1 quanto para as demais ao longo da apresentação dos resultados, são todos significativos para p<0,05.

A primeira hipótese e as duas hipóteses advindas desta tratam da relação entre valores humanos e consciência ambiental. A hipótese subdividiu-se em duas, de acordo com a pesquisa de Pinto et al. (2011), quando os autores afirmam que valores ligados ao foco social influenciam de maneira positiva a consciência ambiental. Tem-se, portanto, adaptando a pesquisa mencionada para a teoria de valores de Schwartz et al. (2012):

Hipótese 1: Valores humanos influenciam a consciência ambiental do consumidor.

H1a: Valores humanos voltados ao foco social influenciam positivamente a consciência ambiental do consumidor.

H1b: Valores humanos voltados ao foco individual influenciam negativamente a consciência ambiental do consumidor.

Para testar tais hipóteses, foram realizadas diversas correlações a fim de verificar quais valores humanos da teoria de Schwartz et al. (2012), com seus valores centralizados, influenciam em qual fator de consciência ambiental, fatores estes retirados da escala de Lages e Vargas Neto (2002). As correlações foram realizadas utilizando o coeficiente de correlação de Pearson, pois todos os pressupostos paramétricos foram atendidos para tal análise, assim como as análises de regressão oriundas dos dados obtidos (Field, 2009), e os resultados são apresentados a seguir.

O primeiro fator a ser examinado foi o de hábitos domésticos. Analisando as correlações existentes entre os valores humanos endossados e este fator, observa-se relações significativas, no nível de confiança de 95% (p<0,05), em sete casos: segurança social (r=0,15), poder de domínio (r=-0,21), universalismo natureza (r=0,49), face (r=-0,14), poder sobre recurso (r=-0,28), segurança pessoal (r=0,12) e conformidade com as regras (r=0,11). Verificou-se que os valores de correlação dos valores humanos poder de domínio, face e poder sobre recurso eram negativos, enquanto os demais apresentaram valores positivos. Isso indica uma relação inversamente proporcional entre os três valores citados com a variável dependente, e uma relação diretamente proporcional para as quatro demais (Field, 2009).

A partir das relações apresentadas, uma regressão linear foi feita para avaliar o nível de influência entre valores humanos e consciência ambiental. Utilizando-se todos os valores que possuíam correlação significativa com a variável dependente, a explicação do modelo obtido foi de 28,2% (R² ajustado), porém apenas dois valores apresentaram significância no modelo: universalismo natureza e conformidade com as regras. Realizando-se outra regressão apenas com esses dois valores, obteve-se um poder de predição de 27,4%, com ambas as variáveis significativas. Os valores de todas as correlações realizadas entre valores humanos e consciência ambiental podem ser observados no apêndice 2 desta pesquisa, e os resultados da regressão descrita acima pode ser observado na tabela 4.

Tabela 4: Regressão linear entre Hábitos Domésticos e Valores Humanos.

Hábitos Domésticos	b	SE b	В	t
Constante	3,61	0,04		99,98**
Universalismo Natureza	0,36	0,03	0,51**	12,38**
Conformidade Regras	0,11	0,03	0,14**	3,42**
R ² ajustado: 0,274; F = 34,50*; * ₁	p<0,05; **p<0,01			

As mesmas análises foram realizadas para os demais cinco fatores da escala de Lages e Vargas Neto (2002). Para o fator de alimentação e saúde, onze valores mostraram correlações significativas (p<0,05), a saber: auto direção de ação (r=-0,10), poder sobre recurso (r=-0,23), face (r=-0,13), estimulação (r=-0,10), poder de domínio (r=-0,14), realização (-r=0,26), benevolência dependência (r=-0,12), segurança social (r=0,10), universalismo compromisso (r=0,11), universalismo natureza (r=0,55; p<0,01) e universalismo tolerância (r=0,11; p<0,05). A regressão linear apresentou um R² ajustado de 31,9% para as onze variáveis independentes, porém apenas duas apresentaram significância: universalismo natureza e estimulação. A nova regressão apresentou R² ajustado de 31,7% e coeficiente positivo para universalismo natureza, e um coeficiente negativo para estimulação. A tabela 5 mostra os resultados dessa regressão entre Alimentação e Saúde e Valores Humanos.

Tabela 5: Regressão linear entre Alimentação e Saúde e Valores Humanos.

Alimentação e Saúde	b	SE b	В	t			
Constante	3,26	0,04		73,92**			
Universalismo Natureza	0,48	0,03	0,056**	13,84**			
Estimulação	-0,09	0,04	-0,09**	-2,13*			
R ² ajustado: 0,317; F = 18,95*; *p<0,05; **p<0,01							

Em relação ao fator ação e mudança, onze valores mostraram-se significativos (p<0,05) em suas relações com esse fator: segurança social (r=0,11), universalismo compromisso (r=0,15), universalismo natureza (r=0,57), universalismo tolerância (r=0,10), conformidade com as regras (r=0,10), poder dominância (r=-0,19), face (r=-0,13), poder sobre recurso (r=-0,28), auto direção de pensamento (r=-0,10), realização (r=-0,29) e benevolência dependência (r=-0,12). A regressão inicial apresentou poder de predição de 33,2%, e apenas dois valores significativos: universalismo natureza e conformidade com as regras. Já a segunda regressão apresentou 34% de poder de predição, e coeficientes positivos para os dois valores citados. A tabela 6 mostra os resultados finais da regressão.

Tabela 6: Regressão linear entre Ação e Mudança e Valores Humanos.

Ação e Mudança	b	SE b	В	t			
Constante	3,40	0,04		76,74**			
Universalismo Natureza	0,51	0,03	0,57**	14,53**			
Conformidade Regras	0,13	0,04	0,14**	3,45**			
R ² ajustado: 0,340; F = 20,09*; *p<0,05; **p<0,01							

Em relação ao quarto fator, produto, a correlação realizada mostrou relações significativas (p<0,05) dessa variável com oito valores humanos: universalismo compromisso (r=0,10), universalismo natureza (r=0,61), poder dominância (r=-0,14), face (r=-0,15), poder sobre recursos (r=-0,31), auto direção de pensamento (r=-0,13), realização (r=-0,30) e benevolência dependência (r=-0,12). A regressão com todos os oito valores significativos apresentou R² ajustado de 38,4%, e relação significativa de dois valores humanos: universalismo natureza e poder sobre recursos. A regressão seguinte, apenas com os valores significativos na primeira, apresentou R² ajustado de 37,6%, e coeficiente positivo para o valor universalismo natureza, e coeficiente negativo para o valor poder sobre recursos. A tabela 7 ilustra esses achados.

Tabela 7: Regressão linear entre Produto e Valores Humanos.

Produto	b	SE b	В	t		
Constante	2,97	0,06		46,55**		
Universalismo Natureza	0,46	0,03	0,06**	13,82**		
Poder Recursos	-0,08	0,03	-0,11**	-2,68**		
R ² ajustado: 0,376; F = 33,89*; *p<0,05; **p<0,01						

O quinto fator, reciclagem e reutilização, apresentou correlações significativas (p<0,05) com nove valores humanos: universalismo compromisso (r=0,13), universalismo natureza (r=0,62), universalismo tolerância (r=0,12), poder dominância (r=-0,18), face (r=-0,13), poder sobre recursos (r=-0,30), auto direção de pensamento (r=-0,10), realização (r=-0,28) e benevolência dependência (r=-0,12). A primeira regressão apresentou R² ajustado de 37,7%, e significância de dois valores humanos: universalismo natureza e poder sobre recursos. A segunda regressão, apenas com essas duas variáveis, apresentou R² ajustado de 38,3%, e novamente coeficiente positivo para a variável ligada ao foco social, e coeficiente negativo para a variável ligada ao foco individual, como pode ser visto na tabela 8.

Tabela 8: Regressão linear entre Reciclagem e Reutilização e Valores Humanos.

Reciclagem Reutilização	b	SE b	В	t
Constante	2,78	0,07		42,33**
Universalismo Natureza	0,48	0,03	0,57**	14,07**
Poder Recursos	-0,09	0,03	-0,11**	-2,66**
R ² ajustado: 0,383; F = 29,34*; *	p<0,05; **p<0,01	·		·

Por fim, o sexto fator, consumo de energia, apresentou correlação significativa (p<0,05) com cinco valores humanos: segurança social (r=0,13), universalismo natureza (r=0,18), segurança pessoal (r=0,12) e conformidade com as regras (r=0,11), poder sobre recursos (r=-0,12). A regressão inicial apresentou um poder de predição de 4,4%, e apenas uma relação de causalidade significativa, do valor humano universalismo natureza. A nova regressão, apenas com essa variável, mostrou um R² ajustado de 2,8% e um coeficiente positivo para a variável, que está ligada ao foco social da teoria de Schwartz et al. (2012). A tabela 9 ilustra esses achados, enquanto o a tabela 10 resume os achados de todas as análises realizadas para a confirmação das hipóteses H1, H1a e H1b.

Tabela 9: Regressão linear entre Consumo de Energia e Valores Humanos.

Consumo de Energia	b	SE b	В	Т			
Constante	3,94	0,05		77,43**			
Universalismo Natureza	0,15	0,04	0,17**	3,60**			
R ² ajustado: 0,028; F = 12,98*; *p<0,05; **p<0,01							

Tabela 10: resumo dos achados relacionados à hipótese 1 da pesquisa.

Fator	Correlação positiva	Correlação negativa	Relações significativas pela Regressão	R ² ajustado
Hábitos Domésticos	Segurança Social Universalismo Natureza Segurança Pessoal Conformidade com as Regras	Poder de Domínio Face Poder sobre Recursos	Universalismo Natureza (+) Conformidade com as Regras (+)	27,1%
Alimentação e Saúde	Segurança Social Universalismo Compromisso Universalismo Natureza Universalismo Tolerância	Auto direção de Ação Poder sobre Recursos Face Estimulação Poder de Domínio Realização Benevolência Dependência	Universalismo Natureza (+) Estimulação (-)	31,7%
Ação de Mudança	Segurança Social Universalismo Compromisso Universalismo Natureza Universalismo Tolerância Conformidade com as Regras	Poder Dominância Face Poder sobre Recursos Auto Direção de Pensamento Realização Benevolência Dependência	Universalismo Natureza (+) Conformidade com as Regras (+)	33,9%
Produto	Universalismo Compromisso Universalismo Natureza	Poder Dominância Face Poder sobre Recursos Auto Direção de Pensamento Realização Benevolência Dependência	Universalismo Natureza (+) Poder sobre Recursos (-)	37,6%
Reciclagem e Reutilização	Universalismo Compromisso Universalismo Natureza Universalismo Tolerância	Poder Dominância Face Poder sobre Recursos Auto Direção de Pensamento Realização Benevolência Dependência	Universalismo Natureza (+) Poder sobre Recursos (-)	38,3%
Consumo de Energia	Segurança Social Universalismo Natureza Segurança Pessoal Conformidade com as Regras	Poder sobre Recursos	Universalismo Natureza (+)	2,8%

A segunda e a terceira hipótese da pesquisa se referem à influência de valores humanos e consciência ambiental na formação de julgamento e significado de livros eletrônicos, respectivamente:

H2: Valores humanos influenciam o desenvolvimento de julgamento e significado de consumidores de livros eletrônicos.

H3: Consciência ambiental influencia o desenvolvimento de julgamento e significado de consumidores de livros eletrônicos.

Para avaliar a relação relacionada à hipótese 2, foi realizada primeiramente a correlação entre os valores humanos e os quatro tipos de julgamento e significado da teoria de Allen e Ng (1999): julgamento afetivo ou fragmentado; significado simbólico ou utilitário. Com relação ao julgamento afetivo, sete valores mostraram correlação significativa, ou seja, p<0,05: hedonismo (r=0,12), universalismo compromisso (r=-0,14), poder dominância (r=0,10), universalismo natureza (r=-0,10), face (r=0,15), universalismo tolerância (r=-0,15) e realização (r=0,14). Já para o julgamento fragmentado, três valores foram identificados: segurança social (r=0,10), universalismo natureza (r=0,11) e segurança pessoal (r=0,18). Nota-se que, apesar da variável universalismo natureza aparecer como correlacionada com ambos os tipos de julgamento, ela possui correlação negativa com o julgamento afetivo e positiva com o julgamento fragmentado. Todos os valores apresentados de correlações possuem significância em p<0,05.

Em relação às correlações envolvendo o significado simbólico, dez valores apresentaram significância (p<0,05): auto direção de ação (r=-0,26), conformidade interpessoal (r=0,10), universalismo compromisso (r=-0,22), poder dominância (r=0,23), benevolência cuidado (r=-0,19), poder sobre recursos (r=0,23), segurança pessoal (r=-0,13), universalismo tolerância (r=-0,27), auto direção de pensamento (r=-0,24) e realização (r=0,23). Já para o significado utilitário, também foram dez valores correlacionados significativamente: auto direção de ação (r=-0,28), conformidade interpessoal (r=0,15), universalismo compromisso (r=-0,17), poder dominância (r=0,16), universalismo natureza (r=-0,11), poder sobre recursos (r=0,13), universalismo tolerância (r=-0,18), auto direção de pensamento (r=-0,22), realização (r=0,15) e benevolência dependência (r=-0,10). Os resultados de todas as correlações podem ser vistos no apêndice 2 desta pesquisa.

Foram realizadas oito regressões lineares a partir dos dados apresentados. Primeiramente, uma para cada tipo de julgamento ou significado, a fim de identificar quais relações de correlação podem ser identificadas como significativas em relação ao poder de predição. Posteriormente, novamente foi realizada uma regressão para cada tipo de julgamento ou significado, contendo apenas os valores humanos com poder de predição significativo, a fim de obter-se os poderes de predição dos modelos envolvidos.

Em relação ao julgamento afetivo, o modelo com os sete valores que se correlacionaram com a variável dependente identificou um R² ajustado de 3,9%, porém apenas duas relações de predição significativas: hedonismo e face. A segunda regressão, apenas com esses dois valores, apresentou R² ajustado de 3,4%, e ambas variáveis independentes com coeficientes positivos. Com relação ao julgamento fragmentado, a primeira regressão apresentou R² ajustado de 3,7%, e apenas o valor segurança pessoal apresentou significância na relação. Foi então realizada uma nova regressão, apenas com essa variável independente, e observa-se um poder de explicação de 2,5%. As tabelas 11 e 12 mostram essas regressões finais.

Tabela 11: Regressão linear entre Julgamento Afetivo e Valores Humanos.

Julgamento Afetivo	b	SE b	В	t
Constante	4,53	0,06		71,76**
Hedonismo	0,20	0,07	0,13**	2,69**
Face	0,22	0,06	0,16**	3,43**
R ² ajustado: 0,034; F = 8,41*; * _J	p<0,05; **p<0,01			

Tabela 12: Regressão linear entre Julgamento Fragmentado e Valores Humanos.

Julgamento Fragmentado	В	SE b	В	t		
Constante	4,46	0,07		59,18**		
Segurança Pessoal	0,36	0,10	0,17**	3,46**		
R ² ajustado: 0,025; F = 6,37*; *p<0,05; **p<0,01						

Com relação à formação de significado simbólico, a primeira regressão apresentou um R² ajustado de 15,1% e significância em três variáveis independentes: auto direção de ação, segurança pessoal e realização. A nova regressão com essas três variáveis apresentou poder de predição de 11,2%, e coeficientes negativos para a auto direção de ação e segurança pessoa, e coeficiente positivo para a variável realização. A tabela 13 mostra essa regressão final.

Tabela 13: Regressão linear entre Significado Simbólico e Valores Humanos.

Significado Simbólico	b	SE b	В	t
Constante	3,06	0,08		39,02**
Auto Direção Ação	-0,39	0,07	-0,25**	-5,36**
Segurança Pessoal	-0,15	0,08	-0,09*	-1,86*
Realização	-0,25	0,05	0,22**	4,73**
R^2 ajustado: 0,112; $F = 19,01^*$; *	p<0,05; **p<0,01			

Por fim, a primeira regressão com julgamento utilitário como variável dependente apresentou poder de predição de 11,4%, e significância em três valores: auto direção de ação, realização e benevolência dependência. A regressão realizada com essas três variáveis resultou em um R² ajustado de 9,2%, onde os valores auto direção de ação e benevolência dependência apresentaram coeficientes negativos, enquanto o valor realização apresentou coeficiente positivo. Observa-se que os valores humanos auto direção de ação e realização influenciam de maneira semelhante os dois tipos de significado, não evidenciando, portanto, diferenças entre eles. A tabela 14 mostra o resultado final de regressão, enquanto a tabela 15 apresenta um resumo dos achados relativos à hipótese de pesquisa H2.

Tabela 14: Regressão linear entre Significado Utilitário e Valores Humanos.

Significado Utilitário	b	SE b	В	t	
Constante	3,45	0,12		27,54**	
Auto Direção Ação	-0,52	0,10	-0,25**	-5,38**	
Realização	0,28	0,07	0,19**	4,03**	
Benevolência Dependência	-0,17	0,10	-0,08*	-1,65*	
R ² ajustado: 0,112; F = 15,46*; *p<0,05; **p<0,01					

Tabela 15: resumo dos achados relacionados à hipótese 2 da pesquisa.

Julg./Sig.	Valores Humanos correlacionados	Relações significativas pela Regressão	R ² ajustado
Julgamento Afetivo	Hedonismo Universalismo Compromisso Poder Dominância Universalismo Natureza Face Universalismo Tolerância Realização	Hedonismo (+) Face (+)	3,4%
Julgamento Fragmentado	Segurança Social Universalismo Natureza Segurança Pessoal	Segurança Pessoal (+)	2,5%

Significado Simbólico	Auto Direção de Ação Conformidade Interpessoal Universalismo Compromisso Poder Dominância Benevolência Cuidado Poder sobre Recursos Segurança Pessoal Universalismo Tolerância Auto Direção de Pensamento Realização	Auto Direção de Ação (-) Segurança Pessoal (-) Realização (-)	11,2%
Significado Utilitário	Auto Direção de Ação Conformidade Interpessoal Universalismo Compromisso Poder Dominância Universalismo Natureza Poder sobre Recursos Universalismo Tolerância Auto Direção de Pensamento Realização Benevolência Independência	Auto Direção de Ação (-) Realização (+) Benevolência Independência (-)	9,2%

Para avaliar a hipótese 3 da pesquisa, foram realizadas correlações entre os seis fatores de consciência ambiental (Lages & Vargas Neto, 2002) e os quatro tipos de julgamento e significado (Alfinito, Nepomuceno & Torres, 2012). Em relação ao julgamento afetivo, apenas o fator consumo de energia apresentou correlação significativa. Já ao julgamento fragmentado, todos os seis fatores apresentaram significância. Os resultados podem ser vistos no apêndice 2 desta pesquisa. Por fim, na formulação de significado, seja simbólico ou utilitário, nenhum fator apresentou correlação significativa, mostrando que, em relação a formação de significado, a consciência ambiental não possui relação ou influência.

A fim de determinar quais fatores de consciência ambiental possuem caráter de predição em relação à formação de julgamento, foram realizadas diversas regressões lineares. A primeira foi feita com julgamento afetivo como variável dependente, e apenas uma variável independente: consumo de energia, que apresentou correlação significativa. O modelo proposto apresentou R² ajustado de 1,2%, porém o fator consumo de energia não apresentou significância, não possuindo, portanto, força de predição em relação à formação do julgamento afetivo.

Também foi feita uma regressão para determinar quais fatores de consciência ambiental possuem poder de predição em relação à formação de julgamento fragmentado. Nesse caso, como todos apresentaram correlação significativa, todos os seis foram testados na primeira regressão. Apesar disso, apenas um fator apresentou significância no modelo proposto, que

possuiu 2,7% de poder de predição: hábitos domésticos. A última regressão realizada relacionada à hipótese 3, realizada apenas com o fator hábitos domésticos, apresentou R² ajustado de 3,2% e significância da variável independente, mostrando a força de predição da variável hábitos domésticos em relação à formação de julgamento fragmentado. A tabela 16 mostra o resultado da regressão realizada, e os resultados relacionados à hipótese 3 como um todo estão resumidos na tabela 17.

Tabela 16: Regressão linear entre Julgamento Fragmentado e Consciência Ambiental.

Julgamento Fragmentado	b	SE b	В	t
Constante	3,67	0,25		14,52**
Hábitos Domésticos	0,28	0,07	0,18**	3,99**
R ² ajustado: 0,032; F = 15,94*; *p<0,05; **p<0,01				

Tabela 17: resumo dos resultados encontrados relacionados à hipótese 3.

Julg./Sig.	Correlação Sig. Consciência Ambiental	Sig. Regressão	R ² ajustado
Julgamento Afetivo	Consumo de Energia	-	-
Julgamento Fragmentado	Hábitos Domésticos Alimentação e Saúde Ação e Mudança Produto Reciclagem e Reutilização Consumo de Energia	Hábitos Domésticos	3,2%
Significado Simbólico	-	-	-
Significado Utilitário	-	-	-

As hipóteses 4, 5 e 6 dizem respeito à influência das variáveis valores humanos, consciência ambiental e julgamento e significado nas percepções de facilidade de uso e de utilidade de *e-books*, portanto torna-se necessária a análise de correlações e regressões semelhantes às já realizadas para essas variáveis:

Hipótese 4: Valores humanos influenciam a percepção de facilidade de uso e de utilidade de livros eletrônicos.

Hipótese 5: Consciência ecológica influencia a percepção de facilidade de uso e de utilidade de livros eletrônicos.

Hipótese 6: Julgamento e Significado atribuídos aos livros eletrônicos influenciam a percepção de facilidade de uso e de utilidade destes.

As primeiras relações a serem testadas se referem à influência de valores humanos na percepção de facilidade de uso e de utilidade de livros eletrônicos. Foi realizada uma correlação contendo todos os valores humanos de Schwartz et al. (2012) juntamente com as duas variáveis da teoria de Davis (1989). Em relação à facilidade de uso percebida, quatro valores se mostraram correlacionados significativamente (p<0,05): auto direção de ação (r=0,13), segurança pessoal (r=0,12), auto direção de pensamento (r=0,11) e tradição (r=-0,14). Em relação à utilidade percebida, três valores apresentaram correlações significativas: auto direção de ação (r=0,18), estimulação (r=0,13) e auto direção de pensamento (r=0,10). As correlações obtidas podem ser observadas no apêndice 2.

A fim de avaliar a predição dos valores humanos em relação à percepção de facilidade de uso e utilidade de livros eletrônicos, foram realizadas regressões com as variáveis que apresentaram correlação significativa. Para avaliar a predição sobre facilidade de uso percebida, a regressão foi feita com os quatro valores listados acima que obtiveram correlações significativas. Essa regressão obteve um grau de predição de 3,5%, e dois valores apresentaram significância: segurança pessoal e tradição. Sendo assim, uma nova regressão foi feita apenas com essas duas variáveis. Obteve-se um R² ajustado de 3%, e significância para os dois valores humanos. A tabela 18 mostra o resultado dessa última regressão.

Tabela 18: Regressão linear entre Facilidade de Uso Percebida e Valores Humanos.

Percebida	В	SE b	В	t
Constante	5,46	0,10		53,63**
Segurança Pessoal	0,28	0,11	0,12*	2,55*
Tradição	-0,15	0,05	-0,15**	-3,02**

Uma nova regressão linear foi realizada utilizando valores humanos, desta vez com a variável dependente utilidade percebida. Essa primeira análise resultou em um poder de predição de 3,5%, e dois valores apresentaram significância: auto direção de ação e estimulação. A nova regressão envolveu esses dois valores, e obteve um poder de predição de 3,8% e significância para os dois valores humanos envolvidos, como pode ser observado na tabela 19.

Tabela 19: Regressão	linear entre	Hilidade	Percehida e	Valores Humanos
Tuveta 19. Kegressao	IIIIcai ciiuc	Utiliuaue	r ci cebiua e	varores riumanos.

Utilidade Percebida	b	SE b	В	t	
Constante	4,68	0,14		33,04**	
Auto Direção Ação	0,49	0,15	0,16**	3,36**	
Estimulação	0,19	0,10	0,10*	1,97*	
R ² ajustado: 0,038; F = 9,22*; *p<0,05; **p<0,01					

A partir do exposto em relação à influência de valores humanos e a facilidade de uso e a utilidade percebidas pelos consumidores na utilização de livros eletrônicos, pode-se afirmar que a variável não influencia de maneira relevante essas percepções.

A hipótese 5 discorre sobre a influência da consciência ambiental sobre as percepções de facilidade de uso e utilidade percebidas. Para analisar essa relação, os fatores obtidos da escala de Lages e Vargas Neto (2002) e na escala feita nesta pesquisa passarão, primeiramente, por uma análise de correlações a fim de avaliar quais fatores de consciência ambiental possuem relação com as variáveis dependentes. A correlação mostrou que apenas o fator consumo de energia possui correlação significativa ao p-valor de 0,05 (r=0,14 com a variável facilidade de uso percebida, e r=0,09 com a variável utilidade percebida) com ambas as variáveis dependentes. Esses resultados também podem ser observados no apêndice 2. Desta forma, as análises de regressão foram realizadas apenas com essa variável independente. Para a facilidade de uso percebida, a variável consumo de energia possui significância em sua explicação, porém apenas 1,9% de poder de predição, como mostra a tabela 20. Já para a utilidade percebida, não houve significância, o que mostra que nenhum fator de consciência ambiental influencia na utilidade percebida de *e-books*.

