

Estudo da interação Musa acuminata-Meloidogyne incognita

NANCY EUNICE NIÑO CASTAÑEDA

Brasília DF 2015

NANCY EUNICE NIÑO CASTAÑEDA

Estudo da interação Musa acuminata-Meloidogyne incognita

Tese apresentada à Universidade de Brasília como requisito parcial para a obtenção do título de Doutor em Fitopatologia pelo Programa de Pós-Graduação em Fitopatologia

> **Orientador** Prof. Juvenil Enrique Cares

BRASÍLIA DISTRITO FEDERAL - BRASIL 2015 Trabalho realizado junto ao Departamento de Fitopatologia do Instituto de Ciências Biológicas da Universidade de Brasília, sob orientação do **Professor Juvenil Enrique Cares**, com apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPQ, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Embrapa Recursos Genéticos e Biotecnologia e Embrapa Mandioca e Fruticultura.

Estudo da interação Musa acuminata-Meloidogyne incognita

NANCY EUNICE NIÑO CASTAÑEDA

TESE APROVADA em 24/09/2015 por:

	Dra. Regina Maria Dechechi Gomes Carneiro
	Examinador Externo
1	Tartic Horners Horein
	Dr. Natália Florêncio Martins Examinador
	Examinador Externo
	Inle
	Prof Eliane Ferreira Noronha
	Examinador
	AL
	Prof. Cleber Furlanetto
	Examinador
	Care
	Prof. Juxenil Enrique Cares
	O interdent (Descridents)

BRASÍLIA – DISTRITO FEDERAL BRASIL 2015

DEDICATÓRIA

"A minha família, que mesmo à distância sempre me deu força e carinho" "A meu pai e meu irmão que do céu me acompanham"

AGRADECIMENTOS

Primeiramente ao Brasil, por abrir-me suas portas!

À Universidade de Brasília (UnB) pela oportunidade de realização do curso de Doutorado pelo Programa de Pós-Graduação em Fitopatologia, assim como aos Professores do Programa de Pós-graduação em Fitpatologia pelos ensinamentos.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao Conselho Nacional de Desenvolvimento Tecnológico e Científico (CNPq) pela concessão da bolsa de estudos.

Ao Professor Juvenil Cares pelo apoio, orientação, pelos conselhos e a força em meus momentos de fraqueza, pela contribuição em minha formação professional na área da Nematologia, por sua amizade e carinho.

Ao Professor Robert Miller, que sempre me deu apoio e me orientou com firmeza na fase final de meu trabalho, a quem admiro por suas conquistas e seu profissionalismo, agradeço pelos ensinamentos em biologia molecular.

A todos os professores do Departamento de Fitopatologia: Cleber, Rita, Marisa Ferreira, Cláudio, Dianese, Adalberto Café, e Luiz Bluim por todos os ensinamentos pelos conselhos.

Ao Dr. Jansen Rodrigo Santos, colega e amigo, por seus ensinamentos e conselhos e por depositar sua comfiança em mim para desenvolver este trabalho.

Á Dr. Regina Carneiro da Embrapa Cenargen, por facilitar o aprendizado em técnicas de histologia, a quem admiro por sua experiência e conquistas na área da Nematologia.

Ao Departamento de Botânica, em especial à Prof. Dalva Graciano, por permitir o uso do laboratório de Anatomia Vegetal.

À equipe do Programa Planta-praga, em especial à Dr. Rosane Mansan quem me deu todo apoio e esteve sempre ao meu lado desde a fase dos trabalhos de laboratório até a fase final do trabalho.

Ao Dr. Gabriel Alves por seu apoio e sua ajuda nas análises de bioinformática, assim como à equipe da Embrapa Cenargen, em especial à Dr. Priscila GrynBergh, ao Dr. Marcos Mota do Carmo, à Dr Natália Florêncio Martins e ao Dr. Roberto Togawa.

A todos os meus colegas de estudo, em especial, Larissa, Pedro, Carina, Deborah, Vanessinha, Cecilia, Danilo, Fabiane, Erika, Justino, William, Kamila, Pimentel, Mauricio, Daniela, a minhas amigas colombianas Paula e Lorena, assim como a todos meus colegas de estudo por compartilhar momentos especiais de relaxamento.

Agradecimento especial a Juan Pablo, Viviane, Rosalba que me incentivaram a fazer meu doutorado no Brasil e me deram sempre seu apoio e carinho.

À minha mãe, meus irmãos, sobrinhos, a meu primo Eduardo e minha Tía Aura, ainda que distantes, sempre me deram boa energia. Também a Marlon que sempre esteve de meu lado, dando-me valor para continuar.

A meus amigos e colegas Colombianos, em especial a Ligia, que na distância me enviaram mensagens de alento.

Ao Senor Fabio da Estação Biológica, por me ajudar a manter minhas plantas.

Finalmente a todos que contribuíram de alguma forma na execução desta pesquisa.

.....E a Deus que sempre me iluminou nos momentos mais difícies.

SUMÁRIO

LISTA DE ABREVIATURAS	vi
LISTA DE FIGURAS	vii
LISTA DE TABELAS	X
RESUMO GERAL	1
GENERAL ABSTRACT	
INTRODUÇÃO GERAL	
JUSTIFICATIVA	7
OBJETIVO GERAL	
OBJETIVOS ESPECÍFICOS	
CAPÍTULO I: Revisão de Literatura	
1. A cultura da Banana	9
1.1. Origem e Disseminação	
1.2. Importância econômica da cultura da banana	
1.3. Classificação botânica e variação genética em Musa	
1.4. Distribuição geográfica no Brasil	
1.5. Problemas fitossanitários	
1.6. Controle dos Nematoides em bananeiras	
1.7. Controle de nematoides por resistência genética	
2. Mecanismos de defesa em plantas	
2.1. Receptores PRRs e imunidade disparada por PAMPs-PTI	
2.2. Proteínas R e a imunidade disparada por efetores ETI	
3. Resistência de bananeiras a nematoides	
4. Pesquisa genômica em <i>Musa</i> spp	
5. Genes de resistência a nematoides	
6. O gênero <i>Meloidogyne</i>	
6.1. Características gerais	
6.2. Ciclo de vida de <i>Meloidogyne</i>	
6.3. Meloidogyne incognita	
7. Cinética da interação planta-nematoide	
7.1. Interação molecular incompatível planta-nematoide	

7.2. Interação molecular compatível planta-nematoide	38
7.3. Proteínas de parasitismo por nematoides (Efetores)	38
8. Histopatologia na interação <i>Meloidogyne</i> -planta	40
9. Pesquisa genômica em <i>Meloidogyne</i>	45
9.1. Estudo de transcritoma da interação planta-nematoide	46
9.2. Sequenciamento massal em paralelo (NGS)	46
9.3. RNAseq	47
9.4. Sequenciamento Ilumina	47
REFERÊNCIAS BIBLIOGRÁFICAS	49
CAPÍTULO II: Identificação e ciclo de vida de Meloidogyne incognita em raízes de	
bananeira com uso de técnicas histopatológicas	72
RESUMO	72
ABSTRACT	73
MATERIAL E MÉTODOS	76
1. Local do trabalho:	76
2. Material vegetal:	76
3. Inóculo de <i>Meloidogyne incognita</i> :	77
4. Identificação de <i>Meloidogyne incognita</i>	77
4.1. Identificação por configuração perineal	77
4.2. Identificação por fenótipo de esterase	78
4.3. Identificação por marcadores moleculares espécie-específicos SCAR	79
5. Preparo do inóculo de J2 de <i>Meloidogyne incognita</i> e inoculação	79
6. Inoculação dos J2 de <i>Meloidogyne incognita</i>	80
7. Preparo de raízes para estudos histopatológicos	80
7.1. Coloração com fucsina ácida	80
7.2. Fixação de raízes de infiltração com resina Technovit 7100®	81
7.3. Coloração com azul de toluidina	82
8. Análise quantitativa de cada estádio de Meloidogyne incognita	82
RESULTADOS	83
1. Identificação do nematoide	83
2. Análise histopatológica e ciclo de vida de Meloidogyne incognita	83

3. Sintomas em raízes de <i>Musa acuminata</i> GN ao longo do ciclo de vida de <i>Me</i> incognita	eloidogyne 86
4. Quantificação de nematoides em cada tempo de avaliação do ciclo de vida	
CONCLUSÕES	
REFERÊNCIAS BIBLIOGRÁFICAS	
CAPÍTULO III: Resposta histopatológica de dois genótipos de bananeira à inf <i>Meloidogyne incognita</i>	ecção por 100
RESUMO	
ABSTRACT	
INTRODUÇÃO	
MATERIAL E MÉTODOS	
1. Preparo das mudas de bananeira	
2. Fonte de inóculo de Meloidogyne incognita	
3. Preparo do inóculo de Meloidogyne incognita e inoculação dos J2	
4. Desenho experimental para análise histopatológica dos dois genótipos	
5. Preparo das raízes de bananeira para estudos histopatológicos	
5.1. Análise histopatológica	
5.2. Penetração de J2 nas raízes	
6. Análise quantitativa dos estádios de desenvolvimento de <i>Meloidogyne incogni</i> genótipos GN e 4279-06	<i>ta</i> nos 106
7. Avaliação de características anatômicas de raízes de bananeiras GN e 4279-06 com <i>Meloidogyne incognita</i>	infectadas
RESULTADOS	
1. Penetração e migração dos nematoides nas raízes	
2. Resposta histológica à infecção nos dois genótipos	
3. Análise quantitativa nos estádios de desenvolvimento de <i>Meloidogyne incogni</i> genótipos GN e 4279-06	<i>ta</i> nos 113
4. Avaliação dos parâmetros anatômicos de raízes de GN e 4279-06 inoculadas c <i>Meloidogyne incognita</i>	om 116
5. Sintomas em raízes	
DISCUSSÃO	
CONCLUSÕES	
REFERÊNCIAS BIBLIOGRÁFICAS	

CAPÍTULO IV. Análise de transcritoma da interação <i>Musa acuminata-N</i> incognita	Ieloidogyne 131
RESUMO	
ABSTRACT	
INTRODUÇÃO	
MATERIAL E MÉTODOS	
1. Localização do Bioensaio	
2. Preparo de mudas de bananeiras	
3. Preparo das mudas para a multiplicação do nematoide	
4. Extração e preparo do inóculo de Meloidogyne incognita	
5. Desenho experimental	
6. Coleta de raízes para extração de RNA total	
7. Extração e quantificação do RNA total	
8. Sequenciamento Illumina	
9. Análise Bioinformática	141
9.1. Avaliação da qualidade das sequências e filtragem dos dados	
9.2. Mapeamento dos <i>reads</i> e identificação dos transcritos	
9.3. Análise quantitativa da expressão gênica	
9.4. Anotação das sequências	144
RESULTADOS	
1. Extração de RNA	
2. Construção das bibliotecas de RNAseq	
3. Sequenciamento massal e processamento de sequências	
4. Análise diferencial de genes expressos por biblioteca de cDNA	
5. Anotação das bibliotecas de RNAseq- Plataforma Blast2GO. GO catego	rias 153
 Análise da expressão diferencial de genes de Musa acuminata nos genóti 06 na interação com Meloidogyne incognita 	ipos GN e 4279- 158
DISCUSSÃO	
1. Processamento e análises dos transcritos	
2. Categorias GO	
3. Análise de expressão diferencial	
CONCLUSÕES	

PERSPECTIVAS	
ANEXOS	Erro! Indicador não definido.

LISTA DE ABREVIATURAS

°C – Grau Celsius Abs - absorbância AJ - ácido jasmônico AS - ácido salicílico cDNA – DNA complementar DNA - ácido desoxirribonucleico EST – marcador de sequência expressa ET – etileno ETI – imunidade disparada por efetores g – grama Gb – gigabase **GN-** Grande naine GO – "Gene Ontology" HR - resposta de hipersensibilidade KDa - quilodaltons LRR - repetição rica em leucina M – molar m/v – massa/volume MALDI - Ionização e dessorção a laser assistida por matriz MAMP - padrão molecular associado a micróbio mg – miligrama ml – mililitro MM - massa molecular mM – milimoles MS – espectrômetro de massa NB - "nucleotide binding" NGS - "next generation sequencing" PAMP – padrão molecular associado a patógeno pb – pares de bases PCR - reação em cadeia da polimerase pH - potencial hidrogeniônico PRs – genes relacionados à patogênese PTI – imunidade disparada por PAMP qRT-PCR – PCR quantitativo em tempo real RGA - gene análogo de resistência RNA – ácido ribonucleico ROS – espécies reativas de oxigênio rpm – rotação por minuto rRNA – RNA ribossômico SAR - resposta sistêmica adquirida µg – micrograma µl – microlitro

LISTA DE FIGURAS

Figura 1. Evolução das cultivares de banana comestíveis	13
Figura 2. Modelo Zig-Zag do sistema imune em plantas.	20
Figura 3. Esquema do ciclo de vida do nematoide das galhas Meloidogyne spp.	33
Figura 4. Sintoma de Meloidogyne incognita em raízes de bananeira.	34
Figura 5. Modelo esquemático das interações de um nematoide parasita sedentário com sua célula de alimentação.	35
Figura 6. Cortes histológicos mostrando o desenvolvimento de <i>Meloidogyne incognita</i> em raízes de feijão de frade (14 DAI).	44
Figura 7. Mudas de <i>Musa acuminata</i> cv. Grande Naine (GN), em fase de adaptação na casa de vegetação do Departamento de Fitopatologia da UnB, utilizadas para o estudo do ciclo de vida de <i>Meloidogyne incognita</i>	76
Figura 8. Preparo de bancadas e de mudas de tomate var. Santa Cruz e multiplicação do inóculo de <i>Meloidogyne incognita</i> em plantas de tomate.	77
Figura 9. Metodologia de Eletroforese de isoenzimas, segundo Alonso e Alfenas (1998).	78
Figura 10. Método de Infiltração com Resina Technovit 7100®.	81
Figura 11. Técnicas usadas para identificação de Meloidogyne incognita.	83
Figura 12 . Raízes de <i>Musa acuminata</i> cv. Grande Naine (GN) inoculadas com <i>Meloidogyne incognita</i> , coradas com fucsina ácida.	84
Figura 13. Secções de raízes de <i>Musa acuminata</i> Cavendish Grande Naine (GN) inoculadas com <i>Meloidogyne incognita</i> coradas com azul de toluidina e observadas em diferentes dias depois da inoculação (DAI).	85
Figura 14. Sequência macroscópica dos sintomas causados por <i>Meloidogyne incognita</i> em raízes de <i>Musa acuminata</i> Cavendish Grande Naine (GN).	87
Figura 15. Número médio de indivíduos/estádio (J2a, J2b, J3, J4 e adultos) de <i>Meloidogyne incognita</i> encontradas nas raízes de bananeira Grande Naine, nos tempos de avaliação.	88
Figura 16 . A. Estádios de fêmeas e machos de <i>Meloidogyne incognita</i> no ciclo de vida, em raízes da bananeira Grande Naine (GN).	88

Figura 17. Mudas de bananeiras provenientes de cultura de tecidos em fase de adaptação em Casa de vegetação do Departamento de Fitopatologia da Universidade de Brasília, utilizadas para estudos de histopatologia.	104
Figura 18. Ciclo de vida de <i>Meloidogyne incognita</i> em raizes de GN. Grande Naine (GN) e 4279-06, com técnica de coloração com Fucsina ácida.	109
Figura 19. Secções de raízes do genótipo GN infectadas por Meloidogyne incognita.	111
Figura 20. Secções de raízes do genótipo 4279-06 infectadas por <i>Meloidogyne incognita</i> .	112
Figura 21 . Número médio de individuos/estádio, J2a, J2b, J3, J4, fêmeas (F1) e machos (M) adultos de Meloidogyne incognita encontrados em raízes de GN	115
Figura 22 . Número médio de indivíduos/estádio J2a, J2b, J3, J4, fêmeas (F1) e macho (M) adultos de <i>Meloidogyne incognita</i> encontrados em raízes de banana 4279-06	115
Figura 23. Sintomas de <i>Meloidogyne incognita</i> nos dias de avaliação (DAI) durante o ciclo de vida do nematoide, em raízes dos genótipos GN e 4279-06	118
Figura 24. Resumo da metodologia empregada para análise do transcritoma de <i>Musa acuminata - Meloidogyne incognita</i> , avaliado aos 3, 7 e 10 DAI	135
Figura 25. Mudas de bananeiras GN (A) e 4279-06 (B), em fase de adaptação na casa de vegetação do Departamento de Fitopatologia da UnB, utilizadas no estudo do transcritoma.	136
Figura 26. Metodologia da extração de RNA, na interação molecular: <i>Musa-Meloidogyne</i> .	139
Figura 27. Resumo das metodologias empregadas na análise bioinformática do transcritoma da interação <i>Musa acuminata - Meloidogyne incognita</i>	142
Figura 28. Leituras das amostras de RNA (triplicatas) 1-12 de raízes de banana obtidas no sistema <i>Agilent 2100 Bioanalyzer / RNA LabChip® kits system</i> (Agilent Technologies)-EUROFINS.	147
Figura 29. Leituras das amostras de RNA (triplicatas) 13-24 de raízes de banana obtidas no sistema <i>Agilent 2100 Bioanalyzer / RNA LabChip</i> ® <i>kits system</i> (Agilent Technologies)-EUROFINS.	148
Figura 30. Heat Map dos genes expressos nos genótipos de Musa acuminata	152

Figura 31. Distribuição dos termos GO2 aos 3 DAI	155
--	-----

Figura 32. Distribuição dos termos GO2 aos 7 DAI	156
Figura 33. Distribuição dos termos GO2 aos 10 DAI	157
Figura 34. Diagrama de Venn mostrando a distribuição do número de genes diferencialmente expressos para cada genótipo.	158
Figura 35. Expresão de genes do genótipo GN (3, 7 e 10 DAI) inoculado com <i>Meloidogyne incognita</i>	165
Figura 36. Expresão de genes do genótipo de banana 4279-06 (3,7 e 10 DAI) inoculado com <i>Meloidogyne incognita</i>	166

LISTA DE TABELAS

Tabela 1. Processos biológicos alterados em plantas na interação molecular planta- nematoide compatível	29
Tabela 2. Desenho exprimental para análise de histopatologia na interação Musaacuminata GN-Meloidogyne incognita.	80
Tabela 3. Desenho exprimental para análise de histopatologia na interação <i>Musa acuminata</i> GN e 4249-06– <i>Meloidogyne incognita</i> .	105
Tabela 4. Dados de P obtidos pelo teste de Tukey (P= 0,05) comparando cada um dos estádios do ciclo de vida de <i>Meloidogyne incognita</i> em bananeiras GN e 4279-06.	114
Tabela 5. Parâmetros anatômicos de raízes de banaeiras GN e 4279-06 infectadascom Meloidogyne incognita	116
Tabela 6. Desenho experimental dos genótipos GN e 4279-06, e número de plantas utilizadas na análise do transcritoma na interação molecular <i>Musa acuminata – Meloidogyne incognita</i> .	137
Tabela 7. Leituras das amostras de RNA de raízes de bananeira	146
Tabela 8. Total de sequências de cada biblioteca de expressão antes e após a filtragem dos dados.	149
Tabela 9. Genes diferencialmente expressos do genótipo 4279-06 nos três dias de avaliação	167
Tabela 10. Genes diferencialmente expressos do genótipo Grande Naine (GN), nos	170

três dias de avaliação: 3, 7 e 10 DAI

RESUMO GERAL

NIÑO-CASTAÑEDA, Nancy Eunice. 2015. **Estudo da Interação** *Musa acuminata-Meloidogyne incognita.* Tese de Doutorado em Fitopatologia – Universidade de Brasília, Brasília, DF.

Na cultura da bananeira (Musa spp.) o nematoide das galhas Meloidogyne incognita é uma das espécies predominantes principalmente no subgrupo Cavendish, causando perdas consideráveis em algumas regiões do Brasil. Meloidogyne ncognita é também considerado um dos fitoparasitas de ampla importância na agricultura mundial por sua adaptabilidade ao ambiente e ampla gama de hospedeiras. Com as limitações do melhoramento convencional no desenvolvimento de variedades resistentes de bananeiras a nematoides, o uso da genômica é uma alternativa importante para entender os mecanismos moleculares envolvidos na resposta de defesa da planta ao parasitismo. O genótipo de Musa acuminata 4279-06 foi classificado em estudos anteriores como resistente ao nematoide das galhas, e foi selecionado para este estudo com o genótipo Cavendish Grande Naine (GN), utilizado como padrão de suscetibilidade. Assim o objetivo deste trabalho foi estudar a interação M. acuminata - M. incognita a fim de identificar genes associadas ao parasitismo do nematoide e genes de defesa da planta. Inicialmente verificou-se que o ciclo de vida de M. incognita em banana GN, desde a inoculação dos J2 até a formação de fêmeas com ovos, foi de 24 dias a 25° C. Na análise histológica dos genótipos GN e 4279-06, entre 2-7 dias após de inoculação (DAI) observaram se os J2 de *M. incognita* penetrando pelo ápice das raízes e migrando pelo córtex até o cilindro central e aos 9 DAI já haviam estabelecido sítios de alimentação. Utilizando microscopia de fluorescência não foi observada resposta hipersensível (RH) no genótipo 4279-06, sendo que o nematoide concluiu o ciclo de vida entre 27- 30 dias, com 3-6 dias de atraso em comparação ao genótipo GN (24 dias). Foi realizada análise de transcritoma aos 3, 7 e 10 DAI nos dois genótipos, com base nos dados histológicos, utilizando a tecnologia de sequenciamento massal de RNA por Illumina e análise de bioinformática para identificar genes diferencialmente expressos relacionados ao parasitismo do nematoide e a resposta de defesa. O sequenciamento gerou um total de 510.937.976 sequências paired-end. Na análise de gene ontology (GO), um total de 320.113 termos de GO foram encontrados e relacionados às 27.604 sequências anotadas distribuídos em três categorias principais: processos biológicos (27.551 sequências), função molecular (25.362 sequências) e componente celular (25.487 sequências). Na análise de expressão diferencial, 680 genes apresentaram expressão diferencial significante. Dentre estes, 474 genes foram modulados no genótipo 4279-06 e 235 genes no genótipo GN, evidenciando uma maior regulação da expressão gênica na interação em 4279-06. Os genótipos apresentaram 29 genes comumente regulados, 445 genes exclusivamente modulados em 4279-06 e 206 em GN. Na resposta de Musa acuminata à infecção por *M. incognita*, foi evidente o grande envolvimento de genes ligados a fatores de transcrição das famílias MYB e WRKY, e de hormônios. Pouca resposta de defesa relacionadas ao Ácido Salicílico (de resposta a parasitas biotróficos) foi encontrada, mas sim uma ampla resposta pela via do etileno. Também foram encontrados genes que aumentam os

níveis de auxinas e citocininas e que estão associados à formação de células gigantes, assim como expansinas e proteínas de domínio NAC. Proteínas da família bHLH, calose e endotransglucosilase xiloglucano foram expressas exclusivamente no genótipo 4279-06. Os resultados deste trabalho contribuem para uma maior compreensão dessa complexa interação molecular.

Palavras chaves: Histopatologia, Ilumina, *Musa acuminata, Meloidogyne incognita*, resistência, RNAseq, transcritoma.

GENERAL ABSTRACT

NIÑO-CASTAÑEDA, Nancy Eunice. 2015. Study of the interaction *Musa acuminata - Meloidogyne incognita*. Doctorate Thesis in Plant Pathology – University of Brasília, Brasília, DF. Brazil.

In banana crop (Musa spp.), the root-knot nematode Meloidogyne incognita is one of the predominant species, mainly in Cavendish (GN), causing considerable losses in some regions of Brazil. Meloidogyne incognita, also considered one of the plant parasites of wide importance in world agriculture for their adaptability to the environment and wide host range. With the difficulties of the traditional breeding programs in search for resistant varieties of bananas to nematodes, the use of genomics is an important alternative to understand the molecular mechanisms involved in plant defense response to parasitism. The banana genotype 4279-06 was classified in previous studies as resistant to the root-knot nematode, and was selected for this study, with the Cavendish Grande Naine genotype (GN) used as susceptibility standard. So the aim of this work was to study the interaction Musa acuminata - Meloidogyne incognita in order to identify genes associated with parasitism of nematode and plant defense genes. Initially, the life cycle of *M. incognita* in banana (NG), from the inoculation of J2 to the formation of females with eggs was 24 days at 25°C. On histological analysis of both genotypes GN and 4279-06, between 2-7 days after inoculation (DAI) it was observed that J2 of M. incognita penetrated at the roots tips and moved through the cortex to the central cylinder, and that at 9 DAI had already feeding sites established. Using fluorescence microscopy, no hypersensitive response (HR) was observed in 4279-06 genotype, and its life cycle has completed between 27- 30 days after inoculation, with 3-6 days delay in comparison with the GN genotype (24 days). Transcriptome analysis was performed at 3, 7 and 10 DAI, based on histological data, using RNA mass sequencing technology by Ilumina and bioinformatics analysis to identify differentially expressed genes related to the banana defense response in nematode interaction with the two genotypes. Sequencing generated a total of 510,937,976 sequences paired-end. In ontology gene analysis (GO), a total of 320,113 terms of GO were found and related to 27,604 annotated sequences divided into three main categories: biological processes (27,551 sequences), molecular function (25,362 sequences) and cellular component (25,487 sequences). In the analysis of differential expression, 680 genes showed significant differential expression. Of these, 474 genes were modulated in genotype 4279-06 and 235 genes in GN genotype, showing greater regulation of gene expression in the interaction with 4279-06. The genotypes showed 29 commonly regulated genes, 445 genes uniquely modulated in 4279-06 and 206 in GN. In Musa acuminata response to infection with M. incognita, was evident the great involvement of genes linked to the MYB transcription factors and WRKY families, and hormones. Little defense response related to salicylic acid (response to biotróficos parasites) was observed, but a broad response for the ethylene pathway. They have also found genes that increase the levels of cytokinins and auxins and that are associated with the formation of giant cells, like expansins and NAC domain proteins. Proteins bHLH family, callose and xyloglucan endotransglucosilase were exclusively expressed in the genotype 4279-06. These results contribute to a better understanding of this complex molecular interaction.

Key words: Histopathology, Ilumina, *Musa acuminata, Meloidogyne incognita*, resistance, RNAseq, transcriptome.

INTRODUÇÃO GERAL

A bananeira, *Musa* spp., produz um dos frutos mais consumidos no mundo, sendo cultivada na maioria dos países tropicais. Seu produto está incorporado à alimentação da população brasileira com 99% da produção destinada ao mercado interno. No Brasil, a cultura ocupa o segundo lugar em área plantada e produção de frutos, correspondendo a 15,7% de toda fruta produzida no país, sendo superada apenas pela laranja, equivalente a 44,1%. A grande área plantada com bananeira no Brasil faz com que o país ocupe a quarta posição no ranking mundial dessa fruta (Monteiro, 2011; FAOSTAT, 2014). No Brasil existe um grande número de cultivares de bananeiras, mas são poucas as que apresentam potencial produtivo para exploração comercial, tolerância relacionada a pragas e doenças, porte reduzido e menor ciclo de produção. Apesar da alta produtividade da bananeira, o Brasil tem pequena participação no mercado internacional, devido ao elevado consumo interno e à baixa qualidade dos frutos, que se deve a vários fatores como: genética da cultivar, tipo de solo, manejo agronômico e sanitário, que reduzem a produção (Jesus, 2006; Ramos *et al.*, 2009).

Além das doenças causadas por fungos, bacterias e vírus, a bananeira enfrenta também ataques por fitonematoides que são considerados um dos principais grupos de patógenos por serem capazes de limitar o seu desenvolvimento, produtividade e longevidade das culturas, sendo que esforços têm sido feitos para seu control (Gowen *et al.*, 2005). Diversas espécies de fitonematoides têm sido identificadas associadas às raízes e ao solo da rizosfera de bananeiras e plátanos, dentro das quais o nematoide cavernícola *Radopholus similis* (Cobb, 1893) Thorne, 1949, algumas espécies do nematóide das lesões *Pratylenchus*, e nematoides do gênero *Meloidogyne* Goeldi, 1887, destacam-se por sua ampla disseminação e alta capacidade destrutiva. Embora o impacto desses nematoides seja maior em áreas tropicais, espécies de *Meloidogyne* são de grande importância econômica mundial, e são considerados das mais danosas do mundo (Trudgill e Blok, 2001; Jones *et al.*, 2013).

Meloidogyne incognita (Kofoid e White, 1919) Chitwood, 1949 é uma das espécies de maior importância por possuir hábito polífago. Em bananas do subgrupo Cavendish é uma das espécies predominantes, na Índia, Malásia, Filipinas e outros países da Ásia e África (De Waele e Davide, 1998; Hassam, 2003). No Brasil *M. incognita* e *M. javanica* (Treub, 1885) Chitwood, 1949 ocorrem com mais frequência onde se cultivam bananeiras, principalmente nos estados: Bahia, Ceará, Goiás, Maranhão, Minas Gerais, Paraíba, Rio de Janeiro e São Paulo, devendo-se tal dispersão à comercialização indiscriminada de mudas infectadas entre os bananicultores (Zem e Lordello, 1982; Vilas Boas *et al.*, 2002; Cofzewicz *et al.*, 2004a). A

bananicultura brasileira caracteriza-se pelo baixo nível técnico dos cultivos o que conduz a ter problemas fitossanitários. (Cordeiro, 1997; Santos, 2011). As doenças causadas por nematoides são de suma importância para a produção de banana devido, uma vez que em áreas onde se faz o uso de nematicidas acarreta o aumento no custo de produção e, para pequenos produtores, os altos custos tornam o plantio de variedades susceptíveis inviável. As dificuldades de hibridação na maioria das variedades da bananeira têm levado ao desenvolvimento de novas técnicas de melhoramento para a criação de cultivares resistentes às doenças, que complementam as convencionais, entre elas: a hibridação somática, a fertilização in vitro, a mutação, a duplicação de cromossomos e a transformação genética (Silva et al., 2011). Considerando essas dificuldades do melhoramento tradicional de Musa spp., a utilização da genômica na procura de genes de resistência a estresses bióticos e sua disponibilização para os programas de melhoramento torna-se uma alternativa importante. Dando continuidade aos estudos realizados por Miller et al. (2008) e Passos et al. (2013), mais genes potencialmente envolvidos em resistência a estresse biótico em Musa spp., poderão ser identificados neste estudo por meio de tecnologias de sequenciamento massal, contribuindo para a elucidação dos mecanismos de resistência e defesa em Musa spp.

De acordo com estudos disponíveis na literatura (Davis et al., 2004; Haegeman, 2012 entre outros) entende-se que nematoides fitopatogênicos liberam sinais nos tecidos da planta hospedeira durante o ciclo de parasitismo, sendo que estas moléculas são comumente chamadas efetores de parasitismo. O papel destes efetores de parasitismo na adaptação das células vegetais para permitir o desenvolvimento do nematoide foi sugerido por Zinoveva et al. (2004). A indução da formação das células gigantes multinucleadas também é mediada por efetores, entretanto o mecanismo de reprogramação da expressão gênica da planta ainda é desconhecido. Nematoides sedentários produzem uma ampla gama de proteínas de secreção (Hussey et al., 2002; Abad et al., 2009), que são secretadas na interface do nematoide com as células hospedeiras. Assim, o estabelecimento e a manutenção do parasitismo têm sido fortemente correlacionados com essas secreções protéicas de nematoides, denominadas proteínas de parasitismo, secretoma ou ainda parasitoma (Davis et al., 2004; Vanholme et al., 2004). Essas proteínas de secreção estão relacionadas com os processos de migração do nematoide e formação do sítio de alimentação, onde promovem uma mudança radical na expressão de genes e no metabolismo das células vegetais envolvidas (Davis et al., 2004; Haegeman, 2012).

Devido às características deste fitonematoide sedentário, ainda não foi encontrada uma medida eficiente de controle de baixo custo, por isso muitos esforços têm sido dedicados ao

estudo dos fatores de resistência e da interação planta-patógeno a nível molecular, da citogenética, do transcritoma e proteômica. As proteínas produzidas por estes nematoides no momento do parasitismo têm sido estudadas como alvos potenciais para intervenção do hospedeiro, migração nos tecidos da planta, evasão de mecanismos de defesa, entre outros (Caillaud *et al.*, 2008; Abad *et al.*, 2009). Atualmente, várias pesquisas sobre estes fitoparastitas visam a melhor compreensão das demandas e pontos de fragilidade do nematoide na interação molecular com seu hospedeiro. Alguns alvos moleculares têm sido descritos recentemente, para diversificar possíveis estratégias de controle destes fitoparasitas, como por exemplo, o RNA interferente (RNAi), usado como ferramenta biotecnológica no silenciamento da expressão de genes específicos e seus efeitos potenciais no parasitismo (Souza, 2011).

Toda interação patogênica ou não de plantas e microrganismos, envolve complexos eventos de reconhecimento, levando à ativação de cascatas de sinalização e regulação de inúmeros genes. Conhecer os mecanismos envolvidos nessa sinalização pode favorecer o entendimento das relações planta-patógeno e, consequentemente, auxiliar na busca por resistência.

JUSTIFICATIVA

O nematoide das galhas *Meloidogyne incognita* é considerado o mais importante fitonematoide da agricultura mundial, por sua ampla distribução geográfica, alta taxa reproductiva, grande adaptabilidade, e ampla gama de hospedeiros. Embora as espécies de *Meloidogyne* sejam também consideradas de importância em banana, relativamente poucos estudos da interação planta-patógeno a nível molecular têm sido desenvolvidos.

Sendo a bananeira uma das culturas de importância econômica e de segurança alimentar no Brasil, avanços nos programas de melhoramento em *Musa* spp., poderão estimular a geração de novas cultivares resistentes, trazendo benefícios para o produtor e para o consumidor, diminuindo as perdas de produtividade e o excessivo uso de agroquímicos.

Considerando as dificuldades do melhoramento convencional, acredita-se que a caracterização de genes candidatos envolvidos nos mecanismos de defesa em resposta ao parasitismo, será de grande valia no avanço dos programas de melhoramento de *Musa*.

OBJETIVO GERAL

Investigar a interação de *Musa acuminata* e o nematoide de galha *Meloidogyne incognita*, visando à identificação de sequências gênicas associadas a parasitismo deste fitonematoide a resposta de defesa da planta ao patógeno.

OBJETIVOS ESPECÍFICOS

Determinar o ciclo de vida de *M. incognita* em raízes de *M. acuminata* genótipo Cavendish Grande Naine (GN) e *M. acuminata* genótipo 4279-06 por meio de técnicas histológicas, a fim de caracterizar as respostas ao parasitismo nos dois genótipos.

Determinar os genes diferencialmente expressos por meio de análise de transcritoma da interação nos genótipos (Grande Naine e 4279-06) a *Meloidogyne incognita*.

Realizar análise de bioinformática de sequenciamento massal e identificar *in silico* genes diferencialmente expressos no sistema planta-patógeno em estudo.

1. A cultura da Banana

1.1. Origem e Disseminação

O cultivo de bananas pelo homem teve início no sudeste da Ásia. Existem ainda muitas espécies de banana selvagem na Nova Guiné, na Malásia, Indonésia e Filipinas. Indícios arqueológicos e páleo-ambientais recentemente revelados em Kuk Swamp na província das Terras Altas Ocidentais da Nova Guiné sugerem que esta atividade remonta pelo menos a 5000 AC., ou mesmo até 8000 A.C. (Simmons, 1995). Tais dados tornam este local o berço do cultivo de bananas. É provável, contudo, que outras espécies de banana selvagem tenham sido objeto de cultivo posteriormente, em outros locais do sudeste asiático. Viajantes a levaram da Ásia para a Índia, onde é mencionada em escritos budistas datados por volta de 600 A.C. Em passagem pela Índia com seu exército, Alexandre o Grande da Macedônia viu extensos bananais em produção e provou seus frutos pela primeira vez. É dado a ele o crédito de levar a banana para o ocidente aproximadamente a 300 A.C. A China tinha plantações de banana no século 2 D.C. Elas cresciam apenas na região sul do país, foram consideradas exóticas e não se tornaram populares entre os chineses até o século XX (Simmons, 1995; Dantas *et al.*, 1997).

Sua expansão foi até Madagascar, ilha na costa sudeste da África. A partir do ano 650, guerreiros islâmicos viajaram para a África, onde trabalharam com o tráfico de escravos. Além dessa atividade, os árabes também tiveram sucesso comercializando marfim junto a grandes plantações de bananas. O comércio de escravos estimulou viagens para o oeste e assim, a banana chegou à Guiné, na costa oeste da África. Em 1402, navegadores portugueses descobriram o delicioso fruto em suas viagens ao continente africano e propagaram a banana nas Ilhas Canárias, onde realizaram suas primeiras plantações. Continuando sua viagem para o ocidente, em 1516 mudas de bananeiras foram colocadas em um navio pelo monge franciscano português Tomás de Berlanga, que as levou para a ilha caribenha de Santo Domingo, onde hoje fica a República Dominicana e o Haiti. Não demorou que ela se espalhasse pelo Caribe, América Central e sucessivamente para outros países de clima tropical (Dantas *et al.*, 1997; Marin *et al.*, 1998).

A palavra banana teve origem na África Ocidental e foi adotada pelos portugueses e espanhóis e passou também a ser usada, na língua inglesa. Nos séculos XV e XVI, colonizadores portugueses começaram a plantação sistemática de bananais nas ilhas atlânticas, no Brasil e na costa ocidental africana. Mas as bananas mantiveram-se, durante muito tempo, desconhecidas da maior parte da população europeia. A intervenção humana teve um papel fundamental na geração de bananas comestíveis, pois, as bananeiras que produzem frutos sem sementes só poderiam ter chegado a outras partes do mundo por meio do transplantio de mudas pelo homem. Dessa forma, a história das variedades de banana está intimamente ligada à das populações humanas. Outros centros de origem secundários de variedades ocorrem na África Oriental, em algumas ilhas do Pacífico e uma considerável diversidade genética ocorre na África Ocidental (Champion, 1967; De Langhe *et al.*, 1996; Marin *et al.*, 1998).

1.2. Importância econômica da cultura da banana

A banana (*Musa* spp.) é o quarto produto alimentar mais produzido no mundo, após do arroz, trigo e milho, e é atualmente cultivada em praticamente todas as regiões tropicais do planeta, sendo uma das frutas mais importantes para o mundo, em produção e comercialização. Para muitos países, além de ser um alimento complementar da dieta da população, a banana é de grande importância social e econômica e serve como fonte de renda para muitas famílias de agricultores com geração de postos de emprego no campo e na cidade, e também contribui para o desenvolvimento das regiões envolvidas em sua produção, conforme estudos do Centro de Socioeconomia e Planejamento Agrícola e, da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri, 2013).

Na atualidade mais de 125 países se dedicam ao cultivo da banana no mundo. O continente asiático lidera a produção dessa fruta, com 58% do volume produzido; o americano vem em segundo lugar, com 26% (América do Sul, com 17% e a América Central, com 8%) e o africano, em terceiro lugar, com 14%. A banana destaca-se na primeira posição no ranking mundial das frutas, com uma produção de 106,5 milhões de toneladas. O Brasil produz 7,3 milhões de toneladas, com participação de 6,9% (FAOSTAT, 2014).

A banana é a segunda fruta mais consumida no planeta, com 11,4 kg/habitante/ano. Perde apenas para a laranja, com 12,2 kg/hab/ano. O continente americano é o maior consumidor, com 15,2 kg/hab/ano, destacando-se a América do Sul, com 20 kg/habitantes/ano e a América Central, com 13,9 kg/hab/ano (FAOSTAT, 2014). Nas três últimas décadas a banana apresentou um aumento significativo (122%) no volume mundial produzido.

A Índia lidera a produção de banana no ranking mundial, sendo responsável por 28,1%. A China, com 10,1%, vem em segundo lugar; seguida pelas Filipinas, com 8,6%; Equador, com 7,0%; Brasil, com 6,9%; e Indonésia, com 5,8%. Nas últimas cinco safras, o maior rendimento médio por área colhida pertence à Nicarágua, perfazendo um total de 55,6 t/ha, praticamente três vezes maior que a média mundial, de 19,3 t/ha. Os maiores produtores, portanto, não são necessariamente os que obtêm a maior produtividade por área cultivada (FAOSTAT, 2014).

Para vários países, a banana é um produto de exportação responsável por parte significativa dos ingressos relativos à exportação agrícola. Os mercados mais importantes são os da União Europeia, Estados Unidos e Japão, responsáveis pela importação de aproximadamente 70% do volume e 79% dos valores mundialmente comercializados (Marin *et al.*, 1998; FAOSTAT, 2014). O grande volume de banana comercializado nos mercados mundiais pode ser explicado por vários fatores, entre os quais se destacam: a possibilidade de produção contínua durante todo o ano, o elevado rendimento por hectare e ciclo reduzido da cultura, a facilidade de manejo e armazenamento da fruta verde e a rapidez de amadurecimento (Manica, 1997; Monteiro, 2011).

No Brasil, a cultura ocupa o segundo lugar em área plantada e produção de frutíferas, sendo superada apenas pela laranja. O Brasil apresenta uma produção de 6,9 milhões de toneladas de banana. O Nordeste é a principal região produtora de bananas do País, onde são produzidos 34% do volume total nacional, seguido das regiões Norte (26%), Sudeste (24%), Sul (10%) e Centro-Oeste (6%). Ao todo, a área plantada é de cerca de 520.000 hectares (IBGE, 2013).

1.3. Classificação botânica e variação genética em Musa

Segundo a sistemática botânica de classificação hierárquica, as bananeiras produtoras de frutos comestíveis são plantas da classe das Monocotyledoneae, ordem Zingiberales, família *Musa*ceae, da qual fazem parte as subfamílias Heliconioideae, Strelitzioideae e Musoideae (Daniells *et al.*, 2001). Esta última inclui além do gênero *Ensete*, o gênero *Musa*, constituído por quatro séries ou Secções: *Australimusa*, *Callimusa*, *Rhodochlamys* e *Eumusa*. Recentemente essas Secções foram revisadas por Häkkinen e Markku (2013) e a seção *Rhodochlamys* foi incorporada a seção *Eumusa*, mudando a nomenclatura de *EuMusa* para

Musa. A seção *Australimusa* foi incorporada pela seção *Callimusa*, mantendo a mesma nomenclatura da seção.

Mesmo representando à quarta cultura alimentar mais importante do planeta em termos de produção, após o arroz, o trigo e o milho, pouca atenção tem sido dada para o melhoramento genético de bananas e plátanos, com avanços alcançados apenas a partir da década de 1990 (INIBAP, 2001). Em contraste com lavouras onde o melhoramento é baseado em cruzamentos entre variedades elites e seleção de progênies, a banana tem suas espécies cultivadas oriundas de espécies selvagens diploides, triploides e tetraploides de *M. acuminata* (genoma A) e *M. balbisiana* (genoma B). A maioria das cultivares comerciais são triploides estéreis, com frutos sem semente desenvolvidos por partenocarpia e, evolução através de propagação vegetativa assexual. A ausência de variação genética tem resultado em uma cultura com pouca resistência a pragas e doenças (Simmonds, 1995).

A banana inclui um grande número de clones partenocárpicos pertencentes ao gênero *Musa*. O centro de origem da banana selvagem é Sudeste da Ásia e Ilhas do Pacífico que se estende desde a Índia a Papua Nova Guiné e incluindo a Malásia e Indonésia. A banana comestível evoluiu primeiro em *Musa acuminata* selvagem. Evidência taxonômica indica que o principal centro onde a comestibilidade evoluiu foi a Península Malásia, incluindo possivelmente territórios vizinhos. Cruzamentos interespecíficos entre *M. acuminata* (genoma A, 2n=2x=22) e *M. balbisiana* (genoma B, 2n=2x=22), deram origem à maioria dos genótipos de bananeiras atualmente em uso para alimentação, razão pela qual as plantas geradas destes cruzamentos apresentam características das duas espécies (Simmonds, 1995; Rajendran, 2008; Monteiro, 2011).

O cruzamento entre espécies e subespécies pode ter levado ao aparecimento de esterilidade, uma característica selecionada pelo homem em conjunto com a partenocarpia, o que permite a produção de frutos comestíveis (Figura 1). Hoje, são encontrados os seguintes grupos genômicos: diploides (AA e AB); triploides (AAA, AAB e ABB); e tetraploides (AAAA, AAAB, AABB e ABBB), sendo esta classificação adotada em todo o mundo (Dantas *et al.*, 1997). Os três principais grupos mundialmente cultivados são: AAA, AAB e ABB. Relativamente poucos clones de banana se deslocaram do centro de origem no sudeste da Ásia, assim, a diversidade dessas plantas declina da Ásia para a África e desta para a América (Rodriguez, 1955; Simmonds, 1995; Marin *et al.*, 1998; Monteiro, 2011).

Figura 1. Evolução das cultivares de banana comestíveis (Simmonds, 1995).

O número expressivo de cultivares de banana com potencial agronômico e comercial é reduzido drasticamente por fatores como preferência dos consumidores, produtividade, tolerância a pragas e doenças, resistência à seca, altura da planta e resistência ao frio. As cultivares mais difundidas no Brasil são de genoma AAB: Maçã, Prata, Pacovan, Prata-Anã, Mysore, Terra e D'Angola; e as do grupo AAA: Nanica, Nanicão e Grande Naine, utilizadas principalmente para exportação. Em menor escala são plantadas as variedades Figo Cinza, Figo Vermelho, Ouro, Caru Verde e Caru Roxa (Dantas e Soares Filho, 1997; Silva *et al.*, 2001; Cordeiro, 2004). A cultivar Prata-anã está presente nas principais regiões produtoras do país e junto com a 'Prata' e 'Pacovan' representam 60 % dos bananais brasileiros. Dos dez mil hectares de banana cultivada no norte de Minas Gerais, 90% constitui-se de 'Prata Anã' (Silva *et al.*, 2001; Epagri, 2013).

1.4. Distribuição geográfica no Brasil

A bananeira é uma planta tipicamente tropical, cujo bom desenvolvimento exige calor constante, elevada umidade e boa distribuição de chuvas. Essas condições são registradas na faixa compreendida entre os paralelos de 30° de latitude norte e sul, nas regiões onde as temperaturas situam-se entre os limites de 15°C e 35°C. Há, entretanto, a possibilidade de seu

cultivo em latitudes acima de 30° de latitude norte e sul, desde que a temperatura e o regime hídrico sejam adequados (Moreira, 1987). Devido à sua ampla adaptação, é cultivada em quase todos os países tropicais. No Brasil, a bananeira é cultivada de norte a sul, envolvendo desde a faixa litorânea até os planaltos interioranos. O Estado da Bahia se destaca no cenário nacional como o maior produtor de banana (Epagri, 2013).

A banana já era cultivada pelas populações indígenas do Brasil à época do seu descobrimento, existindo aqui, pelo menos, duas variedades da fruta, provavelmente a 'Branca' e a 'Pacova'. (Moreira e Cordeiro, 2006). Com o início das exportações de bananas dos Estados do Rio de Janeiro, São Paulo, Paraná e Santa Catarina, para o mercado platino, a partir de 1904, a bananicultura brasileira passou por transformação a partir do início do século passado. A partir de 1912, a maior parte das exportações brasileiras da fruta já era feita por meio do porto de Santos, o que fez com que a Secretaria da Agricultura, Indústria e Comércio do Estado de São Paulo passase a investir na geração de tecnologia para este cultivo (Moreira e Cordeiro, 2006; LichtemBergh, 2011).

1.5. Problemas fitossanitários

O cultivo da bananeira é afetado por problemas fitossanitários causados por fungos, bactérias, vírus, nematoides e insetos. Entre as principais doenças que afetam a produtividade da bananeira estão o mal-do-Panamá causado pelo fungo Fusarium oxysporum f.sp. cubense (Ploetz e Pegg, 2000), as manchas foliares de sigatoka causadas pelos fungos Mycosphaerella fijiensis Morelet, (Marín, 2003) e Mycosphaerella musicola (Leach e Murder, 1976) e os nematoides fitoparasitas das raízes e rizomas: *Meloidogyne* spp.; *Radopholus similis* (Cobb, 1893) Thorne, 1949 e Pratylenchus coffeae (Zimmermann, 1898) Filipjev e Schuurmans Stekhoven, 1941 (De Waele et al., 2006). Doenças de etiologia bacteriana também têm provocado séries perdas na cultura da banana no Brasil: Moko ou murcha bacteriana, causada pela raça 2 da bactéria Ralstonia solanacearum (Smith, 1896) Yabuuchi et al., 1995; a podridão mole, uma doença bacteriana de menor expressão, causada por Pectobacterium carotovorum (Jones, 1901) Waldee, 1945; a bactéria Xanthomonas campestris pv. musacearum (Dagnachew e Bradbury) Dye, 1978, agente causal da murcha bacteriana da banana. A cultura da banana também é afetada pelos vírus: Banana streak virus (BSV) (Lockhart 1990), Cucumber mosaic virus (CMV), (Bouhida e Lockhart 1990) e Banana bunchy top virus (BBTV) (Wardlaw, 1972) (Ploetz et al., 2003; Cordeiro et al., 2004; Monteiro, 2011).

Diversos estudos têm demonstrado que os nematoides das galhas podem causar perdas severas à produção de bananas. Em vários países *M. incognita* foi encontrado causando uma redução significativa na produção na bananeira 'Cavendish': Filipinas, Índia, Malásia, Taiwan, Egito, Creta, Líbano, África do Sul, Venezuela, Ilhas Canárias (Jonathan e Rajedran, 2000; Gowen *et al.*, 2005; Tenente *et al.*, 2008). Em Camarões *Meloidogyne* spp. é considerado uma série ameaça à produção de bananas (Tenente *et al.*, 2008; Santos, 2011). *M incognita* também aparece na lista da EPPO como um dos principais nematoides fitoparasitas de potencial importância fitossanitária por seu amplo numero de hospedeiras e perdidas nos rendimentos (Singh *et al.*, 2013).

Em plantações comerciais no Brasil, foram documentadas perdas de produção de 10 a 50%, e até 100% (Pereira, 2006). As perdas médias mundiais estimadas devidas ao ataque de nematoides na bananeira são de 19,7%, equivalente a US\$ 178 milhões por ano (Sasser e Carter, 1985; Gowen e Quénéhervé, 1990; Davide e Marasigan, 1992). Os nematoides mais prejudiciais são aqueles envolvidos na destruição de raízes primárias, debilitando o sistema de ancoragem da planta, levando ao tombamento da mesma. A absorção de água e nutrientes também é prejudicada, influenciando o desenvolvimento normal da planta. Para a bananeira, as espécies mais importantes são: *Radopholus similis, Pratylenchus coffeae, Helicotylenchus multicinctus* (Coob, 1893) Golden, 1956, sendo comum encontrar ainda *Meloidogyne* spp. *e Rotylenchulus reniformis* Linford e Oliveira, 1940. Incluindo esses, já foram relatadas 146 espécies de fitonematoides pertencentes a 43 gêneros associados a *Musa* spp., porém a grande maioria delas não são consideradas patógenos importantes para a bananeira (Gowen 1995; De Waele e Davide, 1998; Cares, 2003; Gowen *et al.*, 2005; Pereira, 2006).

Nos bananais brasileiros, os nematoides encontrados com maior frequência são *R. similis, H. multicinctus, M. incognita, M. javanica, P. coffeae e R. reniformis*, considerados nematoides importantes para a bananicultura. Assim, espécies de *Meloidogyne* geralmente ocorrem associadas a outras espécies de fitonematoides como *R. similis* e *P. coffeae*, os quais tendem a ser mais numerosos e, as vezes, ocupam o lugar das populações dos nematoides das galhas, já que os sítios de alimentação estabelecidos por estes são incompatíveis com os danos causados por nematoides migradores. Na ausência dos nematoides das lesões radiculares, os danos por *Meloidogyne* spp., tendem a ser mais evidentes (De Waele e Davide, 1998; Costa *et al.*, 1998; Jesus, 2006; Monteiro, 2011).

Os danos causados por espécies de *Meloidogyne* em cultivos de banana são diretamente proporcionais ao aumento de suas populações, podendo também ser influenciados pela fertilidade e tipo de solo, resultando na redução do tamanho, peso e atraso na maturação dos

cachos, pouco perfilhamento e morte das plantas (Davide e Marasigan, 1992; Patel *et al.*, 1996; Costa *et al.*, 1997). No Brasil, as espécies *M. incognita* (Kofoid e White, 1919) Chitwood, 1949; *M. javanica* (Treub, 1885) Chitwood, 1949; *M. arenaria* (Neal, 1889) Chitwood, 1949, são as mais comumente associadas a *Musa* spp. em diferentes regiões produtoras, sendo que populações mistas podem ocorrer em bananais infestados, mostrando ser altamente prejudiciais (Tenente *et al.*, 2002; Cofcewicz *et al.*, 2004a; Cofcewicz *et al.*, 2005, Pereira, 2006; Tenente *et al.*, 2008).

Apesar dos danos causados por *Meloidogyne* spp., serem menos visíveis e destrutivos do que os causados pelos nematoides migradores, as espécies *M. javanica, M. incognita* raças 1, 2, 3 e 4 e *M. arenaria* raças 1 e 2, mostraram-se altamente prejudiciais à bananeira, que apresenta boa hospedabilidade a estas espécies, à exceção de *M. hapla* (Jonathan *et al.*, 1999, 2000). No estado de São Paulo, encontraram-se altas populações de *M. arenaria* em oito cultivares de bananeira dos Grupos AAA e AAB que levaram à preocupação, embora considerando a importância secundária do nematoide das galhas, eles podem atingir densidades populacionais elevadas e tornarem-se limitantes à produção de banana em áreas infestadas (Dinardo-Miranda e Teixeira, 1996; Pereira, 2006). Das 25 áreas levantadas nas principais zonas produtoras de banana do Brasil, as espécies, *M. incognita, M. javanica, M. arenaria* e *Meloidogyne* spp., foram detectadas em 32,2%, 61,7%, 4,3% e 1,8% das amostras analisadas, respectivamente, sendo que 20 áreas apresentaram espécies misturadas e as outras cinco, espécies puras, com predomínio de *M. javanica e M. incognita* (Cofcewicz *et al.*, 2004a).

1.6. Controle dos Nematoides em bananeiras

Os nematoides são de difícil manejo, uma vez que introduzidos em uma área agrícola é praticamente impossível a sua erradicação. Na maioria das áreas cultivadas com bananas para exportação o controle de nematoides tem sido basado na aplicação de nematicidas. Devido ao aumento de danos por contaminação ambiental e na saúde humana, o número de nematicidas com registro para uso em bananas tem se tornado restrito, não só em países da Comunidade Europeia, mas também no mercado de exportação desses países. Na atualidade o manejo dos nematoides fitoparasitas em bananas inclui práticas sanitárias, como: uso de plantas produzidas *in vitro* em que o plantio dessas mudas deve ser feito em solos previamente não utilizados para o cultivo de bananeiras, ou em áreas onde se pratica o pousio ou rotação de

culturas, por períodos de 6 a 12 meses (Trudgill, 1995; Starr et al., 2002; Cares, 2003; Quénéhervé, 2008).

O método convencional de controle químico, utilizado por grandes empresas, é pouco aplicável para pequenos agricultores, que no Brasil representam a grande maioria dos produtores de banana e apresenta vários problemas como: alto custo dos produtos, resíduos nos frutos, intoxicação pela exposição aos produtos, contaminações de fontes de água e destruição da microbiota do solo (Johnson, 1985; Amorim *et al.*, 2011).

O controle biológico é um método alternativo, cuja eficiência depende de fatores ainda em estudo, bem como a conscientização e aceitação por parte dos produtores, e até o momento, não tem recebido a devida atenção. No entanto, algumas pesquisas têm demonstrado o potencial de alguns microrganismos (fungos predadores, fungos endofíticos, rizobactérias e a bactéria *Pasteuria penetrans*), no controle de nematoides em bananeira (Ribeiro *et al.*, 2003; Stolf, 2006). Apesar da existência desses parasitas e predadores dos nematoides, esta prática tem encontrado pouca aplicabilidade em campo devido à dificuldade da produção em massa desses organismos. Somente o uso do controle biológico de nematoides não é suficiente, dados os resultados já obtidos para outras culturas, com espécies similares de nematoides (Agrios, 2005; Monteiro, 2011).

O uso de variedades resistentes é um meio efetivo de controle de nematoides em muitas culturas. Resistência a nematoides endoparasitos sedentários como os dos gêneros *Meloidogyne, Heterodera* e *Globodera*, vem sendo identificada com maior frequência, onde a relação planta-patógeno é mais especializada (De Waele, 1996; Roberts, 2002). Nas bananeiras o uso de variedades com resistência a nematoides tem tido pouco progresso, principalmente pela complexidade genética de plantas do gênero *Musa* (Quénéhervé, 2008; Silva *et al.*, 2013).

1.7. Controle de nematoides por resistência genética

A resistência genética é, entre todos os métodos de controle de nematoides, o mais eficiente e promissor, e constitui a medida mais econômica e viável para o produtor, por ser uma estratégia utilizada para sanar problemas por meio do desenvolvimento de novas variedades resistentes a doenças e pragas e, apresentam as seguintes vantagens: não depende do esforço do produtor durante a fase de crescimento das plantas, não é prejudicial ao meio ambiente e, de um modo geral é compatível com as outras práticas de manejo (Silva *et al.*,

2001, Williamson e Kumar, 2006; Quénéhervé, 2008). Neste contexto, têm sido observadas variações fenotípicas de diferentes magnitudes em clones de bananeira pertencentes à mesma cultivar. Estudos citológicos feitos por Shepherd e Alves (1984) revelaram que a bananeira é uma planta cuja natureza poliploide do genoma favorece a ocorrência de mutações, o que em parte explica o grande número de clones observados dentro de uma mesma cultivar. As variações de natureza genética que influenciam os caracteres fenotípicos de alguns clones podem estar relacionadas com sua respectiva resistência genética aos nematoides. Alguns clones têm sido selecionados com resistência a *R. similis* (Wehunt *et al.*, 1978; Costa *et al.*, 1998), mas pouco se conhece sobre os mecanismos de resistência de bananeiras aos nematoides formadores de galhas, *Meloidogyne* spp. (Vilas Boas *et al.*, 2002; Tenente *et al.*, 2008; Santos, 2011).

2. Mecanismos de defesa em plantas

A planta pode contar com um mecanismo de defesa conhecido como imunidade, que é o mecanismo de defesa primário; enquanto que os patógenos evoluíram em sua capacidade de suprimir essas defesas primárias. As relações planta-patógeno são caracterizadas por um complexo de interações envolvendo ataque, defesa, contra-ataque e contra-defesa. O sucesso evolutivo das plantas reside na sua habilidade em detectar e reagir aos patógenos potenciais. Nas plantas foram desenvolvidos sistemas de reconhecimento do patógeno, enquanto que nos patógenos a evolução fez surgir efetores capazes de desativar a defesa das plantas e toxinas que ativam a morte celular na hospedeira. As interações estudadas atualmente são resultantes de longos períodos de coevolução antagonística. Evidências de co-evolução podem ser encontradas em diversos níveis de análises genéticas e moleculares (Stukenbrock e McDonald, 2009; Nandety *et al.*, 2013).

Os mecanismos utilizados pelas plantas para reconhecer patógenos e a ativação de respostas imunes estão sendo elucidados nos últimos anos. As plantas possuem dois tipos distintos de receptores imunes. O primeiro tipo, os receptores de reconhecimento de padrões (PRRs), reconhecem padrões moleculares conservados associados a os patógenos (PAMPs) iniciando um processo de imunidade conhecido por PTI (*PAMP – triggered immunity*). O segundo tipo são as proteínas de resistência (R), que reconhecem efetores do patógeno e iniciam a imunidade conhecida com ETI (*Effector – triggered immunity*) (Qi *et al.*, 2011).

2.1. Receptores PRRs e imunidade disparada por PAMPs-PTI

Uma parte do sistema imunológico da planta é conhecida como imunidade disparada por PAMPs (padrões moleculares associados a patógenos) (PTciclo P-triggered immunity"), defesa inata ou defesa basal, que é baseada em interações entre a superfície do hospedeiro com PRRs (*pattern recognition receptors*) na matriz extracelular da planta ou na membrana plasmática que reconhecem padrões moleculares associados aos microrganismos ou patógenos (M/PAMPs). Estes são epítopos microbianos, também chamados elicitores gerais que incluem flagelina bacteriana, fator de alongação bacteriano Tu, lipopolissacarídeos, peptídeoglicano, β -glucanases, ergosterol ou quitina de fungos, essenciais na sobrevivência do patógeno (B, (NürnBergher e Kemmerling; 2009; Boller e He, 2009).

A imunidade disparada por PAMPs-PTI, conhecida como resistência horizontal ou de não hospedeiro é determinada por mecanismos de defesa constitutiva que operam na planta sendo controlada por vários genes, por isso se diz que é poligênica ou multigênica. Este tipo de resistência é mais estável porque tem menor probabilidade do patógeno quebrar a resistência (Zinoveva *et al.*, 2004, Qi *et al.*, 2012). Assim, esse mecanismo de resistência é considerado de fundamental importância para os melhoristas. A desvantagem desse tipo de resistência está associada à dificuldade de ser transferida de um genótipo para outro, pois a probabilidade de transferência dos alelos desejáveis a partir de um genótipo resistente para um suscetível é baixa, quando está envolvido um grande número de alelos.

O entendimento da resistência horizontal é menos completo em comparação com a resistência raça-específica, HR se caracteriza por ser dependente de múltiplos componentes celulares que além de outros fatores incluem, pré-barreiras (síntese de peptídeos, proteínas e metabólitos secundários, que restringem a infecção por patógenos induzindo mecanismos de defesa. Várias moléculas de sinalização, como etileno, ácido salicílico, ácido jasmônico, induzidas por proteínas quinases, estão também ligados à resistência de não hospedeira, que provavelmente é a resistência mais comum e durável pelo fato de alguns patógenos possuirem afinidade por determinadas plantas em detrimento de outras. R-genes também podem estar envolvidos neste tipo de resistência à doença (Kang *et al.*, 2003, Qi *et al.*, 2012).

2.2. Proteínas R e a imunidade disparada por efetores ETI

Na outra parte do sistema imunológico das plantas, os patógenos podem superar a PTI e após a secreção e a translocação para a célula hospedeira, estes genes suprimem ou interferem na sinalização da PTI, em plantas que são suscetíveis à infecção por agentes patogênicos. A doença então é o resultado desta susceptibilidade desencadeada por efetores (ETS), enquanto que plantas com resistência existem proteínas (R) que reconhecem as moléculas efetoras (Lewis *et al.*, 2010; Zhang *et al.*, 2012). O reconhecimento específico de um efetor do patógeno por uma planta R dispara um segundo tipo de resposta denominado efetores desencadeadas de imunidade, resultando em uma reação incompatível (Qi *et al.*, 2011; Nandety *et al.*, 2013). A partir disso, as plantas desenvolveram mecanismos de defesa que reconhecem os efetores através das proteínas NBS-LRR, que possuem domínio de ligação a nucleotídeos (NBS "nucleotide binding site") e repetições ricas em leucina (LRR "leucine rich repeat"), que ativam uma segunda linha de defesa conhecida como imunidade disparada por efetores (ETI) (Jones e Dangl, 2006), também conhecido anteriormente como gene-a-gene ou resistência raça-específica ou resistência vetical (Figura 2).

Figura 2. Modelo Zig-Zag do sistema imune em plantas (Jones e Dangl, 2006). As plantas detectam padrões moleculares associados a patógenos (PAMPs / mAmps, losangos vermelhos) via PRRs PRRs (*pattern recognition receptors*) para desencadear a imunidade disparada por PAMPs (PTI). Patógenos de sucesso produzem efetores que interferem com a PTI, resultando em suscetibilidade desencadeada por efetores (ETS). Se um efetor (indicado em vermelho) for reconhecido por uma proteína da planta NB-LRR, a imunidade disparada por efetores (ETI) é ativada, sendo uma versão amplificada de PTI que permite a indução da morte celular e resposta de hipersensibilidade (HR). Isolados do patógeno podem evoluir e perder efetores (em vermelho) ou ganhar novos efetores (em azul), permitindo que o patógeno suprima ETI. Tal seleção, favorece novos alelos NB-LRR a evoluir e reconhecer um dos efetores recém adquiridos, resultando novamente em ETI.
A teoria gene-a-gene define que a planta possui um gene de resistência (R gene) e o patógeno possui um gene de avirulência (Avr gene). Esta era anteriormente conhecida como resistência vertical ou monogênica. Quando os dois, planta e patógeno, entram em contato, acontece um reconhecimento do produto do Avr gene pelo produto do gene R. Nesse caso, o R gene funciona como um receptor que é induzido ao receber um sinal externo (o patógeno tentando atacar a planta), liberando uma cascata de sinais que são traduzidos para que se obtenha uma resposta de defesa (Flor, 1971).

Dezenas de genes R, contra vários patógenos, já foram clonados a partir de uma variedade de plantas. Estes genes codificam para proteínas que podem ser agrupadas em várias superfamílias, baseados em domínios de proteínas. A grande maioria dos genes clonados até agora pertencem às superfamílias NBS-LRR (*Nucleotide Binding Site –Leucine Rich Repeat*), e LRR ou LRR-quinase (Nandety *et al.*, 2013). Essas superfamílias foram inicialmente identificadas em tomateiro, tabaco e *Arabidopsis*. Os genes análogos de resistência (RGAs) agora podem ser facilmente identificados pela similaridade de sequência: certos domínios funcionais (por exemplo, os domínios NBS e LRR) são altamente conservados, mesmo entre genes R pouco relacionados entre si. Estudos genômicos têm revelado que as superfamílias NBS-LRR, LRR e LRR-Quinase são onipresentes nas plantas (Dangl e Jones, 2001; Mcdowell e Woffenden, 2003).

Na cultura de arroz, cerca de 400 genes NBS-LRR foram caracterizados, 150 no genoma de *Arabidopsis* (Mchale *et al.*, 2006) e 89 identificados em *M. acuminata* DH-Pahang (D'Hont *et al.*, 2012). No estudo de Passos *et al.* (2013), 14 genes expressos NBS-LRR foram identificados em bananeira Calcutta 4, através da análise Blast de folhas infectadas e não-infectadas com *Mycosphaerella musicola*, e 25 em Cavendish Grande Naine. Outras classes conhecidas de R-genes de plantas incluem LRRs extracelulares ancorados por domínios transmembranas (proteínas receptoras), LRRs extracelulares ligadas a domínios citoplasmáticos de serina/treonina-quinases, serina/treonina-quinases intracelulares, e as proteínas com um domínio em espiral (*coiled-coil*) ancoradas à membrana celular.

A resistência baseada em ETI é frequentemente manifestada como uma reação de hipersensibilidade, que resulta na morte celular localizada no sítio de penetração do patógeno. Essa resposta pode ser local, havendo uma reação de hipersensibilidade (RH) na qual ocorre a morte programada de células no local da infecção. Nesta interação, o patógeno, ao penetrar o tecido da planta, a hospedeira dispara as respostas de defesa, que, ativadas rápido e intensamente, impedem a multiplicação do patógeno evitando assim a doença (Vantini *et al.*,

2008). Um evento no início desta reação de hipersensibilidade é a geração de superóxido (O_2) e acúmulo de peróxido de hidrogênio (H_2O_2) em uma explosão oxidativa produzindo os 'Reactive Oxygen Intermediates' (ROIs), isto é, espécies ativas de oxigênio (Jones e Dangl, 2006), que juntamente com a produção de óxido nítrico (NO), desempenham um papel chave na ativação dos mecanismos de resistência a doenças em animais e plantas (Delledonne *et al.*, 2001).

A ativação das respostas de defesa, entre outros fatores, envolve uma regulação do equilíbrio de fitormônios como o ácido salicílico (AS) etileno (ET) e ácido jasmônico (AJ) (Zvereva e Pooggin, 2012). Estudos evidenciam que patógenos biotróficos e hemibiotróficos são geralmente sensíveis a respostas de defesa que são reguladas por AS, enquanto patógenos com o modo de vida necrotrófico são comumente impedidos pelas defesas controladas por AJ e ET (Deller *et al.*, 2011). No processo de defesa, ocorre também a produção de fenóis, espessamento da parede celular da planta, acúmulo de fitohormôrnios, formação de fitoalexinas e indução de expressão de proteínas relacionadas à defesa que limitam a colonização de tecidos vegetais e impedem a manifestação da doença (Hammond-Kosak e Jones, 2003). A resposta de defesa sistêmica conhecida como resistência sistêmica adquirida ou SAR (*Systemic acquired resistance*) exige o acúmulo endógeno de AS, resultando na reprogramação transcricional de uma bateria de genes que codificam proteínas PR. Esta resistência de longa duração e amplo espectro é o AS produzido no local da infecção que se move célula a célula sob a forma de metil-AS através do plasmodesmata ou pelo floema para o resto da planta (Muthamilarasan e Prasad, 2013).

3. Resistência de bananeiras a nematoides

O uso de variedades geneticamente resistentes é uma forma de controle efetiva e dependente da existência e mapeamento de genes de resistência naturais, em geral, desencadeadores da reação de hipersensibilidade, para posterior melhoramento genético, limitado a plantas evolutivamente próximas. Outro mecanismo de resistência genética considerado é a produção de metabólitos secundários com atividade antimicrobiana, nematicida e inseticida. A identificação e o uso de fontes de resistência ou tolerância a nematoides são considerados altamente promissores para amenizar problemas nematológicos nos cultivos de banana. Diante disso, há uma grande necessidade de se obter variedades geneticamente melhoradas para resistência ou tolerância a nematoides. O conhecimento da variabilidade genética dos nematoides fitoparasitas é também essencial para os programas de

melhoramento se tornar mais efetivos garantindo uma produção sustentável e ambientalmente segura (Cordeiro *et al.*, 2004; Hartman *et al.*, 2010).

Quanto ao conceito de resistência, é necessário enfatizar que em nematologia, o termo é usado para descrever a habilidade da planta em suprimir o desenvolvimento e a reprodução do nematoide. Pode ser classificada em diversos níveis, de resistência parcial a resistência completa, sendo determinada de forma relativa. Em uma planta resistente, a reprodução do nematoide é muito baixa ou quase nula, enquanto uma planta moderadamente resistente permite níveis intermediários de reprodução. O termo suscetibilidade é usado para designar o oposto da resistência, ou seja, aos hospedeiros que permitem ao nematoide atingir elevadas taxas reprodutivas, resultando na expressão da doença associada à interação (Roberts, 2002).