Tabela 20: Regressão linear entre Facilidade de Uso Percebida e Consciência Ambiental.

Facilidade de Uso Percebida	В	SE b	В	t
Constante	5,03	0,24		20,51**
Consumo de Energia	0,20	0,06	0,14**	3,11**
R ² ajustado: 0,019; F = 9,66*; *p<0,05; **p<0,01				

Os dados descritos acima mostram que os fatores de consciência ambiental não influenciam de maneira relevante as percepções de facilidade de uso e de utilidade de livros eletrônicos, variáveis do TAM de Davis (1989). Em questão de valores humanos, as correlações apontaram relações significativas, porém não no nível de predição. Porém, levando-se em conta a consciência ambiental, observa-se que a correlação apontou apenas o fator consumo de

energia como significativo, mostrando que o construto não possui relação com as variáveis dependentes estudadas.

A hipótese 6 da pesquisa avalia o papel de influência do julgamento e do significado atribuídos ao produto nas percepções de facilidade de uso e de utilidade. Através de uma correlação envolvendo os fatores obtidos com a escala construída nesta pesquisa e os fatores de julgamento e significado obtidos através da escala de Alfinito, Nepomuceno e Torres (2012), obteve-se que a variável julgamento fragmentado possui relação significativa (p<0,05) com ambas variáveis dependentes, a saber: r=0,14 com a variável facilidade de uso percebida, e r=0,19 com a variável utilidade percebida. Já a variável significado simbólico possui relação significativa com a facilidade de uso percebida (r=-0,12).

A partir dos achados obtidos na correlação, as regressões foram realizadas. Primeiramente, utilizando-se a variável dependente facilidade de uso percebida e as duas variáveis independentes correlacionadas, citadas anteriormente. O resultado dessa primeira análise não mostrou uma relação significativa entre a VD e o significado simbólico, portanto este foi retirado para a próxima regressão. Utilizando apenas o julgamento fragmentado, obtevese um modelo de poder de predição 1,3% e relação entre variáveis significativa. Foi feita também uma regressão para avaliar a predição do julgamento fragmentado sobre a utilidade percebida, obtendo-se 3,2% de poder de predição e relação significativa. Os resultados aqui obtidos mostram que o julgamento fragmentado é o único tipo de formação de pensamento do consumidor, nessa pesquisa estudado, que influencia a adoção de determinada tecnologia por parte deste, e ainda assim a relação de predição encontrada não suporta a hipótese 6 da pesquisa, sendo assim, portanto, considerada não confirmada. As tabelas 21 e 22 ilustram o descrito.

Tabela 21: Regressão linear entre Facilidade de Uso Percebida e Julgamento e Significado.

Facilidade de Uso Percebida	b	SE b	В	t	
Constante	5,17	0,24		21,87**	
Julgamento Fragmentado	0,13	0,05	0,12**	2,62**	
R ² ajustado: 0,013; F = 6,85*; *p<0,05; **p<0,01					

Tabela 22: Regressão linear	entre Utilidade Percebida	e Julgamento	e Significado.

Utilidade Percebida	b	SE b	В	t		
Constante	3,63	0,35		10,48**		
Julgamento Fragmentado	0,29	0,07	0,19**	4,03**		
R ² ajustado: 0,032; F = 16,23*; *p<0,05; **p<0,01						

Por fim, foram realizadas regressões lineares a fim de se obter um modelo final para cada uma das variáveis dependentes. Para tal, foram utilizadas as variáveis independentes que apresentaram significância nas regressões feitas anteriormente. Analisando a facilidade de uso percebida, os valores humanos segurança pessoal e tradição, além do julgamento fragmentado e do fator consumo de energia foram utilizados; já para a utilidade percebida, os valores humanos auto direção de ação e estimulação, além do julgamento fragmentado. Esses resultados também podem ser observados no apêndice 2.

A primeira regressão envolveu como variável dependente a facilidade de uso percebida. O modelo apresentou um R² ajustado de 5,7%, considerado baixo para predição de atitudes (Field, 2009). Já o segundo modelo apresentou um R² ajustado de 6,6%, também considerado baixo para as análises e relações estudadas. As tabelas 23 e 24 mostram esses resultados.

Tabela 23: Regressão linear do modelo final para influência em Facilidade de Uso Percebida.

b	SE b	В	t
4,29	0,33		12,88**
0,20	0,06	0,15**	3,08**
0,09	0,05	0,09*	1,80*
0,21	0,11	0,10*	1,94*
-0,15	0,05	-0,15**	-3,07**
	4,29 0,20 0,09 0,21	4,290,330,200,060,090,050,210,11	4,29 0,33 0,20 0,06 0,15** 0,09 0,05 0,09* 0,21 0,11 0,10*

Tabela 24: Regressão linear do modelo final para influência em Utilidade Percebida.

Utilidade Percebida	b	SE b	В	t		
Constante	3,43	0,36		9,45**		
Julgamento Fragmentado	0,27	0,07	0,18**	3,73**		
Auto Direção Ação	0,46	0,14	0,15**	3,23**		
Estimulação	0,22	0,10	0,11*	2,28*		
R ² ajustado: 0,066; F = 10,97*; *p<0,05; **p<0,01						

Por fim, as hipóteses 7, 8 e 9 relacionam as variáveis obtidas pela escala traduzida e avaliada neste trabalho, e traduzem as relações encontradas no TAM de Davis (1989). Deve-se analisar a influência da facilidade de uso percebida na utilidade percebida, tal como a influência dessas duas variáveis na intenção de uso. A correlação feita pode ser vista na tabela 25. Todas as três variáveis apresentaram correlações positivas entre si, mostrando que elas estão relacionadas umas às outras de maneira significativa. Basta, portanto, avaliar os graus de influência propostos pelas hipóteses.

H7: Facilidade de uso percebida de livros eletrônicos influencia a utilidade percebida destes:

H8: Facilidade de uso percebida de livros eletrônicos influencia a intenção de uso destes;

H9: Utilidade percebida de livros eletrônicos influencia a intenção de uso destes;

Tabela 25: Correlações entre as variáveis do TAM de Davis (1989).

	Facilidade de Uso Percebida	Utilidade Percebida	Intenção de Uso
Facilidade de Uso Percebida	1,000	0,617**	0,612**
Utilidade Percebida		1,000	0,687**
Intenção de Uso			1,000
*p<0,05; **p<0,01			

A partir dessas relações significativas, pôde-se realizar regressões para avaliar o grau de explicação que uma variável possui sobre a outra. Primeiramente, observou-se a influência da facilidade de uso percebida na utilidade percebida (hipótese H7). A tabela 26 mostra o resultado da regressão realizada, onde a facilidade de uso percebida explica 39,2% da variância da utilidade percebida, confirmando assim a hipótese em questão.

Tabela 26: Regressão linear entre Facilidade de Uso percebida e Utilidade Percebida.

0,32	,20
0,05 0,63** 17,	13**
3	

Por fim, foi realizada uma regressão linear para avaliar a influência da facilidade de uso percebida e da utilidade percebida na intenção de uso de livros eletrônicos. Para atingir tal objetivo, foi realizada uma regressão linear pelo método *stepwise*, a fim de avaliar quanto cada uma das variáveis independentes influencia na variação da variável dependente (Field, 2009). Os resultados são mostrados na tabela 27. Observa-se que o modelo 1 contém apenas a variável Utilidade Percebida, enquanto o modelo dois contém as duas variáveis independentes estudadas.

Tabela 27: Regressão linear entre Facilidade de Uso, Utilidade Percebida e Intenção de Uso.

Intenção de Uso	В	SE b	В	t			
Constante	2,73	0,16		16,81**			
Utilidade Percebida	0,61	0,03	0,69**	20,21**			
R ² ajustado: 0,475; F = 408,56*; *p<0,05; **p<0,01							
Constante	1,18	0,25		4,72**			
Utilidade Percebida	0,43	0,04	0,49**	11,89**			
Facilidade de Uso Percebida	0,42	0,05	0,32**	7,77**			
R ² ajustado: 0,537; F = 261,30*; *p<0,05; **p<0,01							

Observa-se na tabela 21 que a variável Utilidade Percebida possui um poder de predição de 47,4% da intenção de uso, e, no modelo 2, a Facilidade de Uso Percebida aumenta o poder de predição para 53,5%, possuindo, portanto, 6,1% de poder de predição para a população total. Esses resultados mostram que a utilidade percebida pelo consumidor na utilização de *e-books* tem maior influência na intenção de uso do que a facilidade que este percebe na utilização deste. Os resultados acima demonstrados confirmam as hipóteses 7, 8 e 9 da presente pesquisa. De certo modo, os achados relativos às hipóteses 7, 8 e 9 também servem como confirmadores do instrumento construído na seção 4.1, visto que as variáveis nele contidas mostraram-se correlacionadas e fortemente relacionadas.

A fim de aprofundar o entendimento do comportamento das variáveis estudadas, outras análises foram realizadas e são mostradas a seguir. Como diversas correlações foram significativas, porém não foram confirmadas relações de predições diretas, foram realizadas análises de mediação e moderação a fim de se observar o comportamento das variáveis independentes em relação às variáveis de adoção de tecnologia.

4.3. Análises de moderação e mediação

Como dito anteriormente, outras análises foram realizadas para maior entendimento das relações entre as variáveis estudadas. Primeiramente, deve-se atentar para o fato de que algumas variáveis intrínsecas, principalmente valores humanos, possuem correlação significativa com as variáveis dependentes do estudo, mas que não se mostraram relações de predição. Portanto, outras análises devem ser realizadas a fim de se entender como essas relações podem ser identificadas. Sendo assim, foram realizadas correlações envolvendo a variável Intenção de Uso e todas as variáveis independentes. Essas tabelas podem ser vistas no apêndice 2.

Com relação aos valores humanos, quatro apresentaram correlação significativa (p<0,05): auto direção de ação (r=0,20), humildade (r=-0,10), auto direção de pensamento (r=0,16) e tradição (r=-0,17). Nenhum fator de consciência ambiental apresentou correlação significativa, e as variáveis julgamento fragmentado (r=0,18) e significado utilitário (r=-0,10) apresentaram relação significativa. A fim de avaliar influência direta dessas variáveis na intenção de uso de livros eletrônicos, foi feita mais uma regressão linear. Todas as variáveis juntas apresentaram um R² ajustado de 7%, porém apenas os valores auto direção de ação e a variável julgamento fragmentado apresentaram significância. A nova regressão realizada apenas com essas três variáveis apresentou uma variação explicada de 7,4%, como pode ser visto na tabela 28.

Tabela 28: Regressão linear entre Intenção de Uso e diversas variáveis intrínsecas.

Intenção de Uso	b	SE b	В	t		
Constante	4,29	0,32		13,19**		
Auto Direção Ação	0,44	0,13	0,17**	3,43**		
Tradição	-0,16	0,07	-0,12*	-2,48*		
Julgamento Fragmentado	0,21	0,06	0,15**	3,20**		
R ² ajustado: 0,074; F = 7,45*; *p<0,05; **p<0,01						

Observando-se a tabela 28, pode-se afirmar que o valor auto direção de ação, ligado à abertura à mudança (Schwartz et al., 2012), influencia positivamente a intenção de uso, enquanto o valor tradição, ligado à conservação, influencia negativamente essa variável dependente. O julgamento fragmentado, que envolve uma maior importância aos atributos do produto em questão (Allen, 2001), também possui coeficiente positivo, indicando essa relação de predição diretamente proporcional. Sendo assim, esse resultado aponta para uma necessidade maior de abertura à mudança do consumidor para que este possua a intenção de adquirir um

livro eletrônico, e também atesta para a importância que elementos tangíveis possuem nessa questão de consumo. Apesar de explicar apenas 7,4% da variância total da intenção de uso, esses achados trazem mais questões de pesquisa, como será explorado na seção seguinte.

Quando se une os achados dessa análise direta aos achados relacionados às hipóteses de pesquisa H7, H8 e H9, obtém-se um modelo onde o valor auto direção de ação e o julgamento fragmentado perdem a significância, resultando em um modelo com 54,2% de poder de explicação. Com o ganho de menos de 1%, opta-se por não utilizar o valor humano tradição, mantendo-se apenas as variáveis originárias do TAM de Davis (1989) como preditoras de intenção de uso de livros eletrônicos.

Através das correlações obtidas, observa-se que os valores humanos ligados à auto direção de pensamento e de ação estão correlacionados com as três variáveis originárias do TAM, assim como o julgamento fragmentado. Sendo assim, outras análises foram realizadas para tentar identificar essa relação, visto que a relação de causa-efeito não foi significativa. A primeira foi a relação de moderação, ou seja, o efeito de duas variáveis combinadas em uma outra variável (Field, 2013). Sendo assim, foi avaliada a influência dos valores humanos ligados à auto direção e do julgamento fragmentado na relação entre as variáveis utilidade percebida, facilidade de uso percebida e intenção de uso. As análises para essas relações foram feitas através da extensão PROCESS do SPSS e podem ser observadas no apêndice 3.

Primeiramente, foi avaliada a influência de formação de julgamento fragmentado nas relações do TAM. Através da extensão descrita, foi possível avaliar a significância da relação de moderação na explicação da variável dependente. Os resultados podem ser vistos na tabela 29. Como as três relações testadas não apresentaram significância, a moderação foi descartada.

Tabela 29: avaliação de moderação do julgamento fragmentado.

Variável Dependente	Variável Independente	b	S.E. B	t	p
Intenção de Uso	Facilidade de Uso Percebida	-0,11	0,06	-1,84	0,07
Intenção de Uso	Utilidade Percebida	-0,01	0,03	-0,10	0,92
Utilidade Percebida	Facilidade de Uso Percebida	-0,02	0,04	-0,60	0,55

A seguir, foi avaliada a influência do valor humano auto direção ação nas mesmas três relações contidas no modelo TAM de Davis (1989), e confirmadas nas análises de hipóteses de pesquisa. Os resultados podem ser analisados na tabela 30 e no apêndice 3.

Tahela 30.	avaliação de	moderação d	o valor h	umano auto	direção ação.
Tabela 50.	avanação uc	moutracao u	o vaioi ii	iumano auto	unctao atao.

Variável Dependente	Variável Independente	b	S.E. B	t	P
Intenção de Uso	Facilidade de Uso Percebida	-0,14	0,13	-1,05	0,29
Intenção de Uso	Utilidade Percebida	-0,09	0,06	-1,51	0,13
Utilidade Percebida	Facilidade de Uso Percebida	-0,06	0,08	-0,75	0,46

Por fim, foi avaliada a influência do valor auto direção pensamento nas relações contidas no TAM. Os resultados estão listados na tabela 31, e as regressões estão no apêndice 3. Novamente, a moderação foi refutada pelo valor alto das significâncias apresentadas, evidenciando que a variável não possui caráter moderador nessas relações.

Tabela 31: avaliação de moderação do valor humano auto direção pensamento.

Variável	Variável	b	S.E. B	Т	n
Dependente	Independente	U	3.E. D	1	p
Intenção de Uso	Facilidade de Uso	-0,13	0,09	-1,43	0,15
	Percebida				
Intenção de Uso	Utilidade Percebida	-0,11	0,06	-1,73	0,08
Utilidade	Facilidade de Uso	0,11	0,07	1,52	0,13
Percebida	Percebida				

Visto que nenhuma identidade de moderação foi identificada levando-se em conta as variáveis analisadas, a seguir são apresentadas as análises referentes à mediação. Field (2013) afirma que a situação em que uma relação entre variáveis pode ser explicada pela relação entre estas e uma terceira variável é uma situação de mediação. Em outras palavras, foram testadas as relações indiretas que as variáveis facilidade de uso percebida e utilidade percebida possuem com a variável dependente intenção de uso, por meio das variáveis julgamento fragmentado, auto direção pensamento e auto direção ação.

Primeiramente, foi testada a relação de mediação do julgamento fragmentado na intenção de uso, e posteriormente na variável utilidade percebida, conforme relações apresentadas por Davis (1989) e confirmadas nas hipóteses de pesquisa do presente estudo. A tabela 32 mostra os resultados dessas análises, também realizadas pela extensão PROCESS no SPSS (Field, 2013).

Tabela 32: avaliação da mediação de julgamento fragmentado nas relações do TAM.

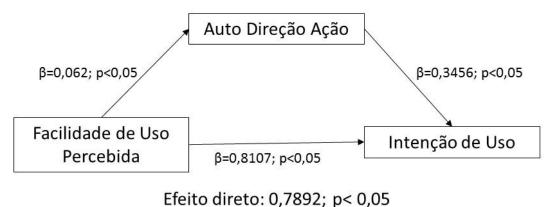
Variável Dependente	Variável Independente	b	S.E. B	t	р
		0.01	0.01	1.50	
Intenção de Uso	Facilidade de Uso	0,01	0,01	1,69	0,09
	Percebida				
Intenção de Uso	Utilidade Percebida	0,01	0,01	0,89	0,37
,		,	,	,	•
Utilidade	Facilidade de Uso	0,02	0,01	1,90	0,60
Percebida	Percebida				

Como pode ser observado no quadro acima, nenhuma das relações de mediação envolvendo a variável julgamento fragmentado apresentou significância menor que 0,05, portanto essas relações são consideradas não válidas para a formação de um modelo. Em seguida, foi testado o mesmo processo, desta vez com a variável mediadora sendo o valor humano auto direção ação. A tabela 33 mostra os resultados.

Tabela 33: avaliação da mediação de auto direção ação nas relações do TAM.

Variável Dependente	Variável Independente	b	S.E. B	t	p
Intenção de Uso	Facilidade de Uso	0,02	0,01	2,03	0,04
Intenção de Uso	Percebida Utilidade Percebida	0,01	0,01	1,96	0,05
Utilidade	Facilidade de Uso	0,02	0,01	1,84	0,07
Percebida	Percebida				

O quadro 10 mostra que o valor humano auto direção tem uma influência moderadora significativa na influência de facilidade de uso percebida e utilidade percebida sobre a intenção de uso de livros eletrônicos. Esse resultado mostra como a variável auto direção ação se comporta no modelo: como variável mediadora das relações descritas no TAM. Por fim, a mesma análise foi realizada com a variável mediadora auto direção pensamento. O tabela 34 mostra os resultados.


Tabela 34: avaliação da mediação de auto direção pensamento nas relações do TAM.

Variável	Variável	b	S.E. B	t	р
Dependente	Independente			-	r
Intenção de Uso	Facilidade de Uso Percebida	0,01	0,01	1,46	0,14
Intenção de Uso	Utilidade Percebida	0,01	0,01	1,44	0,15
Utilidade Percebida	Facilidade de Uso Percebida	0,01	0,01	0,61	0,54

Percebe-se pelo quadro acima que o valor auto direção pensamento não apresenta relações de mediação significativas entre as relações apresentadas, portanto essa variável também não deve ser incluída no modelo final.

Em resumo, os testes de moderação e mediação apontaram apenas para duas relações significativas: a mediação da variável auto direção ação na relação entre facilidade de uso percebida e intenção de uso, assim como na relação utilidade percebida e intenção de uso. Apesar da significância ter sido menor que 0,05, ainda deve-se avaliar se a inclusão dessa variável influencia de maneira relevante o poder de explicação do modelo.

Para tal, a extensão PROCESS avalia também o efeito direto da VD sobre a VI, assim como o efeito total, incluindo-se a mediação. Sendo assim, basta avaliar o incremento no efeito total com a inclusão da relação estudada para avaliar se o ganho vale a inclusão de uma nova variável. Essa análise foi feita para as duas relações que apresentaram significância: a influência mediadora do valor humano auto direção ação nas relações entre facilidade de uso percebida e utilidade percebida e intenção de uso. As figuras 8 e 9 mostram um resumo do encontrado.

Efeito total: 0,8107; p<0,05

Figura 8: Análise do aumento do efeito total da relação PEOU-IU com a inclusão de mediação.

Efeito direto: 0,5966; p< 0,05 Efeito total: 0,6105; p<0,05

Figura 9: Análise do aumento do efeito total da relação PU-IU com a inclusão de mediação.

Ambas as figuras mostram um ganho muito pequeno no efeito total com a inclusão da relação de mediação, portanto, pelo princípio da parcimônia, e a fim de manter o modelo final da pesquisa o mais simples possível, optou-se por não incluir essas relações apresentadas. Com isso, as variáveis julgamento fragmentado, além dos valores humanos auto direção pensamento e ação, apesar de possuir correlação significativa com as variáveis do modelo de Davis (1989), não apresentaram poder de predição significativo, nem de moderação. Além disso, apenas a variável auto direção ação apresentou caráter de mediação, porém o ganho de explicação foi muito baixo para a sua inclusão em um modelo de explicação de adoção de tecnologia. A seguir, são apresentadas as discussões oriundas das análises realizadas e da literatura vigente sobre o tema.

5. DISCUSSÃO

Primeiramente, deve-se citar a análise fatorial realizada para a obtenção do instrumento de aceitação de tecnologia. A partir do trabalho de Read, Robertson e McQuilken (2011), a escala foi traduzida e retraduzida, e, posteriormente, passou por análises fatoriais a fim de se observar seu poder de explicação dos fatores estudados. Pela análise fatorial exploratória apresentada no capítulo anterior, os itens se agruparam de maneira idêntica à escala original, formando os três fatores alinhados à teoria de Davis (1989) e à escala de Read, Robertson e McQuilken (2011), a saber: intenção de uso, facilidade de uso percebida e utilidade percebida.

Segundo Davis (1989), intenção de uso contém o grau da vontade e probabilidade de utilização de determinada tecnologia por parte de potenciais usuários. No caso da presente pesquisa, a intenção de uso refere-se ao grau de vontade de utilização de livros eletrônicos. Utilidade percebida, por sua vez, é definida por Davis (1989) como o grau que potenciais usuários esperam que determinada tecnologia ajudará a realizar determinadas tarefas. No contexto do consumo de e-books, pode-se entender utilidade percebida como o grau em que potenciais consumidores esperam que livros eletrônicos os ajudarão a ler mais facilmente. Por fim, facilidade de uso percebida é definida por Davis (1989) como o grau que potenciais usuários esperam que determinada tecnologia seja utilizada sem grandes esforços. No contexto da pesquisa, pode-se entender que a facilidade de uso percebida é o grau com que potenciais consumidores esperam que livros eletrônicos sejam utilizados sem esforços.

Os fatores foram definidos de maneira nítida, ou seja, os itens finais não possuem forte poder de predição em mais de um fator, o que deixa a escala mais robusta, de acordo com Ho (2006). A variância explicada de 79,28% é também considerada alta, mostrando que a escala resultante é boa para a medição das variáveis do modelo de aceitação de tecnologia. Por fim, pode-se afirmar que a escala obtida através do processo descrito pode ser utilizada posteriormente em pesquisas relacionadas ao tema, e também nas análises das hipóteses realizadas no presente estudo.

As hipóteses pesquisadas apresentaram tanto concordâncias quanto discrepâncias quanto à literatura sobre os temas abordados no presente estudo. Portanto, deve-se comparar as análises apresentadas aos estudos já realizados sobre esses temas. Essas comparações serão realizadas a partir das hipóteses de pesquisa que foram testadas anteriormente. Em relação às hipóteses de pesquisa apresentadas, observa-se que a coluna que apresenta os valores humanos que possuem correlação positiva com os fatores de consciência ambiental estão todos ligados

ao foco social no modelo de Schwartz et al. (2012), enquanto os valores da coluna relacionada à correlação negativa estão todos ligados ao foco individual. Como as hipóteses envolvem um caráter de predição entre as duas variáveis, essas observações não servem como confirmadoras destas, porém mostram que um indivíduo que endossa valores mais ligados ao foco social possui maior consciência ambiental.

Com relação ao caráter de predição, as regressões realizadas mostram que os valores universalismo natureza e conformidade, ligados ao foco social, apresentaram coeficientes positivos nos casos onde são significativos, e os valores poder sobre recursos e estimulação, ligados ao foco individual, apresentaram coeficientes negativos. Esses achados confirmam em partes as hipóteses de pesquisa, visto que, de maneira resumida, os achados foram: alguns valores humanos possuem influência na consciência ambiental; os valores ligados ao foco social que apresentaram predição em relação a algum fator de consciência ambiental possuíam valor de coeficiente positivo; os valores ligados ao foco individual que apresentaram predição em relação a algum fator de consciência ambiental possuíam valor de coeficiente negativo. Portanto, tem-se que as hipóteses H1, H1a e H1b foram parcialmente confirmadas.

As relações entre os fatores de consciência ambiental e valores humanos, representados nas hipóteses H1, H1a e H1b, mostraram-se em concordância com a literatura existente. Pinto et al. (2011) afirmam que os valores humanos possuem influência na consciência ambiental de um indivíduo, e também no seu comportamento consciente. Na presente pesquisa, foi encontrado que os valores humanos Universalismo Natureza e Conformidade com as Regras influenciam positivamente a consciência ambiental dos consumidores, enquanto os valores Estimulação e Poder sobre Recursos influenciam negativamente esta variável. Atenta-se novamente para o fato dos dois valores relacionados positivamente estarem situados, no modelo de Schwartz et al. (2012), no foco social, enquanto os dois valores que influenciam negativamente estão situados no foco individual, confirmando parcialmente as hipóteses listadas.

Em outras palavras, apenas os valores universalismo natureza e conformidade com as regras apresentaram-se como preditores positivos de consciência ambiental. Analisando-se o modelo de Schwartz et al. (2012), pode-se observar que esses dois valores estão no polo de foco social, e, aliando-se esse fato aos coeficientes positivos na relação entre esses dois valores e o fator hábitos domésticos, tal análise realizada comprova em partes a hipótese 1a, porém não comprova 1b, visto que nenhum valor ligado ao foco individual foi significativo em seu poder de predição da variável dependente.

Observou-se pelas relações encontradas anteriormente no quadro 3 que os valores ligados ao Universalismo, além do valor Conformidade com as Regras, são correlacionados positivamente com grande parte dos fatores estudados, enquanto os valores ligados a Poder, além dos valores Auto Direção, Face e Benevolência apresentam relações negativas com os fatores. Em relação ao valor humano Universalismo Natureza, esperava-se que este obtivesse relações fortes com os fatores, visto que, segundo Schwartz et al. (2012), esse valor se refere à proteção do meio ambiente que nos circula. Comparando-se os resultados da pesquisa com os de Pinto et al. (2011), confirma-se a relação entre o valor humano conformidade com consciência ambiental, inclusive de causalidade nos fatores ação e mudança e hábitos domésticos, sendo esse último o objeto de estudo da pesquisa citada. No estudo de Riley e Kohlbacher (2015), os achados são semelhantes aos de Pinto et al. (2011), onde conformidade se apresenta como um valor humano relevante na predição de consciência ambiental. Sendo assim, os achados desta pesquisa vão ao encontro dos achados da literatura existente sobre o tema.

Pinto et al. (2011), que estudaram a influência de valores humanos no desperdício de água entre brasileiros, encontraram que valores ligados à conformidade e virtudes sociais influenciam positivamente a consciência ambiental. Esses resultados estão alinhados com os encontrados na presente pesquisa, visto que o valor Conformidade com as Regras apresenta-se como um preditor dos fatores Hábitos Domésticos e Ação e Mudança. Também é observado a relação entre os valores ligados ao foco social de Schwartz et al. (2012) com os resultados de Pinto et al. (2011), quando esses autores encontram que valores ligados a virtudes sociais são preditores positivos de consciência ambiental. Na presente pesquisa, os valores ligados ao foco social apresentaram relações diretamente proporcionais à consciência ambiental, enquanto os valores ligados ao foco social apresentaram relações inversamente proporcionais.

Em uma análise utilizando a teoria de Schwartz et al. (2012), Caracciolo et al. (2015) estudaram a influência de valores humanos na compra de carne suína que não degrada o meio ambiente. Encontrou-se que valores ligados à Autotranscendência e à Abertura à Mudança afetam positivamente o consumo consciente, enquanto os valores Hedonismo e Conservação, além do foco de Autopromoção influenciam negativamente essa consciência. Os resultados são semelhantes à presente pesquisa em partes. O valor Universalismo Natureza, ligado à Autotranscendência, apresentou-se como um importante preditor de consciência ambiental em todos os fatores estudados, enquanto o valor Poder sobre Recursos, ligado à Autopromoção, mostrou-se um preditor negativo em dois fatores (Produto e Reciclagem e Reutilização). Esses achados alinham-se à pesquisa de Caracciolo et al. (2015).

Os achados desta pesquisa entram em discordância com os de Caracciolo et al. (2015) no que tange o eixo Conservação-Abertura à Mudança. Os autores encontraram que valores ligados à abertura à mudança são preditores positivos de consciência ambiental, enquanto os ligados à conservação possuem predição negativa. Na presente pesquisa, um valor ligado à abertura à mudança (Estimulação) influenciou negativamente um fator de consciência ambiental, Alimentação e Saúde, fator este envolvido diretamente no estudo de Caracciolo et al. (2015). Tal discrepância mostra a necessidade de estudos entre culturas diferentes, visto que os autores pesquisaram cinco diferentes países na Europa, enquanto a presente pesquisa foi feita apenas no Brasil. Imagina-se que a diferença de resultados possa ser explicada pelas diferenças culturais entre as amostras dos estudos. O mesmo pode ser dito da discrepância do valor Conformidade com as Regras no resultado, visto que está ligado à Conservação e apresentou predição positiva em relação aos fatores Hábitos Domésticos e Ação e Mudança.

Outro estudo sobre a influência de valores humanos na consciência ambiental foi realizado por Zhou et al. (2013), estudando a influência destes valores no consumo de produtos orgânicos na China. Os autores encontraram que valores ligados à autotranscedência possuem caráter de predição em relação a intenção de compra de produtos orgânicos. Esses resultados alinham-se aos da presente pesquisa, visto que o valor Universalismo Natureza, ligado à autotranscendência, apresentou predição significativa nos seis fatores estudados, inclusive alimentação e saúde, que, de acordo com Lages e Vargas Neto (2002), envolve a intenção e a compra de alimentos que não agridem o meio ambiente, objeto de estudo de Zhou et al. (2013). Em resumo, se tratando das hipóteses de pesquisa H1, H1a e H1b, os resultados mostraram-se alinhados à literatura, com exceção do estudo de Caracciolo et al. (2015), porém acredita-se que se trata de diferenças culturais que podem ser avaliadas no futuro.

Em relação à presente pesquisa, deve-se avaliar os valores humanos envolvidos na predição de consciência ambiental. Primeiramente, o valor Universalismo Natureza aparece como preditor dos seis fatores de consciência ambiental da escala de Lages e Vargas Neto (2002). Esse resultado era esperado, pois, segundo Schwartz (1994), Universalismo está ligado ao entendimento, apreciação, tolerância e proteção pelo bem-estar das pessoas e da natureza. Logo, o valor Universalismo Natureza está ligado à essa preocupação com o bem-estar da natureza e do meio ambiente, assim como a consciência ambiental em sua definição principal. Pode-se entender, portanto, que o indivíduo que endossa o valor individual Universalismo Natureza apresenta maior consciência ambiental em seu consumo.

Além de Universalismo Natureza, o valor Conformidade com as Regras apresentou predição positiva em dois fatores da escala de consciência ambiental: hábitos domésticos e ação

e mudança. Segundo Schwartz (1994), Conformidade está ligado à restrição de comportamentos que causem danos à outras pessoas, ou que violem expectativas ou normas sociais. Como a consciência ambiental no consumo pode ser considerada uma norma social do século XXI, dada a crescente importância do tema, pode-se entender que pessoas que endossam tal valor devem apresentar maior consciência ambiental pela importância do assunto na sociedade atual.

A segunda e a terceira hipótese da pesquisa se referem à influência de valores humanos e consciência ambiental na formação de julgamento e significado de livros eletrônicos, respectivamente. A hipótese foi elaborada a partir do modelo de duas rotas de Allen e Ng (1999) e dos achados de Alfinito, Nepomuceno e Torres (2012), e afirma que valores humanos e consciência ambiental predizem a formulação de julgamentos e atribuição de significados.

Analisando as hipóteses H2 e H3, que envolvem a influência de valores humanos e consciência ambiental na formação de julgamento e significado de livros, respectivamente, os resultados encontrados variam em relação à concordância com a literatura. Em relação aos valores humanos (H2), Allen e Ng (1999) defendem que os valores humanos são preditores da formação de julgamento e significado de produtos, serviços e marcas. O Modelo de Duas Rotas ilustra essa relação, que se mostrou significativa para análise de comportamento de consumo (Allen, 2002). Porém, na presente pesquisa, os valores humanos de Schwartz não apresentaram grande poder de predição na formação desses construtos. Apenas a formação de Significado Simbólico apresentou um poder de predição maior que 10%, envolvendo três valores humanos (Auto Direção de Ação, Segurança Pessoal e Realização). Isso mostra que, no caso do produto livro, valores humanos possuem um poder de predição pequeno, corroborando, portanto, apenas parcialmente com a hipótese de pesquisa relacionada.

Assim como H2, a terceira hipótese da pesquisa, relacionando consciência ambiental e formação de julgamento e significado, também se mostrou de pouca relevância para a formação de um modelo final de pesquisa. Apesar de não terem sido encontrados estudos relacionando às duas variáveis, esperava-se que a consciência ambiental influenciasse a formação do julgamento e do significado que os consumidores dão aos livros que adquirem assim como os valores humanos no Modelo de Duas Rotas (Allen & Ng, 1999). Todavia, foi encontrada apenas uma relação de predição significativa, entre Hábitos Domésticos e a formação de Julgamento Fragmentado, porém com poder de predição muito baixo (3,2%). Isso mostra que, para o consumidor de livros, a consciência ambiental, assim como os valores humanos individuais, não se porta como uma variável preditora relevante. Os resultados encontrados refutaram a hipótese 3 da pesquisa.

De acordo com o apresentado no capítulo anterior, valores humanos possuem relação com os julgamentos e significados formados pelos consumidores em relação ao produto livros eletrônicos, porém a predição advinda dessas variáveis é considerada fraca em três casos, e inexistente em um (julgamento fragmentado). Outra observação relevante é a relação de predição dos valores auto direção de ação e realização quando se observa a formação de significado: esses valores influenciam de maneira semelhante ambos os significados. Isso mostra que essas variáveis não são excludentes por completo, necessitando assim de novos estudos para comprovar que significado simbólico e significado utilitário são opostos excludentes. Em relação à hipótese 2 da pesquisa, pode-se entender que alguns valores humanos influenciam na formação de julgamento e significado dos consumidores com relação ao produto em questão, confirmando a hipótese em partes, e confirmando a linearidade entre a presente pesquisa e a literatura existente, de acordo com Alfinito e Torres (2012), que afirmam a influência de valores humanos na formação de julgamento e significado de produtos.

Em relação aos resultados encontrados relacionando as variáveis julgamento, significado e consciência ambiental, pode-se afirmar que a consciência ambiental possui papel majoritariamente irrelevante na formação de julgamento e atribuição de significado do produto livro eletrônico por parte dos consumidores. Apenas a formação de julgamento fragmentado apresenta uma influência representativa do fator hábitos domésticos em sua formação, e esse fator explica apenas 3,2% da variância desse tipo de julgamento. Dessa forma, a hipótese 3 não pôde ser confirmada, pois apenas no fator julgamento fragmentado ela pôde ser observada, e o poder de predição não apresenta um valor aceitável. Como não foram encontradas pesquisas relacionando os dois construtos, espera-se que no futuro o conhecimento sobre essa relação se estenda a fim de realizar comparações com os resultados obtidos.

As hipóteses H4, H4a, H4b, H5 e H6 relacionam as três variáveis intrínsecas tratadas anteriormente (valores humanos, consciência ambiental e julgamento e significado) com as variáveis contidas no Modelo de Aceitação de Tecnologias (TAM), proposto por Davis (1989). Tais análises referem-se às tentativas de formulação de um modelo de aceitação de tecnologia, como feito por Venkatesh e Bala (2008), Read, Robertson e McQuilken (2011) e Lee (2013). A fim de tornar o entendimento das análises realizadas mais fácil, a descrição a seguir foi dividida em relação às hipóteses de pesquisa, e não em relação às variáveis dependentes.

As hipóteses foram formadas a partir da identificação da necessidade de entender quais variáveis internas ao consumidor influenciam a aceitação de tecnologias (Read, Robertson & McQuilken, 2011; Lee, 2013). Esses autores, juntamente com Venkatesh e Bala (2008) e Venkatesh e Davis (2000), defendem a criação de novos modelos que englobem variáveis

cognitivas e intrínsecas juntamente com o TAM de Davis (1989). Essa motivação foi utilizada na presente pesquisa para adaptar o modelo de aceitação de tecnologia em relação à valores humanos, consciência ambiental e julgamento e significado.

Apesar da literatura apontar para uma influência relevante desses fatores intrínsecos, os resultados da presente pesquisa mostraram o contrário. Apesar de diversas correlações apresentarem valores significativos, os poderes de predição das variáveis intrínsecas sobre as variáveis do TAM foram muito baixos ou inexistentes. Read, Robertson e McQuilken (2011) encontraram que o emocional dos consumidores em relação aos livros impressos se apresenta como uma barreira para a adoção de livros eletrônicos, e esse emocional está ligado a questões intrínsecas, como valores individuais. Lee (2013) também defende essa visão, afirmando que questões individuais, no caso inovatividade, influenciam na questão de adoção de livros eletrônicos.

Em outras palavras, os resultados encontrados não correspondem aos achados anteriores da literatura em que essa pesquisa se baseou. Read, Robertson e McQuilken (2011), que estudaram a influência de ligação emocional, encontraram fortes influências de fatores emotivos na adoção de livros eletrônicos. Venkatesh e Bala (2008) também encontraram fortes relações entre fatores intrínsecos ao consumidor e adoção de tecnologia, porém os achados dessa pesquisa mostram que as variáveis valores humanos e consciência ambiental não possuem esse mesmo valor de predição. Os achados da presente pesquisa também vão contra o estudo de Bansal (2010), que mostra uma influência da consciência ambiental na adoção de livros eletrônicos.

Especificamente sobre valores humanos e sua influência na adoção de tecnologias, Isomursu et al. (2011) encontrou que os valores humanos ligados à benevolência e à estimulação estão relacionados positivamente à adoção de tecnologias, porém, assim como a presente pesquisa, não encontrou índices favoráveis para evidenciar uma relação de predição. No caso da presente pesquisa, em questão de correlações significativas, os valores ligados à auto direção (positivamente) e à tradição (negativamente) se mostraram relevantes, evidenciando diferenças nos resultados encontrados entre os dois trabalhos.

Já sobre a influência da consciência ambiental na adoção de livros eletrônicos, Bansal (2010) afirma que a consciência ambiental possui papel relevante na preferência por esse tipo de produto, alegando que um aumento na consciência ambiental causa um aumento na preferência por livros eletrônicos. De maneira diferente, o estudo aqui apresentado mostrou que a consciência ambiental não possui grau relevante de predição em relação à intenção de uso de *e-books*, indo de encontro aos achados do autor.

A partir desses resultados, as hipóteses H4, H4a, H4b, H5 e H6 foram todas refutadas, pois as variáveis valores humanos, consciência ambiental e formação de julgamento e significado não apresentaram influência relevante na adoção de livros eletrônicos. Vale salientar novamente que esses achados vão contra os achados da literatura existente, pois espera-se que fatores internos ao consumidor influenciem significativamente a adoção de tecnologias (Venkatesh & Bala, 2008). Esperava-se que essas variáveis possuíssem um poder de predição maior do que o apresentado.

De uma maneira geral, apesar das evidências apresentadas na literatura, os achados da presente pesquisa não apresentaram os resultados esperados. No caso da Facilidade de Uso Percebida, apenas dois valores humanos de Schwartz (Segurança Pessoal e Tradição), um fator de consciência ambiental (Consumo de Energia) e Julgamento Fragmentado apresentaram predição significativa quanto à variável dependente, e essas quatro explicam apenas 5,7% da variação da VD, mostrando-se uma predição muito fraca. Para a Utilidade Percebida, apenas os valores Auto Direção Ação e Estimulação e a formação de Julgamento Fragmentado apresentaram predição significativa, porém apenas 6,6% de explicação da variação, valor também considerado fraco. Por fim, também foram testadas influências diretas na Intenção de Uso de livros eletrônicos, a fim de identificar alguma relação significativamente forte. Dois valores humanos (Auto Direção Ação e Tradição) e Julgamento Fragmentado apresentaram significância nas regressões realizadas, e apenas 7,4% da variação foi explicada.

Os resultados descritos mostram que as variáveis intrínsecas estudadas não possuem influência relevante na adoção de livros eletrônicos. Isso pode ser explicado por dois fatores: o primeiro tange a afirmação de Read, Robertson e McQuilken (2011) de que a adoção desse tipo de tecnologia não envolve uma escolha binária entre livros impressos e eletrônicos. Essa afirmação, também defendida por Lee (2013), mostra que, apesar de consumidores apresentarem maior probabilidade de adoção de livros eletrônicos, os mesmos ainda podem adquirir livros impressos juntamente com estes, não tornando o processo de decisão uma questão de exclusividade. Sendo assim, as variáveis estudadas não possuem grande poder de predição relevante porque também influenciam positivamente a escolha de livros impressos. Por exemplo, se um consumidor endossa determinado valor humano, não necessariamente ele sacrifica uma opção de livro impresso e opta por um livro eletrônico, podendo esse valor influenciar positivamente tanto a compra de livros impressos quanto de livros eletrônicos.

O segundo fator que pode explicar o baixo poder de explicação de variáveis intrínsecas na presente pesquisa é a possível maior importância dada a variáveis tangíveis. Venkatesh e Davis (2000), ao adaptar o TAM com novas variáveis e criar o TAM2, avaliaram a influência

de fatores sociais e processos cognitivos na adoção de tecnologias, e encontraram que essas variáveis influenciam de maneira relevante essa adoção. Porém, de acordo com os autores, a maior parte da explicação dessa variação ainda se dá por conta de fatores tangíveis e voltados ao produto, e não aos processos cognitivos dos consumidores. Read, Robertson e McQuilken (2011) dividem a mesma visão: apesar da ligação emocional influenciar a adoção de livros eletrônicos, fatores tangíveis e ligados ao produto e sua utilidade ainda foram identificados como as principais variáveis.

Esse fator também pode ser observado nessa pesquisa, pela influência do julgamento fragmentado nas variáveis do TAM. Segundo Alfinito, Nepomuceno e Torres (2012), esse tipo de julgamento está intimamente ligado à avaliação de atributos tangíveis e à funcionalidade de determinado produto. Apesar das regressões não apresentarem relação de predição direta entre o julgamento fragmentado e as variáveis do TAM, pode-se imaginar, pela correlação significativa com as três variáveis, que o julgamento fragmentado influencia indiretamente a adoção de tecnologias, influenciando fatores ligados à percepção dos consumidores em relação aos atributos tangíveis de livros eletrônicos.

De uma forma geral, com os achados da presente pesquisa, entende-se que, para os consumidores de livros, é possível que atributos tangíveis ligados à utilidade e à funcionalidade do produto sejam mais relevantes na escolha entre livros eletrônicos e livros impressos. Devese, portanto, estender o modelo proposto com variáveis ligadas a esses atributos tangíveis, a fim de se obter resultados mais robustos para a criação de um modelo final. Apesar da literatura apresentar indícios de que fatores intrínsecos influenciam relevantemente a escolha entre livros impressos e eletrônicos (Read, Robertson & McQuilken, 2011), os resultados encontrados na presente pesquisa mostram que eles não são suficientes para explicar essa escolha.

Por fim, as hipóteses H7, H8 e H9 envolvem as relações já testadas anteriormente pelo TAM, seja por Davis (1989) em seu modelo original, seja pelos modelos propostos posteriormente. Assim como nos modelos de Venkatesh e Davis (2000) e Venkatesh e Bala (2008) e Lee (2013), os resultados da presente pesquisa confirmaram uma grande relação entre as variáveis Facilidade de Uso Percebida, Utilidade Percebida e Intenção de Uso, assim como um poder de predição forte entre as variáveis dependentes e a variável independente. Porém, diferente dos trabalhos citados, a presente pesquisa não apresentou relações relevantes entre outras variáveis que poderiam estar envolvidas no processo de adoção de tecnologia.

Em resumo, os resultados relacionados às hipóteses 7, 8 e 9 confirmam também as relações propostas tanto por Davis (1989) no TAM original quanto por Venkatesh e Bala (2008) e por Venkatesh e Davis (2000) nos TAM3 e TAM2, respectivamente. Sendo assim,

comparando a presente pesquisa aos achados anteriores do modelo de adoção de tecnologias, pode-se afirmar que o presente estudo vai ao encontro da literatura sobre o tema, estendendo seu poder de explicação para o mercado de livros eletrônicos, assim como Read, Robertson e McQuilken (2011) e Lee (2013).

De uma maneira geral, deve-se atentar para o fato de que valores humanos e consciência ambiental não influenciam a adoção de livros eletrônicos, identificando assim uma lacuna de pesquisa ainda existente que será discutida na seção seguinte. Além disso, em resumo à pesquisa como um todo, o instrumento traduzido e validado, originário de Read, Robertson e McQuilken (2011), apresentou grande poder de explicação das variáveis medidas, podendo ser utilizado, após adaptações, para outros produtos e serviços no que tange a adoção de tecnologias. Avaliouse também que valores humanos influenciam diferentemente os fatores de consciência ambiental, e que os fatores intrínsecos escolhidos para o estudo (valores humanos, consciência ambiental e formação de julgamento e significado) não foram suficientes para a explicação da adoção de tecnologia. A tabela 35 resume os achados em relação às hipóteses de pesquisa, deixando claro os resultados encontrados em relação ao tema.

Tabela 35: resumo das hipóteses de pesquisa estudadas.

Hipótese	Explicação	Confirmação
H1	Valores Humanos influenciam os fatores de consciência ambiental do consumidor.	Parcialmente confirmada
H1a	Valores Humanos voltados ao foco social influenciam positivamente os fatores de consciência ambiental do consumidor.	Parcialmente confirmada
H1b	Valores Humanos voltados ao foco individual influenciam negativamente os fatores de consciência ambiental do consumidor.	Parcialmente confirmada
H2	Valores Humanos influenciam o desenvolvimento de julgamento e significado de consumidores de livros eletrônicos.	Parcialmente confirmada
Н3	Fatores de consciência ambiental influenciam o desenvolvimento de julgamento e significado de consumidores de livros eletrônicos.	Refutada
H4	Valores humanos influenciam a percepção de facilidade de uso e de utilidade de livros eletrônicos.	Refutada
Н4а	Valores humanos voltados à abertura à mudança influenciam positivamente a percepção de facilidade de uso e de utilidade de livros eletrônicos.	Refutada
H4b	Valores humanos voltados à conservação influenciam negativamente a percepção de facilidade de uso e de utilidade de livros eletrônicos.	Refutada
H5	Os fatores de consciência ambiental influenciam positivamente a percepção de facilidade de uso e de utilidade de livros eletrônicos.	Refutada
Н6	Julgamentos e significados atribuídos aos livros eletrônicos influenciam a percepção de facilidade de uso e de utilidade destes.	Refutada

Hipótese	Explicação	Confirmação
H7	Facilidade de uso percebida de livros eletrônicos influencia a utilidade percebida destes.	Confirmada
H8	Facilidade de uso percebida de livros eletrônicos influencia a intenção de uso destes.	Confirmada
H9	Utilidade percebida de livros eletrônicos influencia a intenção de uso destes.	Confirmada

De uma maneira geral, pode-se entender que a relação entre valores humanos e consciência ambiental foi significativa (H1, H1a e H1b parcialmente confirmadas), e a relação entre valores humanos e formação de julgamento e significado foi também significativa (H2 parcialmente confirmada). Já a relação entre consciência ambiental e julgamento e significado foi refutada, assim como as relações entre as variáveis intrínsecas estudadas e as percepções de facilidade de uso e utilidade (H3, H4, H4a, H4b, H5 e H6 refutadas). Por fim, as relações estabelecidas pelo TAM de Davis (1989) foram identificadas (H7, H8 e H9 confirmadas). A seguir, são apresentadas as conclusões extraídas da presente pesquisa, suas limitações e propostas de novas pesquisas a partir dos achados.

6. CONSIDERAÇÕES FINAIS

O objetivo da pesquisa realizada foi analisar o consumidor de livros eletrônicos, a fim de perceber como determinadas variáveis intrínsecas ao consumidor, a saber: valores humanos, consciência ambiental e formação de julgamento e significado, influenciam na intenção de uso deste tipo de produto. Para tal, foi feita uma pesquisa quantitativa onde procurou-se avaliar a predição dessas características internas ao consumidor na variação da intenção de uso de livros eletrônicos, através da teoria que envolve o Modelo de Aceitação de Tecnologia de Davis (1989), e suas evoluções criadas por Venkatesh e Davis (2000) e Venkatesh e Bala (2008).

Pela análise dos dados obtidos através do instrumento criado para essa pesquisa, pôdese observar que a influência dessas três variáveis, diferente do apontado na literatura e esperado pelas hipóteses de pesquisa propostas, não apresentou poder de predição relevante na adoção da tecnologia estudada. Em outras palavras, consumidores de livros eletrônicos não são influenciados de forma relevantes pelos valores humanos que endossam, por sua consciência ambiental ou pela formação de julgamento ou de significado sobre o produto em questão.

Apesar da refuta das hipóteses relacionando as variáveis intrínsecas estudadas com as variáveis que influenciam a adoção de uma tecnologia, algumas conclusões puderam ser extraídas da pesquisa realizada. Primeiramente, e já mencionada, a influência não relevante dos fatores intrínsecos estudados foi constatada no que tange a predição de adoção de livros eletrônicos. Isso pode ser explicado pelo tipo de escolha em relação aos produtos livros eletrônicos e impressos não se tratar de um processo excludente, conforme defendido por Read, Robertson e McQuilken (2011). Isso faz com que uma variável, seja um valor humano ou um fator de consciência ambiental, influencie positiva ou negativamente tanto a adoção quanto a rejeição à nova tecnologia.