Nas interações planta-nematoide, o hospedeiro também pode ser classificado de acordo com a sua habilidade de suportar os danos causados pelo patógeno. Hospedeiros tolerantes conseguem manter seu crescimento e uma boa produção, mesmo sob condições de alta infestação (Jones *et al.*, 2013). Plantas resistentes geralmente são mais tolerantes às injurias causadas, porém, resistência e tolerância podem ou não ocorrerem em um mesmo genótipo. Estudos mostram que em alguns casos, diferentes mecanismos genéticos controlam essas características (Roberts, 2002). Plantas tolerantes ao ataque do patógeno são capazes de produzir novas raízes e compensar os danos sofridos pelas raízes parasitadas, mas a capacidade de suportar o ataque pode trazer consequências prejudiciais, pois ao produzir novas raízes, os patógenos terão mais tecidos para parasitar e consequentemente, terão maior chance de reprodução, aumentando o inóculo na área (Greco e Di Vito, 2009).

Plantios de bananeiras voltadas para exportação são feitos com cultivares do subgrupo Cavendish, as quais são reconhecidamente suscetíveis a nematoides, especialmente aos nematoides migradores *R. similis* e *P. coffeae*. Nas grandes plantações comerciais de banana ainda prevalece o controle químico para o manejo dos nematoides, embora o número de produtos registrados esteja definitivamente em declínio. Portanto, o controle de nematoides com o uso de resistência genética está ganhando novo interesse em nível global (Quénéhervé *et al.*, 2008). Em geral, os nematoides das galhas, como *M. incognita, M. javanica* e *M. arenaria* são mais propensos a causar danos em condições subtropicais como no Marrocos (Janick e Ait-Oubahou, 1989) e nas ilhas Canárias (Pinochet *et al.*, 1998). Nas Antilhas francesas, grandes populações desses nematoides têm sido relatadas em plantações novas de Cavendish estabelecidas a partir de plantas de cultura de tecidos, plantadas depois um pousio ou um período de rotação de culturas (Quénéhervé *et al.*, 2008b). Apesar de encontrar alguns relatos de fontes de resistência em *Musa* spp. a nematoides, poucos são os relatos de tolerância, principalmente em condições de campo. Viaene *et al.* (2003) avaliando 28 genótipos de *Musa* spp., quanto à resistência e tolerância a *R. similis*, identificaram uma fonte de tolerância, o genótipo FHIA-03. Hartman *et al.* (2010) ao avaliar parâmetros de crescimento e danos em 24 genótipos de bananeiras em condições de campo, quanto à reação a *R. similis e H. multicinctus* verificaram que 'Bobby Tannap' e 'TMP x 6930-1' são relativamente tolerantes a *R. similis*, já que estes acessos apesar de apresentarem danos relativamente severos não tiveram grandes quedas de produtividade. Alguns tetraploides (*Musa* AAAA) apresentaram alguma tolerância em campo (Gowen, 1995). Sob condições de campo, os diploides 'Vennettu Kunnan' e 'Then Kunnan' e o triploide 'Karpooravelli' foram classificados como tolerantes (Janarthani *et al.*, 2005).

Alguns estudos importantes de triagem foram realizados na Indonésia (Hadisoeganda, 1994), no Brasil (Costa *et al.*, 1998), nas Ilhas Canárias (Pinochet *et al.*, 1998) e no Vietnã (Stoffelen *et al.*, 2000; Van den Bergh *et al.*, 2002a, 2002b). Nas Filipinas Davide e Marasigan (1985) encontraram nove cultivares designadas como resistentes a *M. incognita*, no entanto, ainda que apresentassem índices de galhas e densidades populacionais do nematoide na raiz, inferiores ao controle, necessitam ser confirmadas. Na Martinica, no estudo de resistência a nematoides em bananas por Quénéhervé *et al.* (2009), 25 acessos de bananeira foram inoculados com *M. incognita*, para avaliar o FR; todos os acessos foram susceptíveis a *M. incognita* e mostraram níveis de susceptibilidade similares. Apenas dois acessos sem nome e Borneo mostraram FRs inferiores aos das cultivares Yangambi Km5. Quatro acessos (Pisang Madu, Abaca, Calcutta 4 e Gu Nin Chio) mostraram taxas de multiplicação significativamente maiores do que 20, dos 25 acessos selecionados.

O desenvolvimento de cultivares resistentes aos nematoides é um dos critérios chave nos programas de melhoramento. Davide e Marasigan (1985) avaliaram a reação de 90 cultivares de *Musa* spp. a *M. incognita*. Com base na média do índice de galhas, número de nematoides por 5 g de raízes, nove cultivares (Alaswe, Dakdakan, Maia Maioli, Paa Dalaga, Pastilan, Pugpugon, Sinker e Viente cohol) mostraram algum grau de resistência. O índice de galhas variou entre 1 e 2,5 e baixos números de J2 foram recuperados a partir das raízes inoculadas. Stoffelen *et al.* (1999 a,b), utilizando *Meloidogyne* spp., como inóculo, não observaram diferenças significativas no número de massas de ovos por fêmeas por sistema radicular e por 5 g de raízes, entre seis cultivares malaias e sete cultivares vietnamitas de *Eumusa*, não mostraram menos suscetíveis do que Grande Naine. Van den Bergh (1999), com base no relato de Chau *et al.* (1997), de que *M. incognita* e *P. coffeae*, são considerados os nematoides mais importantes associados a bananeiras no Vietnã, avaliaram diferentes genótipos de banana e relataram que a infecção com *M. incognita* não teve efeito sobre altura, peso das hastes e perímetro das plantas. Todos os genótipos também reagiram da mesma maneira à infecção por *M. incognita*, o que indica que eles têm o mesmo nível de tolerância a essa espécie de nematoide. No entanto, Van den Bergh *et al.* (2002a) observaram que apenas uma das 19 cultivares vietnamitas, Ngu Thoc, mostrou-se com indicação de possível resistência a *Meloidogyne* spp. Segundo, Van den Bergh *et al.* (2002a) e Tenente *et al.* (2008), em estudo comparativo, de oito acessos de *Musa* vietnamitas, incluindo FHIA-1, FHIA-2 e Yangambi Km 5, foi verificado que FHIA-1 era o menos suscetível à mistura de *Meloidogyne* spp em condições de campo.

Nos estudos de Teixeira (2007) e Vilas Boas et al. (2002), a variedade Caipira foi caracterizada como resistente e moderadamente resistente a M. javanica e a M. incognita, respectivamente. Assim com base na avaliação da resistência por fator de reprodução de M. incognita em 26 acessos de bananeira, realizada por Santos (2007) e Teixeira (2007), Santos (2011), selecionou 11 acessos contrastantes em relação à suscetibilidade e resistência aos nematoides R. similis, M. incognita, M. javanica e M. arenaria. Os acessos 4279-06, Brimanie, Pisang Nangka e 4223-06, mostraram-se resistentes a *M. incognita*, com um FR de: 0,67; 0,69; 0,56; 1,36 respectivamente. Considerando os acessos mais contrastantes para a resistência aos nematoides, daqueles que se mostraram resistentes e suscetíveis ao maior número de espécies de nematoides, 4279-06 teria o maior contraste com os acessos Borneo (FR: 14,04) e 1304-04 (FR: 21,96). O híbrido 4279-06, além de ter o acesso M53 como parental feminino, tem como ancestral paterno o genótipo Calcutta, também considerado resistente ao nematoide em outros estudos (Santos, 2007). Além disso, Santos (2007) avaliando 26 genótipos de bananeira a uma população agressiva de R. similis obteve resultados semelhantes para os acessos 4249-05 e 4279-06 onde estes foram classificados como resistentes.

4. Pesquisa genômica em *Musa* spp.

Considerando as dificuldades no melhoramento convencional da banana na introgressão de fontes de resistência em variedades comerciais estéreis de *Musa* spp., a busca por genes envolvidos na resistência da planta a *M. incognita* pode ser de grande valia para os programas de melhoramento, via tanto transformação genética de plantas quanto a seleção assistida por marcadores genéticos, estimulando a geração de novos genótipos resistentes, de modo a

beneficiar o produtor e o consumidor final, mitigando as perdas de produtividade e utilização continua de agrotóxicos.

O genoma de *M. acuminata* foi completamente sequênciado em 2012 (D'Hont *et al.*, 2012) e sua conclusão abre caminho para a produção de variedades resistentes a patógenos. O sequenciamento revelou a presença de cerca de 36.000 genes e sua posição em seus 11 cromossomos. A disponibilização destes dados para o domínio público servirá como recurso para identificação de genes via sequenciamento massal em paralelo. Além de limitado conhecimento das bases moleculares da resposta da hospedeira durante a infecção e a potencial quebra de resistência da planta devido à mutação do patógeno (GoRHe e Robatzek, 2008) reforça a necessidade da busca contínua de genes de resistência e sua piramidização em cultivares comerciais. É neste contexto que grupos vem analisando a expressão gênica diferencial durante diversas interações planta-patógeno. Dados de transcritoma têm sido gerados durante a interação entre *Musa* e patógenos importantes como *Fusarium oxysporum f.* sp. *cubense* (Lim *et al.*, 2004; Li *et al.*, 2012; Costa, 2013) *Mycosphaerella fijiensis* (D'Hont *et al.*, 2012) e *M. musicola* (Passos *et al.*, 2013).

5. Genes de resistência a nematoides

Os genes envolvidos nos processos da infecção suscitam grande interesse como alvos potenciais para o desenvolvimento de estratégias sustentáveis de manejo de pragas, e doenças. No modelo clássico de interação planta-patógeno gene-a-gene proposto por Flor (1971), a resistência ocorre apenas quando a planta possui um gene R de resistência dominante e o patógeno expressa o gene Avr dominante de avirulência. Os receptores específicos fazem parte de proteínas de resistência (R), que são altamente polimórficas e agem principalmente no meio intracelular. As proteínas R desencadeiam a resistência específica contra patógenos hemi ou biotróficos que necessitam de tecidos vivos para sua proliferação. Vários destes genes R são direcionados contra nematoides. O primeiro gen descrito foi o Hs1pro-1 a partir de uma espécie selvagem de beterraba, que confere resistência ao nematoide de cisto Heterodera schachtii Schmidt, 1971 (Cai et al., 1997). Posteriormente, dois genes para resistência a Globodera spp. foram descritos (Van der Vossen et al., 2000). Os primeiros genes membros de um parasitoma clonados de nematoides parasitas de plantas foram β-1,4endoglucanases (celulases), expressa nas duas células glandulares subventrais de Heterodera glycines Inchinohe, 1915 e Globodera rostochiensis Wollenweber, 1923 (Yan et al., 1998; Husssey et al., 2002; Fuller et al., 2008).

A primeira evidência genética de envolvimento em resistência aos nematoides das galhas foi encontrada na interação tomate *M. incognita* (Simth, 1944; Gilbert e McGuire, 1956). Alguns genes *Mi* de resistência dominante já foram identificados e mapeados, por exemplo, no tomate, *Mi, Mi-3* e *Mi-* 9 (Ammiraju *et al.*, 2003), Me3 em pimenta (Djian-Caporalino *et al.*, 2001) ou *Mae* e *Mag* em amendoim. O gene *Mi* foi clonado e pertence à classe de genes NBS-LRR, que também inclui os genes que conferem resistência a vírus, bactérias e fungos (Hwang *et al.*, 2000).

As famílias de genes de resistência identificadas em Musa são pertencentes às classes do sítio de ligação a nucleotídeos e região de repetição rica em leucina (NBS-LRR), Receptor Like Protein (RLP), Receptor like kinase (RLK), (Serina/Treonina quinase) e Coiled coil (CC ancorado à membrana) (Miller *et al.*, 2008). A maioria dos genes clonados até hoje ligados à resistência estão incluídos nessa família e grande parte desses genes codificam proteínas NBS-LRR, e acredita-se que o domínio NBS seja importante na ligação de ATP e GTP e esteja atuando na transdução de sinais (Ellis e Jones, 1998; Van der Biezen e Jones, 1998) e o LRR no reconhecimento do patógeno por meio da interação do produto do gene Avr com o produto do R gene. Então dessa forma, os dois agindo juntos, como um complexo bem coordenado traz grande eficácia na defesa das plantas contra as doenças mais importantes. Muitos estudos têm sido elaborados em torno desta família de proteínas, pois a sua única função conhecida está relacionada à resistência (Dangl e Jones, 2001; Meyers *et al.*, 2005).

Os genes de resistência a espécies de *Meloidogyne* em tomate tem sido os de maior interesse porque são efetivos contra espécies que também atacam a banana. O gene *Mi-1.2* do tomateiro confere resistência contra *M. incognita* e algumas outras espécies de *Meloidogyne*, como *M. javanica*. Ele também confere resistência ao pulgão *Macrosiphum euphorbiae* Thomas (Atkinson *et al.*, 2003; Perry e Moens, 2006). Este é o primeiro exemplo de um único gene que confere resistência a patógenos que diferem tão notavelmente na natureza de sua alimentação em uma planta hospedeira. O gene *Mi-1.2* codifica para uma proteína putativa de 1257 aminoácidos. Estes genes que pertencem à família de proteínas NBS-LRR tem uma região N-terminal que codifica um domínio potencial de ligação de leucina, talvez envolvidos na dimerização de proteínas. Alguns outros genes-R são similares aos *Mi*, mas até agora eles só foram descritos em solanáceas (Hwang e Williamson, 2003). Construções quiméricas do gene funcional, *Mi-1.2* foram produzidas com um homólogo, *Mi-1.1* que não confere resistência a nematoide. Os fenótipos foram usados para determinar o papel das regiões de repetição terminal N e ricas em leucina na regulação da morte celular localizada (Hwang *et al.*, 2000; Atkinson *et al.*, 2003).

Nemhuma fonte de resistência a Meloidogyne spp. foi encontrada entre 26 accessos vietnamitas desenvolvidos a partir de espécies de bananeiras silvestres (Van den Bergh et al., 2002a). Também não foi encontrada resistência a Meloidogyne megadora Whitehead, 1968, em seis genótipos de bananeira (Almeida e Santos, 2002). Se esta resposta ou de outros genótipos de banana for devida a um gene R contra uma espécie de Meloidogyne, este poderá ser localizado por meio de marcador de seleção assistida e, este cada vez mais ficará estabelecido para Musa (Crouch et al., 1998), como a técnica que tem sido aplicada para discriminação dos genótipos para resistência a nematoides em plantas de soja (Meksem et al., 2001). Uma alternativa de agora em diante é assumir que o gene terá alguns domínios semelhantes ao Mi-1.2. Caso seja um único gene que confira resistência (R dominante) contra Meloidogyne spp. em Musa spp., este poderá ser clonado e estudado tão profundamente como o gene Mi-1.2 do tomateiro (Hwang et al., 2000; Hwang e Williamson, 2003). Possivelmente todos os R genes contra Meloidogyne alcancem seu alvo com a morte de células gigantes. Se assim for, é incerto que poderia ser adaptados para reconhecer e controlar nematoides endoparasitas migratórios, mas teria que ser avaliado, dado a mobilidade e densidade populacional desses parasitas (Atkidson et al., 2003). Na Tabela 1 estão relacionados vários processos biológicos alterados em plantas durante a interação molecular planta-nematoide compatível, no caso de nematoides sedentários (Embrapa Cerrados, 2007).

Tabela 1. Processos biológicos alterados em plantas na interação molecular planta-nematoide compatível (EMBRAPA CERRADOS, 2007).

Processo biológico ou função predita	Planta	Nematóide-tempo pós-infecção	Referencia
do gene (Proteína)		(técnica de análise)	
Defesa (PR1)	Arabidopsis	NFC Heterodera schachtii	(PUTHOFF et al., 2003)
Resposta à estresse (proteínas de choque térmico)	thaliana	H. glycines em 3 dpi	
Amolecimento de parede celular (expansina;		(Microarranjo)	
extensina; pectinesterases)			
Fator de Transcrição (WRKY; ERF)			
Defesa	Glycines max	NFC Heterodera glycines	(KHAN et al., 2004)
Resposta à estresse (peroxidase; SAM22)		em 2 dpi	
Metabolismo de carboidrato (Microarranjo)		(Microarranjo)	
Sinalização celular			
Desconhecida			
Defesa (SRG2)	Glycines max	NFC Heterodera glycines	KLINK et al., 2005)
Canal de água (GmPIP2.2)		em 8 dpi	
Citoesqueleto (GmTubA1: GmTubB4)		(Biblioteca de EST)	
Ligação à DNA (MYB-related protein)		(
Catabolismo de Proteína (ubiquitina)			
Defesa	Arabidonsis	NFG Meloidogyne incognita	(IAMMES et al. 2005)
A molecimento de parede celular (expansina:	thaliana	Em 7 14 21 dpi	(STRIVILLE) et ul., 2005)
nectato liase: poligalacturonase: xiloglucano	manana	(Microarranio)	
endotrans glicosilase)		(Wheroananjo)	
Defes a (DP1)	Ivcongreicon	NFG Meloidogyne javanica	(BAR OPL et al. 2005)
Resposta à estresse (perovidase)	asculantum	em 5 e 10 dpi	(BAR-OKL et al., 2003)
Resposta a estresse (peroduase)	escutentum	(Microarranic)	
Palacionado compatogânasa		(incloanalijo)	
Estar de transcrição			
(mlacionada ao decenvolvimento WDKV)			
	<i>c</i> 1 ·	NEC Ustano dang aluain ag	
	Giycines max	m (hri 12 hri	(ALKHAROUF et al., 2006)
Resposta a termento			
Pator de transcrição (w KK I)		1, 2, 4, 6 e 8 dp1	
		(Microaffanjo)	
Tradução de Proteina desonhecida			
	Glycines max	NFC Heterodera glycines	(ITHAL et al., 200/a)
Resposta a estresse (peroxidase) em 2, 5 e 10 dpi			
Metabolismo primário e secundário (Microarranjo)			
Modificação de parede celular			
Crescimento e desenvolvimento vegetal			
Sinalização celular			
Fator de transcrição (WRKY; bZIP; ERF; MYB)			
Relacionado com patogênese	Glycines max	Heterodera glycines	(ITHAL et al., 2007b)
Metabolismo primário e secundário		em 2, 5 e 10 dpi)	
Modificação de parede celular		(Microarranjo)	
Biossíntese de lignina e suberina			
Transportador de açúcar, íon de metal e aminoácido		_	
Relacionado com auxina			
Relacionado com etileno			
Relacionado com citocinina			
Relacionado com giberelina			
Biossíntese de ácido jasmônico			
Relacionado com patogênese (BURP)	Lycopersicon	NFC Globodera rostochiensis	(UEHARA et al., 2007)
Estresse oxidativo (peroxidase; catalase)	esculentum	em 14 dpi	
Transporte de sacarídeos relacionados à patogênese		(Microarranjo)	

6. O gênero Meloidogyne

6.1. Características gerais

O nematoide das galhas radiculares, do gênero *Meloidogyne* Goeldi, 1887 pertencem à classe Chromadorea, ordem Rhabditida, Subordem Tylenchina, Infraordem Tylenchomorpha, Superfamília Tylenchoidea e Família Meloidogynidae (De Ley e Blaxter, 2002; Karssen e Moens, 2006). É um endoparasita sedentário, com uma gama de hospedeiros que inclui mais de 2000 espécies, sendo considerado o gênero com espécies mais importantes entre os fitonematoides. As espécies mais encontradas associadas com bananeiras são *M. incognita*, *M. javanica*, *M. arenaria* e *M. hapla* (Stoffelen *et al.*, 2000).

Os nematoides das galhas radiculares, são considerados os mais prejudiciais para a economia agrícola mundial, causando cerca de 80% das perdas, sendo a espécie *M. incognita* uma das que mais causam danos, principalmente por possuir hábito polífago. Plantas de clima frio e quente, utilizadas como fonte de alimento em todo mundo são suscetíveis à infecção por esses nematoides (Taylor e Sasser, 1983). Em raízes de bananeiras e plátanos, os nematoides das galhas ocorrem em qualquer região onde estas culturas estejam presentes (Sasser e Carter, 1985; De Waele e Davide, 1998; Trudgill e Blok, 2001; Agrios, 2005; Williamson e Kumar, 2006; Tenente *et al.*,2008; Souza Jr., 2011).

O juvenil de segundo estádio (J2) penetra a raiz e estabelece um sítio de alimentação no parênquima vascular. O sítio de alimentação é constituído de células nutridoras hipertrofiadas, denominadas células gigantes multinucleadas que se conectam às células vizinhas e delas recebem parte dos solutos e foto assimilados produzidos pela planta (Huang, 1985). Paralelo ao processo de hipertrofia celular, o nematoide induz a hiperplasia de células parenquimáticas do córtex e do cilindro vascular, levando ao desenvolvimento de uma protuberância denominada galha radicular. Com a formação das galhas ocorre o comprometimento do sistema radicular que reduz a capacidade de absorção de água e minerais e, consequentemente contribuindo para menor eficiência da fotossíntese (Ferraz, 2001; Agrios, 2005; Fuller *et al.*, 2008).

O macho e a fêmea adulta de nematoides desse gênero apresentam dimorfismo sexual, em que as fêmeas apresentam corpo dilatado, em formato de pera e os machos são vermiformes. A reprodução é na maioria das vezes partenogenética e alta percentagem de machos é produzida em condições adversas (Whitehead, 1997; Perry e Moens, 2006). Em espécies do gênero *Meloidogyne* podem ocorrer diferentes modalidades reprodutivas, algumas espécies se reproduzem por anfimixia (reprodução sexuada), por partenogênese do tipo meiótica e, as que se reproduzem exclusivamente por partenogênese mitótica. De acordo com Ferraz (2001) as espécies mais comuns, *M. incognita*, *M. javanica* e *M. arenaria*, se reproduzem por partenogênese mitótica obrigatória.

Meloidogyne é um gênero de taxonomia complexa, em que a identificação de espécies e feita com base em diferentes técnicas que envolvem desde aspectos morfológicos até análises de proteínas e de DNA. No entanto o sucesso da identificação se consegue pela utilização de diferentes técnicas em conjunto. Dados morfológicos e morfométricos das diferentes espécies são obtidos mediante a extração e coleta de fêmeas, machos e juvenis (J2) de raízes infectadas para observação e coleta de dados ao microscópio ótico, devem ser comparados com a literatura. Geralmente as características morfológicas e bioquímicas da fêmea são as mais utilizadas para sua identificação. A análise das proteínas (isoenzimas) é realizada por eletroforese de isoenzimas (Alonso e Alfenas, 1998; Carneiro e Almeida, 2001) e para identificação molecular se usam técnicas de marcadores espécie específicos, como a técnica de RAPD e através de marcadores SCARS. Essa última permite um diganóstico preciso a partir de juvenil de segundo estádio, massa de ovos e fêmeas (Carneiro *et al.*, 2005a).

Para os nematoides das galhas, *Meloidogyne* spp. os sintomas mais evidentes são as nodulações ou galhas de tamanhos variados que ocorrem nas raízes e outros órgãos subterrâneos infectados. Essas galhas podem ser diminutas ou atingir diâmetro superior a 15 mm e, algumas vezes pode ocorrer a formação de galhas no ápice das raízes. Embora essas espécies sejam de hábito sedentário, sua permanência no solo dificulta muito o manejo. Apesar dos danos causados serem menos notáveis do que os causados por nematoides migradores, as espécies *M. javanica, M. incognita* e *M. arenaria*, mostraram-se altamente prejudiciais à bananeira, que apresentou hospedabilidade favorável a essas espécies, o que não ocorreu com *M. hapla* (Jonathan *et al.*, 1999). A dificuldade em se estabelecer o nível de dano para cada espécie de *Meloidogyne* em bananeiras em campo é devido à ocorrência conjunta de várias espécies no mesmo campo e até mesmo em uma mesma planta. Geralmente endêmicos em áreas de bananais, os nematoides das galhas parasitas de bananeiras possuem entre os seus hospedeiros diversas plantas daninhas de ocorrência comum nas áreas cultivadas com banana (Zem, 1982; Gowen e Quénéhervé, 1990).

6.2. Ciclo de vida de *Meloidogyne*

Os nematoides das galhas são endoparasitas sedentários e a fêmea produz em média, 500 ovos em matriz gelatinosa, na maioria das vezes, externamente à raiz. Após o desenvolvimento embrionário, o juvenil de primeiro estádio (J1) passa pela primeira ecdise, dando origem ao juvenil de segundo estádio (J2), que emerge do ovo. Os juvenis J2 (estádio infectivo de *Meloidogyne* spp.), procura raiz para se alimentar e penetra pelo ápice das raízes, migrando intercelularmente até a zona de elongação atingindo a região do parênquima vascular, onde estabelecem o seu sítio de alimentação permanente e tornam-se sedentários (Williamson e Hussey, 1996; Abad *et al.*, 2003).

Os nematoides J2 injetam secreções das glândulas esofágicas usando seu estilete e selecionam células indiferenciadas, induzindo o desenvolvimento de células gigantes, passando a ingerir o conteúdo citoplasmático das células nutridoras, as quais atuam como drenos metabólicos desviando nutrientes da planta para o nematoide, durante a vida da fêmea. A formação das células gigantes ocorre por hipertrofia destas células por divisões sucessivas dos núcleos sem completar a citocinese. Já a formação da galha ocorre por hiperplasia de células parenquimáticas do cilindro vascular e do córtex. Infecção nas raízes de plantas hospedeiras pode levar à indução de múltiplas galhas resultando em grandes grumos e inchaços (Figura 3). O reconhecimento específico do patógeno pela planta pode conduzir a uma reação de resistência conhecida como resposta de hipersensibilidade (RH), acompanhada de morte celular rápida em torno do local inicial da infecção (Lam *et al.*, 2001; Albuquerque, 2009; Westerich, 2010). Durante esse processo, o juvenil tem a sua largura aumentada e passa por novas ecdises com a formação dos estádios juvenis J3 e J4 e finalmente os adultos.

O desenvolvimento e a duração do ciclo de vida dos nematoides das galhas dependem de fatores ambientais e do tipo de hospedeira, mas em média o ciclo completo leva de 20 a 24 dias nas condições de 25°C em plantas de tomate e berinjela (Taylor e Sasser, 1983). Os mesmos autores relataram que os juvenis de segundo estádio penetraram entre 1 e 3 dias após a inoculação. Isso também já havia sido descrito para *M. naasi* Franklin, 1965, em plântulas de trigo: a penetração da maior parte dos J2 acontece em até 24 horas após a inoculação de juvenis, e tornam-se sedentários de 2-3 dias depois da penetração (Ekanayane e Vito, 1985; Agrios, 2005; Abad *et al.*, 2009). No caso de arroz (*Oryza sativa* L.), verificou-se que *M. graminicola* induz a formação de células gigantes dois dias após a infecção (DAI), com um ciclo de 18-22 dias; em tanto, *M. incognita*, formou células gigantes aos 6 DAI, com um ciclo de 22-28 dias (Nguyên *et al.*, 2014).

Figura 3. Esquema do ciclo de vida do nematoide das galhas *Meloidogyne* spp. (Adaptado de Karssen e Moens, 2006).

6.3. Meloidogyne incognita

A espécie *Meloidogyne incognita* merece destaque por sua ampla distribuição e capacidade de sobrevivência e, por infectar plantas das mais diversas famílias botânicas, tanto monocotiledôneas e dicotiledôneas. Este nematoide está distribuído em todo o mundo e possivelmente está entre os patógenos de culturas mais prejudiciais do mundo (Trudgill e Blok, 2001; Agrios, 2005; Jones *et al.*, 2013).

Esta espécie é um parasita obrigatório que se reproduz por partenogênese mitótica e, análise citogenética tem revelado a existência de isolados com 32-36 cromossomos, e outros com 40-48 cromossomos. Apesar de se reproduzir por partenogênese mitótica, *M. incognita*, tem a capacidade de se adaptar facilmente a condições ambientais desfavoráveis, bióticas e abióticas (Perry *et al.*, 2009). Taylor e Sasser (1983) classificaram populações de *M. incognita* de vários países em quatro raças, das quais a mais comum é a raça 1, as outras três ocorrem em várias partes do mundo, mas com menor frequência que a raça 1. A raça 2 se reproduz no fumo; a raça 3 em algodão e a raça 4, em algodão e fumo.

A fêmea de *M. incognita* tem forma de pera, o padrão perineal é oval, arredondado, geralmente com o arco dorsal quadrado e elevado, estrias geralmente onduladas, campo lateral ausente ou linhas fracamente demarcadas por estrias bifurcadaécnicas. Inicialmente

Esbenshade e Triantaphyllou (1990), bioquimicamente caracterizaram por padrões de isoenzimas uma única banda de esterase tipo I1 e malato desidrogenase do tipo N1, a última, semelhante à de *M. javanica, M. exigua* e algumas populações de *M. arenaria* (Perry *et al.,* 2009). Já Santos *et al.* (2012), considerando as abordagens biométricos, citológicos e moleculares, encontraram três fenótipos enzimáticas: I1/N1, I2/N1 e S2/N1, com as características descritas por *M. incognita*, sendo I2 o mais frequente.

Em bananeira, *M. incognita* geralmente incita sintomas de galhas, frequentemente irregulares ou algumas vezes formando cadeias. Nessa cultura induz pequenas galhas em raízes finas ou dilatações em raízes mais grossas. Corte longitudinal das raízes pode revelar fêmeas de corpo dilatado típicas do gênero em vários estádios de maturação, inclusive visíveis a olho nú (Figura 4). Pode ser observada também, a presença de um halo enegrecido ao redor da fêmea no interior da raiz, denominado câmara da fêmea (Zem, 1982).

Figura 4. Sintomas de *Meloidogyne incognita* em raízes de banana. **A.** raiz com pequenas galhas. **B**. corte longitudinal mostrando áreas escuras onde se encontram as fêmeas. **C.** fêmeas dentro de galha em raiz (Zem, 1982).

7. Cinética da interação planta-nematoide

Nematoides sedentários produzem ampla gama de proteínas de secreção (Hussey *et al.*, 2002), que são secretadas na interface do nematoide com as células hospedeiras, assim, o estabelecimento e a manutenção do parasitismo têm sido fortemente correlacionados com essas secreções proteicas de nematoides (Vanholme *et al.*, 2004), nomeadas de proteínas de parasitismo, secretoma ou ainda parasitoma (Figura 5) (Hussey e Mims, 1990; Hussey *et al.*, 2002; Baum et al., 2007). Essas proteínas de secreção estão relacionadas com os processos de migração e formação do sítio de alimentação, onde promovem uma mudança radical na expressão de genes e no metabolismo das células vegetais envolvidas (Davis *et al.*, 2000). As duas glândulas subventrais estão desenvolvidas e ativas durante a segunda fase juvenil (J2) e,

por isso, são relacionadas ao estabelecimento do parasitismo, especificamente invasão da raiz, migração nos tecidos vegetais e indução do sítio de alimentação. Por outro lado, na fase adulta, as fêmeas apresentam uma glândula dorsal desenvolvida e produtora de secreções relacionadas à manutenção do parasitismo (Huang *et al.*, 2003; Bird *et al.*, 2003).

Figura 5. Modelo esquemático das interações de um nematoide parasita sedentário com sua célula de alimentação. As proteínas produzidas nas glândulas do esôfago (em vermelho) e das secreções anfidiais do nematoide (seta tracejada), que interagem com as moléculas do hospedeiro e estabelecem a reação parasitária. As proteínas liberadas pelo nematoide podem atuar como ligantes extracelulares ou intracelulares; componentes de transdução de sinal; ser importadas para o núcleo; ou agir em organelas citoplasmáticas, modificando a célula hospedeira. Tais proteínas também atuam na formação do tubo de alimentação do nematoide (em cor laranja) (Baum *et al.*, 2007)

Os fitonematoides endoparasitas sedentários estabelecem uma interação muito íntima e sofisticada com a planta hospedeira promovendo a invasão do tecido vegetal, a evasão dos mecanismos de defesa e a formação dos sítios de alimentação permanentes. Os J2 recémeclodidos procuram as raízes das hospedeiras por quimiotaxismo, usando o sistema sensorial que percebe exsudados vegetais e não se alimentam até o estabelecimento do parasitismo, suas reservas energéticas são corpúsculos de lipídeos, armazenados na porção posterior de seu corpo, suficientes para sua manutenção por aproximadamente duas semanas. Para um parasitismo bem sucedido, o fitonematoide depende muito da formação do sítio de

alimentação, pois este será sua única fonte de nutrientes durante todo seu ciclo de vida (Van der Eycken *et al.*, 1996; Abad *et al.*, 2003; Davis *et al.*, 2004).

As plantas possuem diversas frentes de defesa, como: barreiras pré-formadas, resistência específica (ou de não hospedeiro), resistência raça específica e raça não específica e defesa basal (Hammond-Kosack e Parker, 2003). Toda interação patogênica ou não de plantas e microrganismos, envolve complexos eventos de reconhecimento, levando à ativação de cascatas de sinalização e regulação de inúmeros genes. Conhecer os mecanismos envolvidos nessa sinalização pode favorecer o entendimento das relações planta-patógeno e, consequentemente, auxiliar na busca por resistência. Além desses mecanismos, as plantas têm uma variedade de estratégias de defesa genéricas, incluindo a produção de toxinas que têm amplos efeitos anti-patógenos. Estes compostos podem incluir fitoalexinas, isoflavonoides ou terpenoides, embora não há evidências que sugerem que alguns destes possam ser nematicidas (Wuyts *et al.*, 2006).

Meloidogyne incognita secreta várias proteínas parasíticas GSTs (Glutathione-S-Transferases), pelo menos uma delas é expressa nas células das glândulas do esôfago, de onde acredita ser secretada para a hospedeira (Dubreuil *et al.*, 2011). O silenciamento deste gene por RNA interferente (RNAi), leva a uma redução no sucesso parasitário, sugerindo um papel importante na biologia de nematoides. Embora os dados bioquímicos estejam faltando, é plausível que proteínas GSTs secretadas, sejam importantes para a desintoxicação de derivados de compostos nematicidas, antes de serem ingeridos pelo nematoide. Embora este GST seja expresso nas glândulas subventrais e ter sido detectado em secreções de nematoides, a proteína candidata carece de um peptídeo de sinalização. Isto sugere que alguns efetores poderiam ser secretados usando uma via secretora independente da rede de retículo endoplasmático-Golgi (Haegeman *et al.*, 2012).

Os genes que codificam enzimas de degradação da parede celular, incluindo a pectato liase e a poligalacturonase, foram também identificados em nematoides parasitas de plantas. Em vários casos, as transcrições foram localizadas nas glândulas subventrais (Van der Biezen e Jones, 1998). As enzimas codificadas são capazes de funcionar na suavização da parede celular para facilitar o movimento do nematoide através da raiz. A família de genes que se expressa nas glândulas do esôfago do nematoide das galhas codifica a enzima corismato mutase. Corismato é um precursor na biossíntese dos aminoácidos aromáticos, e entre os compostos derivados do corismato incluem a auxina ácido indol-3-acético (IAA) e o ácido salicílico, relacionado com defesa da planta. A expressão transgênica do gene da corismato mutase de nematoide MjCM-1 suprime a formação de raízes laterais e paralisa o

desenvolvimento do sistema vascular (Davis et al., 2000, 2004; Fuller et al., 2008; Abad, 2009).

A outra grande classe de compostos de defesa produzidos pelas plantas são espécies reativas de oxigênio (ROS). Esta explosão oxidativa é uma das primeiras respostas detectáveis ocorridas durante uma interação incompatível. Estudos histopatológicos demonstraram que estes compostos são produzidos em resposta à invasão de nematoides, em particular no caso dos nematoides de cisto que migram destrutivamente através dos tecidos das raízes do hospedeiro (Waetzig *et al.*, 1999). Além de segmentação do patógeno diretamente, estes compostos podem também ativar outras vias de sinalização e conduzirem o reforço das paredes celulares. Uma peroxiredoxina que também metaboliza o peróxido de hidrogênio está presente na superfície dos mesmos nematoides (Smant e Jones, 2011). Tirando as peroxiredoxinas em *M. incognita* reduz-se a viabilidade dos J2s após a exposição ao peróxido de hidrogênio, e as plantas tratadas inoculadas com J2s dsRNA mostraram redução de 60% no número de galhas, indicando a importância destes genes durante a infecção (Dubreuil *et al.*, 2011). Outra proteína antioxidante, superóxido dismutase, foi identificada em secreções de *M. incognita*, mas ainda não foi caracterizada (Bellafiore *et al.*, 2008; Haegeman *et al.*, 2012).

7.1. Interação molecular incompatível planta-nematoide

Existem milhares de espécies de plantas parasitadas por nematoides, entretanto algumas significativas exceções têm sido descritas. Nessas plantas evoluíram mecanismos protetores que previnem a atração, penetração, migração, formação do sítio de alimentação, nutrição, reprodução ou sobrevivência dos nematoides. De maneira geral, essas plantas são classificadas como plantas antagonistas, armadilhas, não hospedeiras ou resistentes, uma vez que a interação molecular é parcialmente ou totalmente incompatível.

Plantas resistentes e seus patógenos operam muitas vezes, em um sistema de interação gene-a-gene. Assim, a planta pode apresentar um gene de resistência, cujo produto detecta o patógeno e desencadeia uma resposta hipersensitiva. Para que ocorra resistência, cada o patógeno deve possuir o gene de avirulência e a planta o de resistência. Em conclusão, a interação molecular planta-nematoide é incompatível quando a planta evolui mecanismos bioquímicos de defesa, comumente relacionados à síntese de metabólitos secundários ou à presença de genes de resistência (Davis *et al.*, 2004).

37

7.2. Interação molecular compatível planta-nematoide

Os fitonematoides endoparasitas sedentários estabelecem uma interação muito íntima e sofisticada com a planta hospedeira promovendo a invasão do tecido vegetal, evasão dos mecanismos de defesa e a formação dos sítios de alimentação permanentes. Quando juvenis de segundo estádio do nematoide das galhas recém eclodidos procuram as raízes da hospedeira por quimiotaxismo, são guiados por sistema sensorial especializado que detecta exsudados vegetais. Como dito anteriormente, juvenis infectivos não se alimentam até o estabelecimento do parasitismo e, utilizam suas reversas energéticas dos corpúsculos de lipídeos, armazenadas na porção posterior de seu corpo, suficientes para sua manutenção por aproximadamente duas semanas (Abad *et al.*, 2003; Davis *et al.*, 2004).

A penetração da raiz se dá na base da coifa, na zona meristemática. A migração intracelular nos tecidos, por nematoides das galhas é facilitada por suas celulases, pectinases e proteases e por expansinas vegetais. Assim, os nematoides atingem o parênquima vascular, onde induzem a formação do sítio de alimentação (Hussey *et al.*, 2002; Gal *et al.*, 2006).

Para um parasitismo bem sucedido, o fitonematoide depende muito da formação do sítio de alimentação, pois este será sua única fonte de nutrientes durante todo seu ciclo de vida (Van der Eycken *et al.*, 1996; Williamson e Gleason, 2003). O sítio de alimentação é o conjunto de células vegetais diferenciadas situadas em frente à porção anterior do nematoide. Essas células funcionam como drenos de nutrientes do cilindro vascular para o fitonematoide. O nematoide das galhas modifica o ciclo celular, balanço hormonal, sinalização celular, expressão gênica e, consequentemente, a fisiologia da raiz, induzindo a formação de três a cinco células gigantes multinucleadas (Bird *et al.*, 2003).

Atualmente, têm sido adotados dois caminhos principais para compreender a interação molecular compatível planta-nematoide, a fim de sugerir mecanismos de controle. O primeiro focando o parasita e a identificação dos genes ou proteínas dos fitonematoides que viabilizam o parasitismo de plantas. O outro, focando a hospedeira, estudando os genes de plantas que são ativados ou inibidos, culminando em alterações fisiológicas, celulares e moleculares (Davis *et al.*, 2008; Abad *et al.*, 2009b).

7.3. Proteínas de parasitismo por nematoides (Efetores)

Os nematoides, assim como outros patógenos de plantas, evoluíram uma variedade de diferentes estratégias que lhes permitem infectar com sucesso os seus hosperdeiros.

Fitonematoides secretam um grande repertório proteínas, peptídeos e outras moléculas pequenas em seus hospedeiros denominados efetores que lhes permitem influenciar simultaneamente diferentes aspectos da regulação celular da planta. Como endoparasitas sedentários de plantas, nematoides das galhas têm encontrado várias maneiras de manipular os processos de desenvolvimento de suas hospedeiras e evadir os mecanismos de defesa, a fim de completar com sucesso seu ciclo de vida. A ação concertada de vários efetores diferentes também parece ser necessária para o sucesso da infecção pelos nematoides. Não se sabe se estes efetores trabalham coordenadamente ou se formam complexos dentro de células hospedeiras e isso poderia representar um novo foco de pesquisa, a fim de obter uma imagem mais completa da rede funcional construída pelo parasita para controlar a sua hospedeira (Haegeman *et al.*, 2012).

Assim, as plantas desenvolveram mecanismos de vigilância capazes de detectar perturbações nas vias orientadas para ativar mecanismos de defesa de maneira antecipada e eficiente. Está estabelecido que a pressão de seleção, leva ao surgimento de populações de nematoides virulentos que emergem e superam a resistência das plantas (Gleason *et al.*, 2008; Verdejo-Lucas *et al.*, 2009). Isto pode ocorrer pela modificação ou perda de efetores de avirulência e/ou diversificação da resposta de efetores produzidos pelos nematoides que podem permitir a evolução de novos supressores de ETI. A durabilidade de um gene R provavelmente seja altamente dependente da natureza e função do produto de gene (s) de avirulência.

Os efetores são cruciais para o parasitismo bem sucedido, assim como para a identificação de efetores de avirulência podendo assim proporcionar valiosa informação para prever a durabilidade dos genes R. Além disso, pode também ajudar na seleção e clonagem de genes R, para conseguir resistência durável à doença. Uma variedade de efetores foi identificada, participando da regulação dos percursos de auxina, que conduz, finalmente, para uma mudança nos níveis locais de auxina, no entanto, a natureza complexa das interações entre hormônios vegetais tornou difícil desenvolver um modelo unificador que descreva as mudanças nos níveis de auxinas e outros hormônios que estão na base do desenvolvimento do sítio de alimentação (Haegeman *et al.*, 2012).

Os primeiros efetores identificados capazes de desempenhar um papel na manipulação de níveis de auxina foram as corismatomutases (CMs), elas favorecem a supressão de defesa por interferir com a via de sinalização AS. CMs podem afetar a homeostase por interferir localmente com a biossíntese de auxina. A expressão de CM de *M. javanica* nas raízes finas de soja afeta profundamente a formação e o desenvolvimento do sistema vascular (Doyle e

Lambert, 2003). Tem sido postulado que a CM do nematoide esgota os níveis do precursor de corismato, desviando esta da via biossintética que conduz à produção de auxina. A CM foi recentemente descrita em um endoparasita migrador que não induz estruturas alimentadoras (Haegeman *et al.*, 2012).

Sabe-se que as moléculas efetoras produzidas pelos nematoides são direcionadas a diferentes compartimentos celulares (Rosso *et al.*, 2011; Quentin *et al.*, 2013). A calreticulina (Mi-CRT) é secretada em abundância para o apoplasma celular por *M. incognita* durante a indução e a manutenção das células nutridoras, atuando como supressora da imunidade inata do hospedeiro (Jaouannet *et al.*, 2013). Além de afetar a síntese de auxinas, nematoides podem também influenciar na distribuição local deste hormônio. A caracterização recente de proteínas efetoras do Hs19C07, secretadas por *H. schachtii* indica que o nematoide pode modificar a distribuição celular de auxina, em parte, visando um dos transportadores da auxina RESISTANT1/COMO AUX1, família (AUX1/LAX) em *Arabidopsis thaliana*. Os autores especulam que o efeito nocivo da superexpressão ectópica de Hs19C07 sobre o nematoide é devido à atividade Hs19C07 auxina em fluxo normal através da raiz, dissipando assim as concentrações de auxina na raiz e diminuindo a quantidade de auxina disponível para o desenvolvimento de sítios de alimentação (Lee *et al.*, 2011).

Outros efetores foram identificados e poderiam desempenhar papel na manipulação de níveis de auxina, as GST são enzimas de desintoxicação importantes, mas também podem se ligar à auxina e flavonoides em plantas, modulando o seu tráfico na célula. Uma função semelhante pode ser exercida pelas GSTs dos nematoides, a fim de regular a distribuição de auxina, mas, nenhuma evidência para tal atividade ainda foi demonstrada (Haegeman *et al.*, 2012).

8. Histopatologia na interação Meloidogyne-planta

Nematoides parasitas de plantas possuem certas características estruturais que asseguram a sua existência no tecido da planta. Estes incluem o estilete, que é adaptado para penetrar a parede celular da planta, glândulas esofágicas (dorsal e subventrais) e fasmídios. Observações em microscopia eletrônica mostram que, para a alimentação, a parede celular da planta é perfurada com seu estilete, com o qual atinge a membrana plasmática das células. A injeção de secreções no citoplasma da célula hospedeira induz a formação de tubos de alimentação. Estes tubos, estando intimamente associados com o retículo endoplasmático podem trazer nutrientes das partes mais distantes da célula gigante, ou atuam como filtros

moleculares para evitar o entupimento do estilete. Algumas estruturas dos nematoides podem ser fontes de moléculas secretadas envolvidas na interação nematoide-planta. Após a invasão da planta, a obtenção de alimentos só pode ter lugar após o nematoide romper a barreira da parede celular. Os genes que codificam enzimas que facilitam o parasitismo em tecidos de plantas através do estilete são denominados genes de parasitismo ou fatores de patogenicidade (Davis *et al.*, 2004; Davis *et al.*, 2008; Abad *et al.*, 2009).

Em geral, plantas resistentes a nematoides apresentam um aumento do nível de fenilalanina-amônia-liase (PAL), enzima chave no metabolismo fenólico, conhecida por sua relação com a resistência de plantas a doenças (Davis *et al.*, 2000). Outros estudos mostram que a atividade da peroxidase (PO) aumenta em cultivares de tomateiro resistente após o ataque do nematoide, enquanto nas cultivares suscetíveis não se verifica nenhuma mudança no nível de PO (Arias *et al.*, 2009). As peroxidases, contudo, têm várias isoenzimas que estão relacionados com diversos processos fisiológicos, e o seu papel nos mecanismos de defesa são ainda desconhecidos. No que diz respeito à função de PO e PAL nos mecanismos de resistência a nematoides (Bolwell *et al.*, 2002), assume-se que o aumento na atividade de PO na cultivar de tomate resistente possa induzir o aumento na produção de superóxido e os seus derivados, por meio do qual as células neutralizam a ação de agentes patogênicos. Estes resultados são consistentes com observações histológicas, que indicam que, antes do rompimento das células gigantes, o nematoide depara com certa quantidade de material de espessamento depositado na parede da célula (Yongbing *et al.*, 1996).

Plantas de bananas resistentes a nematoides produzem compostos fenólicos em sementes e frutos, tais como taninos e 3,4 flavana-diol (Binks *et al.*, 1997; Santos 2011) e em raízes Kashaija (1996) em campo, e em altas concentrações podem atuar na defesa da planta contra nematoides. Collingborne *et al.* (2000) detectaram níveis altos de taninos e 3,4 flavana-diol na cultivar Kunann de banana, resistente a *R. similis* antes e depois da infecção. Na Bélgica Wuyts *et al.* (2006) estudaram respostas histológicas e histoquímicas na interação *Radopholus similis - Musa* nas quais demostraram a presença de lignina e compostos fenólicos nas variedades resistentes como resposta à infecção por esse nematoide. No Brasil, Costa (2004) relatou uma elevada quantidade de compostos fenólicos sintetizados na planta e translocados até a raiz, o que possivelmente confere resistência à infecção por nematoides.

Alguns autores têm estudado a natureza da resistência aos nematoides do gênero *Meloidogyne* em plantas de tomateiro, café, algodão, pimenta, entre outros, porém em banana ainda não foram realizados estudos mais aprofundados nesse sentido. Tem-se encontrado que uma quantidade elevada de compostos fenólicos sintetizados na planta é translocada para as

raízes, para conferir resistência à infecção por nematoides, sendo que em geral, as plantas resistentes a nematoides têm um nível mais elevado de fenilalanina amônia-liase (PAL), uma enzima chave no metabolismo fenólico, conhecido por estar relacionado com a resistência de plantas a doencas. Outros estudos mostraram que a atividade de peroxidases (PO) aumenta em cultivares de tomate resistentes após o ataque de nematoides, enquanto as cultivares suscetíveis nenhuma alteração foi observada no nível PO (Arias et al., 2009). Resistência a M. incognita tem sido pesquisada em diferentes cultivares de bananeira, baseando-se apenas no fator de reprodução, daí a importância de estudos mais detalhados para o melhor entendimento do processo de infecção deste parasita em banana. Têm-se poucos trabalhos sobre histopatologia na interação Musa-Meloidogyne; a maioria das pesquisas têm focado em estudos histoquímicos com o nematoide GNernícola R. similis. Na Índia, Sudha e Prabhoo (1983), fizeram um estudo histopatológico da interação M. incognita em Musa paradisiaca mostrando sintomas, formação de galhas e formação de células gigantes nas raízes, porém, o estudo não foi bem detalhado. Nithya-Devi et al. (2009), em estudos histoquímicos e histológicos, compararam a produção de compostos fenólicos em raízes de bananeiras sadias e infectadas com M. incognita, e encontraram maior número de células com fenóis e células lignificadas em acessos resistentes Karthobiumtham (ABB) e Bhimkol (BB) em relação aos acessos suscetíveis Therahaw-1164 (ABB) e Jahaji (AAA).

Carneiro *et al.* (2005b) estudaram o mecanismo de resistência de genótipos de algodoeiro a *M. incognita* raça 3 através de histopatologia comparada entre cultivar resistente e suscetível. De acordo com estudos prévios (Sheperd, 1983; Lordello *et al.* 1984; Carneiro, 1990), duas cultivares foram selecionadas, sendo IAC96/414 a resistente e IAC98/708 a suscetível. Plantas foram inoculadas aos 25 dias de idade com 18 mil J2 de *M. incognita* raça 3 e avaliadas aos 2, 4, 6, 12, 24 e 48 dias após a inoculação. Embora os juvenis tenham penetrado as raízes do genótipo resistente e suscetível, o desenvolvimento destes foi seriamente comprometido no genótipo resistente logo após a infecção.

Em estudos de resistência e caracterização histológica de acessos de *Pfaffia glomerata* a *M. incognita* realizados por Gomes *et al.* (2010), foram avaliados um acesso altamente resistente 'UFV' (MG) e um suscetível 'Farmacotécnico' (FAR). As observações histológicas das raízes suscetíveis infectadas demonstraram que os J2 de *M. incognita* nem sempre foram capazes de penetrar e migrar até a região de elongação, e se desenvolver. Fêmeas bem desenvolvidas foram observadas aos 39 dias com primórdios da matriz gelatinosa. Quanto às raízes resistentes infectadas, foram observados que dos poucos J2 que penetraram, alguns migraram até o cilindro central da raiz e não conseguiram estabelecer os sítios de alimentação.

Entretanto, outros J2 conseguiram estabelecer os sítios de alimentação com células gigantes bem menores que as observadas no acesso suscetível, em menor número e mal formadas.

Alterações anatômicas de raízes de cafeeiros inoculados com uma população patogênica e outra não patogênica de *M. incognita* foram comparadas por Oliveira (2006). Foram avaliadas mudas de cafeeiro 'Catuaí' (suscetível) e 'Apoatã' (resistente) inoculadas com as duas populações de *M. incognita* a cada dois dias, do primeiro ao décimo dia, e a cada cinco dias, do décimo ao quadragésimo dia após a inoculação. Os resultados mostraram que a indução de células gigantes e o desenvolvimento do nematoide somente foram observados em cafeeiro 'Catuaí' inoculado com a população patogênica. Não foi observado nenhum indício de formação de células de alimentação em 'Apoatã' e nem em 'Catuaí' inoculados com a população não patogênica.

Moritz *et al.* (2008), realizaram estudo comparativo das alterações anatômicas causadas por *M. paranaensis* em raízes de cultivares de soja resistente e suscetível, a fim de identificar possíveis mecanismos de resistência envolvidos nas interações incompatíveis. Plantas de soja das cultivares 'CD 203' (resistente) e 'CD 214' (suscetível) foram inoculadas com 2000 J2 de *M. paranaensis*. Houve diferença significativa entre o número e o diâmetro das células gigantes das cultivares. Entretanto, não houve diferença significativa entre as cultivares quanto ao diâmetro das células do parênquima, cilindro vascular e espessura do parênquima cortical. Os mecanismos de resistência na cultivar 'CD 203', caracterizaram-se pelo fato dos J2 de *M. paranaensis* falharem no estabelecimento de sítios de alimentação com adequado número e tamanho de células gigantes. As células gigantes do cultivar resistente, foram constituídas de células menores, em menor número, provavelmente menos favoráveis ao nematoide em relação ao fornecimento de alimento, resultando no desenvolvimento mais lento das fêmeas.

No estudo conduzido por Das *et al.* (2008), destinado a elucidar o mecanismo de resistência mediado por resposta histológica para uma população avirulenta de *M. incognita* inoculada em uma cultivar resistente CB46 de feijão de frade (*Vigna unguiculata* (L.) Walp com gen RK, comparada com uma linha isogênica suscetível (CB46i). Neste estudo, não houve RH típica em raízes de plantas resistentes, e os nematoides foram capazes de induzir sítios de alimentação normais semelhantes aos das raízes suscetíveis até 9-14 dias pósinoculação. De 14-21 DAI foi observada a desintegração de células gigantes e fêmeas que apresentaram pouco desenvolvimento e deterioração do corpo (Figura 6). Tipicamente, a resistência de feijão de frade a *M. incognita*, está estreitamente relacionada a uma explosão oxidativa no tecido infectado. Similarmente Freitas *et al.* (2014), comparando cortes

histológicos de raízes de *Psidium cattleyanum* com os de *P. guajava*, encontraram nenhuma diferença na formação dos sítios de alimentação de *M. enterolobii* entre as plantas resistentes e suscetíveis até os 23 DAI. Entretanto, aos 27-32 DAI, as células gigantes começaram a se degenerar em *P. cattleyanum*, e as fêmeas de *M. enterolobii* não atingiram o estádio adulto, sem a produção de ovos e observando-se vários machos dentro das raízes aos 27-32 DAI.

Figura 6. Cortes histológicos mostrando o desenvolvimento de *Meloidogyne incognita* em raízes de feijão de frade, (14 DAI), onde nematoides associados com raízes resistentes. **A.** foram afetados em desenvolvimento, com corpo mais estreito que nematoides nas raízes suscetíveis. **B.** Ainda que a deterioração de células gigantes não fosse visível sob microscópio de luz, nessa fase, as células gigantes na planta resistente, não foram metabolicamente ativas o suficiente para fornecer nutrientes ideais para o desenvolvimento do nematoide. **N**: Nematoide, **gc**: célula gigante, **v**: vacúolo (Das *et al.*, 2008).

No estudo de Proite *et al.* (2008), o comportamento reprodutivo do nematoide das galhas *M. arenaria* raça 1 foi comparado em duas espécies silvestres de *Arachis (A. duranensis e A. stenosperma)* Krapov e Greg, e amendoim cultivado *A. hypogaea* L. As três espécies foram consideradas moderadamente suscetível, resistente e suscetível, respectivamente. A penetração e desenvolvimento das galhas e do nematoide nas espécies resistentes foram reduzidos em comparação com as plantas suscetíveis. Várias características celulares, incluindo o citoplasma corado em azul escuro e alteração na estrutura das organelas foram observadas no cilindro central de *A. stenosperma*, indicando resposta de hipersensibilidade (RH) em tecido infectado.

Albuquerque (2009) demonstrou que o acesso UFV 408-28 de *C. arabica* é moderadamente resistente a *M. incognita* que se caracterizou pelas respostas de resistência da planta a nível histológico e molecular. A resistência do genótipo UFV 408-28 se expressou por uma reação do tipo hipersensível (RH), com morte celular no local da infecção. A infecção por *M. incognita* é bloqueada antes de haver a formação de sítios de alimentação. Na

planta suscetível (IAC15), o desenvolvimento do nematoide prosseguiu até a produção de ovos nas galhas, sendo que o ciclo se completou em aproximadamente 45 dias.

Em estudos histológicos em raízes de mudas de pêssego das variedades Nemaguard e GF-677 (altamente resistente e suscetível, respectivamente, a espécies de *Meloidogyne*), Westerich (2010), confirmam que os nematoides penetram igualmente nas raízes de plantas suscetíveis e resistentes e ainda assim a resposta é diferente. Nas raízes de plantas suscetíveis a formação de células gigantes é estimulada pela alimentação do juvenil infectivo, que geralmente se desenvolve até a maturidade, produzindo ovos a partir dos quais emergem juvenis viáveis. Nas plantas resistentes o nematoide tem o desenvolvimento incompleto.

Mota *et al.*(2012), em observações histológicas de dois acessos resistentes de algodão (*Gossypium barbadense* L. *e G. hirsutum* L., (CIR1348 e TX-25, respectivamente) a *M. incognita* raça 3, mostrou que a resistência ocorre através de um mecanismo em dois estágios. O parasitismo é bloqueado logo após a penetração do J2 de *M. incognita*, durante a sua migração tecidual inicial (CIR1348) o desenvolvimento desse juvenil em fêmeas adultas é suprimido numa fase posterior (TX-25 e CIR1348). Microscopia de fluorescência e de campo claro mostraram que as células da raiz circundantes aos nematoides exibem uma reação de hipersensibilidade, com o acúmulo de compostos fenólicos e, possivelmente, a presença de células necróticas que limitam o desenvolvimento do nematoide e a formação de células gigantes.

9. Pesquisa genômica em Meloidogyne

O genoma de *M. incognita* foi sequênciado na França sob a iniciativa do grupo de nematologia do INRA, Sophia Antipolis com a colaboração da Genoscope e,está disponível em domínio público (http://www. inra.fr/ *Meloidogyne_incognita*/genomic_resources) (Abad *et al.*, 2009). O conjunto de genes e de proteínas descobertos foi cuidadosamente analisado por um consórcio de laboratórios, sendo que cada laboratório focou em um determinado processo ou família de genes relevantes a diferentes aspectos da biologia de *M. incognita*. As sequências de leituras foram montadas com Arachne (Jaffe *et al.*, 2003), em 2817 *supercontigs*, dando uma cobertura total de 86 Mb (Abad *et al.*, 2009).

9.1. Estudo de transcritoma da interação planta-nematoide

O estudo do transcritoma é uma excelente alternativa para a identificação dos genes envolvidos na interação planta-nematoide. Um transcritoma pode ser definido como o conjunto completo de transcritos de uma célula e sua abundância em um estádio específico de desenvolvimento ou condição fisiológica (Tan *et al.*, 2009). Existem diferentes estratégias que são empregadas no estudo de transcritos como: bibliotecas de cDNA, microarranjo, SAGE (*Serial Analysis of Gene Expression*), bibliotecas SSH (*Suppression Subtractive Hybridization*), *differencial display*, AFLP (*Amplified Fragment Length Polymorphism*) a partir de sequências expressas (cDNA-AFLP) e RNAseq (Rodrigues *et al.*, 2013).

Nos últimos anos, estudos de transcritoma na interação planta.-*M. incognita*, tem aumentado. Dentro estes destacam-se os estudos da interação *Arabidposis-M. incognita* (Jammes *et al.*, 2005), feijão-comum (*Phaseolus vulgaris*)-*M. incognita* (Santini, 2014), arroz (*Oryza sativa*) -*M. incognita* (Nguyễn *et al.*, 2014), e a interação Alfafa-*M. incognita* (Postnikova *et al.*, 2015) entre outros. Estes trabalhos são uma contribuição ao entendimento do parasitismo e de defesa das plantas contra esse fitoparasita.

9.2. Sequenciamento massal em paralelo (NGS)

As novas tecnologias de sequenciamento massal em paralelo (Next Generation Sequencing-NGS) possibilitam a análise de milhões de sequências em paralelo, com a sensibilidade de identificar o espectro mutacional de um organismo, desde variações em bases únicas até em um grande número de polimorfismos, na escala total do genoma. Essa escala possibilita que o genoma completo de um organismo possa ser analisado em sua totalidade em apenas uma ou duas análises, reduzindo o custo do sequenciamento em até 100 vezes (Mardis, 2008). Além do menor custo, em relação à tecnologia tradicional para geração de ESTs, hoje as três novas tecnologias de sequenciamento massal, fornecem algumas vantagens adicionais, tais como: não apresentam viés para as extremidades do cDNA e apresentam maior amostragem do genoma. Além disso, possibilitam que amostras de diferentes procedências possam ser analisadas ao mesmo tempo, e posteriormente distinguidas computacionalmente (Novaes *et al.*, 2008).

9.3. RNAseq

O sequenciamento do transcritoma de uma espécie tem sido utilizado tanto para a análise do perfil de expressão de uma espécie, anotação do genoma e detecção de rearranjos no genoma, quanto para detecção e quantificação de RNA não-codantes. Com a introdução da tecnologia RNAseq, o estudo do perfil de mRNA de uma espécie em escala do genoma global foi possibilitado, como demonstrado inicialmente para A. thaliana (L.) Heyn, Medicago truncatula Gaertn, e Zea mays L., entre outros (RotheBergh e Leamon, 2008). A tecnologia também pode ser empregada para avaliações simultâneas de sequências expressas oriundas de diferentes organismos (Dual RNAseq), tendo alta aplicabilidade em estudos de interação patógeno-hospedeiro (Westermann et al., 2012). Basicamente, RNAseq consiste no sequenciamento em larga escala de regiões transcritas, gerando pequenos fragmentos (reads) com tamanho variável (30 - 400 pb), de acordo com a plataforma de sequenciamento empregada. O RNA é convertido em cDNA que é ligado a adaptadores, que possuem sequências complementares às dos primers usados nas reações de sequenciamento. Os adaptadores podem ser ligados a uma (single end) ou a ambas as extremidades dos fragmentos (paired-ends), permitindo o sequenciamento dos fragmentos em duas direções (Wang et al., 2009). Após o sequenciamento, os milhões de reads gerados são submetidos a análises de bioinformática.

A análise de transcritoma, em resumo consiste em 6 etapas: 1) avaliação da qualidade das sequências; 2) filtragem dos dados de acordo com os critérios de qualidade adequados; 3) alinhamento dos transcritos com sequências de referência; 4) normalização dos dados; 5) quantificação das sequências expressas e análise da expressão diferencial e 6) anotação funcional (Ramsköld *et al.*, 2012).

9.4. Sequenciamento Ilumina

A Plataforma de Sequenciamento Ilumina (http://www.illumina.com/) reduz a complexidade e os custos do sequenciamento, além de ter aumentada a sensibilidade na busca de transcritos pouco expressos. Uma corrida nesta plataforma gera aproximadamente 10 Gb de sequências gênicas por canal com tamanho médio de 100 pb. A tecnologia é baseada no conceito de sequenciamento através da síntese (SBS). Após o isolamento de RNA mensageiro e a construção de bibliotecas de cDNA, milhões de fragmentos fita-simples são ligados a

adaptadores universais. Uma plataforma de micro emulsão é utilizada para ligar estes à superfície laminar sólida e opticamente transparente que contém fragmentos oligonucleotídeos complementares aos adaptadores das amostras de DNA. A hibridização dos fragmentos de DNA das amostras com os fixados na superfície sólida ocorre através da variação de temperatura da emulsão, e possibilita a extensão da cadeia original de DNA através de uma polimerase termoestável via um sistema de PCR chamado Bridge-PCR. Isso resulta na formação de milhões de clusters de DNA, onde cada cluster contém mais de 1000 cópias. Os membros de cada cluster são sequênciados através da utilização de uma polimerase e quatro nucleotídeos marcados com diferentes fluoróforos. A inativação química da extremidade 3' garante que apenas uma base nucleotídica seja acrescentada à cadeia de DNA inicial por ciclo. A incorporação de bases nucleotídicas é acompanhada por um sistema de captação de imagem que possibilita identificar qual fluoróforo foi incorporado em cada cluster. Uma etapa de remoção do fluoróforo e desbloqueamento da extremidade 3' possibilita uma nova extensão da cadeia no próximo ciclo (Mardis, 2008). O pequeno tamanho médio das sequências geradas por Illumina é compensado pela alta redundância no sequenciamento que produz ampla cobertura. A sobreposição de sequências múltiplas é então utilizada para a confirmação da acuidade da sequência, que é extremamente necessária para detecção de mutantes ou polimorfismos de sequência. Recentemente, um estudo usando o Illumina RNAseq, conduzido em raízes de Aegilops variabilis em resposta à infecção de Heterodera avenae Wollenweber, 1924 possibilitou a descoberta de genes, e o entendimento dos mecanismos moleculares relacionados ao nematoide das galhas (Xu et al., 2012).

REFERÊNCIAS BIBLIOGRÁFICAS

ABAD P, FAVERY B, ROSSO M, CASTAGNONE-SERENO P. 2003 Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology 4: 217-224.

ABAD P, CASTAGNONE-SERENO P, ROSSO MN, ENGLER AJ, FAVERY B. 2009. Invasion, Feeding and Development. In: Root-knot Nematodes. Moens M, Perry RN Starr JL (Eds). CABI, Belgium and Department of Crop Protection, Ghent, Belgium. p. 163-181.

AGRIOS GN. 2005. Plant Phytopathology. Fifth Edition.Elsevier Academic Press.USA.922p.

ALBUQUERQUE EVS. 2009. Estudo da interação entre *Coffea arabica* e nematoide da galha *Meloidogyne incognita*: Identificação da resistência e caracterização por histopatologia e genômica funcional. Tese de Doutorado. Universidade Federal do Rio Grande do Sul e L'École Doctorale SIBAGHE da UM2 - L'Université de Montpellier II, École Doctorale SIBAGHE da UM2, França.

ALMEIDA A, SANTOS N. 2002. Resistance and host-response of selected plants to *Meloidogyne megadora*. Journal of Nematology 34:140-142.

ALMEIDA ENGLER J, DE VLEESSCHAUWER V, BURSSENS S, CELENZA JL, INZÉ D, VAN MONTAGU M *ET AL*. 1999. Molecular markers and cell cycle inhibitors show the importance of the cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793-807.

ALONSO SK, ALFENAS AC. 1998. Isoenzimas na Taxonomia e na Genética de fitonematoides. In: Eletroforese de isoenzimas e proteínas afins, fundamentos e aplicações em plantas e microrganismos, Alfenas AC (Ed).Viçosa, UFV, 574p.

AMMIRAJU S, VEREMIS C, HUANG X, ROBERTS A, KALOSHIAN I. 2003. The heatstable root-knot nematode resistance gene *Mi-9* from *Lycopersicon peruvianum* is on the short arm of the chromosome 6. Theoretical and Applied Genetics 106:478-484.

ARIAS Y, GONZÁLEZ I, RODRÍGUEZ M, ROSALES C, SUÁREZ, Z Y PETEIRA, B. 2009. Aspectos generales de la interacción tomate (*Solanum lycopersicon L.*) - *Meloidogyne incognita*. Revista de Protección Vegetal. 24(1):1-13. [online]

AMORIM EP, AMORIM VBO, SILVA SO, PILLAY M. 2011. Quality improvement of cultivated *Musa*. In: Pillay M, Tenkouano A. (Org.). Banana breeding: progress and challenges. New York: CRC Press, p. 252-280.

ATKINSON HJ, DALE J, HARDING A, KIGGUNU K, KUNERT K, MUCHWEZI JM, SAGI L, VILJOEN A. 2003. Genetic transformations to address the major constraints to banana and plant production in Africa. INIBAP. Montpellier (FRA).130p.

AZOFEIFA AD. 2006. Uso de Marcadores moleculares en frutales tropicales. Agronomía Mesoamericana 17(2): 221-242.

BAUM TJ, HUSSEY RS, DAVIS EL. 2007. Root-knot and cyst nematode parasitismo genes: the molecular basis of plant parasitism. In: Setlow, JK. (Ed). Genetic engineering. Boston: Springer US, 28,17-43.

BAURENS FC, BOCS STÉPHANIE, ROAUARD M, MATSUMOTO T, MILLER RNG, RODIER-GOUD M, MBÉGUIÉ-A-MBÉGUIÉ D, YAHIAOUI N. 2010. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (*Musa balbisiana*). BMC Plant Biology 10: 149.

BELLAFIORE S, SHEN ZX, ROSSO MN, ABAD P, SHIH P, BRIGGS SP. 2008. Direct identification of the *Meloidogyne incognita* secretome reveals proteins with host cell reprogramming potential. PLoS Pathog. 4, e1000192.

BINKS RH, JR. GREENHAM JG, LUIS GOWEN SR. 1997. A phytoalexin from roots of *Musa acuminata* var. 'Pisang sipulu'. Phytochemistry 45:47-49.

BIRD DM, OPPERMAN CH, DAVIES KG. 2003. Interactions between bacteria and plantparasitic nematodes: now and then. International Jornal for Parasitology 33(11): 1269-1276.

BOAS LCV, TENENTE RCV, GONZAGA V, DA SILVA NETO SP, ROCHA HS. 2002. Reação de clones de bananeira (*Musa* spp.) ao nematoide *Meloidogyne incognita* (Kofoid e White, 1919) Chitwood, 1949, raça 2. Revista Brasileira de Fruticultura 24(3): 690-693.

BOLLER T, HE SY. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742-4.

BOLWELL GP, BINDSCHEDLER LV, BLEE KA, BUTT VS, DAVIES, DR, GARDNER SL, GERRISH C, MINIBAYEVA F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. Journal of Experimental Botany 53: 1367-1376.

CAI D, KLEINE M, KIFLE S, HARLOFF HJ, SANDAL NN, MARCKER KA, KLEIN-LANKHOR RM, SALENTIJN EM, LANGE W, STIEKEMA WJ, WYSS U, GRUNDLER FM, JUNG C. 1997. Positional cloning of a gene for nematode resistance in sugar beet. Science 275(5301): 832-834. CAILLAUD MC, DUBREUIL G, QUENTIN M, PERFUS-BARBEOCH L, LECOMTE P, ENGLER, J DE A, ABAD P, ROSSO MN, FAVERY B. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology 165:104-113.

CARES JE. 2003. Pragas e nematoides da bananeira: manejo integrado. In: Simpósio Brasileiro sobre Bananicultura - I WORKSHOP DO GENOMA *Musa*, V, Paracatu MG. Anais, p. 112-113.

CARNEIRO RMDG, ANTONIO H, BRITO AJ, ALTEIA AAK. 1990. Identificação de espécies e raças fisiológicas de *Meloidogyne* na região noroeste do estado do Paraná: resultados preliminares. Congresso Brasileiro de Nematologia 14:4. Resumo.

CARNEIRO RMDG, ALMEIDA MRA. 2001. Técnica de Eltroforese usado no estudo de enzimas de nemaotides das galhas para identificação de espécies. Nematologia Brasileira 25(1): 35-44.

CARNEIRO RMDG, RANDIG O, ALMEIDA MRA, GONÇALVEZ W. 2005a. Identificação and caracterização de espécies de *Meloidogyne* em cafeeiro nos estados de São Paulo e Minas Gerais a traves de tipos de esterase e SCARS multiplex. Nematologia Brasilera 29(2): 233-241.

CARNEIRO RMD, NEVES DI, FALCÃO R, PAES NS, CIA E, SÁ MFG. 2005b. Resistência de Genótipos de algodoieiro a *Meloidogyne* raça 3: reprodução e histopatologia. Nematologia Brasileira 29(1): 1-10.

CARNEIRO RMDG, COFCEWICZ ET. 2008. The taxonomy of Coffee-Parasitic root-knot nematodes, *Meloidogyne* spp. In: Souza RM (ed.) Plant-Parasitic Nematodes of coffee. Dordrecht. Springer. p. 87-122.

CHAMPION J. 1967. Les bananiers et leur culture. Tome I: Botanique et Génétique. Institut Français de Recherche Fruitières Outre-Mer (IFAC). Éditions SETCO, Paris.

CHAU NN, THANH VT, DE WAELE D, GERAERT E. 1997. Plant-parasitic nematodes associated with banana in Vietnam. International Journal of Nematology 7 (1): 122-126.

CHEUNG F, HAAS BJ, GOLDBERGH SMD, MAY GD, XIAO Y, TOWN CD. 2006. Sequencing *Medicago truncatula* expressed sequenced tags using 454 Life Sciences Technology. BMC Genomics 7:272.

COFCEWICZ ET, CARNEIRO RMDG, CORDEIRO CMT, QUÉNÉHERVÉ P, FARIA JLC. 2004a. Reação de cultivares de bananeira a diferentes espécies de nematoides das galhas. Nematologia Brasileira 28: 11-22.

COFCEWICZ ET; CARNEIRO RMDG, CASTAGNOCE SERENO, P e QUÉNÉRERVÉ P. 2004b. Enzyme phenotype and genetic diversity of root-knot nematodes parasitizing *Musa* in Brazil. Nematology 6: 85-95.

COFCEWICZ ET, CARNEIRO RMDG, RANDIG O *ET AL*. 2005. Diversity of *Meloidogyne* spp. on *Musa* in Martinique, Guadeloupe and French Guiana. Journal of Nematology 37:313–322.

COFCEWICZ ET, CARNEIRO RMDG, QUÉNÉRERVÉ P, AUGUSTIN E, FARIA JLC. 2001. Ocorrência de *Meloidogyne* spp. em áreas produtoras de banana no Brasil. In: Congresso Brasileiro de Nematologia, 23, 2001. Anais. Piracicaba: FAEF. p. 112.

COLLINGBORNE, F.M.B.; GOWEN, S.R. e MUELLER-HARVEY, I. Investigations into the biochemical basic for nematode resistance in roots of three *Musa* cultivars in response to *Radopholus similis* infection. Journal of Agricultural and Food Chemistry 48: 5297-5301. 2000.

CORDEIRO MCR, SÁ MFG. 1999. Biotecnologia e resistência a patógenos. Biotecnologia Ciência e Desenvolvimento 10: 34-39.

CORDEIR O ZJM, MATOS AP de; MEISSNER FILHO PE. 2004. Doenças e métodos de controle. In: Ana Lúcia Borges; Luciano da Silva Souza. (Org.). O Cultivo da Bananeira. 1 ed. Cruz das Almas: Nova Civilização 1:146-182.

COSTA DC, SILVA SO, ALVES FR, SANTOS A C. 1997. Avaliação de danos e perdas à bananeira cv. Nanica causadas por *Meloidogyne incognita* na região de Petrolina - PE. Nematologia Brasileira 21: 21.

COSTA DC, SILVA SO, ALVES FR. 1998. Reação de genótipos de bananeira (*Musa* sp.) a *Radopholus similis* e *Meloidogyne incognita*. Nematologia Brasileira 22:49-56.

COSTA DC. 2000. Nematoses em banana e abacaxi no Brasil: danos e manejo. XXII Congresso Brasileiro de Nematologia, 22. Uberlândia Anais. p.50-58.

COSTA DC. 2004. Variabilidade patogênica e genética de *Radopholus similis* em bananeira no Brasil. Tese de Doutorado em Fitopatologia. Universidade de Brasília, Brasil.

CROZZOLI R, MARTÍNEZ G, RIVAS D. 1995. Manejo y fluctuaciones poblacionales de *Helicotylenchus multicinctus y Meloidogyne incognita* en banano en Venezuela. Nematropica 25(1): 61-66.

DANGL JL, JONES JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.

DANIELLS J, JENNY C, KARAMURA D, TOMEKPE K. 2001. *Musa*logue: A catalogue of *Musa* germplasm. Diversit in the genus *Musa* (E. Arnaud and S. Sharrock, compil.). International Network for the Improvement of Banana and Plantain, Montpellier, France.

DANTAS JLL, SHEPHERD K, SILVA SO, FILHO, WSS. 1997. Classificação botânica, origem, evolução e distribuição geográfica. In: Alves EJ. (org.). A cultura da banana, aspectos técnicos sócioeconômicos e agroindustriais. EMBRAPA-CNPMF, Brasília.

DANTAS JLL, SUAREZ FILHO WS. 1997. Classificação botânica, origem e evolução da banana. On line: http://www.ceinfo.cnpat.embrapa.br/arquivos/artigo_3045.pdf.

DAS S, DEMASON DA, EHLERS JD, CLOSE TJ, ROBERTS PA. 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany 59 (6):1305–1313.

DAVIDE RG, MARASIGAN LQ. 1992. Yield loss assessment and evaluations of resistance

of banana cultivars to the nematodes *Radopholus similis and Meloidogyne incognita*. In: DAVIDE RG. 1992. Studies on nematodes affecting bananas in the Philippines. Los Baños, Laguna: Philippine Agriculture and Resources Research Foundation 14(37):79-93.

DAVIS EL, HUSSEY RS, BAUM TJ, BAKKER J, SCHOTS A, ROSSO M-N, ABAD P. 2000. Nematode parasitism genes. Annual Review of Phytopathology 38: 365-396.

DAVIS EL, HUSSEY RS, BAUM TJ. 2004. Getting to the roots of parasitism by nematodes. Trends in Parasitology 20(3):134-141.

DAVIS EL, HUSSEY RS, MITCHUM MG, BAUM TJ. 2008. Parasitism proteins in nematode-plant interactions. Current Opinion in Plant Biology 11:360-366.

DELLEDONNE M, ZEIER J, MAROCCO A, LAMB C. 2001 Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America 98(23):13454-13459.

DELLER S, HAMMOND-KOSACK KE, RUDD JJ. 2011. The complex interactions between host immunity and non-biotrophic fungal pathogens of wheat leaves. J Plant Physiol. 168(1):63–71.

DE LANGHE E, R. SWENNEN, D. VUYLSTEKE. 1996. Plantain in the Early Bantu world. In The Growth of Farming Communities in África from the Equator Southwards. Edited by J.E.G. Sutton. BIEA, Nairobi. p. 147-60. DE LEY P., BLAXTER ML. (2002). Systematic po sítion and phylogeny. In: D.L. Lee (ed.) *The Biology of Nematodes*. London, Taylor and Francis, p. 1-30.

DELGADO A. 2006. Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana 17(2): 221-242.

DE WAELE D, DAVIDE EG. 1998. The root-knot nematodes of banana *Meloidogyne incognita* (Kofoid y White, 1919) Chitwood, 1949 and *Meloidogyne javanica* (Treub, 1885) Chitwood, 1949. Inibap - *Musa* Pest Fact Sheet 3. 4 p.

DE WAELE D, R. STOFFELEN, J. KESTEMONT. 2006. Effect of associated plant species on banana nematodes. Info*Musa* 15 No. 1-2.

DE WAELE, D. 2010. Response of Philippine banana (*Musa* spp.) cultivars to *Radopholus* similis (Thorne) and Meloidogyne incognita Chitwood under greenhouse conditions. Philippine Journal of Crop Science 35: 36-51.

D'HONT A, DENOEUD F, AURY JM, BAURENS FC, CARREEL F, GARSMEUR O, *ET AL.*, 2012. The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants. Nature 488(7410): 213-7.

DINARDO-MIRANDA LL, TEIXEIRA LAJ. 1996. Eficiência hospedeira de oito cultivares de bananeira a fitonematoides. Bragantia 55(2):259-262.

DIZON TO, PINILI MR, CRUZ JR, FS; DAMASCO OP; VAN DEN BERGH I, DE WAELE D. 2010. Response of Philippine banana (*Musa* spp.) cultivars to *Radopholus similis* (Thorne) and *Meloidogyne incognita* Chitwood under greenhouse conditions. Philippine Journal of Crop Science 35: 36-51.

DJIAN-CAPORALINO C, PIJAROWSKI L, FAZARI A, SAMSON M, GAVEAU L, O'BYRNE C, LEFEBVRE V, CARANTA C, PALLOIX A, ABA P. 2001. High-resolution genetic mapping of the pepper (*Capsicum annuum* L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (*Meloidogyne* spp.). Theoretical and Applied Genetics103:592-600.

DOYLE EA, LAMBERT KN. 2003. *Meloidogyne javanica* chorismate mutase 1 alters plant cell development. Molecular Plant Microbe interctions 16: 123–131.

DUBREUIL G, DELEURY E, MAGLIANO M, JAOUANNET M, ABAD P, ROSSO M. 2011. Peroxiredoxins from the plant parasitic root-knot nematode, *Meloidogyne incognita*, are required for successful development within the host. International Journal of ParasitolOgy 41: 385–396.

EISENBACK JD, TRIANTAPHYLLOU H. 1991. Root-knot nematodes: *Meloidogyne* species and races. In: Nickle WR (ed.) Manual of Agricultural Nematology. Marcel Dekker, New York, p. 191–274.

EKANAYANE HMRK, DI VITO M. 1985. Effect of different temperatures on egg hatch of *Meloidogyne artiellia*. Nematologia Mediterranea 13:177-183.

ELLEGREN H. 2008. Sequencing goes 454 and takes large-scale genomics into the wild. Molecular Ecology 17:1629-1635.

EMBRAPA CERRADOS. 2007. Interação Molecular Planta-Nematoide. Documento 198. ISSN 1517-5111.

EMÉDIATO FL. 2009. Caracterização de genes análogos de resistência (RGAs) em cultivares de *Musa acuminata* contrastantes em resistência à estresses bióticos. Dissertação de Mestrado. Universidade Católica de Brasília. 95p.

EMÉDIATO FL. 2014. Desenvolvimento de marcadores microssatélites e análise de expressão de genes envolvidos em resposta ao estresse biótico em genótipos de *Musa acuminata*. Tese de Doutorado em Biologia Molecular, Universidade de Brasília. 129 p.

EPAGRI. (EMPRESA DE PESQUISA AGROPECUÁRIA E EXTENSÃO RURAL DE SANTA CATARINA). 2013. Síntese Anual da Agricultura de Santa Catarina. Florianópolis: Epagri/Cepa. Disponível em <u>www.epagri.sc.gov.br</u>.

ESBENSHADE PR, TRIANTAPHYLLOU AC. 1990. Isozyme phenotypes for identification of *Meloidogyne species*. Journal of Nematology 22:10-15.

ESCOBAR C, BROWN S, MITCHUM MG. 2011. Transcriptomic and Proteomic Analysis of the Plant Response to Nematode Infection. In: Jones J, Gheysen G, Fenoll, C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht; New York, Springer Verlag, p 157-173.

FANG FC. 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. The Journal of Clinical Investigation 99: 2818-2825.

FANELLI E, DI VITO M, JONES JT, DE GIORGI C. 2005. Analysis of chitin synthase function in a plant parasitic nematode, *Meloidogyne artiellia*, using RNAi. Gene 349:87-95.

FAOSTAT. Agriculture Data [Internet]. 2014. Available from: <u>http://faostat.fao.org</u>

FERRAZ LCCB. 2001. Conhecendo os nematoides: Nematologia Geral. Sofia e Moscow: Pensoft Publishers.

FIORENTIN F. 2010. Identificação de *Meloidogyne* spp. em reservas legais e avaliação do parasitismo de *Meloidogyne incognita* raça 03 e *M. javanica* em plantas nativas do oeste paranaense. Tese de Mestrado. Universidade Estadual do Oeste do Paraná, Brasil.

FLOR HH. 1971. Current status of the gene-for-gene concept. Annual Review of Phytopathology 9: 275-296.

FOGAIN R. 2001. Nematodes and weevil of bananas and plantains in Cameroon: occurrence, importance and host susceptibility. International Journal of Pest Management. 47: 201-205.

FREITAS VM, CORREA VR, MOTTA FC, SOUSA MG, GOMES ACMM, CARNEIRO ODM, SILVA DB, MATTOS JK, NICOLE M, CARNEIRO RMDG. 2014. Resistant accessions of wild *Psidium* spp. to *Meloidogyne enterolobii* and histological characterization of resistance. Plant Pathology 63 (4): 738-746.

FULLER VL, LILLEY CJ, URWIN PE. 2008. Nematode resistance. New Phytologist 180(1):27-44.

GAL TZ, AUSSENBERGH ER, BURDMAN S, KAPULNIK Y, KOLTAI H. 2006. Expression of a plant expansing involved in the establishment of root knot nematode parasitism in tomato. Planta 224(1):155-162.

GLEASON CA, LIU QL, WILLIAMSON VM, 2008. Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acqui sítion of virulence. Molecular Plant Microbe Interactions 21: 576.

GÖRHE V, ROBATZEK S. 2008. Breaking the Barriers: Microbial Effector Molecules Subvert Plant Immunity. Annual Review of Phytopathology 46:189-215.

GOMES MMAC. 2006. Resistência e caracterização histológica de *Pfaffia glomerata a Meloidogyne incognita*. Dissertação de Mestrado em Agronomia, Universidade de Brasília, Brasília, DF. 58 p.

GOMES ACMM, MICHEL N, MATTOS JK, PEREIRA SIV, PEREIRA P, SILVA DB., VIEIRA R., CAPDEVILLE DE G, MOITA AW, CARNEIRO RMDG. 2010. Concentration of beta-ecydisone (20E) in susceptible and resistant accessions of *Pfaffia glomerata* infected with *Meloidogyne incognita* and histological characterisation of resistance. Nematology 12 (5): 701-709. ISSN 1388-5545.

GOWEN SR. 1995. Bananas and plantains. Chapman and Hall. London, UK. p 434-467.
GOWEN SP, QUÉNÉHERVÉ P. 1990. Nematode parasites of bananas and abaca. In: Luc M, Sikora R, Bridge J (Eds) London: Plant parasitic nematodes in subtropical and tropical agriculture. CABI. Wallingford, UK. p. 431-460.

GOWEN SR, QUÉNÉHERVÉ P, FOGAIN R. 2005. Nematodes of banana and plantains. In: Luc M, Sikora R, Bridge J (Eds) London: Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, UK. 2 ed. p.611-644.

GRECO N, DI VITO M. 2009. Population dynamics and damage levels. In: Perry RN, Moens M, Starr JL. (Eds). Root-knot nematodes. Cambridge: CABI North American Office. p. 246–274.

GUEDIRA A, RAMMAH A, TRIQUI Z, CHLYAH H, CLYAH B e HAÏCOUR R. 2004. Évaluation de la résistance à deux nematodes: *Radopholus similis et Meloidogyne* spp. chez quatre genotypes de bananiers au Maroc. Comptes Rendus Biologies, 327: 745-751.

HADISOEGANDA WW. 1994. Status of nematode problems affecting banana in Indonesia. In: Valmayor RV, Davide RG, Stanton JM, Treverrow NL. e Roa VN. (Eds). Banana Nematodes and Weevil Borers in Asia and the Pacific. Conference - workshop on nematodesand weevil borers affecting bananas in Asia and the Pacific. Serdang, Selangor, Malaysia, 18-22 April, INIBAP/ASPNET, Los Baños, Philippines. Proceedings, p. 63-73.

HAEGEMAN A, MANTELIN S, JONES JT, GHEYSEN Y. 2012. Functional roles of effectors of plant-parasitic nematodes. Gene 492:19-31.

HÄKKINEN M. 2013. Reappraisal of sectional taxonomy in *Musa* (Musaceae). Taxon 62(4):809–13.

HAMMOND-KOSACK KE, JONES JDG. 2003. Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology 48: 575-607.

HAMMOND-KOSACK KE, PARKER JE. 2003. Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology 14(2): 177–193.

HARTMAN JB, VUYLSTEKE D, SPEIJER PR, SSANGO F, COYNE DL, DE WAELE D. 2010. Measurement of the field response of *Musa* genotypes to *Radopholus similis* and *Helicotylenchus multicinctus* and the implications for nematode resistance breeding. Euphytica 172: 139-148.

HASSAN NM. 2003. Nematodes in banana in Malaysia. In: CRUZ JR, DFS. *et al.* Toward management of *Musa* nematodes in Asia and the Pacific. Los Banos, INIBAP, Philippines, p. 47-51.

HO JY, WEIDE R, MA HM, WORDRAGEN MF, LAMBERT KN, KOORNNEEF M, ZABEL P, WILLIAMSON VM. 1992. The root-knot nematode resistance gene (*Mi*) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant Journal 2(6):971-982.

HUANG CS. 1985. Formation, anatomy and physiology of giant cells induced by root knot nematodes. In: Sasser JN, Carter CC. (Eds). An advanced treatise on *Meloidogyne*: Biology and Control. Raleigh, North Carolina State University Graphics. p.155-164.

HUANG GZ, GAO BL, MAIER T, ALLEN R, DAVIS EL, BAUM TJ, HUSSEY RS. 2003. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode *Meloidogyne incognita*. Molecular Plant-Microbe Interactions 16 (5):376-381.

HUANG G, ALLEN R, DAVIS EL, BAUM TJ, HUSSEY RS. 2006. Engineering broad rootknot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene, Proc Natl Acad Sci 103(39):14302-14306.

HUSSEY RS, MIMS CW. 1990. Ultrastructure of esophageal glands and their secretory granules in the root-knot nematode *Meloidogyne incognita*. Protoplasma156 (1-2):9-18.

HUSSEY RS, DAVIS EL, BAUM TJ. 2002. Secrets in secretions: genes that control nematode parasitism of plants Brazilian Journal of Plant Physiology 14(3):183-194.

HWANG CF, BHAKTA AV, TRUESDELL GM, PUDLO WM, WILLIAMSON VM. 2000. Evidence for a role of the N terminus and leucine-rich repeat region of the *Mi* gene product in regulation of localized cell death. Plant Cell 12:1319-1329.

HWANG CF, WILLIAMSON. 2003. Leucine-rich repeat-médiated intramolecular interactions in nematode recognition and cell death signalling by the tomato resistance protein Mi. Plant Journal 34:585-593.

HIPPOLYTE I, SEGUIN M, BAKRY F, GARDES L, BAURENS FC, MILLER RNG, KHAN, I, CHRISTOPHE J, CARREEL F, HUTTNER E, PERRIER X, KILIAN A, RISTERUCCI AM, GLASZMANN JC. 2008. *Musa* Genetic Mapping. XVI International Plant and Animal genome conference (PAG), San Diego, January 2008.

IBGE. 2013. Produção Agrícola Municipal. Rio de Janeiro. Disponível: site. IBGE. http://www.ibge.gov.br.

INIBAP. 2001. Strategy for the Global *Musa* Genomics Consortium. Report of a meeting held in Arlington, USA. The Global *Musa* Genomics Consortium.

JANARTHANI D, SOORIANATHASUNDARAM K, POOMIMA K, KUMAR N. 2005. Screening of certain banana accessions against *Radopholus similis* under field conditions. Nematologia Mediterranea 33: 139-143.

JAFFE DB, BUTLER J, GNERRE S, MAUCELI E, LINDBLAD-TOH K, MESIROV JP, ZODY MC, LANDER ES. 2003. Whole-genome sequence assembly for mammalian genomes: arachne 2. Genome Research 13:91–96.

JESUS AM. 2006. Patogenicidade de *Meloidogyne incognita e Meloidogyne javanica* a bananeira cv. Prata Anã em diferentes substratos. Tese de Doutorado em Agronomia-Universidade Estadual Paulista, Botucatu, SP.

JESUS ON, CÂMARA TR, FERREIRA CF, SILVA SO, PESTANA KN, SOARES TL. 2006. Diferenciação molecular de cultivares elites de bananeira. Pesquisa Agropecuária Brasileira 41: 1739-1748.

JAOUANNET M, ROSSO MN. 2013. Effectors of root sedentary nematodes target diverse plant cell compartments to manipulate plant functions and promote infection. Plant Signaling and Behavior 8(9):e25507p.

JOHNSON AW. 1985. The role of nematicides in nematode management. In: Sasser JN e Carter CC. (Eds.). An advanced treatise on Meloidogyne. Vol I – Biology and Control. Raleigh North Carolina State University Press, USA. p. 249-267.

JONATHAN EI, BARKER KR, ABD-EL-ALEEM FF. 1999. Host status of banana for four major species and host races of *Meloidogyne*. Nematologia Mediterranea 27: 123-125.

JONATHAN EI, GAJENDRAN G, MANUEL WW. 2000. Management of *Meloidogyne incognita and Helicotylenchus multicinctus* in banana with organic amendments. Nematologia Mediterranea 28:103-105.

JONATHAN EI, GAJEDRAN G. 2000. Assessment of avoidable yield loss in banana due to root-knot nematode, *Meloidogyne incognita*. Indian Journal of Nematology 30: 162-164.

JONES DR. 2000. Diseases of Banana, Abacá and Enset. CABI Publishing. Wallingford, Oxon, UK. 544 p.

JONES JDG, DANGL JL. 2006. The plant immune system. Nature 444(7117):323–329.

JONES JT, HAEGEMAN A, DANCHIN EGJ, GAUR HS, HELDER J, JONES MGK, KIKUCHI T, MANZANILLA-LÓPEZ R, PALOMARES-RIUS JE, WESEMAEL WML, PERRY RN. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14(9): 946–961.

KAHL G. 2004. The banana genome in focus: a technical perspective. In: Mohan Jain S, Swennen R. (Eds.), Banana Improvement: Cellular, molecular biology, and induced mutations. Science Publishers, Inc. Enfield USA, Plymouth, UK.

KANG L, LI J, ZHAO T, XIAO F, TANG X, THILMONY R, HE S, ZHOU J. 2003. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proceedings of the National Academy of Science 100: 3519-3524.

KARSEN G, MOENS M. 2006. Root knot-Nematodes. In: Perry RN, Moens M (Eds) Plant Nematology, Cambridge, USA, CABI North American .60-88.

KASHAIJA IN. 1996. Factors influencing nematode population densities and root damage on banana cultivars in Uganda. PhD Thesis, University of Reading. 242p.

LAMB C, DIXON RA. 1997. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biolology 48: 251-275.

LAM E, KATO N, LAWTON M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853.

LEE H, CHAH OK, SHEEN J, 2011. Stem-cell-triggered immunity through CLV3p-FLS2 Signalling. Nature 473: 376–559.

LEITE B. 1995. Hospedeiro: mecanismos de resistência. In: Berghamin Filho A, Kimat, H, Amorim L. (Eds). Manual de Fitopatologia. 3ª Ed. São Paulo, Agronômica Ceres. 1:417-453.

LEWIS JD, WU R, GUTTMAN DS, DESVEAUX D. 2010. Allele-specific virulence attenuation of the *Pseudomonas syringae* HopZ1a type III effector via the *Arabidopsis* ZAR1 resistance protein. PLoS Genet 6: e1000894.

LI CY, DENG GM, YANG J, VILJOEN A, JIN Y, KUANG RB, ZUO CW, LV ZC, YANG QS, SHENG O, W YR, HU C, DONG T,YI GJ. 2012. Transcriptome profiling of resistant and susceptible GN endish banana roots following inoculation with *Fusarium oxysporum* f. sp. *cubense* tropical race 4. Genomics 13:374.

LIM KJ, TAN SH, OTHMAN YR, SUHAMI N, RAHA AR, GURMIT S, HO YW. 2004. Microarray analysis of gene expression using plants infected with *Fusarium oxysporum f.sp.cubense*. p.31. In: 1st International Congress on *Musa*. Harnessing Research To Improve Livelihoods, Penang, Malaysia, p. 6-9 July.

LICHTEMBERGH LA, LICHTEMBERGH PSF. 2011. Avanços na bananicultura brasileira. Revista Brasileira de Fruticultura [online].33 (1):29-36.

LORDELLO RRA, LORDELLO AIL, CIA E, FUZZATTO MG. 1984. Avaliação da resistência de algodoeiro a nematoides de galhas. Congresso Paulista de Fitopatologia, Botucatu. Summa Phytopathologica 10 (12):19. Resumo.

MCCARTER JP, BIRD DM, CLIFTON SW, WATERSTON RH. 2000. Nematode Gene Sequences. Journal of Nematology 32 (4) 331-333.

MCDOWELL JM, WOFFENDEN BJ. 2003. Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnology 21(4).

MANICA I. 1997. Fruticultura tropical 4-Banana. Porto Alegre: Cinco Continentes, p. 485.

MARDIS ER. 2008. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics 9:387–402.

MARIN DH, SUTTON TB, BARKER KR. 1998. Dissemination of bananas in Latin America and the Caribbean and its relationship to the occurrence of *Radopholus similis*. Plant Disease 82: 964-974.

MARÍN DH, ROMERO RA, GUZMÁN M, SUTTON TB. 2003. Black Sigatoka: an increasing tRHeat to banana cultivation. Plant Disease 87:208–222.

MILLER RNG, BERTIOL DJ, BAURENS FC, SANTOS CM, ALVES PC, MARTINS NF, TOGAWA RC, SOUZA MT JR, PAPPAS GJ JR. 2008. Analysis of non-TIR NBS-LRR resistance gene analog

s in *Musa acuminata* Colla: Isolation, RFLP marker development, and physical mapping. BMC Plant Biology 8:15.

MOENS T, ARAYA M, SWENNEN R, DE WAELE D. 2005. Screening of *Musa* cultivars for resistance to *Helicotylenchus multicinctus, Meloidogyne incognita, Pratylenchus coffeae* and *Radopholus similis*. Australasian Plant Pathology 34 (1): 299-309.

MOENS M, PERRY RN, JL STARR. 2009. *Meloidogyne* species – a diverse group of novel and Important Plant Parasites. In Perry RN, Moens M, Starr JL (Eds). 2009. Root-knot Nematodes. CABI Belgium and Department of Crop Protection, Ghent, Belgium. ISBN 978-1-84593-492-7. 488p.

MONTEIRO JMS. 2011. Resistência a *Radopholus similis* e detecção de nematoides fitoparasitas em bananeiras triploides e tetraploides no Brasil. Dissertação (Mestrado em Fitopatologia) Universidade de Brasília, Brasília/DF.

MOREIRA RS. 1987. Banana: teoria e prática de cultivo. Campinas: Fundação Cargill. 335p.

MOREIRA RS, CORDEIRO ZJM. 2006. A história da banana no Brasil. In: Reunião Internacional da ACORBAT, 17. Anais. Joinville ACORBAT/ACAFRUTA 1: 48-82.

MOTA FC, ALVES GCS, GIBANDD MA, GOMES CMM, SOUSA FR, MATTOS VS, BARBOSA VHS, BARROSO PAV, NICOLE M, PEIXOTO JR, ROCHAC MR, CARNEIRO RMDG. 2012. New sources of resistance to *Meloidogyne incognita* race 3 in wild cotton accessions and histological characterization of the defence mechanisms. Plant Pathology. Doi: 10.1111/ppa.12022.

MULLIS K, FALOONA SS, SAIKI R, HORN G, ERLICH H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51: 263-273.

MUTHAMILARASAN M, PRASAD M. 2013. Plant innate immunity: an updated insight into defense mechanism. J Biosci. 38(2):433–49.

NANDETY RS, CAPLAN JL, GNANAUGH K, PERROUD B, WROBLEWSKI T, MICHELMORE RW, MEYERS BC. 2013. The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiology 162:1459–1472.

NGUYÊN PV, BELLAFIORE S, PETITOT AS, HAIDAR R, BAK A, ABED A, *ET AL*. 2014. *Meloidogyne incognita*-rice (*Oryza sativa*) interaction: a new model system to study plant–root-knot nematode interactions in monocotyledons. Rice Springer open Journal. On line: http://www.thericejournal.com/content/7/1/23.

NITHYA-DEVI A, PONNUSWAMI V, SUNDARARAJU P, VAN DEN BERGH I, KAVINO M. 2009. Histopathological changes in banana roots caused by *Pratylenchus coffeae, Meloidogyne incognita* and *Radopholus similis*, and identification of RAPD markers associated with *P. coffeae* resistance. Acta Horticulturae (ishs) 828:283-290. On line: <u>http://www.actahort.org/books/828/828_28.htm</u>

NOVAES E, DROST DR, FARMERIE WG, PAPPAS JR GJ, GRATTAPAGLIA D, DEROFF RR, KIRST, M. 2008. High-trhoughput gene and SNP discovery in *Eucalyptus grandis*, an uncharacterized genome. BMC Genomics 9:312.

NÜRNBERGHER T, KEMMERLING B. 2009. PAMP-triggered basal immunity in plants. Advances in Botanical Research 51:1-38.

OLIVEIRA DS. 2006. Patogenicidade de populações de *M. incognita*, provenientes de Minas Gerais e São Paulo, ao cafeeiro. Tese de Doutorado em Agronomia/Fitopatologia-Universidade Federal de Viçosa. 75p.

PASSOS MAN, DE OLIVEIRA CRUZ V, EMÉDIATO FL, DE CAMARGO TEIXEIRA C, AZEVEDO VCR, BRASILEIRO ACM, *ET AL*. 2013. Analysis of the leaf transcriptome of

Musa acuminata during interaction with *Mycosphaerella musicola*: gene assembly, annotation and marker development. BMC Genomics 14:78.

PATEL BA, VYAS RV, PATEL DJ, PATEL RS. 1996. Susceptibility of banana cultivars to root-knot nematodes (*Meloidogyne* spp.). InfoMusa 5: 26-27.

PAXTON JD. 1981. Phytoalexins: a working redefinition. Phytopathologische ZeitscRHift 101(12):106-109.

PEGARD A, BRIZZARD G, FAZARI A, SOUCAZE O, ABAD P, DJAN-CAPAROLINO C. 2005. Histological Characterization of resistance to different root-knot nematode species related to phenolics accumulation in *Capsicum annuum*. Phytopathology 95(2): 158-165.

PEREIRA AM. 2006. Nematoides associados à cultura da bananeira na região norte do Paraná. (Tese de Mestrado). Universidade Federal do Paraná, 121 p.

PERRY RN, MOENS M. 2006. Plant Nematology. CABI International, North American Office. Agricultural Research Centre, Crop Protection Department, Ghent, Belgium. 447 p.

PERRY RN, MOENS M, STAR JL. 2009. Root-knot Nematodes. CABI, Department of Crop Protection, Ghent, Belgium. 488p.

PINOCHET J, JAIZME MDC, FERNANDEZ C, JAUMOT M, DE WAELE D. 1998. Screening bananas for root-knot (*Meloidogyne* spp.) and lesion nematode (*Pratylenchus goodeyi*) resistance for the Canary Islands. Fundamental and Applied Nematology 21:17-23.

PLOETZ RC, PEGG KG. 2000. Fusarium wilt. In: Jones DR. (Ed.) Diseases of banana, abaca and enset. CABI Publishing: Wallingford, UK. p.143-159.

PLOETZ RC, THOMAS JE, SLABAUGH WR. 2003. Diseases of banana and plantain. In: Ploetz RC. (Ed.) Diseases of tropical fruit crops. (CABI Publishing: Wallingford, UK). p.73-134.

PROITE K, CARNEIRO R, FALCÃO R, GOMES A, LEAL-BERTIOLI S, GUIMARÃES P, BERTIOLI D. 2008. Post-infection development and histopathology of *Meloidogyne arenaria* race 1 on *Arachis* spp. Plant Pathology 57:974–980.

QI Y, TSUDA K, GLAZEBROOK J, KATAGIRI F. 2011. Physical association of patterntriggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in *Arabidopsis*. Molecular Plant Pathology 12: 702–708. QUÉNÉHERVÉ P. 2008. Integrated management of banana nematodes. In: Ciancio A, Mukerji KG (Eds) Integrated management of fruit crops nematodes. Springer, The Netherlands, p. 1–54.

QUÉNÉHERVÉ P, VALETTE C, TOPART P, TEZENAS DU MONTCEL H, SALMON F. 2009. Nematode resistance in bananas: screening results on some wild and cultivated accessions of *Musa* spp. Euphytica 165: 123-136.

QUENTIN M, ABAD P, FAVERY B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in Plant Science 4(53): 1-7.

RAJENDRAN G, NAGANATHANM TG, SIVAGAMI V. 2008. Studies on banana nematodes. Indian Journal of Nematology 9: 54.

RAMOS DP, LEONEL S, MISCHAN MM, DAMATTO JÚNIOR ER. 2009. Avaliação de genótipos de bananeira em Botucatu-SP. Revista Brasileira de Fruticultura, Jaboticabal, 31(4):1092-1101. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttextepid=S01002945200900040002elng=ptenr m= isoetlng=pt.

RAMSKÖLD D, KAVAK E, SANDBERGH R. 2012. How to Analyze Gene Expression Using RNA-Sequencing Data. In: Wang J, Tan AC, TIAN T (Ed.). Next Generation Microarray Bioinformatics. Totowa, NJ: Humana Press. 802: 259–274.

RIBEIRO RCF, RODRIGUES TTMS, XAVIER AA, GOMES LIS. 2003. Ocorrência de fungos predadores de nematóides sob solos de bananais, no norte de Minas Gerais. Unimontes Científica 5: 1-8.

ROBERTSON G, SCHEIN J, CHIU R, CORBETT R, FIELD M, JACKMAN SD, *ET AL*. 2010. De novo assembly and analysis of RNA-seq data. Nature Methods 7(11): 909–912.

ROBERTS PA. 2002. Concepts and consequences of resistance. In: Starr JL, Cook R, Bridge J. (EDs.). Plant Resistance to Parasitic Nematodes. CABI. p.23-41.

RODRÍGUEZ DW. 1955. Bananas: An outline of the economic history of production and trade with special reference to Jamaica. Department of Agriculture, Kingston, Jamaica. Commodity Bull. No. 1.

RODRIGUES CM, MAFRA V, MACHADO MA. 2013. Transcritômica. In: BORÉM al., FRITSCHE-NETO R. Ômicas 360°: aplicações e estratégias para o melhoramento de plantas. Viçosa: UFV.

ROSSO MN, VIEIRA P, DE ALMEIDA-ENGLER J, CASTAGNONE-SERENO P. 2011. Proteins secreted by root-knot nematodes accumulate in the extracelular compartment during root infection. Plant Signaling and Behavior 6(8): 1232–1234.

ROTHBERGH JM, LEAMON JH. 2008. The development and impact of 454 sequencing. Nature Biotechnology 26(10):1117-1124.

ROSSO MN, JONES JT, ABAD P. 2009. RNAi and functional genomics in plant parasitic nematodes, Annual Review Phytopathology 47:207-232.

SANTINI L. 2014. Análise, via RNAseq, do transcritoma do feijoeiro e identificação de genes expressos em resposta à infecção pelo nematoide das galhas. Tese de Doutorado em Genética e Melhoramento de Plantas. Escola Superior de Agricultura 'Luiz de Queiroz (ESALQ), Piracicaba. 118 p.

SANTOS CM, MARTINS NF, HORBERGH HM, DE ALMEIDA ER, COELHO C, TOGAWA RC, DA SILVA FR, CAETANO AR, MILLER RNG, SOUZA JR MT. 2005. Analysis of expressed sequence tags from *Musa acuminata* ssp burmannicoides, var. Calcutta 4 (AA) leaves submitted to temperature stresses. Theoretical Applied Genetics 110:151-1522.

SANTOS JRP. 2007. Caracterização de genótipos de *Musa* com base na reação a *Radopholus similis* e de genótipos contrastantes para a resistência com base em marcadores moleculares RAPD. 72p. Dissertação (Mestrado) – Universidade de Brasília, Brasília.

SANTOS JRP. 2011. Caracterização genética e molecular de acessos de bananeira a *Radopholus similis* e *Meloidogyne incognita*. 244p. Tese de Doutorado em Fitopatologia, Universidade de Brasília, Brasília, DF.

SANTOS MFA, FURLANETTO C, ALMEIDA MRA, CARNEIRO MDG, MOTA FC, GOMES ACMM, *ET AL.*, 2012. European Journal of Plant Pathology 134 (4): 671-684. Características biométricas, biológicos, bioquímicos e moleculares de *Meloidogyne incognita* isolados e espécies afins *European Journal of Plant Pathology* 134 (4): 671-684.

SASSER JN, FRECKMAN DW. 1987. A world perspective on nematology, the role of society. In: Veech AJ, dickson DW. Vistas on Nematology. p. 7-14.

SASSER JN, CARTER CC. 1985. An Advanced Treatise on *Meloidogyne*. Vol. I: Biology and Control. North Carolina State University Graphics. 422 p.

SENA JVC. 2011. Aspectos da produção e mercado da banana no nordeste. Online: http://www.bnb.gov.br/content/aplicacao/etene/etene/docs/ire_ano5_n10.pdf

SHEPHERD K. 1992. History and methods of banana breeding. In: Report of the First External Program and Management Review of the International Network for the Improvement of Banana and Plantain, Washington, Cgiar Secretariat, The World Bank, p. 108-110.

SHEPHERD RL. 1983. New sources of resistance to root-knot nematodes among primitive cottons. Crop Science Plant Pathology 23: 999-1002.

SHEPHERD K, ALVES EJ. 1984. The banana breeding programme at the Centro Nacional de Pesquisa de Mandioca e Fruticultura Bahia. Fruits 39(3):154-157.

SHEPHERD K, DANTAS, JLL, ALVES EJ. 1986. Melhoramento genético da bananeira. Informe Agropecuário 12: 11-19.

SIKORA RA, SCHLOSSER E. 1973. Nematodes and fungi associated with root systems of bananas in a state of decline in Lebanon. Plant Disease Reporter 57 (3):615-618.

SILVA S DE O E, JUNIOR MTS, ALVES EJ, SILVEIRA, JRS, LIMA MB. 2001. Banana breeding program at Embrapa. Crop Breeding and Applied Biotechnology 1(4): 399-436.

SILVA S DE O, AMORIM EP, DOS SANTOS-SEREJO AJ, FERREIRA CF, RODRIGUEZ MAD. 2013. Melhoramento genético da bananeira: estratégias e tecnologias disponíveis. Rev. Brasileira de Fruticultura [online] 35 (39): 919-931.

SIJMONS PC, GRUNDLER FMW, VON MENDE N, BURROWS PR, WYSS U. 1991. *Arabidopsis thaliana* as a new model host for plant-parasitic nematodes. Plant Journal 1: 245-254.

SIMMONDS NW. 1995. Bananas. in: Evolution of crop plants. 2nd ed. J. Smart, and N. W. Simmonds (EDs). Longman Scientific and Technical, Essex, Eng. p 370- 375.

SINGH SK, HODDA M, ASH GJ. 2013. Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bulletin 43(2):334–374.

SMANT G, JONES J. 2011. Suppression of Plant Defences by Nematodes. Genomics and Molecular Genetics of Plant-Nematode Interactions. pp 273-286.

SMITH PG. 1944. Embryo culture of a tomato species hybrid. Proceedings of the American Society of Horticultural Science 44, 413–416.

SOUZA JR DA. 2011. Análise Funcional de Genes de *Meloidogyne incognita* envolvidos na Interação Planta-Nematoide. Tese de Doutorado em Biologia Celular, Instituto de Ciências Biológicas da Universidade de Brasília, Brasília-DF.

STARR JL, BRIDGE J, COOK R. 2002. Resistance to plant-parasitic nematodes: history, current use and future potential. In: Starr JL, Cook R & Bridge J (Eds). Plant resistance to parasitic nematodes. p. 1-22.

STOFFELEN R, VERLINDEN R, XUYEN NT, SWENNEN R, DE WAELE D. 2000. Host plant response of Eu*Musa* and Australi*Musa* bananas (*Musa* spp.) to migratory endoparasitic and root-knot nematodes. Nematology 2: 907-916.

STOFFELEN R, VTT TAM, RL SWENNEN, DE WAELE D. 1999a. Host plant response of banana (*Musa* spp.) cultivars from Southeast Asia to nematodes. International Journal of Nematology 9(1):130-136.

STOFFELEN R, VERLINDEN R, THI XUYEN N, SWENNENR, DE WAELE D. 1999b. Screening of Papua New Guinea bananas to root-lesion and rootknot nematodes. InfoMusa 8 (1): 12-15.

STOLF EC. 2006. Efeito de re-inoculações de fungos endofíticos sobre o controle do nematoide cavernícola da bananeira (*Radopholus similis*). Universidade Federal de Santa Catarina. Turrialba. p. 50.

STUKENBROCK EH, MCDONALD BA. 2009. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Molecular Plant-Microbe Interactions 22: 371–380.

SUDHA S, PRABHOO NR. 1983. *Meloidogyne* (Nematoda: Meloidogynidae) induced root galls of the banana plant *Musa paradisiaca* a study of histopathology. Proceedings of the Indian Academy of Sciences, Animal Sciences, 92. p. 467-473.

TAN KC, IPCHO SVS, TRENGOVE RD, OLIVER RP, SOLOMON PS. 2009. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Molecular Plant Pathology 10(5): 703–715.

TAUTZ M. 1989. Hypervariability of simple sequences as a geral source for polymorphic DNA Markers. Nucleic Acids Research 17: 64-63-6471.

TAYLOR, SASSER JN. 1983. Biología, identificación y control de los nematodos de nódulo de la raiz (especies de *Meloidogyne*). Proyecto Internacional de *Meloidogyne*. Universidad del Estado de Carolina del Norte, USA. 111p.

TEIXEIRA MA. 2007. Resistência de genótipos de bananeira a *Meloidogyne incognita, M. javanica e M. arenaria* e variabilidade genética com base em marcadores moleculares RAPD. Dissertação (Mestrado), Universidade de Brasília. 68p.

TENENTE RCV, CARRIJ AO, NETO S, COSTA GRT, SILVA RDC, NEIVA LF, PRATES M. 2002. Reação de clones de bananeira (*Musa* spp.) ao nematoide *Meloidogyne incognita* raça 1. In: Congresso Brasileiro de Fitopatologia, Recife. Em: http://icewall2.cenargen.embrapa.br:83/nemweb/nempaper/nempdf002.pdf.

SILVA S de O, AMORIM EP, DOS SANTOS-SEREJO AJ, FERREIRA CF, RODRIGUEZ MAD. 2013. Melhoramento genético da bananeira: estratégias e tecnologias disponíveis. Rev. Brasileira de Fruticultura [online] 35 (39): 919-931.

TENENTE RCV, FONSECA JR, MB, SOUSA AIM, SILVA SO, NETO SP, SILVA, AG, CARRIJO AO, ARAYA M. 2008. Reaction of Different Banana (*Musa* spp.) Cultivars to *Meloidogyne incognita* Raçes 1, 4. Nematologia Brasileira 32(4):285-293.

TOGAWA RC, PAPPAS JÚNIOR GJ, OB DA SILVA JR, MILLER RNG. 2013. Analysis of the leaf transcriptome of *Musa acuminata* during interaction with *Mycosphaerella musicola*: gene assembly, annotation and marker development. BMC Genomics 14:78.

TORRES TT, METTA M, OTTERNWÄLDER B, SCHLÖTTERER C. 2007. Gene expression profiling by massively parallel sequencing. Genome Research 18:172-177.

TRUDGILL DL. 1991. Resistance to and tolerance of plant parasitic nematodes in plants. Annual Review of Phytopathology 29: 167-192.

TRUDGILL DL. 1995. Origins of root-knot nematodes (*Meloidogyne* spp. Nematoda) in relation to their cultural control. Phytoparasitica. 23:191-194.

TRUDGILL DL, BLOK VC. 2001. Apomictic, polyphagous root-knot nematodes: excepti onally successful and damaging biotrophic root pathogens, Annual Review Phytopathology 39:53-77.

VAN DEN BERGH I, NGUYET DTM, TUYET NT, NHI HH, DE WAELE D. 2002a. Screening of Vietnamese *Musa* germplasm for resistance to root knot and root lesion nematodes in the greenhouse. Australasian Plant Pathology 31: 363–371.

VAN DEN BERGH I, NGUYET DTM, TUYET N, NHI HH, DE WAELE D. 2002b. Responses of Vietnamese *Musa* genotypes to *Meloidogyne* spp. under field conditions. Nematology 4: 917-923.

VAN DER EYCKEN W, DE ALMEIDA ENGLER J, INZE D, VAN MONTAGU M, GHEYSEN, GA. 1996. Molecular study of root-knot nematodeinduced feeding sites. Plant Journal 9(1): 45-54.

VAN DER PLANK JE. 1982. Host pathogen interaction in plant disease. New York: Academic Press, 207 p.

VAN DER VOSSEN EA, VAN DER VOORT JN, KANYUKA K, BENDAHMANE A, SANDBRINK H, BAULCOMBE DC, BAKKER J, STIEKEMA WJ, KLEIN-LANKHORST RM. 2000. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant Journal 23(5):567-576.

VANHOLME B, DE MEUTTER J, TYTGAT T, VAN MONTAGU M, COOMANS A, GHEYSEN G. 2004. Secretions of plant-parasitic nematodes: a molecular update. Gene 332:13-27.

VANTINI J, FERRO M, FERRO J, OLIVEIRA JC. 2008. Expressão gênica diferencial da β-1,3-Glucanase (PR-2) nas interações compatível e incompatível entre *Xanthomonas axonopodis* e *Citrus sinensis*. Científica 36: 139-147.

VERDEJO-LUCAS S, CORTADA L, SORRIBAS FJ, ORNAT C. 2009. Selection of virulent populations of *Meloidogyne javanica* by repeated cultivation of *Mi* resistance gene tomato rootstocks under field conditions. Plant Pathology 58: 990–998.

VIAENE N, DURAN LF, RIVERA JM, DUEÑAS J, ROWE P, DE WAELE D. 2003. Responses of banana and plantain cultivars, lines and hybrids to the burrowing nematode *Radopholus similis*. Nematology 5:85–98.

VILAS BOAS LC, TENENTE RCV, GONZAGA V, SILVA NETO SP, ROCHA H S. 2002. Reação de clones de bananeira (*Musa* spp.) ao nematoide *Meloidogyne incognita* (Kofoid e White, 1919) Chitwood, 1949, raça 2. Revista Brasileira de Fruticultura 24: 690- 693.

WAETZIG GH, SOBCZAK M, GRUNDLER FMW. 1999. Localization of hydrogen peroxide during the defence response of *Arabidopsis thaliana* against the plant parasitic nematode *Heterodera glycines*. Nematology 1:681–68.

WANG Z, GERSTEIN M, SNYDER M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1):57–63.

WESTERMANN AJ, GORSKI AS, VOGEL J. 2012. Dual RNA-seq of pathogen and host. Nature Reviews Microbiology 10(9): 618–630.

WEHUNT EJ, HUTCHISON DJ, DWARDS DI. 1978. Reaction of banana cultivars to the burrowing nematode (*R. similis*). Journal of Nematology 10(4):368-370.

WESTERICH JN, ROSA JMO, WILCKEN SRS. 2011. Estudo comparativo da biologia de *Meloidogyne enterolobii* (=*M. mayaguensis*) e *Meloidogyne javanica* em tomateiros com gene mi. Summa Phytopathologica 37(1):35-41.

WESTERMANN AJ, GORSKI AS, VOGEL J. 2012. Dual RNA-seq of pathogen and host. Nature Reviews Microbiology 10(9):618–630.

WHITEHEAD AG. 1997. Sedentary endoparasites of roots and tubers (*Meloidogyne* and *Nacobbus*). Plant nematode control 209-260.

WILLIAMSON VM, HUSSEY RS. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8:1735-1745.

WILLIAMSON VM, GLEASON CA. 2003. Plant–nematode interactions. Current Opinion in Plant Biology 6:1–7.

WILLIAMSON VM, KUMAR A. 2006. Nematode resistance in plants: The battle underground. Trends in Genetics 22:396-403.

WUYTS N, SWENNEN R, DE WAELE D. 2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plantparasitic nematodes: *Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita*. Nematology 8: 89–101.

XU DE- L, LONG H, LIANG J, ZHANG J, CHEN X, LI J, PAN Z, DENG G, YU MDE. 2012. Novo assembly and characterizations of the root transcriptome of Aegilops variabilis during an interactions with the cereal cyst nematode. BMC Genomics 13:133.

YABUUCHI E, KOSAKO Y, YANO I, HOTTA H, NISHIUCHI Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia genus nov.: proposal of *Ralstonia pickettii* (Ralston, Palleroni and Douderoff 1973) comb.nov., *Ralstonia solanacearum* (Smith 1896) comb. nov. and *Ralstonia eutropha* (Davis 1969) comb. nov. Microbiology and Immunology 39: 897-904.

YAN Y, SMANT G, STOKKERMANS J, QIN L, HELDER J, BAUM T, SCHOTS A, DAVIS E. 1998. Genomic organization of four b-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene 220:61-70.

YONGBING Y, CAPPELLINI P, SIMEONE AM. 1996. Phenolic metabolism in resistant and susceptible peach rootstocks to nematode after inoculation with *Meloidogyne incognita*. In: C. Fideghelli y F. Grassi (EDs.). Proceedings of the 3th International Symposium. Peach. Acta Horticulturae N°374. p. 141-150.

ZEM AC. 1982. Problemas nematológicos em bananeiras (*Musa* spp.) no Brasil (contribuição ao seu conhecimento e controle). 1982. 40f. Tese de Doutorado em Agronomia, Escola superior de agricultura, 'Luiz de Queiroz', Piracicaba.

ZEM AC, ALVES EJ. 1981. Observações sobre perdas provocadas por nematoides em bananeira (*Musa acuminata* Simm. e Sherp.) cv. Nanicão. Embrapa/CNPMF, Cruz das Almas BA. (Boletim de Pesquisa No. 6, 10 p).

ZEM AC; LORDELLO LGE. 1982. Behaviour of banana cultivars exposed to infestation by *M. incognita* and *M. javanica*. Anais da Escola Superior de Agricultura Luiz de Queiroz 38 (3): 875-883.

ZHANG Z, WU Y, GAO M, ZHANG J, KONG Q, LIU Y, BA H, ZHOU J, ZHANG Y. 2012. Disruption of PAMP-induced MAP kinase cascade by a *Pseudomonas syringae* effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11: 253–263.

ZINOVEVA SV, VASYUKOVA NI, OZERETSKOVSKAYA OL. 2004. Biochemical aspects of plant interactions with phytoparasitic nematodes: Annual Review of Applied Biochemistry and Microbiology 40: 111-119.

ZVEREVA AS, POOGGIN MM. 2012. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4(11): 2578–97.

CAPÍTULO II: Identificação e ciclo de vida de *Meloidogyne incognita* em raízes de bananeira com uso de técnicas histopatológicas

RESUMO

O parasitismo biotrófico sedentário dos nematoides das galhas do gênero Meloidogyne está associado a alterações em células da planta, dada a sua capacidade de induzir sítios específicos de alimentação (células gigantes), com a complexidade de eventos morfológicas refletidos nas raízes. Considerando que Meloidogyne incognita é um dos patógenos de maior importância na cultura da bananeira, o objetivo desse estudo foi determinar seu ciclo de vida, além de observar reações histopatológicas em raízes de bananeiras Musa acuminata subgrupo Cavendish (cv. Grande Naine). O experimento foi conduzido em condições controladas de casa de vegetação, na Universidade de Brasília, com temperatura média de 25°C. Plantas de bananeira com um mês após transplante foram inoculadas com 5000 juvenis de segundo estádio (J2) de *M. incognita*. As raízes foram avaliadas aos 2, 4, 7, 10, 12, 15, 20, 22, 24 e 28 dias após a inoculação (DAI). Aos 4 DAI, as raízes apresentaram dilatações na ponta, indicando a entrada dos juvenis, sendo que entre 6-10 DAI encontrou-se o maior número de J2 no interior das raízes. O ciclo de vida, desde J2 até a formação de fêmeas com matriz gelatinosa, ovos e machos adultos, foi completado em 24 dias. Nas observações histopatológicas observou-se a presença de células gigantes aos 10 DAI. A análise do ciclo de vida do nematoide das galhas em banana servirá de base para a investigação da expressão gênica do patossistema M. acuminata - M. incognita.

Palavras chave: histopatologia, parasitismo, nematoides das galhas, Musa acuminata

ABSTRACT

Identification and life cycle of *Meloidogyne incognita* in banana roots using histopathological techniques

The sedentary biotrophic parasitism, characteristic of the root-knot nematodes of the genus Meloidogyne is associated with changes in plant cells, given their capacity to induce specific feeding sites (giant cells), with the complexity of morphological events reflected in the roots. Given that *Meloidogyne incognita* is a major pathogen of banana, the aim of this study was to characterize in detail its life cycle, in addition to observing histopathological reactions in roots of Musa acuminata subgroup Cavendish (cv. Grande Naine). The experiment was conducted under controlled greenhouse conditions at the University of Brasilia, with an average temperature of 25 °C. One month after transplantation, banana plants were inoculated with 5000 second-stage juveniles (J2) of *M. incognita*. The roots were evaluated at 2, 4, 7, 10, 12, 15, 20, 22, 24 and 28 days after inoculation (DAI). At 4 DAI, roots showed tip dilatation, indicating the entry of juveniles, with greatest numbers of J2 in the roots observed between 6-10 DAI. The life cycle from J2 until the formation of females with gelatinous matrix, eggs and adult males was completed in 24 days. Through histopathological analysis, the presence of giant cells was observed 10 DAI. The time course analysis of the life cycle of this root knot nematode on banana will form the basis for investigation of gene expression in the M. acuminata - M. incognita pathosystem.

Key words: histopathology, parasitism, root-knot nematode, Musa acuminata

INTRODUÇÃO

O nematoide das galhas (Meloidogyne spp.) é considerado um dos fitoparasitas de maior importância a nível mundial, sendo Meloidogyne incognita (Kofoid e White, 1919) Chitwood, 1949, uma das espécies de maior importância econômica, por possuir hábito polífago e, por ser responsável por aproximadamente 95% dos prejuízos causados por nematoides à agricultura mundial. Esta espécie é comumente encontrada em regiões tropicais e temperadas (Karsen e Moens, 2006; Almeida, 2011). No mundo vários relatos confirmam a importância dos nematoides das galhas na cultura da bananeira. Na Índia, Malásia, Filipinas e outros países da Ásia, M. incognita é uma das espécies predominantes em bananas de mesa do subgrupo Cavendish. (De Waele e Davide, 1998; Hassam, 2003). As espécies M. incognita e *M. javanica* ocorrem com frequência nos estados brasileiros, onde se cultivam bananeiras, com infestações mais expressivas na Bahia, Ceará, Distrito Federal, Goiás, Maranhão, Minas Gerais, Paraíba, Rio de Janeiro e São Paulo, devendo-se tal dispersão à comercialização indiscriminada de mudas infestadas entre os bananicultores ou pela introdução do parasita nas áreas, através de outras plantas hospedeiras (Zem, 1982; Vilas Boas et al., 2002; Cofzewicz et al., 2004a). As estimativas de perdas causadas por Meloidogyne spp. em diferentes culturas no Brasil, são em média de 12,69 % e, de 8% em Musa spp., inclusive em alguns lugares, as perdas induzidas por estes nematoides podem chegar a 100% entre as bananeiras do subgrupo Cavendish (GN) (Zem e Alves, 1981; Costa et al., 1998; Costa, 2000; Tenente et al., 2008). Segundo Tenente et al. (2000), Jesus (2005) e Quénéhervé et al. (2008), os clones de GN permitem uma alta taxa de multiplicação de M. incognita. Em estudos da reação de cultivares de bananeira a M. incognita, Pinto et al. (2005) verificaram que as cultivares Caipira, GN e FHIA-18 foram altamente suscetíveis. Os danos causados por nematoides das galhas nos cultivos de banana são diretamente proporcionais ao aumento das populações (Cordeiro, 1999). As plantas parasitadas apresentam redução do crescimento e atraso no florescimento; as margens das folhas tornam-se ressecadas e fendilhadas e, os cachos reduzidos são pequenos, com frutos subdesenvolvidos (Patel et al., 1996).

Meloidogyne é um fitoparasita sedentário, biotrófico que desenvolveu estratégias para infectar com sucesso várias espécies de plantas e está envolvido em complexas interações com seus hospedeiros, induzindo numerosas alterações na estrutura das células que fornecem alimento para eles. Contudo, os sinais que induzem a diferenciação das células vegetais em células especializadas como alimentação, ainda não foram determinadas (Sijmons *et al.*, 1991;

Perry *et al.*, 2009; Arias *et al.*, 2009). A duração do ciclo de vida do nematoide das galhas é grandemente influenciada pela temperatura, segundo Taylor e Sasser (1983), as temperaturas ótimas para as espécies de clima frio variam de 15 a 25° C, e para espécies de clima mais quente (*M. incognita, M. javanica e M. arenaria*), variam de 25 a 30°C; existe pouca atividade a temperaturas superiores a cerca de 40° C, ou abaixo de 5°C. O ciclo de vida completa-se em torno de 25 dias (25-30°C) e apresenta fases de vida livre e parasítica. Os ovos são postos em uma matriz de massa gelatinosa secretada pela fêmea, podendo ser expostos ao solo ou permanecer dentro da raiz da hospedeira. A eclosão dos ovos depende de condições ambientais favoráveis, mas independe da presença de plantas hospedeiras. As formas juvenis são vermiformes, sendo que o primeiro estádio (J1) passa para o segundo estádio (J2) ainda dentro do ovo. O ciclo de vida de *Meloidogyne* consta de seis estádios fenológicos: ovo, quatro juvenis (J1, J2, J3, J4) e adulto (Abad *et al.*, 2009; Westerich, 2010).

Dado que *M. incognita* é uma das espécies fitoparasitas mais comumente encontradas na cultura da banana no Brasil, e que existem poucos trabalhos sobre sua interação com bananeiras, o objetivo deste estudo foi observar as reações histopatológicas ao longo do ciclo de vida de *M. incognita* nas raízes de Cavendish cv. Grande Naine (GN), suscetível ao nematoide, para o entendimento de seu parasitismo, e como primeiro passo para o estudo de expressão de genes neste patossitema.

MATERIAL E MÉTODOS

1. Local do trabalho:

O experimento foi desenvolvido de Setembro a Dezembro de 2013, na Estação Experimental do Instituto de Ciências Biológicas da Universidade de Brasília, onde se fez a multiplicação de *M. incognita* e, na casa de vegetação do Departamento de Fitopatologia da UnB, onde foi montado o bioensaio. Os estudos de histopatologia foram feitos no Laboratório de Nematologia do Departamento de Fitopatologia e no Laboratório de Anatomia Vegetal do Departamento de Botânica da Universidade de Brasília.

2. Material vegetal:

Utilizaram-se 30 mudas de *M. acuminata* Cavendish Grande Naine, suscetíveis a *M. incognita*, fornecidas pela Embrapa Mandioca e Fruticultura, reproduzidas por cultura de tecidos, as quais foram transplantadas em vasos metálicos de 24 x 20 cm previamente lavados e desinfestados e preenchidos com substrato esterilizado, composto por uma mistura de solo e areia (1:1), fertilizantes N-P-K (4-14-8) e calcário. Uma vez transplantadas, as mudas passaram por um período de adaptação de 45 dias a 25° C (\pm 5), para logo serem inoculadas com *M. incognita* (Figura 7).

Figura 7. Mudas de *Musa acuminata* Cavendish Grande Naine (GN), em fase de adaptação na casa de vegetação do Departamento de Fitopatologia da UnB, utilizadas para o estudo do ciclo de vida de *Meloidogyne incognita*.

3. Inóculo de Meloidogyne incognita:

O inóculo de *M. incognita* utilizado, proveniente de uma população isolada de raízes de banana foi cedido por Dr. Dilson Cunha Costa, da Embrapa Recursos Genéticos e Biotecnologia, foi multiplicado em plantas de tomate grupo Santa Cruz, cujos vasos foram apoiados sobre bandejas plásticas. A Figura 8 mostra a sequência do processo de multiplicação de *M. incognita* na Estação Experimental de Biologia da UnB para estudo da interação *Musa-Meloidogyne*. As bancadas foram lavadas com detergente e água sanitária, onde bandejas plásticas furadas foram colocadas como base para evitar contaminação externa. As sementes foram semeadas em bandejas plásticas previamente lavadas e uma vez germinadas, as mudas foram transplantadas quando as plantas de tomate atingiram 15-20 cm de altura, para serem usadas na multiplicação de *M. incognita*.

Figura 8. Preparação de bancadas e de mudas de tomate var. Santa Cruz para a multiplicação do inóculo de *Meloidogyne incognita* em plantas de tomate.

4. Identificação de Meloidogyne incognita

4.1. Identificação por configuração perineal

Para confirmar a espécie de *Meloidogyne* a ser usada nos bioensaios, foram usados os métodos descritos por Hartman e Sasser (1985). Galhas com fêmeas maduras foram selecionadas e colocadas em placas de Petri, sob microscópio estereoscópico, sendo as fêmeas removidas com o auxílio de agulha e lâmina de bisturi sobre lâmina de vidro contendo duas a três gotas de ácido lático 45%. A região anterior do corpo foi cortada e seu conteúdo removido por meio de uma leve pressão com um estilete e, fazendo cortes ao redor da região da vulva. Com o auxílio de um estilete, os cortes perineais foram colocados no fundo de uma

gota de glicerina, sobre lâmina de microscópio, enfileirando-as para facilitar a observação ao microscópio ótico, usando aumento de 1000X, sendo feitos registros fotográficos.

4.2. Identificação por fenótipo de esterase

Para a extração de proteínas e análise de isoenzimas, foram utilizadas fêmeas do nematoide obtidas de inóculo monoespecífico mantido na Estação Experimental de Biologia da UnB. Como padrão de comparação foram utilizadas fêmeas de *M. javanica* extraídas de raízes de tomateiros.

A coleta de fêmeas foi realizada ao microscópio estereoscópico, selecionando apenas fêmeas adultas de maior tamanho, de coloração branco-leitosa em início de oviposição. Fêmeas individuais foram trituradas em tubos eppendorf de 100 µl, com solução extratora de proteínas (constituída por 2 g de sacarose, 0,2 µlµl de Triton X-100, 1 mg de azul de bromofenol e 7,8 ml de água destilada), utilizando um bastão de vidro de 2 mm de diâmetro, com extremidades abauladas. Até o momento da utilização, o extrato foi mantido em gelo. Finalmente o extrato foi aplicado sobre gel de poliacrilamida (7,5%) para análises de isoenzimas, utilizando o Sistema Vertical de Eletroforese LCV 10X10 (Loccus-Biotecnologia), (Figura 9), seguindo metodologia descrita por Esbenshade e Triantaphyllou (1990), adaptada por Alonso e Alfenas (1998).

Figura 9. Metodologia de Eletroforese de isoenzimas, segundo Alonso e Alfenas (1998). **A.** Fêmea única de *Meloidogyne incognita* em solução extratora de proteína, **B.** Montagem das amostras no gel de poliacrilamida, **C.** Cuba de Eletroforese vertical pronta para corrida.

A caracterização bioquímica de *Meloidogyne* spp. foi feita utilizando o padrão de esterase de *M. javanica*. Os padrões de bandas são baseados na Mobilidade Relativa (Rm) de cada fêmea individual em relação às bandas padrão de *M. javanica* (Esbenshade e

Triantaphyllou, 1990; Carneiro e Almeida, 2001; Cofcewicz *et al.*, 2004; Carneiro e Cofcewicz, 2008).

4.3. Identificação por marcadores moleculares espécie-específicos SCAR

Marcadores SCAR espécie-específicos, desenvolvidos por Zijlstra *et al.* (2000) e Randig *et al.* (2002) foram usados para identificação da população de *Meloidogyne* spp. O DNA genômico da população foi extraído utilizando 15 juvenis J2, com DNA genômico da espécie *M. javanica* como controle negativo e de *M. incognita* como controle positivo. Os primers específicos para cada uma das duas espécies foram misturados em quantidades equimolares e utilizados em reação Duplex-PCR. As reações foram realizadas em volume final de 25 µl contendo: 2 µl de DNA (3ng/µl); 0,25 µl da Taq DNA polimerase (5U/ µl); 2,5 µl de tampão 10X MgCl₂; 4 µl (1,25mM) de cada um dos dNTPs (Pharmacia Biotec), 1 µl de cada primer SCAR (10 µM) e 14,25 µl de água Milli-Q. As amplificações foram realizadas em termociclador (Biocycler) usando o seguinte programa: desnaturação inicial do DNA por 5 min. a 94 °C; 35 ciclos de 30s a 94 °C, 45s a 64 °C, e 1 min. a 70 °C; e período final de extensão de 8 min. a 70 °C. Os produtos de amplificação foram separados em gel de agarose (1,4 %) e visualizados sob luz ultravioleta, após a coloração com brometo de etídio a 0,3 µg/ml.

5. Preparo do inóculo de J2 de Meloidogyne incognita e inoculação

Os nematoides foram extraídos das raízes de tomateiro segundo Hussey e Barker (1973). As raízes foram cortadas em pedaços de aproximadamente 2 cm e trituradas em liquidificador por 15 segundos em solução de hipoclorito de sódio 0,5% e os nematoides recuperados em um conjunto de peneiras de 45, 140 e 500 mesh. A suspensão resultante foi recolhida na peneira de 500 mesh e foi exaustivamente lavada com água para eliminar todo hipoclorito de sódio e, logo coletada em um béquer. Para a eclosão dos juvenis J2, suspensões de nematoides foram colocadas em funis de Baermann e incubadas em estufa a 28 °C. Depois os J2 foram contados para estimar a quantidade total de nematoides. Finalmente o inóculo foi calibrado para 1000 J2/ml de suspensão.

6. Inoculação dos J2 de Meloidogyne incognita

Mudas de *M. acuminata* GN com 45 dias após transplante foram inoculadas com 5000 J2 de *M. incognita* por planta, aplicando alíquotas do inóculo uniformemente em vários orifícios no solo, feitos ao redor do pseudocaule de cada planta. As plantas testemunhas foram tratadas com água estéril. Foram inoculadas 3 plantas por dia de avaliação e uma testemunha sem inocular, para cada tratamento. Os tempos de avaliação do ciclo de vida foram: 2, 4, 7, 9, 10, 15, 18, 20, 22, 24, 28 dias após a inoculação (DAI) (Tabela 2).

Tabela 2. Desenho experimental para análise de histopatologia na interação *Musa acuminata* GN - *Meloidogyne incognita*. I: inoculado, NI: Não inoculado.

DAI	2		4		7		10		15	
Genotipo	Ι	NI								
Gran Naine	3	1	3	1	3	1	3	1	3	1
DAI	18		20		22		24		28	
Genotipo	Ι	NI								
Gran Naine	3	1	3	1	3	1	3	1	3	1

7. Preparo de raízes para estudos histopatológicos

Reações histopatológicas foram observadas para ver o desenvolvimento do nematoide nos tecidos das raízes da bananeira. As avaliações foram feitas nos dias: 2, 4, 7, 10, 15, 18, 20, 22, 24, 28 depois da inoculação. Para cada tempo de amostragem as plantas foram cuidadosamente extraídas do substrato, a parte aérea descartada, e as raízes lavadas em água corrente. Para observar a penetração e desenvolvimento dos J2 dentro das raízes utilizou-se a coloração com fucsina ácida e, para observar as alterações nos tecidos da planta e a formação de células gigantes, utilizou se o método de infiltração com resina e a coloração com azul de toluidina.

7.1. Coloração com fucsina ácida

Para observar a penetração e o desenvolvimento dos juvenis dentro das raízes, foram cortados os ápices de algumas raízes finas (5-10 mm) e logo corados com fucsina ácida, segundo a metodologia descrita por Byrd *et al.* (1983) e Hooper *et al.* (2005). Primeiro as raízes foram lavadas e clarificadas com NaOCl (5,25%), mergulhadas em 200 ml de solução

aquosa de NaOCl a 5,25% por 4 minutos e lavadas em seguida em água corrente por 45 segundos e mantidas em um béquer com água por 15 minutos para retirar o excesso de NaOCl. Em seguida, as raízes foram cortadas e transferidas para um béquer com 2 ml de solução estoque de fucsina ácida (1,25g de fucsina ácida, diluída em 125 ml de ácido acético glacial e 375 ml de água destilada), diluída em 40 ml de água. A solução com as raízes foram aquecidas em forno micro-ondas por 45 segundos. Depois de resfriadas, as raízes foram lavadas com água quente para tirar o excesso de corante e logo transferida para uma placa de Petri para serem observadas ao microscópio estereoscópico. As partes das raízes que mostraram a presença do nematoide foram colocadas em uma lâmina com uma gota de glicerol puro e levadas ao microscópio de luz Axiophot Zeiss, para ser examinadas e fotos documentadas.