Outro aspecto relacionado aos achados da pesquisa gira em torno da influência de variáveis tangíveis do produto e sua influência nessa adoção de livros eletrônicos. De acordo com Venkatesh e Davis (2000), questões sociais e pessoais influenciam a adoção de tecnologia, porém o poder de predição maior ainda é oriundo de questões tangíveis e atributos mensuráveis dos produtos em questão. Conforme afirmado anteriormente, essa importância pode ser avaliada na presente pesquisa observando a correlação significativa da formação de julgamento fragmentado em todas as variáveis do TAM. Isso mostra que, direta ou indiretamente, essa formação de julgamento influencia a adoção de tecnologia, mostrando a relevância de variáveis relacionadas a atributos tangíveis.

Essas questões abrem espaço para novas pesquisas serem realizadas no que tange o estudo de adoção de tecnologias. Primeiramente, não se deve ignorar a influência de variáveis intrínsecas nesse processo de adoção. Portanto, apesar do resultado da presente pesquisa não mostrar relevância das três variáveis estudadas, a literatura existente, como Venkatesh e Davis (2000), Venkatesh e Bala (2008), Read, Robertson e McQuilken (2011) e Lee (2013), mostra que esse tipo de construto deve ser estudado em modelos de adoção de tecnologia. Sendo assim, deve-se voltar ao estudo de novas variáveis internas ao consumidor como preditoras de adoção de tecnologias. Ligação emocional (Read, Robertson & McQuilken, 2011), influência social influenciando o indivíduo (Venkatesh & Bala, 2008), além de aspectos voltados à personalidade, atitudes, crenças, riscos percebidos e experiência (Lee, 2013) são algumas das variáveis estudadas na literatura e que podem servir de fonte para um novo modelo integrador.

Outra porta aberta para novas pesquisa gira em torno de uma das limitações do estudo. A escolha não binária entre livros eletrônicos e livros impressos tradicionais, segundo Read, Robertson e McQuilken (2011), faz com que a influência de variáveis intrínsecas não seja definitiva para a escolha de adoção ou não do produto. Esse fator não foi levado em conta na escolha do produto estudado na pesquisa, mas abre espaço para o teste das variáveis envolvidas neste trabalho em outros produtos que denotam adoção de novas tecnologias excludentes, ou seja, a adoção de um produto denota a não utilização de seu antecessor. Portanto, estudos ligando as variáveis valores humanos, consciência ambiental e formação de julgamento e significado e a adoção de outros produtos no contexto do TAM devem ser realizados.

Outra limitação do estudo se relaciona com a amostra e a população estudados. Estudos envolvendo fatores como valores humanos e consciência ambiental, que são influenciados pela cultura ou subculturas nas quais os consumidores estão inseridos, tornam-se mais robustos quando feitos comparando-se essas diferentes culturas, principalmente se comparando diferentes nações. Novos estudos, portanto, devem considerar o estudo de outros países diferentes do Brasil, para que os resultados possam ser comparados e avaliadas as diferenças entre os processos de adoção de diferentes culturas.

De uma maneira geral, a presente pesquisa apresentou resultados muito importantes para a literatura vigente. Apesar de obter hipóteses refutadas no que diz respeito à influência de fatores intrínsecos estudados na adoção de novas tecnologias, essa refuta abre ainda mais espaço para estudos da área, conforme demonstrado nos parágrafos anteriores. Sendo assim, novos estudos envolvendo novas variáveis, produtos e amostras devem ser realizados a fim de se alcançar o refinamento da teoria sobre adoção de tecnologias.

Os resultados também são relevantes para gestores ligados à produção e venda de *e-books*, pois pôde ser observado que consumidores desse tipo de produto devem ser mais influenciados por fatores tangíveis ligados ao produto, voltando assim os esforços de marketing e de produção para essa ideologia. Conforme defendido anteriormente, apesar da existência de influência de outras variáveis intrínsecas, os fatores tangíveis aparecem como maiores influenciadores em adoções de tecnologias, principalmente na questão de livros eletrônicos.

Por fim, espera-se que a presente pesquisa sirva futuramente tanto como fonte de novas pesquisas relacionadas aos diversos temas estudados, quanto como fonte de esforços relacionados ao marketing de organizações voltadas ao mercado de *e-books*.

7. REFERÊNCIAS

- Akehurst, G., Gonçalves, C., & Gonçalves, H. (2012). Re-examining green purchase behavior and the green consumer profile: new evidences. *Management Decision*, 50(5), 972-988.
- Alfinito, S., Nepomuceno, M., & Torres, C.V. (2012) Avanços no Desenvolvimento da Escala de Julgamento e Significado do Produto para o Brasil. *Revista Brasileira de Marketing*, 11(2), 148-173.
- Allen, M. W. (2000). The attribute-mediation and product meaning approaches to the influences of human values on consumer choices. In: COLUMBUS, F. (Org.). *Advances in Psychology Research*. (2000). Huntington, Nova Science Publishers, 1, 33-76.
- Allen, M. (2001). A practical method for uncovering the direct and indirect relationships between human values and consumer purchases. *Journal of Consumer Marketing*, 18(2), 102-120.
- Allen, M., & Ng, S. (1999). The direct and indirect influence of human values on product ownership. *Journal of Economic Psychology*, 20(1), 5-39.
- Almeida, F., & Sobral, F. (2009). O Sistema de Valores Humanos de Administradores Brasileiros: Adaptação da Escala PVQ para o Estudo de Valores no Brasil. *Revista de Administração Mackenzie*, 10(3), p. 101-126, 2009.
- Anderson, C., & Pham, J. (2013). Practical overlap: The possibility of replacing print books with e-books. *Australian Academic & Research Libraries*, 44(1), 40-49.
- Armstrong, C., Edwards, L., & Lonsdale, R. (2002). Virtually there? E-books in UK academic libraries. *Electronic Library and Information Systems*, *36*(4), 216-227.
- Arnold, M., & Reynolds, K. (2003). Hedonic Shopping Motivation. *Journal of Retailing*, 79(2), 77-95.

- Assumpção, M. (2013). O consumo de jornal online: um estudo baseado em valores humanos, axiomas sociais, preferências e uso de jornal impresso. (Dissertação de Mestrado). Universidade de Brasília, Departamento de Administração, Programa de Pós-Graduação em Administração.
- Balderjahn, I. (1988). Personality Variables and Environmental Attitudes as Predictors of Ecologically Responsible Consumption Patterns. *Journal of Business Research*, 17(1), 51-56.
- Bansal, G. (2010). Continuing E-book Use: Role of Environmental Consciousness, Personality and Past Usage. In: *AMCIS 2010 Proceedings*, paper 456, 2010.
- Benício, C., & Silva, A. (2005). Do Livro Impresso ao E-book: o paradigma do suporte na Biblioteca Eletrônica. *Biblionline*, *1*(2), 1-14.
- Bohlen, G., Schlegelmilch, B., & Diamantopoulos, A. (1993). Measuring Ecological Concern: A Multi-construct Perspective. *Journal of Marketing Management*, *9*(1), 415-430.
- Cai, Y., & Shannon, R. (2012). Personal values and mall shopping behavior: The mediating role in intention among Chinese consumers. *International Journal of Retail*, 40(4), 290-317.
- Caracciolo, F., Cicia, G., Del Giudice, T., Cembalo, L., Krystallis, A., Grunert, K.G., & Lombardi, P. (2015). Human Values and preferences for cleaner livestock production. *Journal of Cleaner Production*, em prelo.
- Chan, R., & Lau, L. (2000). Antecedents of green purchases: a survey in China. *Journal of Consumer Marketing*, 17(4), 338-357.
- Chen, S., & Granitz, N. (2012). Adoption, rejection, or convergence: Consumer attitudes toward book digitization. *Journal of Business Research*, 65(1), 1219-1225.

- Cieciuch, J., Davidov, E., Vecchione, M., Beierlein, C., & Schwartz, S. (2014). The Cross-National Invariance Properties of a New Scale to Measure 19 Basic Human Values: A Test Across Eight Countries. *Journal of Cross-Cultural Psychology*, 45(5), 764-776.
- Cieciuch, J., & Schwartz, S. (2012). The number of distinct basic values and their structure assessed by PVQ-40. *Journal of personality assessment*, 94(3), 321-328.
- Cieciuch, J., Schwartz, S., & Vecchione, M. (2013). Applying the Refined Values Theory to Past Data: What Can Researches Gain? *Journal of Cross-Cultural Psychology*, 44(8), 1215-1234.
- Davidov, E. (2008). A Cross-Country and Cross-Time Comparision of the Human Values Measurements with the Second Round of the European Social Survey. *Survey Research Methods*, 2(1), 33-46.
- Davidov, E., Schmidt, P., & Schwartz, S. (2008). Bringing Values Back in: The Adequancy of the European Social Survey to Measure Values in 20 Countries. *Public Opinion Quarterly*, 72(3), 420-445.
- Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, *13*(3), 319–340.
- Davis, F., Bagozzi, R., & Warshaw, P. (1989). User acceptance of computer technology: a comparison of two theoretical models. *Management Science*, *35*(8), 982–1003.
- Dembkowski, S. (1998). The Environmental Value-Attitude-System Model Understanding the Divergence between Stated Environmental Consciousness and overt Consumer Behavior. *Eco-Management and Auditing*, *5*(1), 62-74.
- Diamantopoulos, A., Bohlen, G., & Schlegelmilch, B. (1994). Predicting green purchasing decisions from measures of environmental consciousness: A two sample comparision. In: BELL (1994). *Marketing: Unity in Diversity*. Coleraine, 252-261.

- Embong, A., Noor, A., Ali, R., Bakar, Z., & Amin, A. (2012). Teachers' Perceptions on the Use of E-Books as Textbooks in the Classroom. *World Academy of Science, Engineering and Technology*, 6(1), 557-563.
- Field, A. (2009). Descobrindo a estatística usando o SPSS. 2ª ed., Porto Alegre: Artmed.
- Field, A. (2013). Discovering statistics using IBM SPSS statistics. 4^a ed., Sages.
- Fishbein, M., & Ajzen, I. (1975). *Belief, Attitude, Intention, and Behavior*: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
- Fotopoulos, C., Krystallis, A., & Anastasios, P. (2011). Portrait value questionnaire's (PVQ) usefulness in explaining quality food-related consumer behavior. *British Food Journal*, 113(2), 248-279.
- Fournier, S. (1991). Measuring-based framework for the study of consumer-object relations. *Advances in Consumer Research*, 18(1), 736-742.
- Gam, H. (2011). Are fashion-conscious consumers more likely to adopt eco-friendly clothing? Journal of Fashion Marketing and Management, 15(2), 178-193.
- Gefen, D., Karahanna, E., & Straub, D. (2003). Trust and TAM in Online Shopping: An Integrated Model. *MIS Quarterly*, 27(1), 51-90.
- Gibson, C., & Gibb, F. (2011). An evaluation of second-generation ebook readers. *The Electronic Library*, 29(3), 303-319.
- González, E., Felix, R., Carrete, L., Centeno, E., & Castaño, R. (2015). Green Shades: A Segmentation Approach Based on Ecological Consumer Behavior in an Emerging Economy. *Journal of Marketing*, em prelo.
- Gunter, B. (2005). Electronic books: a survey of users in the UK. *Aslib Proceedings: New Information*, 57(6), 513-522.

- Hair, J., Black, W., Babin, B., & Anderson, R. (2010). *Multivariate Data Analysis*. 7^a ed, Cornell University: Prentice Hall.
- Ho, H., & Wang, L. (2012). Uses and Gratifications of the Mobile E-book Users. In: CHEN,
 R. (2012). 2011 International Conference in Electrics, Communication and Automatic
 Control Proceedings. Springer New York, 955-961.
- Ho, R. (2006). *Handbook of univariate and multivariate data analysis and interpretation with SPSS*. 1^a ed., Boca Raton, FL: Chapman & Hall/CRC.
- Hourcade, J., Bederson, B., Druin, A., Rose, A., Farber, A., & Takayama, Y. (2003). The International Children's Digital Library: viewing digital books online. *Science & Mathematics & Social Sciences*, *15*(2), 151-167.
- Huang, L., & Hsieh, Y. (2012). Consumer electronics acceptance based on innovation atributes and switching costs: The case of e-book readers. *Electronic Commerce Research and Applications*, 11(1), 218-228.
- International Publishers Association IPA (2014). Annual Report October 2013 October 2014. Recuperado em 7 de julho de 2015, de http://www.internationalpublishers.org/.
- Isomursu, M., Ervasti, M., Kinnula, M., & Isomursu, P. (2011). Understanding Human Values in adopting new technology A case study and methodological discussion. *International Journal of Human-Computer Studies*, 69(1), 183-200.
- Jeong, H. (2012). A comparison of the influence of electronic books and paper books on reading comprehension, eye fatigue, and perception. *The Electronic Library*, 30(3), 390-408.
- Jin, C. (2014). Adoption of e-book among college students: The perspective of na integrated TAM. *Computers in Human Behavior*, *41*(1), 471-477.
- Jung, J., Chan-Olmsted, S., Park, B., & Kim, Y. (2011). Factors affecting e-book reader awareness, interest, and intention to use. *New Media & Society*, *14*(2), p. 1-21, 2011.

- Kahneman, D., & Tversky, A. (1984). Choices, Values and Frames. *American Psychologist*, 39(4), 341-350.
- Kang, Y.; Wang, M., & Lin, R. (2009). Usability evaluation of E-books. *Displays*, 30(1), 49-52.
- Khalid, N. (2013). Personality Traits as Factors Affecting E-book Adoption among College Students. In: *International Conference on Social Science Research* (2013). Anais... Penang, WorldConferences.com, 1259-1265.
- Knoppen, D., & Saris, W. (2009). Do we have to combine Values in the Schwartz' Human Values Scale? A comment on the Davidov Studies. *Survey Research Methods*, 3(2), 91-103.
- Lages, N., & Vargas Neto, A. (2002). Mensurando a Consciência Ambiental do Consumidor: Um Estudo Realizado na Cidade de Porto Alegre. In: *Anais do 26º ENANPAD*, Salvador, BA.
- Lai, J., & Chang, C. (2011). User attitudes toward dedicated e-book readers for reading: The effects of convenience, compatibility and media richness. *Online Information Review*, *35*(4), 558-580.
- Lai, J., & Ulhas, K. (2012). Understanding acceptance of dedicated e-textbook applications for learning: Involving Taiwanese university students. *The Electronic Library*, *30*(3), 321-338.
- Lam, P., Lam, S., Lam, J., & McNaught, C. (2009). Usability and usefulness of ebooks on PPCs: How students' opinions vary over time. *Australasian Journal of Educational Technology*, 25(1), 30-44.
- Lee, S. (2013). An integrated adoption model for e-books in a mobile environment: Evidence from South Korea. *Telematics and Informatics*, *30*(1), 165-176.

- Levy, S. (1959). Symbols for Sale. Harvard Business School, 37(1), 117-124.
- Liao, H., Chou, C., & Chen, B. (2014). The Examination of Effects on Perceptions of Innovation Characteristics and Purchase Intention of Electronic Books. *Issues in Information Systems*, 15(2), 1-7.
- Lin, J., & Hsieh, P. (2006). The role of technology readiness in customers' perception and adoption of self-service technologies. *International Journal of Service*, 17(5), 497-517.
- Liu, X., Wang, C., Shishime, T., & Fujitsuka, T. (2012). Sustainable Consumption: Green Purchasing Behaviors of Urban Residents in China. *Sustainable Development*, 20(1), 293-308.
- Maduro-Abreu, A., & Brasil Jr, A. (2013). Desvelando a relação entre ideologia, valores do indivíduo e estilo de consumo. *Ciências Sociais Unisinos*, 49(4), 222-236.
- Martin, K., & Quan-Haase, A. (2013). Are E-Books Replacing Print Books? Tradition, Serendipity, and Opportunity in the Adoption and Use of E-Books for Historical Research and Teaching. *Journal of American Society for Information Science and Technology*, 64(5), 1016-1028.
- McCarty, J., & Shrum, L. (2001). The Influence of Individualism, Collectivism, and Locus of Controlo on Environmental Beliefs and Behavior. *Journal of Public Policy & Marketing*, 20(1), 93-104.
- Mittal, B. (1988). The Role of Affective Choice Mode in the Consumer Purchase of Expressive Products. *Journal of Economic Psychology*, *9*(1), 499-524.
- Morigi, V., & Pavan, C. (2004). Tecnologias de informação e comunicação: novas sociedades nas bibliotecas universitárias. *Ci. Inf.*, *33*(1), 117-125.
- Mota, M., & Gomes, D. (2013). Uma análise do comportamento do consumidor na adoção de inovação tecnológica: Uma perspectiva brasileira de livros eletrônicos. *Revista de Negócios*, 18(4), 3-16.

- Nair, P. (2015). Profiling Green Consumer Characteristics: An Eternal Quandary. *Journal of Advanced Management Science*, 3(2), 174-178.
- Nepomuceno, M., & Torres, C. (2005). Validação da Escala de Julgamento e Significado do Produto. *Estudos de Psicologia*, *10*(3), 421-430.
- Parasuraman, A. (2000). Technology Readiness Index (TRI): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. *Journal of Service Research*, 2(4), 307-320.
- Parasuraman, A., & Colby, C. (2001). *Techno-ready Marketing: how and why your costumers adopt technology*. 1^a ed., Nova Iorque: Free Press.
- Pasquali, L. (1999). *Instrumentos Psicológicos*: manual prático de elaboração. Laboratório de Pesquisa em Avaliação e Medida (LabPAM) Instituto de Psicologia. Brasília: Universidade de Brasília.
- Pato, C., & Tamayo, A. (2006). A Escala de Comportamento Ecológico: desenvolvimento e validação de um instrumento de medida. *Estudos de Psicologia*, 11(3), 289-296.
- Pinto, D., Nique, W., Añaña, E., & Herter, M. (2011). Green consumer values: how personal values influence environmentally responsible water consumption? *International Journal of Consumer Studies*, 35(1), 122-131.
- Porto, R., & Torres, C. (2012). Comparações entre preferência e posse de carro: predições dos valores humanos, atributos do produto e variáveis sociodemográficas. *Revista de Administração da Universidade de São Paulo*, 47(1), 140-154.
- Porto, R., & Torres, C. (2014). Valores humanos como moderadores e supressores na preferência do consumidor por marcas e produtos. *Estudos de Psicologia*, 19(2), 89-156.

- Read, W., Robertson, N., & McQuilken, L. (2011). A novel romance: The Technology Acceptance Model with emotional attachment. *Australasian Marketing Journal*, 19(1), 223-229.
- Reimão, S. (2011). Tendências do mercado de livros no Brasil: um panorama e os best-sellers de ficção nacional. *MATRIZes*, *5*(1), 194-210.
- Richardson Jr, J., & Mahmood, K. (2012). eBook readers: user satisfaction and usability issues. *Library Hi Tech*, *30*(1), 170-185.
- Riley, L., & Kohlbacher, F. (2015). Values As Antecedents For Ecologically Conscious

 Consumer Behavior Among Seniors: A Cross-Cultural Comparison. In: Robinson Jr, L.

 (2015). *Marketing Dynamism & Sustainability*: Things Change, Things Stay the Same....

 Springer International Publishing, 728-731.
- Roberts, J., & Bacon, D. (1997). Exploring the Sutble Relationships between Environmental Concern and Ecologically Conscious Consumer Behavior. *Journal of Business Research*, 40(1), 79-89.
- Rogers, E. (1962). Diffusion of innovations. 1^a ed., Nova Iorque: Free Press.
- Rohan, M. (2000). A Rose by Any Name? The values construct. *Personality and Social Psychology Review*, 4(3), 255-277.
- Rojeski, M. (2012). User perceptions of ebooks versus print books for class reserves in an academic library. *Reference Services Review*, 40(2), 228-241.
- Rokeach, M. (1973). The nature of human values. Nova Iorque: The Free Press.
- Rowlands, I., Nicholas, D., Jamali, H., & Huntington, P. (2007). What do faculty and students really think about e-books? *Aslib Proceedings: New Information Perspectives*, 59(6), 489-511.

- Schlegelmilch, B., Bohlen, G., & Diamantopoulos, A. (1996). The link between green purchasing decisions and measures of environmental consciousness. *European Journal of Marketing*, 30(5), 35-55.
- Schultz, P., Gouveia, V., Cameron, L., Tankha, G., Schmuck, P., & Franek, M. (2005). Values and their Relationship to Environmental Concern and Conservation Behavior. *Journal of Cross-Cultural Psychology*, 36(4), 457-475.
- Schwartz, S. (1992). Universalism in the content and structure of values: theoretical advances and empirical tests in 20 countries. In: Zanna, M. (1992). *Advances in experimental social psychology*. Orlando: Academic, v. 25, 1-65.
- Schwartz, S. (1994). Are There Universal Aspects in the Structure and Contents of Human Values? *Journal of Social Issues*, *50*(4), 19-45.
- Schwartz, S., & Bardi, A. (2001). Value Hierarchies across Cultures: Taking a Similarities Prespective. *Journal of Cross-Cultural Psychology*, 32(3), 268-290.
- Schwartz, S., & Boehnke, K. (2004). Evaluating the structure of human values with confirmatory fator analysis. *Journal of Research in Personality*, 38(1), 230-255.
- Schwartz, S., & Sagie, G. (2000). Value Consensus and Importance: A Cross-National Study. *Journal of Cross-Cultural Psychology*, 31(4), 465-497.
- Schwartz, S., Vecchione, M., Fischer, R., Ramos, A., Demirutku, K., Dirilen-Gumus, O., ..., & Konty, M. (2012). Refining the Theory of Basic Individual Values. *Journal of Personality and Social Psychology*, 103(4), 663-688.
- Smith, P., Bond, M., & Kagitcibasi, Ç. (2006). *Understanding social psychology across cultures: living and working in a changing world.* Londres: Sage.
- SNEL Sindicato Nacional das Editoras de Livros (2014). Relatório Anual de Vendas de Livros no Brasil. Recuperado em 7 de julho de 2015, de http://www.snel.org.br/.

- Soyez, K. (2012). How national cultural values affect pro-environmental consumer behavior. *International Marketing Review*, 29(6), 623-646.
- Stern, P. (2000). Toward a Coherent Theory of Environmentally Significant Behavior. *Journal of Social Issues*, 56(3), 407-424.
- Straughan, R., & Roberts, J. (1999). Environmental segmentation alternatives: a look at green consumer behavior in the new millennium. *Journal of Consumer Marketing*, 16(6), 558-575.
- Tamayo, A. (2007). Hierarquia de Valores Transculturais e Brasileiros. *Psicologia: Teoria e Pesquisa*, 23(1), 7-15.
- Tantawi, P., O'Shaughnessy, N., Gad, K., & Ragheb, M. (2009). Green Consciousness of Consumers in a Developing Country: A Study of Egyptian Consumers. *Contemporary Management Research*, *5*(1), 29-50.
- Torres, C., Schwartz, S., & Nascimento, T. (2015). A Teoria de Valores Refinada: associações com comportamento e evidências de validade discriminante e preditiva. *Revista Psicologia USP*, em prelo.
- Tosun, N. (2014). A Study on Reading Printed Books or E-Books: Reasons for Student-Teachers Preferences. *The Turkish Online Journal of Educational Technology*, *13*(1), 21-28.
- Vasileiou, M., Hartley, R., & Rowley, J. (2009). An Overview of the e-book Marketplace. Online Information Review, 33(1), 173-192.
- Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a research agenda on interventions. *Decision Sciences*, *39*(2), 273–315.
- Venkatesh, V., & Davis, F. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field Studies. *Management Science*, 46(2), 186–204.

- Venkatesh, V., Davis, F., & Morris, M. (2007). Dead or alive? The development, trajectory and future of technology adoption research. *Journal of the Association for Information Systems*, 8(4), 267–286.
- Webster Jr, F. (1975). Determining the Characteristics of the Socially Conscious Consumer. *Journal of Consumer Research*, 2(1), 188-196.
- Woody, W., Daniel, D., & Baker, C. (2010). E-books or textbooks: Students prefer textbooks. *Computers & Educations*, 55(1), 945-948.
- Wu, J., & Wang, S. (2005). What Drives Mobile Commerce? An Empirical Evaluation of the Revised Technology Acceptance Model. *Information & Management*, 42(1), 719-729.
- Yi, Y., Tung, L., & Wu, Z. (2003). Incorporating Technology Readiness (TR) to TAM: Are Individual Traits Important to Understand Technology Acceptance? In: *DIGIT Workshop*, *Proceedings*, *Paper 2*, Seattle.
- Zabkar, V., & Hosta, M. (2013). Willingness to act and environmentally conscious consumer behavior: can prosocial status perceptions help overcome this gap? *International Journal of Consumer Studies*, *37*(3), 257-264.
- Zhang, Y., & Kudva, S. (2013). Ebooks vs. Print Books: Readers' Choices and Preferences Across Contexts. *ASIST*, *1*(6), 1-4.
- Zhou, Y., Thogersen, J., Ruan, Y., & Huang, G. (2013). The moderating role of human values in planned behavior: the case of Chinese consumers' intention to buy organic food. *Journal of Consumer Marketing*, 30(4), 335-344.