7.2. Fixação de raízes de infiltração com resina Technovit 7100®

Para fixação, outros segmentos das raízes foram processados segundo a técnica de Pegard *et al.* (2005) e Motta (2010). As raízes foram fixadas em solução de 1% (v:v) de glutaraldeído e 4% (v:v) de formaldeído em 100 mM de tampão fosfato com pH 7,2, por 24 horas, a 4°C; em seguida foram desidratados sob agitação em uma série etanólica crescente de 10-100%, com intervalos de 20 minutos entre as trocas. Depois as raízes foram embebidas em resina Technovit 7100® em tubos eppendorf de 250 µl, sob agitação a 4 °C, de acordo com o protocolo do fabricante. Após a solidificação da resina, as raízes foram cortadas em micrótomo rotatório em fatias longitudinais e transversais de 4 µm de espessura, colocando as Secções sobre lâminas de vidro com gotas de água sobre uma placa aquecedora a 40 °C (Figura 10).

Figura 10. Método de Infiltração com Resina Technovit 7100®: A.Tubos Eppendorf com raízes infiltradas. **B**. Blocos de resina com raízes infiltradas coladas em bloquinhos de madeira, prontos para ser cortados. **C-D**. Corte das raízes em Micrótomo rotatório e Secções finas montadas em lâminas de microscópio colocadas sobre placa aquecedora a 40 °C.

7.3. Coloração com azul de toluidina

Uma vez coladas nas lâminas em placa aquecedora, as secções de raízes foram subsequentemente coradas (1 min. a 60 °C) com 0,5% de azul de toluidina em 0,1 M de tampão de fosfato de sódio, pH 5,5 e observadas ao microscópio de luz, para serem examinadas e foto documentadas.

8. Análise quantitativa de cada estádio de Meloidogyne incognita

Além das observações histopatológicas, realizou-se a contagem dos espécimes de *M. incognita* em cada tempo de avaliação para determinar o número de indivíduos nos diferentes estádios de desenvolvimento. A técnica de coloração com fucsina foi empregada para permitir visualizar o quanto os nematoides se deslocaram dentro da raiz. Para cada tempo de avaliação foram escolhidas quatro raízes ao ocaso para fazer a contagem de indivíduos com ajuda do microscópio óptico Zeiss (400X). As contagens de cada tempo foram somadas e, o total dividido pelo número de repetições para obter um valor médio de indivíduos encontrados em cada estádio. As características de cada estádio de *Meloidogyne* basearam-se nos parâmetros de Eisenback e Triantaphyllou (1991) e Karssen e Moens (2006):

J2a: J2 (pós-parasíticos), penetraram as raízes intercelularmente (sem alteração no formato do corpo).

J2b: Corpo ainda vermiforme mas com maior diâmetro do corpo que J2a.

J3: Forma se depois da segunda troca de cutícula, tem formato de garrafa, perde o estilete, a ponta da cauda torna-se transparente. Fêmeas e machos começam a desenvolver seus órgãos reprodutivos.

J4: Forma-se depois da terceira troca de cutícula, fêmeas com maior diâmetro e de formato piriforme. O corpo alongado e vermiforme do macho forma se dentro da terçeira cutícula juvenil e permanece dobrado dentro da quarta cutícula.

Adultos: Depois de uma rápida metamorfose, a fêmea adulta se torna piriforme e posteriormente, globosa, produz matriz gelatinosa onde libera os ovos, o macho bem desenvolvido, após a quarta ecdise, já como o estilete reconstituído e os órgãos digestivos e reprodutivos desenvolvidos.

82

RESULTADOS

1. Identificação do nematoide

Todas as fêmeas observadas do inóculo apresentaram padrão perineal característico de *M. incognita*, com forma ovalada, arredondada, geralmente com crista alta, quadrada, arco dorsal com estrias geralmente onduladas e campo lateral ausente ou fracamente demarcado por estrias, algumas vezes bifurcado. As características do padrão perineal estão de acordo com a descrição de Eisenback *et al.* (1980); Taylor e Sasser (1983); e Perry *et al.* (2009) para a espécie *M. incognita* (Figura 10 A). Pelo perfil da isoenzima esterase, todas as bandas obtidas em gel de poliacrilamida, corresponderam à espécie *M. incognita* (Figura 10B). Usando marcadores SCAR, obteve se uma banda de 399 pb em gel de agarose, confirmando que se trata desta espécie (Figura 11 C).

Figura 11. Técnicas utilizadas para identificação de *M. incognita*: A. Microfotografia do padrão perineal de *Meloidogyne incognita* (Aumento: 1000X). B. Gel de poliacrilamida com bandas típicas de *M. incognita*, C. Gel de agarose, mostrando bandas SCAR: M (Marcador 1Kb Plus DNA Ladder -Invitrogen); Mi (+): Produto de PCR de 399 pb do controle positivo de *M. incognita*; Mi: Produto de PCR especifico do inóculo de *M. incognita* de banana (seta vermelha); Mj (-) e Mj: Produtos de PCR de 670 pb do controle negativo de *M. javanica* (Controles (+) e (-), fornecidos por Dr. Regina Carneiro (Embrapa Recursos Geneticos e Biotecnologia).

2. Análise histopatológica e ciclo de vida de Meloidogyne incognita

A duração do ciclo de vida de *M. incognita* em raízes de bananeira GN foi de 24 dias à temperatura de 25 ± 5 °C. No estudo histopatológico, das raízes coradas com fucsina ácida (Figura 12B) observa-se juvenis parasíticos (J2) de *M. incognita* penetrando pelos ápices das raízes e migrando pelo córtex, invadindo o meristema subapical das raízes; os J2 migraram intercelularmente nas raízes da bananeira desde a ponta da raiz, até chegarem à zona de

diferenciação celular, onde se estabeleceram no cilindro vascular. A partir do 7° DAI, observou-se também que alguns J2 já haviam aumentado levemente o diâmetro do corpo.

Uma vez chegando ao cilindro vascular (10 DAI), os J2 estabeleceram seu sítio de alimentação (Figura 12D). Aos 15 e 17 DAI encontraram-se vários juvenis no cilindro central já no estádio J3. Aos 20 e 23 DAI, foram visualizados J4 fêmeas de formato piriforme e foram encontradas numerosas fêmeas no cilindro central, algumas associadas a mais de 6 células gigantes de aspecto normal; numerosos núcleos, citoplasma denso e com alguns vacúolos em seu interior (Figuras 12E e F). Finalmente no 24° DAI foram vistas fêmeas adultas com massas de ovos e machos adultos já desenvolvidos e ainda enrolados dentro da quarta cutícula (J4), (Figura 12J), confirmando a culminação do ciclo de vida. No 28° DAI, foi encontrada grande quantidade de massas de ovos próximas à superfície das raízes (Figura 12K).

Figura 12. Raízes de *Musa acuminata* Cavendish Grande Naine (GN) inoculadas com *Meloidogyne incognita*, coradas com fucsina ácida. A: Raiz de planta não inoculada (NI); B-C: Juvenis migrando ao longo do eixo da raiz; D - E: Juvenis de segundo estádio no cilindro vascular estabelecendo o sítio de alimentação; F- I: Juvenis que estabeleceram o sítio de alimentação e passaram por sucessivas ecdises se tornando adultos (fêmeas jovens); J: Machos (m) e fêmeas (f) adultas, já com massa de ovos (mo); K: Massas de ovos (mo), conforme indicado com setas; L: Detalhe de machos adultos (m). Aumentos: A- J: 200X; K-L: 400X.

Nos cortes de raízes infiltradas em resina Technovit 7100® e coradas com azul de toluidina (Figura 13), pôde-se observar a localização dos nematoides na área cortical, até seu estabelecimento no cilindro central da raiz, com a formação das células gigantes. Aos 4 e 7 DAI (Figura 13A e B) encontraram-se juvenis parasíticos na área do córtex, no dia 9, os corpos dos nematoides apresentava-se mais dilatado (J2b) e encontravam-se no cilindro central (Figura 13C). Aos 12 DAI (Figura 13D) foram encontrados indivíduos J3 no cilindro central estabelecidos em seu sítio de alimentação, com 5-6 células gigantes em volta do nematoide; em cada célula foram observados entre 8-12 núcleos (pontos de cor azul). Na Figura 13E (15 DAI), em corte longitudinal da raiz, foram observadas várias fêmeas no cilindro central, cada uma rodeada por suas células gigantes (entre 3-6 células). Aos 20 DAI, foi encontrado um agregado de vários J4 fêmeas com suas células gigantes ocupando todo o cilindro central (Figura 13F). Aos 23 DAI as fêmeas começaram a liberar matriz gelatinosa (de cor amarela), mas sem a presença de ovos (Figura 13G). Aos 24 DAI foram observados os primeiros ovos liberados na matriz gelatinosa pelas fêmeas (Figura 13H) atestando a conclusão do ciclo de vida. Aos 28 DAI observou-se que a maioria de fêmeas possuíam massas de ovos, algumas com mais de 100 ovos (Figura 13I).

Figura 13. Secções de raízes de *Musa acuminata* Cavendish Grande Naine (GN) inoculadas com *Meloidogyne incognita* coradas com azul de toluidina e observadas em diferentes dias depois da inoculação (DAI). A-B: J2 no córtex da raiz; C: J2 ao lado do cilindro vascular; D: Fêmeas associadas com cinco células gigantes. E: Seção longitudinal com algumas fêmeas no cilindro vascular F: Fêmeas unidas a mais de 10 células

gigantes; G. Fêmeas no cilindro central iniciando a produção de massa gelatinosa; H: Fêmeas começando a liberar ovos em massa gelatinosa; I: Massa de ovos na região cortical. cc: cilindro central; co: córtex; e: ovos; mo: massa de ovos; cg: células gigantes; N: nematoide. Aumentos: A- C, E: 200X; D-I: 400X.

3. Sintomas em raízes de *Musa acuminata* GN ao longo do ciclo de vida de *Meloidogyne incognita*

Nos três primeiros dias depois de inoculação as raízes não apresentaram sintomas visíveis. O desenvolvimento de sintomas característicos associados à presença de *M. incognita* em raízes de bananeira foi observado a partir do quarto dia após a inoculação (Figura 14A), quando as raízes secundárias exibiram áreas dilatadas nas pontas das raízes. Aos 7 DAI, os sintomas foram mais visíveis (Figura 14B) quando as raízes já começaram a apresentar pequenas galhas na zona apical; 10 DAI as raízes já se encontravam com ápice deformado em forma de 'J' (Figura 14C). Depois 15 dias da inoculação, pequenas galhas eram evidentes no sistema radicular (Figura 14 D-G). Aos 20 e 24 DAI já se encontram galhas apicais e intercalares e 24 DAI, completou-se o ciclo vital do nematoide, as raízes secundárias apresentavam galhas evidentes, em formato de cravo (Figura 14H). Aos 28 DAI, tanto as raízes primárias como as secundárias, apresentaram dilatações e deformações nos ápices (Figura 14I).

Como se observou neste estudo, os sintomas de *M. incognita* em raízes do genótipo GN durante o ciclo foram principalmente a formação de pequenas galhas nos ápices das raízes secundárias, e dilatações nas raízes primárias e no final do ciclo, não se visualizaram massas de ovos na superfície das raízes como acontece em outros hospedeiros. Quanto aos sintomas na parte aérea, as plantas de bananeira ao final do primeiro ciclo de vida do nematoide, não apresentaram sintomas visíveis de clorose, nem atraso no crescimento (Figura 14 J).

Figura 14. Sequência macroscópica dos sintomas causados por *Meloidogyne incognita* em raízes de *M. acuminata* Grande Naine (GN). A – B: Dilatações no ápice das raízes aos 4 e 7 DAI.; C – D – E: Aos 10-15-18 DAI as raízes apresentaram dilatações mais visíveis. F - G - H: Nos 20-23-24 DAI, as galhas foram mais evidentes. I: Aos 28 DAI, pode se ver as raízes dilatadas e deformadas, inclusive uma raiz principal. J. Plantas de banana 30 DAI, sem sintomas visíveis do parasitismo por *M. incognita*.

4. Quantificação de nematoides em cada tempo de avaliação do ciclo de vida

Para as contagens de cada estádio de *M. incognita* em raízes da GN em cada tempo de avaliação, levou-se em conta os parâmetros de Karssen e Moens (2006), descritos na metodologia. O estádio J2a (juvenil pós-parasítico) foi encontrado a partir do 2° até o 12° DAI, encontrando-se em maior quantidade no aos 7 DAI quando a maioria estava no cilindro central; o estádio J2a foi encontrado a partir do 2° DAI até o 12° DAI, sendo aos 7 DAI, a maior taxa de penetração de indivíduos J2a de *M. incognita*. O estádio J2b foi encontrado desde o 7° até o 18° DAI, aumentando em número de indivíduos no 12° DAI; o estádio J3

apareceu no 12° DAI, predominando aos 15 - 20 DAI; o estádio J4 surgiu a partir do dia 18 até o dia 24, sendo predominante aos 22 DAI com fêmeas pré- adultas. Por último, aos 24 DAI, as fêmeas adultas liberavam massas gelatinosas com ovos completando o ciclo de vida, quando também foram encontrados alguns machos adultos recém-formados, fechados na quarta cutícula. Na Figura 15, observa-se, que para cada um dos estádios de *M. incognita* em raízes de banana, em cada tempo de avaliação os J2a predominaram no 7° DAI, os J2b no 12° DAI, o J3 no 15° DAI, os J4 aos 22 DAI. Após 24 DAI, as fêmeas adultas foram observadas, com massas de ovos.

Figura 15. Número médio de indivíduos/estádio (J2a, J2b, J3, J4 e adultos) de *Meloidogyne incognita* encontrados nas raízes de GN, nos tempos de avaliação (médias de quatro repetições).

A Figura 16A, mostra a sequência dos estádios no desenvolvimento de machos e fêmeas de *Meloidogyne* em raízes de GN; e na Figura 16B, macho e fêmea adultos de *M. incognita*.

Figura 16. **A.** Estádios do ciclo de vida no desenvolvimento de fêmeas e machos de *Meloidogyne incognita*, em raízes da bananeira Grande Naine (GN) (60X). **B**. Macho (esq.) e fêmea (dir.) de *M. incognita*)

DISCUSSÃO

Neste trabalho confirmou-se que o ciclo de vida de *M. incognita* em raízes do genótipo GN foi de 24 dias à temperatura de 25±5°C. Estes resultados concordam com Hernández-Ochandía et al. (2012) que relataram que o ciclo de M. incognita em tomateiro, a 18-21°C teve duração de 24 dias, ainda que a temperatura utilizada fosse menor que neste trabalho. Khan (2002), estudando o ciclo de vida de M. incognita, a 28-35 °C em mamoeiro (Carica papaya L.) encontrou que aos 22 dias depois da inoculação, mais de 32% dos espécimes eram fêmeas bem formadas. Segundo Wallace (1971) e Taylor e Sasser (1983), Perry e Moens (2006), o ciclo de vida de *Meloidogyne* depende principalmente da temperatura, onde o ciclo é mais curto a temperaturas mais elevadas e vice-versa; também depende da susceptibilidade do hospedeiro e da espécie do nematoide, por isso a duração do ciclo em cada caso pode ser diferente. Eles também afirmaram que temperaturas ótimas para espécies de clima quente (M. incognita, M. javanica e M. arenaria) estão na faixa de 25-30°C, como no presente trabalho. Eisenback e Triantaphyllou (1991), no estudo da interação *M. incognita* e tomateiro, a 29°C, verificaram que as primeiras fêmeas adultas aparecem entre 13-15 dias após a penetração e os primeiros ovos foram encontrados aos 19-21 dias; neste caso a duração do ciclo vital do nematoide foi mais rápida à temperatura mais elevada. Westerich (2010) constatou que M. mayaguensis completou o ciclo biológico em tomateiros, 24 dias após a inoculação, a 26 °C, quando foi confirmada a presença de fêmeas com ovos.

O período da maior taxa de penetração de juvenis (J2) de *M. incognita* nas raízes de bananeira cv. Grande Naine, foi entre os 2 e 7 DAI, o que concorda com os trabalhos de Gomes (2006) na interação de acessos de *Pfaffia glomerata* vs. *M. incognita*; Das *et al.* (2008) na interação *M. incognita* (raça 3) vs. feijoeiro caupi; Albuquerque (2009) na interação *M. incognita* vs. cafeeiro; Hernández-Ochandía *et al.* (2012) na interação *M. incognita* vs. tomateiro e Mota *et al.* (2012) na interação compatível *M. incognita* (raça 3) vs. algodoeiro. Ficou confirmado que os J2 migraram intercelularmente, até se estabelecer no cilindro vascular; segundo Jones e Payne (1978) e Jones *et al.* (2013), os J2 penetram nos ápices das raízes, por meio da combinação de danos físicos com a introdução do estilete que quebra as paredes celulares das raízes e pela liberação de enzimas celulolíticas e pectolíticas. A penetração de juvenis de *Meloidogyne* nos primeiros 7 dias após a inoculação foi também constatada nos estudos de Oliveira (2006) e Moritz *et al.* (2008a), entretanto, Taylor e Sasser (1983) relatam uma alta penetração de juvenis de *Meloidogyne* spp. em períodos inferiores a 24 horas da inoculação. Neste trabalho se observou que os J2 aumentaram o diâmetro do

corpo 7 DAI, similar ao trabalho de Oliveira (2006) que observou em cafeeiro o alargamento dos J2 de *M. incognita* a partir do 8º dia. No caso de *M. javanica*, Costa *et al.* (1998) observaram em tomateiro suscetível 'Rutgers' a presença de J2 exibindo o corpo de forma alargada, tipo "salsicha" (J2b), só entre os 8 e 12 dias após a inoculação.

Nos cortes de raízes infiltradas com resina, aos 7 e 10 DAI foi possível observar que os J2s já estavam presentes no cilindro central; aos 12 DAI foram observados J2s e J3 no cilindro central estabelecidos em seus sítios de alimentação, com 5-6 células gigantes em volta do nematoide; em cada célula foram observados entre 8-12 núcleos, similar ao desenvolvimento de *M. incognita* raça 3 em algodão (Mota, 2010). Aos 15 DAI foram encontradas as células gigantes de maneira bem destacada no cilindro central (região vascular) das raízes secundárias da bananeira. Segundo Caillaud *et al.* (2008), as células gigantes expandem se pelo crescimento isotrópico e podem atingir um diâmetro cerca de 400 vezes maior do que o das células vasculares da raiz.

Em *Arabidopsis thaliana*, observações citológicas mostraram que aos 7 DAI, as células gigantes são multinucleadas com citoplasma denso, mas neste estudo, em periódo equivalente, células gigantes ainda não foram encontradas, mas sim aos 10 DAI, desse modo, a formação dessas células provavelmente tenha ocorrido no intervalo 8-10 DAI. As células gigantes maduras apresentam um citoplasma muito denso, granular, com pequenos vacúolos podendo conter mais de uma centena de núcleos como observado neste estudo. Do 15° ao 20° DAI, houve aumento no número de células gigantes ocupando todo o cilindro central. Segundo Corrêa (2005), nessa etapa o nematoide seleciona uma célula gigante e a estimula continuamente, enquanto que as outras sem receberem estímulo se degeneram reduzindo a quantidade de células gigantes no sítio de alimentação. A presença das células gigantes no cilindro vascular indica um possível comprometimento de suas funções, devido à alteração na quantidade e diâmetro de elementos condutores ativos, acarretando a redução do transporte de água e nutrientes pelo xilema (Westerich, 2010).

Na fase final do ciclo de vida, aos 23 DAI, as fêmeas começaram a liberar matriz gelatinosa e, finalmente aos 24 DAI foram observados os primeiros ovos liberados na matriz gelatinosa pelas fêmeas atestando a conclusão do ciclo de vida. Aos 28 DAI as galhas eram maiores, contendo fêmeas localizadas no cilindro central com danos mecânicos nos tecidos do parênquima vascular e a maioria das fêmeas com massas de ovos. No estudo de Hernández-Ochandía *et al.* (2012), 24 DAI com *M. incognita* em tomate, as raízes apresentavam fêmeas maduras capazes de produzir em média uma centena de ovos, aumentando seu número aos 27 DAI. Segundo Karssen e Moens (2006), cada fêmea de *Meloidogyne* pode fazer a postura de

30 a 80 ovos por dia, dependendo das condições ambientais e da hospedeira. Gomes *et al.* (2010), estudando raízes de *Pfaffia glomerata* inoculadas com *M. incognita* raça 1, verificaram a presença de fêmeas apenas no acesso suscetível aos 28 dias após a inoculação se alimentando em células gigantes bem formadas, com pequenos núcleos e poucos vacúolos. No estudo histológico com coloração de fucsina ácida, observaram-se massas de ovos embebidas no interior da raiz, segundo Karssen e Moens (2006), podem estar envoltos por uma massa gelatinosa geralmente depositada na superfície das raízes galhadas ou, algumas vezes, dentro das galhas, como ocorreu nas raízes de banana; também foram observados machos adultos vermiformes. No final do ciclo, 24 DAI, o córtex radicular apresentava células indiferenciadas hipertrofiadas e hiperplásicas, e sem células gigantes, enquanto o cilindro vascular encontrou-se desorganizado, com células gigantes presentes, como foi descrito inicialmente por Huang (1966), para plantas de gengibre parasitadas por *M. incognita*.

Os resultados deste trabalho concordam com os estudos do ciclo de vida de *M. incognita* em tomateiro de Hernández-Ochandía *et al.* (2012), onde os J2 pós-parasíticos predominaram nos dias 6-14, J3 nos dias 15-20 e J4 nos dias 21-23 dias posteriores à inoculação, encontrando as primeiras fêmeas adultas com matriz gelatinosa e com ovos a partir do 24° dia. O período médio entre cada um dos estádios de *M. incognita*, neste estudo, coincide também com os estudos de Abad *et al.* (2009), afirmam que o tempo de transição de J2 a J3 é quase de 15 dias, enquanto o de J3 a J4 ocorre em um período de 4 a 7 dias. Oliveira (2006) também observou que aproximadamente 54% dos indivíduos de *M. incognita* de uma população patogênica a cafeeiro se encontravam no estádio J3 ou J4, aos 15 DAI, como também foi observado nas raízes de banana.

Os primeiros sintomas causados por *M. incognita* em raízes de GN foram observados no quarto dia após a inoculação, quando as raízes secundárias exibiram áreas dilatadas nas pontas; essas áreas inchadas, segundo Yu (1995), representam a prova do sucesso da invasão dos J2 de *M. incognita*, em regiões de diferenciação celular onde depois começam a se alimentar, isso foi confirmado nas observações de raízes coradas com fucsina ácida, onde foram vistos vários J2 que penetraram as raízes. Aos 7 e 10 DAI, os sintomas foram mais evidentes com a presença de pequenas galhas na zona apical, causando atrofia e deformações das mesmas. Aos 24 DAI, no final do ciclo do nematoide, as raízes secundárias apresentavam galhas evidentes em formato de cravo nas pontas das raízes, assim como sintomas de galhas ou dilatações nas raízes sustentadoras. Estas observações concordam com Costa (1997), Gowen e Quénéhervé (1990) e De Waele e David (1998) que relataram que os sintomas mais

evidentes da infecção de *Meloidogyne* em banana são raízes primárias e secundárias atrofiadas e com galhas, e as massas de ovos dentro da área cortical, diferente de hospedeiros como tomate e pimentão onde estas são liberadas na superfície das raízes (Robinson e Villiers, 2007).
CONCLUSÕES

No estudo histopatológico, confirmou se que no genótipo GN Grande Naine, o nematoide *M. incognita* desenvolve-se com eficiência nas raízes, com a formação de células gigantes funcionais no cilindro central e completando o ciclo de vida em 24 dias à temperatura média de 25 °C.

Na relação parasita-hospedeira de *M. incognita* em raiz de bananeira, verificou-se desorganização do cilindro vascular pela formação de sítios de alimentação (células gigantes), caracterizadas pela ocorrência de parede celular espessa, citoplasma denso e granuloso, células multinucleadas e com pequenos vacúolos.

Plantas inoculadas apresentaram sintomas de galhas principalmente na região apical das raízes secundárias e de dilatações nas raízes principais ao final do ciclo, sem a liberação de massas de ovos na superfície das raízes devido à grossura das raízes da bananeira.

O ciclo de vida de *M. incognita* em raízes de banana foi similar ao ciclo desta espécie em outros hospedeiros como tomate, café, algodão, entre outros, apenas com ligeiras diferenças possivelmente devidas às características morfológicas das raízes de bananeira.

Este e o primeiro estudo detalhado do ciclo de vida de *M. incognita* em banana, que servirá de base para estudos de interação *Musa - Meloidogyne*.

REFERÊNCIAS BIBLIOGRÁFICAS

ABAD P, CASTAGNONE-SERENO P, ROSSO MN, ENGLER AJ, FAVERY B. 2009. Invasion, Feeding and Development. p. 163-181. In: Root-knot Nematodes. Moens M, RN Perry, JL Starr (eds). CABI, Belgium and Department of Crop Protection, Ghent, Belgium.

ABRÃO MM, MAZZAFERA P. 2001. Efeitos do nível de inóculo de *Meloidogyne incognita* em algodoeiro. Bragantia (On line 60(1): 19-26.

ALBUQUERQUE EVS. 2009. Estudo da interação entre *Coffea arabica* e nematoide da galha *Meloidogyne incognita*: Iºdentificação da resistência e caracterização por histopatologia e genômica funcional. Tese de Doutorado. Universidade Federal do Rio Grande do Sul e L'École Doctorale SIBAGHE da UM2 - L'Université de Montpellier II, École Doctorale SIBAGHE da UM2, França.

ALMEIDA MFS. 2011. Diversidade de *Meloidogyne incognita* e espécies correlatas como sugerem abordagens biológicas, citológicas, morfológicas e moleculares. Dissertação de mestrado, Departamento de Fitopatologia, Universidade de Brasília, 85p.

ALONSO SK, ALFENAS AC. 1998. Isoenzimas na taxonomia e na genética de fitonematoides. In: Eletroforese de isoenzimas e proteínas afins, fundamentos e aplicações em plantas e microrganismos. Alfenas AC (Ed) Viçosa: UFV, 574p.

ARIAS Y, GONZÁLEZ I, RODRÍGUEZ M, ROSALES C, SUÁREZ Z, PETEIRA B. 2009. Aspectos generales de la interacción tomate (*Solanum lycopersicom L.*) - *Meloidogyne incognita*. Rev. Protección Veg. [online] 24(1):1-13.

BYRD DW, KIRKPATRICK T, BARKER KR. 1983. An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology 15(1): 142-143.

CAILLAUD MC, DUBREUIL G, QUENTIN M, PERFUS-BARBEOCH L, LECOMTE P, ENGLER J DE A, ABAD P, ROSSO MN, FAVERY B. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology 165: 104-113.

CARNEIRO RMDG, ALTÉIA AAK. 1990. Constatação de *Meloidogyne incognita* em seringueira (*Hevea brasiliensis*) no Paraná. Nematologia Brasileira 14:6-7.

CARNEIRO RMDG, RANDIG O, ALMEIDA MRA, GONÇALVEZ W. 2005. Identificação e caracterização de especies de *Meloidogyne* em cafeeiro nos estados de São Paulo e Minas Gerais através de tipos de esterase e SCARS multiplex. Nematologia Brasilera 29(2): 233-241.

CARNEIRO RMDG E COFCEWICZ ET 2008. The taxonomy of coffee parasitic root-knot nematodes, *Meloidogyne* spp. In: Souza RM (Ed.) Plant–parasitic nematodes of coffee. Dordrecht. Springer. p. 87-122.

COFCEWICZ ET, CARNEIRO RMDG, CORDEITO CMT, QUÉNÉHERVÉ P, FARIA JL. 2004a. Reação de cultivares de bananeira a diferentes espécies de nematoides das galhas no Brasil. Nematologia Brasileira 28(1): 11-22.

COFCEWICZ ET, CARNEIRO RMDG, CATAGNONE-SERENO P, QUÉNÉHERVÉ P. 2004b. Enzyme phenotype and genetic diversity of root-knot nematode parasitizing *Musa* in Brazil. Nematology 6: 85-95.

CORDEIRO ZJM. 1999. Doenças da bananeira. In: Zambolin L, Monteiro AJA. (Eds) 3° Encontro de Fitopatologia. Universidade Federal de Viçosa. p. 145.

CORRÊA CF. 2005. Alterações anatômicas e fases do desenvolvimento de células gigantes induzidas por nematoides formadores de galhas (*Meloidogyne* spp.) em raízes de plantas suscetíveis. Tese (Doutorado em Ciências Biológicas/Botânica)–Instituto de Biociências, Universidade Estadual Paulista, Botucatu. 150 p.

COSTA DC, SILVA OS, ALVES FR, SANTOS AC. 1997. Avaliação de danos e perdas à bananeira cv. Nanica causadas por *Meloidogyne incognita* na Região de Petrolândia-PE. Nematologia Brasileira 21(1):21.

COSTA DC, SILVA SO e ALVES FR. 1998. Reação de genótipos de bananeiras (*Musa* spp.) a Radopholus similis e *Meloidogyne incognita*. Nematologia Brasileira. 22(2):49-57.

COSTA DC. 2000. Nematoses em banana e abacaxi no Brasil: danos e manejo. XXII Congresso Brasileiro de Nematologia, 22. Uberlândia Anais. p.50-58.

DAS S, DEMASON DA, EHLERS JD, CLOSE TJ, ROBERTS PA. 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany 59 (6):1305–1313.

DE WAELE D, DAVIDE EG. 1998. The root-knot nematodes of banana *Meloidogyne incognita* (Kofoid e White, 1919) Chitwood, 1949 and *Meloidogyne* javanica (Treub, 1885) Chitwood, 1949. Inibap - *Musa* Pest Fact Sheet, p 3-4.

EISENBACK JD, HIRSCHMANN H, TRIANTAPHYLLOU AC. 1980. Morphological comparison of *Meloidogyne* female head structures, perineal patterns, and stylets. Journal of Nematology 12:300-313. Guimarães

EISENBACK JD, TRIANTAPHYLLOU H. 1991. Root-knot nematodes: *Meloidogyne* species and races. In: Nickle WR (Ed.) Manual of Agricultural Nematology. Marcel Dekker, New York, p. 191–274.

ESBENSHADE PR, TRIANTAPHYLLOU AC. 1990. Isozyme phenotypes for identification of *Meloidogyne* species. Journal of Nematology 22:10-15.

GHEYSEN G, JONES JT. 2006. Molecular aspects of plant-nematode interactions. In: Perry R, Moens M. (Eds). Plant Nematology. p. 234-254, CABI, London, UK.

GOMES, MMAC. 2006. Resistência e caracterização histológica de *Pfaffia glomerata a Meloidogyne incognita*. Dissertação (Mestrado em Agronomia)-Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília, DF. 58 p.

GOWEN S, QUÉNÉHERVÉ P. 1990. Nematode parasites of bananas, plantains and abaca. In: Luck M, Sikora RA, Bridge J. (Eds) Plant parasitic nematodes in subtropical and tropical agriculture. Wallingford: CABI, p.431-60.

HARTMAN RM, SASSER JN. 1985. Identification of *Meloidogyne* species on the basis of differential host test and perineal pattern morphology. In: Barker KR, Carter CC, Sasser JN, (Eds): An advanced treatise on *Meloidogyne*. v 2, Methodology. Raleigh, NC, USA, North Carolina State University Graphics, p. 69-77.

HASSAN NM. 2003. Nematodes in banana in Malaysia. In: CRUZ JR, DFS. et al. Toward management of Musa nematodes in Asia and the Pacific. Los Banos, INIBAP, Philippines, p. 47-51.

HERNÁNDEZ-OCHANDÍA D, ARIAS Y, GÓMEZ L, PETEIRA B, MIRANDA I, RODRÍGUEZ MG. 2012. Elementos del ciclo de vida de una población cubana de *Meloidogyne incognita* (Kofoid y White) Chitwood en *Solanum lycopersicum* L. Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba. Revista Protección Vegetal 27 (3):188-193.

HOOPER DJ, HALLMANN J, SUBBOTIN AS. 2005. Methods for extraction, processing and detection of plant and soil nematodes. p. 53-80. In Luc M, Sikora RA and Bridge J. CABI. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture.

HUANG CS. 1966. Host-parasite relationships of root knot nematode in edible ginger. Phytophatology 56 (7): 755-759.

HUSSEY RS, BARKER KRA. 1973. Comparison of methodes of collecting inocula of *Meloidogyne* spp. including a new technique. Plant Disease Report 57: 1025-1028.

JESUS AM, WILCKEN SRS. 2005. Reação de genótipos de bananeira a *Meloidogyne* incognita raça 2 e *Meloidogyne* javanica In: Congresso Brasileiro de Nematologia, 25. Anais. Piracicaba: Sociedade Brasileira de Nematologia, p.72.

JONES MGK, PAYNE HL. 1978. Early stages of nematode-induced giant cell formation in roots of Impatiens balsamina. Journal Nematology 10:70–84.

JONES JT, HAEGEMAN A, DANCHIN EGJ, GAUR HS, HELDER J, JONES MGK, KIKUCHI T, MANZANILLA-LÓPEZ R, PALOMARES-RIUS JE, WESEMAEL WML, PERRY RN. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14(9): 946–961.

KARSSEN G, MOENS M. 2006. Root-Knot Nematodes In: Perry RN, Moens M (Eds) Plant Nematology, Cambridge, USA, CABI North American. p.60-90.

KHAN TA. 2002. Studies on the life cycle of *Meloidogyne incognita* on papaya in presence of *Fusarium solani*. Indian Journal of Nematology 32(1):30-32.

KUBO RK, OLIVEIRA CMG, MACHADO ACZ, INOMOTO MM. 2014. Nematoides fitoparasitos da bananeira. Acceso em: <u>http://www.biologico.sp.gov.br/docs/livro_banana/</u> capítulo8.pdf. Consulta 4-12-2014.

MORITZ MP, CARNEIRO RG, SANTIAGO DC, MEDRI ME, CORREA A, NAKAMURA KC, PIGNONIE, GOMES JC. 2008. Histopatologia comparada das raízes de cultivares suscetível e resistente de soja inoculadas com *Meloidogyne paranaensis*. Nematologia Brasileira32(1):41-49.

MOTA FC. 2010. Análise de fontes de resistência do algodoeiro a *Meloidogyne incognita* raça 3 e caracterização histopatológica da interação planta-nematoide. Dissertação de Mestrado em Fitopatologia. Universidade de Brasília. 76 p.

MOTA FC, ALVES GCS, GIBANDD MA, GOMES CMM, SOUSA FR, MATTOS VS, *ET AL.* 2012. New sources of resistance to *Meloidogyne incognita* race 3 in wild cotton accessions and histological characterization of the defense mechanisms. Plant Pathology. Doi: 10.1111/ppa.12022.

OLIVEIRA DS. 2006. Patogenicidade de populações de *M. incognita*, provenientes de Minas Gerais e São Paulo, ao cafeeiro. Tese (Doutorado em Agronomia/Fitopatologia)-Universidade Federal de Viçosa. 75p.

PATEL BA, VYAS RV, PATEL DJ, PATEL RS. 1996. Susceptibility of banana cultivars to root-knot nematodes (*Meloidogyne* spp.). InfoMusa 5: 26-27.

PEGARD A, BRIZZARD G, FAZARI A, SOUCAZE O, ABAD P, DJAN-CAPAROLINO C. 2005. Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in *Capsicum annuum*. Phytopathology 95(2): 158-165.

PERRY RN, MOENS M. 2006. Plant Nematology. CABI International, North American Office. Agricultural Research Centre, Crop Protection Department, Ghent, Belgium. 447 p.

PERRY RN, MOENS M, STAR JL. 2009. Root-knot Nematodes. CABI, Department of Crop Protection, Ghent, Belgium. 488p.

PINTO ACB, SOUSA AIM, TENENTE RCV, SILVA NETO SP, CARRIJO AO. 2005. Busca de clones de bananeira com resistência ao nematoide *Meloidogyne incognita*. Summa Phytopathologica 31: 176-177.

QUÉNÉHERVÉ P, VALETTE C, TOPART P, TEZENAS DU MONTCEL H, SALMON F. 2009. Nematode resistance in bananas: screening results on some wild and cultivated accessions of *Musa* spp. Euphytica 165: 123-136.

RANDIG O, CARNEIRO RDMG, CASTAGNONE-SERENO P. 2004. Identificação das principais espécies de *Meloidogyne* parasitas do cafeeiro no Brasil com marcadores SCAR-café em Multiplex-PCR. Nematologia Brasileira 28(1): 1-10.

ROBINSON JC, VILLIERS EA. 2007. The cultivation of banana. ARC Institute for Tropical and Subtropical Crops. p. 194- 198.

SANTOS JRP. 2011. Caracterização genética e molecular de acessos de bananeira a *Radopholus similis* e *Meloidogyne incognita*. Tese de Doutorado em Fitopatologia. Universidade de Brasília, Brasília, DF. 244p

SASSER JN, CARTER, CC. 1985. An Advanced Treatise on *Meloidogyne*. vol. I: Biology and Control. North Carolina State University Graphics. 422 p.

SHARMA A, TRIVEDI PC. 1992. Studies on the life cycle on *Meloidogyne incognita* in two cultivars of *Trigonella foenum-graecum*. Nematologia Medit.erranea 20:215-216.

SIJMONS PC, GRUNDLER FMW, VON MENDE N, BURROWS PR, WYSS U. 1991. *Arabidopsis thaliana* as a new model host for plant-parasitic nematodes. Plant Journal 1: 245-254.

TAYLOR AL, SASSER JN. 1983. Biología, identificación y control de los nematodos de nódulo de la raiz (especies de *Meloidogyne*). Proyecto Internacional de *Meloidogyne*. Universidad del Estado de Carolina del Norte, USA. 111p.

TENENTE RCV, VILAS BOAS LC, GONZAGA V, SANTANA GF. 2000. Resistência de clones de bananeira ao nematoide *Meloidogyne incognita*. Nematologia Brasileira 24 (1): 121-122.

TENENTE RCV, FÔNSECA MB, SOUSA-VILARDI AI, SILVA SO, SILVA NETO SP, SILVA EG, CARRIJO AO, ARAYA M. 2008. Reação de diferentes cultivares de banana (*Musa* spp.) a *Meloidogyne incognita* raças 1 e 4. Nematologia Brasileira 32(4): 285-293.

VILAS BOAS LC, TENENTE RCV, GONZAGA V, DA SILVA NETO SP, ROCHA HS. 2002. Reação de clones de bananeira (*Musa* spp.) ao nematoide *Meloidogyne incognita* (Kofoid e White, 1919) Chitwood, 1949, raça 2. Revista Brasileira de Fruticultura 24(3): 690-693.

WALLACE, RH. 1971. Abiotic influences in the soil environment. In: Zuckerman RM e Rodhe RA. Plants Parasitic Nematodes. New York: Academic Press 1: p.257-280.

WESTERICH JN. 2010. Estudos histopatológicos e ciclos biológicos de *Meloidogyne mayaguensis e M. javanica* em tomateiros com gene Mi. Dissertação (Mestrado) - Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, Botucatu, 83 p.

WILLIAMSOM VM, HUSSEY RS. 1996. Nematode pathogenesis and resistance in plants. The Plant Cell 8: 1735-1745.

YU MH. 1995. Root-knot nematode development and root gall formation in sugarbeet. Journal of Sugar Beet Research 32(1):47-58.

ZEM AC. 1982. Problemas nematológicos em bananeiras (*Musa* spp.) no Brasil (contribuição ao seu conhecimento e controle). Tese de Doutorado. Escola superior de agricultura, 'Luiz de Queiroz', Piracicaba. 40p.

ZEM AC, LORDELLO, LGE. 1982. Meloidoginose da bananeira (sintomas e susceptibilidade de cultivares). An. Esc. Super. Agric. Luiz de Queiroz 38 (2): 875-883.

ZEM AC, ALVES EJ. 1981. Observações sobre perdas provocadas por nematoides em bananeira (*Musa acuminata*) cultivar Nanicão. Bahia, Cruz das Almas, Brasil, EMBRAPA/CNPMF, Boletim de pesquisa Nº 6. 10 p.

ZIJLSTRA C. 2000. Identification of *Meloidogyne chitwoodi*, *M. fallax* and *M. hapla* based on SCAR-PCR: a powerful way of enabling reliable identification of populations or individuals that share common traits. European Journal of Plant Pathology 106: 283-290.

RESUMO

Um estudo comparativo entre dois genótipos de bananeira foi realizado com o objetivo de observar as reações histológicas em raízes de bananeiras Cavendish cv. Grande Naine (GN), suscetível e o genótipo 4279-06, considerado resistente, inoculadas com Meloidogyne *incognita*; assim como analisar as respostas de defesa dos genótipos frente a este fitoparasita. O experimento foi conduzido em condições controladas de casa de vegetação, com temperatura média de 26°C. Plantas de bananeira com um mês após transplante foram inoculadas com 5000 juvenis de segundo estádio (J2) de M. incognita. As raízes foram avaliadas aos 3, 6, 9, 12, 15, 18, 21, 24, 28, 30 e 35 dias após a inoculação (DAI). Para visualizar a penetração e transformação das células pelo nematoide foram usadas técnicas de coloração com fucsina ácida e de infiltração com Resina Tecnovit 7100, respectivamente. Observou-se que nos dois genótipos, os J2 de M. incognita conseguiram penetrar no ápice das raízes, 3 DAI, com maior número de nematoides migrando da zona apical até o cilindro central aos 6 DAI. Aos 9 DAI, os nematoides já haviam estabelecido sítios de alimentação nos dois genótipos, com a formação de células gigantes, assim aos 12, 15, 18 e 21 DAI encontraram-se aglomerados de J3 e J4 fêmeas ocupando o cilindro central e adquirindo formato piriforme de forma similar nos dois genótipos. No 24º DAI, no genótipo GN, as fêmeas adultas, começaram a liberar matriz gelatinosa com ovos, concluindo o ciclo, enquanto que no genótipo 4279-06 o ciclo se completou 27-30 DAI. Não houve resposta hipersensível (HR) no genótipo 4279-06, típica da maioria dos genótipos com resistência gene-a-gene, tendo este desenvolvido sítios de alimentação normais semelhantes aos do suscetível. A partir do 15º DAI, no genótipo 4279-06 observou se maior vacuolização e afinamento da parede celular, que pode explicar o atraso na duração do ciclo e na produção de ovos, em comparação ao genótipo suscetível. Nos parâmetros anatômicos da raiz avaliados, não foram encontradas diferenças significativas nos tempos avaliados, o que evidencia uma resposta similar destes genótipos ao parasitismo por M. incognita.

Palavras chave: Células gigantes, reações histológicas, resistência, resposta hipersensível (RH).

ABSTRACT

Histological response of two banana genotypes to infection with Meloidogyne incognita

A comparative study between two banana genotypes was conducted to observe the histological reactions in roots of banana banana Cavendish cv. Grande Naine (GN), susceptible and 4279-06, considered resistant, inoculated with Meloidogyne incognita; as well as to analyze the defense responses of both genotypes against this parasite. The experiment was carried out under controlled conditions in a greenhouse with an average temperature of 26 °C. Banana plants, one month after transplantation were inoculated with 5000 second stage juveniles (J2) of *M. incognita*. The roots were assessed at 3, 6, 9, 12, 15, 18, 21, 24, 28, 30 and 35 days after inoculation (DAI). To access nematode penetration and root cell transformation, staining techniques were used with acid fuchsin and infiltration with resin Tecnovit 7100, respectively. It was observed that in both genotypes, J2s of *M. incognita*, have succeeded to penetrate the apex of the roots, three DAI, with the highest number of nematodes migrating from apical area to the central cylinder 6 DAI. On 9 DAI nematodes had established feeding sites in both genotypes, with the formation of giant cells. On 12, 15, 18 and 21 DAI were found agglomerates of J3 and J4 females occupying the central cylinder and acquiring piriform format, similar in both banana genotypes. At 24 DAI, in the GN genotype adult females began to release gelatinous matrix with eggs, completing the life cycle, whereas in genotype 4279-06 the life cycle was completed 27-30 DAI. There was no hypersensitive response (HR) in the genotype 4279-06, typical of most genotypes with resistance gene-forgene, and this developed normal feeding sites similar to susceptible genotype. At 15 DAI in 4279-06 genotype was observed more vacuolization and thinning of the cell wall, which may explain the delay in duration of the life cycle and egg production, compared to the susceptible genotype. There were no significant differences in time periods, with respect the anatomical characteristics of root evaluated, which demonstrates a similar response of these genotypes to parasitism by M. incognita.

Key words: Giant cells, histological reactions, hypersensitive response (HR), resistance.

INTRODUÇÃO

Nematoides sedentários formadores de galhas do gênero *Meloidogyne*, são parasitas biotróficos que desenvolveram estratégias para infectar com sucesso várias espécies de plantas e estão envolvidos em complexas interações com seus hospedeiros, induzindo numerosas alterações na estrutura das células que fornecem alimento para eles. A invasão dos tecidos da planta envolve mecanismos comuns com agentes patogênicos bacterianos e fúngicos, como a produção de enzimas de degradação da parede da célula. Contudo, os sinais que induzem a diferenciação das células vegetais em células especializadas de alimentação para o nematoide, ainda não foram determinadas (Sijmons *et al.*, 1991; Perry *et al.*, 2009; Arias *et al.*, 2009). O parasitismo sedentário está associado com a modificação de células das plantas, de forma que possa sustentar a alimentação prolongada em um mesmo local. Espécies de *Meloidogyne* induzem algumas células gigantes multinucleadas das quais a fêmea se alimenta durante sua fase sedentária e tipicamente se estende por várias semanas. A fêmea também induz galhas radiculares características com uma abertura na superfície da raiz através do qual a fêmea e a massa de ovos é projetada para o exterior (Perry *et al.*, 2009).

Os nematoides não contam apenas com mecanismos enzimáticos de degradação das paredes das células hospedeiras e a formação de células gigantes, contam também com mecanismos adequados para beneficiar da maquinaria metabólica da planta infectada (Abad *et al.*, 2009). A complexidade das mudanças morfológicas e fisiológicas causadas pelo parasitismo dos nematoides formadores de galhas em raízes, que ocorrem durante o estabelecimento das células gigantes é refletida nas células alteradas que expressam se na raiz afetada; essas mudanças levam a alterações no cilindro vascular, na absorção de água e, consequentemente na absorção de nutrientes, levam também ao aumento total da massa de raízes pelo efeito combinado da emissão de raízes secundárias nos locais de parasitismo e pela formação das galhas propriamente ditas (Williamson e Hussey, 1996; Abrão e Mazzafera, 2001; Atkinson *et al.*, 2003; Perry e Moens, 2006; Westerich *et al.*, 2011).

O reconhecimento específico do patógeno pela planta também pode conduzir a uma reação de resistência conhecida como resposta de hipersensibilidade (RH), seguida por morte celular rápida em torno do local da infecção inicial (Lam *et al.*, 2001; Abad *et al.*, 2003; Albuquerque, 2009; Arias *et al.*, 2009; Westerich *et al.*, 2011). Após a penetração, os nematoides também podem ser afetados por compostos tóxicos já presentes nos tecidos das plantas (resistência bioquímica pré-formada). Conforme revisado por Huang (1985) existe

correlação positiva entre compostos fenólicos e a resistência a nematoides. Além dos fenóis, várias classes de compostos com propriedades nematicidas vêm sendo divulgadas, por exemplo, ácidos graxos, terpenoides, alcaloides, isoflavonoides (Chitwood, 1993; Baldridge *et al.*, 1998). As plantas sintetizam uma grande variedade de compostos pré-infeccionais e pós-infeccionais que agem contra nematoides (Giebel, 1982; Binks *et al.*, 1997; Luis, 1998). No caso da banana, poucas cultivares tem sido investigadas quanto às reações bioquímicas das plantas a nematoides e, na maioria, os estudos envolvem testes não específicos para fenóis. Cultivares resistentes de banana produzem a mesma família de compostos em grande quantidade (Binks *et al.*, 1997; Luis, 1998). Conforme revisado por Costa (2004), plantas de banana produzem outros compostos fenólicos em sementes e frutos tais como taninos e 3,4 flavana-diol. Estudos preliminares por Kashaija (1996) sugerem que taninos também ocorrem em raízes das bananeiras e podem atuar em altas concentrações na defesa da planta a nematoides.

Dado que *M. incognita* é uma das espécies fitoparasitas de maior importância na cultura da banana é necessário conhecer as reações de defesa envolvidas na sua interação, assim como as transformações morfológicas induzidas nas células das raízes por esse parasita. Com base no estudo de Teixeira (2007), o genótipo 4279-06 foi classificado como resistente a *M. incognita* (FR= 0,67) e, foi selecionado para este estudo, juntamente com o genótipo Cavendish Grande Naine (GN) suscetível. Assim, o objetivo desse estudo foi o de observar as reações histopatológicas nos genótipos contrastantes Cavendish Grande Nine e 4279-06, inoculados com uma população de *M. incognita* originária de bananeira. A caracterização histológica resultante da interação parasita-hospedeira, nas raízes, permitirá determinar a existência de mecanismo de resistência da planta, em resposta à infecção pelo nematoide das galhas.

MATERIAL E MÉTODOS

1. Preparo das mudas de bananeira

Foram utilizadas mudas de bananeira de cada genótipo, fornecidas pela Embrapa Mandioca e Fruticultura, 50 mudas da cultivar AAA Cavendish cv. Grande Naine (GN) como padrão suscetível, e 50 mudas de bananeira do genótipo 4279-06 (Hibrido AA: M53 x 2803-01), o último classificado em estudos de melhoramento genético por Silva *et al.* (2001) como resistente a doenças, no caso específico, como resistente ao nematoide das galhas *M. incognita* (Teixeira, 2007) e a *R. similis* (Santos, 2011). As mudas foram transplantadas e mantidas por um período de adaptação de 30 dias, como no Capítulo anterior (Figura 17).

Figura 17. A. Mudas de bananeiras provenientes de cultura de tecidos em fase de adaptação em casa de vegetação do Departamento de Fitopatologia da Universidade de Brasília, utilizadas para estudos de histopatologia. **B.** genótipo Cavendish cv. Grande Naine (GN). **C.** genótipo 4279-06.

2. Fonte de inóculo de Meloidogyne incognita

O inóculo de *M. incognita* utilizado no experimento foi o mesmo utilizado no ensaio do Capítulo II, para estudo do ciclo de vida, proveniente de uma população isolada de raízes de bananeira, cedido por Dr. Dilson Costa da Embrapa Recursos Genéticos e Biotecnologia. O inóculo foi multiplicado em plantas de tomate variedade Santa Cruz.

3. Preparo do inóculo de *Meloidogyne incognita* e inoculação dos J2.

Os nematoides foram extraídos das raízes de tomateiro segundo metodologia descrita no Capítulo II (Hussey e Barker,1973). Foi adotado procedimento idêntico ao Capítulo anterior para a eclosão dos J2 e para a inoculação nos dois genótipos.

4. Desenho experimental para análise histopatológica dos dois genótipos

Foi aplicado um delineamento inteiramente casualizado, com dois tratamentos (genótipos: GN e 4279-06), 12 períodos de observação (3, 6, 9, 12, 15, 18, 21, 24, 27, 30 35 e 40 dias após a inoculação) e três repetições (3 plantas por tratamento). Para cada período de observação deixou-se uma testemunha sem inoculação para comparação.

Tabela 3. Desenho experimental para análise histopatológica na interação *Musa acuminata* GN e 4279-*Meloidogyne incognita*. I: inoculado, NI: não inoculado. DAI: dias após a inoculação.

DAI	3		6		9		12		15		18		Plantas
Genotipos	Ι	NI											
Gran Naine	3	1	3	1	3	1	3	1	3	1	3	1	24
4279-06	3	1	3	1	3	1	3	1	3	1	2	1	23
DAI	21		24		27		30		35		40		
Genotipos	Ι	NI											
Gran Naine	3	1	3	1	3	1	3	1	3	1	3	1	24
4279-06	3	1	3	1	3	1	2	1	2	1	2	1	21
													92

5. Preparo das raízes de bananeira para estudos histopatológicos

Para o estudo histopatológico nos genótipos GN e 4279-06, realizaram-se amostragens nas raízes em cada um dos dias estabelecidos após a inoculação (DAI), retirando uma planta de cada genótipo, por meio da técnica descrita por Pegard *et al.* (2005). As plantas foram cuidadosamente extraídas do substrato e a parte aérea descartada. As raízes foram lavadas em água corrente e a extremidade da raiz de aproximadamente 5 mm de comprimento com ou sem galhas foram retiradas com auxílio de um bisturi e pinça fina.

5.1. Análise histopatológica

Para as análises histopatológicas foram utilizadas as técnicas de coloração com fucsina ácida e a técnica de infiltração com resina Technovit 7100, para comparar as respostas à infecção por *M. incognita* nos dois genótipos, segundo metodologia do Capitulon II. Neste caso, secções histológicas foram preparadas para observar e comparar o desenvolvimento do nematoide nas raízes dos dois genótipos. Inicialmente as seções foram observadas ao microscópio de luz UV, antes ser coradas, a fim de determinar a presença de resposta hipersensível. Assim que foram coradas com azul de toluidina foram observadas ao microscópio de luz Zeiss, para serem foto- documentadas, segundo metodologia de Mota (2010).

5.2. Penetração de J2 nas raízes

Para quantificar a penetração dos J2 nas raízes, utilizaram-se 5 raízes coradas com fucsina ácida, nos três primeiros dias de avaliação: 3, 6 e 9 DAI. Os resultados foram submetidos à análise estatística pelo Programa SISVAR (Ferreira, 2011). Os valores obtidos foram transformados para log10 (x+1) e comparados por análise de variância, seguida do teste de Tukey, a nível de 5% de probabilidade.

6. Análise quantitativa dos estádios de desenvolvimento de *Meloidogyne incognita* nos genótipos GN e 4279-06

Com ajuda da técnica de coloração com fucsina ácida foi feita a contagem do número de indivíduos por estádio de desenvolvimento de *M. incognita*, em cada tempo de avaliação seguindo a mesma metodologia usada no Capitulo II. Para cada tempo de avaliação, cinco raízes ao ocaso foram observadas ao microscópio óptico Zeiss (400X) e os valores médios foram submetidos ao teste de Tukey pelo Programa SISVAR (Ferreira, 2011). As características de cada estádio de *M. incognita* basearam-se nas características adotadas por Eisenback e Triantaphyllou (1991) e Karssen e Moens (2006).

7. Avaliação de características anatômicas de raízes de bananeiras GN e 4279-06 infectadas com *Meloidogyne incognita*

A análise quantitativa das características anatômicas das raízes das bananeiras inoculadas com *M. incognita* nos dois genótipos de banana, GN e 4279-06 foi feita ao microscópio de luz com o software Program Leica Q Win plus V.3.5.0, sendo realizadas em três épocas de coleta: 9, 15 e 21 DAI. Foram mensuradas as áreas do cilindro vascular e a área das células gigantes, número de sitios de alimentação e número de células gigantes. Também foi avaliado o número de vacúolos presentes em cada célula gigante, a fim de comparar o estado de atividade das mesmas. Os dados obtidos, em cinco repetições, foram submetidos à análise estatística pelo Programa SISVAR (Ferreira, 2011) e os valores obtidos foram transformados para log10 (x+1) e comparados por análise de variância, seguida do teste de Tukey, a nível de 5% de probabilidade. A área das células gigantes foi calculada tendo cuidado com a escolha de Secções, no mesmo nível do corte e usando células de maior atividade. A medição de células gigantes em cada seção da raiz é uma medida relativa das alterações celulares nas raízes de bananeiras infectadas.

RESULTADOS

1. Penetração e migração dos nematoides nas raízes

Quanto ao número de J2 penetrando na parte apical das raízes dos dois genótipos, nos três primeiros tempos de avaliação, pelo teste de Tukey ($P \le 0.05$), não foram encontradas diferenças significativas do número de J2 entre os dois genótipos: Aos 3 DAI (p=0.241504); aos 7 DAI (p=0.210975) e aos 9 DAI (P=0.303861). Ainda assim, o genótipo Grande Naine, apresentou valores maiores do número de J2 que penetraram as raízes, com desenvolvimento ligeiramente mais rápido no genótipo suscetível, como pode se observar nas imagens das seções coradas com fucsina ácida.

Nas raízes coradas com fucsina ácida conseguiu-se observar a penetração e o desenvolvimento dos nematoides no interior das raízes dos dois genótipos nos 11 tempos de avaliação. Nas Figuras 18A e 18B, pode se observar que os J2 conseguiram penetrar nos ápices das raízes 3 dias após a inoculação (DAI) nos dois genótipos. Aos 6 DAI encontraramse maior número de nematoides migrando da zona apical e cortical, nas proximidades do cilindro central (Figuras 18C, 18D) e aos 9 DAI os nematoides já haviam estabelecido sítios de alimentação no cilindro central com a formação de células gigantes nos dois genótipos (Figura 18E, 18F). Observou se também que eles já haviam aumentado o diâmetro do corpo.

Aos 12, 15, 18 e 21 DAI, nos dois genótipos encontraram-se um aglomerado de várias fêmeas nos estádios J3 e J4 ocupando o cilindro central e adquirindo o formato piriforme (Figura 18 G-L). No 24° DAI, no genótipo suscetível, as fêmeas começaram a liberar matriz gelatinosa com ovos, completando o ciclo de vida como se constatou no Capitulo II (Figura 18 M). No genótipo 4279-06 encontraram-se massas de ovos só a partir do dia 27 (Figura 18 P). Nos dias 30 e 35 nas raízes do genótipo suscetível todas as fêmeas apresentaram massas de ovos, enquanto que no genótipo 4279-06 foram encontradas algumas fêmeas ainda sem ovos; assim ao 35° DAI, foram encontrados alguns J2 que eclodiram de massas de ovos.

Figura 18. Ciclo de vida de *Meloidogyne incognita* em raízes dos genótipos GN e 4279-06 com a técnica de coloração com fucsina ácida. Estádios de desenvolvimento de *M. incognita*: J2, J2a, J3, J4, F: Fêmea, cc: cilindro central, mo: massas ovos.

2. Resposta histológica à infecção nos dois genótipos

Foram realizadas aproximadamente 4300 Secções de raízes de 4 µm de espessura, para observar as características histológicas das raízes de GN e 4279-06 inoculadas com *M. incognita* as quais foram comparadas com controles sem inoculação. Análises dos cortes histológicos mostraram a formação de células gigantes aos 9 DAI, nos dois genótipos, acompanhada da desorganização do cilindro central. Neste período, o genótipo 4279-06 não apresentou resposta de hipersensibilidade (RH) para a infecção por *M. incognita*. Este resultado foi confirmado por microscopia de fluorescência onde não foram encontradas áreas fluorescentes de necrose (Figuras 19F, 20C, F, I, L) e por coloração das raízes com fucsina ácida (Figura 18). Observou-se também que os nematoides foram capazes de estabelecer sítios de alimentação tanto em raízes do genótipo GN como nas do 4279-06 (Figura 19). Aos 9 e 15 DAI, foram encontradas algumas diferenças na morfologia das células gigantes adjacentes ao nematoide, as quais apresentavam maior número de vacúolos (Figuras 20 B, E, H, D), em comparação às células gigantes das raízes de GN que em geral apresentavam citoplasma denso e com menos vacuolização.

Ainda com estas diferenças, no 18° DAI, os nematoides, foram se desenvolvendo de forma similar nos dois genótipos com base em observações de seu tamanho, forma e aspecto do conteúdo interno das células gigantes, até o 21° DAI (Figura 20E, F). No entanto, os nematoides em raízes do genótipo 4279-06, aos 24 DAI apresentavam desenvolvimento retardado em comparação ao genótipo GN (Figura 20 M,N), no qual no dia 24 já foram encontradas massas de ovos. No genótipo 4279-06, apenas foram encontradas fêmeas com ovos no período de 27 aos 30 DAI, indicando que possivelmente o estabelecimento e o desenvolvimento dos nematoides foram retardados.

Figura 19. Secções de raízes do genótipo Grande Naine (GN). Coluna esquerda: NI: não inoculadas: cc: cilindro central; co: córtex. Colunas central e direita: GN-I raízes infectadas por *Meloidogyne incognita*. A, C, E, G, H, I, J: coloração com azul de toluidina; B, D: fluorescência com UV. A: Estádios J2/J3 rodeados de células gigantes no cilindro central; C, D: estádio J4 rodeado por 5 células gigantes, de citoplasma denso e paredes celulares bem formadas. E. Células gigantes multinucleadas e com citoplasma denso, F, com pequenos vacúolos, G: Cilindro central com vários sítios de alimentação formando um grupo de células gigantes. H, I: Fêmeas adultas. I. Fêmea adulta com ovários bem formados, J: Fêmea adulta com massa de ovos dentro da raiz. N: nematoide, F: Fêmea, cg: célula gigante, n: núcleo, mo: massa de ovos, V: vacúolo, ov: ovário.

Figura 20. Secções de raízes do genótipo 4279-06. Coluna esquerda: NI: não inoculadas. cc: cilindro central; co: córtex. Colunas central e direita: 4279-06-I: raízes infectadas por *Meloidogyne incognita*. A, C, E, G, H, I, K, M, N: coloração com azul de toluidina; B, D, F, H, J, L: microscopia de fluorescência UV. A, C, E: Células gigantes com vacúolos visíveis, G, I, K, M: Fêmeas rodeadas por 4-6 células gigantes normais com citoplasma denso. D, F, H: Secções que mostram células gigantes normais com paredes definidas, com ausência de resposta hipersensível (HR). cc: cilindro central com vários sítios de alimentação formando um grupo de células gigantes. J, L, M: Fêmeas adultas com ovários bem formados. N: Fêmea adulta com massas de ovos dentro da raiz. N: nematoide, F: Fêmea, cg: célula gigante, n: núcleo, mo: massa de ovos, V: vacúolo, ov: ovário.

3. Análise quantitativa nos estádios de desenvolvimento de *Meloidogyne incognita* nos genótipos GN e 4279-06

Os dados estatísticos obtidos no estudo do ciclo biológico de *M. incognita* nos genótipos GN e 4279-06 estão apresentados nas Figuras 21 e 22. Pode se observar que nos 3, 6 e 9 DAI, as médias das percentagens de J2a e juvenis com alargamento (J2b) encontrados nas raízes do GN e 4279-06 não diferiram significativamente, média também compatível com os dados da análise de penetração de J2, para os mesmos períodos de observação. Aos 15 DAI, foram encontrados os estádios J2a, J2b e J3 nos dois genótipos com diferenças significativas apenas para o estádio J3, com maior número no genótipo GN (0,0089<0,05p). Aos 21 DAI, além de J2a e J3 foram encontrados J4, também significativamente maior em GN (0,00518<0,05p). Aos 24 dias após a inoculação, no sistema radicular de GN se encontravam presentes todos os estádios de desenvolvimento de *M. incognita*, exceto (J2a), além disso, foram encontradas as primeiras fêmeas com ovos, enquanto que no genótipo 4279-06 teve um ligeiro atraso no desenvolvimento em comparação com o genótipo GN.

Aos 24 e 27 dias ocorreram diferenças significativas quanto ao número de fêmeas adultas entre os dois genótipos (P= 0,01005 e P=0,05195, respectivamente), enquanto que para os demais estádios não foram encontradas diferenças significativas. No dia 27 após a inoculação foram visualizadas as primeiras fêmeas com ovos no genótipo 4279-06, com número médio significativamente menor de ovos que no genótipo GN (P= 0,0029). Aos 30 DAI, para os estádios J2a, J3, J4, machos, fêmeas e ovos/fêmea, não encontraram-se diferenças significativas entre os dois genótipos. Aos 35 DAI, *M. incognita* apresentou baixa percentagem de estádios J2a, nos dois genótipos, não diferindo significativamente entre estes. Os demais estádios de desenvolvimento do nematoide não foram encontrados nesta época para o genótipo GN, enquanto que no genótipo 4279-06 foram encontrados os estádios J3 e J4 (Figuras 21 e 22).

De maneira geral o ciclo de vida de *M. incognita* foi similar nos dois genótipos, com ligeiras diferenças no número médio de indivíduos nos estádios J3, J4, fêmeas, machos e ovos nos dias 15, 21, 24, 30 e 35. Ainda que os J2s de *M. incognita* conseguiram penetrar de modo similar nas raízes dos dois genótipos nos primeiros 9 dias, o desenvolvimento foi ligeiramente

retardado no genótipo 4279-06 comparado a GN, após 15 dias da inoculação, como também foi observado através da análise histológica.

GN/4279	J2a	J2b	J3	J4	Fêmeas	Machos	Ovos
3	0,1518345	-	-	-	-	-	-
6	0,0926527	-	-	-	-	-	-
9	0,1962612	0,851237	-	-	-	-	-
15	0,64333	0,12343	<u>0,0089709*</u>	-	-	-	-
21	0,373901	0,4299673	0,4441071	<u>0,0051796*</u>	-	-	-
24	-	0,373901	0,4882509	0,4216483	<u>0,01005971</u> *	-	
	0,11713010	9 -					
27	-	-	0,2605745	-	<u>0,05197969</u> *	0,7676439	<u>0,0029351</u> *
30	0,116117	-	-	0,0733885	-	0,6433301	0,398463
35	0,0667665	-	0,1317776	<u>0,0079662</u> *	0,2197662	<u>0,0213116</u> *	-

Tabela 4. Dados de P obtidos pelo teste de Tukey (P=0,05) comparando cada um dos estádios do ciclo de vida de *Meloidogyne incognita* em bananeiras GN e 4279-06. *dados significativamentente diferentes (P=0,05).

Figura 21. Número médio de individuos/estádio, J2a, J2b, J3, J4, fêmeas (F) e machos (M) adultos de *Meloidogyne incognita* encontrados em raízes de GN inoculadas com 5000 J2/planta, nos tempos de avaliação (DAI).

Figura 22. Número médio de indivíduos/estádio J2a, J2b, J3, J4, fêmeas (F) e macho (M) adultos de *Meloidogyne incognita* encontrados em raízes de banana 4279-06 inoculadas com 5000 J2/planta, nos tempos de avaliação (DAI).

4. Avaliação dos parâmetros anatômicos de raízes de GN e 4279-06 inoculadas com *Meloidogyne incognita*

Dimensões das áreas do cilindro central e das células gigantes mensuradas nos dias 9, 15 e 21 DAI, revelaram que as células gigantes se desenvolveram totalmente nos dois genótipos e, que elas foram aumentando a área à medida que aumentavam os dias de amostragem. A análise estatística, não revelou diferenças significativas entre os dois parâmetros avaliados nos dois genótipos (Tabela 5A), ainda assim, os valores das áreas médias do genótipo GN foram sempre maiores que no genótipo 4279-06. Os demais parâmetros avaliados: número de sítios de alimentação e número de células gigantes também não mostraram diferenças significativas entre os dois genótipos, como pode se observar também na Tabela 4A, indicando que *M. incognita* é capaz de completar o ciclo de vida nos dois genótipos, embora haja um ligeiro atraso de 3-6 dias no ciclo no genótipo 4279-06.

Nos cortes de raízes dos genótipos GN e 4279 foram encontradas algumas diferenças quanto à presença de vacúolos nas células gigantes, por isso também realizou-se a contagem do número de vacúolos por célula gigante aos 15, 18 e 21 DAI, mas segundo a análise estatística, não encontrou-se diferença significativa no número de vacúolos entre os dois genótipos para as três datas avaliadas (Tabela 5B). Anda assim nos três tempos, o genótipo 4279-06 apresentou valores maiores no número de vacúolos comparados ao genótipo GN.

culação (Dai) c os de células gi	com <i>M. inc</i> gantes aval	<i>cognita (Mi)</i> liadas aos 15,	inoculado e , 18 e 21 DA	m bananas d I. Média de c	los doi genót inco repetiçõ	ipos. B . Va es.	lores médi
		I	3				
Tratamentos	DAI	AVC	ACG	NSA	NCG	Dai	Vac
CV M:	0	0.179	0.009	1 (00	5 800	15	1.4

Tabela 5. Parâmetros anatômicos de raízes de banaeiras GN e 4279-06 infectadas com *Meloidogyne incognita*. **A.** Valores médios da área do cilindro vascular (ACC) e das células gigantes (ACG) (em mm²); número de sítios de alimentação (NSA); número de células gigantes (NCG), avaliados aos 9, 15 e 21 dias após da inoculação (Dai) com *M. incognita (Mi)* inoculado em bananas dos doi genótipos. **B**. Valores médios de vacúolos de células gigantes avaliadas aos 15, 18 e 21 DAI. Média de cinco repetições.

_			п		D				
	Tratamentos	DAI	AVC	ACG	NSA	NCG	Dai	Vac	
	CV-Mi	9	0,178	0,008	1,600	5,800	15	1,4	
	GN-Mi	15	0,400	0,026	2,800	10,200	18	1,2	
	GN-Mi	21	0,336	0,030	3,200	14,60	21	1,6	
	1270 06 Mi	0	0.172	0.006	1 200	4 400	15	26	
	42/9-00- <i>M</i> 1	9	0,172	0,000	1,200	4,400	15	5,0	
	4279-06-Mi	15	0,304	0,023	2,200	7,800	18	3,2	
	4279-06-Mi	21	0,316	0,026	2,600	11,400	21	2,2	

5. Sintomas em raízes

Nas raízes dos dois genótipos parasitadas por *M. incognita*, observou-se a formação de galhas (Figura 23), sendo elas ligeiramente maiores no genótipo GN suscetível, a partir dodia 10 após a inoculação. Até o 24° DAI observou-se maior número de raízes secundárias no genótipo 4279-06. No dia 30, foram visualizadas dilatações nas raízes principais dos dois genótipos, com dilatações maiores no genótipo suscetível. No dia 45 observou-se que os dois genótipos apresentavam galhas tanto nas raízes principais como nas secundárias, porém o genótipo 4279-06 apresentava maior número de raízes secundárias formadas acima das áreas com galhas, que pode ser um indício de tolerância (Figura 23 A).

Além das observações dos sintomas em raízes, plantas após 6 meses da inoculação com *M. incognita*.Em GN as plantas apresentaram menor altura e vigor que as plantas do genótipo 4279-06 (Figura 23B).

Figura 23. Sintomas de *Meloidogyne incognita* nos dias de avaliação (DAI) durante o ciclo de vida do nematoide, em raízes dos genótipos GN e 4279-06. A. sintoma de galhas, inicialmente foram mais evidentes no genótipo GN, no dia 45 o genótipo 4279-06 apresentou maior formação se raízes secundárias acima da área das galhas (setas). B. Síntomas aéreos em bananeiras seis meses após a inoculação com *M. incognita*. Observa-se maior vigor e altura no genótipo 4279-06.

DISCUSSÃO

Juvenis infectantes de segundo estádio (J2) de *M. incognita* conseguiram penetrar nos ápices das raízes dos dois genótipos 3 DAI, encontrando-se maior número de nematoides penetrando no 6° DAI migrando desde a região apical, pelo córtex até o cilindro central da zona de elongação e no 9° DAI já tinham estabelecendo seus sítios de alimentação. Não houve diferença significativa do número de J2 de *M. incognita* que penetraram nas raízes nos dois genótipos avaliados, nesse período, em consonância com Dropkin (1969), Paulson e Webster (1972) e Ho *et al.* (1992), que afirmam que tanto em plantas susceptíveis como naquelas resistentes, nos primeiros dias depois da inoculação, os nematoides são atraídos às raízes e penetram pela zona meristemática, migrando em direção ao cilindro vascular. O estabelecimento e formação de sítio de alimentação variam dependendo da susceptibilidade ou resistência da planta a determinada espécie de nematoide das galhas. Conforme revisado por Taylor e Sasser (1983), ocorre a penetração massal de juvenis de *Meloidogyne* spp. nos primeiros dias após da inoculação já sendo expressiva em períodos inferiores a 24 horas da inoculação.

Quanto à penetração dos J2 de *M. incognita*, os resultados deste estudo concordam com outros realizados por Pegard *et al.* (2005) em pimentão (*Capsicum annuum* L.) onde a maioria dos J2 de *M. incognita* penetrava no 5° DAI na variedade suscetível, sendo significativamente menor na cultivar resistente CM334. Das *et al.* (2008) em *Vigna unguiculata* (L.) Walp, observaram que os nematoides penetraram nas raízes depois de 72 horas nos genótipos, suscetível e resistente. Mota *et al.* (2012) em algodão (*Gossypium hursutum* L.) encontraram J2 de *M. incognita* no cilindro central nos genótipos, suscetível e resistente, entre 7-9 DAI e, aos 11 e 16 DAI foram observados J2s em fase de alimentação sendo eles menos desenvolvidos nos genótipos resistentes. Santini (2014) observou que *M. incognita* conseguiu penetrar no genótipo de feijoeiro IPR Saracura, no 4° DAI e, no 10° DAI já haviam estabelecido sítios de alimentação com células gigantes.

Neste estudo, em raízes de bananeira, o ciclo de vida de *M. incognita* foi similar nos dois genótipos, mas no genótipo Grande Naine, suscetível, o ciclo concluiu aos 24 DAI, quando foram encontradas as primeiras massas de ovos, enquanto que no genótipo 4279-06, só foi observada a produção de ovos depois de 27 dias da inoculação. Das *et al.* (2008) em *Vigna unguiculata*, encontraram as primeiras massas de ovos de *M. incognita* na cv. suscetível no 21° DAI, quanto que na resistente poucos nematoides conseguiram chegar à fase adulta. Mota *et al.* (2012) encontraram massas de ovos de *M. incognita* raça 3, na variedade

119

suscetível de algodão, depois do dia 34, e na resistente os nematoides apenas conseguiram chegar até os estádios J3 e J4. Lima *et al.* (2013) observaram duas respostas de RH, uma inicial e outra tardia, onde as fêmeas não conseguiram se desenvolver completamente. Santini (2014) em feijoeiro IPR Saracura verificou-se que *M. incognita* completa o ciclo 30 DAI, onde observou fêmeas adultas com massas de ovos.

As raízes dos dois genótipos de banana avaliados, não apresentaram alterações anatômicas nos primeiros dias de avaliação (aos 3 e 6 DAI). Depois do dia 9 da inoculação, encontraram-se início de formação de células gigantes nos dois genótipos, com poucos núcleos. Segundo Abad *et al.* (2009), um dos primeiros sinais de indução de células gigantes é a formação de células parenquimáticas binucleadas, que depois vão se tornando multinucleadas por meio de repetidas divisões nucleares sem divisão celular, resultando na desorganização do cilindro central e dilatação da raiz na área de ataque; também afirmam que a manutenção das células gigantes é essencial para suprir as exigências nutricionais dos nematoides para seu desenvolvimento e reprodução.

Dos 12 aos 24 DAI o desenvolvimento do *M. incognita* foi similar nos dois genótipos e os nematoides foram capazes de iniciar e manter células gigantes aparentemente saudáveis, durante o ciclo do nematoide. Aos 12, 15, 18 e 21 DAI as células gigantes apresentaram-se multinucleadas, com 3-11 núcleos. Corrêa (2005) observou aos 15 DAI, em plantas de tomateiro inoculadas com *M. incognita*, células gigantes multinucleadas, com 5-12 núcleos e parede mais espessa; Oliveira (2006) em raízes do cafeeiro 'Catuai' inoculadas com *M. incognita* encontrou os primeiros indícios de células de alimentação aos 6 DAI e aos 8 DAI, as células gigantes, já apresentavam características típicas, com conteúdo multinucleado com parede espessa e citoplasma denso. A presença das células gigantes no cilindro vascular sugere um possível comprometimento de suas funções, ocasionando redução do transporte de água e nutrientes pelo xilema (Dorhout *et al.*, 1991).

Na análise de mais de 2300 Secções de raízes de banana do genótipo 4279-06, inoculadas com *M. incognita* estas não apresentaram resposta de hipersensibilidade (RH) típica de plantas resistentes ao nematoide das galhas como se esperava. A falta de resposta RH também foi confirmada com a coloração das raízes com fucsina ácida nos períodos avaliados e por uso da microscopia de fluorescência de UV, onde observou-se que as células da raiz circundantes aos nematoides não apresentavam acúmulo de células necróticas ou compostos fenólicos. A resistência de plantas a nematoides está claramente associada a sintomas de RH que é uma reação comum da planta contra patógenos, em que ocorre a morte programada das células em torno da área de infecção, e o desenvolvimento do patógeno é paralisado (Watanabe e Lam, 2004; Williamson e Kumar, 2006), mas como se comprovou por análises histológicas, no genótipo 4279-06 de banana essa resposta não foi encontrada. No entanto, em outros estudos realizados foi demostrada a presença de RH próximo ao local de infecção por *M. incognita*. No estudo de Kaplan *et al.* (1979) em raízes de soja resistentes a *M. incognita*, a RH apresentou-se aos 2-3 DAI; em tomateiros resistentes (Williamson, 1999) a ocorrência de RH surgiu aos primeiros 24 DAI e o nematoide não obteve sucesso em estabelecer um sítio de alimentação, não conseguindo se desenvolver; em pimentão (Pegard *et al.*, 2005) a RH foi visível em 1-3 DAI, em café (Albuquerque, 2009) entre 4-6 DAI, e em algodão (Mota *et al.*, 2012) detectaram uma primeira reação de RH aos 9-11 DAI. Lima *et al.* (2013) em raízes de café Conilon (código 14) encontraram duas respostas de RH: uma inicial entre os 4-6 DAI e uma segunda aos dias 20-45, com morte celular ao redor das fêmeas e com a presença de células gigantes completamente degeneradas, onde as fêmeas não conseguiram se desenvolver completamente e sem produção de ovos.

A partir do dia 15, observou-se uma diferença visível, quanto à vacuolização das células gigantes entre os genótipos de banana resistente e suscetível. Segundo Das et al. (2008) é possível que os grandes vacúolos em raízes resistentes privassem os nematoides de nutrientes levando ao atraso em seu desenvolvimento. No genótipo 4279-06 observou-se especialmente vacuolização e afinamento da parede celular, comparado com células gigantes do genótipo suscetível que geralmente apresentavam células gigantes normais com citoplasma denso, além disso, no genótipo 4279-06 as fêmeas demoraram um pouco mais a completar o seu desenvolvimento (27 e 30 DAI) e a produzir ovos, em comparação ao genótipo suscetível GN. Mota et al., (2012) encontraram também uma diferença significativa na vacuolização das células gigantes, entre os genótipos de algodoeiro resistente e suscetível a partir dos 14 DAI. É possível que os grandes vacúolos em raízes de algodão resistente TX-25, foram preenchidos com hidrolases e toxinas que privaram os nematoides de nutrientes. Este tipo de resposta como possível mecanismo de resistência tardia contra o nematoide das galhas parece ser utilizado por algumas plantas como já foi descrito por Powell (1962) em tabaco, onde a RH tardia foi vista em células gigantes desenvolvidas. Segundo Jones (2001), uma característica comum dessa resposta é que esta é precedida por uma carga de vacúolos com hidrolases e toxinas e o aumento do fluxo de cálcio no citoplasma, assim, a defesa da hospedeira pode ser eficaz na ausência de RH e pode ser dependente de mudanças sutis no fluxo iônico. O genótipo 4279-06 de banana que foi catalogado como resistente a M. incognita (Teixeira, 2007), mas não apresentou RH mesmo durante os últimos estágios da infecção, sendo que durante esse período os nematoides foram capazes de se alimentar e se desenvolver mesmo que tardiamente até a fase adulta com a formação de massas de ovos. É importante mencionar também que no período da avaliação a temperatura média do solo foi de 26 °C (\pm 5), mas em alguns dias do bioensaio a temperatura chegou a 30°C, o que pode ter afetado o comportamento dos nematoides, já que a temperaturas acima de 30 °C encurta-se o ciclo de vida do nematoide, tornando estes mais ativos, podendo também afetar a expressão de defesa da planta no caso de variedades resistentes.

Estudos anteriores de Teixeira (2007) e de Santos (2011) classificaram o genótipo de banana 4279-06, como resistente a *M. incognita* (RF= 0,67), mas ao comparar os resultados de diferentes trabalhos, encontra-se grande divergência quanto à classificação da resistência em bananeiras ao nematoide das galhas (Carneiro e Ferraz, 1992; Costa *et al.*, 1998; Cofcewicz *et al.*, 2004; Tenente *et al.*, 2008). Essas discrepâncias podem ser causadas por falta de padronização na metodologia empregada, como por exemplo, o estado fisiológico das plantas utilizadas, a diferença na quantidade de inóculo utilizada para a mensuração da resistência (1000, 2500, 5000, 6000, 10000 ou, 15000 ovos /J2) ou quando o coeficiente de variação no nível de reprodução dos nematoides é relativamente alto nos ensaios, além de possíveis perdas de nematoides durante o processamento das amostras que podem ocasionar uma contagem subestimada da população final e consequentemente no FR, favorecendo a classificação inadequada de um genótipo como resistente.

Vale ressaltar que neste trabalho o genótipo 4279-06 apresentou uma resposta diferente daquela apresentada em outros trabalhos já mencionados usando uma população diferente de *M. incognita* o que sugere a existência de variação na sua agressividade, como foi observado por Oliveira (2006) em duas populações de M. incognita de Minas Gerais, onde a penetração de J2 foi 89,5 e 92,7% menor do que a apresentada por uma população de M. incognita de São Paulo, em cafeeiros 'Catuaí Vermelho IAC 44' e 'Apoatã IAC 2258', respectivamente. De acordo com o autor tal incompatibilidade pode ser devido à existência de mecanismos de resistência que reduzem a penetração do nematoide, ou a existência de barreiras morfológicas ou a produção de exsudados radiculares que não atraem ou repelem os J2 de dada população e também por fatores de resistência pós-penetração que ocasionam uma significativa emigração dos J2 impedindo o estabelecimento do nematoide (Niblack et al., 1986; Potenza et al., 1996). No estudo de Silva et al. (2014), as populações MT-R4 e PR-R3 (UMU) de M. incognita venceram a resistência de Clevewilt-6 e LA-887, dois acessos de algodão considerados como moderadamente resistentes. Segundo Hussey e Janssen (2002) isto pode acontecer devido à variação fisiológica entre as espécies na interação planta-nematoide no nível de agressividade (capacidade de reproduzir em um hospedeiro suscetível) e de virulência (capacidade de

reproduzir em um hospedeiro resistente). Segundo Castagnone-Sereno (2006) *M. incognita* por ser uma espécie que reproduz por partenogênese mitótica apresentam uma elevada capacidade de responder à seleção ambiental, por exemplo, a sua capacidade de superar os genes de resistência das plantas.

Quanto aos sintomas nas raízes, no genótipo 4279-06 observou-se maior número de raízes secundárias formadas próximo às áreas infectadas com galhas, que no genótipo GN, como uma possível reação de tolerância da planta ao ataque do parasita. Segundo Greco e Di Vito (2009), plantas tolerantes ao ataque do patógeno são capazes de produzir novas raízes e compensar os danos sofridos por aquelas parasitadas.

CONCLUSÕES

Segundo os resultados deste estudo utilizando técnicas histopatológicas, o genótipo 4279-06 apresentou uma resposta de defesa tardia ao parasitismo por *M. incognita* com ausência de resposta hipersensível (HR) característica da maioria dos genótipos com resistência gene-a-gene.

O genótipo 4279-06 não apresentou resistência à população de *M. incognita*, conforme constatado pelas análises estatísticas onde não houve diferença significativa entre nas dimensões do cilindro central, células gigantes, nem no número sítios de alimentação, células gigantes e vacúolos, nos dois genótipos, nos tempos avaliados.

Nos sintomas em raízes, o genótipo 4279-06 apresentou características de tolerância, já que permitiu o estabelecimento e desenvolvimento de *M. incognita*, até o final do ciclo sem afetar o desenvolvimento das plantas e com a emissão mais abundante de raízes secundárias.

O ciclo de vida de *M. incognita* nos dois genótipos foi similar com ligeiras diferenças no número de indivíduos nos estádios J3, J4, nos dias 15, 21 e 35, e no número de fêmeas, machos e de ovos nos dias 24, 27 e 35.

Este é o primeiro estudo histológico da interação *Musa - Meloidogyne* no Brasil, e os resultados além de permitir o conhecimento de seu parasitismo, servirão de base para estudos de resistência ao nematoide das galhas em outros genótipos de bananeiras.

REFERÊNCIAS BIBLIOGRÁFICAS

ABAD P, FAVERY B, ROSSO M, CASTAGNONE-SERENO P. 2003 Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology 4, 217-224.

ABAD P, CASTAGNONE-SERENO P, ROSSO MN, ENGLER AJ, FAVERY B. 2009. Invasion, feeding and development. p. 163-181. In: Root-knot Nematodes. Moens M, RN Perry, JL Starr (eds). CABI, Belgium and Department of Crop Protection, Ghent, Belgium.

ABRÃO MM E MAZZAFERA P. 2001. Efeitos do nível de inóculo de *Meloidogyne incognita* em algodoeiro. Bragantia 60(1): 19-26.

ALBUQUERQUE EVS. 2009. Estudo da interação entre *Coffea arabica* e nematoide da galha *Meloidogyne incognita*: Identificação da resistência e caracterização por histopatologia e genômica funcional. Tese de Doutorado. Universidade federal do Rio Grande do Sul e L'École Doctorale SIBAGHE da UM2 - L'Université de Montpellier II, École Doctorale SIBAGHE da UM2, França.

ARIAS Y, GONZÁLEZ I, RODRÍGUEZ M, ROSALES C, SUÁREZ Z, PETEIRA B. 2009. Aspectos generales de la interacción tomate (*Solanum lycopersicum L.*) - *Meloidogyne incognita*. RevIsta de Protección Veg. 24(1):1-13.

ATKINSON HJ, DALE J, HARDING A, KIGGUNU K, KUNERT K, MUCHWEZI JM, SAGI L, VILJOEN A. 2003. Genetic transformations to address the major constraints to banana and plant production in Africa. INIBAP. Montpellier (FRA),130p.

BALDRIDGE GD, NEILL NRO, SAMAC DA. 1998. Alfalfa (*Medicago sativa* L.) resistance to the root-lesion nematode, *Pratylenchus penetrans*: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Molecular Biology 38:999–1010.

BINKS RH, GREENHAM JR, LUIS JG GOWEN SR. 1997. A phytoalexin from roots of *Musa acuminata* var. 'Pisang Sipulu'. Phytochemistry 45:47-49.

BYRD DW, KIRKPATRICK T, BARKER KR. 1983. An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology 15(1):142-143.

CARNEIRO RG, FERRAZ S. 1992. Reação de cultivares de feijoeiro a *Meloidogyne incognita* raça 3. Nematologia Brasileira 16(2):35-40.

CASTAGNONE-SERENO P. 2006. Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity 96:282–289.

CHITWOOD DJ. 1993. Naturally occurring nematicides. ACS Symp. Ser. 524: 300-315.

COFCEWICZ ET, CARNEIRO RMDG, CORDERO CMT, QUÉNÉHERVÉ P, FARIA JLC. 2004. Reação de cultivares de bananeira a diferentes especies de nematoides das galhas. Nematologia Brasileira 28(1):11-22.

COOLEN WA, D"HERDE CJ. 1972. A method for the quantitative extraction of nematodes from plant tissue. Ghent: Nematology and Entomology Research Station, 77p.

COSTA DC, SILVA SO, ALVES FR. 1998. Reação de genótipos de bananeira (*Musa* sp.) a *Radopholus similis* e *Meloidogyne incognita*. Nematologia Brasileira 22:49-56.

COSTA DC. 2004. Variabilidade patogênica e genética de *Radopholus similis* em bananeira no Brasil. Tese de Doutorado, Universidade de Brasília, Brasil.

CORRÊA CF. 2005. Alterações anatômicas e fases do desenvolvimento de células gigantes induzidas por nematoides formadores de galhas (*Meloidogyne* spp.) em raízes de plantas suscetíveis. Tese de Doutorado em Ciências Biológicas/Botânica. Universidade Estadual Paulista, Botucatu. 150 p.

DAS S, DEMASON DA, EHLERS JD, CLOSE TJ, ROBERTS PA. 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany 59 (6):1305–1313.

DORHOUT R, GOMMERS FJ, KOLLÖFFEL C. 1991. Water transport through tomato roots infected with *Meloidogyne incognita*. Phytopathology, 81(4):379-385.

DROPKIN VH. 1969. The necrotic reaction of tomatoes and other hosts resistant to *Meloidogyne*: reversal by temperature. Phytopathology 59(11):1632-1637.

EISENBACK JD, TRIANTAPHYLLOU H. 1991. Root-knot nematodes: *Meloidogyne* species and races. In: Nickle WR (Ed.) Manual of Agricultural Nematology. Marcel Dekker, New York, pp. 191–274.

FERREIRA S, GOMES LAA, MALUF WR, CAMPOS VP, CARVALHO FILHO JLS, SANTOS DC. 2010. Resistance of dry bean and snap bean cultivars to rootknot nematodes. HortScience, 45(2):320-322.

FERREIRA DF. 2011. SISVAR: A Computer Statistical Analysis System. Ciência e Agrotecnologia (UFLA) 35 (6):1039-1042.

GIEBEL J. 1982. Mechanisms of resistance to plant nematodes. Annual Review of Phytophathology 20: 275 – 279.

GRECO N, DI VITO M. 2009. Population dynamics and damage levels. In: Perry M, Moens N, Starr JL (Eds). Root-knot nematodes. CABI, Cambridge: North American Office, p. 246–274.

HO JY, WEIDE R, MA HM, VAN WORDRAGEN MF, LAMBERT KN, *ET AL*. 1992. The rootknot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant Journal2:971-982.

HOOPER DJ, HALLMANN J, SUBBOTIN AS. 2005. Methods for extraction, processing and detection of plant and soil nematodes. In: Luc M, Sikora RA, Bridge J. Plant Parasitic . CABI. Nematodes in Subtropical and Tropical Agriculturep 53-80.

HUANG JS. 1985. Mechanisms of resistance to root knot nematodes. In: Sasser JN, Carter CC (Ed) An advanced treatise on *Meloidogyne*. Raleigh: North Carolina State University. 1: 165-174.

HUSSEY RS, JANSSEN GJW. 2002. Root-knot nematodes: *Meloidogyne* species. In Starr L, Cook R, Bridge J. (Eds), Plant resistance to parasitic nematodes, Wallingford: CABI. p. 43–70.

JONES AM. 2001. Programmed cell death in development and defence. Plant Physiology 125:94–97.

KAPLAN DT, THOMASON IJ, VAN GUNDY SD. 1979. Histological study of compatible and incompatible interaction of soybeans and *Meloidogyne incognita*. Journal of Nematology 11:338–343.

KARSEN G, MOENS M. 2006. Root knot-Nematodes. In: Perry RN, Moens M (Eds) Plant Nematology, Cambridge, USA, CABI North American .60-88.

KASHAIJA IN. 1996. Factors influencing nematode population densities and root damage on banana cultivars in Uganda. PhD Thesis, University of Reading. 242p.

LAM E, KATO N, LAWTON M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853.

LIMA EA, FURLANETTO C, SOUSA MG, MENEZES ACM, SOUSA FR, ALMEIDA MRA, SERGIO-JÚNIOR A., FERRÃO MA, CARNEIRO RMDG. 2013. Resistência múltipla e resposta de hipersensibilidade do cafeeiro 'conilon 14' a *Meloidogyne* spp. VIII Simpósio de Pesquisa dos Cafés do Brasil. Salvador - BA.

LUIS JG. 1998. Phenylphenalenone-type phytoalexins and phytoanticipins from susceptible and resistant cultivars of *Musa* species. Its potential for engineering resistance to fungi and nematodes into banana. Acta Horticulturae 490:425-430.

MOTA FC. 2010. Análise de fontes de resistência do algodoeiro a *Meloidogyne incognita* raça 3 e caracterização histopatológica da interação planta-nematoide. Dissertação de Mestrado em Fitopatologia. Universidade de Brasília. 76 p.

MOTA FC, ALVES GCS, GIBAND MA, GOMES CMM, SOUSA FR, MATTOS VS, *ET AL*. 2012. New sources of resistance to *Meloidogyne incognita* race 3 in wild cotton accessions and histological characterization of the defence mechanisms. Plant Pathology. Doi: 10.1111/ppa.12022

NIBLACK, TL, HUSSEY RS A, BOERMA HR. 1986. Effects of *Heterodera glycines* and *Meloidogyne incognita* on early growth of soybean. Journal of Nematology 18: 444.

OLIVEIRA DS. 2006. Patogenicidade de populações de *M. incognita*, provenientes de Minas Gerais e São Paulo, ao cafeeiro. Tese (Doutorado em Agronomia/Fitopatologia)-Universidade Federal de Viçosa. 75p.

PAULSON RE, WEBSTER JM. 1972. Ultrastructure of the hypersensitive reaction in roots of tomato *Lycopersicum esculentum* L. to infection by the root-knot nematode, *Meloidogyne incognita*. Physiol. Plant Pathology 2: 227-234.

PEGARD A, BRIZZARD G, FAZARI A, SOUCAZE O, ABAD P, DJAN-CAPAROLINO C. 2005. Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in *Capsicum annuum*. Phytopathology 95(2): 158-165.

PERRY RN, MOENS M. 2006. Plant Nematology. CABI International, North American Office. Agricultural Research Centre, Crop Protection Department, Ghent, Belgium. 447 p.

PERRY RN, MOENS M, STAR JL. 2009. Root-knot Nematodes. CABI, Department of Crop Protection, Ghent, Belgium. 488p.

POTENZA, CL, THOMAS SH, HIGGINS EA SENGUPTA-GOPALAN C. 1996. Early root response *Meloidogyne incognita* in resistant and susceptible alfafa cultivars. Journal of Nematology 28:475.

POWELL NT. 1962. Histological basis of resistance to root-knot nematodes in flue-cured tobacco (abstract). Phytopathology 52: 25.

QUÉNÉHERVÉ P, VALETTE C, TOPART P, TEZENAS DU MONTCEL H, SALMON F. 2009. Nematode resistance in bananas: screening results on some wild and cultivated accessions of *Musa* spp. Euphytica 165: 123-136.
SANTINI L. 2014. Análise, via RNAseq, do transcritoma do feijoeiro e identificação de genes expressos em resposta à infecção pelo nematoide das galhas. Tese de Doutorado. ESALQ, Piracicaba. 118 p.

SANTOS JRP. 2011. Caracterização genética e molecular de acessos de bananeira a *Radopholus similis* e *Meloidogyne incognita*. Tese de Doutorado em Fitopatologia, Universidade de Brasília, Brasília, DF. 244p.

SIJMONS PC, GRUNDLER FMW, VON MENDE N, BURROWS PR, WYSS U. 1991. *Arabidopsis thaliana* as a new model host for plant-parasitic nematodes. Plant Journal 1: 245-254.

SILVA EH, MATTOS VS, FURLANETO C, GIBAND M, BARROSO PAV, MOITA AW, *ET AL*. 2014. Genetic variability and virulence of *Meloidogyne incognita* populations from Brazil to resistant cotton genotypes. European Journal of Plant Pathology 138(1).

TAYLOR, SASSER JN. 1983. Biología, identificación y control de los nematodos de nódulo de la raíz (especies de *Meloidogyne*). Proyecto Internacional de *Meloidogyne*. Universidad del Estado de Carolina del Norte, USA. 111p.

TEIXEIRA MA. 2007. Resistência de genótipos de bananeira a *Meloidogyne incognita, M. javanica e M. arenaria* e variabilidade genética com base em marcadores moleculares RAPD. Dissertação (Mestrado), Universidade de Brasília. 68p.

TENENTE RCV, FÔNSECA M, SOUSA-VILARDI AIM, SILVA SO, SILVA NETO SP, SILVA EG, CARRIJO OA, ARAYA M. 2008. Reação de diferentes cultivares de banana (*Musa* spp.) a *Meloidogyne incognita* raças 1 e 4. Nematologia Brasileira 32(4): 285-293.

WATANABE N, LAM E. 2004. Recent advance in the study of caspase-like proteases and Bax inhibitor-1 in plants: their possible roles as regulator of programmed cell death. Molecular Plant Pathology 5: 65-70.

WESTERICH JN. 2010. Estudos histopatológicos e ciclos biológicos de *Meloidogyne mayaguensis e M. javanica* em tomateiros com gene *Mi*. Tese de Mestrado em Agronomia, Universidade Estadual Paulista, 83 p.

WESTERICH JN, ROSA JMO, WILCKEN SRS. 2011. Estudo comparativo da biologia de *Meloidogyne enterolobii* (=*M. mayaguensis*) e *Meloidogyne javanica* em tomateiros com gene Mi. Summa Phytopathologica 37(1):35-41.

WHITEHEAD AG, HEMMING JR. 1965. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann. Appl. Biology 55:25-38.

WILLIAMSON VM, HUSSEY RS. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8:1735-1745.

WILLIAMSON VM. 1999. Plant nematode resistance genes. Current Opinion in Plant Biology 2:327–331.

WILLIAMSON VM KUMAR A. 2006. Nematode resistance in plants: the battle underground. Trends in Genetics 22:396-403.

RESUMO

A bananeira (*Musa* spp.) é uma importante cultura, que contribui para a segurança alimentar global. Muitas cultivares são de sementes estéreis, evoluídas a formas assexuadas, resultando em uma base genética restrita à falta de resistência a pragas e doenças. Este estudo descreve a caracterização do transcritoma de raiz, nos 'genótipos Musa acuminata 4297-06' (AA) e 'Cavendish Grande Naine (AAA) (GN) durante as interações compatíveis com o nematoide das galhas Meloidogyne incognita. Um total de 24 bibliotecas cDNA foram preparadas a partir de amostras de RNA extraídas 3, 7 e 10 dias após a inoculação (DAI) com juvenis (J2) do nematoide, emparelhados e sequênciados utilizando a tecnologia Illumina HiSeq 2500. Um total de 350.781.752 sequências de alta qualidade foram mapeadas para M. acuminata DH (http://banana-genome.eirad.fr/content/download-dhpahang) Pahang genoma usando Novoalign / Useq, com 37.604 unigenes identificados. Sequências de transcrições foram atribuídas a categorias funcionais usando Blast2GO, com 320.113 termos GO atribuídas. Foram identificados 680 genes diferencialmente expressos (DEGs), com números comparáveis de genes positivamente e negativamente regulados em cada genótipo. Análise de enriquecimento de DEGs revelou termos GO potencialmente envolvidos na defesa do hospedeiro, aos 3 e 7 DAI em 4279-06 e aos 7 DAI em GN. Termos GO potencialmente associados com o desenvolvimento de células gigantes foram observados em ambos os genótipos. Notáveis transcrições relacionadas com respostas de defesa, incluindo fatores de transcrição, MYB e fatores de transcrição da família WRKY e amida-ácido sintetase indole-3acético, Gretchen Hagen. Transcrições potencialmente relacionadas com o desenvolvimento de células gigantes incluem expansinas, proteínas contendo domínio NAC, MYB e fatores de transcrição e proteínas da família bHLH endotransglucosylase xiloglucano. Em geral, os dois genótipos, tiveram uma alta expressão de resposta de defesa via hormônios, principalmente de etileno, auxina, citocinina, com maior via de resposta de defesa a parasitas necrotróficos e não da via de AS de resposta a biotróficos, faciltando o parasitismo em raízes. Os resultados deste trabalho contribuirão para a compreensão da complexa interação molecular Musa spp. -Meloidogyne incognita.

Palavras chave: *Musa acuminata*, nematoide das galhas, lllumina RNAseq, defesa, hormônios de plantas, fatores de transcrição.

ABSTRACT

Transcriptome analysis of the Musa acuminata - M. incognita molecular interaction

Banana (*Musa* spp.) is an important edible fruit, contributing towards global food security. Many cultivars are seed-sterile, with asexually-driven evolution resulting in a restricted genetic base lacking resistance to pests and diseases. This study describes the characterization of the root transcriptome in Musa acuminata genotypes '4297-06' (AA) and 'Cavendish Grande Naine' (AAA) (GN) during compatible interactions with the root-knot nematode Meloidogyne incognita. A total of 24 cDNA libraries were prepared from RNA samples extracted 3, 7 and 10 days after inoculation (DAI) with nematode J2 juveniles and paired-end sequenced using Illumina HiSeq 2500 technology. A total of 350,781,752 high quality sequences were mapped to the *M. acuminata* DH Pahang genome sequence (http://bananagenome.eirad.fr/content/download-dhpahang) using Novoalign/Useq, with 37,604 unigenes identified. Transcripts were assigned to functional categories using Blast2GO, with 320,113 GO terms attributed. A total of 680 differentially expressed genes (DEGs) were identified, with comparable numbers of genes up- and downregulated in each genotype. Enrichment analysis of DEGs revealed GO terms potentially involved in host defense at 3 and 7 DAI in 4279-06 and at 7 DAI in GN. GO terms potentially associated with giant cell development were observed in both genotypes throughout the timecourse. Notable transcripts related to defense responses included ethylene-responsive transcription factors, MYB and WRKY family transcription factors and indole-3-acetic acid-amide synthetase Gretchen Hagen. Transcripts potentially related to giant cell development included expansins, NAC domaincontaining proteins, MYB and bHLH family transcription factors and xyloglucan endotransglucosylase proteins. In both genotypes, considerable increase in gene expression related to defense responses via hormones ethylene, auxins and cytokinins was observed, indicating defense via necrotroph resistance pathways (AJ/ET), rather than AS-mediated responses to biotrophs to continue parasitism in roots. The outputs from this work will contribute to our understanding of this complex molecular interaction Musa - Meloidogyne.

Key words: *Musa acuminata*, root-knot nematode, lllumina RNAseq, defense, plant hormones, transcription factors.

INTRODUÇÃO

Os nematoides das galhas representam um dos principais problemas para diversas culturas de importância agrícola no Brasil e no mundo, ocorrendo com maior frequência em países tropicais e subtropicais devido às temperaturas e umidade adequadas para o seu desenvolvimento. No Brasil, principalmente *M. javanica* e *M. incognita* representam sérios problemas à produção em diversas regiões, como no norte do Rio Grande do Sul, no oeste, sudoeste e norte do Paraná, no sul e norte de São Paulo e no sul do Triângulo Mineiro. Na região central do Brasil, vários focos têm sido detectados, onde o problema é crescente. As principais causas deste problema são a baixa eficiência de alguns sistemas de rotação de culturas na redução populacional destes parasitas e a evidente carência de cultivares resistentes adaptadas às diferentes regiões do país (Fiorentin, 2010).

Na atualidade, diversos trabalhos têm sido realizados a fim de determinar reações de resistência em *Musa* a várias espécies de *Meloidogyne*, por meio da avaliação do fator de reprodução, onde vem sendo encontrados diferentes níveis de susceptibilidade e resistência em diferentes genótipos de bananeiras, mas ainda não foram realizadas pesquisas sobre a interação *Musa - Meloidogyne*, a nível molecular, a fim de entender os mecanismos de parasitismo nessas hospedeiras.

Os nematoides dispõem de sinais quimo-sensoriais que parecem ser importantes para a atração do nematoide às raízes da hospedeira, bem como para identificar locais adequados para a penetração e iniciação da alimentação. No entanto, pouco se sabe sobre este mecanismo de estimulação da planta e as alterações moleculares que ocorrem no início do processo de infecção da raiz, antes da iniciação das células gigantes ou da indução de resposta de hipersensibilidade. A compreensão do processo de regulação gênica assim como a identificação dos genes induzidos ou reprimidos após a infecção é de suma importância na defesa contra nematoides e patógenos radiculares. Em comparação com outros patógenos de plantas, nematoides têm um elevado grau de mobilidade, e um sistema sensorial mais sensível sendo capaz de selecionar ativamente as plantas necessárias para alimentação e reprodução, e apresentam um comportamento especial no que diz respeito à percepção do hospedeiro e o parasitismo (Zinoveva *et al.*, 2004; Arias *et al.*, 2009).

As respostas moleculares incluindo aquelas causadas durante o estabelecimento de sítios de alimentação, são refletidas pela expressão alterada dos genes no hospedeiro. Uma

vez que muitos dos genes identificados são membros de famílias gênicas com regulação complexa, estas respostas são difíceis de interpretar. São definidas como plantas resistentes aos nematoides, aquelas nas quais estes têm níveis de reprodução reduzidos. Os genes de resistência aos nematoides estão presentes em algumas espécies vegetais e são componentes importantes dos programas melhoramento, incluindo genes de resistência em tomate, batata, soja e cereais (Williamson e Gleason, 2003).

Em geral, os mecanismos de defesa contra esses patógenos das raízes ainda são mal compreendidos, por isso o estudo do transcritoma é uma excelente alternativa para a identificação dos genes envolvidos na interação planta-nematoide (Moroz e Hussey, 1996; Perry et al., 2009; Arias et al., 2009, Jones et al., 2013). Identificar os genes da planta na interação planta-patógeno representa um desafio importante para entender como espécies de Meloidogyne alteram o desenvolvimento das raízes, sendo capazes de estimular o desenvolvimento de células gigantes em milhares de plantas hospedeiras. Genes de resistência aos nematoides já foram mapeados em batata, pimenta, algodão, trigo, beterraba, batata doce, amendoim, cenoura, café entre outras (Caromel e Gebhardt, 2011; Santini, 2014), porém ainda não há relatos de estudos desses genes em bananeira. Neste contexto, os objetivos deste Capítulo foram analisar o transcritoma da interação entre o patógeno radicular M. incognita e os genótipos de M. acuminata, Cavendish Grande Naine (GN) e 4279-06, que com base em estudos anteriores apresentavam diferentes níveis de susceptibilidade ao nematoide das galhas, assim como realizar análise bioinformática de dados de sequenciamento massal usando tecnologia de Sequenciamento Illumina (http://www.illumina.com) adequada para análises de expressão gênica diferencial.

MATERIAL E MÉTODOS

A metodologia geral utilizada nas análises do transcritoma da interação *Musa acuminata - Meloidogyne incognita* para os genótipos GN e 4279-06, nos três períodos de avaliação está ilustrada na Figura 24.

Figura 24. Resumo da metodologia empregada para análise do transcritoma de *Musa acuminata - Meloidogyne incognita*, avaliado aos 3, 7 e 10 DAI.

1. Localização do Bioensaio

O experimento foi desenvolvido na Estação Experimental de Biologia da Universidade de Brasília (UnB), Brasília, DF, em casa de vegetação, sobre bancadas separadas para evitar contaminação com outros nematoides, onde o nematoide *M. incognita* foi multiplicado em plantas de tomate, variedade Santa Cruz. Posteriormente, o experimento visando o estudo da interação molecular banana-nematoide foi instalado na casa de vegetação do Departamento de Fitopatologia da UnB.

2. Preparo de mudas de bananeiras

Mudas de bananeira dos genótipos GN e 4279-06, provenientes de cultura de tecidos foram fornecidas pela Embrapa Mandioca e Fruticultura. Uma vez transplantadas em vasos, as mudas passaram por um período de adaptação de 30 dias à temperatura média de 25° C (Figura 25).

Figura 25. Mudas de bananeiras GN (A) e 4279-06 (B), em fase de adaptação na casa de vegetação do Departamento de Fitopatologia da UnB, utilizadas no estudo do transcritoma.

3. Preparo das mudas para a multiplicação do nematoide

As mudas foram plantadas em vasos metálicos com substrato esterilizado previamente preparado e permaneceram 30 dias em aclimatação na casa de vegetação antes de serem inoculadas, como foi descrito no Capítulo II.

4. Extração e preparo do inóculo de Meloidogyne incognita

A extração dos nematoides das raízes de tomateiro foi realizada pelo método de Hussey e Barker (1973) segundo procedimentos descritos no Capítulo II, assim como para a eclosão dos J2 e preparo do inóculo de *Meloidogyne incognita*.

5. Desenho experimental

O delineamento foi o inteiramente casualizado (DIC). Foram realizados dois bioensaios paralelos representando duas repetições experimentais, cada um avaliando a interação dos dois genótipos (GN e 4279-06) com o nematoide em três períodos (3, 7, 10 dias após a inoculação), sendo que para cada período de avaliação foram consideradas três repetições biológicas (plantas). Igualmente, um grupo controle foi estabelecido com o mesmo número de plantas não inoculadas para cada genótipo que serviram como testemunhas (Tabela 6).

Tabela 6. Desenho experimental dos genótipos GN e 4279-06, e número de plantas utilizadas na análise do transcritoma na interação molecular *Musa acuminata –Meloidogyne incognita*.

Bioensaio	Extração de RNA						
Bioensaio 1	3 DAI		7 DAI		10 DAI		
Acessos	Inoc.	Não Inoc.	Inoc.	Não Inoc.	Inoc.	Não Inoc.	
Grande Naine	3	3	3	3	3	3	
4279-06	3	3	3	3	3	3	36
Bioensaio 2	Extração de RNA						
Grande Naine	3	3	3	3	3	3	
4279-06	3	3	3	3	3	3	36
TOTAL	12	12	12	12	12	12	72

6. Coleta de raízes para extração de RNA total

As raízes foram cuidadosamente retiradas dos vasos e, em seguida, foram lavadas em água corrente para a remoção do solo residual. As raízes foram divididas em duas partes, colocadas separadamente em tubos plásticos tipo Falcon de 50 ml previamente identificados e imediatamente resfriados em nitrogênio líquido. Este procedimento foi realizado para todas as repetições e períodos de coleta. Todas as coletas de raízes foram realizadas no mesmo horário. Posteriormente, as raízes coletadas foram armazenadas em freezer -80 °C até serem processadas.

7. Extração e quantificação do RNA total

O RNA total de raízes de bananeiras inoculadas e não inoculadas foi extraído utilizando o kit Concert® (Invitrogen) baseado no protocolo descrito pelo fornecedor. Para cada extração de RNA total, foi pesado 1g de amostra da raiz e logo macerada em nitrogênio líquido ate obter-se um pó branco que logo foi colocado em tubo Falcon estéril de 15 ml. Em seguida, foram adicionados 5 ml de ConcertTM Plant RNA Reagent (Invitrogen[®]), a uma temperatura de 4°C, misturou-se brevemente em aparelho vórtex até a resuspensão da amostra. Os tubos foram incubados por 5 minutos à temperatura ambiente para maximizar a extração do RNA. Os resíduos foram precipitados por meio de centrifugação por 10 minutos (11.000 g) a 4°C. O sobrenadante foi transferido para um novo tubo Falcon estéril de 15 ml e para cada 5 ml de sobrenadante foi adicionado, 1 ml de NaCl 5M. As soluções foram homogeneizadas levemente e, em seguida, foram adicionados 3 ml de clorofórmio para cada 5 ml inicial. Os tubos foram tampados e homogeneizados por inversão. Foi feita uma nova centrifugação das amostras a 4°C e a 12.000 g durante 15 minutos para separar as fases. Em seguida, a fase superior (aquosa) foi transferida para um novo tubo Falcon estéril de 15 ml, onde foi adicionado para cada 5 ml, 4,5 ml de álcool, misturado manualmente por inversão e mantendo em repouso à temperatura ambiente durante dez minutos. Logo foi feita nova centrifugação da amostra a 4°C, durante 15 minutos a 12.000 g. Após, o sobrenadante foi descartado, com muito cuidado, obtendo assim o pellet. O pellet foi lavado adicionando-se 5 ml de etanol (75%) e centrifugando a temperatura ambiente, durante 5 minutos a 12.000 g descartando o sobrenadante. Para remover o resíduo de álcool, foi realizado um spin por 1 minuto a 12.000 g e novamente o sobrenadante foi descartado cuidadosamente, com o líquido remanescente removido com o auxílio de uma micropipeta. Por último, o pellet foi secado a temperatura ambiente durante 15 minutos para eliminar o excesso de álcool. Após a secagem, a ressuspensão foi feita com 50 µl de RNase-free aqua, tratado com DEPC (Invitrogen®). O método de extração de RNA está resumido na Figura 26.

Figura 26. Metodologia para a extração de RNA empregado para a análise da interação molecular: *Musa acuminata-Meloidogyne incognita*.

A quantidade e pureza dos RNAs totais foi estimada por análise da absorbância a 260nm, utilizando como padrão 1 unidade A260=40 µg de RNA, através de espectrofotômetro (Ultrospect® 2000 Pharmacia) e que usa o cálculo da razão A260/A280, que indica possíveis contaminações de RNA como: proteínas, sais caotrópicos, como a guanidina isotiocianato, ou fenol. Baseado na lei de Beer-Lambert, uma mudança linear na absorbância o corre com a concentração do ácido nucleico. RNA possui um máximo de absorbância a 260 nm, com uma leitura de A260 de 1,0 equivalente a 40 µg/ml. Taxas de absorbância a 260 e 280 nm são usadas para análise de qualidade do RNA; segundo Fleige e Pfaffl (2006), uma relação OD 260/280 maior do que 1,8 é considerado um indicador de RNA de alta qualidade. Taxas para A260/A230 próximas a 2,0 são indicativos de um RNA puro.

A integridade das moléculas de RNA total, também foi avaliada em gel de agarose (1%), corado com 1µl de brometo de etídio, visualizado em transiluminador-UV e foto documentado com câmara EDAS 290 (Kodak). Foi utilizado como referência o marcador de peso molecular 1 kb DNA Ladder (Invitrogen®).

O kit INVISORB Spin Plant RNA Mini Kit (Invitek) foi utilizado para purificar algumas amostras que não alcançaram a quantidade e integridade de RNA requerida para o sequenciamento, seguindo as instruções fornecidas pelo fabricante. Ao final do processo, o RNA total eluído foi quantificado e estocado a -80°C.

8. Sequenciamento Illumina

A construção das bibliotecas de cDNA e o sequenciamento foram realizadas na Empresa EUROFINS (Eurofins MWG Operon Kentucky, Louisville, Kentucky,USA), utilizando a tecnologia Illumina (<u>http://illumina.ucr.edu/ht/</u>). As amostras de RNA total foram previamente quantificadas e transportadas em RNAstable (Biomátrica), de acordo com as instruções do fabricante. Após ressuspensão, a integridade do RNA foi avaliada utilizando s sistema do Agilent 2100 Bioanalyzer e RNA LabChip® kit (Agilent Technologies).

As moléculas de RNA mensageiro (mRNA) contendo sequências poliméricas de adenosina (poli-A) foram purificadas de aproximadamente 10 µg de RNA total para cada amostra usando o sistema de Sera-mag Magnetic Oligo (dT) Beads (Illumina), baseado em bilhas magnéticas contendo adaptadores poliméricos de timina (dT). O mRNA eluído foi fragmentado usando cátions divalentes à temperatura elevada antes da síntese de cDNA. Esse

procedimento foi realizado para reduzir o viés inicial durante a síntese de cDNA. O cDNA dupla fita foi sintetizado a partir de fragmentos de mRNA molde por iniciadores aleatórios, usando o kit SuperScript II (Invitrogen), RNaseH e DNA Polimerase I. O cDNA foi purificado usando o QIAquick PCR Purification Kit (Qiagen), as extremidades reparadas e fosforiladas usando T4 DNA polymerase, Klenow DNA polymerase e T4 PNK, e purificado uma segunda vez. Para evitar ou reduzir a taxa de formação de quimeras geradas pela junção de dois fragmentos templates, uma única cauda de adeninas foi adicionada ao final 3' usando Klenow Exo (Illumina) seguido por um passo de purificação com o MinElute PCR Purification Kit (Qiagen). A adição de uma adenina aos fragmentos abruptos evita que se liguem entre si durante a etapa de ligação dos adaptadores. Estes, por sua vez, possuem uma timina na extremidade 3', que é complementar à adenina do fragmento template, favorecendo a ligação. A ligação dos adaptadores foi realizada de tal forma que as amostras de cDNA foram agrupadas e sequênciadas em um mesmo canal de flowcell de acordo com a fonte de carbono. Essa etapa foi conduzida para garantir a distinção entre as réplicas biológicas, assim como cada biblioteca recebeu adaptadores diferentes quando sequênciadas no mesmo canal de flowcell. A seleção por tamanho das amostras (200±25 pb), enriquecidas por PCR, foi conduzida por meio de eletroforese e subsequente excisão em gel de agarose TAE 2%. Os fragmentos foram purificados usando o QIAquick Gel Extraction Kit (Qiagen). Um total de 15 ciclos de amplificação de PCR foi conduzido para enriquecimento das bibliotecas de cDNA usando primers complementares aos adaptadores ligados. Produtos de PCR foram então purificados usando QIA quick Gel Extraction Kit (Qiagen), quantificados por meio do Agilent Technologies 2100 Bioanalyzer e sequênciados em dois canais de flowcell dupla usando o sistema Illumina Hiseq2000. O sequenciamento Paired-end (2 X 150 bases), nos dois sentidos da fita de cDNA, foi conduzido usando TruSeq RNA Chemistry v3. Dados do sequenciamento Illumina serão depositados **NCBI GEO** no (http://www.ncbi.nlm.nih.gov/geo/).

9. Análise Bioinformática

A sequência da análise de bioinformática se resume na Figura 27.

Figura 27. Resumo das metodologias empregadas na análise bioinformática do transcritoma da interação *Musa acuminata - Meloidogyne incognita*

9.1. Avaliação da qualidade das sequências e filtragem dos dados

Inicialmente, um relatório das análises de qualidade de todas as sequências obtidas por RNAseq foi gerado por meio do programa Fastq Quality Control Report (Fastq QC Report). Os fragmentos de sequências (*reads*) foram aferidos por qualidade superior a 20 e tamanho mínimo igual a 36 pares de bases (pb) utilizando o programa Trimmomatic (Bolger *et al.*, 2014). Para garantir que somente sequências com alta qualidade fossem selecionadas, optouse pela eliminação de 5 nucleotídeos da extremidade 5' e 1 nucleotídeo da extremidade 3' de cada uma das sequências analisadas.

9.2. Mapeamento dos reads e identificação dos transcritos

As sequências com alta qualidade, previamente selecionadas, foram alinhadas aos genomas de referência para o mapeamento das regiões gênicas. Dessa forma, alinhamento foi realizado tendo como referência o genoma de M. acuminata. A versão Musa acuminata DH-Pahang v1, do genoma de bananeira *M. acuminata*, disponível na plataforma Banana Genome (http://banana-genome.cirad.fr/content/download-dh-pahang) HUB foi utilizada. 0 mapeamento das sequências de cada biblioteca foi realizado em modo batch, permitindo a análise dos resultados de forma individualizada, utilizando programa Novoalign/Useq, como previamente descrito (http://www.novocraft.com/documentation/novoalign-2/novoalign-userguide/rnaseq-analysis-mrna-and-the-spliceosome/). Como parâmetros utilizaram-se: i) penalidade para mismatches: 2; ii) penalidade para inserção: 3; iii) custo para deleção: 3; iv) fração mínima de comprimento: 0,90 v) fração mínima de similaridade: 0,95; v) número máximo de hits por read: 10; e distância entre paired reads determinada automaticamente.

9.3. Análise quantitativa da expressão gênica

Após o alinhamento dos reads com os genomas de referência, as sequências mapeadas foram usadas na determinação da expressão gênica diferencial putativa. A contagem do número de reads mapeados por módulos gênicos foram obtidas pelo HTSeq-count (Simon et al., 2014), um software Python aplicado para o processamento de dados a partir de ensaios de sequenciamento de alto rendimento (http://www-uber.embl.de/users/anders/HTSeq/doc/ counting.html#counting). Análises estatísticas foram empregadas para identificar genes com mudanças significativas no número de reads unicamente mapeados entre os tratamentos experimentais realizados (Genótipos GN e 4279-06, inoculado e não inoculado com M. incognita, nos dias 3, 7 e 10 após a inoculação). Os cálculos foram realizados com software EdgeR (Robinson et al., 2010) e para cada tratamento foram adotadas expressões com significância estatisticamente diferentes, aceitando como ponto de corte, valores menores que 0,01 para o valor de p ajustado para múltiplos testes utilizando o método Benjamini-HochBergh (padj), e valor da razão entre tratamentos na base logarítmica de 2 (log2FoldChange) maior que 1 ou menor que -1, ou seja, foram considerados como diferencialmente expressos os genes que tiveram expressão igual ou maior que duas vezes entre os tratamentos avaliados.

9.4. Anotação das sequências

A anotação dos genes foi realizada por homologia entre as sequências genômicas mapeadas e as presentes no Banco de dados Uniprot/SWISSPROT. Para isso, foi utilizado o software Blast2GO®, versão 2.8 (CONESA *et al.*, 2005). As sequências foram comparadas com aquelas presentes no banco de dados do Uniprot/SWISSPROT, empregando o algoritmo BLASTp e considerando um número máximo de 10 hits por entrada e o valor mínimo esperado de 10^{-6} ($E_{value} \leq 1.10^{-6}$). Em seguida, realizou-se a anotação das sequências e seus respectivos termos de ontologia gênica (Gene Ontology, THE GENE ONTOLOGY CONSORTIUM, 2000) usando os parâmetros padrões do Blast2GO. As análises de sub-representação e sobre-representação associadas aos genes e produtos de acordo com a categoria de ontologia gênica foram feitas com o teste hipergeométrico do programa FUNC (Prüfer *et al.*, 2007), posteriormente, os termos redundantes foram eliminando as categorias sumarizadas pelo programa REVIGO (http://revigo.irb.hr/).

RESULTADOS

1. Extração de RNA

As amostras de RNA total extraídas das raízes de banana dos dois genótipos, utilizando o reagente Concert[™] mostraram qualidade satisfatória (Tabela 6) e alta qualidade, com valores de A260/280 variando de 1,8 a 2,1. Os picos de absorbância apresentaram forma sinuide, com razões 260/280nm e 260/230nm indicativos de RNA com integridade aceitável. Segundo Fleige e Pfaffl (2006), uma relação OD 260/280 maior do que 1,8 é considerado de boa qualidade.

2. Construção das bibliotecas de RNAseq

As 24 bibliotecas foram geradas a partir das extrações de RNA total, isolado de cada tratamento (cada um constituído por três repetições), representando os transcritos do genótipo GN inoculado e não inoculado e do genótipo 4279-06 inoculado e não inoculado. As bibliotecas de cDNA foram preparadas para Sequenciamento Illumina, pela Eurofins MWG Operon (Alabama, USA). As amostras de RNA total foram previamente quantificadas e transportadas em RNAstable (Biomátrica), de acordo com as instruções do fabricante.

Cada tratamento (conduzido em duplicata), foi relacionado na Tabela 6, onde as amostras 1-12 correspondem ao Bioensaio 1 e as amostras 13-24 ao Bioensaio 2. O resultado da determinação da qualidade das 24 amostras de RNA enviadas para o sequenciamento Illumina foi satisfatório, conforme evidenciado nos resultados do Bioanalizer, onde as amostras apresentaram boa qualidade, sendo aptas para sequenciamento e apresentando um padrão bem definido de bandas correspondentes aos RNAs ribossomais (Figuras 28A e 29A). Os picos obtidos no Bioanalyzer correspondem à intensidade de fluorescência (UF) durante o processo de eletroforese (Figuras 28B e 29B).

Tabela 7. Leituras das amostras de RNA de raízes de bananeira 1-12 (Primeiro bioensaio), 13-24 (Segundo bioensaio), obtidas em espectrofotômetro, prontas para sequenciamento Illumina EUROFINS.

Name	Organism / Strain / Source	Vol. (µl) RNA	Conc. (µg/µl)	Conc. (µg total)	280/260	Illumina flowcell channel
1	<i>Musa acuminata</i> cv Grande Naine, non inoculated, 3 DAI	21,28	0,47	10	2,0	1
2	<i>Musa acuminata</i> cv Grande Naine, non inoculated, 7 DAI	18,87	0,53	10	2,2	1
3	<i>Musa acuminata</i> cv Grande Naine, non inoculated, 10 DAI	25,00	0,40	10	2,1	1
4	<i>Musa acuminata</i> cv Grande Naine, inoculated, 3 DAI	25,64	0,39	10	2,0	1
5	<i>Musa acuminata</i> cv Grande Naine, inoculated, 7 DAI	10,87	0,92	10	2,1	1
6	<i>Musa acuminata</i> cv Grande Naine, inoculated, 10 DAI	10,10	0,99	10	2,1	1
7	Musa acuminata 4279, non inoculated, 3 DAI	25,64	0,39	10	2,0	1
8	Musa acuminata 4279, non inoculated, 7 DAI	22,7	0,442	10	2,0	1
9	Musa acuminata 4279, non inoculated, 10 DAI	12,35	0,81	10	2,1	1
10	Musa acuminata 4279, inoculated, 3 DAI	17,54	0,57	10	2,1	1
11	Musa acuminata 4279, inoculated, 7 DAI	6,54	1,53	10	2,1	1
12	Musa acuminata 4279, inoculated, 10 DAI	27,03	0,37	10	2,1	1
13	<i>Musa acuminata</i> cv Grande Naine, non inoculated, 3 DAI (bio replicate)	19,23	0,52	10	1,8	2
14	<i>Musa acuminata</i> cv Grande Naine, non inoculated, 7 DAI (bio replicate)	16,13	0,62	10	2,1	2
15	<i>Musa acuminata</i> cv Grande Naine, non inoculated, 10 DAI (bio replicate)	55,56	0,18	10	2,0	2
16	Musa acuminata cv Grande Naine, inoculated, 3 DAI (bio replicate)	22,8	0,438	10	2,0	2
17	<i>Musa acuminata</i> cv Grande Naine, inoculated, 7 DAI (bio replicate)	14,49	0,69	10	2,0	2
18	Musa acuminata cv Grande Naine, inoculated, 10 DAI (bio replicate)	41,8	0,239	10	2,0	2
19	<i>Musa acuminata</i> 4279, non inoculated, 3 DAI (bio replicate)	26,32	0,38	10	2,0	2
20	Musa acuminata 4279, non inoculated, 7 DAI (bio replicate)	41,8	0,239	10	2,0	2
21	Musa acuminata 4279, non inoculated, 10 DAI (bio replicate)	20,00	0,50	10	2,1	2
22	Musa acuminata 4279, inoculated, 3 DAI (bio replicate)	10,53	0,95	10	2,1	2
23	Musa acuminata 4279, inoculated, 7 DAI (bio replicate)	15,63	0,64	10	2,0	2
24	<i>Musa acuminata</i> 4279, inoculated, 10 DAI (bio replicate)	9,80	1,02	10	2,1	2

Figura 28. Leituras das amostras de RNA (triplicatas) 1-12 de raízes de banana, obtidas no sistema *Agilent* 2100 Bioanalyzer/RNA LabChip® kits system (Agilent Technologies) -EUROFINS. **A.** Separação eletroforética das amostras de RNA total pelo Bioanalizer. A canaleta (Ladder) corresponde ao marcador de tamanho de RNA e as canaletas numeradas de 13-24, as amostras de RNA total de raízes de banana *Musa acuminata*. As duas bandas intensas correspondem ao rRNA 28S e 18S. **B.** Os picos correspondem à intensidade de fluorescência medidas na eletroforese. O eixo Y mostra as unidades de fluorescência (FU) e o eixo X, os tamanhos dos fragmentos de RNA em nucleotídeos.

Figura 29. Leituras das amostras de RNA (triplicatas) 13-24 de raízes de banana, obtidas no sistema *Agilent* 2100 Bioanalyzer/RNA LabChip® kits system (Agilent Technologies)-EUROFINS. A. Separação eletroforética das amostras de RNA total pelo Bioanalizer. A canaleta (Ladder) corresponde ao marcador de tamanho de RNA e as canaletas numeradas de 13-24, as amostras de RNA total de raízes de banana *Musa acuminata*. As duas bandas intensas correspondem ao rRNA 28S e 18S. B. Os picos correspondem a intensidade de fluorescência medidas na eletroforese. O eixo Y mostra as unidades de fluorescência (FU) e o eixo X, os tamanhos dos fragmentos de RNA em nucleotídeos.

3. Sequenciamento massal e processamento de sequências

O sequenciamento das bibliotecas gerou 290308118 *paired reads* para o bioensaio 1 e 220629858 *paired reads* para o bioensaio 2, com um total de 510937976 *paired reads*. Os dados para cada genótipo provenientes das coletasdos aos 3, 7 e 10 DAI, são apresentados na Tabela 8.

Tabela 8. Total de sequências de cada biblioteca de expressão antes e após a filtragem dos dados baseada na qualidade do sequenciamento e no tamanho mínimo dos *reads*, resultantes da interação *Musa acuminata – Meloidogyne incognita* (I: Inoculado, NI: não inoculado).

Sem Filtragem					Após Filtragem			
Ensaios	Var	Trat	Dia	File	Raw reads number	Reads	Read propely mapped	% Read prop. Mapped
Ensaio1	GN		3	1	26 992 660	16 769 217	16 358 142	97,55%
		NI	7	2	33 878 996	23 209 664	22 751 456	98,03%
			10	3	12 691 854	8 696 880	8 485 572	97,57%
		Ι	3	4	30 897 266	20 073 517	19 586 726	97,57%
			7	5	20 143 770	14 708 226	14 378 006	97,75%
			10	6	24 082 656	17 827 098	17 447 882	97,87%
	4279 - 06	NI	3	7	33 933 224	26 583 657	25 866 444	97,30%
			7	8	29 637 942	20 175 582	19 705 288	97,67%
			10	9	14 821 342	10 800 357	10 555 742	97,74%
		Ι	3	10	20 324 234	15 023 526	14 698 668	97,84%
			7	11	22 776 280	15 475 299	15 156 626	97,94%
			10	12	20 127 894	14 907 813	14 613 506	98,03%
Subtotal					290 308 118	204 250 836	199 604 058	
	GN	NI	3	13	38 705 092	26 551 739	25 963 032	97,78%
			7	14	19 187 040	14 064 646	13 743 554	97,72%
			10	15	19 564 430	12 970 992	12 639 628	97,45%
		Ι	3	16	22 309 762	16 667 993	16 291 036	97,74%
			7	17	18 617 782	12 960 975	12 708 688	98,05%
Encoio?			10	18	14 625 692	10 552 389	10 319 336	97,79%
Ensaioz	4279 - 06	NI	3	19	15 911 944	9 835 864	9 639 204	98,00%
			7	20	17 153 672	11 447 367	11 206 164	97,89%
			10	21	11 352 138	8 376 730	8 197 656	97,86%
		Ι	3	22	6 767 824	5 025 640	4 914 580	97,79%
			7	23	20 103 896	13 795 865	13 487 230	97,76%
			10	24	16 330 586	12 351 290	12 067 586	97,70%
Subtotal					220 629 858	154 601 490	151 177 694	
Total					510 937 976	358 852 326	350 781752	

Com a filtragem das sequências, formaram-se dois subgrupos para cada biblioteca. Um subgrupo refere-se às sequência únicas, originadas de *paired reads* cujos pares foram eliminados durante a filtragem, onde foram obtidos 204.250.836 *paired reads* para o bioensaio 1 e 154.601.490 *paired reads* para o bioensaio 2, com um total de 358.852.326 *paired reads*. O outro subgrupo refere-se às sequências que foram mapeadas de forma adequada (*Read properly mapped*), no genoma de referência de *Musa acuminata*, onde foram obtidos 199.604.058 *paired reads* para Bioensaio 1 e 151.177.694 *paired reads* para o bioensaio 2, com um total de 350.781.752 *paired reads*. De maneira geral, as bibliotecas apresentaram boa qualidade, com aproveitamento médio de 97-98% para as bibliotecas do tratamento inoculado e não inoculado, respectivamente (Tabela 8).

Do total das 510.937.976 sequências de RNAseq, foram mapeadas corretamente, 350.781.752 no genoma de referência *Musa acuminata* (http://banana-genome.cirad.fr/), correspondendo a um total de 68,65% das sequências obtidas após o processamento. As bibliotecas de expressão referentes aos três períodos de amostragem para cada genótipo, em amostras inoculadas e não inoculadas para os dois genótipos, encontram se detalhadas na Tabela 8.

4. Análise diferencial de genes expressos por biblioteca de cDNA

Na análise quantitativa da expressão gênica, foram identificados 680 genes diferencialmente expressos na interação *Musa - M. incognita*. No genótipo GN foram identificados 54 genes com expressão diferencial aos 3 DAI, 170 genes aos 7 DAI e 14 genes aos 10 DAI. No genótipo 4279-09 foram identificados 360 genes com expressão diferencial aos 3 DAI, 59 genes aos 7 DAI e 23 genes aos 10 DAI.

Uma análise global envolvendo comparações entre os tratamentos foi realizada a partir do total de genes obtidos por biblioteca de cDNA, e mostrada graficamente na forma de Heat Maps usando parâmetros estatísticos p value < 0,01. Comparações entre tratamentos entre os níveis de expressão medido em Log2FoldChange, foram feitas para os dias 3, 7 e 10 de amostragem (para o tratamento não inoculado) e realizado para cada genótipo. Os resultados mostraram que a expressão gênica foi diferente em cada genótipo e houve a formação de grupos de genes induzidos ou reprimidos por dia da avaliação (Figura 30).

Os tons de azul intenso representam uma expressão gênica positiva (genes superexpressos) e tons de cor azul claro a branco representam uma expressão negativa (genes reprimidos). Observam-se grupos de genes que são muito induzidos ou reprimidos de acordo com o dia de avaliação e, outros grupos que possuem uma expressão gênica determinada pelo genótipo. No caso do genótipo 4279-06, observou-se uma modulação similar aos 3 DAI, com apenas alguns genes superexpressos representados por linhas em azul intenso nos 3 dias (Figura 30 A). No genótipo GN, no dia 3 há dois grupos de genes mais azuis, que correspondem a genes mais expressos e, também encontrou-se um grupo de genes reprimidos em cor branca; aos 7 DAI em geral apresentou-se uma expressão maior, destacando-se uma zona ampla bem definida de cor azul intensa que indica uma expressão diferencial (Figura 30 B). Aos 10 DAI, em geral observou-se pouca expressão gênica modulada, com um grupo de genes suprimidos (na parte inferior do gráfico).

Comparando a expressão geral dos dois genótipos, observou-se uma alta expressão no genótipo GN principalmente no dia 7, em comparação ao genótipo 4279-06, no qual a expressão foi mais homogênea nos períodos da avaliação, com poucos genes mais expressos representados em linhas em azul escuro. Um grupo importante de genes reprimidos foram encontrados nos dois genótipos principalmente aos 7 DAI.

3 DAI 7 DAI 10 DAI

Figura 30. Heat Map dos genes expressos nos genótipos de *Musa acuminata*. A. 4279-06, B. GN (G. Naine) nos dias 3,7 e10 após a inoculação com *Meloidogyne incognita*. As comparações foram avaliadas com valores de Log2Fold Change de cada tratamento (P<0,01).

5. Anotação das bibliotecas de RNAseq- Plataforma Blast2GO. GO categorias

Uma classificação funcional de conjuntos de unigenes foi realizada por meio do Gene Ontology (GO), utilizando Blast2GO, em mais de uma categoria funcional. Um total de 320.113 termos de GO foram encontrados e relacionados às 27.604 sequências anotadas distribuídos em três categorias principais: processos biológicos (27.551 sequências), função molecular (25.362 sequências) e componente celular (25.487 sequências).

Os 680 genes diferencialmente expressos foram identificados por BLAST aos 3, 7 e 10 DAI. O genótipo 4279-06 apresentou 265 anotações para processos biológicos, 29 para função molecular e 3 para componente celular aos 3 DAI. No dia 7, foram obtidas 92,9 e 11 anotações, para processos biológicos, função molecular e componente celular, respectivamente. No dia 10, 22 anotações foram atribuídas a processos biológicos, 9 para função molecular e 6 para componente celular. O genótipo GN, quanto a processos biológicos, função molecular e componente celular no dia 3, apresentou: 52, 17 e 2 anotações, respectivamente; no dia 7: 191, 15 e 13 anotações, respectivamente e, no dia 10: 33, 4 e 11 anotações respectivamente.

Em geral, dentro de processos biológicos foram preferencialmente atribuídos aos unigenes, funções relativas à resposta a estímulo, resposta de defesa, processo metabólico, pnto de controle do ciclo celular, processos de óxido-redução, resposta celular a estímulo por etileno. As subclasses mais representadas na categoria funções moleculares foram: 1,3-ß-D-glucan, atividade de sintase, atividade de xiloglusil transferase, atividade oxidoredutase e para componentes celulares, as duas subcategorias mais representativas foram região extracelular e parede celular. As proporções de cada processo estão ilustradas nas Figuras 31, 32 e 33.

Entre as três categorias, processos biológicos apresentou o maior número de subcategorias de termos GO para os dois genótipos nos três tempos de avaliação. Aos 3 DAI, para processos biológicos a maior proporção de anotações foi atribuída à subcategoria reconhecimento celular para GN e para 4279-06 destacaram-se resposta a estímulo e processos metabólicos (Figura 31A); as subcategorias mais representadas para componentes celulares, a maior subcategoria foi região extracelular e parede celular para os dois genótipos GN e 4279-06 (Figura 31B). As subcategorias para funções moleculares foram: atividade1,3-beta-D-glucan synthasetransferase e atividade de xiloglusil transferase, para 4279-06; para GN se apresentou anotação destacada (Figura 31C).

No dia 7, na categoria de processos biológicos as maiores proporções encontraram-se em 20 anotações que foram comuns para os dois genótipos, nas que se destacaram: resposta à quitina, via de sinal de etyleno-ativada, resposta celular a estímulo por etileno, resposta a hormônios, resposta de defesa, sistema de processo imune, resposta a compostos de oxigênio. Para a função molecular o processo proteína receptora de transmembrana foi o mais destacado para o genótipo GN e atividade ribonuclases poly-A específica para o genótipo 4279-06. Os processos sequência específica ligada a DNA e atividade nuclease foram comuns nos dois genótipos. Na categoria de componente celular, para GN destacam-se os processos de: parede celular da planta e espaço extracelular; para 4279-06 complexo CR4-NOT e organelas intracelulares (Figura 32).

No dia 10, na categoria de processos biológicos destacam-se principalmente: processo de óxido-reduçãoe histogêneses de floema ou xilema, no 4279-06 e processo de biossíntese celular no GN; quanto ao termo: organização ou biogênese de parede celular, foi comum para os dois genótipos. Dentro da função molecular, destacam-se os termos: atividade óxido-redutase para 4279-06, e tividade de óxido-redutase transferase para GN; para componente celular: cadeia respiratória para 4279-06 e parede celular para GN (Figura 33).

Figura 31. Distribuição dos termos GO2 aos 3 DAI. Categorais: A. processo biológico, B. componente celular, C. função molecular para plantas de banana,
no dia 3 depois de inoculadas com *Meloidogyne incognita*.

Figura 32. **Distribuição dos termos GO2 aos 7 DAI.** Categorais: A. processo biológico, B. componente celular, C. função molecular para plantas de banana, no dia 7 depois de inoculadas com *M.incognita*.

3 4

 $\frac{1}{2}$

Figura 33. Distribuição dos termos GO2 aos 10 DAI. Categorias: A. processo biológico, B. componente celular, C. função molecular para plantas de banana, no dia 3 depois de inoculadas com *Meloidogyne incognita*.

7. Análise da expressão diferencial de genes de *Musa acuminata* nos genótipos GN e 4279-06 na interação com *Meloidogyne incognita*

A anotação das sequências dos unigenes foi realizada por análise de similaridade com sequências proteicas experimentalmente acuradas contidas na base de dados Swissprot/Uniprot (<u>http://www.uniprot.org/blast/</u>). A análise usando os parâmetros estatísticos com valor de *p* ajustado menor que 0,01 e *Log2FoldChange* menor que -2 ou maior que 2. Os resultados da anotação funcional dos genes DEs foram apresentados por genótipo e por período de avaliação (dias 3, 7 e 10 depois da inoculação).

Uma análise comparativa da expressão, em *Log2FoldChange*, dos genes relacionados à interação de *Musa - M. incognita* nos três períodos de avaliação foi realizada em um gráfico de dispersão (Figura 34). Considerando-se os parâmetros analisados, 680 genes apresentaram expressão diferencial significante. Dentre estes, 474 genes foram modulados no genótipo 4279-06 e 235 genes no genótipo GN, evidenciando uma maior regulação da expressão gênica na interação em 4279-06. Os genótipos apresentaram 29 genes comumente regulados, 445 genes exclusivamente modulados em 4279-06 e 206 em GN. Entre os DEs, foram identificados 157 genes previamente descritos como relacionados ao processo de interação planta-nematoide, novamente observou-se um maior número de genes modulados no genótipo 4279-06: 100, em comparação com o genótipo GN: 57.

Figura 34. Diagrama de Venn mostrando a distribuição do número de genes diferencialmente expressos para cada genótipo. O círculo azul contém os genes do genótipo 4279-06 e o de cor rosa os do genótipo GN. Na intersecção amostra-se o número de genes comuns dos dois genótipos.