APÊNDICE 1 – Instrumento Final da Pesquisa

Você está sendo convidado(a) a participar de uma pesquisa elaborada pelo aluno Bruno Saboya de Aragão, do curso de Mestrado em Administração da Universidade de Brasília, sob a orientação da Professora Dra. Solange Alfinito, sobre a influência de fatores intrínsecos na adoção de tecnologias. Sendo assim, gostaríamos de contar com sua colaboração na resposta do questionário a seguir, segundo as orientações contidas neste, com o tempo estimado de 15 a 20 minutos para completo preenchimento. É de extrema importância a sua sinceridade no momento de resposta, e, como sua participação nesta pesquisa é voluntária, nenhum item contido neste questionário possui caráter obrigatório. Agradecemos sua colaboração.

A seguir, listamos alguns comportamentos. Por favor, leia cada um e avalie o quanto tais comportamentos são praticados no seu cotidiano. As questões variam de 1 a 5, sendo 1 (nunca) e 5 (sempre).

Item	1	2	3	4	5
Eu procuro, insistentemente, reduzir o consumo de energia elétrica.					
Eu prefiro alimentos sem agrotóxicos porque eles respeitam o meio-ambiente.					
Eu compro produtos orgânicos porque são mais saudáveis.					
Quando eu conheço os possíveis danos que um produto pode causar eu não compro					
esse produto.					
Na minha residência eu separo o lixo orgânico do lixo seco.					
Quando possível, eu sempre escolho produtos que causam menor poluição.					
Quando eu tenho que escolher entre dois produtos iguais, eu sempre escolho o que					
é menos prejudicial ao meio-ambiente.					
Eu estou disposto a pagar um pouco mais por produtos e alimentos que estão livres					
de elementos químicos e que não prejudicam o meio-ambiente.					
Eu não compro produtos e alimentos que podem causar a extinção de algumas					
espécies de animais e vegetais.					
Eu procuro comprar eletrodomésticos que consomem menos energia elétrica.					
Quando eu compro produtos e alimentos as preocupações com o meio-ambiente					
interferem na minha decisão de compra.					
Eu sempre faço um esforço para reduzir o uso de produtos feitos de recursos					
naturais escassos.					
Eu evito comprar produtos com embalagens que não são biodegradáveis.					
Sempre que possível, eu procuro comprar produtos com embalagens reutilizáveis.					
Eu não compro produtos para minha casa que prejudicam o meio-ambiente.					

Eu compro lâmpadas mais caras, mas que economizam mais energia elétrica.		
Eu já troquei ou deixei de usar produtos por razões ecológicas.		
Eu não compro produtos fabricados ou vendidos por empresas que prejudicam ou		
desrespeitam o meio-ambiente.		
Eu troquei as lâmpadas da minha casa por lâmpadas de menor potência para reduzir		
o consumo de energia elétrica.		
Sempre que possível, eu compro produtos feitos com material reciclado.		
Eu já convenci amigos ou parentes a não comprar produtos que prejudicam o meio-		
ambiente.		
Eu tento comprar apenas produtos que podem ser reciclados.		
Eu procuro comprar produtos feitos de papel reciclado.		
Eu procuro não comprar produtos que possuem grande quantidade de embalagens.		

O quanto você concorda com as afirmações a seguir sobre livros eletrônicos (e-books)? As questões variam de 1 a 7, sendo 1 (discordo totalmente) e 7 (concordo totalmente).

Item	1	2	3	4	5	6	7
Eu considero que um e-book seja fácil de utilizar.							
Eu considero que um e-book seja amigável para o usuário.							
Eu considero que um e-book não demanda esforços para utilização.							
Um e-book me permite ler mais frequentemente.							
Eu considero que um e-book me permite ler mais efetivamente.							
Utilizar um e-book me permite ler mais.							
Utilizar um e-book me permite ler em mais localidades.							
Eu pretendo utilizar um e-book.							
Eu estou propenso a usar um e-book.							
Eu prevejo que utilizarei um e-book regularmente no futuro.							
Eu pretendo usar um e-book regularmente no futuro.							

O quanto você concorda com as afirmações a seguir? As questões variam de 1 a 7, sendo 1 (discordo totalmente) e 7 (concordo totalmente).

Item	1	2	3	4	5	6	7
Sou racional ao comprar um livro.							
Escolho um livro que posso exibir com orgulho.							
Escolho um livro compatível com o que penso sobre mim mesmo.							
Escolho um livro que está na moda.							
Escolho um livro visualmente agradável.							

Seleciono o livro que posso encontrar mais facilmente para comprar.				
Escolho um livro reconhecidamente caro.				
Considero os prós e contras antes de comprar um livro.				
Escolho um livro que me deixe de bom humor ao lê-lo.				
Seleciono o livro de leitura mais fácil.				
Considero importante comprar um livro reconhecido socialmente.				
Controlo minha impulsividade ao comprar um livro.				
Dou mais importância à beleza de um livro.				
Seleciono livros de forma cuidadosa.				
Prefiro um livro que demonstre influência sobre as outras pessoas.				
Prefiro um livro que reflita meu jeito de ser.				
Procuro o máximo de informações sobre o livro que vou comprar.				
Seleciono o livro em função do meu sentimento em relação a ele.				
Seleciono livros de leitura mais rápida.				
Penso bem antes de comprar um livro.				

As questões a seguir referem-se à sua utilização de livros eletrônicos.

Ao comprar um livro, qual o seu nível de preferência de compra para a categoria de livro eletrônico (e-book)? Considere para sua resposta 1 como sendo "não tenho nenhuma preferência" e 10 como "tenho total preferência".

1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	----

Há quanto tempo você adquiriu um livro eletrônico (e-book)? Por favor, considere adquirir como qualquer método de se obter um e-book, não somente por compra.

Há menos de	Entre 1 e 3	Entre 3 e 6	Mais de 6	Nunca adquiri.	Não me
um mês.	meses.	meses.	meses.		lembro.

Qual meio você utiliza para ler livros eletrônicos (e-books)? É possível a marcação de mais de uma resposta nessa questão.

Computador	Tablet	Smartphone	Leitor Digial (e-reader)
------------	--------	------------	--------------------------

Caso leia livros eletrônicos (e-books) por leitores digitais (e-readers), qual você utiliza? Caso não utilize e-readers, por favor assinale "não utilizo e-readers"

Kindle	Lev	Kobo	Não utilizo e-	Outro
			readers	

Qual é o seu sexo? Essa informação será importante para as questões a seguir.

Feminino	Masculino

A seguir, descrevemos brevemente uma pessoa. Por favor, leia cada frase e pense o quanto essa pessoa se parece com você (ou não). As questões variam de 1 a 6, sendo 1 (não se parece em nada comigo) e 6 (se parece muito comigo).

Item	1	2	3	4	5	6
É importante para ele formar suas visões de maneira independente.						
É importante para ele que seu país esteja seguro e estável.						
É importante para ele se entreter.						
É importante para ele evitar chatear as pessoas.						
É importante para ele que as pessoas fracas e vulneráveis da sociedade sejam						
protegidas.						
É importante para ele que as pessoas façam o que ele diz que deveriam fazer.						
É importante para ele nunca pensar que ele merece mais do que os outros.						
É importante para ele tomar conta da natureza.						
É importante para ele que ninguém jamais o envergonhe.						
É importante para ele sempre procurar coisas diferentes para fazer.						
É importante para ele cuidar das pessoas das quais ele se sente próximo.						
É importante para ele ter o poder que o dinheiro pode trazer.						
É muito importante para ele evitar doenças e proteger a sua saúde.						
É importante para ele ser tolerante com todos os tipos de pessoas e grupos.						
É importante para ele nunca violar as regras ou regulamentos.						
É importante para ele tomar suas próprias decisões a respeito da sua vida.						
É importante para ele ter ambições na vida.						
É importante para ele manter tanto os valores, quanto as formas de pensar						
tradicionais.						
É importante para ele que as pessoas que ele conhece tenham total confiança						
nele.						
É importante para ele ser rico.						
É importante para ele tomar parte nas atividades que defendam a natureza.						
É importante para ele nunca irritar alguém.						
É importante para ele desenvolver suas próprias opiniões.						
É importante para ele proteger sua imagem pública.						
É muito importante para ele ajudar as pessoas que lhe são queridas.						
É importante para ele estar seguro pessoalmente.						

É importante para ele ser um amigo confiável e fiel.			
É importante para ele assumir riscos que fazem a vida ficar excitante.			
É importante para ele ter poder para conseguir com que as pessoas façam o que			
ele quer.			
É importante para ele planejar suas atividades de forma independente.			
É importante para ele seguir as regras mesmo se ninguém estiver olhando.			
É importante para ele ter muito sucesso.			
É importante para ele seguir os costumes da sua família ou os costumes de uma			
religião.			
É importante para ele ouvir e compreender as pessoas que são diferentes dele.			
É importante para ele ter um Estado forte que possa defender seus cidadãos.			
É importante para ele desfrutar dos prazeres da vida.			
É importante para ele que todas as pessoas no mundo tenham oportunidades			
iguais na vida.			
É importante para ele ser humilde.			
É importante para ele descobrir as coisas por si mesmo.			
É importante para ele honrar as práticas tradicionais da sua cultura.			
É importante para ele ser a pessoa que diz aos outros o que fazer.			
É importante para ele obedecer todas as leis.			
É importante para ele ter todos os tipos de experiências novas.			
É importante para ele ter coisas caras que mostram a sua riqueza.			
É importante para ele proteger o ambiente natural da destruição ou poluição.			
É importante para ele aproveitar qualquer oportunidade de se divertir.			
É importante para ele se preocupar com todas as necessidades das suas pessoas			
queridas.			
É importante para ele que as pessoas reconheçam o que ele alcança.			
É importante para ele nunca ser humilhado.			
É importante para ele que seu país se proteja de todas as ameaças.			
É importante para ele nunca deixar as outras pessoas com raiva.			
É importante para ele que todos sejam tratados com justiça, mesmo pessoas que			
ele não conhece.			
É importante para ele evitar qualquer coisa perigosa.			\Box
É importante para ele estar satisfeito com o que ele tem e não querer mais.			
É importante para ele que todos os seus amigos e família possam acreditar nele			
completamente.			
É importante para ele ser livre para escolher por ele mesmo o que fazer.			

É importante para ele aceitar as pessoas como elas são, mesmo quando ele			
discorda delas.			

Por fim, gostaríamos de saber mais sobre você através de questões de cunho sócio demográfico. Por favor, responda às questões a seguir sobre o tema. As respostas aqui dadas serão utilizadas apenas para fins de pesquisa e estatística, não sendo publicadas de nenhuma forma.

Qual é a sua idade?

Qual é a renda mensal da sua família?

Qual é a sua escolaridade?

Ensino	Ensino	Ensino	médio	Ensino	superior	Pós-graduação
Fundamental	Fundamental	completo		complete	O	completa
incompleto	completo					

O quão sincero você julga ter sido ao responder as questões deste questionário? A questão varia de 1 a 10, sendo 1 (nada sincero) e 10 (totalmente sincero).

1	2	3	4	5	6	7	8	9	10

APÊNDICE 2 - Resultados das Correlações entre Variáveis

								١	orrelations	ŀ	ŀ	-	ŀ	-			-			,
		SDT MRAT	SES MRAT	HE MRAT	COI MRAT	UNC MRAT	POD MRAT	HUM MRAT	MRAT	AC MRAT	T MRAT BE	C MRAT PO	R MRAT SE	P MRAT UN	- MRAT COR	SDA	AC	ř		Consciencia Ambiental - Hábitos Domésticos
Spearman's rho SDT_MRAT	Correlation Coefficient	1,000	900'	t		.182	-,164	620'-	080'-	-170	.190	.173	-,136	000	.236			1	_	950'-
	Sig. (2-tailed)	-	,913	000'	000'	000'	,000	105	,102	000	000	000	500	966	000				,541	,236
1000	2	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
SES_MRAT	Correlation Coefficient	,005	1,000	-,052	-,043	000	-,236	-,074	1004	-,035	.,168	-,019	-,200	960	-,025				-,023	154
	N Signatura	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
HE_MRAT	Correlation Coefficient	.189	-,052	1,000	-,141"	-,024	-,040	-,152	-,022	-,132	.343	590'	990'	-,107	,024				690'-	-,032
	Sig. (2-tailed) N	,000	,285	424	,004	,623	424	,002	,653	900,	,000	181,	174	,028	423	,000	,001 ,010	,000	,157	,506
COLMRAT	Correlation Coefficient	-,312	-,043	-,141	1,000	-,034	.199	177	,032	650,	-,244	-,055	-176	110,	,054			L	-,024	600'
	Sig. (2-tailed)	000	374	,004		,486	000	000	905	,273	000	,260	000	918	,272				,629	,854
Tagm CNI	Correlation Coefficient	424	424	424	424	1000	424	236	728	424	424	247**	424	423	423			\perp	423	424
IXXIIII DAD	Sig. (2-tailed)	000.	000	-,024	486	9	000	000	000	000.	.00	000	000	941	000				.326	880
	N	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
POD_MRAT	Correlation Coefficient	-,164	.,236	-,040	-,199	.,297	1,000	192	-,273	,154	-,024	.,290	.480	-,207	-,395				-,101	.207
	Sig. (2-tailed) N	,001	000	424	,000	,000	424	,000	424	424	,625	,000	424	,000	423				,037	,000
HUM_MRAT	Correlation Coefficient	620'-	-,074	.,152	.177	,235	-,192	1,000	138	-,204	-,114	920'	-409	600	,212"				,013	,031
	Sig. (2-tailed)	105	,128	,002	000	000	000		,004	000	610,	,124	000	958,	000				962'	,527
	z	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
UNN_MRAT	Correlation Coefficient	080'-	064	-,022	,032	,228	-,273	138	1,000	181	-:036	910,	-,338	-,004	183				- 197	,486
	Sig. (2-tailed) N	424	424	474	424	424	424	,004	424	424	424	424	424	936	423				,000	0000,
FAC_MRAT	Correlation Coefficient	170	035	.132	.053	.220	154	204	181	1,000	149	144	127	125	313			L	-,012	141
	Sig. (2-tailed)	000'	470	900'	,273	000	,000	000	000		,002	:003	600	010	000				:803	,004
	Z	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
ST_MRAT	Correlation Coefficient	.190	-,168	343	-,244	-,155	-,024	41.	-,036	-,149	1,000	060'-	190,	-,304	-,029				-,048	8.70'-
	olg. (z-talled)	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
BEC_MRAT	Correlation Coefficient	,173	-,019	990'	990'-	,247	290	920'	610	-144	060'-	1,000	-,281	,103	,204				,362	780,
	Sig. (2-tailed)	000'	701	181	,260	000'	000'	,124	169,	,003	,064	•	000	980	000				000	,074
	Z	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
POR_MRAT	Correlation Coefficient	-,136	,200	990.	-,176	-,342	,480	409	-,338	,127	,061	-,281	1,000	-,120	-,388				191	-,278
	Sig. (2-tailed)	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	424
SEP_MRAT	Correlation Coefficient	000'	860	107	110,	,004	207	600'	-,004	.125	-,304	,103	-,120	1,000	050'-				190'	,122
	Sig. (2-tailed)	986	043	,028	918	941	000,	956	936	010,	000,	,035	410,		,303				,293	210,
UNT MRAT	Correlation Coefficient	236	025	.024	.054	.421	.395	212	183	-313	-,029	204	-388	050	1.000				180.	070.
i	Sig. (2-tailed)	000	,602	919	272,	000	000	000	000	000	,558	000	000	,303					960'	150
	z	423	423	423	423	423	423	423	423	423	423	423	423	423	423				423	423
COR_MRAT	Correlation Coefficient	-,158	131	-,332	.103	-,061	-,174	800'-	-,074	910,-	-,357	110.	-,249	191	-,064				701	901,
	N N	423	423	423	423	423	423	423	423	423	423	423	423	423	423				423	423
SDA_MRAT	Correlation Coefficient	,556	-,046	,155	-,341	.139	-,137	141	1116	090'-	.199	.128	-104	110,	.207				620'	-,082
	Sig. (2-tailed) N	,000	348	423	423	423	,005	423	423	423	423	423	,032	,828 423	423				423	,093
AC_MRAT	Correlation Coefficient	680'	-,151	,126	-,221	-,322	303	- 423	-,376	153	.508	159		-,121	.,256				-,027	-,264
	Sig. (2-tailed)	,427	,002	010,	000'	000'	000'	000'	000'	,002	000	100.	000	.013	000				,581	000'
TA MOAT	Correlation Coefficient	423	423	423	423	423	423	423	423	423	423	423	423	423	423			1	423	423
	Sin (2-tailed)	86.	528	000	761	000	707	7447	013	764	8 6	0	134	795	000				436	471
	S Z	423	423	423	423	423	423	423	423	423	423	423	423	423	423				423	423
BED_MRAT	Correlation Coefficient	000'	-,023	690'-	-,024	-,048	101,-	,013	-,197	-,012	-,048	,362	.191	150,	180				1,000	-,028
	Sig. (2-tailed)	541	630	157	629	,326	,037	796	000	.803	,326	0000	000	,293	960				. 65	175,
Consciencia Ambiental		423	154	423	423	423	423	423	423	423	423	423	923	423	423				423	423
Hábitos Domésticos		-,058	100	909'	458	980	000	527	000	000,	108	,00,	000	24.	150			174,	175,	200
	z	424	424	424	424	424	424	424	424	424	424	424	424	423	423				423	456
** Correlation is significant at the 0.01 level (2-tailed)	vel (2-tailed).																			

*. Correlation is significant at the 0.05 level (2-t

This interview This										5	correlations									-		-	
The control co				Consciência Ambiental - Almentação e		FAGN	P P	- Eve	FACE	FAGM		PAGE NAME OF THE PAGE N	FACE		FAG.	PAGM PAGM		FAGN	EVON O				FVON
Control Cont		onsciência Ambiental -	Correlation Coefficient	1,000	-	.103		.053	112	.138	.031	.555	133	104	000	232	100	109	.093	-		900	121
The control of the	4	imentação e Saúde	Sig. (2-tailed)			,034		,280	,021	,004	,521	000	900'	,032	866	000	986	,025	750,			668	,013
The control of the	0	TADAT TO	N Constitution Confining	45		424		424	424	424	424	424	424	424	424	424	423	423	423	\rightarrow		423	423
The control of the	n	U_IIIRAI	Sig (2-tailed)	750		913		215,-	781	* 00 100	105	107	000	000	000	-,130	986	000	100			000	541
The conference of the conferen			i z	424		424		424	424	424	424	424	424	424	424	424	423	423	423			423	423
The control of the	S	ES_MRAT	Correlation Coefficient	.10.		1,000		-,043	.175	-,236	-,074	,064	-,035	.,168	610'-	-,200	860'	-,025	.131			.031	-,023
The control of the			Sig. (2-tailed) N	,03		424	424	,374	424	424	424	424	424	424	424	424	,043	,602 423	423			423	423
The control of the	[±]	E_MRAT	Correlation Coefficient	1,07.		-,052	1,000	-,141	-,024	-,040	-,152	-,022	-,132	.343	990'	990'	-,107	,024	-,332	-		346	690'-
Mathematical Continues Mathematical Contin			Sig. (2-tailed)	.01.		,285	. 3	004	,623	014	000	,653	900'	000	181	174	,028	618	000			000	751,
The continue of the continue		OI MRAT	Correlation Coefficient	4.2	Ţ,	+24	-141	1 000	+7+ - U34	- 199	177	474	474	+74	+7+	474 - 176	011	423	103	+		423	- 024
The continue The	,		Sig. (2-tailed)	,281		374	100,	3	486	000	000	909	,273	000	,260	000'	918	272	034			761	629
Mathematical Control			z	42		424	424	424	424	424	424	424	424	424	424	424	423	423	423			423	423
Mathematic Carte	⊃ 	NC_MRAT	Correlation Coefficient	Ę.		175	-,024	034	1,000	-,297	,235	,228	-,220	155	,247	-,342	,004	.421	190			376	.048
Marconfined			Sig. (2-tailed)	,02		000,	,623	424	424	0000	000,	000,	,000	,000 ACA	424	000,	941	423	214			,000	,326
the control of the co	<u>امّ</u>	DD_MRAT	Correlation Coefficient	-138		. 236	1	199	297	1,000	.192	.273	154	-,024	290	480	-,207	.395	-,174	+		610,	101
Mathematic Mat			Sig. (2-tailed)	100		000		000	000		000	000'	,000	,625	000	000	000	000	000			701	760,
Main confinement Main confin	_		z	45		424		424	424	424	424	424	424	424	424	424	423	423	423	-		423	423
Heating Continue	I	UM_MRAT	Correlation Coefficient	.03		-,074	-,152	177	,235	-,192	1,000	,138	- 204	-,114	620'	.409	600'	.212	800	_		,037	.013
Marchentent			Sig. (2-tailed)	.52		,128	,002	000	000	000	. 10	,000 424	000	910,	124	000	956	000	898			447	796
Heading Line		NN MRAT	Correlation Coefficient	24.		124	022	032	228	-273	138	1.000	-181	036	124	338	004	183	074	+		121	197
1. 1. 1. 1. 1. 1. 1. 1.	,		Sig. (2-tailed)	100'		189	923	208	000	000	004		000	462	169	000	936	000	127			.013	000
1.1. 1.1.			Z	42		424	424	424	424	424	424	424	424	424	424	424	423	423	423	_		423	423
1,10, 1,10		AC_MRAT	Correlation Coefficient	-,133		960'-	-,132	690'	-,220	,154	-,204	-,181	1,000	.,149	-,144	,127	,125	313	-,019	_		510,	-,012
Althonopolitical (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c			Sig. (2-tailed)	00.		470	900'	,273	000	100,	000.	000.	. 424	,002	.003	900.	010,	000	702			,764	,803
High High High High High High High High	io.	r MRAT	Correlation Coefficient	104		168	174		155	+24	-114	-036	- 149	1 000	124	124	-304	- 029	357	-		160	- 048
Main Confident Main	,		Sig. (2-tailed)	03.		8 6	000	000	00	-,025	±1-10	.462	000	2	064	209	000	820	000			80	326
Mainto-confignent Main			Z	424		424	424	424	424	424	424	424	424	424	424	424	423	423	423			423	423
Handing Hand		EC_MRAT	Correlation Coefficient	100°		-,019	590'	990'-	.247	-,290	920'	910,	-,144	060'-	1,000	-,281	,103	.204	110,	_		156	.362
intencoenticient (232 (136) 2000 0.066 (177) (130) 2.32 (131) 2.32			Sig. (2-tailed)	66.		701	181	,260	00.	000	,124	169.	,003	,064		000	980'	00.	915			100,	000
and confidential (1.25)		H	2	42		424	424	424	424	424	424	424	424	424	424	424	423	423	423	\rightarrow		423	423
Mainton-configuent Mainton	_	OK_MRAI	Sig (2-tailed)	700		000	990.	9/1,-	.,342	0480	-,409	938	,12/ ono	190,	1,281	000,1	-,120	886.	-,249			134	rer;-
and the coefficient (a) (b) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	_		Oil. (Z-tailed)	42,		424		424	424	424	424	424	424	424	424	424	423	423	423			423	423
1,100 1,200 1,200 1,00	S	EP_MRAT	Correlation Coefficient	.00'-		860'		110,	,004	-,207	600'	-,004	,125	-,304	,103	-,120	1,000	090'-	.191	_		,013	,051
ation Coefficient (196) (236) (204)	_		Sig. (2-tailed)	98		,043		,816	1941	000	,856	936	010,	,000	,035	473	423	,303	000			795	,293
Halled) (255 (100) (102) (101)		NT_MRAT	Correlation Coefficient	101.		-,025	\perp	,054	.421	.395	.212	183	-,313	-,029	,204	.388	090'-	1,000	-,064	+		261	180
12 12 12 12 12 12 12 12			Sig. (2-tailed)	,02;		,602		,272	000'	000	000'	000	000'	999,	000'	000	303		981.			000.	960'
annon Complication (155) (156)	¹		2	42.		423	4	423	423	423	423	423	423	423	423	423	423	423	423	_		423	423
The confident confident (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ن	OK_MKA!	Sig (2-tailed)	80.		730		, 103 034	190,-	9/1,	898	127	610,-	/00	E 2	000	F 00	186	000'L			304	701
Anticonfronting and a confronting a confronting and a confronting a confronting and a confronting and a confronting and a confronting a confronting and a confronting a confronting and a confronting and a confronting a confront			z	42:		423		423	423	423	423	423	423	423	423	423	423	423	423			423	423
132 130 132 130 132 130		DA_MRAT	Correlation Coefficient	-,07:		-,046		.,341	.139	-,137	-,141	-,116	-,050	.199	,128	-,104	110,	.207	-,133	_		304	660,
anion Coefficient23	_		Sig. (2-tailed)	.12		348		000	0004	900'	,0004	710,	106,	000,	800.	,032	,828	000,	9006			0000	423
Halled) 400 424 423 423 423 423 423 423 423 423 423	¥	MRAT	Correlation Coefficient	-,263		151	\perp	.221	.322	303	.423	.376	153	208	.159	.508	-,121	256	.279	+		111	027
423 423 423 423 423 423 423 423 423 423		ı	Sig. (2-tailed)	100		,002		000	000	000	000	000	,002	000	100,	000	,013	000	000			,023	581
anon Coefficient 5:00 5:03 1.031 5:346 0.15 1.376 0.10 1.037 5:12 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.	_		z	42:		423		423	423	423	423	423	423	423	423	423	423	423	423	_		423	423
Halled) 1899 (1000 728 1000 701 711 712 713 714 715 710 71	F	S_MRAT	Correlation Coefficient	00		-,031		910	.376	010	,037	-,121	,015	.160	156	-,073	,013	261	304			000'	038
altion Coefficient1210300230240240240240270170130270280270280270280270280270280270280270280270280280280280290	_		Sig. (2-tailed)	88 42		423		423	423	423	423	423	423	423	423	,134	423	423	423			423	423
Talled) (0.13 (5.41 (5.02) (1.67 (5.02) (1.67 (5.02) (1.02 (1.04 (1.04))) (1.04 (1.04)) (1.04	<u></u>	ED_MRAT	Correlation Coefficient	-,12:		-,023	L	-,024	-,048	-,101,-	,013	-,197	-,012	-,048	,362	.,191,-	190'	180,	870,	-	-,027	860,	1,000
423 423 <th>_</th> <td></td> <th>Sig. (2-tailed)</th> <td>.01.</td> <td></td> <td>089</td> <td>751,</td> <td>,629</td> <td>326</td> <td>760,</td> <td>962'</td> <td>000'</td> <td>,803</td> <td>,326</td> <td>000'</td> <td>000</td> <td>,293</td> <td>960'</td> <td>107</td> <td></td> <td>,581</td> <td>,436</td> <td>•</td>	_		Sig. (2-tailed)	.01.		089	751,	,629	326	760,	962'	000'	,803	,326	000'	000	,293	960'	107		,581	,436	•
			z	42.		423	423	423	423	423	423	423	423	423	423	423	423	423	423	_	423	423	423

*, Correlation is significant at the 0.05 level (2-tailed).

	BED_MRAT	.118	.015	030	541	423	-,023	0630	423	-,069	423	-,024	,629	423	-,048	326	101	-,101	423	.013	962	423	-,197	000	423	.012	803	- 048	326	423	,362	000	.191	000	423	190'	,293	423	960	423	820'	101	423	680,	423	-,027	.581	423	038	436	1,000		400
	TR_MRAT	-,012	.803	-303	000	423	-,031	,528	423	.,346	423	,015	,761	423	.376	000	473	20,	423	780'	,447	423	-,121	,013	423	910	764	. 160	100	423	-,156	,001	073	134	423	,013	795	784	000	423	,304	000	423	-,304	423	-111	,023	423	1,000		-,038	,436	
	AC_MRAT	.,287	000	675	427	423	-,151	,002	423	,126	423	-,221	000	423	-,322	000	200	SUS,	423	-,423	000	423	-,376	000	423	,153	,002	208	000	423	-,159	,001	805	000	423	-,121	5013	973	000	423	-,279	000	423	690,	423	1,000		423	-1111	,023	-,027	189	
	SDA_MRAT	-,103	,035	556	000	423	-,046	.348	423	100	423	-,341	000'	423	139	,004	.427	751,-	423	-,141	,004	423	-,116	710,	423	050	106,	199	000	423	,128	,008	-104	,032	423	,011	,828	202	000	423	-,133	900'	423	000,1	423	590'	,183	423	304	0000	039	,423	122
	COR_MRAT	860'	045	- 158	100	423	,131	700,	423	-,332	423	,103	,034	423	190	214	477	+ 00	423	800'-	898'	423	+'0'-	,127	423	019	,/02	- 357	000	423	110,	915	249	000	423	.191,	00.	423	186	423	1,000		423	-,133	423	-,279	000	423	304	000	920.	107	422
-	NT_MRAT (,105	,031 55	236	000	423	-,025	,602	423	,024	423	,054	,272	423	421	000	305	CEC'-	423	.212.	000'	423	.183	000	423	.313	0000	- 029	258	423	,204	0000	.388	000'	423	090'-	.303	473		423	-,064	.186	423	,207	423	-,256	000	423	-,261	000.	180.	960	
-	P_MRAT U	780,	44.6	000	966	423	860'	.043	423	/01/-	423	110,	918	423	00,	1941	200	000	423	600'	958'	423	-,004	936	423	,125	010,	- 304	000	423	,103	,035	120	014	423	1,000	. 66	473	303	423	.191	000	423	110,	423	-,121	,013	423	.013	795	190.	,293	
	R_MRAT SE	.,280	000	-136	500	424	-,200	000	424	990'	424	-,176	000	424	-,342	000	#7#	004	424	-,409	000	424	-,338	000	424	,127	600°	177	209	424	-,281	000	1.000		424	-,120	410,	200	000	423	-,249	000	423	-,104	423	.809	000	423	.073	134	-,191	000	
-	MRAT PO	410,	780	173	000	424	-,019	,701	424	1065	424	-,055	,260	424	.247	000	200	000	424	920,	,124	424	910	,691	424	.144	,000 , ACA	174	064	424	1,000	. 101	281	000	424	,103	920	204	000	423	110,	915	423	971.	423	-,159	,000	423	.156	,001	.362	000'	-
-	_MRAT BE(060'-	,063	190	000	424	.168	100.	424	.343	424	-,244	000	424	-155	100.	+74	+70	424	-,114	910,	424	9:0'-	,462	424	-,149	,002	1 000		424	060'-	,064	190	500,	424	-,304	000.	473	829	423	-,357	000.	423	98L.	423	208	000	423	160	100,	048	,326	-
-	C_MRAT ST	130	200,	-170	000	424	-,035	.470	424	-,132	424	690'	273	424	.220	000	474	5 6	424	-,204	000'	424	-,181	000	424	1,000	. 404	- 149	000	424	-,144	,003	127	600	424	.125	010.	24.3	000	423	-,019	702	423	000'-	423	,153	,002	423	510,	,764	012	803	-
	N_MRAT FA	,567	000.	- 080	102	424	,064	189	424	-,022	424	,032	809	424	,228	000	27.5	000	424	.138	,004	424	1,000	•	424	181	0000	- 036	.462	424	610,	1691	.338	000	424	-,004	936	100	000	423	-,074	,127	423	-,116	423	.,376	000	423	,121	,013	-,197	000	
stions	A_MRAT UN	780,	.073	620 -	105	424	-,074	,128	424	-,152	424	.,177	000	424	235	000	474	781.	424	1,000		424	.138	00,	424	204	000	-114	010	424	920'	,124	. 409	000	424	600'	958,	24.23	000	423	800'-	898.	423	141,	423	-,423	000	423	,037	447	.013	796	
Correlations	_MRAT HUI	.189	00.	-164	100	424	-,236	000	424	-,040	424	-199	000	424	.297	000	1000	000'	424	.192	000'	424	-,273	000	424	154	100,	- 024	.625	424	-,290	0000	480	000'	424	-,207	8 5	205	000	423	-,174	000.	423	761,-	423	303	000.	423	610	.707	-,101,-	037	-
-	MRAT POD	.,151	,002	187	000	424	.175"	000	424	-,024	424	-,034	,486	424	1,000		474	167	424	,235	000	424	,228	000	424	220	000,	-155	100	424	.247	000,	-342	000	424	,004	941	4.23	000	423	-,061	,214	423	8£1,	423	-,322	000	423	376	000,	048	,326	
-	MRAT UNC	,072	14.	-312	000	424	-,043	,374	424	-,141	424	1,000		424	-,034	486	474		424	.177	000	424	,032	909	424	,053	12/3	- 244	000	424	-,055	,260	.176	000	424	110,	916	423	272	423	,103	.034	423	-,341	423	.,221	000	423	510,	761	024	629	
	HE_MRAT COL		660	1			-,052			000,1						,623	1								_	-,132		1				181,														L					-,069		
-	MRAT	,114	910	474	913	424	1,000		424	-,052	424	-,043	374	424	175	000	474	007	424	-,074	,128	424	,064	189	424	035	0/4/ FC	-168	100	424	-019	701	200	000	424	.860'	,043	423	602	423	.131	700.	423	-,046	423	-,151	,002	423	031	528	-,023	630	
	MRAT SES_	-	924	1 000		424	900'	.913	424	681.	424	.312	000	424	182	000.	474	100	424	620'-	,105	424	080'-	,102	424	071.	000.	190	000	424	.173	0000,	.136	500'	424	000'	986	128	000	423	.158	.00	423	966,	423	660,	,427	423	.303	000.	.030	.541	- 6
-	ncia tal- e ça SDT_MRAT	<u> </u>	. 92	- 086	840	424	114	610.	424	080	424	,072	.141	424	,151	002	474		424	780,	.073	424	.267	000	424	130	/00'	- 080	.063	424	,014	.780	280	000	424	760,	444	473	.031	423	860	.045	423	-,103	423	,287	000	423	,012	,803	-118	510,	422
	Consciência Ambiental - Ação e Mudança			=			ŧ																								ŧ															Ľ							
		Correlation Coefficient	Sig. (2-tailed)	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	2	Correlation Coefficient	N (Stalled)	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	Correlation Coefficier	Sin (2-tailed)	in z	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	Correlation Coefficient	Sig. (2-tailed)	Z	Correlation Coefficient	Sig. (2-tailed)	N Correlation Coofficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	Z	Correlation Coefficient	olg. (z-talleu) N	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	Sig. (2-tailed)	Correlation Coefficier	Sig. (2-tailed)	-
		Consciência Ambiental -		SDT MRAT	1		SES_MRAT		i i	HE_MKA!		COL_MRAT			UNC_MRAT		TADM MOAT	EXIM_		HUM_MRAT			UNN_MRAT			FAC_MRAT		ST MRAT			BEC_MRAT		POR MRAT			SEP_MRAT		THE MOAT	S III		COR_MRAT		1	SDA_MRAI		AC_MRAT			TR_MRAT		BED_MRAT		
		Spearman's rho		' 					_								' 			_					'						•		1								•		1			· 					1		

*. Correlation is significant at the 0.05 level (2-failed).

	ь.	i.,	0 0	, ,	· -		m	0	m .	6		,	- 0		89	9 '	., F.	- 1		6	9	<u>.</u> .	. ,		2	9	e	· ·		i	0	e :			-	e e	-	9 ~		7	<u>. ا</u>	o c		7			9	e .		~
	BED																																			,293														425
	001			- 1			1										- 1					- 1															1		- 1							- 1			-,038	
	AC_MRAT	-,304	000,	473	950,	423	.,151"	,002	423	,126	UTU,	221	000	423	-,322	000,	473	000	423	-,423	000	423	-,376	423	,153	,002	423	.208	423	-,159	,000	423	905.	423	-,121	.013	-,256	,000	.279	000	423	183	423	1,000	. 607	-111	,023	423	-,027	000
		_		\rightarrow			-		_			-			_		-			-		\rightarrow			-		\rightarrow			-		_			-		-		-		\rightarrow			-		-		_	,039	
	R_MRAT S	680	060,	423	861	423	.131	700.	423	-,332	473	103	.034	423	-,061	214	423	000	423	800'-	898,	423	-,074	423	-,019	,702	423	-,357	423	110,	315	423	-,249	423	.191	423	-,064	186	1,000		423	-,133	423	279	000,	304	000	423	701,	
	MRAT CO	980'	920,	4.23	087	423	-,025	,602	423	,024	818	054	272	423	.421	000	\$73	000	423	.212.	000	423	,183	423	-,313	000	423	-,029	423	.204	000	423	.388	423	090'-	423	1,000	. 628	-,064	186	423	207	423	.,256	000	-,261	000	423	081	-
	RAT UNT	,001	686	473	900	423	860	,043	423	701,	473	011	. 916	423	,004	941	473	000	423	600'	958,	423	,004	423	125	010	423	304	423	,103	980,	423	,120	423	000'	423	090'	,303	191	000	423	828	423	,121	.013	.013	795	423	,293	_
	SEP			1								1					1								L					L											_					1			000,	
	POR																																																	
	BEC_MRAT	,10,	77.	473	2/1,	42,	-,018	.02.	424	90.	. 42	390-	260	42	,247	00.	474	000	45	10'	,12	45,	910,	42,	-,144	00.	42)60'-	42,	1,000		45	.,281	427	.01,	,03	,204	90, 6	10,	18	42:	.128	423	159	9 5	-,156	00.	42:	,362	
	ST_MRAT	-,071	144	474	061	424	-,168	.00	424	,343	474	244	000	424	-,155	9. 5	474	625	424	-,114	,019	424	-,036	424	-,149	,002	424	1,000	424	060'-	,064	424	190,	424	-,304	,000	-,029	,558	.357	000'	423	199	423	.208	000'	.160	,000	423	-,048	
	FAC_MRAT	-,150	,002	474	0/1.	424	-,035	,470	424	-,132	474	.053	273	424	- 220	000	474	500	424	-,204	000	424	181	424	1,000		424	-,149	424	-,144	.000	424	,127	424	,125	,010	-,313	,000	910,-	,702	423	301	423	.153	,002	0115	,764	423	-,012 ,803	
	JNN_MRAT	,613	000.	#7#	080,-	424	,064	.189	424	-,022	474	.032	508	424	,228	000	474	000	424	,138	,004	424	1,000	424	-,181	000	424	-,036	424	610,	169.	424	-,338	424	-,004	,936	.183	000,	-,074	,127	423	-,116	423	.376	000,	-,121	.013	423	000,	
	JM_MRAT (060'	,064	474	501	424	-,074	,128	424	-,152	474	177	000	424	,235	000	474	781	424	1,000	•	424	.138	424	-,204	000'	424	-,114	424	920'	,124	424	-,409	424	600'	423	.212.	000	800'-	898	423	-,141	423	-,423	000	720	.447	423	.796	
	_MRAT HU	-,143	.003	474	+ 01. 100	424	-,236	000	424	-,040	0 L 4 .	-199	000	424	-,297	000	474	000'-	424	-,192	000	424	-,273	424	154	100,	424	-,024	424	-,290	000	424	.480	424	-,207	423	-,395	000	174	000	423	-,137	423	.303	000	910	701	423	-,101	_
	MRAT POD	,103	,033	474	781.	424	.175	000	424	-,024	474	034	486	424	1,000		474	000	424	.235	000	424	,228	424	,220	000	424	.,155	424	.247	000	424	.,342	424	,004	941	.421	000,	190'-	,214	423	139	423	.322	000,	376	000	423	-,048	_
	ONC																																																	
-		-		-	_	_	-,052 -,	_	-			-					_			+		\rightarrow																											-,069 -,024 ,157 ,629	
	AT HE_MRAT		4, 129	1						1,000		13				00 ,623	1					_			L					L									┸		_					\perp		\perp		
	SES_MRAT						_					1					1								L					L																			-,023	
	SDT_MRAT	:60'-	850,	7 00 4	000,1	42	900'					ľ					1																			,996										Ĭ.			,030	
Consciência	Ambiental - Produto	1,000	. 024	004	760,-	424	,074	,129	424	-,036	404	.064	186	424	,103	,033	474	5,143	424	060'	,064	424	,613	424	-,150	,000	424	1,071	424	,014	,772	424	-,307	424	,000	,989	980'	970,	680,	060'	423	-,129	423	304	000	10,	,769	423	-,125 010,	
Ė		icient		tacio	Elect		icient		1	icient		icient			icient		tacio	=		icient			icient		icient			icient		icient			icient		icient		icient		icient		1	icient		icient		icient	_	1	rient	-
		Correlation Coefficient	Sig. (2-tailed)	- Indiana	Correlation Coefficient Sig (2-failed)	(nound 4) .fig	Correlation Coefficient	Sig. (2-tailed)	z (Correlation Coefficient	Sig. (2-tailed) N	Correlation Coefficient	Sig. (2-tailed)		Correlation Coefficient	Sig. (2-tailed)	N Completion Coefficient	Sig (2-failed)	Z	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	oig. (z-talled) N	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coefficient	olg. (z-talleu) N	Correlation Coefficient	Sig. (2-tailed)	z	Correlation Coeff Sig /2-tailed)	i z	Correlation Coefficient	Sig. (2-tailed) N	Correlation Coefficient	Sig. (2-tailed)	Correlation Coeff	Sig. (2-tailed)	-	Correlation Coefficient Sig (2-tailed)	N oils. (2 manch)	Correlation Coefficient	Sig. (2-tailed)	Correlation Coefficient	Sig. (2-tailed)	Z	Correlation Coefficient Sig. (2-tailed)	
					0 ر	. 4			- '	<i>-</i> (., 2		. v	_)	J/ Z		, us			3)	-	J (., _		o)	-	J (,		J	-	_ 0			<i>.,</i> 2		J) Z		J)	-	. v.			J) Z		J)	-	J (1)	
		consciência Am	omno	TACAL TOO	DI_IIIRAI		SES_MRAT			HE_MRAT		COI MRAT			UNC_MRAT		TAGM GOO	- CO		HUM_MRAT			UNN_MRAT		FAC_MRAT			ST_MRAT		BEC_MRAT			POR_MRAT		SEP_MRAT		UNT_MRAT		COR_MRAT		!!	SDA_MRAT		AC_MRAT		TR_MRAT		EV CI	BED_MRAT	
		Spearman's rho Consciência Ambiental	-	ľ	13		Ιw		-	_		Ι°	,		را		ļ°	Ŀ		l _T		1	ر		l _{re}			so		Ι		1	ш.		l _∞		دا		Ι°			u)		▼		l _F		-	п	

*. Correlation is significant at the 0.05 level (2-tailed).

SDT_MRAT SEE_MRAT HE_N			_	_		_
1,000 1,007 1,007 1,009 1,00	TAGM	9	AGM THILL THE	TAGM GOO	DOM AD TARRE	
456 4120 420 <th>517 - 131 - 1041</th> <th>,055 -,296</th> <th>-,014 ,123</th> <th>,041</th> <th>1,099</th> <th>-,048</th>	517 - 131 - 1041	,055 -,296	-,014 ,123	,041	1,099	-,048
1,007 1,009 <th< td=""><td>424</td><td></td><td></td><td>423</td><td>423 42:</td><td></td></th<>	424			423	423 42:	
148 424	-,170			-,158	.955,	
1,65 1,065 1,060 1,060 1,060 1,060 1,060 1,060 1,060 1,060 1,070 1,072 1,175 1,236 1,070	424			,001	423 423	
424 913 414 424 424 401 400 413 424	-,035			,131	-,046	
-062 1984 424 </td <td>470</td> <td></td> <td></td> <td>700,</td> <td>.348</td> <td></td>	470			700,	.348	
1,000	424			423	423 423	
424 424 <td>900</td> <td></td> <td></td> <td>000</td> <td>100</td> <td></td>	900			000	100	
131 1,312 1,44 1,141 1,000 1,034 1,175 1,	424			423	423 423	
424 404 4.24 4	.053			,103	-,341" -,221	
131 182 173	,273			,034	000	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	424		1	423	423 42:	
4.74 4.24 <th< td=""><td>077'-</td><td></td><td></td><td>214</td><td>100 PUU</td><td></td></th<>	077'-			214	100 PUU	
1178 1164 1236 1040 1193 1207 1000 1192 400 401 410 100 100 100 100 100 400 401 410 410 410 424	424			423	423 423	
100 101	,154			-,174	-,137" ,303	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	,001			000'	000' 500'	
1,000 1,000 1,000 1,10	424			423	423 42	
103 1103 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1128 1129	-,204			800'-	-,141" -,423	
1,17	000,			868.	000, 400,	
100 1102 1189 1653 508 100 100 100 101 131 142 424 <td>-181</td> <td></td> <td></td> <td>074</td> <td>116376</td> <td></td>	-181			074	116376	
424 424 <td>000</td> <td></td> <td></td> <td>127</td> <td>00, 710,</td> <td></td>	000			127	00, 710,	
-131 -170 -132 -123 -220 -154 -204 407 400 470 -132 -200 -100 -100 407 400 474 424 424 424 424 424 -1041 190 -108 343 -244 -144 424 <	424			423	423 42	
1007 4700 470 4006 470 600<	1,000			-,019	-,050	
				,702	301	
388 000 001 000 000 001 675 019 0565 172 424	- 149			423	199" 208	
424 424 <td>.002</td> <td></td> <td></td> <td>000</td> <td>000</td> <td></td>	.002			000	000	
1,13 1,13 1,14 1,15 1,1	424			423	423 42:	
7.54 0.00 7.01 1.81 2.00 0.00 0.01 4.24 4.	-,144			110,	,128",	
7.396 .136 424 423<	003			,815	800	
1,250 1,135 1,000 1,140 1,000 1,140 1,000 1,000 1,140 1,000 <th< td=""><td>424</td><td></td><td></td><td>423</td><td>423 42</td><td></td></th<>	424			423	423 42	
4.24 4.23 4.23 <th< td=""><td>,127, 000</td><td></td><td></td><td>-,249</td><td>2,104</td><td></td></th<>	,127, 000			-,249	2,104	
-,014 ,000 ,098 -,107 ,011 ,004 -,207° ,009 4,23 <t< td=""><td>424</td><td></td><td></td><td>423</td><td>423 42</td><td></td></t<>	424			423	423 42	
1,781 1,986 1,043 1,028 1,816 1,941 1,000 1,885 1,423 1,42	,125			191	:112	
123 124	010			000'	10, 828	
173 1,236 1,025 1,024 1,024 1,035 1,035 1,035 1,035 1,035 1,037 1,038 1,038 1,038 1,104 1,038 1,038 1,104 1,038 1,104 1	423			423	423 42	
4.3 4.33 4	518,-			186	967'- 107'	
,041 .,158 .,131 .,332 .,103 .,061 .,174 .,008 423	423			423	423	
1,396 1,001 1,007 1,000 1,004 1,214 1,000 1,004 1,000 1,00	-,019			1,000	-,133	
1,096 1,000 1,00	,702				900'	
. 199	423			423	423 42:	
, 142 , 100 , 148 , 100	090			-,133	1,000	
. 1881	301			900,		
,000 ,427 ,002 ,010 ,000 ,000 ,000 ,000 ,000 ,000	153		1	279	100	
423 423 423 423 423 423 423 423 423 437 437 437 437 437 437 437 437 437 43	.002			000	183	
	423			423	423 42:	
, 326 , 000 , 528 , 000 , 761 , 000 , 7701 , 447	510,			.304	.304	
423 423 423 423 423 423 423 423	764			000'	,000	
	423			423	423 42	
810, 101, 850, 450, 800, 650, 811, 850, 811, 850, 811, 850, 811, 811, 811, 811, 811, 811, 811, 81	-,012			70,	,039 -,02	-,038
423 423 423 423 423 423 423 423 423 423	423			423	423	