Vários desses genes estão relacionados aos diferentes mecanismos de defesa inatos da planta, como genes de defesa basal tipo *PAMP-triggered immunity* (PTI), genes de resistência específica do hospedeiro como *effector-triggered immunity* (ETI), e genes associados à resistência sistêmica induzida. Alguns genes integrantes da via de resposta à defesa ativada pelo sistema imune também apresentaram uma regulação diferencial, destacando-se os componentes das vias de sinalização de mensageiros secundários, ácido abscísico (ABA), ácido salicílico (AS), ácido jasmônico (AJ), o etileno (ET) e giberelina (GA), da produção de espécies reativas de oxigênio, da cascata de sinalização via quinases e fatores de transcrição. A modulação deste conjunto de genes associados à defesa das plantas, assim como resultante do processo de ataque do nematoide, serão apresentados por genótipo e dias avaliados. Os dos genes diferencialmente expressos encontrasse nas Tabelas 8 e 9.

3 DAI: No genótipo GN, foram identificados 20 genes DEs, sendo 13 superexpressos e 7 reprimidos. Entre os superexpressos, encontraram-se 4 genes associados à defesa de planta a patógenos: dois genes de defesa basal, como o fator de transcrição zíper de Leucina (bZIP) *RF2a* (GSMUA_Achr3G31390_001) e o gene *CLA1* (GSMUA_Achr5G24730_001) que codifica para a enzima 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) que participa na via de biossíntese hormonal de GA e ABA; um gene *ARA12* (GSMUA_Achr6G05340_001), ativado pela via ETI, que codifica a *Subtilisin-like protease*, uma protease da família das subtilisinas, proteínas essenciais para mediação da morte celular programada; e o gene *At2g42960* (GSMUA_Achr8G29720_001), integrante da via PTI, possível receptor de membrana tipo proteína quinase rica em prolina. Além de genes associados à defesa, outros genes superexpressos relacionados a estresse biótico e abiótico foram identificados como *GASA4* (GSMUA_Achr6g02710_001) da família de proteínas Snakin/GAS, *At4g12770*, *TRPF1* e *copA*.

No genótipo 4279-06, foram identificados 61 genes DEs, 27 superexpressos e 34 reprimidos. Entres os genes DEs relacionados à defesa pela via PTI, observou-se a superexpressão do CRRSP5 (GSMUA_Achr10G13610_001), um receptor extracelular tipo quinases em plantas (RLKs) com domínio CRR, e dois homólogos de At4g08850 presente nos cromossomos 1 e 3 (GSMUA_Achr1G01110_001, GSMUA_Achr3G28550_001), receptores RLK com domínio serine/threonine (LRR) que se ativam na interação com parasitas biotróficos. Encontrou-se, também, os fatores de transcrição **MYBL** (GSMUA_Achr9G12430_001), homólogo SPT5 do fator de elongação e um (GSMUA_Achr7G16990_001).

Vários genes com funções estruturais para composição e organização da parede celular foram identificados como DEs. Na classe das expansinas, GN apresentou superexpressão quatro vezes maior para um único gene, EXPA15 (GSMUA_Achr6G10730_001), enquanto quatro genes foram superexpressos no genótipo 4279-06, três EXPA9, localizadas no 4 (GSMUA_Achr4G27950_001, GSMUA_Achr4G27910_001, cromossomo GSMUA Achr4G28010 00), e uma EXPB15 (GSMUA Achr6G10730 001) no cromossomo 6. Um gene PLY22, (GSMUA_Achr6G28260_001) envolvido na degradação de pectina, foi encontrado apenas no genótipo 4279-06. Três genes de síntese para calose, um CALS10 (GSMUA_Achr2G04770_001) e dois CALS3 (GSMUA_Achr1G15040_001 e GSMUA_Achr8G13500_001) foram identificados no genótipo 4279-06, mas não em GN. A calose é um polissacarídeo de barreira ativado pela via PTI e induzido nos estágios iniciais de invasão do patógeno nas plantas. Igualmente, um grupo de genes, XTH7, XTH22, XTH23 e *XTH32* (GSMUA_Achr8G26470_001, GSMUA_Achr8G15560_001, e GSMUA_Achr11G01930_001, respectivamente, GSMUA Achr9G11180 001 que codificam para proteínas envolvidas na degradação de parede celular, xyloglucan endotransglucosylase/hydrolase, que apresentou superexpressão somente no genótipo 4279-06. A regulação de alguns genes estruturais exclusivamente no genótipo 4279-06 evidência diferentes mecanismos de resposta à entrada de nematoides entre os genótipos.

A via de sinalização hormonal desempenha um papel fundamental no controle do balanço hormonal sendo determinante na resposta a estresse biótico. Os genes *OsC3H2* (GSMUA_Achr8G25980_001) e *AtC3H58* (GSMUA_Achr2G21010_001) codificam para proteínas contendo domínio CCCH e que atuam como prováveis repressores da via de sinalização do AJ. Ambos foram superexpressos em GN, e apena *OsC3H2* apresentou superexpressão, também, em 4279-06. Foram reprimidos exclusivamente no genótipo 4279-06 genes codificadores para *Cytokinin-O-glucosyltransferases*, envolvidas no acúmulo de citocininas, *UGT85A1* (GSMUA_Achr8G18080_001), *UGT73C5* (GSMUA_Achr3G10620_001) e *UGT73C5* (GSMUA_Achr2G15990_001).

Componentes da resposta hipersensível, as peroxidases reduzem a sensibilização celular ao estresse oxidativo promovendo a eliminação de redutores tóxicos. Dois genes dessa classe foram superexpressos, *GSVIVT00037159001* (GSMUA_Achr8G12370_001) no genótipo GN, e *PER52* (GSMUA_Achr10G27850_001) em 4279-06. O gene *LSD1* (GSMUA_Achr8G17740_001), outro integrante da resposta de hipersensibilidade que atua como repressor da indução da morte celular promovendo o acúmulo de superóxidos para neutralização de ROS, apresentou superexpressão no genótipo 4279-06.

Dos genes mais reprimidos aos 3 DAI, no genótipo GN, identificaram-se: o gene *Thaumatin-like protein E22* (GSMUA_Achr4G31970_001) membro da classe 5 de proteínas relacionadas à patogenicidade (PR-5) atuante na resposta de defesa via ETI; e uma proteínaquinase ativada por mitógeno (MAPK) *WIN1* (GSMUA_Achr6G01350_001), membro da família MAPKKK, envolvida nas vias de transdução de sinal ativada por alterações extracelulares.

No genótipo 4279-06, entre os mais reprimidos aos 3 DAI estão um grupo de fatores de transcrição peptídeos antimicrobianos de plantas, **Snakinas** SN1 e (GSMUA_Achr6G07810_001 e GSMUA_Achr5G16080_001). No grupo dos fatores de MYB/bHLH transcrição, encontram-se sete genes do complexo _ BHLH4 (SMUA_Achr1G08130_001), BHLH135 (GSMUA_Achr8G17980_001), BHLH25 (GSMUA Achr7G00800 001), BHLH30 (GSMUA_Achr10G14370_001), BHLH66 (GSMUA Achr10G30710 001), BHLH87 (GSMUA Achr1G10220 001) e BHLH4 (GSMUA_Achr1G08130_001) ; WRKY22 (GSMUA_Achr6G31840_001), e ERF071 (GSMUA_Achr3G08180_001).

7 DAI: No genótipo GN, foram identificados 24 genes DEs, 18 superexpressos e 6 reprimidos, enquanto que para o genótipo 4279-06, 24 genes foram DEs, dos quais 12 superexpressos e 12 reprimidos.

Entre os genes superexpressos em GN, destacam-se alguns possivelmente integrantes da via de cascata de sinalização de quinases: dois genes HSPRO2 (GSMUA_Achr5G28920_001 e GSMUA_Achr11G24120_001) da via PTI induzidos pela interação com elicitores tipo flagelinas (flg22) ou pela produção de AS, cujas proteínas conferem resistência a nematoides; o gene FBL14 (GSMUA Achr3G04490 001) codificador para proteína F-box/LRR-repeat, componente do complexo SCF de ligação a ubiquitina responsável pelo reconhecimento das subunidades direcionadas para ubiquitinização e degradação proteossômica; um inibidor de tripsina subsequente (GSMUA_Achr5G10900_001), implicado na inibição da degradação de proteínas; EXL4 (GSMUA_Achr7G12690_001), gene da via dos brassinoesteroides, implicados na resposta imunológica independente do AS; NUDT21 (GSMUA_Achr9G27230_001), codificador de uma pirofosfato hidrolase que promove a redução de nucleosídeos difosfatados em monofosfatados consumindo compostos oxidativos; e Os03g0292100 (GSMUA_Achr5G07340_001), gene que sintetiza para uma proteína fosfatase 2c, que promove a desfosforilação de proteínas e provavelmente funcionam como reguladores da transdução de sinal da via PTI.

Neste genótipo, pode-se observar a superexpressão, também, de alguns genes integrantes da classe dos FTs, como os genes: *ZFP19* (GSMUA_Achr10G13530_001), um FT tipo C2H2 dedo de zinco; *MYB44* (GSMUA_Achr4G20150_001) componente da via de resposta a estresse abiótico ABA-dependente e regulador da modulação antagonista entre AS e AJ; e os componentes da via de resposta a estresse abiótico ABA-independente, *DREB1E* (GSMUA_Achr11G21630_001), *DREB1D* (GSMUA_Achr7G05900_001), *DREB1F* (GSMUA_Achr10G15510_001) e *DREB1G* (GSMUA_Achr7G05900_001). Dentre estes, o *DREB1E* também atua como regulador de genes da via de biossíntese de GA.

Outro gene superexpresso em GN com potencial participação no processo de interação é o *Ty3-gypsy* (GSMUA_Achr3G26450_001), um retrotransposon com possível atividade reguladora do crescimento e apoptose celular.

No referente à via hormonal, exclusivamente em GN, observou-se a regulação positiva do gene TIFY5A (GSMUA_Achr4G31480_001), repressor da transcrição gênica e regulador negativo da reposta ao AJ. Tanto no genótipo GN como em 4279-06 foram superexpressos os genes de fatores de transcrição responsivos a etileno ERF4 (GSMUA_Achr7G03640_001), (GSMUA_Achr7G06910_001) ERF5 e *ERF112* (GSMUA_Achr6G02310_001). Adicionalmente, em 4279-06, encontrou-se o gene ERF105 (GSMUA_Achr1G00480_001) e genes de proteínas relacionadas à sinalização hormonal como: DAP outros (GSMUA Achr7G11650 001) codifica para proteína *Ll-diaminopimelate aminotransferase*, que atua em resposta a citocinina, e também na biossíntese de lisina participando da via de sinalização do AS; BAMT (GSMUA_ Achr7G20410_001), codificador da benzoato carboxil metiltransferase, enzima que sintetiza metil salicilato (MeSA) e metil benzoato (MeBA), moléculas de sinalização das vias de AS e AJ e mediadoras da indução de resistência sistêmica.

Abrangendo os componentes da cascata de sinalização via quinases, encontraram-se superexpressos em 4279-06 os genes: *SRK6* (GSMUA_Achr7G01910_001), sintetiza um receptor serina/treonina quinase; *PR1* (GSMUA_Achr9G16540_001), uma proteína relacionada a patógenos (PR).

162

Além desses, encontraram-se também superexpressos em 4279-06 os genes: *COMT* (GSMUA_Achr2G04360_001), que atua na síntese de lignina pela via de biossíntese de fenilpropanoides; *SAP8* (GSMUA_Achr9G19860_001), codificador para uma proteína associada ao estresse; e *CAF1-11* (GSMUA_Achr6G19450_001), componente do complexo CCR4-NOT e mediador da deadenilação do RNA mensageiro, sendo este também superexpresso em GN.

Dentro dos genes reprimidos aos 7 DAI em GN destacam-se os genes: o *At4g26540* (GSMUA_Achr3G10820_001), sintetiza uma proteína receptora LRR serine/threonine quinase, que possui atividade na defesa contra parasitas biotróficos via PTI; o *EXPB15* (GSMUA_Achr2G11930_001), codificante de expansina; o *ACO* (GSMUA_Achr5G09690_001), cuja proteína participa na regulação da síntese de etileno; o *APX4* (GSMUA_Achr5G18900_001), implicado na resposta a estresse oxidativo que sintetiza para enzima L-ascorbate peroxidase; e o *ST2* (15GSMUA_Achr7G16740_001), gene de defesa a parasitas principalmente a fungos.

No genótipo 4279-06, dos genes reprimidos encontram-se genes relacionados à sinalização hormonal como: o gene *GH3.8* presente nos cromossomos 4 (GSMUA_Achr4G32720_001) e 3 (GSMUA_Achr3G30210_001), codificadores da enzima ácido indol-3-acético sintase, implicada na síntese do ácido indol-3-acético utilizado no contrabalanceamento ao excesso de auxina; e os FTs *RAV1* (GSMUA_Achr6G01420_001), implicado no crescimento de raízes laterais e regulado negativamente por brassinoesteroides, e o *MYB* (GSMUA_Achr2G18070_001).

Observou-se, ainda em 4279-06, a repressão de dois genes codificadores para proteína de transferência de lipídeos (LTP), o *DIR1* (GSMUA_Achr10G17060_001), cuja LTP participa da sinalização da via PTI gerando a resistência sistêmica adquirida (RSA), e o *EARLI1* (GSMUA_Achr11G04340_001), que codifica para uma LTP com efeitos pleiotrópicos como proteção contra danos celulares, indução de germinação em condições de elevada salinidade, baixa temperaturas, e resistência a patógenos.

Foram identificados em 4279-06 três genes reprimidos envolvidos na citocinese. Os genes *FH5* (GSMUA_Achr7G26420_001), que codifica para proteína organizadora de citoesqueleto, o *NFD4* (GSMUA_Achr11G10660_001), cuja proteína está envolvida na fusão nuclear durante o desenvolvimento do gametófito feminino, e o *DLPC* (GSMUA_Achr2G09480_001), que origina uma proteína com provável função de hidrólise de GTP.

10 DAI: No dia 10, no genótipo **GN**, foram identificados 12 genes diferencialmente expressos, só 1 gene superexpresso e 11 reprimidos. No genótipo 4279-06, foram identificados 14 genes diferencialmente expressos, 13 superexpressos e 1 reprimido.

No genótipo GN, 0 único gene superexpresso, MT4-A(GSMUA_AchrUn_randomG20630_001) está relacionado com a resposta a arsênio e a via ROS. Dentre os genes reprimidos, destacam-se os codificadores da EXPA15, presente em dois cromossomos (GSMUA_Achr2G21970_001, GSMUA Achr6G10730 00). Este gene também foi superexpresso em GN. 3 DAI. juntamente com EXPA18 0 (GSMUA Achr2G21970 001), também superexpresso em 4279-06, 3 DAI.

Genes de sinalização hormonal como UGT85A1, de citocinina, foi superexpresso em aos 3 DAI em 4279-06; o gene CAD1-A também foi reprimido GN. mas (GSMUA_AchrUn_randomG14900_001) atua na produção de fitoalexinas. Outros genes que GN: foram reprimidos, de abiótico COMT resposta a estresse em (680GSMUA_Achr9G18820_001) produção lignina; DAP que atua na de (GSMUA Achr7G11650 001) que biossíntese de lisina: ANS atua na (GSMUA_Achr9G23620_001) RAD50 na formação de vacúolos e 0 (GSMUA Achr4G09170 001). No genótipo 4279-06 outros genes de sinalização hormonal foram identificados: ACO (GSMUA_Achr5G09690_001), que regula positivamente a produção de ET em situações de estresse; o gene ACPD (GSMUA_Achr7G03060_001), que atua nos processos biológicos da resistência sistêmica adquirida via AS (PTI); o gene GA2OX (474GSMUA_Achr4G15110_001), Gibberellin 2-beta-dioxygenase 1, GA promotores de resistência a patógenos biotróficos e o gene FMO6p (469 GSMUA_Achr4G25050_001), que atua na biossíntese de auxinas.

No genótipo 4279-06, 10 DAI, identificaram se mais genes superexpressos de resposta abiótico: TPRP-F1 (GSMUA_Achr1G20260_001); NAS3 estresse biótico e a *CC-1* (GSMUA_Achr2G00420_001); Ado (GSMUA_Achr6G29920_001); (GSMUA_Achr5G16900_001), detoxificação que atua na de ROS; P4ha1 (GSMUA_Achr6G04470_001), At3g27220 proteína oxidoreductase; (GSMUA_Achr11G08710_001), ciclo celular: aim38 que atua no (5GSMUA Achr5G29560 001) relacionado a estresse por calor. Foi encontrado só um gene reprimido aos 10 DAI: ARA12 (GSMUA_Achr4G30740_001) de Subtilisin-like protease, que atua no processo de morte celular programada (MCP).

Figura 35. Expresão de genes do genótipo GN (3, 7 e 10 DAI) inoculado com *Meloidogyne incognita*. Comparações avaliadas com valores de *log2Fold Change* de cada tratamento (P<0,01). Representados em azul à direita, acima do valor 0,01 no eixo das ordenadas (Y) e acima de 2 no eixo das coordenadas (X), estão os genes mais expressos no tratamento inoculado de acordo com o método empírico de *fold-change*, onde os pontos de corte foram determinados pelos valores *p*. À esquerda, em azul, estão representados os genes mais expressos no

controle não inoculado, e portanto, reprimidos no tratamento inoculado. Em vermelho encontram-se todos os genes que não apresentaram *p*-valores significativos.

Figura 36. Expresão de genes do genótipo de banana 4279-06 (3, 7 e 10 DAI) inoculado com *Meloidogyne incognita*. Comparações avaliadas com valores de *log2Fold Change* de cada tratamento (P<0,01). Representados em azul a direita, acima do valor 0.01 no eixo das ordenadas (Y) e acima de 2 no eixo das coordenadas (X), estão os genes mais expressos no tratamento inoculado de acordo com o método empírico de *fold-change*, onde os pontos de corte foram determinados pelos valores *p*. A esquerda, em azul, estão representados os genes mais

expressos no controle não inoculado, e portanto, reprimidos no tratamento inoculado. Em vermelho encontramse todos os genes que não apresentaram *p*-valores significativos.

Genótipo 4279-06					
No. Vulcão	Localizador	Gene	Produto	logFC	FDR
3 DAI					
Super-					
expressos 7	GSMUA_Achr8G26470_001	XTH7	Xyloglucan endotransglucosylase/hydrolase	2,172	2,6E-08
19	GSMUA_Achr7G07040_001	EXPB18	protein 7 XTH7 Expansin-B18	1,464	8,6E-03
22	GSMUA_Achr1G15040_001	CALS3	Callose synthase 3 CALS3 fragment	2,340	1,7E-08
31	GSMUA_Achr8G13500_001	CALS3	Callose synthase 3 CALS3 fragment	2,766	1,3E-06
33	GSMUA_Achr7G08970_001	Os01g0580200	Beta-galactosidase Os01g0580200	1,825	1,7E-06
46	GSMUA_Achr9G11180_001	XTH23	Xyloglucan endotransglucosylase/hydrolase	1,616	4,9E-05
47	GSMUA Achr2G04770 001	CALS10	protein 23 Callose synthase 10 CALS10 fragment	2.051	5.9E-05
50	GSMUA_Achr9G27860_001	CYP71D7	Putative Cytochrome P450 71D7	1.900	1.3E-04
59	GSMUA_Achr4G27910_001	EXPA9	Expansin-A9	2,154	2.6E-04
61	GSMUA_Achr10G04510_001	GYG2	alvocsul transferase nutative expressed GVG2	2,131	3.5E-04
		GPOPGP55	complete	2,092	5,52-04
65	GSMUA_Achr10G13610_001	CR9RSP55	Cysteine-rich repeat secretory protein 55 CRRSP55 complete	1,557	5,2E-04
69	GSMUA_Achr8G15560_001	XTH22	Xyloglucan endotransglucosylase/hydrolase protein 22	1,335	5,9E-04
71	GSMUA_Achr7G16990_001	At4g08350	Putative transcription elongation factor SPT5 homolog 1	2,165	1,0E-03
74	GSMUA_Achr11G01930_001	XTH32	xyloglucan endotransglucosylase/hydrolase	1,881	1,2E-03
81	GSMUA_Achr8G25980_001	Os01g0192000	Zinc finger CCCH domain-containing protein 2	1,467	1,8E-03
148	GSMUA_Achr6G10480_001	ACC1	Acetyl-CoA carboxylase FAS3	6,755	1,3E-02
152	GSMUA_Achr6G28260_001	PLY22	Pectate lyase 22	2,242	1,3E-02
159	GSMUA_Achr4G28010_001	EXPA9	Expansin-A9	1,258	1,5E-02
161	GSMUA_Achr9G12430_001	mybL	MYB family transcription factor, putative,	3,469	1,6E-02
167	GSMUA_Achr3G01150_001	JMT	Jasmonate O-methyltransferase	1,384	1,8E-02
168	GSMUA_Achr4G27950_001	EXPA9	Expansin-A9	1,731	1,8E-02
231	GSMUA_Achr1G01110_001	At4g08850	Putative LRR receptor-like serine/threonine-	3,832	3,1E-02
280	GSMUA_Achr2G21010_001	AtC3H58	Zinc finger CCCH domain-containing protein 58	1,169	5,3E-02
289	GSMUA_Achr8G17740_001	LSD1	Zinc finger domain, LSD1 subclass family protein sno	1,508	5,6E-02
324	GSMUA_Achr3G28550_001	At4g08850	Putative Probable LRR receptor-like	4,364	7,2E-02
342	GSMUA_Achr10G27850_001	PER52	Peroxidase 52	1,036	8,0E-02
389	GSMUA_Achr9G23940_001	NAC74	NAC domain-containing protein 74	5,247	9,8E-02
Reprimidos					
5	GSMUA_Achr5G29560_001	AIM38	Predicted protein aim38	-2,268	2,3E-05
11	GSMUA_Achr10G08760_001	SALT	Putative Salt stress-induced protein SALT modules	-3,173	2,3E-02
66	GSMUA_Achr8G17980_001	BHLH135	Transcription factor Bhlh135	-3,171	5,2E-04
68	GSMUA_Achr9G02260_001	RNALX	Putative Extracellular ribonuclease LE RNALX	-1,451	5,9E-04
73	GSMUA_Achr8G15700_001	PI206	Putative Disease resistance response protein 206 PI206 modules	-2,045	1,1E-03
145	GSMUA_Achr6G07810_001	SN1	Snakin-1 SN1	-2,528	2,1E-03
116	GSMUA_Achr11G10320_001	HSFB4B	Heat stress transcription factor B-4b	-7,635	6,1E-03

Tabela 9. Genes diferencialmente expressos do genótipo 4279-06 nos três dias de avaliação: 3, 7 e 10 DAI.

131	GSMUA_Achr4G26820_001	TPRP-F1	14 kDa proline-rich protein DC2.15	-6,812	9,5E-03
132	GSMUA_Achr10G14370_001	BHLH30	Transcription factor bHLH30	-1,328	9,9E-03
133	GSMUA_Achr7G00800_001	BHLH25	Transcription factor bHLH25	-1,445	9,9E-03
145	GSMUA_Achr5G16080_001	SN1	Snakin-1 SN1 fragment	-2,676	1,2E-02
147	GSMUA_Achr6G31840_001	WRKY22	Putative WRKY transcription factor 22	-4,077	1,2E-02
160	GSMUA_Achr3G08180_001	ERF071	Ethylene-responsive transcription factor	-1,507	1,5E-02
162	GSMUA_Achr9G12430_001	PGIP	Polygalacturonase inhibitor	-1,421	1,6E-02
198	GSMUA_Achr1G17200_001	MT4A	Metallothionein-like protein 4A	-1,374	2,4E-02
221	GSMUA_Achr1G08130_001	BHLH4	Transcription factor MYC4	-1,518	2,7E-02
232	GSMUA_Achr9G24060_001	At5g55050	GDSL esterase/lipase At5g55050	-1,127	3,2E-02
241	GSMUA_Achr7G00860_001	NAC042	NAC domain-containing protein	-1,904	3,7E-02
259	GSMUA_Achr8G18080_001	UGT85A1	Cytokinin-O-glucosyltransferase 2	-1,539	4,2E-02
267	GSMUA_Achr7G12410_001	XTH28	Xyloglucan endotransglucosylase/hydrolase	-3,478	4,8E-02
275	GSMUA_Achr10G06570_001	RHA1B	Zinc finger C3HC4, E3 ubiquitin-protein ligase RHA1B	-1,476	5,0E-02
277	GSMUA_Achr10G29210_001	MYB306	Myb-related protein 306	-1,623	5,0E-02
281	GSMUA_Achr10G30710_001	BHLH66	Transcription factor BHLH66	-1,622	5,4E-02
290	GSMUA_Achr8G19970_001	At5g45910	GDSL esterase/lipase	-6,709	5,7E-02
297	GSMUA_Achr3G10620_001	UGT73C5	Cytokinin-O-glucosyltransferase 3	-1,047	5,8E-02
308	GSMUA_Achr2G11090_001	At1g71250	GDSL esterase/lipase	-0,963	6,5E-02
310	GSMUA_Achr2G22340_001	pat2-k3	Patatin-2-Kuras 3	-1,323	6,6E-02
317	GSMUA_Achr6G26180_001	МТЗА	Metallothionein-like protein type 3	-1,110	6,9E-02
330	GSMUA_Achr2G15990_001	UGT73C5	Cytokinin-O-glucosyltransferase 3	-1,168	7,6E-02
345	GSMUA_Achr4G30340_001	GATA4	GATA zinc finger domain containing protein	-3,713	8,1E-02
361	GSMUA_Achr11G04780_001	Gsg2	Serine/threonine-protein kinase Haspin, putative, expressed	-5,631	8,9E-02
365	GSMUA_Achr11G02850_001	GSVIVT00026920001	Polygalacturonase	-3,043	8,9E-02
369	GSMUA_Achr1G10220_001	BHLH87	Transcription factor BHLH87	-1,52	0,089
392	GSMUA_Achr9G26060_001	PARA	Glutathione S-transferase parA	-1,459	9,9E-02
409	GSMUA_Achr11G04340_001	EARLI1	14 kDa proline-rich protein DC2.15	-6,342	0,077
7 DAI					
Super-					
401	GSMUA_Achr7G05900_001	DREB1D	Putative Dehydration-responsive element-binding	3,167	2,6E-06
403	GSMUA_Achr6G02310_001	ERF112	Hypothetical protein ERF112	4,423	8,0E-05
405	GSMUA_Achr7G06910_001	ERF5	Ethylene-responsive transcription factor 5	1,255	4,0E-02
406	GSMUA_Achr7G03640_001	ERF4	Ethylene-responsive transcription factor 4	1,242	6,7E-02
407	GSMUA_Achr7G11650_001	DAP	LL-diaminopimelate aminotransferase,	3,895	4,0E-02
413	GSMUA_Achr7G20410_001	BAMT	Putative Benzoate carboxyl methyltransferase BAMT complete	2,726	4,3E-03
424	GSMUA_Achr7G01910_001	SRK6	Putative serine/threonine-protein kinase receptor SRK6 fragment	2,485	9,5E-02
428	GSMUA_Achr9G16540_001	PR1	Pathogenesis-related protein 1	1,057	3,8E-02
431	GSMUA_Achr6G19450_001	CAF1-11	Probable CCR4-associated factor 1 homolog 11	1,677	1,9E-04
434	GSMUA_Achr9G19860_001	SAP1	Zinc finger A20 and AN1 domain-containing stress-associated protein 1	1,376	9,5E-03
435	GSMUA_Achr1G00480_001	ERF105	Ethylene-responsive transcription factor 105	1,340	9,9E-03
436	GSMUA_Achr2G04360_001	OMT	Caffeic acid 3-O-methyltransferase OMT complete	1,895	1,1E-02

Reprimidos					
3	GSMUA_Achr7G26420_001	FH5	Putative Formin-like protein 5 FH5 fragment	-1,239	1,7E-02
396	GSMUA_Achr3G15340_001	At4g12770	Hypothetical protein At4g12770 missing functional completeness	-3,302	4,1E-03
404	GSMUA_Achr4G32720_001	GH3.8	Indole-3-acetic acid-amido synthetase GH3.8	-1,277	4,0E-02
409	GSMUA_Achr11G04340_001	EARLI1	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-6,342	7,7E-02
416	GSMUA_Achr2G09480_001	DLPC	dynamin family protein, putative, expressed dlpC complete	-3,932	7,7E-02
417	GSMUA_Achr1G17220_001	SCA	Stigma/stylar cysteine-rich adhesin	-4,998	2,4E-06
425	GSMUA_Achr3G30210_001	GH3.8	Indole-3-acetic acid-amido synthetase GH3.8	-1,943	9,5E-02
427	GSMUA_Achr10G17060_001	DIR1	Lipid binding protein, putative LIM3 complete	-1,949	2,3E-05
430	GSMUA_Achr2G18070_001	МҮВ	MYB family transcription factor, putative, expressed At1g14600 fragment	-2,657	7,6E-05
442	GSMUA_Achr6G01420_001	RAV1	Ethylene-responsive transcription factor RAV1	-2,533	4,0E-02
443	GSMUA_Achr3G22720_001	CET2	CEN-like protein 2 CET2 complete	4,457	4,8E-02
448	GSMUA_Achr11G10660_001	NFD4	NFD4, putative, expressed MCH1 complete	-3,745	8,3E-02
10 DAI					
Super- expressos					
5	GSMUA_Achr5G29560_001	aim38	Predicted protein aim38 complete	4,011	7,5E-09
451	GSMUA_Achr2G11930_001	EXPB15	Expansin-B15 EXPB15 fragment	3,722	1,0E-02
452	GSMUA_Achr5G09690_001	ACO	Putative 1-aminocyclopropane-1-carboxylate oxidase ACO complete	3,211	6,0E-05
453	GSMUA_Achr7G03060_001	ACPD	Acyl-[acyl-carrier-protein] desaturase, chloroplastic ACPD complete	3,051	5,3E-03
454	GSMUA_Achr1G20260_001	TPRP-F1	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	4,970	9,2E-04
455	GSMUA_Achr2G00420_001	NAS3	Nicotianamine synthase 3 NAS3 complete	4,969	2,6E-02
459	GSMUA_Achr6G29920_001	Ado	Putative 2-aminoethanethiol dioxygenase Ado complete	5,019	4,4E-05
462	GSMUA_Achr5G16900_001	CC-1	Cytochrome c CC-1 complete	3,366	7,2E-04
465	GSMUA_Achr6G04470_001	P4ha1	oxidoreductase, putative, expressed P4ha1 complete	4,359	5,4E-09
467	GSMUA_Achr11G08710_001	At3g27220	Kelch repeat-containing protein At3g27220	3,814	7,8E-03
469	GSMUA_Achr4G25050_001	n.d.	Flavin monooxygenase	2,912	2,1E-02
470	GSMUA_Achr11G15810_001	ERF071	Ethylene-responsive transcription factor 71	2,419	3,2E-02
474	GSMUA_Achr4G15110_001	GA2OX1	Gibberellin 2-beta-dioxygenase 1 GA2OX1 complete	4,031	5,6E-02
Reprimidos					
4	GSMUA_Achr4G30740_001	ARA12	Putative Subtilisin-like protease ARA12 fragment	-19,986	1,2E-03

Tabela 10. Genes diferencialmente expressos do genótipo Grande Naine (GN), nos três dias de avaliação: 3, 7 e 10 DAI.

Genótipo GN						
3 DAI						
No.	Sequência	Gene	Descrição	logFC	FDR	
Super-						
11	GSMUA_Achr10G08760_001	SALT modules	Putative Salt stress-induced protein SALT	3,047	1,7E-02	
81	GSMUA_Achr8G25980_001	Os01g0192000	Zinc finger CCCH domain-containing protein 2	1,467	1,8E-03	
396	GSMUA_Achr3G15340_001	At4g12770	Hypothetical protein At4g12770	4,147	1,3E-02	
478	GSMUA_Achr4G24640_001	TPRP-F1	14 kDa proline-rich protein DC2.15	2,565	2,5E-02	
480	GSMUA_Achr6G02710_001	GASA4	Gibberellin-regulated protein 4 GASA4	3,338	9,5E-02	
481	GSMUA_Achr6G31280_001	Ppp1r7	Putative Protein phosphatase 1 regulatory subunit 7 Ppp1r7 modules	3,038	7,4E-03	
483	GSMUA_Achr9G01260_001	copA	heavy metal-associated domain containing protein expressed con A	2,294	1,5E-02	
484	GSMUA_Achr6G10730_001	EXPA15	Expansin-A15	2,100	7,2E-02	
485	GSMUA_Achr6G05340_001	ARA12	Putative Subtilisin-like protease ARA12 fragment	3,831	7,4E-03	
491	GSMUA_Achr8G29720_001	At2g42960	retrotransposon protein, putative, unclassified, expressed At2942960	3,827	9,4E-02	
508	GSMUA_Achr5G24730_001	CLA1	Probable 1-deoxy-D-xylulose-5-phosphate synthase chloroplastic CLA1	6,524	2,4E-02	
515	GSMUA_Achr3G31390_001	RF2a	bZIP transcription factor RF2a	7,273	7,7E-02	
516	GSMUA_Achr8G12370_001	GSVIVT00037159001	Peroxidase 5 GSVIVT00037159001 complete	1,896	7,7E-02	
Reprimidos						
6	GSMUA_Achr5G10900_001	Odz1	Trypsin inhibitor Odz1	-2,679	1,1E-03	
7	GSMUA_Achr8G26470_001	XTH7	Probable xyloglucan endotransglucosylase/hydrolase protein 7 XTH7	-2,403	2,2E-02	
479	GSMUA_Achr7G20420_001	BAMT	Putative Benzoate carboxyl methyltransferase BAMT	-3,476	2,2E-02	
501	GSMUA_Achr4G33530_001	GPT2	Glucose-6-phosphate/phosphate translocator 2, chloroplastic GPT2	-2,567	2,3E-03	
503	GSMUA_Achr4G19570_001	ERL1	LRR receptor-like serine/threonine-protein kinase ERL1 ERL1 fragment	-6,616	8,7E-03	
513	GSMUA_Achr4G31970_001	E22	Pathogenesis-related protein R major form tlp	-2,267	4,2E-02	
514	GSMUA_Achr6G01350_001	WIN1	Wound-induced protein WIN1	-2,322	6,9E-02	
7 DAI						
Super- expressos						
6	GSMUA_Achr5G10900_001	Odz1	Trypsin inhibitor Odz1 complete	3,128	1,8E-07	
17	GSMUA_Achr4G02600_001	TP_0095	plant-specific domain TIGR01615 family protein, expressed TP 0095	2,706	1,0E-05	
400	GSMUA_Achr11G21630_001	DREB1E	Dehydration-responsive element-binding protein	9,593	2,9E-04	
403	GSMUA_Achr6G02310_001	ERF112	Ethylene-responsive transcription factor 112	5,097	1,7E-02	
405	GSMUA_Achr7G06910_001	ERF5	Ethylene-responsive transcription factor 5	2,085	9,4E-02	
406	GSMUA_Achr7G03640_001	ERF4	Ethylene-responsive transcription factor 4	2,915	4,5E-02	
530	GSMUA_Achr5G07340_001	Os03g0292100	Protein phosphatase 2c, putative Os03g0292100	12,985	3,4E-09	
549	GSMUA_Achr5G28920_001	HSPRO2	Nematod Resistans protein-like hspro2	3,105	5,1E-05	
551	GSMUA_Achr7G12690_001	EXLH4	Protein exordium-like 4	2,249	1,6E-03	
557	GSMUA_Achr4G31480_001	TIFY 5A	Putative Protein TIFY 5A	5,800	1,6E-03	

583	GSMUA_Achr10G13530_001	ZNFnf335	Hypothetical protein ZNF335 missing_functional_completeness	5,589	8,9E-05
584	GSMUA_Achr11G24120_001	KynA	hs1, putative, expressed kynA complete	1,900	7,8E-03
585	GSMUA_Achr9G27230_001	OMT	Caffeic acid 3-O-methyltransferase OMT complete	9,507	3,4E-09
587	GSMUA_Achr3G04490_001	FBL14	Putative F-box/LRR-repeat protein 14 FBL14	4,080	4,3E-04
608	GSMUA_Achr10G15510_001	DREB1F	AP2/ERF domain-containing transcription factor DREB1F	13,748	2,6E-03
609	GSMUA_Achr3G26450_001	Ty3-gypsy	Retrotransposon protein, putative, Ty3-gypsy subclass, expressed LRX4 fragment	8,084	3,2E-03
619	GSMUA_Achr1G08716_001	NBS-LRR	NBS-LRR class resistance protein (Fragment) unknown gene missing completeness	2,713	1,0E-02
635	GSMUA_Achr4G20150_001	MYB44	Transcription factor MYB44 MYB44	2,666	3,4E-02
653	GSMUA_Achr8G08460_001	stnA	DNA binding protein, putative, expressed stnA	9,732	6,7E-02
Reprimidos					
15	GSMUA_Achr7G16740_001	ST2	High affinity sulfate transporter 2 ST2	-2,285	1,7E-02
404	GSMUA_Achr4G32720_001	GH3.8	Indole-3-acetic acid-amido synthetase GH3.8	-1,453	2,8E-02
451	GSMUA_Achr2G11930_001	EXPB15	Expansin-B15 fragment. DNA binding protein, putative, expressed stnA	-4,247	8,7E-04
452	GSMUA_Achr5G09690_001	ACO	Putative 1-aminocyclopropane-1-carboxylate oxidase ACO complete	-2,219	6,8E-03
475	GSMUA_Achr3G10820_001	At4g26540	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g26540	-1,677	1,7E-02
595	GSMUA_Achr5G18900_001	APX4	Probable L-ascorbate peroxidase 4 APX4	-3,511	4,8E-02
10 DAI					
Super- expressos					
679	GSMUA_AchrUn_randomG20630_001	MT4-A	metallothionein, putative, expressed MT4A fragment	4,561	9,3E-03
Reprimidos					
19	GSMUA_Achr2G21970_001	EXPB18	Expansin-B18	-13,265	3,8E-02
259	GSMUA_Achr8G18080_001	UGT85A1	Cytokinin-O-glucosyltransferase 2	-1,539	4,2E-02
389	GSMUA_Achr9G23940_001	NAC74	NAC domain-containing protein 74	-2,137	9,3E-03
407	GSMUA_Achr7G11650_001	DAP	LL-diaminopimelate aminotransferase, chloroplastic DAP	-19,825	9,2E-03
484	GSMUA_Achr6G10730_001	EXPA15	Expansin-A15	0,287	1,4E-02
669	GSMUA_Achr8G12940_001	TL1	Thaumatin-like protein 1 TL1 complete	-19,058	9,3E-03
670	GSMUA_Achr2G21970_001	EXPA15	Expansin-A15	-3,772	9,0E-02
671	GSMUA_Achr9G23620_001	ANS	Putative Leucoanthocyanidin dioxygenase ANS	-10,902	4,2E-02
674	GSMUA_Achr4G09170_001	RAD50	calmodulin-binding protein, putative, expressed RAD50 fragment	-10,234	4,2E-02
678	GSMUA_AchrUn_randomG14900_001	CAD1-A	Putative (+)-delta-cadinene synthase isozyme A CAD1-A fragment	-5,538	3,7E-03
680	GSMUA_Achr9G18820_001	COMT	O-methyltransferase, putative, expressed COMT	-9,452	6,9E-02

DISCUSSÃO

1. Processamento e análises dos transcritos

Neste estudo da interação *Musa acuminata - Meloidogyne incognita* foi usado o método RNAseq de Illumina para análise de transcritoma, o qual é considerado uma técnica eficiente que gera informação confiável do perfil de expressão gênica para construção de bibliotecas de RNAseq, e assim a detecção de transcritos pode ser realizada a partir de análises de bioinformática, permitindo identificar os genes diferencialmente expressos em genótipos contrastantes (Yazawa *et al.*, 2013; Santini, 2014; Postnikova *et al.*, 2015). As bibliotecas de expressão foram formadas quase que exclusivamente por transcritos originados de raízes de banana, *Musa acuminata*, o que foi verificado a partir das análises de mapeamento. A quantidade amostrada de transcritos do nematoide foi muito baixa comparada ao total de transcritos sequênciados (dados no publicados). Esse resultado se deve ao fato de que grandes áreas de raiz foram utilizadas, incluindo partes onde o nematoide não estava presente, razão pela qual os genes diferencialmente expressos que serão aqui discutidos são os de *Musa acuminata*. Quando se deseja realizar análise simultânea de expressão gênica para patógeno e hospedeiro é aconselhável limitar o tecido utilizado para a extração de RNA às proximidades do local de infecção (Westermann *et al.*, 2012; Santini, 2014).

Graças à disponibilidade do genoma de referência de *Musa acuminata* foi possível a identificação dos transcritos da interação a partir do mapeamento do genoma anotado. Outros trabalhos têm conseguido de forma similar o estudo de interação de *Meloidogyne incognita* com outros hospedeiros, como: cafeeiro, feijoeiro, alfafa entre outros, utilizando o mapeamento de transcritos em sequências expressas de referência para a identificação dos *reads* originados (Albuquerque, 2009; Santini, 2014; Postnikova *et al.*, 2015).

Amostras de dados estatísticos, por biblioteca de cDNA, da qualidade das leituras do sequenciamento RNA-Seq Illumina mostraram uma boa qualidade antes e depois do processamento, com um aproveitamento médio de 97-98% para as bibliotecas do tratamento inoculado e não inoculado, respectivamente.

2. Categorias GO

Em geral e com base nos resultados de BlastP, de anotação do Blast2GO (sequências segundo os termos de 'nível 2' do Gene Ontology) revelaram-se as três categorias: processos biológicos, componente celular e função molecular, dentro dos quais encontraram-se vários processos que mostram a complexidade da interação Musa acuminata - M. incognita. A categoria de processos biológicos apresentou o maior número de subcategorias de termos GO nos dois genótipos, nos três tempos de avaliação, e dentro dos quais se destacaram: resposta a estimulo, resposta a estresse, resposta de defesa e resposta celular a estímulo de hormônios. Este resultado concorda com Postnikova et al. (2015) na interação alfafa - Meloidogyne incognita cuja análise mostrou principalmente termos GO de resposta a estresse, resposta a estímulo e resposta de defesa, na categoria de processos biológicos e que foram tanto superexpressos como reprimidos. No estudo de Costa (2013), na interação Musa - Fusarium oxysporum, nas três cultivares de Musa analisadas, foram categorizados genes pela anotação em processos relacionados à defesa da planta, de forma similar ao que foi determinado no presente estudo para o genótipo 4279-06. Na categoria de componente celular, 'parede celular' foi a subcategoria mais comum em Musa nos dois genótipos, o que também foi encontrado na interação Phaseolus vulgaris - M. incognita (Santini, 2014). Por outro lado, Barcala et al. (2010), no estudo da expressão em células gigantes induzidas por M. javanica em Arabidopsis thaliana encontraram maior número de genes diferencialmente expressos no grupo funcional de metabolismo, o que segundo Caillaud et al. (2008) e Abad et al. (2009) pode ser, em parte, pelo fato das células gigantes serem metabolicamente hiperativas, fonte de nutrientes para o nematoide.

3. Análise de expressão diferencial

Genes relacionados com defesa PR (Pathogenesis-related proteins)

As famílias reconhecidas de genes *PR* codificam proteínas relacionadas com patogênese em várias espécies vegetais de importância econômica. Neste trabalho foram encontrados regulados genes das famílias *PR1* e *PR5*; estas últimas possuem produtos conhecidos como proteínas *thaumatin-like* (*TLP*s) e são induzidas em plantas infectadas por patógenos ou submetidas a estresse. No genótipo GN, os genes *E22* e *TL1* da família *PR5* foram suprimidos aos 3 e 10 DAI, respectivamente, ao mesmo tempo em que observou-se o estabelecimento do nematoide, cômodo modo esperado para um genótipo suscetível. Esses genes são ativados principalmente em infecções por fungos, por bactérias e vírus (Van Loon *et al.*, 2006; Liu *et al.*, 2012; Postnikova *et al.*, 2015) e também parecem ser importantes na defesa contra *M. incognita* (Abad *et al.*, 2009). Sabe-se que a expressão de genes *TL1* está envolvida na via do ácido salicílico, de resposta a parasitas biotróficos. Em Arabidopsis, *PR5* foi encontrado ativado 9 DAI (Hamamouch *et al.*, 2011). Por outro lado, em análise global, James *et al.* (2005), mostraram que o estabelecimento de *Meloidogyne*, em *A. thaliana*, está associado com a supressão das respostas de defesa da planta, e 70% dos genes regulados foram reprimidos aos 14 e 21 DAI.

Na interação *Musa - F. oxysporum, PR1* foi encontrado superexpresso no genótipo resistente "BRS Platina" (Costa, 2013). Aqui, no genótipo 4279-06, o gene *PR1* foi superexpresso 7 DAI. No entanto, esse gene não parece ter função na resistência a *M. incognita,* uma vez que o nematoide completou seu ciclo também no genótipo 4279-06.

NBS-LRR

Dentro dos genes diferencialmente expressos nos dois genótipos de banana em interação com *M. incognita*, nos três tempos de avaliação, a expressão de genes R, tais como proteína de resistência NBS-LRR, foi muito baixa e só foi encontrado um gene desta classe aos 7 DAI em GN, mostrando possivelmente uma baixa capacidade de resposta de resistência ao nematoide das galhas em ambos os genótipos. Em Musa, até agora não se conhecem estudos de interação de Musa com nematoides das galhas; a maioria dos estudos têm-se centrado no estudo da interação de Musa com fungos foliares como Mycosphaerella musicula (Miller et al., 2011; Emediato et al., 2013; Passos et al., 2013) e Fusarium oxysporum (Li et al., 2012 e Costa, 2013). Por exemplo, no estudo de Li et al. (2012), na interação Musa acuminata Cavendish Grande Naine - Fusarium oxysporum f. sp. cubense tropical raça 4, encontrou-se um aumento significativo da expressão de genes de resistência da via PTI enquanto a expressão da maioria dos genes R tipo NBS foi muito baixa na variedade Nongke No 1 resistente, exceto para o complexo RIN4/RPM1. No estudo de Costa (2013), nessa mesma interação, o gene citoplasmático de resistência, com domínio NBS-LRR, foi encontrado na variedade BRS de M. acuminata, demonstrando que Musa apresentou pouca expressão de genes de resistência via ETI. Postnikova et al. (2015), no estudo da interação alfafa - M.

incognita, encontraram que o gene R da classe TIR-NBS-LRR, foi notavelmente superexpresso em raízes sadias e infectadas da variedade Moapa, mas sua expressão foi reduzida no genótipo suscetível durante a interação.

LRR receptor-like serine/threonine-protein kinases

Na interação *Musa - M. incognita* foi encontrada uma expressão significativa de genes de defesa basal. Genes que codificam para "LRR *receptor-like serine/threonine-protein kinases*", proteínas que funcionam como receptores na resposta do tipo *PTI*, foram superexpressos no genótipo 4279-06 aos 3 DAI e suprimidos aos 3 DAI e 7 DAI no genótipo GN. Aos 10 DAI, os receptores LRR não se encontraram expressos em nenhum dos dois genótipos; nesse tempo de avaliação, o nematoide já havia conseguido avançar no seu parasitismo, conforme foi observado nas análises histológicas. Costa (2013) identificou um *receptor like kinase* de membrana superexpresso na cultivar Prata-anã' de *M. acuminata* infectado com *F. oxysporum*, similar ao encontrado em *Arabidopsis thaliana* (Berrocal-Lobo e Molina, 2008).

Calose

Além dos receptores *PTI*, foram encontrados genes de resposta de acúmulo de deposição de calose e lignina que, segundo Keen (1992), podem contribuir para o sistema de defesa da planta. Os resultados mostraram um padrão diferencial de expressão gênica no genótipo 4279-06 com respeito a GN; dois genes que codificam calose sintases (*CALS10 e CALS3*) foram superexpressos aos 3 DAI, e foram exclusivos de 4279-06. Segundo Luna *et al.* (2011), a deposição de calose é tipicamente desencadeada por padrões moleculares conservados associados a agentes patogênicos (PAMPs) - *PTI*. Hofmann *et al.* (2010) demostraram que a deposição de calose em raízes de *Arabidopsis* foi induzida por *Meloidogyne* durante a formação de galhas. Costa (2013), na interação *Musa - F. oxysporum* também observou aos 15 DAI formação de tilose, presença de cristais de oxalato de cálcio e deposição de calose, na cultivar resistente 'BRS, indicando que este mecanismo é usado como barreira contra vários patógenos em alguns genótipos de *Musa*. Neste trabalho o genótipo 4279-06 mostrou ter mais resposta de genes receptores LRR e genes envolvidos na síntese de calose que em GN.

O gene de resposta a ferimento *WIN1* (*Wound induced protein WIN1*) aparece suprimido aos 3 DAI no genótipo GN. A expressão do gene *WIN1* tem sido correlacionada com a produção de calose após ferimento ou ataque de patógenos, dessa forma atuando

também em defesa (Logemann e Schell, 1989). Genes de resposta a ferimentos foram detectados em diversas interações planta-nematoide, normalmente induzidos, devido a danos mecânicos que o nematoide causa na penetração e migração na raiz. Tais genes podem apresentar superexpressão em reações compatíveis e incompatíveis (Gheysen e Fenoll, 2002; Costa, 2013; Santini, 2014).

Outros genes relacionados à defesa

No início da infecção, 3 DAI, no genótipo 4279-06, o número de genes de resposta à interação foi evidentemente maior que em GN. Entre os genes regulados em 4279-06, encontrou-se o gene CRRSP55 que codifica uma proteína rica em cisteína, que atua como uma lectina ligadora de manose ativa contra patógenos e que foi superexpresso, corroborando o encontrado por Hwang e Hwang (2011), que mostraram que, em Capsicum annuum, sua superexpressão aumenta a imunidade inata contra Pseudomonas syringae pv. tomato e Alternaria brassicicola. Aos 7 DAI, em 4279-06 outros genes superexpressos relacionados com defesa foram identificados, como o gene DAP (da enzima diaminopimelatoaminotransferase), que em GN foi suprimido 10 DAI; os genes BAMT (Benzoato carboxil methyltransferase) e OMT (Caffeic acid 3-O-methyltransferase) também superexpressos em 4279-06, e foram reprimidos 3 DAI em GN, sugerindo que esse genótipo tem melhor capacidade de resposta de defesa a M. incognita no inicio da infecção. Em A. thaliana, uma diaminopimelato-aminotransferase (ALD1) aumenta a resistência a P. syringae (Song et al., 2004), enquanto na interação Musa - Fusarium oxysporum (Costa, 2013), este gene foi um dos mais expressos na variedade Maçã. BAMT atua na síntese de metil benzoato, e junto com OMT foram também superexpressos, respectivamente nas variedades Prata anã e BRS Platina, nessa mesma interação, corroborando sua participação na resposta a patógenos vasculares em Musa. OMT atua também na síntese de lignina e é importante na defesa contra oídio em Triticum monococcum (Bhuiyan et al., 2008). O gene SN1 foi suprimido 3 DAI em 4279-06. SN1 codifica peptídeos similares a Snakin-1 de batata, é ativado contra patógenos e faz parte da classe das esnaquinas de peptídeos antimicrobianos (Vriens et al., 2014).

Neste estudo foram encontrados ainda dois genes especificamente relacionados à defesa contra nematoides no genótipo GN: *HSPRO2 e KynA*. Ambos possuem similaridade com *Hs1pro-1*, gene de resistência (R) que pertence a uma classe de genes de resistência com regiões ricas em leucina e um domínio transmembrana, encontrado em beterraba-açucareira, e que confere resistência específica ao nematoide de cisto (*H. schachtii*) (Thurau *et al.*, 2003).

O gene *ARA12*, putativa *Subtilisin-like protease* mostrou-se quase 20 vezes suprimido em 4279-06. Proteases do tipo subtilisinas desempenham atividades de tipo "caspase" em plantas, e estão envolvidas na ativação de morte celular programada, como ocorre na reação de resposta hipersensível (Vartapetian *et al.*, 2011). A supressão de enzimas que estão no início da cascata de ativação de morte celular poderia estar relacionada à ausência de resposta hipersensível ao nematoide, como foi constatado nas análises histológicas e nas observações em microscopia UV do genótipo em 4279-09.

Estresse oxidativo

Uma das estratégias de defesa de plantas contra patógenos envolve a geração de compostos contendo espécies reativas de oxigênio (ROS). Peróxido de hidrogênio, óxido nítrico e peroxidase atuam no cruzamento entre a defesa e morte celular (De Pinto *et al.*, 2006). No entanto, ROS resultantes de tensões bióticas e abióticas podem causar dano celular e precisam ser eliminados (Mittler, 2002). No genótipo 4279-06, encontraram-se superexpressos dois genes de citocromos, *CYP71D7* aos 3 DAI e *CC-1* aos 10 DAI. Ainda aos 10 DAI, foram superexpressos *NAS3* (nicotianamina sintase 3), que atua na homeostase de ferro/redox, e na proteção de células de dano oxidativo, e *Ado* (2-aminoetanoetiol dioxigenase). Esses genes também foram encontrados como superexpressos na interação feijoeiro – *M. incognita* (Santini, 2014) e *Musa - Fusarium oxysporum* (Costa, 2013), mostrando que atuam na resposta a estresse oxidativo em plantas infectadas com diferentes patógenos. O gene *P4ha1*, de uma oxidoredutase, foi superexpresso em 4279-06, e também superexpresso na interação *Musa - Fusarium oxysporum* (Costa, 2013) nas variedades Prata Anã e BRS Platina.

No genótipo GN aos 10 DAI, o único gene superexpresso foi *MT4-A*, de provável metalotioneína, proteína de ligação a metais de baixo peso molecular (6-7 kD) que tem papel na proteção contra os efeitos de ROS, agindo como antioxidante (Potenza *et al.*, 2001). Em arroz, a expressão de metalotioneína tipo 2 está associada com a resposta de hipersensibilidade (Wong *et al.*, 2004). Embora a proteína detectada aqui tenha sido provavelmente produzida pela planta, nematoides também produzem metalotioneínas que atuam na eliminação de radicais livres e outros componentes tóxicos (Isani e Carpene, 2014).

Parede celular: Expansinas e Forminas

Há evidências de que expansinas facilitem a penetração do nematoide (Gal et al., 2006) e provavelmente também estão envolvidas na formação dos sítios de alimentação (Gheysen e Fenoll, 2002). Diversos trabalhos detectaram a superexpressão de expansinas no início da infecção por *M. incognita* com uma repressão tardia aos 10 DAI (Caillaud *et al.*, 2008; Sobczak et al., 2011 e Santini, 2014). Em tomate, Gal et al. (2006), mostraram que o gene expansina LeEXPA5 era expresso em células de galhas adjacentes às células gigantes e que a diminuição na expressão de LeEXPA5 afetava a capacidade do nematoide de completar o seu ciclo de vida. Em A. thaliana, a diminuição na expressão de expansinas afeta a capacidade de M. incognita em completar seu ciclo de vida (Jammes et al., 2005). A deposição concomitante de material da parede recém-sintetizado é associada ao processo de afrouxamento (Pant et al., 2014). Além disso, todas as pectato liases de A. thaliana, e a maioria dos poligalacturonases e pectinesterease, são também ativados em resposta a infestação por M. incognita (Jammes et al., 2005). Nesta interação Musa-M. incognita, genes de expansinas apresentaram um padrão de expressão contrastante nos dois genótipos. Enquanto o genótipo GN apresentou superexpressão quatro vezes maior para um único gene, EXPA15 3 DAI, os genes EXPA15, EXPB15 e EXPB18 foram suprimidos aos 7 e 10 DAI. No caso de 4279-06, EXPA9 e EXPB18 EXPB15 foram superexpressos 3 e 10 DAI. Nas análises histológicas, observou-se que M. incognita já tinha formado células gigantes nos dois genótipos entre os dias 7 e 10 DAI.

Foi observada também uma importante expressão de genes de Xyloglucan endotransglucosylase/hydrolase no genótipo 4279-06, encontrando-se quatro genes superexpressos aos 3 DAI: XTH7, XTH22, XtH23 e XtH32 e um reprimido: XTH28, o que pode estar associado à resposta da planta aos danos mecânicos causados por M. incognita. Jammes et al. (2005) também identificaram como potencialmente induzidas ou reprimidas proteínas infecção М. incognita. *Xyloglucan* estas após a com endotransglucosylase/hydrolases atuam especificamente catalisando a clivagem e reunião de cadeias de xiloglucano ou na hidrólise de xiloglucano. Durante as últimas décadas, XHT têm sido associadas a diversos processos em plantas, incluindo o crescimento de raízes, resposta contra danos mecânicos e defesa contra parasitas (Maris et al., 2009). Altos níveis de expressão de uma Xiloglucan endotransglucosilase/hidrolase (Gm-XTH43) foram encontrados em sincício na interação incompatível entre soja e o nematoide de cisto Heterodera glycines (Pant et al., 2014). Costa (2013), também identificou a regulação de vários destes genes na interação de Musa - F. oxysporum. Alem dos xiloglucanos, em 427906 3 DAI, foi encontrada *PLY22*, uma pectatoliase que, em *A. thaliana*, é ativada em resposta à infeção por *M. incognita* (Jammes *et al.*, 2005; Abad *et al.*, 2009).

As forminas e "*formin-like*" são proteínas organizadoras de citoesqueleto envolvidas em citocinese e, no estabelecimento e manutenção da polaridade celular. Segundo Favery *et al.* (2004) e Blanchoin e Staiger (2010), uma proteína estreitamente relacionada às forminas, *AtFH6*, é regulada positivamente nos estágios iniciais de formação dos sítios de alimentação de *Meloidogyne*, e está provavelmente envolvida na formação das células gigantes. Entretanto, no genótipo 4279-06 o gene da formina *FH5* foi suprimido aos 7 DAI.

Fatores de transcrição

Neste trabalho foram encontrados diferencialmente expressos genes que codificam fatores de transcrição que são importantes reguladores globais em plantas, principalmente das famílias WRKY, MYB, ERF, bHLH e Zinc finger. Esses fatores de transcrição possuem papel na imunidade em plantas, bem como na regulação do metabolismo secundário, e na expressão de genes envolvidos no metabolismo de salicilatos e jasmonatos e de resposta a etileno (Wildermuth et al., 2002). A grande diversidade de fatores de transcrição aqui encontrados, tanto reprimidos como ativados, sugere que desempenhem diferentes papéis na interação da planta com o nematoide. Aos 7 DAI, em GN, foi encontrado MYB44, fator de transcrição que em Arabidopsis thaliana regula a expressão de WRKY70 e modula a interação antagônica entre a sinalização de ácido salicílico e ácido jasmônico. Os fatores de transcrição de resposta a etileno: ERF4, ERF5 e ERF112 foram superexpressos nos dois genótipos aos 7 DAI, enquanto os genes ERF105 e ERF071 foram superexpressos só em 4279-06 e o fator de transcrição RAV1 suprimido neste mesmo genótipo 7 DAI. Os fatores de transcrição da família ERF1 desempenham importante papel na interligação das vias de sinalização hormonal e alterações na comunicação entre essas vias podem definir a resposta de plantas aos estresses bióticos e abióticos (Sohn et al., 2006).

Outros fatores de transcrição de resposta a estresse biótico e abiótico são *DREB1E*, *DREB1F*, os quais foram positivamente regulados em GN aos 7 DAI. Entretanto, ainda que vários estudos tenham sido dedicados à determinação de sua função, seu papel na resposta de plantas ao estresse biótico ainda não é totalmente entendido (Cheng *et al.*, 2013; Liu *et al.*, 2013; Santini, 2014).

No genótipo 4279-06 (3 DAI), foram encontradas algumas diferenças na expressão de genes de fatores de transcrição comparados a GN: um fator da família WRKY foi encontrado

superexpresso assim como um grupo importante de genes pertencentes à família BHLH foi dos mais reprimidos dentro dos fatores de transcrição: BHLH4, BHLH25, BHLH30, BHLH66, BHLH87, BHLH135, além do gene WRKY22. Esses genes também foram suprimidos na interação Musa - F. oxysporum (Costa, 2013). Genes BHLH são normalmente suprimidos nas interações compatíveis (Perry et al., 2009). Em relação a genes MYB, aos 3 DAI encontrou-se um MYBL regulado positivamente e At1g1460 reprimido 7 DAI. Segundo Jammes et al. (2005), na interação Meloidogyne - Arabidopsis, aos 7 DAI, também foram encontrados diversos genes das famílias MYB, ERF e WRKY tanto ativados como reprimidos. Costa (2013) identificou grande número de genes que codificam fatores de transcrição: WRKY, MYB, bHLH36 e Zinc finger significativamente induzidos após infecção com F. oxysporum na cultivar 'Prata-anã' e 'BRS Platina' de Musa. Li et al. (2012), nessa mesma interação Musa - F. oxysporum similarmente encontraram genes superexpressos da família WRKY e ERF, e outros genes WRKY e BHLH foram suprimidos. Segundo Jammes et al. (2005) e Abad et al. (2009), o estabelecimento bem sucedido do nematoide depende da supressão dos genes de defesa da planta em Arabidopsis, essa supressão ocorre principalmente entre 14 e 21 DAI e incluem os genes ERFs e WRKYs. Neste estudo só foi avaliado até o dia 10 depois de inoculação; alguns desses fatores foram encontrados ativados aos 3 ou 7 DAI, mas não aos 10 DAI, no entanto nesse tempo, o nematoide avança na infecção e consegue neutralizar as defesas da planta, para estabelecer seu sitio de alimentação.

Três genes *Zinc finger* (*Os01g0192000, AtC3H58* e *LSD1*), foram encontrados superexpressos no genótipo 4279-06, 3 DAI. *Zinc finger* são proteínas envolvidas em diversos processos biológicos em plantas, incluindo a regulação de mecanismos de resistência a fatores bióticos e abióticos. A presença de domínios *Zinc finger*, incluindo GATA, têm sido registrada em proteínas que são produto de genes de resistência (genes R) em diversas plantas cultiváveis, sugerindo que essas proteínas desempenham papel importante na resistência a patógenos em plantas (Gupta *et al.*, 2012). No estudo de Postnikova *et al.* (2015), um gene *Zinc-finger* com domínio CCCH foi encontrado em níveis basais de expressão de genes em condições normais, indicando também que este gene pertence a defesa basal da planta. Costa (2013) no estudo da interação *Musa - F. oxysporum* encontrou genes que codificam para fatores de transcrição *Zinc finger*, que foram significativamente induzidos após infecção com o patógeno nos genótipos 'Prata-anã' e 'BRS Platina'. Santini (2014) também encontrou estes genes expressos na interação feijoiero - *M. incognita*.

Hormônios

Neste trabalho ficou evidente o grande envolvimento de genes ligados a hormônios (auxinas, giberelinas, ácido salicílico, ácido jasmônico e etileno), na resposta à infecção por *M. incognita*. Além dos fatores de transcrição já descritos, outros genes foram encontrados, tanto suprimidos como superexpressos, principalmente no genótipo 4279-06 no qual no início da interação o gene do fator *SPT5* (homolog 1 *At4g08350*) foi superexpresso. *SPT5* é um fator de transcrição de alongamento (TEF) que em *Arabidopsis* atua na regulação da expressão de determinados genes relacionados com auxina (Durr *et al.*, 2014). Mecanismos de defesa envolvidos na resistência a nematoides biotróficos dependem em grande medida da sinalização de GA e AJ (Beneventi *et al.*, 2013). No genótipo GN, aos 3 DAI, foi superexpresso o gene *GASA4*, que codifica proteína que regula Giberelina e pertence à família de proteínas Snakin/GASA; esse gene tem sido identificado em uma ampla gama de espécies de plantas, tais como: tomateiro (*Solanum lycopersicum*) (*GAST1, RSI-1*), petúnia (*Petunia hibrida*) (*GIP1-5*), Arabidopsis (*Arabidopsis thaliana*) (*GASA 1-15*), batata (*Solanum tuberosum*) (*SN1-2*), feijoeiro (*Phaseolus vulgaris*) (*FBCBP*), arroz (*Oryza sativa*) (*OsGASR1-2, OsGSR1*) (Nahirñak *et al.*, 2012).

Genes relacionados com auxinas foram regulados nos dois genótipos. O gene *GH3-8*, de *indole-3-acetic acid-amido synthetase*, que conjuga auxina a aminoácidos, foi suprimido aos 7 DAI. Em soja, um promotor derivado do gene *GH3*, gera um aumento de auxina nos sítios de alimentação do nematoide das galhas (Karczmarek *et al.*, 2004; Abad *et al.*, 2009). Em arroz, a expressão de *GH3-8* aumenta após a inoculação com patógenos e sua superexpressão confere resistência a *Xanthomonas oryzae*. Essa proteína também suprime a expressão de expansinas em arroz (Ding *et al.*, 2008). O gene *FMO6P*, de flavina mono-oxigenase, foi encontrado superexpresso 10 DAI em 4279-06. *FMO6P* catalisa passos específicos na biossíntese de auxina e atua na mediação do desenvolvimento dos sítios de alimentação dos nematoides das galhas (Gutierrez *et al.*, 2009). Nesse dia da avaliação, *M. incognita* já havia estabelecido sítios de alimentação nas raízes dos dois genótipos.

A auxina provavelmente não é o único hormônio que desempenha um papel na indução de células de alimentação; segundo Bird (2004), a regulação positiva de citocinina durante a iniciação de células gigantes foi observada em *Arabidopsis*. Segundo De Meutter *et al.* (2003), em exsudados de juvenis infectantes J2 confirmou-se a presença de diferentes citocininas que desempenham um papel no estabelecimento do nematoide no tecido da planta. Neste estudo, na fase inicial de infecção de *M. incognita* no genótipo 4279-06, foram

reguladas negativamente duas enzimas *Cytokinin-O-glucosyltransferases*: *UGT85A1*, e *UGT73C5*; esta enzima atua na conversão de citocinina em formas inativas, e sua regulação negativa mantém os níveis de citocinina na planta, provavelmente favorecendo o nematoide (Mok e Mok, 2001).

O ácido salicílico (AS) e o ácido jasmônico (AJ) são outras vias hormonais importantes na regulação da expressão de genes de defesa (Bari e Jones, 2009). No genótipo GN o gene *TIFY5A* (que codifica *jasmonate ZIM domain protein 8- JAZ8*) foi superexpresso 7 DAI. JAZ8 atua contra a degradação mediada por jasmonato e, quando ectopicamente expresso em *Arabidopsis*, reprime respostas de crescimento e defesa reguladas por jasmonato (Shyu *et al.*, 2012). Na interação *Musa - F. oxysporum* (Costa, 2013), este gene foi suprimido no genótipo BRS Platina indicando que os genes de resposta a hormônios podem ser diferentemente expressos entre genótipos de *Musa*.

O Gene XL4, superexpresso em GN aos 7 DAI, está relacionado com a regulação de brassinosteroides e, segundo Seilaniantz *et al.* (2007), promove a resistência a patógenos biotróficos de uma forma AS-independente. No genótipo 4279-06 não foram encontrados regulados genes relacionados à via de AS. Nguyễn *et al.* (2014), sugerem que a infecção bem sucedida de *M. incognita* em arroz suprime a sinalização de AS em galhas recém-formadas, o que pode ter sido o caso da interação *Musa acuminata - M. incognita*. Aos 10 DAI, o gene *CAD1-A*, que atua na indução do metabolismo secundário e biossíntese de fitoalexinas (Chen *et al.*, 1995), foi suprimido em GN; na interação *Musa - F.oxysporum* (Costa, 2013), esse gene também foi encontrado suprimido, sugerindo que sua supressão pode favorecer o desenvolvimento dos patógenos nas plantas.

Com base nestes resultados, observamos evidência que indica uma resposta à infecção por *M. incognita*, principalmente do genótipo 4279-06, pela via *PTI*, de defesa basal da planta, já que neste encontraram-se genes receptores LRR, quinases que reconhecem *MAMPs* (*PAMPs*) e produtos de degradação da parede celular que ativam proteínas quinases e fatores de transcrição. Pela via *ETI*, poucos genes da família NBS-LRR que conferem resistência a nematoides foram encontrados nos dois genótipos, e genes como *ARA12* que participa da geração de resposta hipersensível foram suprimidos, permitindo assim a infecção por *M. incognita*.

Na interação *Musa acuminata - M. incognita* encontrou-se uma importante resposta das plantas pela via do etileno. Além dos fatores de resposta a etileno (*ERFs*) já mencionados, o gene *ACO1* (1-aminociclopropano-1-carboxilato oxidase), que atua na síntese de etileno, foi

superexpresso aos 10 DAI no genótipo 4279-06 (embora reprimido em GN). Considerando o modelo de Robert-Seilaniantz *et al.* (2007), a resposta à infecção por patógenos pode ser controlada por duas vias principais: a de AS, que promove resistência contra patógenos biotróficos, e a de AJ/ET, que promove resistência contra patógenos necrotróficos; estas duas vias são geralmente antagonistas, e a ativação de uma suprime a ativação do outra. No caso do presente trabalho, o efeito de hormônios na resposta ao nematoide das galhas é consistente com este modelo. Auxinas e citocininas promovem a susceptibilidade a parasitas biotróficos ao induzir a via resistência a necrotróficos (AJ/ET). No caso de *M. incognita,* parasita biotrófico, a via de resposta de defesa efetiva é a do ácido salicílico (Robert-Seilaniantz *et al.,* 2007). Observou-se aqui a regulação de genes que mantém elevadas auxinas e citocininas, além de genes de ativação da via do etileno. Dessa forma, a modulação hormonal pode ter sido induzida pelo nematoide a fim de desviar a via de resposta, impedindo a defesa da planta; assim esses genes que aumentam os níveis de auxinas e citocininas, também estão associados à formação de células gigantes, permitindo completar seu parasitismo em *Musa*.

Vários estudos de expressão gênica diferencial foram realizados na interação plantanematoide (Escobar *et al.*, 2011). Por exemplo, o gene *TobRB7* foi identificado na década de 90, com super expressão, em uma biblioteca de cDNA construída a partir de células gigantes de fumo infectado por *Meloidogyne* sp.

Em alfafa e tomate, infectados por *Meloidogyne* sp., também foram detectados genes diferencialmente expressos a partir de bibliotecas de cDNA. Uma análise comparativa por microarranjo de genes expressos em *A. thaliana* infectada por *H. glycines* em reação incompatível e compatível, mostrou um total de 128 genes diferencialmente expressos confirmando relatos anteriores de reações de compatibilidade, onde o nematoide altera a regulação de genes envolvidos na resposta a hormônios, modificação da parede celular e ciclo celular, tendo como resultado o desenvolvimento do sincício (Escobar, 2011; Santini, 2014).