									Cor	Correlations												
			Consciência Ambiental - Consumo de Energia	TARM TOS	MPAT	TAGM 7H	TAGM 10%	C N	TARM CO	TAGM MI	T A CH		TAGM T	TAGM 02	TARM GO	TAGM I	S	SDA		TA GT	9	TAG
spearman's rho Consciênc	Consciência Ambiental - Corre	Correlation Coefficient	1,000	-,027	t		-,023	600'-	-,014	-,029	921'	_	190'-	-,029	-,123	,122	5	Š		0, 711	i,	040
		Sig. (2-tailed)	*	585	600'		629	928,	191'	955'	000'	_	,208	,549	110,	,012				32 ,2		413
			456	424	424		424	424	424	424	424	_	424	424	424	423			- 1	123 4		423
SDT_MRAT		Correlation Coefficient	-,027	1,000	500,		-,312	,182	-,164	620'-	080'-	_	190	,173	-,136	000'				98 - 30		030
	olio Z	oig. (z-tailed) N	424	424	424		424	424	424	424	424		424	424	424	423				23 4		423
SES_MRA		Correlation Coefficient	,127	900'	1,000		-,043	.175	-,236	-,074	,064	_	-,168	-,019	-,200	,860 [']			1	51		023
	Sig. C	Sig. (2-tailed)	900,	,913	. 424	,285	,374	,000	,000	,128	189	470	424	701,	,000	,043	,602	,007	0, 348	,002 ,528		630
HE_MRAT		Correlation Coefficient	724	189	-,052		-,141	-,024	-,040	-,152	-,022	_	.343	590'	990	-,107				26 -,34		690
1		Sig. (2-tailed)	073	000	,285		,004	,623	410	,002	,653	_	000	181	174	,028				0.		157
			424	424	424	- 1	424	424	424	424	424		424	424	424	423				123 4		423
COLMRAT		Correlation Coefficient	-,023	-,312	-,043		1,000	-,034	-,199	.,177	,032		-,244	-,055	-,176	110				21,		024
	of Z	olg. (z-talled) N	424	424	424		424	424	424	424	424		424	424	424	423				7, 4		423
UNC_MRAT		Correlation Coefficient	600'-	,182	.175		-,034	1,000	-,297	,235	,228	_	-,155	,247	-,342	,004				22 -,37		048
	Sig. (Sig. (2-tailed)	922	000	000	,623	486	-	000'	000'	000'		,000	000	000	941				0.		326
COC			424	424	424		424	424	424	424	424	_	424	424	424	423				123 4		423
HW. COOL		Correlation Coefficient Sig (2-tailed)	767	+9L'-	927-	040	86 L.	/67'-	000':	76 L'-	577.	_	-,024	067'-	084.	/07-				50		101
	i z	(2011)	424	424	424		424	424	424	424	424		424	424	424	423				. 4		423
HUM_MRAT		Correlation Coefficient	-,029	620'-	-,074			,235	-,192	1,000	,138	_	-,114	920'	-,409	600'			1	23,0		.013
	Sig. (Sig. (2-tailed)	925	,105	,128		000'	000	000'		,004	_	910	,124	000	958				4.		796
			424	424	424		424	424	424	424	424	_	424	424	424	423				123 4		423
UNN_MRAT		Correlation Coefficient	176	080	,064		,032	,228	-,273	138	1,000	_	-,036	610.	-,338	-,004				76 -,1		197
	oligi N	olg. (z-talled) N	424	474	424		424	424	424	424	424	_	424	424	424	423				0, 4		423
FAC MRAT		Correlation Coefficient	045	- 170	035		053	- 220	154	204	181	_	.149	144	.127	125				530		012
1		Sig. (2-tailed)	351	000	470	900	.273	000	100,	000	000		,002	000	600	010				7. 7.		803
			424	424	424		424	424	424	424	424	_	424	424	424	423				123 4		423
ST_MRAT		Correlation Coefficient	-,061	190	168		-,244	.155	-,024	-114	-,036	_	1,000	060'-	190	-,304				91.		048
	Sig. N	Sig. (2-tailed)	,208	000	100,	000	000	100,	,625	010	462			,064	209	000				00.		326
REC MRAT		Correlation Coefficient	+2+	173	- 019		- 055	247	- 290	124	124	_	+7+	1000	. 281	103,				- 16		367
		Sig. (2-tailed)	549	000	707		260	000	000	124	169	_	.064	90.	000	035				100		000
	z		424	424			424	424	424	424	424		424	424	424	423				123 4		423
POR_MRAT		Correlation Coefficient	-,123	-,136	-,200		-,176	-,342	.480	-,409	-,338	_	,061	-,281	1,000	-,120				0'80		191
) file N	Sig. (2-tailed)	110,	0005		174	000,	,000	000	000.	000,		,209	000	424	473				11, 200		000
SFP MRA		Correlation Coefficient	125	000	. 860	\neg	110	004	207	600	- 004	_	304	103	120	1 000			- 1	2,12		051
ii.		Sig. (2-tailed)	012	966	043		918	941	000	988	986		000	980	014	3				113		293
			423	423	423		423	423	423	423	423	_	423	423	423	423				123 4		423
UNT_MRAT		Correlation Coefficient	-,028	,236	-,025		,054	,421	.395	,212	.183		-,029	,204	.,388	050				56" -,26		081
	0.010 N	Sig. (2-tailed) N	5/2	0000	,602		272,	,000	000,	0000,	0000		,558 473	000,	0000	303				00.		473
COR_MRAI		Correlation Coefficient	,108	-,158	131	-	,103	190'-	-174	800'-	-,074	_	-,357	110.	-,249"	.191				.30		820
	Sig. (Sig. (2-tailed)	026	100.	700,		,034	,214	000	898	,127	_	000	,815	000'	000				0.		701
			423	423	423		423	423	423	423	423	_	423	423	423	423			- 1	123 4		423
SDA_MRAT		Correlation Coefficient	-,088	,556	-,046		-,341	.139	-,137	-,141	-,116	_	199	.128	104	110.				991		039
	J. File Z	(r-ralleu)	423	423	423		423	423	423	423	423		423	423	423	423				23		423
AC_MRAT		Correlation Coefficient	- 017	680'	.151		-,221	-,322	,303	-,423	.376	_	.208	-,159	.809,	-,121				1,-	1	,027
	Sig. (Sig. (2-tailed)	,732	427	,000		000'	000'	000'	000	000	_	000	100.	000	,013				0		581
			423	423	423		423	423	423	423	423	_	423	423	423	423						423
TR_MRAT		Correlation Coefficient	950'	-303	150,-		510,	-,376	,019	,037	-,121		-,160	-,156	-,073	507						928
	of Z	Sig. (z-tailed) N	423	423	,528	423	423	423	423	423	423		423	423	423	423						423
BED_MRAT		Correlation Coefficient	-,040	030	-,023		-,024	-,048	101	.013	197	_	-,048	,362	.,191,-	190'					L	00.
		Sig. (2-tailed)	,413	,541	069,	157	,629	,326	780,	962'	000'		,326	000	000	,293				4,	,436	- 1
	N Note: The second sec	-	423	423	423	_	423	423	423	423	423	_	423	423	423	423				╛		423

			Informanta	oforomorphi		ľ			-										F	ŀ		
			Afetivo	Fragmentado	_	SES_MRAT H	HE_MRAT C	UMRAT UN	C_MRAT POD	HUM	NN	FAC	ST	BEC	POR_MRAT	SEP_MRAT	UNT_MRAT	_	DA_MRAT AC_	MRAT TR	MRAT BEI	D_MRAT
Spearman's rho	Spearman's rho Julgamento Afetivo	Correlation Coefficient	1,000	.241	-,092	010	116	935	-,144						1.70,	,053	-,157		6.00	141	-,001	-,028
		Sig. (2-tailed) N	456	,000	424	424	424	424	424	,045	,337	,045 ,003 424 424	24 424	424	,146	,272,	423	423	423	423	423	,564 423
	Julgamento Fragmentado	to Correlation Coefficient	.241	1,000	,026	,103	-,013	750,	-,017				L		650'-	,183	090	-	000	,028	-,048	-094
		Sig. (2-tailed)	000,	. 456	595	,033	795	450	,722						,225	000	309		994	,562	,330	,053
	SDT_MRAT	Correlation Coefficient	-,092	,026	1,000	500.	189	.312	.182			1	1		-136	000	.236	_	.556	.039	-,303	.030
		Sig. (2-tailed)	650'	595		913	000	000	000'						500'	966	000		000'	,427	000	541
	SES MPAT	Correlation Coefficient	424	103	474	1 000	424	424	175"				_		- 200	423	473	_	423	423	423	423
		Sig. (2-tailed)	833	.033	913	8	.285	.374	000						000	.043	.602		348	.002	.528	630
		Z	424	424	424	424	424	424	424						424	423	423	_	423	423	423	423
	HE_MRAT	Correlation Coefficient	,116	-,013	.189	-,052	1,000	.141	-,024						990'	701,-	,024	_	,155	,126	.346	690
		Sig. (2-tailed)	710.	795	000	285	YCY	,00° 40°	,623						174	,028	618		100	010	000	157
	COI MRAT	Correlation Coefficient	474	474	-,312	-,043	-,141	1,000	-,034				_		-176	110.	054	_	-,341	-221	.015	-,024
	1	Sig. (2-tailed)	,469	,450	000	374	,004		984						000'	,816	,272		000	000	,761	,629
		z	424	424	424	424	424	424	424						424	423	423	-	423	423	423	423
	UNC_MRAT	Correlation Coefficient	144	-,017	.182	175	-,024	,034	1,000						342	,004	.421	_	139	322	376	.048
		Sig. (2-tailed) N	,003	424	424	424	424	424	424						,000	,941	423		423	423	423	423
	POD_MRAT	Correlation Coefficient	860	,025	-,164	-,236	-,040	-199	-,297				L		.480	-,207	-,395	-	-,137	.303	610,	-,101,-
		Sig. (2-tailed)	,045	.613	100,	000	.410	000	000						000	000	000		900'	000	701	750,
	HIM MPAT	Correlation Coefficient	424	474	474	474 . 074	474	474	235"				_		474	473	2423	_	-141	423	423	473
	CIM MO	Sig. (2-tailed)	337	848	105	128	2002	000	000						000	958	000		004	000	7447	796
		z	424	424	424	424	424	424	424						424	423	423		423	423	423	423
	UNN_MRAT	Correlation Coefficient	860	,112	080'-	,064	-,022	,032	,228						338	-,004	,183	_	116	376	,121	197
		Sig. (2-tailed)	,045	,021	,102	189	.653	.508	000						000	936	000		710,	000.	.013	000
	FAC MRAT	Correlation Coefficient	146	474	-170	- 035	- 132	424	- 220			1	4		127	125	-313	_	- 050	153	9423	- 012
	ı	Sig. (2-tailed)	000	104	000	470	900	.273	000						600	010	000		301	,002	764	803
		Z	424	424	424	424	424	424	424						424	423	423	_	423	423	423	423
	ST_MRAT	Correlation Coefficient	,036	-,064	190	168	343	244	155						,061	304	020	_	199	208	160	.048
		Sig. (2-tailed) N	424	424	424	424	424	424	424						424	423	423		423	423	423	423
	BEC_MRAT	Correlation Coefficient	-,003	190'-	.173	-,019	990'	-,055	.247				L		-,281	,103	,204	_	.128	-,159	-,156	,362
		Sig. (2-tailed)	,953	,208	000	701	181	,260	000						0000	,035	0000		800,	100,	.001	0000
	POR MRAT	Correlation Coefficient	170.	+7+ 690'-	-,136	200	990"	-176	-,342				1		1,000	-,120	.388	_	-,104		073	-191
	J	Sig. (2-tailed)	146	,225	900'	000'	174	000	000'							410,	000		,032	000	134	000
		Z	424	424	424	424	424	424	424			_	4		424	423	423	_	423	423	423	423
	SEP_MRAT	Sig (2-tailed)	650,	,183	966	043	-,107	110,	941						-,120	1,000	303		110,	-,121	795	293
		Z	423	423	423	423	423	423	423						423	423	423	_	423	423	423	423
	UNT_MRAT	Correlation Coefficient	.,157	050'-	.236	-,025	,024	,054	.421						388	-,050	1,000			-,256"	-,261"	,081
		N Signatural	423	423	423	423	423	423	423						423	423	423		423	423	423	423
	COR_MRAT	Correlation Coefficient	1/0'-	510,	-,158	.131	-,332	,103	-,061						- 249	.191	-,064	_	-,133	.279	304	820'
		Sig. (2-tailed) N	144	,754	100,	423	000.	,034	214						,000	000,	,186		473	.000	000.	423
	SDA_MRAT	Correlation Coefficient	620'-	000	955,	-,046	,155	-,341	,139			L	\perp		-104	110.	.207	_	1,000	590'	-,304	660,
		Sig. (2-tailed)	,104	984	000'	348	,000	000	,004						,032	,828	000'		•	.183	000	,423
	le di con	2	423	423	423	423	423	423	423				_		423	423	423	_	423	423	423	423
	AC_MRAT	Correlation Coefficient	141	,028	,039	151,-	126	-,221	-,322						805	-,121	-,256		9065	1,000	-,111	-,027
		N N	423	423	423	423	423	423	423						423	423	423		423	423	423	423
	TR_MRAT	Correlation Coefficient	100'-	-,048	-,303	-,031	.346	510,	.376						-,073	,013	-,261	_	-,304	111	1,000	-,038
		Sig. (2-tailed) N	989	,330	000	528	,000	.761	000,						,134	795	473		000.	,023	423	436
	BED_MRAT	Correlation Coefficient	-,028	-,094	000	-,023	690'-	-,024	-,048		L	L	1		-191	190'	180'	_	660,	-,027	-,038	1,000
		Sig. (2-tailed)	,564	.053	541	630	157	,629	,326						000'	,293	960'		,423	189	,436	
** Correlation	N ** Correlation is significant at the 0.01 level (2-tailed)	N No O-tailed)	473	423	473	473	473	473	473				4		473	675	473	_	473	473	423	473

			-						-								•	•			-	
			Significado Simbólico	Significado Utilitário	SDT_MRAT	SES_MRAT	HE_MRAT C	OLMRAT U	C_MRAT PO	JMRAT HUM	MRAT UNN	FAC	ST	BEC	POR	SEP_MRAT	UNT_MRAT (COR_MRAT 8	SDA_MRAT AC	MRAT TR	MRAT BE	D_MRAT
Spearman's rho Signif	Significado Simbólico	Correlation Coefficient	1,000	,205,	-,264	-,053	000'	901	-,223	,227	620'-					-,130	-,269	850'-	-,239	,228	660	-,077
		Sig. (2-tailed)		000'	00.	,280	966	029	000.	000.	102					700,	000	,236	000.	000.	,056	115
gianis	Significado litilitário	Correlation Coefficient	450	1,000	174	474	474 061	474 146	171	158	474 070		1			674	180	473	210	140	4.23	103
5		Sig. (2-tailed)	000		000	744	508	.003	000	100.	409					258	000	554	000	.002	233	.034
		N	456	456	424	424	424	424	424	424	424					423	423	423	423	423	423	423
_ros	SDT_MRAT	Correlation Coefficient	-,264	-,277	1,000	900'	.189	-,312	.182	-164	620'-					000'	,236	.158	.956	039	-,303	030
		Sig. (z-talled) N	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
SES	SES_MRAT	Correlation Coefficient	-'023	910'	900'	1,000	-,052	-,043	,175	-,236	-,074					860	-,025	131	-,046	-,151.	-,031	-,023
		Sig. (2-tailed)	,280	,744	913		,285	374	000	000'	,128					,043	,602	400'	348	,002	,528	,630
		Z	424	424	424	424	424	424	424	424	424		4			423	423	423	423	423	423	423
HE_MRAT	MRAT	Correlation Coefficient	000'	,061	.189	-,052	1,000	-,141	-,024	040	-,152					-,107	,024	-,332	155	126	-,346	690'-
		olg. (z-talled) N	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
000	COLMRAT	Correlation Coefficient	,106	,146	-,312	-,043	-,141	1,000	-,034	-,199	.177		L			110,	,054	,103	-,341	-,221	.015	-,024
		Sig. (2-tailed)	920,	600,	000	,374	004		.486	000	000					918	,272	,034	000	000	761	629
		N	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
ONO	UNC_MRAT	Correlation Coefficient	-,223	171,-	.182	.175	-,024	-,034	1,000	-,297	,235					,004	,421	190	.139	,322	.376	-,048
		Sig. (2-tailed) N	0000	,000	000,	000,	,623 A2A	486	. VCW	000,	0000					,941 473	000,	473	,004	0000	000,	428
POD	POD_MRAT	Correlation Coefficient	7227.	,158	164	236	040	.189	.297	1,000	.192					207	395	174	137	303	910	101
		Sig. (2-tailed)	000'	100,	000	000'	410	000	000		000					000'	000'	000	900'	000	701	780
		N	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
HOM	HUM_MRAT	Correlation Coefficient	620'-	-,040	620-	-,074	-,152	.177	,235	-,192	1,000					600	212	800'-	-,141	-,423	,037	.013
		Sig. (2-tailed)	102	409	105	128	005	00.	00.	00.						958	00.	88	,004	00.5	.447	796
NNO	UNN MRAT	Correlation Coefficient	- 055	-107	- 080	064	- 020	#7#	228	- 273	138		1			- 004	183	- 074	-116	.376	-121	.197
		Sig. (2-tailed)	,255	720.	102	189	653	208	000	0000	004					936	000	127	710.	000	.013	000
		z	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
FAC_	FAC_MRAT	Correlation Coefficient	,048	190'	-,170	-,035	-,132	.053	-,220	154	-,204					,125	-,313	610,-	-,050	.153	510,	-,012
		Sig. (2-tailed) N	,328	,291	000	470	900'	,273	000,	100,	000,					010,	000,	,702	,301	,002	764	.803
ST MRAT		Correlation Coefficient	124	124	190	.168	343	.244	155	-024	-114					304	-029	357	188	208	.160	048
		Sig. (2-tailed)	577.	,654	000	00,	000	000	100	,625	910					000	929	000	000	000	100	326
		N	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
BEC	BEC_MRAT	Correlation Coefficient	-,188	-,091	,173	-,019	990'	990'-	,247	290	920					,103	204	110	,128	-,159	-,156	,362
		Sig. (2-tailed) N	000,	190'	0000	107,	181	7260	000,	0000	124					,035	,000	473	,008	473	,001	423
POR	POR MRAT	Correlation Coefficient	.235	.129	.136	-200	990	176	342	480	409		1			-,120	-388	.249	-,104	.508	073	.191
		Sig. (2-tailed)	000'	800	900	000'	174	00.	000	000	000					410	000	000	,032	000	134	000
		Z	424	424	424	424	424	424	424	424	424					423	423	423	423	423	423	423
SEP	SEP_MRAT	Correlation Coefficient	-,130	950'-	000	860	-,107	110,	,004	-,207	600					1,000	-,050	191	110,	-,121	.013	,051
		Sig. (∠-tailed) N	,000,	473	986	.423	423	473	.941	0000,	423					473	473	000.	828.	£73	473	473
IND	UNT_MRAT	Correlation Coefficient	-,269	.180	.236	,025	,024	,054	.421	395	.212		L			090'-	1,000	-,064	.207	.256	.261	180
		Sig. (2-tailed)	000'	000'	000	,602	618	,272	000	000'	000					303	•	,186	000'	000	000	960
		N	423	423	423	423	423	423	423	423	423					423	423	423	423	423	423	423
COR	COR_MRAT	Correlation Coefficient	-,058	-,029	158	131	,332	,103	190'-	174	800-					191	-,064	1,000	.133	,279	,304	920
		Sig. (z-tailed) N	473	423	423	423	473	423	473	423	473					473	473	. 473	000,	473	423	423
SDA	SDA_MRAT	Correlation Coefficient	-,239	-,219	9999	-,046	155	-,341	139	-,137	-,141		퇶			110	,207	-,133	1,000	590'	-,304	039
		Sig. (2-tailed)	000	000'	000	348	00'	000	,004	900'	,004					,828	000	900'		183	000	,423
		z	423	423	423	423	423	423	423	423	423					423	423	423	423	423	423	423
AC_MRAT	MRAT	Correlation Coefficient	,228	149	039	-,151	,126	-,221	-,322	303	-,423					-,121	-,256	-,279	990'	1,000	111	-,027
		Sig. (2-talled) N	,000	423	423	423	423	423	423	423	423					423	423	423	423	423	423	423
TR_MRAT	MRAT	Correlation Coefficient	660,	950'	-,303	-,031	-,346	510,	-,376	610,	760,		L			610,	-,261	.304	-,304	-,111,-	1,000	-,038
		Sig. (2-tailed)	950,	,233	000	,528	000	761	000.	701	,447	.013	764 ,001	,000	134	795	000.	000,	000,	,023		,436
BED	BED MRAT	Correlation Coefficient	674	425	473	423	423	470 -	- 048	-101	423		1			675	423	473	039	- 027	473	1 000
, 1	- CAIM-	Sig. (2-tailed)	1115	,034	541	0.630	157	629	326	760.	967.					293	960	701.	.423	581	.436	200.
		z	423	423	423	423	423	423	423	423	423					423	423	423	423	423	423	423
** Correlation is signi	ifforms of the 0.01 le	unal (2) tailed)							=	-			l						-			

			Consciência	Consciência		Consciência	Consciência				
Ambiental - Hábitos Domésticos	Ambie Hábi Domés		Ambiental - Alimentação e Saúde	Ambiental - Ação e Mudança	Consciência Ambiental - Produto	Ambiental - Reciclagem e Reutilização	Ambiental - Consumo de Energia	Julgamento Afetivo	Julgamento Fragmentado	Significado Simbólico	Significado Utilitário
Correlation Coefficient		1,000	,527	155,	,664	.e19,	,270	090'	"£71,	-,004	790,-
Sig. (2-tailed)			000'	000'	000'	000'	000'	,204	000'	,925	,150
Z		456	456	456	456	456	456	456	456	456	456
Correlation Coefficient		,527	1,000	,652	, £69,	,632	,217	980'-	,119	,026	-,053
Sig. (2-tailed)		000		000'	000'	000'	000'	,461	,011	985'	,257
z		456	456	456	456	456	456	456	456	456	456
Correlation Coefficient		.221	652	1,000	,816	<u>"</u> 669'	,295	200'	,149	210,	890'-
Sig. (2-tailed)		000	000'	٠	000'	000'	000'	928,	,000	862'	,149
z		456	456	456	456	456	456	456	456	456	456
Correlation Coefficient	<u> </u>			,816	1,000	_{**} 86 <i>L</i> '		660,	,137	,029	-,043
Sig. (2-tailed)	-	000	000'	000'		000'	000'	,402	£00°	,543	396,
		456	456	456	456	456	456	456	456	456	456
Correlation Coefficient 61	,61	619	,632	"669 [']	**86 <i>L</i> '	1,000	,285	,049	,131	990'	660,-
Sig. (2-tailed) ,0	0.	000	000'	000'	000'	٠	000'	,296	900'	,239	,411
Z	4	456	456	456	456	456	456	456	456	456	456
Correlation Coefficient ,270	72,	* 0	217	,295	,293	,285	1,000	,141**	"127 _"	,029	-,053
Sig. (2-tailed), 000	00'	0	000	000'	000'	000'		600,	900'	,543	,261
	4	456	456	456	456	456	456	456	456	456	456
Correlation Coefficient ,060	90'		980'-	700,	660,	640'	,141	1,000	,241***	,449	,400
Sig. (2-tailed) ,204	,20	4	,461	928,	,402	,296	£00°		000'	000'	000'
	4	456	456	456	456	456	456	456	456	456	456
Correlation Coefficient 17	11,	,173	,119	,149	,137	,131	,127	,241	1,000	,860 [°]	,140
Sig. (2-tailed) ,0	0.	000	,011	100,	600'	900'	900'	000'		760,	.000
	7	456	456	456	456	456	456	456	456	456	456
Correlation Coefficient -,(٠ <u>٠</u>	-,004	,026	,012	,029	990'	,029	,449	,860,	1,000	
Sig. (2-tailed) ,9	o,	925	985'	862'	,543	,239	,543	000'	780,		000'
z		456	456	456	456	456	456	456	456	456	456
Correlation Coefficient	'	290'-	-,053	890'-	-,043	680'-	650'-	,400	.140		1,000
g. (2-tailed)	-	150	,257	,149	365,	,411	,261	000'	£00'	000'	
Z	4	456	456	456	456	456	456	456	456	456	456