CONCLUSÕES

Os dois genótipos apresentaram mecanismos de defesa similares à infecção por *M. incognita* com uma maior resposta nos dias iniciais da infecção no genótipo 4279-06 em comparação ao GN. Aos 10 DAI, o nematoide das galhas já havia estabelecido sítios de alimentação com a formação de células gigantes e galhas nas raízes nos dois genótipos.

Na resposta de *Musa acuminata* à infecção por *M. incognita*, foi evidente o grande envolvimento de genes ligados a fatores de transcrição e a hormônios. Pouca resposta de defesa a parasitas biotróficos foi encontrada, mas sim uma ampla resposta pela via de etileno, além auxinas e giberelinas que favorecem a formação de célula gigante.

Muitos dos genes diferencialmente expressos neste trabalho concordam com os genes expressos no estudo da interação *Musa - Fusarium oxysporum*, confirmando que no mecanismo de defesa de *Musa*, utiliza vias similares de defesa em resposta a diferentes patógenos.

O presente estudo de interação *Musa acuminata - Meloidogyne incognita* servirá de base para estudos futuros de expressão gênica, a fim de identificar genes candidatos que desempenham um papel ativo na via de defesa aos nematoides das galhas em diferentes genótipos de *Musa*, que possibilitará o desenvolvimento de novas ferramentas para o controle desses parasitas.

PERSPECTIVAS

A validação da expressão diferencial de genes identificados *in sílico* nesta interação, será realizada utilizando qRT-PCR, assim como o desenho de marcadores microssatélites gênicos para uso no desenvolvimento de mapas genéticos derivados de populações segregantes de *M. acuminata* contrastando em resistência ao nematoide das galhas *M. incognita*.

Considerando que esta é a primeira análise do transcritoma de *M. acuminata* durante a interação com *M. incognita*, necessitam ser avaliados outros genótipos com resposta de resistência ao nematoide das galhas a fim de encontrar genes candidatos para melhoramento em *Musa*.

Espera-se poder realizar a análise dos genes de *M. incognita*, na interação com *Musa* em trabalhos futuros, para entender o mecanismo de infecção deste parasita nesta hospedeira.

REFERÊNCIAS BIBLIOGRÁFICAS

ABAD P, CASTAGNONE-SERENO P, ROSSO MN, ENGLER AJ, FAVERY B, 2009. Invasion, feeding and development. In Root-knot nematodes: Perry RN, Moens M, and Starr JL (Edits). p:163-181.

ALMEIDA ENGLER J, DE VLEESSCHAUWER V, BURSSENS S, CELENZA JL, INZÉ D, VAN MONTAGU M *ET AL.* 1999. Molecular markers and cell cycle inhibitors show the importance of the cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793-807.

ARIAS Y, GONZÁLEZ I, RODRÍGUEZ M, ROSALES C, SUÁREZ Z, PETEIRA, B. 2009. Aspectos generales de la interacción tomate (*Solanum lycopersicon* L.) - *Meloidogyne incognita*. Revista de Protección Veg. 24(1):1-13.

BALBI V, DEVOTO A. 2008. Jasmonate signalling network in *Arabidopsis thaliana*: crucial regulatory nodes and new physiological scenarios. New Phytologist 177(2):301–318.

BARCALA M, GARCÍA A, CABRERA J, CASSON S, LINDSEY K, FAVERY B, GARCÍA-CASADO G, SOLANO R, FENOLL C, ESCOBAR C. 2010. Early transcriptomic events in microdissected *Arabidopsis* nematode-induced giant cells. The Plant Journal 61(4):698–712.

BARI R, JONES JDG. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69:473–488.

BARRY CS, BLUME B, BOUZAYEN M, COOPER W, HAMILTON AJ, GRIERSON D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family tomato. The Plant Journal 9(4):525-535.

BENEVENTI E, NIERO M, MOTTERLE R, FRAAIJE MW, BERGHANTINO E. 2013. Discovery of Baeyer–Villiger monooxygenases from photosynthetic eukaryotes. J. Mol. Catal. B Enzym. 98, 145–154.

BERROCAL-LOBO M, MOLINA A. 2008. *Arabidopsis* defense response against *Fusarium oxysporum*. Trends in Plant Science 13:145–150.

BIRD DM. 2004. Signaling between nematodes and plants. Current Opinion in Plant Biology 7:372–376.

BLOEM E, HANEKLAUS S, SCHNUG E. 2015. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Plant Science 5(779): 1-11.

BLANCHOIN L, STAIGER CJ. 2010. Forminas planta: isoformas diversos e mecanismo molecular. 1803(2):201-206.

BOEKE JD, DEVINE SE. 1998. Yeast retrotransposons: finding a nice quiet neighborhood. Cell 93:1087–1089.

BOLGER AM, LOHSE M, USADEL B. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics Advance Access. On line: http://bioinformatics. oxfordjournals.org/.

BHUIYAN NH, SELVARAJ G, WEI, Y, KING J. 2008. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. Journal of Experimental Botany 60(2): 509-521.

CAILLAUD MC, DUBREUIL G, QUENTIN M. PERFUS-BARBEOCH L, LECOMTE P, DE ALMEIDA ENGLER J, ABAD P, ROSSO MN, FAVERY, B. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology 165(1): 104–113.

CAROMEL B, GEBHARDT C. 2011. Breeding for nematode resistance: use of genomic information. In: JONES J, GHEYSEN G, FENOLL C. (Eds.). Genomics and molecular genetics of plant-nematode interactions. New York: Springer Verlag. p. 465–492.

CHEN XY, CHEN Y, HEINSTEIN P, DAVISSON VJ. 1995. Cloning, expression, and characterization of (+)- δ -cadinene synthase: a catalyst for cotton phytoalexin biosynthesis Arch Biochem Biophys. 324(2):255-66.

CHENG MC, LIAO PM, KUO WW, LIN TP. 2013. The *Arabidopsis* ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology 162:1566-1582.

COSTA L. 2013. Estudos histológicos e moleculares da interação *Musa* spp. - *Fusarium oxysporum* f. sp *cubense*. Tese de Mestrado. Universidade de São Paulo. Escola Superior de Agricultura "Luiz de Queiroz". Piracicaba. 196 p.

COOLEN WA, D'HERDE CJ. 1972. A method for the quantitative extraction of nematodes from plant tissue. Ghent, State Nematology and Entomology Research Station. 77p.

DANGL JL, JONES JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.

DE MEUTTER J, TYTGAT T WITTERS E, GHEYSEN G, VAN ONCKELEN H, GHEYSEN G. 2003. Identification of cytokinins produced by the plant parasitic nematodes *Heterodera schachtii* and *Meloidogyne incognita*. Molecular Plant Pathology 4, 271–277. DE PINTO MC, PARADISO A, LEONETTI P, DE GARA L. 2006. Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal 48: 784–795.

DIENER AC, GAXIOLA RA, FINK GR. 2001. *Arabidopsis*ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. The Plant Cell 13:1625–1637.

DING WX, CAO Y, HUANG L, ZHAO J, XU C, LI X, WANG S. 2008. Activation of the indole-3-acetic acid–amido synthetase gh3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. The Plant Cell 20: 228–24.

DÜRR J, LOLAS IB, SØRENSEN BB, SCHUBERT V, HOUBEN A, MELZER M, DEUTZMANN R, GRASSER M, GRASSER KD. 2014. The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in *Arabidopsis*. Nucleic Acids Research 42(7): 4332-47

EMBRAPA CERRADOS. 2007. Interação Molecular Planta-. Documento 198.

EMEDIATO FL, PASSOS MAN, TEIXEIRA CC, PAPPAS JR GJ, MILLER RNG. 2013. Analysis of expression of NBS-LRR resistance gene analogs in *M. acuminata* during compatible and incompatible interactions with *M. musicola*. Acta Horticulturae 986: 255-258.

FAVERY B, CHELYSHEVA LA, LEBRIS M, JAMMES F, MARMAGNE, A., DE ALMEIDA ENGLER J, LECOMTE P, VAURY C, ARKOWITZ RA, ABAD P. 2004. *Arabidopsis* formin AtFH6 is a plasma membraneassociated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16: 2529–2540.

FLEIGE S, PFAFFL MW. 2006. RNA integrity and the effect on the real-time q RT-PCR performance. Molecular Aspects of Medicine 27(2-3):126-139.

FIORENTIN, F. 2010. Identificação de *Meloidogyne* spp. em reservas legais e avaliação do parasitismo de *Meloidogyne incognita* raça 03 e *M. javanica* em plantas nativas do oeste paranaense. Tese de Mestrado. Universidade Estadual do Oeste do Paraná, Brasil.

GAL TZ, AUSSENBERGH ER, BURDMAN S, KAPULNIK Y, KOLTAI H. 2006. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta 224(1):155-62.

GHEYSEN G, FENOLL C. 2002. Gene expression in nematode feeding sites. Annual Review Phytopathology 40:191–219.

GRABHERR MG, HAAS BJ, YASSOUR M, LEVIN JZ, THOMPSON DA, AMIT I, ADICONIS X, FAN L, RAYCHOWDHURY R, ZENG Q, CHEN Z, MAUCELI E, HACOHEN N, GNIRKE A, RHIND N, DI PALMA F, BIRREN BW, NUSBAUM C, LINDBLAD-TOH K, FRIEDMAN N, REGEV A. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnology 29(7):644-52.

GUIMARÃES PM, BRASILEIRO ACM, PROITE K, DE ARAÚJO ACG, LEAL-BERTIOLI SCM, PIC-TAYLOR A, SILVA FR, MORGANTE CV, RIBEIRO SC, BERTIOLI DJ. 2010. A study of gene expression in the nematode resistant wild peanut relative, *Arachis stenosperma*, in response to challenge with *Meloidogyne arenaria*. Tropical Plant Biology. On line (doi:10.1007/s12042-010-9056-z).

GUTIERREZ OA, WUBBEN MJ, HOWARD M, ROBERTS B, HANLON E, WILKINSON JR. 2009. The role of phytohormones ethylene and auxin in plant-nematode interactions. Russian Journal Plant Physiology 56:1–5.

HAMMOND-KOSACK KE, SILVERMAN P, RASKIN I, JONES JDG. 1996, Race-specific elicitors of *Cladosporium fulvum* induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene. Plant Physiology 110(4):1381–1394.

HOFMANN J, EL ASHRY AN, ANWAR S, ERBAN A, KOPKA J, GRUNDLER F. 2010. Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant Journal 62(6):1058–1071.

HWANG CF, BHAKTA AV, TRUESDELL GM, PUDLO WM, WILLIAMSON VM. 2000. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12:1319-1329.

HWANG IS, HWANG BK. 2011. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiology 155:447–463.

ISANI G, CARPENÈ E. 2014. Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules4(2):435-57. doi: 10.3390/biom4020435.

JAMMES F, LECOMTE P, DE ALMEIDA ENGLER J, BITTON F, MARTIN-MAGNIETTE ML, RENOU JP, ABAD P, FAVERY B. 2005. Genome-wide expression profiling of the host response to root-knot nematode infection in *Arabidopsis*. Plant Journal 44: 447–458.

JONES JD, DANGL JL. 2006. The plant immune system. Journal of Endocytobiosis and Cell Research Nature 444:323-329.

JONES JT, HAEGEMAN A, DANCHIN EGJ, GAUR HS, HELDER J, JONES MGK, KIKUCHI T, MANZANILLA-LÓPEZ R, PALOMARES-RIUS JE, WESEMAEL WML, PERRY RN. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14(9): 946–961.

KACHROO A, KACHROO P. 2009. Fatty acid–derived signals in plant defense. Annual Review of Phytopathology 47:153–76.

KARCZMAREK A, OVERMARS H, HELDER J, GOVERSE A. 2004. Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxininducible promoter element. Molecular Plant Pathology 5:343–346.

KYNDT T, FERNANDEZ D, GHEYSEN G. 2014. Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights. Annual Review of Phytopathology 52:135–53.

LI CY, DENG GM, YANG J, VILJOEN A, JIN Y, KUANG RB *ET AL*. 2012. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with *Fusarium oxysporum* f. sp. cubense tropical race 4. BMC Genomics 13:374.

LIU D, HE X, LI W, CHEN C, GE F. 2012. Molecular cloning of a thaumatin-like protein gene from *Pyrus pyrifolia* and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tissue Organ Culture 111:29–39.

LIU M, PIRRELLO J, KESARI R, MILA I, ROUSTAN JP, LI Z, LATCHÉ A, PECH JC, BOUZAYEN M, REGAD F. 2013. A dominant repressor version of the tomato SI-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. The Plant Journal 76(3): 406–419.

LOGEMANN J, SCHELL J. 1989. Nucleotide sequence and regulated expression of a wound-inducible potato gene (WUNI). Molecular General Genetics 219:81-88.

LUNA E, PASTOR V, ROBERT J, FLORS V, MAUCH-MANI B, TON J. 2011. Callose deposition: A Multifaceted Plant Defense Response 24(2):183–193.

MARIS A, SUSLOV D, FRY SC, VERBELEN JP, VISSENBERGH K. 2009. Enzymic characterization of two recombinant xyloglucan endotransglucosylase /hydrolase (XTH) proteins of *Arabidopsis* and their effect on root growth and cell wall extension. Journal of Experimental Botany 60(13): 3959–3972.

MARTIN DN, PROEBSTING WM, HEDDEN P. 1999 .The Slender gene of pea encodes a gibberellin 2-oxidase. Plant Physiology 121:775–781.

MEYERS BC, KAUSHIK S, NANDETY RS. 2005. Evolving disease resistance genes. Current Opinion in Plant Biology 8:129-134.

MILLER RNG, BERTIOL, DJ, BAURENS FC, SANTOS CM, ALVES PC, MARTINS NF, TOGAWA RC, SOUZA MT JR, PAPPAS JÚNIOR GJ. 2008. Analysis of non-TIR NBS-LRR resistance gene analogs in *Musa acuminata* Colla: Isolation, RFLP marker development, and physical mapping. BMC Plant Biology 8:15.

MILLER RNG, PASSOS MAN, EMEDIATO FL, TEIXEIRA C.DE C. PAPPAS JÚNIOR GJ. 2011. Candidate resistance gene discovery: resistance gene analog characterization and differential gene expression analysis in *Musa-Mycosphaerella* host-pathogen interactions. Acta Hortorticulturae (ISHS) 897: 179-186.

MOK DW, MOK MC. 2001. Cytokinin Metabolism and Action. Annual Review of Plant Physiology and Plant Molecular Biology 52. ISSN, pp. 89-118

MOROZ VW, HUSSEYB RS. 1996. Nematode pathogenesis and resistance in plants. The Plant Cell 8: 1735-1745.

NAHIRÑAK V, ALMASIA NI, HOPP HE, VAZQUEZ-ROVERE C. 2012. Snakin/GASA proteins involvement in hormone crosstalk and redox homeostasis. Plant Signal Behavior 7:1004–1008.

NIE X1, SINGH RP, TAI GC. 2002. Molecular characterization and expression analysis of 1aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses. Genome 45(5):905-13.

NGUYĚN PV, BELLAFIORE S, PETITOT AS, HAIDAR R, BAK A, ABED A, GANTET P, MEZZALIRA I, J DE A ENGLER, FERNANDEZ D. 2014. *Meloidogyne incognita* - rice (*Oryza sativa*) interaction: a new model system to study plant–root-knot nematode interactions in monocotyledons. Rice Springer open Journal. On line: http://www.thericejournal.com/content/7/1/23.

NOVAES E, DROST DR, FARMERIE WG, PAPPAS JR GJ, GRATTAPAGLIA D, DEROFF RR, KIRST, M. 2008. High-trhoughput gene and SNP discovery in *Eucalyptus grandis*, an uncharacterized genome. BMC Genomics 9:312.

PANT SRP, MATSYE D, MCNEECE BT, SHARMA K, KRISHNAVAJHALA A, LAWRENCE W, KLINK VP. 2014. Syntaxin 31 functions in *Glycine max* resistance to the plant parasitic nematode *Heterodera glycines*. Plant Molecular Biology 85(1-2):107-121.

PASSOS MAN, EMEDIATO FL, CRUZ VO, TEIXEIRA CC, FIGUEIREDO LFA, MARTINS NF, TOGAWA RC, COSTA MMC, SILVA JR O, PAPPAS JÚNIOR GJ, MILLER RNG. 2013. Understanding plant immunity: transcriptome profiling in *Musa* - pathogen interactions using Next Generation Sequencing. Acta Horticulturae 986:227-240.

PERRY RN, MOENS M, STARR JL. 2009. Root-knot nematodes. CABI, Department of Crop Protection, Ghent, Belgium. 488p.

PIREYRE M, BUROW M. 2015. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Molecular Plant 8(3):378-88.

POTENZA C, THOMAS SH, SENGUPTA-GOPALAN C. 2001. Genes induced during early response to *Meloidogyne incognita* in roots of resistant and susceptible alfalfa cultivars. Plant Science 161: 289–299.

POSTNIKOVA OA, HULT M, SHAO J, SKANTAR A, NEMCHINOV LG. 2015. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode *Meloidogyne incognita*. PLoS ONE 10(2): e0118269.

PRÜFER K, MUETZEL B, DO HH, WEISS G, KHAITOVICH, P, RAHM E, PÄÄBO S, LACHMANN M, AND ENARD W. 2007. FUNC: A package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics, 8:41 doi:10.1186/1471-2105-8-41

ROBERT-SEILANIANTZ A, NAVARRO L, BARI R, JONES JDG. 2007. Pathological hormone imbalances. Current Opinion in Plant Biology 10:372–379.

ROBINSON MD, MCCARTHY DJ, SMYTH GK. 2010. Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139-40.

RODRÍGUEZ PL. 1998. Protein phosphatase 2C (PP2C) function in higher plants. Plant Molecular Biology 38: 919–927.

SANTINI L. 2014. Análise, via RNAseq, do transcritoma do feijoeiro e identificação de genes expressos em resposta à infecção pelo das galhas. Tese de Doutorado em Genética e Melhoramento de Plantas. Piracicaba. 118 p.

SANTOS JRP. 2011. Caracterização genética e molecular de acessos de bananeira a Radopholus similis e *Meloidogyne incognita*. Tese de Doutorado – Universidade de Brasília. 215p.

SENEVIRATNE HK, DALISAY DS, KIM KW, MOINUDDIN SG, YANG H, HARTSHORN CM, DAVIN LB, LEWIS NG. 2015. Non-host disease resistance response in

pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization. Phytochemistry 113:140-8.

SEILANIANTZ AR, NAVARRO L, BARI R, JONES JDG. 2007. Pathological hormone imbalances. Current Opinion in Plant Biology 10:372–379.

SHYU C, FIGUEROA P, DEPEW CODY LDP, COOKE TF, SHEARD LB, MORENO JE, KATSIR L, ZHENG N, E BROWSE JHOWE GA. 2012. JAZ8 Lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in *Arabidopsis*. The Plant Cell 24:536–550.

SIMON A, PYL PT, HUBER W. 2014. HTSeq - A python framework to work with high-throughput sequencing data bioinformatics. Disponível em http://dx.doi.org/10.1101/002824.

SOBCZAK M, FUDALI S, WIECZOREK K. 2011. Cell wall modifications induced by nematodes. In: Jones J, Gheysen G, Fenoll C. (Eds.). Genomics and molecular genetics of plant-nematode interactions. Dordrecht; New York: Springer Verlag, p. 395-422.

SOHN KH, LEE SC, JUNG HW, HONG JK, HWANG BK. 2006. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology 61:897–915.

THURAU T, KIFLE S, JUNG C, CAI D. 2003. The promoter of the nematode resistance gene hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (*Beta vulgaris* L.) and *Arabidopsis thaliana*. Plant Molecular Biology 52: 643-660.

UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, YE J, FAIRCLOTH BC, REMM M, ROZEN SG. 2012. Primer 3 - new capabilities and interfaces. Nucleic Acids Research 40(15):e115.

VAN LOON LC, REP M, PIETERSE CM. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44:135–62.

VARTAPETIAN AB, TUZHIKOV AI, CHICHKOVA NV, TALIANSKY M, WOLPERT TJ. 2011. A plant alternative to animal caspases: subtilisin-like proteases. Cell Death and Differentiation 18:1289–1297.

VRIENS K, CAMMUE BPA, THEVISSEN K. 2014. Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280-12303.

WAHID A, GELANI S, ASHRAF M. *ET AL*. 2007. Heat tolerance in plants: An overview.Environmental and experimental Botany. Elmsford, 61(3):199-223.

WALTERS M. 2015. The plant innate immune system. Journal of Endocytobiosis and Cell Research 26:8-12.

WATANABE N, MARCUS SL, DEYHOLOS MK, CHERNEY MM, FLEGEL MD, VEDERAS JC, *ET AL*. 2007. Crystal structure of LL-diaminopimelate aminotransferase from *Arabidopsis thaliana*: a recently discovered enzyme in the biosynthesis of L-lysine by plants and Chlamydia. Journal of Molecular Biology 371: 685–702.

WESTERMANN AJ, GORSKI AS, VOGEL J. 2012. Dual RNA-seq of pathogen and host. Nature Reviews Microbiology 10(9):618–630.

WILLIAMSON VM, GLEASON CA. 2003. Plant–nematode interactions. Current Opinion in Plant Biology 6:1–7.

WIDJAJA I, LASSOWSKAT I, BETHKE G, ESCHEN-LIPPOLD L, LONG H-H, NAUMAN N et al. 2010. A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in *Arabidopsis*. The Plant Journal 61: 249–258.

WILDERMUTH MC, DEWDNEY J, WU G, AUSUBEL FM. 2002. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414(29): 562-571.

WONDAFRASH M, VAN DAM NM, TYTGAT TOG. 2013. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Frontiers in Plant Science 4:1-15.

WONG HL, SAKAMOTO T, KAWASAKI T, UMEMURA K, SHIMAMOTO K. 2004. Down-regulation of metallothionein, a reactive oxygen sGNenger, by the small GTPase OsRac1 in rice. Plant Physiology135, 1447–1456. [PMC free article]

WOO HH, JEONG BR, HIRSCH AM, HAWES MC. 2007. Characterization of *Arabidopsis* AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues. Genomics 90(1):143–153.

YANG T, POOVAIAH BW. 2003. Calcium/calmodulin-mediated signal network in plants. Trends in Plant Science 8:505–512.

YAZAWA T, KAWAHIGASHI H, MATSUMOTO T, MIZUNO H. 2013. Simultaneous transcriptome analysis of *Sorghum* and *Bipolaris sorghicola* by using RNA-seq in combination with de novo transcriptome assembly. PLoS ONE 8(4): e62460.

ZHAO Q, DIXON RA. 2014. Altering the cell wall and its impact on plant disease: from forage to bioenergy. Annual Review of Phytopathology 52:69–91.

ZINOVEVA SV, VASYUKOVA NI, OZERETSKOVSKAYA OL. 2004. Biochemical aspects of plant interactions with phytoparasitic nematodes: a review. Applied Biochemistry and Microbiology (40):111-119.

ANEXOS

ANEXO I

Analises estadísticos das dimençoes anatómicas da raízes Capitulo III

Os valores obtidos foram transformados para $\log 10 (x+1)$ e comparados por análise de variância, seguida do teste de Tukey, a nível de 5% de probabilidade, calculado pelo programa SISVAR (Ferreira, 2011).

	Variável a	nalisada: Penet	ração J2	
Opça	ão de transformação	: Variável sem	transformação (Y)
	TABELA DE	ANÁLISE DE VAR	RIÂNCIA	
FV	GL	SQ	QM	Fc Pr>Fc
GENOT erro	5 24	579.600000 141.20	115.920000 00000 5.88	19.703 0.0000 3333
	Total corrigido	29	720.800000	
Média geral	CV (%) : 7.200000	= 0 Número d	33.69 de observações:	30
	Teste T	ukey para a FV	genot	
	DMS: 4,744	49468025635 NM	1S: 0,05	
	Média harmonica d Erro pad	lo número de rep lrão: 1,0847426	Detições (r): 5 730182	
4279-3 GN-3 4279-6 4279-9 GN-6 GN-9 Tratamentos	3	0.8 1. 8.6 9.8 10.0 12.4 Médi	800000 al 500000 al 800000 a2 800000 a2 900000 a2 100000 a2 as Resultados	do teste
Opção de	Variá transformação: Rai:	vel analisada: z quadrada de Y	J2 + 1.0 - SQRT (Y -	+ 1.0)
	TABELA DE	ANÁLISE DE VAR	RIÂNCIA	
FV	GL	SQ	QM	Fc Pr>Fc
GENOT erro	5	24.435928	4.887186 .9358 0.14	34.302 0.0000 2473
	Total corrigido	29	27.855287	
		198		

Módia goral	CV (%) =	1 Número de	4.00 obsorvaçãos	. 30
	. 2.0903701			
	Teste Tuk	ey para a FV G	ENOT	
	DMS, 0 73832	0505825873 NM	z. 0.05	
	Média harmonica do	número de repe	tições (r):	5
	Erro padrão	o: 0,1688035951 	15537	
Tratamentos		Média: 	s Result 	ados do teste
4279-3		1.312	096 al	
GN-3 4279-6		1.575	663 al	
4279-0		3.000	200 a2 396 a2	
GN-6		3.309	711 a2	
GN-9		3.618	299 a2	
	·· · · · · · · ·	1 1001 0 1 0		
	Variavel analisa	da: AREA_Cel.Gi	gante (mm ⁻)	
Opcá	ão de transformação:	Traulánal agu b		(¥)
1 *	3	variavei sem u	ranslormação	(1)
		variavei sem u	ransiormaçao	(I)
		variavei sem u		(1)
		variavei sem u		(I)
	TABELA DE 2	ANÁLISE DE VARI	ÂNCIA	(<u>)</u>
	TABELA DE 2	ANÁLISE DE VARI	ÂNCIA	(1)
 FV	TABELA DE Z	ANÁLISE DE VARI	ÂNCIA	(I) Fc Pr>Fc
 FV 	TABELA DE 2 GL	ANÁLISE DE VARI	ÂNCIA	FC Pr>Fc
FV TRAT erro	GL 5 24	ANÁLISE DE VARI SQ 0.002737 0.000	ÂNCIA QM 0.000547 760	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro	GL 5 24	ANÁLISE DE VARI SQ 0.002737 0.000	ÂNCIA 0.000547	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro	TABELA DE 2 GL 5 24 Total corrigido	ANÁLISE DE VARI SQ 0.002737 0.000 29	ÂNCIA 0.000547 760 0.003497	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro	GL 5 24 Total corrigido CV (%) =	ANÁLISE DE VARI SQ 0.002737 0.000 29	ÂNCIA 0.000547 760 0.003497 7.68	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE 2 GL 5 24 Total corrigido CV (%) = : 0.0203333	ANÁLISE DE VARI SQ 0.002737 0.000 29 29 29	ÂNCIA 0.000547 7.68 observações	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE 1 GL 5 24 Total corrigido CV (%) = 0.0203333	ANÁLISE DE VARI SQ 0.002737 0.000 29 Número de	ÂNCIA 0.000547 760 7.68 observações	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE 3 GL 5 24 Total corrigido CV (%) = : 0.0203333	ANÁLISE DE VARI SQ 0.002737 0.000 29 29 29	ÂNCIA 0.000547 760 0.003497 7.68 observações	Fc Pr>Fc 17.284 0.0000 0.000032 : 30
FV TRAT erro Média geral:	TABELA DE 7 GL 5 24 Total corrigido CV (%) = : 0.0203333 Teste Tul	ANÁLISE DE VARI SQ 0.002737 0.000 29 Número de	ÂNCIA QM QM 0.000547 760 0.003497 7.68 observações RAT	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = : 0.0203333 Teste Tul	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = : 0.0203333 Teste Tul DMS: 0,01100'	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T	ÂNCIA QM 0.000547 760 0.003497 7.68 observações RAT S: 0,05	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = : 0.0203333 Teste Tul DMS: 0,01100	ANÁLISE DE VARI SQ 0.002737 0.000 29 29 Número de key para a FV I 72647353595 NM	ÂNCIA QM 0.000547 760 0.003497 7.68 observações RAT S: 0,05	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100	ANÁLISE DE VARI SQ 0.002737 0.000 29 Número de key para a FV T 72647353595 NM	ÂNCIA QM 0.000547 760 0.003497 7.68 observações RAT IS: 0,05	Fc Pr>Fc 17.284 0.0000 0.000032
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do	ANÁLISE DE VARI SQ 0.002737 0.000 29 29 Número de key para a FV T 72647353595 NM	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT IS: 0,05 tições (r):	Fc Pr>Fc 17.284 0.0000 0.000032 : 30
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT S: 0,05 tições (r): 842358	Fc Pr>Fc 17.284 0.0000 0.000032 : 30
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = : 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147	ÂNCIA QM 0.000547 760 0.003497 7.68 observações RAT S: 0,05 tições (r): 842358	Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 29 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147	ÂNCIA QM 0.000547 760 0.003497 7.68 observações RAT S: 0,05 tições (r): 842358	Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147 Média:	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT IS: 0,05 tições (r): 842358 s Result	Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5 5 cados do teste
FV TRAT erro Média geral:	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147 Média: 0.006	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT IS: 0,05 tições (r): 842358 s Result 000 al	<pre>Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5 5 cados do teste</pre>
FV TRAT erro Média geral: 	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147 Média: 0.006 0.008	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT IS: 0,05 tições (r): 842358 s Result 000 al	<pre>Fc Pr>Fc 17.284 0.0000 0.000032 :</pre>
FV TRAT erro Média geral: 	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147 Média: 0.006 0.008 0.0261 0.008	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT IS: 0,05 tições (r): 842358 s Result 000 al 000 al 000 a2	<pre>Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5 5 cados do teste</pre>
FV TRAT erro Média geral: 	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147 Média: 0.006 0.008 0.026 0.026 0.026 0.026	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT IS: 0,05 tições (r): 842358 s Result 000 al 000 a2 000 a2 000 a2 000 a2 000 a2	<pre>Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5 5 cados do teste</pre>
FV TRAT erro Média geral: 	TABELA DE ; GL 5 24 Total corrigido CV (%) = 0.0203333 Teste Tul DMS: 0,01100 Média harmonica do Erro padrão	ANÁLISE DE VARI SQ 0.002737 0.000 29 2 Número de key para a FV T 72647353595 NM número de repe : 0,00251661147 Média: 0.006 0.026 0.026 0.026 0.023 0.030	ÂNCIA 0.000547 760 0.003497 7.68 observações RAT S: 0,05 tições (r): 842358 s Result 000 a1 000 a2 000 a2 000 a2 000 a2 000 a2	<pre>Fc Pr>Fc 17.284 0.0000 0.000032 : 30 5 5 cados do teste</pre>

------Variável analisada: AREA_Cilindro Central (mm²)

Opção de transformação: Variável sem transformação (Y)

TABELA DE ANÁLISE DE VARIÂNCIA

FV	GL	SQ		QM	Fc	Pr>Fc
TRAT erro	5	0.206817	0 0.138520	.041363	7.167 0.005772	0.0003
	Total corrigid	.o 29	0	.345337		
Média geral:	CV (% 0.2843) = 333 Núm	26.72 ero de obse	rvações:		30
	Teste	Tukey para	a FV TRAT 			
	DMS: 0,14	4860343799463	38 NMS: 0,0	.5		
	Média harmonica Erro pac	do número d drão: 0,03397	e repetiçõe: 754813554324 	s (r): 5		
Tratamentos			Médias	Resulta	ados do tes	ste
4279-9 GN-9 4279-15 4279-21 GN-21 GN-15			0.172000 a1 0.178000 a1 0.304000 a1 0.316000 a1 0.336000 0.400000	a2 a2 a2 a2 a2		
Opção	Variável analis de transformaç	sada: No. Sit ão: Variável	ios de Alim	nentação ormação	(Y)	
	TABELA	DE ANÁLISE D	E VARIÂNCIA			
FV	GL	SQ		QM	Fc	Pr>Fc

TRAT erro	5 1 24	.5.100000 13.200	3.020000	5.491 0.0017 0.550000
	Total corrigido	29	28.300000	
Média geral:	CV (%) = 2.3000000	3 Número de	2.24 observações:	30

Teste Tukey para a FV TRAT

DMS: 1,45063977528093 NMS: 0,05

Média harmonica do número de repetições (r): 5 Erro padrão: 0,33166247903554

Tratamentos	Médias	Resultados do teste
 4279-9 GN-9 4279-15 4279-21 GN-15 GN21	1.200000 al 1.600000 al 2.200000 al 2.600000 al 2.800000 3.200000	a2 a2 a3 a2 a3 a2 a3 a3 a3

Variável analisada: No. Sitios de Alimentação

Opção de transformação: Raiz quadrada de Y + 1.0 - SQRT (Y + 1.0)

TABELA DE ANÁLISE DE VARIÂNCIA

FV	GL	SQ	QM	Fc Pr>Fc
GENOT erro	5 24	1.123750 1.187769	0.224750 0.049490	4.541 0.0047
Total corrigido	29	2.311519		
CV (%) = Média geral:	12.46 1.7859496	Número de observações:		30

Teste Tukey para a FV GENOT

DMS: 0,435149688488266 NMS: 0,05

Média harmonica do número de repetições (r): 5 Erro padrão: 0,0994890853641539

Tratamentos	Médias Resultados do teste
4279-9 GN-9 4279-15 4279-21	1.477781 al 1.604916 al a2 1.775663 al a2 a3
4279-21 GN-15 GN-21	1.940034 a2 a3 2.040837 a3

Variável analisada: No Cel. Gigantes

Opção de transformação: Variável sem transformação (Y)

TABELA DE ANÁLISE DE VARIÂNCIA

 FV	GL		SQ		QM	Fc	Pr>Fc	
TRAT erro	5	356.9 24	230.00	71.39 00000	93333	7.450 .583333	0.0002	
	Total corrig	gido	29	586.96	6667			
Média geral:	CV 9.03	(%) = 333333	Número (34.27 de observa	ıções:		30	
	Tes	ste Tukey	para a FV	TRAT				
	DMS: 6,0553121197627 NMS: 0,05							
	Média harmon: Erro	ica do núm padrão:	nero de rej 1,38443731	petições (048635	(r): 5			
Tratamentos			Médi	as Re	esultad	los do tes	te	
4279-R9 4.400000 al GN-9 5.800000 al a2 4279-15 7.800000 al a2 GN-15 10.200000 al a2 a3 4279-21 11.400000 a2 a3 GN-21 14.600000 a3								
Opção de t.	Variáve ransformação:	l analisad Raiz qua	la: No. Ce drada de Y	l Gigantes + 1.0 - 1	SQRT (Y + 1.0)		

TABELA DE ANÁLISE DE VARIÂNCIA

FV		GL	SQ	ç)M Fc	Pr>Fc
TRA	T erro	5 24	8.937717	1.78754 5.197671	3 8.254 0.216570	0.0001
		Total corrigido	29	14.13538	38	
	Média geral:	CV (%) = 3.0922732	Núme	15.05 ero de observaçõe	es:	30

Teste Tukey para a FV TRAT

DMS: 0,910284192323686 NMS: 0,05

Média harmonica do número de repetições (r): 5 Erro padrão: 0,208119973681592

Tratamentos	Médias Resultados do teste
4279-9	2.313475 al

4279-9	2.313475 al	
GN-9	2.584734 al a2	
4279-15	2.929930 al a2	
GN-15	3.308766 a2	a3
4279-21	3.494998 a2	a3
GN-21	3.921736	a3

Arquivo analisado:

Variável analisada: No. De Vacuolos

Opção de transformação: Variável sem transformação (Y)

TABELA DE ANÁLISE DE VARIÂNCIA

FV	GL	SQ	QM	Fc Pr>Fc			
GENOT erro	5 24	24.800000 38.000000	4.960000 1.583333	3.133 0.0257			
Total corrigido	29	62.800000					
CV (%) = Média geral:	57.20 2.2000000	Número de	observações:	30			
Teste Tukey para	a FV GENOT		·				
DMS: 2,46129921946	NMS: 0,05						
Média harmonica do número de repetições (r): 5 Erro padrão: 0,562731433871138							

Tratamentos		Médias	Resultados do teste
GN-18 GN-15 GN21 4279-21 4279-18 4279-15		1.200000 1.400000 1.600000 2.200000 3.200000 3.600000	al al al al al al
Opção de t:	Variável ransformação: Raiz	analisada: NOVAC quadrada de Y + 1.0	- SQRT (Y + 1.0)
	TABELA DE A	NÁLISE DE VARIÂNCIA	
 FV	GL	 SQ	QM Fc Pr>Fc
GENOT erro	5 24	1.943812 0 3.245515	.388762 2.875 0.0358 0.135230
	Total corrigido	29 5	.189327
Média geral:	CV (%) = 1.7398340	21.14 Número de obse	rvações: 30
	Teste Tuk	ey para a FV GENOT	
	DMS: 0,71930	7208417215 NMS: 0,(05
	Média harmonica do Erro padrão	número de repetiçõe b: 0,164456549445976	s (r): 5
Tratamentos		Médias	Resultados do teste
	GN-18 GN-15 GN-21 4279-21 4279-18 4279-15		1.458506 a1 1.512096 a1 1.575663 a1 1.740034 a1 2.029932 a1 2.122774 a1

ANEXO II

Tabela. Genes diferencialmente expressos identificados durante a interação Musa acuminata CAV (Grande Naine) - Meloidogyne incognita aos 3, 7 e 10 DAI

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 10 DA	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
1	GSMUA_Achr1G05210_001	Putative BBTI8 - Bowman-Birk type bran trypsin inhibitor precursor, expressed BBI complete	5,23E-01	1,00E+00	8,88E-01	6,49E-01	-8,22E-01	1,00E+00
2	GSMUA_Achr2G14240_001	Hypothetical protein unknown_gene missing_functional_completeness	3,54E-01	1,00E+00	-6,04E-01	1,00E+00	-1,12E+00	1,00E+00
3	GSMUA_Achr7G26420_001	Putative Formin-like protein 5 FH5 fragment	7,64E-01	1,00E+00	-5,34E-01	1,00E+00	3,66E-01	1,00E+00
4	GSMUA_Achr4G30740_001	Putative Subtilisin-like protease ARA12 fragment	-1,11E+00	1,00E+00	6,22E+00	1,10E-01	-7,28E-01	1,00E+00
5	GSMUA_Achr5G29560_001	Predicted protein aim38 complete	5,80E-01	1,00E+00	-1,17E+00	1,00E+00	-3,55E+00	1,00E+00
6	GSMUA_Achr5G10900_001	Trypsin inhibitor Odz1 complete	-2,68E+00	1,10E-03	3,13E+00	1,79E-07	1,10E-01	1,00E+00
7	GSMUA_Achr8G26470_001	Probable xyloglucan endotransglucosylase/hydrolase protein 7 XTH7 complete	-2,40E+00	2,15E-02	1,68E+00	1,00E+00	-4,64E+00	6,52E-01
8	GSMUA_Achr2G14960_001	Chlorophyll a-b binding protein 4, chloroplastic LHCA4 complete	-3,37E+00	3,37E-03	7,49E-01	1,00E+00	9,82E-02	1,00E+00
9	GSMUA_Achr1G25040_001	Hypothetical protein TAX10 missing_functional_completeness	-6,65E+00	8,44E-03	3,59E+00	3,78E-01	3,28E+00	1,00E+00
10	GSMUA_Achr9G30590_001	Hypothetical protein unknown_gene missing_functional_completeness	-2,12E+00	2,57E-02	1,20E+00	8,98E-01	-1,93E+00	1,00E+00
11	GSMUA_Achr10G08760_001	Putative Salt stress-induced protein SALT modules	3,05E+00	1,67E-02	4,98E+00	9,44E-01	7,09E-01	1,00E+00
12	GSMUA_Achr1G20190_001	At3g43660 pcl1 complete	-3,57E+00	1,44E-02	-6,98E-01	1,00E+00	3,49E+00	1,00E+00
13	GSMUA_Achr8G20790_001	Putative Uncharacterized protein C24B11.05 SPAC24B11.05 complete	4,65E-02	1,00E+00	-1,41E+00	4,51E-02	-4,34E-01	1,00E+00
14	GSMUA_Achr6G04580_001	Early nodulin-93 infB complete	1,09E+00	1,00E+00	-2,97E+00	6,26E-04	-3,65E+00	6,40E-01
15	GSMUA_Achr7G16740_001	High affinity sulfate transporter 2 ST2 complete	6,85E-01	1,00E+00	-2,29E+00	1,66E-02	-1,26E+00	1,00E+00
16	GSMUA_Achr10G18040_001	Basic blue protein At2g02850 complete	9,21E-01	1,00E+00	1,48E+00	3,34E-02	-2,42E+00	1,00E+00
17	GSMUA_Achr4G02600_001	plant-specific domain TIGR01615 family protein, expressed TP_0095 complete	9,29E-01	1,00E+00	2,71E+00	1,02E-05	-6,28E-01	1,00E+00
18	GSMUA_Achr10G00680_001	hs1, putative, expressed kynA complete	-9,57E-02	1,00E+00	2,60E+00	8,92E-05	2,09E-01	1,00E+00
19	GSMUA_Achr7G07040_001	Expansin-B18 EXPB18 complete	-1,03E+00	1,00E+00	7,25E-02	1,00E+00	-1,33E+01	3,82E-02
20	GSMUA_Achr8G15130_001	Putative Mannose/glucose-specific lectin (Fragment) NSP4 complete	1,14E+00	1,00E+00	5,44E-01	1,00E+00	2,02E-01	1,00E+00
21	GSMUA_Achr1G26880_001	Putative Uncharacterized membrane protein YOL092W YOL092W modules	-5,83E-01	1,00E+00	1,92E+00	1,00E+00	9,97E-02	1,00E+00
22	GSMUA_Achr1G15040_001	Callose synthase 3 CALS3 fragment	3,54E-01	1,00E+00	-4,29E-01	1,00E+00	4,67E-01	1,00E+00
23	GSMUA_Achr1G19140_001	BIG, putative, expressed Neurl3 fragment	1,38E+00	1,00E+00	-8,55E-01	1,00E+00	-6,13E-01	1,00E+00
24	GSMUA_Achr5G29540_001	Putative uncharacterized protein Os03g0816900 fragment	7,92E-01	1,00E+00	-4,43E-01	1,00E+00	-6,02E-03	1,00E+00

			Cav. GN - 3 DAI		N - 3 DAI Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
25	GSMUA_Achr9G07470_001	Whole genome shotgun sequence of line PN40024, Vps13c fragment	7,15E-01	1,00E+00	-6,58E-01	1,00E+00	4,84E-01	1,00E+00
26	GSMUA_Achr5G28200_001	Asparagine synthetase [glutamine-hydrolyzing] AS1 complete	-2,87E-01	1,00E+00	6,65E-01	1,00E+00	-1,44E+00	1,00E+00
27	GSMUA_Achr3G00900_001	transmembrane amino acid transporter protein, putative, expressed slc38a6 modules	-4,89E-01	1,00E+00	3,84E-01	1,00E+00	-3,09E-01	1,00E+00
28	GSMUA_Achr6G20120_001	retrotransposon protein, putative, unclassified, expressed unknown_gene complete	7,09E-01	1,00E+00	-1,29E-01	1,00E+00	2,66E-01	1,00E+00
29	GSMUA_Achr3G20610_001	expressed protein DDB_G0276689 fragment	6,28E-01	1,00E+00	-5,93E-01	1,00E+00	1,61E-01	1,00E+00
30	GSMUA_Achr7G13320_001	Putative expressed protein DDB_G0268328 fragment	1,04E+00	1,00E+00	-5,83E-01	1,00E+00	-5,72E-01	1,00E+00
31	GSMUA_Achr8G13500_001	Callose synthase 3 CALS3 fragment	1,12E+00	1,00E+00	-4,41E-01	1,00E+00	1,24E-01	1,00E+00
32	GSMUA_Achr6G02430_001	Hypothetical protein snf21 missing_functional_completeness	1,61E+00	1,00E+00	-7,46E-01	1,00E+00	-1,67E-01	1,00E+00
33	GSMUA_Achr7G08970_001	Beta-galactosidase Os01g0580200 complete	2,57E-01	1,00E+00	1,30E+00	8,75E-01	-8,59E-01	1,00E+00
34	GSMUA_Achr5G29640_001	Whole genome shotgun sequence of line PN40024, WNK5 complete	-2,29E-01	1,00E+00	-1,18E+00	5,54E-01	-5,00E-01	1,00E+00
35	GSMUA_Achr9G07910_001	Hypothetical protein fabH missing_functional_completeness	9,41E-01	1,00E+00	2,27E+00	7,36E-01	4,65E-01	1,00E+00
36	GSMUA_Achr11G04720_001	Putative Uncharacterized protein At3g06530 At3g06530 fragment	5,99E-01	1,00E+00	-7,33E-01	9,86E-01	5,55E-01	1,00E+00
37	GSMUA_Achr9G07920_001	Putative Ribonuclease 3 RNS3 complete	-5,72E-01	1,00E+00	2,20E-01	1,00E+00	4,92E+00	1,00E+00
38	GSMUA_Achr8G11560_001	Putative Extracellular matrix protein FRAS1 Fras1 fragment	4,53E-01	1,00E+00	-4,56E-01	1,00E+00	8,14E-02	1,00E+00
39	GSMUA_Achr2G21290_001	Putative expressed protein unknown_gene complete	1,50E+00	1,00E+00	6,35E-01	1,00E+00	-5,88E-02	1,00E+00
40	GSMUA_Achr6G25140_001	Putative Pheophorbidase PPD fragment	1,75E-01	1,00E+00	-1,00E+00	6,81E-01	-5,73E-01	1,00E+00
41	GSMUA_Achr1G01230_001	Putative Midasin mdn1 fragment	1,18E+00	1,00E+00	-3,96E-01	1,00E+00	3,24E-01	1,00E+00
42	GSMUA_Achr5G21730_001	Putative Transformation/transcription domain-associated protein TRRAP fragment	1,05E+00	1,00E+00	-7,57E-01	1,00E+00	-3,28E-02	1,00E+00
43	GSMUA_Achr8G14910_001	Putative expressed protein atpA fragment	1,33E+00	1,00E+00	-4,06E-01	1,00E+00	3,39E-01	1,00E+00
44	GSMUA_Achr4G25790_001	Prolyl endopeptidase PREP complete	1,02E+00	1,00E+00	-1,07E+00	3,05E-01	1,47E+00	1,00E+00
45	GSMUA_Achr9G14500_001	Nuclear-pore anchor NUA fragment	1,36E+00	1,00E+00	-8,98E-01	8,45E-01	-1,15E+00	1,00E+00
46	GSMUA_Achr9G11180_001	Probable xyloglucan endotransglucosylase/hydrolase protein 23 XTH23 complete	-2,17E-01	1,00E+00	8,60E-01	1,00E+00	-1,44E+00	1,00E+00
47	GSMUA_Achr2G04770_001	Callose synthase 10 CALS10 fragment	6,43E-01	1,00E+00	-4,29E-01	1,00E+00	-1,58E-01	1,00E+00
48	GSMUA_Achr11G16780_001	Hypothetical protein unknown_gene missing_functional_completeness	4,73E-01	1,00E+00	-1,71E-01	1,00E+00	6,68E-01	1,00E+00

			Cav. GN - 3 DAI		AI Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
49	GSMUA Achr3G15110 001	Type I inositol-1.4.5-trisphosphate 5-phosphatase 11 At1g47510 complete	-1,11E-01	1,00E+00	3,69E-01	1.00E+00	-1,54E+00	1,00E+00
50	 GSMUA_Achr9G27860_001	Putative Cytochrome P450 71D7 CYP71D7 complete	-7,93E-01	1,00E+00	1,68E+00	1,00E+00	-3,83E+00	1,00E+00
51	GSMUA_Achr8G22120_001	Hypothetical protein ORG2 missing_functional_completeness	5,43E-01	1,00E+00	3,86E-01	1,00E+00	-8,82E-01	1,00E+00
52	GSMUA_Achr9G20170_001	expressed protein proA fragment	2,80E-01	1,00E+00	8,53E-01	1,00E+00	-8,12E-17	1,00E+00
53	GSMUA_Achr4G27490_001	Putative Predicted protein ddl complete	-2,17E-01	1,00E+00	1,23E-01	1,00E+00	1,38E-01	1,00E+00
54	GSMUA_Achr8G33240_001	ABC transporter C family member 12 ABCC12 fragment	7,63E-01	1,00E+00	-6,03E-01	1,00E+00	5,92E-01	1,00E+00
55	GSMUA_Achr9G16280_001	Putative E3 ubiquitin-protein ligase KEG KEG complete	6,99E-01	1,00E+00	-1,06E-01	1,00E+00	-1,89E-01	1,00E+00
56	GSMUA_Achr7G19280_001	Putative Cytochrome P450 71D8 CYP71D8 complete	-9,00E-01	1,00E+00	4,87E-01	1,00E+00	-8,12E-17	1,00E+00
57	GSMUA_Achr11G04940_001	Putative DUF617 domain containing protein, expressed Ppp4r1 modules	2,10E-01	1,00E+00	-4,81E-01	1,00E+00	-1,53E-01	1,00E+00
58	GSMUA_Achr4G08180_001	Putative O-acyltransferase WSD1 WSD1 complete	4,40E-01	1,00E+00	-6,26E-01	1,00E+00	-2,86E-01	1,00E+00
59	GSMUA_Achr4G27910_001	Putative Expansin-A9 EXPA9 complete	2,06E-01	1,00E+00	1,43E+00	9,65E-01	-3,23E-01	1,00E+00
60	GSMUA_Achr2G04000_001	Serine carboxypeptidase-like 51 SCPL51 complete	-8,37E-01	1,00E+00	7,72E-01	1,00E+00	4,85E-01	1,00E+00
61	GSMUA_Achr10G04510_001	glycosyl transferase, putative, expressed GYG2 complete	-4,31E-01	1,00E+00	1,69E-01	1,00E+00	-3,28E+00	1,00E+00
62	GSMUA_Achr10G30260_001	Hypothetical protein APRR3 missing_functional_completeness	-2,75E-01	1,00E+00	1,30E+00	4,61E-01	-1,01E+00	1,00E+00
63	GSMUA_Achr11G00600_001	DUF584 domain containing protein, putative, expressed Sik3 complete	-2,74E-01	1,00E+00	6,81E-01	1,00E+00	-5,28E-01	1,00E+00
64	GSMUA_Achr8G14900_001	Whole genome shotgun sequence of line PN40024, vps13A complete	1,29E+00	1,00E+00	-2,19E-01	1,00E+00	2,27E-01	1,00E+00
65	GSMUA_Achr10G13610_001	Cysteine-rich repeat secretory protein 55 CRRSP55 complete	-6,49E-01	1,00E+00	1,47E+00	1,00E+00	-1,59E+00	1,00E+00
66	GSMUA_Achr8G17980_001	Transcription factor bHLH135 BHLH135 complete	-8,70E-01	1,00E+00	7,58E-04	1,00E+00	1,19E-01	1,00E+00
67	GSMUA_Achr8G09230_001	Putative Protein RUPTURED POLLEN GRAIN 1 RPG1 modules	3,68E+00	1,00E+00	1,67E+00	1,00E+00	-8,12E-17	1,00E+00
68	GSMUA_Achr9G02260_001	Putative Extracellular ribonuclease LE RNALX complete	7,75E-01	1,00E+00	1,18E-02	1,00E+00	3,70E-01	1,00E+00
69	GSMUA_Achr8G15560_001	Xyloglucan endotransglucosylase/hydrolase protein 22 XTH22 fragment	1,30E-01	1,00E+00	8,86E-01	1,00E+00	-9,01E-01	1,00E+00
70	GSMUA_Achr5G15410_001	Hypothetical protein Noca_2149 missing_functional_completeness	7,55E-01	1,00E+00	-6,77E-01	1,00E+00	5,40E-01	1,00E+00
71	GSMUA_Achr7G16990_001	Putative transcription elongation factor SPT5 homolog 1 At4g08350 fragment	1,12E+00	1,00E+00	-3,08E-01	1,00E+00	-8,89E-01	1,00E+00
72	GSMUA_Achr4G15230_001	Conserved conserved hypothetical protein PUB25 fragment	-8,96E-01	1,00E+00	7,22E-01	1,00E+00	-2,76E+00	1,00E+00
73	GSMUA_Achr8G15700_001	Putative Disease resistance response protein 206 PI206 modules	-8,54E-01	1,00E+00	6,88E-01	1,00E+00	-2,49E+00	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	I Cav. GN - 1	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
74	GSMUA_Achr11G01930_001	Probable xyloglucan endotransglucosylase/hydrolase protein 32 XTH32 complete	-2,50E-01	1,00E+00	-2,92E-02	1,00E+00	-2,43E+00	1,00E+00
75	GSMUA_Achr5G02250_001	Hypothetical protein tpx2-a missing_functional_completeness	-1,55E-01	1,00E+00	-2,91E-01	1,00E+00	2,11E+00	1,00E+00
76	GSMUA_Achr1G26940_001	Cytochrome P450 71D8 CYP71D8 fragment	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	-8,12E-17	1,00E+00
77	GSMUA_Achr9G20520_001	Hypothetical protein KDM5B missing_functional_completeness	6,65E-01	1,00E+00	-3,22E-01	1,00E+00	4,27E-01	1,00E+00
78	GSMUA_Achr6G12020_001	Putative Phenazine biosynthesis protein phzB phzB fragment	2,23E-01	1,00E+00	1,24E+00	1,00E+00	-2,38E-01	1,00E+00
79	GSMUA_Achr4G15120_001	Putative Interactor of constitutive active ROPs 4 ICR4 complete	1,30E+00	1,00E+00	-3,86E-01	1,00E+00	-2,19E-01	1,00E+00
80	GSMUA_Achr6G27600_001	Hypothetical protein FIT missing_functional_completeness	-4,95E-01	1,00E+00	-2,26E-01	1,00E+00	-4,70E-01	1,00E+00
81	GSMUA_Achr8G25980_001	Putative Zinc finger CCCH domain-containing protein 2 Os01g0192000 complete	-1,25E+00	8,96E-01	8,20E-01	7,38E-01	-5,11E-01	1,00E+00
82	GSMUA_Achr11G15370_001	Putative Cytoskeleton-associated protein 5 Ckap5 fragment	1,09E+00	1,00E+00	-4,48E-01	1,00E+00	-1,83E-02	1,00E+00
83	GSMUA_Achr3G16820_001	Putative Cytochrome b5 Os05g0108800 complete	-2,93E-01	1,00E+00	-3,00E-02	1,00E+00	-2,84E-01	1,00E+00
84	GSMUA_Achr6G02440_001	SYD, putative, expressed big1 complete	8,35E-01	1,00E+00	-1,39E+00	5,81E-01	-1,27E+00	1,00E+00
85	GSMUA_Achr6G07810_001	Snakin-1 SN1 fragment	2,25E+00	1,00E+00	8,92E-01	1,00E+00	-6,75E-01	1,00E+00
86	GSMUA_Achr3G04020_001	Putative Aspartic proteinase nepenthesin-2 nep2 complete	3,38E-01	1,00E+00	1,04E+00	1,00E+00	2,17E-01	1,00E+00
87	GSMUA_Achr4G08950_001	Putative Intracellular ribonuclease LX RNALX complete	5,14E-01	1,00E+00	-7,38E-01	1,00E+00	9,27E-01	1,00E+00
88	GSMUA_Achr1G14890_001	DNA-directed RNA polymerase II subunit RPB1 RPB205 fragment	8,64E-01	1,00E+00	-1,24E-01	1,00E+00	-4,93E-01	1,00E+00
89	GSMUA_Achr2G14260_001	Hypothetical protein aroB missing_functional_completeness	-8,91E-02	1,00E+00	-1,56E-01	1,00E+00	-7,38E-01	1,00E+00
90	GSMUA_Achr4G12880_001	Putative Chromosome-associated kinesin KIF4 kif4 fragment	6,37E-01	1,00E+00	-2,41E-01	1,00E+00	5,45E-01	1,00E+00
91	GSMUA_Achr5G01190_001	anthranilate phosphoribosyltransferase, putative, expressed At1g03375 complete	-1,05E+00	1,00E+00	9,37E-02	1,00E+00	-3,00E-01	1,00E+00
92	GSMUA_Achr9G27290_001	integral membrane protein, putative, expressed CCC1 complete	1,32E-01	1,00E+00	4,29E-02	1,00E+00	4,64E-01	1,00E+00
93	GSMUA_Achr11G21880_001	Beta-fructofuranosidase 1 MAVIN1 missing_completeness	2,38E+00	1,00E+00	-7,16E-01	1,00E+00	-6,40E-01	1,00E+00
94	GSMUA_Achr7G07560_001	carboxyl-terminal peptidase, putative, expressed panB complete	1,94E+00	2,76E-01	2,14E+00	8,47E-01	-5,85E-01	1,00E+00
95	GSMUA_Achr5G28240_001	Hypothetical protein unknown_gene missing_functional_completeness	1,56E+00	1,00E+00	-1,10E-01	1,00E+00	-5,07E-01	1,00E+00
96	GSMUA_Achr5G12930_001	Peptide transporter PTR3-A PTR3-A complete	1,25E+00	1,00E+00	2,37E+00	1,00E+00	-3,57E+00	1,00E+00
97	GSMUA_Achr9G04550_001	protein kinase, putative, expressed HT1 complete	-1,79E-01	1,00E+00	1,76E-01	1,00E+00	-1,07E+00	1,00E+00
98	GSMUA_Achr3G28520_001	carboxyl-terminal peptidase, putative, expressed unknown_gene complete	-8,38E-02	1,00E+00	1,01E-01	1,00E+00	-3,83E+00	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
99	GSMUA_Achr6G26330_001	Putative GATA transcription factor 9 GATA9 complete	1,03E+00	1,00E+00	-3,86E-01	1,00E+00	-4,31E-01	1,00E+00
100	GSMUA_Achr8G33800_001	expressed protein Vps13a complete	1,41E+00	1,00E+00	-1,15E+00	1,00E+00	1,94E-01	1,00E+00
101	GSMUA_Achr7G20390_001	Putative Benzoate carboxyl methyltransferase BAMT fragment	-1,75E-01	1,00E+00	4,86E-01	1,00E+00	3,39E+00	1,00E+00
102	GSMUA_Achr8G26350_001	Cytochrome P450 90B1 CYP90B1 complete	1,36E+00	1,00E+00	5,37E-03	1,00E+00	-6,00E-03	1,00E+00
103	GSMUA_Achr6G22410_001	aberrant pollen transmission 1, putative, expressed KIAA0100 fragment	5,39E-01	1,00E+00	-3,93E-01	1,00E+00	1,86E-01	1,00E+00
104	GSMUA_Achr4G07680_001	Putative Myrcene synthase, chloroplastic ISPS complete	-1,39E+00	8,38E-01	-6,92E-01	1,00E+00	8,85E-01	1,00E+00
105	GSMUA_Achr9G30610_001	Putative Cytochrome P450 71D8 CYP71D8 complete	-7,71E-02	1,00E+00	2,65E+00	1,00E+00	-8,12E-17	1,00E+00
106	GSMUA_Achr7G10090_001	Putative EG45-like domain containing protein CjBAp12 complete	1,31E+00	1,00E+00	1,61E+00	4,14E-01	-8,29E-01	1,00E+00
107	GSMUA_Achr5G11670_001	Callose synthase 9 CALS9 fragment	7,51E-01	1,00E+00	-2,36E-01	1,00E+00	-5,11E-01	1,00E+00
108	GSMUA_Achr4G16210_001	Putative uncharacterized protein NUP210L fragment	4,52E-01	1,00E+00	-2,17E-01	1,00E+00	7,42E-01	1,00E+00
109	GSMUA_Achr7G03420_001	ABC transporter C family member 12 ABCC12 fragment	1,08E-01	1,00E+00	-2,27E-01	1,00E+00	6,38E-01	1,00E+00
110	GSMUA_Achr5G24900_001	Putative F-box/kelch-repeat protein At1g80440 At1g80440 complete	-7,85E-03	1,00E+00	6,06E-01	1,00E+00	-1,04E+00	1,00E+00
111	GSMUA_Achr8G23060_001	Putative NAD binding domain of 6-phosphogluconate dehydrogenase containing protein	4,01E-01	1,00E+00	-4,91E-01	1,00E+00	7,13E-02	1,00E+00
112	GSMUA_Achr6G34670_001	L-ascorbate oxidase homolog Bp10 complete	5,65E-01	1,00E+00	4,11E-01	1,00E+00	-1,34E-01	1,00E+00
113	GSMUA_Achr4G25160_001	Hypothetical protein tcsA missing_functional_completeness	4,57E-02	1,00E+00	1,44E-01	1,00E+00	-8,14E-01	1,00E+00
114	GSMUA_Achr3G24550_001	expressed protein unknown_gene complete	1,55E+00	1,00E+00	7,90E+00	6,73E-01	9,56E-01	1,00E+00
115	GSMUA_Achr11G23590_001	Root phototropism protein 2 RPT2 complete	2,11E-01	1,00E+00	1,73E+00	9,65E-01	5,98E-01	1,00E+00
116	GSMUA_Achr11G10320_001	Heat stress transcription factor B-4b HSFB4B complete	5,35E+00	1,00E+00	3,27E+00	1,00E+00	-3,59E+00	1,00E+00
117	GSMUA_Achr1G07070_001	expressed protein FRYL fragment	4,46E-01	1,00E+00	4,77E-02	1,00E+00	2,32E-01	1,00E+00
118	GSMUA_Achr2G15330_001	Putative Predicted protein unknown_gene fragment	-7,15E-01	1,00E+00	7,54E-01	1,00E+00	-5,69E-01	1,00E+00
119	GSMUA_Achr4G16200_001	Putative Nuclear pore membrane glycoprotein 210-like Nup210l fragment	1,10E+00	1,00E+00	-8,72E-02	1,00E+00	1,09E+00	1,00E+00
120	GSMUA_Achr8G13010_001	E3 ubiquitin-protein ligase UPL3 UPL3 fragment	5,97E-01	1,00E+00	-6,07E-01	1,00E+00	9,23E-02	1,00E+00
121	GSMUA_Achr8G15570_001	Probable isoaspartyl peptidase/L-asparaginase 2 At3g16150 complete	-6,72E-01	1,00E+00	1,17E+00	3,79E-01	9,14E-02	1,00E+00
122	GSMUA_Achr9G01940_001	high affinity nitrate transporter, putative, expressed CDC20 complete	4,61E-01	1,00E+00	-1,13E+00	5,02E-01	7,91E-01	1,00E+00
123	GSMUA_Achr6G08710_001	Peroxidase 4 GSVIVT00023967001 complete	-2,91E-01	1,00E+00	-7,65E-02	1,00E+00	-2,73E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN ·	• 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
124	GSMUA_Achr3G20420_001	Putative phosphate-induced protein 1 conserved region domain containing protein	-2,44E-02	1,00E+00	1,65E+00	4,11E-01	2,96E-01	1,00E+00
125	GSMUA_Achr10G08750_001	Putative Salt stress-induced protein SALT fragment	2,86E+00	1,14E-01	-9,66E-01	1,00E+00	-2,95E-01	1,00E+00
126	GSMUA_Achr1G12200_001	Delta(7)-sterol-C5(6)-desaturase STE1 complete	1,04E-01	1,00E+00	4,81E-01	1,00E+00	-5,46E-01	1,00E+00
127	GSMUA_Achr4G08100_001	Putative Myrcene synthase, chloroplastic ISPS complete	-5,64E-01	1,00E+00	4,88E-02	1,00E+00	6,36E-02	1,00E+00
128	GSMUA_Achr2G15160_001	Putative 21 kDa protein PME1 complete	2,96E+00	8,96E-01	-1,05E+00	1,00E+00	-4,89E+00	1,00E+00
129	GSMUA_Achr9G10840_001	Putative Horcolin SALT complete	3,40E-01	1,00E+00	3,21E-01	1,00E+00	4,04E-01	1,00E+00
130	GSMUA_Achr5G01500_001	Putative tetratricopeptide repeat domain containing protein, expressed stil fragment	9,73E-02	1,00E+00	1,13E-01	1,00E+00	5,11E-01	1,00E+00
131	GSMUA_Achr4G26820_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	7,13E+00	3,59E-01	-2,79E-01	1,00E+00	-1,69E-01	1,00E+00
132	GSMUA_Achr10G14370_001	Putative Predicted protein BHLH30 complete	-5,90E-02	1,00E+00	-3,55E-01	1,00E+00	-4,19E-01	1,00E+00
133	GSMUA_Achr7G00800_001	Putative Transcription factor bHLH25 BHLH25 fragment	9,24E-02	1,00E+00	1,65E-01	1,00E+00	-8,19E-02	1,00E+00
134	GSMUA_Achr8G26330_001	Cytochrome P450 90B1 CYP90B1 complete	1,09E+00	1,00E+00	2,33E-01	1,00E+00	-6,10E-01	1,00E+00
135	GSMUA_Achr11G24620_001	RNA recognition motif containing protein, putative, expressed RBM38 complete	1,16E+00	1,00E+00	2,18E-02	1,00E+00	-1,78E+00	1,00E+00
136	GSMUA_Achr10G21370_001	Putative uncharacterized protein BCP1 complete	-4,72E-01	1,00E+00	1,02E+00	1,00E+00	-1,83E+00	1,00E+00
137	GSMUA_Achr5G02170_001	Whole genome shotgun sequence of line PN40024, NAC042 complete	1,96E-01	1,00E+00	-4,10E-01	1,00E+00	-7,29E-01	1,00E+00
138	GSMUA_Achr5G18380_001	expressed protein unknown_gene complete	1,51E+00	1,00E+00	1,13E+00	1,00E+00	-3,77E+00	1,00E+00
139	GSMUA_Achr7G20440_001	Serineglyoxylate aminotransferase AGT1 complete	1,18E+00	1,00E+00	1,81E+00	5,34E-01	-1,49E+00	1,00E+00
140	GSMUA_Achr1G25060_001	Putative ABC transporter B family member 11 ABCB11 fragment	5,43E-01	1,00E+00	-4,62E-01	1,00E+00	-6,22E-01	1,00E+00
141	GSMUA_Achr10G27820_001	meiosis 5, putative, expressed Spt5 modules	-9,43E-01	1,00E+00	-2,24E-15	1,00E+00	-8,12E-17	1,00E+00
142	GSMUA_Achr3G12180_001	UPF0041 domain containing protein, putative, expressed Brp441 modules	-3,66E-01	1,00E+00	-4,67E-02	1,00E+00	-8,19E-02	1,00E+00
143	GSMUA_Achr5G10930_001	Trypsin inhibitor ODZ3 complete	-9,85E-02	1,00E+00	1,19E+00	1,00E+00	1,09E+00	1,00E+00
144	GSMUA_Achr6G03040_001	Putative Whole genome shotgun sequence of line PN40024, UBP13 fragment	5,39E-01	1,00E+00	-1,33E-01	1,00E+00	-2,34E-01	1,00E+00
145	GSMUA_Achr5G16080_001	Snakin-1 SN1 fragment	2,55E+00	1,45E-01	-1,73E-01	1,00E+00	3,39E+00	1,00E+00
146	GSMUA_Achr11G05660_001	Hypothetical protein fhkC missing_functional_completeness	-4,40E-02	1,00E+00	7,00E-02	1,00E+00	-2,16E-02	1,00E+00
147	GSMUA_Achr6G31840_001	Putative WRKY transcription factor 22 WRKY22 complete	1,47E-01	1,00E+00	-4,84E-01	1,00E+00	-1,51E-01	1,00E+00

148	GSMUA_Achr6G10480_001	acetyl-CoA carboxylase, putative, expressed FAS3 fragment	4,51E-01	1,00E+00	-2,09E+00	1,00E+00	2,16E-01	1,00E+00
			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
149	GSMUA_Achr7G06630_001	Putative uncharacterized protein Heatr6 fragment	6,02E-02	1,00E+00	-1,72E-01	1,00E+00	4,99E-01	1,00E+00
150	GSMUA_Achr11G00270_001	RNA methyltransferase, TrmH family protein, putative, expressed PEX10 fragment	3,35E-01	1,00E+00	-2,74E-01	1,00E+00	6,40E-01	1,00E+00
151	GSMUA_Achr6G02120_001	Putative phosphate-induced protein 1 conserved region domain containing protein, SEZ6 complete	-1,01E+00	1,00E+00	7,79E-01	1,00E+00	-6,48E-01	1,00E+00
152	GSMUA_Achr6G28260_001	Probable pectate lyase 22 At5g63180 complete	2,28E+00	1,00E+00	2,35E-01	1,00E+00	-1,14E+00	1,00E+00
153	GSMUA_Achr8G13250_001	Hypothetical protein vit-6 missing_functional_completeness	5,17E-01	1,00E+00	-4,75E-01	1,00E+00	4,62E-01	1,00E+00
154	GSMUA_Achr9G30350_001	Splicing factor 3B subunit 3 SF3B3 fragment	3,27E-01	1,00E+00	-4,65E-01	1,00E+00	-3,69E-02	1,00E+00
155	GSMUA_Achr1G26070_001	Putative Inosine-5'-monophosphate dehydrogenase guaB fragment	1,03E+00	1,00E+00	-4,49E-01	1,00E+00	5,30E-01	1,00E+00
156	GSMUA_Achr10G15420_001	Putative BTB/POZ domain-containing protein At1g30440 At1g30440 complete	4,66E-01	1,00E+00	-6,25E-01	1,00E+00	1,58E+00	1,00E+00
157	GSMUA_Achr1G00790_001	heavy metal-associated domain containing protein, expressed CCS complete	1,81E+00	7,09E-01	-1,76E-01	1,00E+00	-1,04E+00	1,00E+00
158	GSMUA_Achr10G26000_001	Hypothetical protein unknown_gene missing_functional_completeness	6,54E-01	1,00E+00	5,17E-01	1,00E+00	1,19E-01	1,00E+00
159	GSMUA_Achr4G28010_001	Putative Expansin-A9 EXPA9 complete	-1,68E-01	1,00E+00	2,74E-02	1,00E+00	-1,22E+00	1,00E+00
160	GSMUA_Achr3G08180_001	Putative AP2 domain containing protein, expressed ERF071 complete	7,46E-01	1,00E+00	4,46E-01	1,00E+00	3,87E-02	1,00E+00
161	GSMUA_Achr9G10150_001	MYB family transcription factor, putative, expressed mybL fragment	-8,95E-02	1,00E+00	1,19E-01	1,00E+00	-7,76E+00	4,46E-01
162	GSMUA_Achr9G12430_001	Putative Polygalacturonase inhibitor PGIP complete	3,37E-02	1,00E+00	-5,25E-01	1,00E+00	2,69E-01	1,00E+00
163	GSMUA_Achr9G16810_001	Putative Secologanin synthase CYP72A1 complete	-1,21E+00	1,00E+00	6,21E-01	1,00E+00	9,56E-02	1,00E+00
164	GSMUA_Achr3G05440_001	Putative Cation transport regulator-like protein 2 chac2 complete	6,04E-01	1,00E+00	2,10E-01	1,00E+00	9,55E-02	1,00E+00
165	GSMUA_Achr6G25660_001	PI-PLC X domain-containing protein At5g67130 At5g67130 fragment	-4,24E-02	1,00E+00	-1,46E+00	2,61E-01	-3,77E-01	1,00E+00
166	GSMUA_Achr1G09140_001	Uncharacterized protein unknown_gene fragment	-8,89E-03	1,00E+00	-4,86E-01	1,00E+00	-4,35E+00	1,00E+00
167	GSMUA_Achr3G01150_001	Jasmonate O-methyltransferase JMT fragment	-1,41E-01	1,00E+00	-2,28E-02	1,00E+00	-1,48E-01	1,00E+00
168	GSMUA_Achr4G27950_001	Expansin-A9 EXPA9 complete	-1,09E-01	1,00E+00	8,24E-01	1,00E+00	-3,03E-01	1,00E+00
169	GSMUA_Achr9G30640_001	Germin-like protein 12-1 Os12g0154700 complete	-2,07E+00	1,41E-01	1,48E+00	9,93E-01	-2,26E+00	1,00E+00
170	GSMUA_Achr6G07290_001	universal stress protein domain containing protein, putative, expressed PUB35 fragment	-1,62E-01	1,00E+00	2,61E-01	1,00E+00	-2,91E-01	1,00E+00
171	GSMUA_Achr8G25890_001	BAH domain containing protein, putative, expressed TCEA2 fragment	7,80E-01	1,00E+00	-1,84E-01	1,00E+00	-1,69E-01	1,00E+00
172	GSMUA_Achr10G11340_001	glucan endo-1,3-beta-glucosidase-related, putative, expressed At1g11820 complete	4,80E-01	1,00E+00	2,49E-02	1,00E+00	-2,88E-02	1,00E+00