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

						f			ప	Correlations	ŀ		-					-	-	ŀ	ŀ	
		IAM - Facilidade de Uso Percebida	TAM - Utilidade Percebida	SDT_MRAT	SES_MRAT	HE_MRAT (4C_MRAT Po	D_MRAT HI	JM_MRAT UI	NN_MRAT F		T_MRAT 6	O	OR_MRAT S	EP_MRAT U	NT_MRAT CG	DR_MRAT SD	AC		MRATBE	D_MRAT
TAM - Facilidade de Uso	alation	-	,627	,126		,046		800'-	900'-	090'-	.047		,026	l	,002	119	-,014	000'		900'	-,142	-,022
B 20 20 20 20 20 20 20 20 20 20 20 20 20	Sig. (2-tailed) N	456	,000	424		,344		,873	424	,304	424		,600		,963	423	,766	423		900	,004	,658
TAM - Utilidade Percebida	Pearson Correlation	,627	-	,182		,020		600'	000	-,094	870		,128		1031	-,003	-,029	,024		-,046	-,094	-,022
	Sig. (2-tailed) N	,000	455	,000	,107	,681	,286	,850	,953	,054	110	108	,009	,102	,522	958	549	618	,045	345	,054	,654
SDT_MRAT	Pearson Correlation	,126	.182	-		,182		620'	-,120	760,-	-,117		193		580	004	1115	.,203	1	980'	.,280	090'-
	Sig. (2-tailed)	600	000			000		.103	,014	.045	910		000		620'	,927	910.	000		.478	000	908
	2	424	423	424		424		424	424	424	424		424		424	423	423	423	4	423	423	423
SES_MRA	Sin (2-tailed)	900.	701	354	-	197		, 9T.	000	/0L'-	131		-,146		-163	/80'	217	86 L.		747	140,	-,036
	College St. Fig.	424	423	424		424		424	424	424	424		424		424	423	423	423		423	423	423
HE_MRAT	Pearson Correlation	,046	,020	,182		-		990'-	700,	198	-,057		,365	1	901.	-,113	-,065	-,382	L	,139	-,317	-,084
	Sig. (2-tailed)	,344	1681	000.	192	Ş		172	980	000.	,242		000.		,028	,020	185	000.		,004 505	000.	.083
COLMRAT	Pearson Correlation	-,003	-,052	-,328	-,049	-,153	1	710'-	-,222	,220	,052		-,226		-,199	,003	120	102		.,209	100,	-,010
	Sig. (2-tailed)	1961	,286	000'	,319	,002		,732	000'	000'	730		000		000'	756'	,013	960,		000	086	,843
Hade Cial	Z	424	423	424	424	424	424	424	424	424	424		424		424	423	423	423	4	423	423	423
ONC_MRA	Sig (2-tailed)	900'-	950	9/0,	791.	177	710,-	-	-,326	,263	182.		061,-		GCE	-,021	,413 non	-,015		360	008	501,-
	S Z	424	423	424	424	424	424	424	424	424	424		424		424	423	423	423		423	423	423
POD_MRAT	Pearson Correlation	900'-	-'003	-,120	-,241	200'	-,222	.326	-	-,223	-,285		-,004		,513	.192	-,404	-,173		,333	-,004	-,074
	Sig. (2-tailed) N	424	,953	424	,000	424	424	424	424	424	424		.942 424		424	423	423	423		423	423	423
HUM_MRAT	Pearson Correlation	090'-	-,094	,160,-	-,107	.198	,220	,263	-,223	-	,151		-,102		-,412	-,047	,259	,020	┺	-,428	,047	,002
	Sig. (2-tailed)	304	,054	,045	,028	000,	000,	000.	000.	104	,002		980'		000.	,338	0000	675		0000	,337	.963
UNN MRAT	Pearson Correlation	047	970	-117	073	057	.052	281	285	151	424		028		.354	004	214	045	_	.399	-117	-191
	Sig. (2-tailed)	333	110	910	131	,242	7390	000'	000'	,002	=		1,560		000	928	000	358		000.	910	000
	z	424	423	424	424	424	424	424	424	424	424		424		424	423	423	423	_	423	423	423
FAC_MRAT	Pearson Correlation	150,	820'-	175	-,028	-,135	,047	-,245	169	-,225	-,197		.163		150	701,	-,332	-,040		,153	,032	-,007
	Sig. (∠-tailed) N	424	423	424	424	424	424	424	424	424	424		424		424	423	423	423		423	423	423
ST_MRAT	Pearson Correlation	,026	,128	,193	-,146	396,	-,226	-,150	-,004	-,102	-,028		-		0.00,	-,325	-,040	416	L	.174	-,186	-,048
	Sig. (2-tailed)	009'	600	000	.003	000.	000	,002	.942	960'	099'				.149	000'	414	000'		000'	000'	,323
Feet	2	424	423	424	424	424	424	474	424	424	424		424		424	423	423	423	4	423	423	423
BEC_MRAI	Sig. (2-tailed)	325	102	210	178	788	.136	.000	000	.099	561		.074		000	750,	,005	.842		000	.003	818,
	z		423	424	424	424	424	424	424	424	424		424		424	423	423	423		423	423	423
POR_MRAT	Pearson Correlation		-,031	-,085	-,163	,106	-,199	-,355"	.513.	-,412	-,354		070,		-	-,081	.'390	.,270"		,522	860'-	-,160
	Sig. (2-tailed)		423	424	424	424	424	424	424	424	424		424		424	423	423	423		423	423	423
SEP_MRAT	Pearson Correlation	,119	-,003	,004	780,	-,113	600,	-,021	.192	-,047	,004		.,325		180,-	-	101	.174		.,152	,026	-,027
	Sig. (2-tailed)	,015	856	,927	,073	,020	796,	,663	000	,338	928		000'		860'	ç	,037	000'		,002	009	585
UNT_MRAT	Pearson Correlation	-,014	-,029	115	090'-	-,065	,120	413	.,404	.259	214		-,040		.390	101,-	1-1	090'-	1	.,297	.,205	900.
	Sig. (2-tailed)	992'	,549	910,	,217	,185	,013	000	000	000'	000		414		000'	780,		,301		000	000	919
COR MRAT	N Pearson Correlation	423	422	423	130	423	423	423	423	423	423		423		423	423	423	423	_	423	423	423
	Sig. (2-tailed)	766	819	000	.004	000	036	751	000	679	358		000		000	000	301	-		000	000	366
	ì	423	422	423	423	423	423	423	423	423	423		423		423	423	423	423		423	423	423
SDA_MRAT	Pearson Correlation	,113	860	,549	-,100	.166	-,347	,052	-,105	-,134	-,130		198		-,061	,012	.103	188		,054	-,276	-,049
	Sig. (2-tailed)	,021	,045	,000	,039	100,	000,	,290	,031	900'	423		000,		,213	,807	,034	000.		473	,000	918,
AC_MRAT	Pearson Correlation	900'		920'	-,147	139	- 209	.360	333	428	.389		174		,522	-,152	-,297	297	_	-	105	-,004
	Sig. (2-tailed)	006		.478	.003	,004	000	000	000'	000'	000		000		000	,002	000	000	,269		,032	930
TP MDAT	N Dogreson Correlation	423		700	423	423	423	423	423	423	423		423		423	423	705	423	726	423	423	423
SVIII.	Sig. (2-tailed)	,004		000	140,	000	086	000	986	337	910.		000		.043	009	000	000	000'	.032	-	.653
	z	423		423	423	423	423	423	423	423	423		423		423	423	423	423	423	423	423	423
BED_MRAT	Pearson Correlation	-,022	-,022	050'-	-,036	-,084	010,-	,105	-,074	,002	.191		-,048		.160	-,027	500	,044	-,049	-,004	-,022	-
	Sig. (2-tailed) N	473	422	423	403	423	423	423	423	423	473		423		100, 423	473	473	423	878, 873	423	473	423
** Correlation is elanifica-	** Correlation is significant at the 0.01 level /0-tailed													1								

S
≘
.2
Ħ
63
Ξ
5
Ü

			TAM -		Consciência	Consciência	Consciência		Consciência	Consciência
			Facilidade de	TAM -	Ambiental -	Ambiental -	Ambiental -	Consciência	Ambiental -	Ambiental -
			Uso Percebida	Utilidade Percebida	Hábitos Domésticos	Alimentação e Saúde	Ação e Mudanca	Ambiental - Produto	Reciclagem e Reutilizacão	Consumo de Energia
Spearman's rho	TAM - Facilidade de Uso	Correlation Coefficient	1,000	,617	,074	,020	050'	,041	800'	,141
	Percebida	Sig. (2-tailed)		000'	,114	729,	,282	385,	,864	£00'
		z	456	455	456	456	456	456	456	456
'	TAM - Utilidade Percebida	Correlation Coefficient	,617	1,000	,045	,022	790'	060'	,047	,092
		Sig. (2-tailed)	000'		,335	689'	,153	950'	,319	,049
		z	455	455	455	455	455	455	455	455
'	Consciência Ambiental -	Correlation Coefficient	470,	,045	1,000	,527	,551	,664	,619°	,270
	Habitos Domėsticos	Sig. (2-tailed)	,114	335		000'	000'	000'	000'	000'
		z	456	455	456	456	456	456	456	456
'	Consciência Ambiental -	Correlation Coefficient	,020	,022	,527	1,000	,652	 269'	,632	,217
	Alimentação e Saúde	Sig. (2-tailed)	729,	629'	000'		000'	000'	000'	000'
		z	456	455	456	456	456	456	456	456
'	Consciência Ambiental -	Correlation Coefficient	050'	790'	551	652	1,000	,816	 669'	,295
	Ação e Mudança	Sig. (2-tailed)	,282	,153	000'	000'		000'	000'	000'
		z	456	455	456	456	456	456	456	456
'	Consciência Ambiental -	Correlation Coefficient	,041	060'	,664	<u>"</u> 269'	,816	1,000	86 <i>L</i> '	,293
	Produto	Sig. (2-tailed)	385,	950'	000'	000'	000'	٠	000	000'
		Z	456	455	456	456	456	456	456	456
'	Consciência Ambiental -	Correlation Coefficient	800'	,047	.e19.	,632	 669'	862'	1,000	,285
	Reciclagem e Poutilização	Sig. (2-tailed)	,864	,319	000'	000'	000'	000'		000'
	o starting and o	z	456	455	456	456	456	456	456	456
'	Consciência Ambiental -	Correlation Coefficient	,141	,092	,270	,217	,295	,293	,285	1,000
	Consumo de Energia	Sig. (2-tailed)	600,	.049	000'	000'	000'	000'	000'	٠
		Ν	456	455	456	456	456	456	456	456

**. Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Correlations

			TAM - Facilidade de	TAM -				
			Uso Percebida	Utilidade Percebida	Julgamento Afetivo	Julgamento Fragmentado	Significado Simbólico	Significado Utilitário
Spearman's rho	TAM - Facilidade de Uso	Correlation Coefficient	1,000		,082	,136	-,046	-,120
	Percebida	Sig. (2-tailed)		000'	,082	,004	,325	,010
		z	456	455	456	456	456	456
	TAM - Utilidade Percebida	Correlation Coefficient	,617	1,000	150,	"195 _"	,012	600'-
		Sig. (2-tailed)	000'	•	,276	000'	608,	,851
		z	455	455	455	455	455	455
	Julgamento Afetivo	Correlation Coefficient	780,	150,	1,000	,241	,449	,400
		Sig. (2-tailed)	,082	,276		000'	000'	000'
		z	456	455	456	456	456	456
	Julgamento Fragmentado	Correlation Coefficient	,136	"56I,	,241	1,000	*860 ⁻	,140
		Sig. (2-tailed)	,004	000'	000'		760,	.000
		z	456	455	456	456	456	456
	Significado Simbólico	Correlation Coefficient	-,046	,012	,449	_. 860'	1,000	202,
		Sig. (2-tailed)	,325	.803	000'	760,		000'
		z	456	455	456	456	456	456
	Significado Utilitário	Correlation Coefficient	-,120	600'-	,400	,140		1,000
		Sig. (2-tailed)	010,	,851	000'	£00°	000'	
		z	456	455	456	456	456	456

**. Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

	BED_MRAT	910,	,752	422	,030	423	-,023	,630	423	157	423	-,024	,629	-,048	,326	423	101,	473	,013	962'	423	761'-	423	-,012	.803	- 048	326	423	,362	000,	191	000	423	293	423	,081	423	820,	,107	423	423	423	-,027	423	860,	436	1,000	423
ŀ	TR_MRAT	.168	,000	422	-,303	423	-,031	,528	423	000	423	.015	,761	-,376	000	423	910.	423	760,	447	423	-,121	423	,015	,764	-160	100	423	-,156	000,	-,073	,134	423	2.0.7	423	-,261	423	.304	000	423	000	423	-,111	,023	1,000	423	-,038	,436
	AC_MRAT	110,	,827	422	427	423	-,151	,002	423	010	423	-,221	,000	-,322	000'	423	,303	473	.423	000	423	-,376	423	.153	,002	208	000	423	-,159	100,	.809	000	423	1717	423	-,256	423	-,279	000	423	183	423	1,000	423	-,111	,023	-,027	,581
	DA_MRAT	,166	100'	422	955,	423	-,046	348	423	3 6	423	-,341	423	139	,004	423	-,137	473	-,141	00,	423	-116	423	050	301	199	000	423	,128	000	104	032	423	828	423	,207	423	-,133	900	1 000	8	423	990	423	-,304	,000	039	423
-	R_MRAT S	-,063	199	422	-,158	423	,131	700'	423	255	423	,103	,034	-,061	,214	423	-,174	423	800'-	898'	423	-,074	423	-,019	702	- 357	000	423	,011	,815	.,249	000	423	000	423	-,064	423	1,000		. 133	900	423	-,279	423	,304	,000	820'	,107
-	MRAT CO	,031	,528	422	,236	423	-,025	,602	423	+ 70°,	423	,054	423	,421	000'	423	.395	423	.212	000	423	.183	423	-,313	000.	- 029	929	423	,204	0000	.388	000	423	303	423	1,000	423	-,064	186	207	000	423	-,256	423	-,261	,000	180,	,096
-	MRAT UNI	,029	929	422	000	423	,860	,043	423	820	423	110,	423	,004	941	423	-,207	423	600'	958'	423	-,004	423	,125	010	-304	000	423	,103	,035	120	410	423	00.	423	-,050	423	.191	000	423	828	423	-,121	423	,013	423	190	,293 423
-	MRAT SEP.	,032	513	423	.136	424	.200	000	424	174	424	.176	,000	,342	000	424	,480	424	.409	000	424	.338	424	.127	600.	424	209	424	.,281	000,	1,000		424	071,-	423	,388	423	.249	000	423	032	423	.208	423	.073	134	191	,000
-	RAT POR_																																															,000
-	AT BEC_M																									1																						
-	AT ST_MR															4																																,803 ,326 423 423
	T FAC_MRAT															_																																
	UNN_MR																																															,000
Correlations	HUM_MRAT	101	860,	423	970'-	424	+/0'-	,128	424	500	424	,177	,000	,235	000'	424	-,192	424	1,000		424	,138	424	- 204	000.	-114	019	424	920'	124	409	000	424	858	423	,212,	,000	800'-	898	423	00	423	-,423	,000	780,	447	610,	,796 423
	POD_MRAT	900'	,921	423	-,164	424	-,236	000	424	410	424	-,199	,000	-,297	000	424	1,000	424	-,192	000	424	-,273	424	154	100.	-024	.625	424	-,290	000,	480	000	424	/07'-	423	-,395	,000	-,174	000	423	900	423	303	,000	010	,701	-,101,-	,037
	NC_MRAT	270,	,137	423	,182	424	.175	000'	424	£20°	424	-,034	424	1,000		424	-,297	424	,235	000'	424	,228	424	-,220	000.	- 155	100	424	,247	000,	-,342	000	424	941	423	,421	423	-,061	,214	130	004	423	-,322	423	-,376	,000	-,048	,326
	COL_MRAT U		130	423	-,312	424	-,043	,374	424	004	424	1,000	424	-,034	,486	424	.199	424	177	000	424	,032	424	,053	,273	- 244"	000	424	990'-	260	.176	000	424	- 18	423	,054	423	,103	,034	- 341	00	423	-,221	423	510,	761	-,024	629
-	HE_MRAT CO	t	,072	423	189	424	-,052	,285	424	0	424	-,141	424	-,024	,623	424	-,040	424	-,152	,002	424	-,022	424	-,132	900.	343	000	424	590'	181,	990'	174	424	.01.	423	,024	423	-,332	000	155	100	423	,126	,010	-,346	,000	690'-	,157
	SES_MRAT HE	١	196,	423	913	424	1,000		424	285	424	-,043	424	,175	000	424	.236	424	- 074	,128	424	100	424	-,035	470	-168	00	424	-,019	107,		000	424	080	423	-,025	423	,131	700.	- 046	348	423	.151	423	-,031	,528 423	-,023	,630
-	SDT_MRAT SE	t	000	423	1,000	424	900'	.913	100	80.	424	-,312	,000	,182	000	424	-,164	424	620'-	,105	424	-,080	424	-,170	000.	190	000	424	.173	000,	-,136	900	424	966	423	,236	423	-,158	100	423 556	000	423	680	427	-,303	,000	000'	,541
-		_		455	900	423	,028	,561	423	020,	423	-,074	423	,072	,137	423	500,	423	-,101	960,	423	,022	423	-,019	703	9423	178	423	-'053	,278	,032	.513	423	650	422	,031	,528 422	-,063	199	166	5 6	422	110	422	.168	100,	-,015	,752 422
•	TAM - Pretensão de Uso				ŧ		Ħ		ŧ			nt		ıt.			ŧ		ıt			ŧ		Ħ		ŧ			nt		Ħ		1			Ħ		ti		ŧ	=		ŧ		Ħ		Ħ	
		elation Coefficie	Sig. (2-tailed)		Correlation Coefficient Sig (2-tailed)		Correlation Coefficient	(2-tailed)	N Correlation Coefficient	Sin (2-tailed)		Correlation Coefficient	(2-tailed)	Correlation Coefficient	Sig. (2-tailed)		Correlation Coefficient	(z-talleu)	Correlation Coefficient	Sig. (2-tailed)		Correlation Coefficient	(F)	Correlation Coefficient	Sig. (2-tailed)	elation Coefficie	Sig. (2-tailed)		Correlation Coefficient	Sig. (2-tailed) N	elation Coefficie	Sig. (2-tailed)	N Correlation Coofficient	Correlation Coefficie Sig (2-failed)	6	Correlation Coefficient	(2-tailed)	Correlation Coefficient	Sig. (2-tailed)	elation Coefficie	Sig. (2-tailed)		Correlation Coefficient	Sig. (2-tailed) N	Correlation Coefficient	(2-tailed)	elation Coefficie	Sig. (2-tailed) N
		ı	Sig. (z	Sig	z	Corre	Sig.	z	, pig	z	Corn	o sig. z	Corre	Sig. (z	Com	- file Z	Corre	Sig. (z	Corr	źz	Com	Sig. (Corre	Sig. (z	Corn	Sig. N	Corre	Sig. (Z	Sig	źz	Com	S Z	Corre	Sig.	z C	Sig. (z	Com	o Bis z	Corre	- Sig v	Corre	Sig
		TAM - Pretensão de Uso			SDT_MRAT		SES_MRAT		TACK			COLMRAT		UNC_MRAT			POD_MRAT		HUM_MRAT			UNN_MRAT		FAC_MRAT		IRAT			BEC_MRAT		POR_MRAT		TAGM GEO	E S		UNT_MRAT		COR_MRAT		SDA MRAT			MRAT		WRAT		BED_MRAT	
					SDT		SES		TAGM DU			00		ONO			PoD.		HUM			Z N		FAC		ST MRAT	5		BEC.		POR		0	L L		TNO		COR		ACIS:	Š		AC_MRAT		TR_MRAI		BED	
		Spearman's rho																																														

S
≘
ᅙ
Ξ
75
40
_
0
C
_

			TAM -	Consciência Ambiental -	Consciência Ambiental -	Consciência Ambiental -	Consciência	Consciência Ambiental -	Consciência Ambiental -
			Pretensão de Uso	Hábitos Domésticos	Alimentação e Saúde	Ação e Mudança	Ambiental - Produto	Reciclagem e Reutilização	Consumo de Energia
Spearman's rho	TAM - Pretensão de Uso	Correlation Coefficient	1,000	,012	950'-	,024	-,018	000'	190'
		Sig. (2-tailed)		,804	,235	909'	,704	966'	,151
		z	455	455	455	455	455	455	455
	Consciência Ambiental -	Correlation Coefficient	,012	1,000	,527		,664	"619 _"	,270
	Hábitos Domésticos	Sig. (2-tailed)	,804		000'	000'	000'	000'	000'
		z	455	456	456	456	456	456	456
	Consciência Ambiental -	Correlation Coefficient	950'-	,527	1,000	,652	<u>"</u> 269'	,632	,217
	Alimentação e Saúde	Sig. (2-tailed)	,235	000'		000'	000.	000'	000.
		z	455	456	456	456	456	456	456
	Consciência Ambiental -	Correlation Coefficient	,024	,551	,652	1,000	,816	 669'	,295
	Ação e Mudança	Sig. (2-tailed)	909'	000'	000'		000'	000'	000.
		z	455	456	456	456	456	456	456
	Consciência Ambiental -	Correlation Coefficient	-,018	,664	<u>"</u> 269'	.,816	1,000	<u>"</u> 862'	,293
	Produto	Sig. (2-tailed)	,704	000'	000'	000'		000'	000.
		z	455	456	456	456	456	456	456
	Consciência Ambiental -	Correlation Coefficient	000'	,619	,632		862'	1,000	,285
	Reciclagem e Doutilização	Sig. (2-tailed)	966'	000'	000'	000'	000'		000.
) constagate	z	455	456	456	456	456	456	456
	Consciência Ambiental -	Correlation Coefficient	790'	,270	,217	,295	,293	,285	1,000
	Consumo de Energia	Sig. (2-tailed)	,151	000'	000'	000'	000'	000'	•
		Z	455	456	456	456	456	456	456

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

			TAM -				
			Pretensão de Uso	Julgamento Afetivo	Julgamento Fragmentado	Significado Simbólico	Significado Utilitário
Spearman's rho	TAM - Pretensão de Uso	Correlation Coefficient	1,000	-,001	,181	-,092	_. 860'-
		Sig. (2-tailed)	٠	976'	000'	150,	760,
		z	455	455	455	455	455
Ι΄	Julgamento Afetivo	Correlation Coefficient	100,-	1,000	,241	,449	,400
		Sig. (2-tailed)	926,	٠	000'	000'	000'
		z	455	456	456	456	456
Ι΄	Julgamento Fragmentado	Correlation Coefficient	,181	,241**	1,000	,860 [,]	,140
		Sig. (2-tailed)	000'	000'		780,	600,
		z	455	456	456	456	456
	Significado Simbólico	Correlation Coefficient	-,092	,449	,860'	1,000	
		Sig. (2-tailed)	150,	000'	760,		000'
		Z	455	456	456	456	456
-	Significado Utilitário	Correlation Coefficient	_* 860'-	,400	,140	202,	1,000
		Sig. (2-tailed)	760,	000'	600,	000'	
		N	455	456	456	456	456

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

APÊNDICE 3 - Resultados das Análises de Moderação e Mediação

**************************************	*****	*****	******	*****	*****	***
Model Summar	Y R-sq	MSE	F	df1	df2	
р	_		01 6004			
,6416 ,0000	, 4117	1,8180	81,6204	3,0000	451 , 0000	
Model						
constant	coeff 5,7904	se ,0664	t 87 , 2497	р ,0000	LLCI 5,6600	ULCI 5,9208
JulgFrag	, 1393	,0593	2,3504	,0192	,0228	,2558
PEOU int 1	,7971 -,1063	,0627 ,0576	12,7039 -1,8443	,0000 ,0658	,6738 -,2195	,9204 ,0070
- Interactions						
int_1 PE	OU X	JulgFr	rag			
************** Outcome: IU	*****	******	******	*****	******	***
Model Summar	V					
R	R-sq	MSE	F	df1	df2	
p ,6898	, 4758	1,6146	95 , 5372	3,0000	450,0000	
,0000	•	,	•	,	,	
Model						
	coeff	se	t	р	LLCI	ULCI
constant JulgFrag	5,7765 ,0455	,0623 ,0556	92,7005 ,8183	,0000 ,4136	5,6540 -,0638	5,8989 ,1549
PU	,6078	,0382	15,9058	,0000	, 5327	,6829
int_1	-, 0033	,0334	- , 0981	, 9219	-, 0690	,0624
Interactions	:					
int_1 PU	X	JulgFr	rag			
*****	*****	******	******	*****	*****	***
Outcome: PU						
Model Summar	_					
R p	R-sq	MSE	F	df1	df2	
,6375	,4064	2,3066	159,7382	3,0000	451,0000	
,0000						
Model	6.6					0
constant	coeff 4,9789	se ,0734	t 67,8112	р ,0000	LLCI 4,8346	ULCI 5,1232
JulgFrag	,1822	,0622	2,9275	,0036	,0599	,3044
PEOU int 1	,9056 -,0249	,0489 ,0417	18,5049 -,5981	,0000 ,5501	,8094 -,1069	1,0018 ,0570
Interactions		, • • • •	, 5551	,	, _ 0 0 0	,

int_1 PEOU X JulgFrag

**************************************	******	*****	*****	******	*****	***
Model Summar R	R-sq	MSE	F	df1	df2	
,6378	,4068	1,8498	61,6680	3,0000	419,0000	
Model constant SDT_MRAT PEOU int_1	coeff 5,8050 ,3512 ,7841 -,1400	,1195 ,0626	t 86,1045 2,9388 12,5174 -1,0493	p ,0000 ,0035 ,0000 ,2946	LLCI 5,6724 ,1163 ,6610 -,4022	ULCI 5,9375 ,5860 ,9072 ,1222
Interactions int_1 PE	S: EOU X	SDT_MRA	ΑT			
_	******	_		******	*****	***
Model Summar R	Ty R-sq	MSE	F	df1	df2	
p ,6949	, 4829	1,6064	87 , 0576	3,0000	418,0000	
Model constant SDT_MRAT PU int_1 Interactions	coeff 5,8186 ,2301 ,5903 -,0954	,1010 ,0386	t 92,1621 2,2783 15,2812 -1,5116	p ,0000 ,0232 ,0000 ,1314	LLCI 5,6945 ,0316 ,5144 -,2196	ULCI 5,9427 ,4286 ,6662 ,0287
int_1 PU	J X	SDT_MR	AT			
**************************************	******	*****	*****	******	******	* * *
Model Summar R	R-sq	MSE	F	df1	df2	
,6291	,3958	1,8863	61,7833	3,0000	418,0000	
Model constant SDA_MRAT PEOU int_1 Interactions	coeff 5,7997 ,2167 ,7909 -,1341	,1037 ,0619	t 85,8211 2,0900 12,7871 -1,4258	p ,0000 ,0372 ,0000 ,1547	LLCI 5,6669 ,0129 ,6693 -,3189	ULCI 5,9325 ,4206 ,9125 ,0508

int_1 PEOU X SDA_MRAT

**************************************		******	******	******	******	***
Model Summ	nary R R-s	sq MSI	E F	df1	df2	
,695 ,0000	, 483	1,6056	89,1192	3,0000	417,0000	
Model	5.5					
constant SDA_MRAT PU int_1	coeff 5,8072 ,2455 ,6023 -,1123	se ,0627 ,1065 ,0385 ,0648	t 92,6315 2,3061 15,6580 -1,7337	,0000 ,0216 ,0000 ,0837	LLCI 5,6840 ,0362 ,5267 -,2397	ULCI 5,9305 ,4547 ,6779 ,0150
Interactio	ons:					
int_1	PU	X SDA_N	MRAT			
**************************************		******	******	******	******	***
Model Summ	nary R R-s	sa MSE	G F	df1	df2	
р		1			-	
,630 ,0000	,397 ,397	¹ 7 2,3702	2 127,9074	3,0000	418,0000	
Model						
constant SDA_MRAT PEOU int_1	coeff 4,9650 ,0752 ,9271 ,1090	se ,0764 ,1112 ,0490 ,0718	t 64,9523 ,6761 18,9285 1,5191	p ,0000 ,4993 ,0000 ,1295	LLCI 4,8147 -,1433 ,8308 -,0321	ULCI 5,1152 ,2936 1,0233 ,2501
Interactio	ons:					
int_1	PEOU	X SDA_N	MRAT			