173	GSMUA_Achr6G35190_001	Arogenate dehydrogenase 2, chloroplastic TYRAAT2 modules	6,53E-01	1,00E+00	-5,70E-02	1,00E+00	4,16E-01	1,00E+00
			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	AI Cav. GN - 1	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
174	GSMUA_Achr9G10260_001	Putative uncharacterized protein Sb03g003800 Grip84 fragment	6,01E-01	1,00E+00	-2,77E-01	1,00E+00	3,76E-01	1,00E+00
175	GSMUA_Achr5G25320_001	Hypothetical protein Os01g0915200 missing_functional_completeness	-2,00E-01	1,00E+00	-8,50E-01	1,00E+00	-2,70E+00	1,00E+00
176	GSMUA_Achr11G00420_001	Putative Secologanin synthase CYP72A1 complete	-2,28E+00	2,76E-01	7,71E-02	1,00E+00	-6,71E-01	1,00E+00
177	GSMUA_Achr10G06600_001	Putative E3 ubiquitin-protein ligase RHA1B RHA1B complete	4,76E-01	1,00E+00	-2,66E-01	1,00E+00	-3,46E+00	1,00E+00
178	GSMUA_Achr6G28280_001	Photosystem II core complex proteins psbY, chloroplastic PSBY complete	-1,02E+00	1,00E+00	-9,82E-02	1,00E+00	-2,93E+00	1,00E+00
179	GSMUA_Achr5G03940_001	CAMK_CAMK_like.14 - CAMK includes calcium/calmodulin depedent protein kinases, CPK21 modules	6,89E-01	1,00E+00	1,34E-01	1,00E+00	-2,85E-01	1,00E+00
180	GSMUA_Achr6G09310_001	calpain, putative, expressed CAPN3 complete	7,33E-01	1,00E+00	2,28E-02	1,00E+00	-4,42E-02	1,00E+00
181	GSMUA_Achr4G23040_001	Fe(2+) transport protein 2 IRT2 complete	1,57E+00	1,00E+00	1,99E+00	1,14E-01	3,07E+00	7,92E-01
182	GSMUA_Achr6G09590_001	Putative expressed protein Zik1 complete	6,37E-01	1,00E+00	-1,33E+00	6,50E-01	-9,06E-01	1,00E+00
183	GSMUA_Achr6G06290_001	Photosystem II reaction center X protein psbX modules	-7,78E-01	1,00E+00	1,26E+00	8,90E-01	-6,23E-01	1,00E+00
184	GSMUA_Achr10G13090_001	Putative Gibberellin 2-beta-dioxygenase 8 GA2OX7 complete	8,41E-02	1,00E+00	-8,52E-01	1,00E+00	-2,51E-01	1,00E+00
185	GSMUA_Achr3G13180_001	Hypothetical protein AP2 missing_functional_completeness	1,16E-01	1,00E+00	-1,22E-01	1,00E+00	-1,55E-01	1,00E+00
186	GSMUA_Achr6G30780_001	Putative Cytochrome P450 81D1 CYP81D1 fragment	-3,71E-01	1,00E+00	7,59E-01	1,00E+00	-1,51E-02	1,00E+00
187	GSMUA_Achr7G08300_001	Nitrate transporter 1.1 NRT1.1 complete	-1,07E+00	1,00E+00	5,08E-01	1,00E+00	1,73E+00	1,00E+00
188	GSMUA_Achr8G28010_001	Putative Whole genome shotgun sequence of line PN40024, unknown_gene fragment	4,54E-01	1,00E+00	2,48E-01	1,00E+00	-3,00E-01	1,00E+00
189	GSMUA_Achr8G28180_001	Activating signal cointegrator 1 complex subunit 3 ASCC3 complete	2,61E-01	1,00E+00	-3,49E-01	1,00E+00	2,55E-03	1,00E+00
190	GSMUA_Achr11G25340_001	Putative Serine/threonine-protein phosphatase 4 regulatory subunit 3 flfl fragment	5,46E-02	1,00E+00	-1,61E-01	1,00E+00	6,74E-01	1,00E+00
191	GSMUA_Achr6G15440_001	Hypothetical protein mnmA missing_functional_completeness	5,76E-01	1,00E+00	-2,80E-01	1,00E+00	2,72E-02	1,00E+00
192	GSMUA_Achr6G21030_001	Photosystem I reaction center subunit XI, chloroplastic PSAL complete	-1,48E+00	1,00E+00	4,86E-01	1,00E+00	9,29E-01	1,00E+00
193	GSMUA_Achr8G20060_001	Putative Dehydration-responsive element-binding protein 3 DREB3 fragment	-4,41E-01	1,00E+00	5,94E-01	1,00E+00	8,81E-01	1,00E+00
194	GSMUA_Achr1G05560_001	Putative callose synthase 6 CALS6 fragment	1,11E+00	1,00E+00	-8,04E-01	9,44E-01	5,90E-01	1,00E+00
195	GSMUA_Achr4G29370_001	Putative Mannose/glucose-specific lectin (Fragment) At3g16470 fragment	2,38E+00	1,22E-01	-1,46E+00	6,35E-01	1,19E+00	1,00E+00
196	GSMUA_Achr1G11710_001	Hypothetical protein unknown_gene missing_functional_completeness	-9,09E-01	1,00E+00	-1,81E+00	1,00E+00	-2,16E+00	1,00E+00
197		Putative Probable LRR receptor-like serine/threonine-protein kinase At4g08850 At4g08850 complete	5,92E-01	1,00E+00	-2,62E-01	1,00E+00	-3,35E+00	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 7 DAI Cav. GN - 10	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
198	GSMUA_Achr1G17200_001	Metallothionein-like protein 4A MT4A complete	-8,97E-02	1,00E+00	-3,66E-01	1,00E+00	-2,74E-01	1,00E+00
199	GSMUA_Achr4G20990_001	Photosystem II reaction center W protein, chloroplastic PSBW complete	-2,44E+00	1,14E-01	1,13E+00	1,00E+00	-1,05E+00	1,00E+00
200	GSMUA_Achr5G09770_001	Potassium channel KAT3 KAT3 complete	1,11E-01	1,00E+00	-1,15E+00	6,56E-01	-5,50E-02	1,00E+00
201	GSMUA_Achr6G14910_001	Putative expressed protein unknown_gene fragment	-2,73E-01	1,00E+00	1,16E+00	1,00E+00	-5,06E-01	1,00E+00
202	GSMUA_Achr6G19560_001	Soluble inorganic pyrophosphatase IPP complete	6,32E-01	1,00E+00	2,65E-01	1,00E+00	5,45E-02	1,00E+00
203	GSMUA_Achr8G14890_001	Putative Vacuolar protein sorting-associated protein 13A VPS13A fragment	1,35E+00	1,00E+00	-3,89E-01	1,00E+00	-1,51E+00	1,00E+00
204	GSMUA_Achr7G08960_001	Beta-galactosidase Os01g0580200 complete	-5,34E-01	1,00E+00	1,92E+00	1,00E+00	-2,59E+00	1,00E+00
205	GSMUA_Achr11G02160_001	Putative Transcriptional regulator SUPERMAN SUP modules	-3,39E-01	1,00E+00	2,44E+00	1,00E+00	-2,57E+00	1,00E+00
206	GSMUA_Achr10G25960_001	Actin-3 ACT1 complete	-1,91E-01	1,00E+00	-1,14E-01	1,00E+00	-4,50E-02	1,00E+00
207	GSMUA_Achr1G01240_001	midasin-related, putative, expressed mdn1 modules	7,80E-01	1,00E+00	-2,68E-01	1,00E+00	3,16E-01	1,00E+00
208	GSMUA_Achr3G11380_001	Putative WASH complex subunit 7 KIAA1033 fragment	6,50E-01	1,00E+00	-5,58E-01	1,00E+00	4,91E-01	1,00E+00
209	GSMUA_Achr4G27840_001	Peroxidase 7 PER7 complete	7,51E-01	1,00E+00	-2,24E-15	1,00E+00	-8,12E-17	1,00E+00
210	GSMUA_Achr7G13040_001	Hypothetical protein HSFB4C missing_functional_completeness	1,27E+00	1,00E+00	1,64E-01	1,00E+00	-4,68E-01	1,00E+00
211	GSMUA_Achr8G13800_001	Cell elongation protein DIMINUTO DIM fragment	1,10E+00	1,00E+00	-2,06E-01	1,00E+00	-1,26E+00	1,00E+00
212	GSMUA_Achr8G31930_001	ESP4, putative, expressed sympk fragment	2,64E-01	1,00E+00	-2,11E-01	1,00E+00	4,00E-01	1,00E+00
213	GSMUA_Achr1G20250_001	Putative 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase TAX10 complete	-1,11E-01	1,00E+00	3,95E+00	4,14E-01	3,39E+00	1,00E+00
214	GSMUA_Achr11G13650_001	Putative expressed protein PF1186 complete	3,48E-01	1,00E+00	-6,81E-01	1,00E+00	6,32E-02	1,00E+00
215	GSMUA_Achr1G09030_001	Putative Predicted protein unc-16 fragment	2,98E-01	1,00E+00	-6,23E-01	1,00E+00	-4,98E-01	1,00E+00
216	GSMUA_Achr7G04240_001	Snakin-2 SN2 fragment	1,79E+00	1,00E+00	2,84E-01	1,00E+00	-8,03E-01	1,00E+00
217	GSMUA_Achr7G11270_001	Hypothetical protein unknown gene missing functional completeness	-4,54E-01	1,00E+00	8,60E-01	1,00E+00	1,84E+00	1,00E+00
218	GSMUA Achr7G22180 001	Hypothetical protein RAD61 missing functional completeness	6.62E-01	1.00E+00	3.92E-01	1.00E+00	1.01E-02	1.00E+00
219	GSMUA Achr8G23530 001	Caffeovl-CoA O-methyltransferase CCOAOMT complete	4.86E-01	1.00E+00	-8.42E-01	1.00E+00	1.19E-01	1.00E+00
220	GSMUA Achr1G16390 001	Putative uncharacterized protein (Fragment) CG7185 complete	5.55E-01	1.00E+00	4.75E-01	1.00E+00	-3.67E-01	1.00E+00
221	GSMUA_Achr1G08130_001	Putative Transcription factor MVC4 BHI H4 modules	1 77E-01	1.00E+00	6 70E-01	1.00F+00	-1 03E+00	1.00F+00
221	<u></u>		1,,72.01	1,001100	0,701201	1,001100	1,052100	2,002100

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN	• 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
222	GSMUA_Achr5G14370_001	Hypothetical protein Os03g0816900 missing_functional_completeness	5,08E-01	1,00E+00	-2,63E-01	1,00E+00	2,99E-02	1,00E+00
223	GSMUA_Achr7G16730_001	Hypothetical protein pnp missing_functional_completeness	-4,96E-01	1,00E+00	-9,76E-02	1,00E+00	1,48E+00	1,00E+00
224	GSMUA_Achr9G19540_001	Whole genome shotgun sequence of line PN40024, prp40 fragment	6,94E-01	1,00E+00	-1,09E+00	8,94E-01	-1,69E-01	1,00E+00
225	GSMUA_Achr5G14520_001	Putative UDP-glucose:glycoprotein glucosyltransferase 1 Uggt1 fragment	6,61E-01	1,00E+00	-4,03E-01	1,00E+00	4,70E-01	1,00E+00
226	GSMUA_Achr4G19020_001	Putative Probable carotenoid cleavage dioxygenase 4, chloroplastic CCD4 complete	-1,03E+00	1,00E+00	-8,33E-02	1,00E+00	-3,86E-01	1,00E+00
227	GSMUA_Achr7G11330_001	Peroxidase 15 pod complete	1,05E+00	1,00E+00	6,42E-01	1,00E+00	3,74E-01	1,00E+00
228	GSMUA_Achr1G22920_001	Probable cellulose synthase A catalytic subunit 8 [UDP-forming] CESA8 complete	2,48E-01	1,00E+00	-7,89E-02	1,00E+00	-4,27E-01	1,00E+00
229	GSMUA_Achr1G26680_001	Whole genome shotgun sequence of line PN40024, unknown_gene fragment	3,84E-01	1,00E+00	1,14E+00	1,00E+00	-4,34E-01	1,00E+00
230	GSMUA_Achr5G03000_001	Heat stress transcription factor A-2b HSFA2B complete	8,56E-01	1,00E+00	-8,14E-01	9,65E-01	1,01E+00	1,00E+00
231	GSMUA_Achr1G01110_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g08850 At4g08850 complete	-3,57E-01	1,00E+00	8,81E-01	1,00E+00	-8,12E-17	1,00E+00
232	GSMUA_Achr9G24060_001	Putative GDSL esterase/lipase At5g55050 At5g55050 complete	1,38E+00	1,00E+00	-2,52E-01	1,00E+00	-6,62E-01	1,00E+00
233	GSMUA_Achr7G18070_001	Gibberellin-regulated protein 4 GASA4 complete	1,64E+00	1,00E+00	-4,40E-01	1,00E+00	5,83E-02	1,00E+00
234	GSMUA_Achr9G21210_001	Putative Uncharacterized transporter YBR287W YBR287W complete	-6,58E-02	1,00E+00	1,04E+00	1,00E+00	-2,69E+00	1,00E+00
235	GSMUA_Achr8G15140_001	Mannose-binding lectin (Fragment) unknown_gene fragment	-3,24E+00	2,61E-01	-1,10E-01	1,00E+00	-8,12E-17	1,00E+00
236	GSMUA_Achr11G01900_001	Protochlorophyllide reductase B, chloroplastic PORB complete	-1,98E+00	4,43E-01	-2,55E-01	1,00E+00	-4,37E-01	1,00E+00
237	GSMUA_Achr6G35570_001	Hypothetical protein unknown_gene missing_functional_completeness	4,47E-01	1,00E+00	-2,45E-01	1,00E+00	-3,86E+00	1,00E+00
238	GSMUA_Achr6G04760_001	Putative Secologanin synthase CYP72A1 complete	-1,10E+00	1,00E+00	-2,04E-02	1,00E+00	1,33E-01	1,00E+00
239	GSMUA_Achr9G30170_001	Peroxidase 39 PER39 complete	-1,32E-03	1,00E+00	1,02E+00	1,00E+00	6,31E-01	1,00E+00
240	GSMUA_Achr10G22810_001	Heat shock cognate 70 kDa protein HSP70 fragment	2,38E-01	1,00E+00	2,44E-01	1,00E+00	-1,13E-01	1,00E+00
241	GSMUA_Achr7G00860_001	NAC domain-containing protein, putative NAC042 complete	-8,32E-02	1,00E+00	7,63E-01	1,00E+00	-3,71E-01	1,00E+00
242	GSMUA_Achr7G02620_001	Hypothetical protein XTHB missing_functional_completeness	1,78E+00	9,13E-01	-2,17E-02	1,00E+00	-1,50E+00	1,00E+00
243	GSMUA_Achr3G24660_001	Cation/H(+) antiporter 19 CHX19 fragment	4,84E-01	1,00E+00	-7,33E-01	1,00E+00	-8,60E-01	1,00E+00
244	GSMUA_Achr10G06560_001	Protein CCA1 CCA1 fragment	4,74E-01	1,00E+00	-5,82E-02	1,00E+00	2,61E-01	1,00E+00
245	GSMUA_Achr4G23380_001	Putative Pre-mRNA-splicing factor ATP-dependent RNA helicase-like protein cdc28 cdc28 fragment	4,95E-01	1,00E+00	-6,82E-01	1,00E+00	-5,44E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN	· 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
246	GSMUA_Achr10G16840_001	dirigent, putative, expressed PI206 modules	-1,90E+00	1,47E-01	6,91E-01	1,00E+00	-1,56E+00	1,00E+00
247	GSMUA_Achr10G15940_001	Ammonium transporter 3 member 1 AMT3-1 fragment	-1,74E-01	1,00E+00	-1,22E+00	9,37E-01	-1,90E-01	1,00E+00
248	GSMUA_Achr7G11280_001	Actin-11 ACT11 fragment	-6,09E-01	1,00E+00	9,43E-01	1,00E+00	-4,94E-01	1,00E+00
249	GSMUA_Achr5G10950_001	Trypsin inhibitor ODZ3 complete	4,11E-01	1,00E+00	-9,27E-01	1,00E+00	-3,58E+00	1,00E+00
250	GSMUA_Achr4G07660_001	Putative (R)-limonene synthase 1 TPS27 modules	-8,13E-01	1,00E+00	-8,69E-02	1,00E+00	9,52E-01	1,00E+00
251	GSMUA_Achr11G26480_001	Putative Cytochrome P450 71A1 CYP71A1 complete	-8,57E-01	1,00E+00	5,15E-01	1,00E+00	1,30E-01	1,00E+00
252	GSMUA_Achr8G31770_001	Putative Reticulon-like protein B2 RTNLB2 fragment	1,50E+00	1,00E+00	1,79E+00	1,00E+00	1,19E-01	1,00E+00
253	GSMUA_Achr9G05990_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At1g05700 At1g05700 fragment	1,13E+00	1,00E+00	-7,11E-01	1,00E+00	4,85E-01	1,00E+00
254	GSMUA_Achr9G24840_001	Putative Whole genome shotgun sequence of line PN40024, Prrx2 fragment	3,33E-01	1,00E+00	-2,86E-01	1,00E+00	6,11E-01	1,00E+00
255	GSMUA_Achr10G12160_001	Pollen-specific protein C13 MGS1 complete	-1,09E+00	1,00E+00	1,96E+00	1,00E+00	-1,00E+00	1,00E+00
256	GSMUA_Achr1G09100_001	Putative chromo domain containing protein, expressed PKL fragment	6,51E-01	1,00E+00	-2,04E-01	1,00E+00	3,07E-01	1,00E+00
257	GSMUA_Achr2G05270_001	Putative Limonoid UDP-glucosyltransferase At1g05670 fragment	-1,54E-01	1,00E+00	-8,09E-02	1,00E+00	-1,89E+00	1,00E+00
258	GSMUA_Achr6G08050_001	ATP-dependent Clp protease ATP-binding subunit clpA homolog clpC fragment	2,14E-01	1,00E+00	-6,81E-01	1,00E+00	-2,13E-01	1,00E+00
259	GSMUA_Achr8G18080_001	Putative Cytokinin-O-glucosyltransferase 2 UGT85A1 fragment	1,20E-01	1,00E+00	-5,71E-01	1,00E+00	-1,97E-01	1,00E+00
260	GSMUA_Achr9G05900_001	Putative Phosphoethanolamine/phosphocholine phosphatase Phospho1 complete	3,43E-01	1,00E+00	1,71E-02	1,00E+00	-2,24E-01	1,00E+00
261	GSMUA_Achr8G28290_001	Putative Cytochrome P450 94A1 CYP94A1 complete	5,26E-01	1,00E+00	1,16E+00	1,00E+00	4,91E-01	1,00E+00
262	GSMUA_Achr5G27720_001	Putative uncharacterized protein Sb03g037890 unknown_gene complete	1,20E+00	1,00E+00	-4,69E-01	1,00E+00	1,37E+00	1,00E+00
263	GSMUA_Achr2G06350_001	Chlorophyll a-b binding protein 6A, chloroplastic CAB6A complete	-2,44E+00	1,09E-01	7,82E-01	1,00E+00	-7,02E-01	1,00E+00
264	GSMUA_Achr9G10310_001	Photosystem I reaction center subunit psaK, chloroplastic PSAK complete	-3,64E+00	3,01E-01	4,39E-02	1,00E+00	1,84E-01	1,00E+00
265	GSMUA_Achr6G26830_001	expressed protein napA complete	8,74E-01	1,00E+00	-3,82E-02	1,00E+00	-2,19E-01	1,00E+00
266	GSMUA_Achr3G00640_001	Hypothetical protein AMS missing_functional_completeness	1,65E+00	1,00E+00	1,49E+00	1,00E+00	4,86E+00	1,00E+00
267	GSMUA_Achr7G12410_001	Probable xyloglucan endotransglucosylase/hydrolase protein 28 XTH28 complete	2,33E-01	1,00E+00	-1,25E+00	1,00E+00	-4,65E-01	1,00E+00
268	GSMUA_Achr10G20560_001	Hypothetical protein dnaA missing_functional_completeness	5,65E-01	1,00E+00	-6,11E-02	1,00E+00	-1,85E-01	1,00E+00
269	GSMUA_Achr4G08070_001	Hypothetical protein TGA2 missing_functional_completeness	8,55E-02	1,00E+00	6,19E-01	1,00E+00	1,20E+00	1,00E+00
270	GSMUA_Achr6G22850_001	guanine nucleotide exchange family protein, putative, expressed MON2 fragment	7,78E-01	1,00E+00	-3,85E-01	1,00E+00	3,20E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
271	GSMUA_Achr11G19560_001	expressed protein unknown_gene complete	-7,18E-17	1,00E+00	4,59E+00	1,00E+00	-1,00E+00	1,00E+00
272	GSMUA_Achr4G01980_001	Whole genome shotgun sequence of line PN40024, kif4 complete	5,99E-02	1,00E+00	4,81E-01	1,00E+00	-1,24E+00	1,00E+00
273	GSMUA_Achr6G33640_001	Hypothetical protein ZCCHC2 missing_functional_completeness	5,47E-01	1,00E+00	-2,51E-01	1,00E+00	-2,80E-01	1,00E+00
274	GSMUA_Achr4G18520_001	Hypothetical protein pckG missing_functional_completeness	-1,08E-01	1,00E+00	7,06E-01	1,00E+00	6,72E-02	1,00E+00
275	GSMUA_Achr10G06570_001	Putative zinc finger, C3HC4 type domain containing protein, expressed RHA1B complete	8,07E-01	1,00E+00	-1,08E+00	6,80E-01	1,63E+00	1,00E+00
276	GSMUA_Achr7G16710_001	Putative Polyribonucleotide nucleotidyltransferase pnp fragment	-7,40E-02	1,00E+00	1,85E-01	1,00E+00	-7,08E-01	1,00E+00
277	GSMUA_Achr10G29210_001	Putative Myb-related protein 306 MYB306 complete	-8,14E-01	1,00E+00	6,47E-01	1,00E+00	3,51E-01	1,00E+00
278	GSMUA_Achr6G13940_001	Hypothetical protein unknown_gene missing_functional_completeness	2,65E-01	1,00E+00	5,54E-01	1,00E+00	-1,19E-01	1,00E+00
279	GSMUA_Achr8G09740_001	Putative PHD-finger family protein, expressed E(bx) fragment	5,93E-01	1,00E+00	3,19E-03	1,00E+00	1,58E-01	1,00E+00
280	GSMUA_Achr2G21010_001	Putative Zinc finger CCCH domain-containing protein ZFN-like At5g18550 fragment	2,40E-01	1,00E+00	-1,63E-01	1,00E+00	3,70E-01	1,00E+00
281	GSMUA_Achr10G30710_001	Putative uncharacterized protein BHLH66 complete	1,30E+00	1,00E+00	-7,50E-01	1,00E+00	2,54E-01	1,00E+00
282	GSMUA_Achr6G25150_001	Hypothetical protein EBI_21956 missing_functional_completeness	-2,50E-01	1,00E+00	-2,13E-01	1,00E+00	-1,37E-01	1,00E+00
283	GSMUA_Achr7G08350_001	Hypothetical protein fosB missing_functional_completeness	-2,28E-01	1,00E+00	-2,24E-03	1,00E+00	-5,03E-01	1,00E+00
284	GSMUA_Achr1G04940_001	6-phosphofructokinase 3 PFK3 complete	4,54E-01	1,00E+00	-1,40E+00	1,62E-01	8,71E-01	1,00E+00
285	GSMUA_Achr3G20240_001	Actin ACT1 complete	-1,83E-01	1,00E+00	9,95E-02	1,00E+00	-8,12E-17	1,00E+00
286	GSMUA_Achr10G11250_001	Putative uncharacterized protein unknown_gene complete	7,85E-01	1,00E+00	-3,08E-01	1,00E+00	-3,84E-01	1,00E+00
287	GSMUA_Achr10G15430_001	Putative Uridylate kinase pyrH modules	2,91E-02	1,00E+00	-1,36E-01	1,00E+00	4,09E-01	1,00E+00
288	GSMUA_Achr8G03900_001	Hypothetical protein unknown_gene missing_functional_completeness	-7,42E-01	1,00E+00	5,94E-01	1,00E+00	-1,69E+00	1,00E+00
289	GSMUA_Achr8G17740_001	zinc finger domain, LSD1 subclass family protein, expressed sno fragment	4,34E-01	1,00E+00	-3,52E-02	1,00E+00	1,12E-03	1,00E+00
290	GSMUA_Achr8G19970_001	Putative GDSL esterase/lipase At5g45910 At5g45910 complete	9,25E-02	1,00E+00	1,47E+00	1,00E+00	1,19E-01	1,00E+00
291	GSMUA_Achr7G19950_001	GASA-like protein SN2 complete	1,21E+00	1,00E+00	1,13E+00	1,00E+00	-5,49E-01	1,00E+00
292	GSMUA_Achr7G07960_001	Putative Uncharacterized amino acid permease yfnA yfnA complete	-9,49E-03	1,00E+00	3,97E-01	1,00E+00	-8,41E-01	1,00E+00
293	GSMUA_Achr10G04640_001	Nodulin-21 pcl1 modules	2,94E-01	1,00E+00	-9,69E-01	1,00E+00	8,67E-01	1,00E+00
294	GSMUA_Achr10G12790_001	Hypothetical protein mdm34 missing_functional_completeness	5,51E-02	1,00E+00	1,02E-01	1,00E+00	1,62E-01	1,00E+00
295	GSMUA_Achr1G01290_001	Putative HEAT repeat-containing protein 7A homolog heatr7a fragment	4,66E-01	1,00E+00	-2,90E-01	1,00E+00	3,13E-01	1,00E+00

			Cav. GN	- 3 DAI	AI Cav. GN - 7 DAI		Cav. GN - 10 DA	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
296	GSMUA_Achr6G36260_001	Putative Aspartic proteinase nepenthesin-2 nep2 modules	-3,78E-01	1,00E+00	8,54E-01	8,98E-01	4,16E-01	1,00E+00
297	GSMUA_Achr3G10620_001	Putative Cytokinin-O-glucosyltransferase 3 UGT73C5 complete	1,78E-01	1,00E+00	-4,42E-01	1,00E+00	-4,30E-01	1,00E+00
298	GSMUA_Achr1G01880_001	Putative uncharacterized protein unknown_gene fragment	1,89E-01	1,00E+00	-3,71E-01	1,00E+00	-1,21E+00	1,00E+00
299	GSMUA_Achr2G00210_001	Flavonoid 3',5'-hydroxylase CYP75A2 complete	1,98E-01	1,00E+00	-4,84E-01	1,00E+00	3,45E+00	1,00E+00
300	GSMUA_Achr9G07390_001	Hypothetical protein GWD3 missing_functional_completeness	-2,65E-01	1,00E+00	-2,89E-01	1,00E+00	4,77E-01	1,00E+00
301	GSMUA_Achr11G21670_001	Probable methyltransferase PMT15 At4g00750 complete	-1,36E+00	1,00E+00	2,90E-01	1,00E+00	8,98E-01	1,00E+00
302	GSMUA_Achr10G08570_001	Hypothetical protein unknown_gene missing_functional_completeness	2,10E-01	1,00E+00	-9,60E-01	1,00E+00	-2,35E+00	1,00E+00
303	GSMUA_Achr7G09970_001	Putative Protein kinase PVPK-1 OsI_021818 fragment	-1,01E+00	1,00E+00	-6,01E-01	1,00E+00	-8,44E-01	1,00E+00
304	GSMUA_Achr3G07300_001	Putative Transcription initiation factor TFIID subunit 2 Taf2 fragment	1,08E+00	1,00E+00	6,18E-02	1,00E+00	1,42E-01	1,00E+00
305	GSMUA_Achr9G06850_001	expressed protein PRPF39 fragment	6,52E-01	1,00E+00	-2,48E-01	1,00E+00	4,06E-01	1,00E+00
306	GSMUA_Achr10G25440_001	Putative uncharacterized protein At2g16250 fragment	-3,37E-02	1,00E+00	2,62E-01	1,00E+00	1,43E-01	1,00E+00
307	GSMUA_Achr3G28670_001	Putative LRR receptor-like serine/threonine-protein kinase GSO2 GSO2 complete	2,31E+00	1,00E+00	4,01E+00	1,00E+00	1,11E+00	1,00E+00
308	GSMUA_Achr2G11090_001	Putative GDSL esterase/lipase At1g71250 At1g71250 complete	-1,07E+00	1,00E+00	8,00E-01	7,37E-01	-1,79E+00	1,00E+00
309	GSMUA_Achr11G04480_001	S-norcoclaurine synthase 1 NCS1 complete	-8,86E-01	1,00E+00	2,66E+00	3,93E-01	-2,64E+00	1,00E+00
310	GSMUA_Achr2G22340_001	Putative Patatin group A-3 pat2-k3 complete	-1,76E-01	1,00E+00	1,04E+00	1,00E+00	-2,64E-01	1,00E+00
311	GSMUA_Achr3G10140_001	Ethylene-responsive transcription factor 1 EREBP1 fragment	4,47E-03	1,00E+00	3,14E-01	1,00E+00	-2,25E-01	1,00E+00
312	GSMUA_Achr9G10790_001	Putative Horcolin SALT complete	2,71E-01	1,00E+00	2,20E-01	1,00E+00	2,96E-01	1,00E+00
313	GSMUA_Achr1G02610_001	E3 ubiquitin-protein ligase UPL3 UPL3 fragment	4,95E-01	1,00E+00	-3,27E-01	1,00E+00	9,43E-02	1,00E+00
314	GSMUA_Achr1G03980_001	EF hand family protein, putative, expressed CML9 complete	4,77E-01	1,00E+00	1,92E+00	2,93E-01	8,64E-02	1,00E+00
315	GSMUA_Achr4G09680_001	CAAX amino terminal protease family protein, putative, expressed EMB8 modules	6,90E-01	1,00E+00	4,37E-02	1,00E+00	4,06E-01	1,00E+00
316	GSMUA_Achr2G17260_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At2g16250 At2g16250 fragment	3,57E-01	1,00E+00	2,42E+00	2,38E-01	1,64E-01	1,00E+00
317	GSMUA_Achr6G26180_001	Metallothionein-like protein type 3 MT3A complete	-1,23E-01	1,00E+00	-8,54E-01	9,65E-01	-5,44E-01	1,00E+00
318	GSMUA_Achr8G00520_001	Putative Lysosomal alpha-mannosidase MAN2B1 complete	-3,27E-01	1,00E+00	3,68E-01	1,00E+00	-1,20E-01	1,00E+00
319	GSMUA_Achr10G25510_001	Whole genome shotgun sequence of line PN40024, PLA2-III complete	5,80E-01	1,00E+00	3,40E-01	1,00E+00	-4,98E+00	1,00E+00
320	GSMUA_Achr2G13520_001	Putative Lamin-like protein At5g15350 modules	1,11E+00	1,00E+00	-2,12E-01	1,00E+00	-6,38E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. (GN - 7 DAI	Cav. G	N - 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
321	GSMUA_Achr8G13290_001	Putative Whole genome shotgun sequence of line PN40024, Kif26a complete	4,39E-01	1,00E+00	-2,29E-01	1,00E+00	4,89E-01	1,00E+00
322	GSMUA_Achr2G00870_001	eukaryotic aspartyl protease domain containing protein, expressed nep1 complete	1,26E+00	9,46E-01	-5,28E-01	1,00E+00	-6,95E-01	1,00E+00
323	GSMUA_Achr10G31190_001	expressed protein unknown_gene fragment	-2,28E-01	1,00E+00	3,42E-01	1,00E+00	-1,94E-01	1,00E+00
324	GSMUA_Achr3G28550_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g08850 At4g08850 fragment	3,68E+00	1,00E+00	-3,41E+00	1,00E+00	7,26E-01	1,00E+00
325	GSMUA_Achr11G19050_001	STE_MEKK_stel1_MAP3K.1 - STE kinases include homologs to sterile 7, 11 and 20 from yeast	-2,99E-01	1,00E+00	4,05E-01	1,00E+00	-8,37E-01	1,00E+00
326	GSMUA_Achr1G05770_001	FACT complex subunit SPT16 SPT16 complete	2,22E-01	1,00E+00	3,60E-01	1,00E+00	2,54E-01	1,00E+00
327	GSMUA_Achr8G01840_001	expressed protein psidin fragment	5,99E-01	1,00E+00	-7,07E-03	1,00E+00	3,01E-02	1,00E+00
328	GSMUA_Achr6G36590_001	Phosphate transporter PHO1-2 PHO1-2 complete	2,53E-01	1,00E+00	-1,07E+00	6,68E-01	-8,46E-01	1,00E+00
329	GSMUA_Achr8G08730_001	Whole genome shotgun sequence of line PN40024, myo-3 fragment	2,48E-01	1,00E+00	-4,22E-02	1,00E+00	4,74E-01	1,00E+00
330	GSMUA_Achr2G15990_001	Putative Cytokinin-O-glucosyltransferase 3 UGT73C5 complete	2,28E-01	1,00E+00	-9,59E-01	5,34E-01	2,62E-01	1,00E+00
331	GSMUA_Achr11G15950_001	Hypothetical protein traf3ip1 missing_functional_completeness	8,82E-01	1,00E+00	-6,26E-01	1,00E+00	3,11E-01	1,00E+00
332	GSMUA_Achr5G11700_001	Putative Lectin LECRKA4.2 modules	-1,55E-01	1,00E+00	6,20E-01	1,00E+00	6,22E-01	1,00E+00
333	GSMUA_Achr5G25790_001	Putative Cytochrome P450 71D8 CYP71D8 complete	-5,93E-01	1,00E+00	8,60E-01	1,00E+00	-6,15E-01	1,00E+00
334	GSMUA_Achr7G13330_001	expressed protein DDB_G0268328 fragment	5,85E-01	1,00E+00	1,25E-01	1,00E+00	4,30E-01	1,00E+00
335	GSMUA_Achr7G13710_001	expressed protein rplF fragment	8,64E-01	1,00E+00	-8,21E-01	1,00E+00	4,49E-01	1,00E+00
336	GSMUA_Achr6G04570_001	Early nodulin-93 unknown_gene complete	-4,16E-01	1,00E+00	-5,76E+00	1,59E-01	-4,63E+00	3,64E-01
337	GSMUA_Achr4G23940_001	Oxygen-evolving enhancer protein 3-2, chloroplastic PSBQ2 complete	-1,00E+00	1,00E+00	4,69E-01	1,00E+00	-1,54E+00	1,00E+00
338	GSMUA_Achr8G14920_001	expressed protein vps13a modules	6,22E-01	1,00E+00	-7,36E-02	1,00E+00	2,15E-02	1,00E+00
339	GSMUA_Achr8G31570_001	Hypothetical protein unknown_gene missing_functional_completeness	-4,77E-01	1,00E+00	1,02E+00	1,00E+00	-4,29E-01	1,00E+00
340	GSMUA_Achr5G18800_001	Putative C-4 methylsterol oxidase DDB_G0269788 DDB_G0269788 complete	1,17E+00	1,00E+00	2,98E-01	1,00E+00	-1,47E+00	1,00E+00
341	GSMUA_Achr3G25430_001	Chlorophyllase-2, chloroplastic CLH2 modules	-2,60E-01	1,00E+00	7,47E-01	1,00E+00	2,83E-01	1,00E+00
342	GSMUA_Achr10G27850_001	Peroxidase 52 PER52 complete	3,79E-01	1,00E+00	9,77E-02	1,00E+00	-1,54E-01	1,00E+00
343	GSMUA_Achr4G22230_001	Hypothetical protein unknown_gene missing_functional_completeness	5,64E-01	1,00E+00	9,34E-01	1,00E+00	-7,07E-01	1,00E+00
344	GSMUA_Achr8G07780_001	UPF0497 membrane protein 5 RCOM_1282030 fragment	1,14E+00	1,00E+00	4,82E-01	1,00E+00	-2,08E-01	1,00E+00

			Cav. GN	- 3 DAI	AI Cav. GN - 7 DAI		Cav. GN ·	10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
345	GSMUA_Achr4G30340_001	GATA zinc finger domain containing protein, expressed GATA4 fragment	2,03E+00	1,00E+00	-1,23E-01	1,00E+00	-9,93E-01	1,00E+00
346	GSMUA_Achr3G18930_001	Putative PHD-finger family protein, expressed E(bx) complete	2,47E-01	1,00E+00	1,23E-01	1,00E+00	-1,70E-02	1,00E+00
347	GSMUA_Achr11G04270_001	Hypothetical protein unknown_gene missing_functional_completeness	8,63E-01	1,00E+00	5,18E-01	1,00E+00	5,19E-02	1,00E+00
348	GSMUA_Achr7G27660_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At2g16250 At2g16250 complete	5,02E-01	1,00E+00	2,77E-01	1,00E+00	1,33E+00	1,00E+00
349	GSMUA_Achr3G15490_001	Putative Monothiol glutaredoxin-S5 GRXS5 complete	6,09E-01	1,00E+00	1,89E+00	8,72E-01	-3,51E-01	1,00E+00
350	GSMUA_Achr7G14690_001	Putative Protein RUPTURED POLLEN GRAIN 1 RPG1 complete	1,96E+00	5,09E-01	-1,37E+00	1,00E+00	-4,10E+00	1,00E+00
351	GSMUA_Achr9G10820_001	Hypothetical protein VPS27 missing_functional_completeness	4,34E-01	1,00E+00	5,05E-01	1,00E+00	5,19E-01	1,00E+00
352	GSMUA_Achr4G03700_001	Predicted protein LBD41 modules	8,17E-01	1,00E+00	4,31E-01	1,00E+00	-4,06E-01	1,00E+00
353	GSMUA_Achr6G28010_001	ferric-chelate reductase, putative, expressed noxB complete	5,59E-01	1,00E+00	1,09E+00	1,00E+00	7,23E-01	1,00E+00
354	GSMUA_Achr7G08850_001	Putative Whole genome shotgun sequence of line PN40024, WRKY72 complete	1,84E-01	1,00E+00	-1,46E-01	1,00E+00	-4,73E-01	1,00E+00
355	GSMUA_Achr3G21990_001	Putative Protein PLEKHA9 PLEKHA9 fragment	1,51E+00	1,00E+00	-4,44E-01	1,00E+00	4,85E-01	1,00E+00
356	GSMUA_Achr5G08040_001	Putative Inactive beta-amylase 9 BAM9 complete	8,64E-02	1,00E+00	8,20E-01	1,00E+00	-4,07E-01	1,00E+00
357	GSMUA_Achr5G21100_001	Nicotianamine synthase CHLN complete	-7,11E-01	1,00E+00	3,91E-01	1,00E+00	3,22E-01	1,00E+00
358	GSMUA_Achr5G08270_001	Hypothetical protein VLN3 missing_functional_completeness	-2,78E-01	1,00E+00	3,23E-02	1,00E+00	9,45E-01	1,00E+00
359	GSMUA_Achr6G24280_001	Putative Whole genome shotgun sequence of line PN40024, BHLH112 complete	-2,88E+00	1,00E+00	-8,39E-01	1,00E+00	1,90E+00	1,00E+00
360	GSMUA_Achr6G10430_001	Putative Intron-binding protein aquarius AQR fragment	6,06E-01	1,00E+00	-3,39E-01	1,00E+00	2,94E-01	1,00E+00
361	GSMUA_Achr11G04780_001	serine/threonine-protein kinase Haspin, putative, expressed Gsg2 complete	9,81E-01	1,00E+00	-2,34E+00	1,00E+00	9,04E-01	1,00E+00
362	GSMUA_Achr10G27840_001	Peroxidase P7 PER52 complete	3,87E-01	1,00E+00	-5,60E-02	1,00E+00	2,73E-01	1,00E+00
363	GSMUA_Achr6G26980_001	DDT, putative, expressed PF13_0198 modules	3,72E-01	1,00E+00	2,97E-01	1,00E+00	6,81E-02	1,00E+00
364	GSMUA_Achr7G08220_001	Hypothetical protein unknown_gene missing_functional_completeness	6,50E-02	1,00E+00	4,50E-02	1,00E+00	1,28E-01	1,00E+00
365	GSMUA_Achr11G02850_001	Probable polygalacturonase GSVIVT00026920001 fragment	-1,11E+00	1,00E+00	3,04E+00	1,00E+00	2,59E-02	1,00E+00
366	GSMUA_Achr11G18980_001	Golgin candidate 6 GC6 fragment	2,05E-01	1,00E+00	-1,96E-01	1,00E+00	3,88E-01	1,00E+00
367	GSMUA_Achr7G09390_001	Peroxidase 52 PER52 complete	3,58E-01	1,00E+00	4,63E-01	1,00E+00	-3,58E-01	1,00E+00
368	GSMUA_Achr1G23930_001	Putative Linear gramicidin synthase subunit C lgrC fragment	3,33E-01	1,00E+00	-7,82E-02	1,00E+00	7,02E-01	1,00E+00
369	GSMUA_Achr1G10220_001	Putative expressed protein BHLH87 fragment	2,06E+00	1,00E+00	2,20E-01	1,00E+00	9,10E-02	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN	· 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
370	GSMUA_Achr3G06950_001	Galactoside 2-alpha-L-fucosyltransferase FUT1 complete	1,37E+00	1,00E+00	-1,27E+00	1,00E+00	3,77E-01	1,00E+00
371	GSMUA_Achr11G19620_001	Putative Random slug protein 5 rsc5 fragment	-1,75E-01	1,00E+00	-1,62E-01	1,00E+00	-3,94E-01	1,00E+00
372	GSMUA_Achr5G25950_001	Metal transporter Nramp6 NRAMP6 fragment	1,31E-01	1,00E+00	-6,59E-01	1,00E+00	6,16E-01	1,00E+00
373	GSMUA_Achr10G26980_001	Phospholipase D alpha 1 PLD1 fragment	-2,70E-02	1,00E+00	1,12E-01	1,00E+00	-1,21E-01	1,00E+00
374	GSMUA_Achr6G06060_001	heavy metal-associated domain containing protein, expressed copA complete	1,91E+00	9,72E-01	6,19E-01	1,00E+00	1,04E+00	1,00E+00
375	GSMUA_Achr1G00020_001	Alpha-galactosidase Os10g0493600 complete	2,21E-02	1,00E+00	7,88E-01	1,00E+00	-5,22E-01	1,00E+00
376	GSMUA_Achr8G21190_001	Putative Anaphase-promoting complex subunit 1 APC1 fragment	5,58E-01	1,00E+00	-5,93E-01	1,00E+00	-8,98E-01	1,00E+00
377	GSMUA_Achr8G18810_001	Phosphoenolpyruvate carboxykinase [ATP] PCKA complete	4,10E-01	1,00E+00	5,79E-01	1,00E+00	-2,32E-01	1,00E+00
378	GSMUA_Achr7G22210_001	Peroxidase 4 GSVIVT00023967001 complete	-3,79E-01	1,00E+00	-3,75E-01	1,00E+00	-1,29E+00	1,00E+00
379	GSMUA_Achr5G22300_001	Hypothetical protein YTM1 missing_functional_completeness	-8,02E-01	1,00E+00	4,58E-01	1,00E+00	3,77E-01	1,00E+00
380	GSMUA_Achr3G02950_001	Peroxidase 12 PER12 complete	6,44E-01	1,00E+00	-2,88E-01	1,00E+00	-8,71E-02	1,00E+00
381	GSMUA_Achr3G13090_001	Hypothetical protein At1g21580 missing_functional_completeness	7,11E-01	1,00E+00	-5,66E-01	1,00E+00	5,12E-01	1,00E+00
382	GSMUA_Achr2G10960_001	Defensin-like protein PDF2.3 complete	2,05E+00	1,00E+00	-1,31E+00	4,85E-01	-5,02E-01	1,00E+00
383	GSMUA_Achr6G02280_001	Uncharacterized protein At1g14870 At1g14870 modules	1,51E+00	5,97E-01	-1,18E+00	9,29E-01	-1,30E+00	1,00E+00
384	GSMUA_Achr2G14180_001	Triose phosphate/phosphate translocator, non-green plastid, chloroplastic NGTPT complete	3,07E-01	1,00E+00	-1,11E+00	7,71E-01	-1,46E-01	1,00E+00
385	GSMUA_Achr11G17230_001	Ammonium transporter 1 member 1 AMT1-1 complete	4,60E-01	1,00E+00	-6,82E-01	1,00E+00	-3,64E-01	1,00E+00
386	GSMUA_Achr9G10830_001	Putative Horcolin SALT modules	5,30E-01	1,00E+00	4,77E-01	1,00E+00	2,67E-01	1,00E+00
387	GSMUA_Achr3G30040_001	Hypothetical protein zgc:165573 missing_functional_completeness	7,83E-02	1,00E+00	8,29E-01	1,00E+00	-1,12E-01	1,00E+00
388	GSMUA_Achr5G01510_001	Putative FAM10 family protein At4g22670 At4g22670 fragment	7,04E-02	1,00E+00	-1,32E-01	1,00E+00	2,29E+00	1,00E+00
389	GSMUA_Achr9G23940_001	no apical meristem protein, putative NAC74 fragment	1,13E+00	1,00E+00	4,09E-01	1,00E+00	-2,14E+00	1,00E+00
390	GSMUA_Achr3G27170_001	Putative uncharacterized protein Sb07g000099 hdgfrp2 fragment	5,04E-01	1,00E+00	-3,32E-01	1,00E+00	6,26E-02	1,00E+00
391	GSMUA_Achr11G01100_001	rhodanese-like domain containing protein, putative, expressed STR16 fragment	-2,06E-01	1,00E+00	-6,16E-02	1,00E+00	4,18E-01	1,00E+00
392	GSMUA_Achr9G26060_001	Probable glutathione S-transferase parA PARA complete	-9,26E-01	1,00E+00	-1,96E-01	1,00E+00	-3,12E+00	1,00E+00
393	GSMUA_Achr10G17940_001	Putative uncharacterized protein ERD3 fragment	-6,14E-01	1,00E+00	-2,69E-01	1,00E+00	-3,97E+00	1,00E+00
394	GSMUA_Achr8G24400_001	Serineglyoxylate aminotransferase AGT1 complete	-8,82E-01	1,00E+00	-2,67E-01	1,00E+00	-1,44E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
395	GSMUA_Achr4G16640_001	Hypothetical protein unknown_gene missing_functional_completeness	-6,09E+00	1,99E-14	8,28E+00	6,72E-02	5,08E-01	1,00E+00
396	GSMUA_Achr3G15340_001	Hypothetical protein At4g12770 missing_functional_completeness	4,15E+00	1,27E-02	-9,38E-01	1,00E+00	-1,29E+00	1,00E+00
397	GSMUA_Achr4G18830_001	Putative uncharacterized protein unknown_gene modules	9,54E-01	1,00E+00	3,02E+00	2,43E-03	-2,18E-01	1,00E+00
398	GSMUA_Achr6G32080_001	Putative uncharacterized protein Prx complete	2,85E-02	1,00E+00	2,96E+00	8,81E-02	1,60E-01	1,00E+00
399	GSMUA_Achr9G29700_001	Probable CCR4-associated factor 1 homolog 11 CAF1-11 complete	-1,75E-01	1,00E+00	2,02E+00	6,72E-02	-3,50E-02	1,00E+00
400	GSMUA_Achr11G21630_001	Dehydration-responsive element-binding protein 1E DREB1E complete	1,48E+00	1,00E+00	9,59E+00	2,92E-04	-2,02E-01	1,00E+00
401	GSMUA_Achr7G05900_001	Putative Dehydration-responsive element-binding protein 1D DREB1D complete	6,87E-01	1,00E+00	3,77E+00	1,75E-02	1,23E-01	1,00E+00
402	GSMUA_Achr6G04860_001	Hypothetical protein HARBI1 missing_functional_completeness	1,32E-01	1,00E+00	4,53E+00	9,96E-03	2,96E-02	1,00E+00
403	GSMUA_Achr6G02310_001	Hypothetical protein ERF112 missing_functional_completeness	1,24E+00	1,00E+00	5,10E+00	1,71E-02	6,17E-01	1,00E+00
404	GSMUA_Achr4G32720_001	Probable indole-3-acetic acid-amido synthetase GH3.8 GH3.8 complete	2,83E-01	1,00E+00	-1,45E+00	2,77E-02	2,17E-01	1,00E+00
405	GSMUA_Achr7G06910_001	Hypothetical protein ERF5 missing_functional_completeness	6,42E-01	1,00E+00	2,09E+00	9,44E-02	-6,15E-01	1,00E+00
406	GSMUA_Achr7G03640_001	Putative uncharacterized protein ERF4 complete	2,07E-01	1,00E+00	2,92E+00	4,49E-02	9,63E-02	1,00E+00
407	GSMUA_Achr7G11650_001	LL-diaminopimelate aminotransferase, chloroplastic DAP complete	2,07E+00	1,00E+00	-2,35E+00	1,00E+00	-1,98E+01	9,19E-03
408	GSMUA_Achr3G15350_001	dnaJ domain containing protein, expressed At4g12780 fragment	1,49E+00	1,00E+00	-1,00E+00	9,65E-01	2,17E-01	1,00E+00
409	GSMUA_Achr11G04340_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-3,5928815	0,1746497	-6,3423395	0,0774979	-5,066759	1,00E+00
410	GSMUA_Achr11G20670_001	Putative expressed protein At1g66480 complete	2,29440428	0,2135574	2,82300905	3,38E-05	-0,6889697	1,00E+00
411	GSMUA_Achr9G30600_001	Hypothetical protein unknown_gene missing_functional_completeness	5,80E-01	1,00E+00	8,32E+00	1,53E-01	-4,69E+00	1,00E+00
412	GSMUA_Achr3G25780_001	Phytosulfokines 3 PSK3 complete	-4,90E-01	1,00E+00	1,57E+00	1,00E+00	-5,01E-03	1,00E+00
413	GSMUA_Achr7G20410_001	Putative Benzoate carboxyl methyltransferase BAMT complete	-1,29E+00	1,00E+00	-1,51E-01	1,00E+00	-2,57E+00	1,00E+00
414	GSMUA_Achr8G20270_001	Hypothetical protein spaT missing_functional_completeness	1,60E+00	2,63E-01	-4,96E-01	1,00E+00	-8,44E-02	1,00E+00
415	GSMUA_Achr3G02010_001	3-ketoacyl-CoA synthase 10 FDH complete	-1,19E+00	1,00E+00	1,33E+00	1,00E+00	1,11E-01	1,00E+00
416	GSMUA_Achr2G09480_001	dynamin family protein, putative, expressed dlpC complete	-5,58E-01	1,00E+00	1,42E-01	1,00E+00	9,76E-01	1,00E+00
417	GSMUA_Achr1G17220_001	Stigma/stylar cysteine-rich adhesin SCA complete	-5,67E+00	1,62E-01	9,42E-01	1,00E+00	6,98E-01	1,00E+00
418	GSMUA_Achr7G26210_001	Putative Cytoplasmic tRNA 2-thiolation protein 2 CTU2 fragment	1,24E-02	1,00E+00	5,62E-03	1,00E+00	-3,50E+00	1,00E+00
419	GSMUA_Achr10G15270_001	Chlorophyll a-b binding protein 40, chloroplastic CAB40 fragment	-1,79E+00	8,96E-01	-4,82E-01	1,00E+00	1,85E+00	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
420	GSMUA_Achr1G13920_001	Hypothetical protein At4g12770 missing_functional_completeness	7,10E-01	1,00E+00	-7,15E-01	1,00E+00	8,41E-03	1,00E+00
421	GSMUA_Achr8G28810_001	Malate synthase, glyoxysomal LIP complete	7,27E-01	1,00E+00	1,58E+00	9,12E-01	-1,31E+00	1,00E+00
422	GSMUA_Achr2G14210_001	Hypothetical protein unknown_gene missing_functional_completeness	7,05E-01	1,00E+00	-2,77E-01	1,00E+00	-4,55E-01	1,00E+00
423	GSMUA_Achr3G23000_001	Putative Caltractin (Fragment) Cetn1 fragment	3,96E-01	1,00E+00	2,39E+00	1,10E-01	-3,22E-01	1,00E+00
424	GSMUA_Achr7G01910_001	Putative serine/threonine-protein kinase receptor SRK6 fragment	1,14E+00	1,00E+00	-9,22E-01	1,00E+00	8,64E-01	1,00E+00
425	GSMUA_Achr3G30210_001	Probable indole-3-acetic acid-amido synthetase GH3.8 GH3.8 complete	5,44E-01	1,00E+00	1,68E-01	1,00E+00	2,95E-01	1,00E+00
426	GSMUA_Achr1G00770_001	Putative Flavanone 3-dioxygenase FHT complete	-1,92E+00	8,96E-01	2,45E+00	3,22E-01	-2,67E+00	1,00E+00
427	GSMUA_Achr10G17060_001	Lipid binding protein, putative LIM3 complete	-8,25E-01	1,00E+00	-2,60E-01	1,00E+00	-7,67E-01	1,00E+00
428	GSMUA_Achr9G16540_001	Pathogenesis-related protein 1 PR1 complete	4,79E-01	1,00E+00	-2,37E-01	1,00E+00	2,04E-01	1,00E+00
429	GSMUA_Achr6G27190_001	Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic APL2 complete	-1,51E+00	1,00E+00	-6,20E-01	1,00E+00	-4,28E+00	1,00E+00
430	GSMUA_Achr2G18070_001	MYB family transcription factor, putative, expressed At1g14600 fragment	-1,30E+00	1,00E+00	1,26E+00	1,00E+00	-2,80E+00	1,00E+00
431	GSMUA_Achr6G19450_001	Probable CCR4-associated factor 1 homolog 11 CAF1-11 complete	1,42E-02	1,00E+00	2,60E+00	1,10E-01	4,97E-01	1,00E+00
432	GSMUA_Achr11G23400_001	Putative UDP-N-acetylmuramoylalanineD-glutamate ligase murD fragment	8,38E-01	1,00E+00	-1,35E-01	1,00E+00	-7,69E-01	1,00E+00
433	GSMUA_Achr3G16480_001	Putative Glycerol-3-phosphate acyltransferase 1 GPAT1 complete	9,97E-01	1,00E+00	1,08E+00	1,00E+00	5,90E+00	7,70E-01
434	GSMUA_Achr9G19860_001	Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete	-3,22E-01	1,00E+00	2,09E+00	2,25E-01	2,63E-01	1,00E+00
435	GSMUA_Achr1G00480_001	Putative Ethylene-responsive transcription factor ERF105 ERF105 complete	2,01E-01	1,00E+00	1,96E+00	1,78E-01	1,97E-01	1,00E+00
436	GSMUA_Achr2G04360_001	Caffeic acid 3-O-methyltransferase OMT complete	-8,19E-01	1,00E+00	1,55E+00	6,52E-01	-3,62E+00	1,00E+00
437	GSMUA_Achr5G08730_001	Putative uncharacterized protein odd complete	-8,24E-02	1,00E+00	1,91E+00	2,53E-01	1,99E-01	1,00E+00
438	GSMUA_Achr2G14250_001	Hypothetical protein SPZ1 missing_functional_completeness	-1,64E-01	1,00E+00	-6,79E-01	1,00E+00	-7,14E-01	1,00E+00
439	GSMUA_Achr4G14500_001	Putative Sulfotransferase 17 SOT17 fragment	1,30E+00	1,00E+00	3,29E-02	1,00E+00	9,14E-01	1,00E+00
440	GSMUA_Achr4G20890_001	Putative Protein TIME FOR COFFEE TIC complete	6,60E-01	1,00E+00	-2,10E-01	1,00E+00	-2,38E-01	1,00E+00
441	GSMUA_Achr8G20750_001	Putative uncharacterized protein RING1 fragment	-6,08E-01	1,00E+00	1,89E+00	2,36E-01	7,53E-02	1,00E+00
442	GSMUA_Achr6G01420_001	AP2/ERF and B3 domain-containing transcription factor RAV1 RAV1 complete	-1,93E-01	1,00E+00	5,11E-01	1,00E+00	-8,01E+00	3,64E-01
443	GSMUA_Achr3G22720_001	CEN-like protein 2 CET2 complete	5,71E-01	1,00E+00	-5,35E-01	1,00E+00	-3,50E+00	1,00E+00
444	GSMUA_Achr2G02210_001	Hypothetical protein ceh-14 missing_functional_completeness	1,35E+00	1,00E+00	3,99E-01	1,00E+00	-8,85E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
445	GSMUA_Achr10G05990_001	Peroxidase 4 GSVIVT00023967001 complete	-6,98E-02	1,00E+00	1,08E+00	1,00E+00	-9,15E-01	1,00E+00
446	GSMUA_Achr5G14770_001	Putative Protein TIME FOR COFFEE TIC complete	4,70E-01	1,00E+00	-3,72E-01	1,00E+00	-4,84E-02	1,00E+00
447	GSMUA_Achr9G29520_001	protein kinase domain containing protein, expressed At1g06840 complete	4,07E-01	1,00E+00	-4,26E-01	1,00E+00	3,15E-01	1,00E+00
448	GSMUA_Achr11G10660_001	NFD4, putative, expressed MCH1 complete	2,34E+00	1,00E+00	-1,83E+00	1,00E+00	1,84E-01	1,00E+00
449	GSMUA_Achr1G10090_001	expressed protein waaU complete	-1,11E-01	1,00E+00	-6,99E-01	1,00E+00	5,25E-01	1,00E+00
450	GSMUA_Achr10G25090_001	Putative Blue copper protein At5g15350 fragment	-1,28E-01	1,00E+00	-4,22E-01	1,00E+00	3,80E-02	1,00E+00
451	GSMUA_Achr2G11930_001	Expansin-B15 EXPB15 fragment	-9,14E-01	1,00E+00	-4,25E+00	8,70E-04	-3,20E+00	1,00E+00
452	GSMUA_Achr5G09690_001	Putative 1-aminocyclopropane-1-carboxylate oxidase ACO complete	1,09E+00	1,00E+00	-2,22E+00	6,75E-03	-3,42E+00	8,03E-01
453	GSMUA_Achr7G03060_001	Acyl-[acyl-carrier-protein] desaturase, chloroplastic ACPD complete	5,80E-01	1,00E+00	-1,14E+00	1,00E+00	-1,98E+00	1,00E+00
454	GSMUA_Achr1G20260_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-7,18E-17	1,00E+00	-3,41E+00	1,00E+00	-8,12E-17	1,00E+00
455	GSMUA_Achr2G00420_001	Nicotianamine synthase 3 NAS3 complete	3,79E-01	1,00E+00	2,39E-02	1,00E+00	1,25E+00	1,00E+00
456	GSMUA_Achr9G26700_001	B12D protein, putative, expressed galM complete	-1,41E+00	1,00E+00	2,86E-01	1,00E+00	-2,33E+00	1,00E+00
457	GSMUA_Achr4G23150_001	Putative expressed protein Int complete	7,99E-01	1,00E+00	-1,41E+00	1,00E+00	-3,45E+00	1,00E+00
458	GSMUA_Achr9G30120_001	wound induced protein, putative, expressed unknown_gene complete	2,29E-01	1,00E+00	-2,68E-01	1,00E+00	-1,29E+00	1,00E+00
459	GSMUA_Achr6G29920_001	Putative 2-aminoethanethiol dioxygenase Ado complete	3,00E-01	1,00E+00	1,47E+00	1,00E+00	-4,96E-01	1,00E+00
460	GSMUA_Achr5G07750_001	Putative Chaperone protein dnaJ 20, chloroplastic ATJ20 fragment	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	-4,27E+00	6,52E-01
461	GSMUA_Achr3G09170_001	Early nodulin-93 unknown_gene complete	9,67E-01	1,00E+00	-3,69E-02	1,00E+00	-2,54E+00	1,00E+00
462	GSMUA_Achr5G16900_001	Cytochrome c CC-1 complete	1,34E+00	1,00E+00	-7,18E-01	1,00E+00	-2,72E+00	1,00E+00
463	GSMUA_Achr5G06650_001	Putative Uncharacterized acetyltransferase At3g50280 At3g50280 complete	1,37E+00	1,00E+00	4,59E+00	1,00E+00	3,20E-01	1,00E+00
464	GSMUA_Achr8G19270_001	Hypothetical protein PKNOX1 missing_functional_completeness	1,69E+00	1,00E+00	-1,67E-01	1,00E+00	-1,29E+00	1,00E+00
465	GSMUA_Achr6G04470_001	oxidoreductase, putative, expressed P4ha1 complete	-5,59E-01	1,00E+00	-1,91E+00	8,98E-01	-4,22E+00	1,00E+00
466	GSMUA_Achr8G19260_001	expressed protein L fragment	7,99E-01	1,00E+00	1,33E+00	1,00E+00	-1,22E+00	1,00E+00
467	GSMUA_Achr11G08710_001	Kelch repeat-containing protein At3g27220 At3g27220 complete	7,11E-01	1,00E+00	-3,15E-01	1,00E+00	-2,35E+00	1,00E+00
468	GSMUA_Achr3G14310_001	cystathionin beta synthase protein, putative, expressed edd complete	1,19E+00	1,00E+00	-3,79E-01	1,00E+00	-1,80E+00	1,00E+00
469	GSMUA_Achr4G25050_001	flavin monooxygenase, putative, expressed FMO6P complete	1,43E+00	1,00E+00	9,38E-01	1,00E+00	-1,80E+00	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
470	GSMUA_Achr11G15810_001	Ethylene-responsive transcription factor ERF071 ERF071 complete	-9,66E-01	1,00E+00	5,48E-01	1,00E+00	-1,51E+00	1,00E+00
471	GSMUA_Achr6G19150_001	Putative hypothetical protein unknown_gene complete	-5,66E-01	1,00E+00	-4,14E-01	1,00E+00	-2,89E+00	1,00E+00
472	GSMUA_Achr4G11770_001	Putative Ser/Thr-rich protein T10 in DGCR region T10 complete	-6,63E-02	1,00E+00	6,43E-01	1,00E+00	-2,64E+00	1,00E+00
473	GSMUA_Achr2G02480_001	Coproporphyrinogen-III oxidase, chloroplastic CPX fragment	5,38E-01	1,00E+00	-4,39E+00	8,98E-01	-4,55E+00	6,52E-01
474	GSMUA_Achr4G15110_001	Gibberellin 2-beta-dioxygenase 1 GA2OX1 complete	-4,29E+00	1,00E+00	6,38E+00	9,65E-01	-2,30E+00	1,00E+00
475	GSMUA_Achr3G10820_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g26540 At4g26540 complete	2,02E+00	7,72E-02	-1,68E+00	1,71E-02	-4,89E+00	1,00E+00
476	GSMUA_Achr7G17110_001	Putative uncharacterized protein mib1 fragment	3,87E+00	2,15E-02	5,99E-01	1,00E+00	-6,12E+00	1,00E+00
477	GSMUA_Achr11G22160_001	secretory protein, putative, expressed narX complete	-2,36E+00	1,53E-02	1,17E+00	7,49E-01	-2,26E+00	1,00E+00
478	GSMUA_Achr4G24640_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	2,57E+00	2,45E-02	-1,78E-01	1,00E+00	-2,99E-01	1,00E+00
479	GSMUA_Achr7G20420_001	Putative Benzoate carboxyl methyltransferase BAMT complete	-3,48E+00	2,15E-02	6,81E+00	6,56E-01	-2,28E+00	1,00E+00
480	GSMUA_Achr6G02710_001	Gibberellin-regulated protein 4 GASA4 complete	3,34E+00	9,52E-02	6,70E-01	1,00E+00	-3,69E+00	1,00E+00
481	GSMUA_Achr6G31280_001	Putative Protein phosphatase 1 regulatory subunit 7 Ppp1r7 modules	3,04E+00	7,44E-03	1,35E-01	1,00E+00	-5,93E-01	1,00E+00
482	GSMUA_Achr6G31940_001	Chlorophyll a-b binding protein 6A, chloroplastic CAB6A complete	-4,66E+00	1,43E-05	1,24E+00	1,00E+00	-2,32E+00	1,00E+00
483	GSMUA_Achr9G01260_001	heavy metal-associated domain containing protein, expressed copA complete	2,29E+00	1,46E-02	7,91E-01	1,00E+00	-6,34E-01	1,00E+00
484	GSMUA_Achr6G10730_001	Expansin-A15 EXPA15 complete	2,10E+00	7,24E-02	-1,43E+00	4,92E-01	2,87E-01	1,00E+00
485	GSMUA_Achr6G05340_001	Putative Subtilisin-like protease ARA12 fragment	3,83E+00	7,44E-03	1,23E+00	9,24E-01	-2,85E+00	1,00E+00
486	GSMUA_Achr8G32980_001	Putative Class III acidic chitinase XIPI fragment	-4,56E+00	2,15E-02	7,23E-01	1,00E+00	-2,82E+00	1,00E+00
487	GSMUA_Achr3G07910_001	Hypothetical protein xylA missing_functional_completeness	-3,02E+00	2,57E-02	1,89E+00	8,98E-01	9,57E-01	1,00E+00
488	GSMUA_Achr9G12540_001	expressed protein addB complete	7,52E+00	2,45E-02	-5,78E+00	1,16E-01	8,30E-01	1,00E+00
489	GSMUA_Achr7G09230_001	Putative Protein ALWAYS EARLY 3 ALY3 fragment	5,52E+00	2,70E-02	-1,97E+00	6,52E-01	-1,38E-01	1,00E+00
490	GSMUA_Achr2G08650_001	FAD-binding and arabino-lactone oxidase domains containing protein, putative, alo-1 fragment	-2,80E+00	3,59E-02	2,62E+00	5,18E-01	-3,38E+00	1,00E+00
491	GSMUA_Achr8G29720_001	retrotransposon protein, putative, unclassified, expressed At2g42960 fragment	3,83E+00	9,40E-02	-1,09E+00	1,00E+00	-4,13E-01	1,00E+00
492	GSMUA_Achr4G04510_001	Putative Whole genome shotgun sequence of line PN40024,At1g14600 complete	-5,94E+00	8,10E-02	1,51E+00	1,00E+00	1,59E-01	1,00E+00
493	GSMUA_Achr10G23030_001	rhodanese-like family protein, putative, expressed mocs3 complete	-6,29E+00	2,45E-02	5,29E-01	1,00E+00	-2,22E+00	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
494	GSMUA_Achr6G26920_001	retrotransposon protein, putative, unclassified unknown_gene fragment	7,27E+00	7,72E-02	3,25E+00	1,00E+00	-3,78E+00	1,00E+00
495	GSMUA_Achr6G18400_001	Fructokinase-2 FRK2 complete	-3,00E+00	5,39E-04	1,86E+00	4,11E-01	-5,42E-01	1,00E+00
496	GSMUA_Achr4G24630_001	Cyclin-U2-1 CYCU2-1 complete	2,21E+00	7,72E-02	8,50E-01	1,00E+00	-6,15E-01	1,00E+00
497	GSMUA_Achr6G21980_001	Peroxidase 1 PRX74 complete	2,48E+00	3,32E-02	5,49E-01	1,00E+00	2,25E+00	1,00E+00
498	GSMUA_Achr7G17150_001	Putative uncharacterized protein unknown_gene complete	-4,61E+00	2,11E-02	-2,91E-01	1,00E+00	1,04E+00	1,00E+00
499	GSMUA_Achr1G08190_001	Granule-bound starch synthase 1, chloroplastic/amyloplastic WAXY complete	-3,57E+00	1,09E-04	-4,64E-01	1,00E+00	-1,58E+00	1,00E+00
500	GSMUA_Achr8G15110_001	Hypothetical protein TAS2R16 missing_functional_completeness	-5,57E+00	5,39E-04	-9,96E-01	1,00E+00	-8,12E-17	1,00E+00
501	GSMUA_Achr4G33530_001	Glucose-6-phosphate/phosphate translocator 2, chloroplastic GPT2 complete	-2,57E+00	2,26E-03	-2,74E-01	1,00E+00	-1,92E+00	1,00E+00
502	GSMUA_Achr2G16780_001	Beta-galactosidase Os01g0580200 complete	3,16E+00	2,70E-03	-6,47E-01	1,00E+00	3,55E+00	1,00E+00
503	GSMUA_Achr4G19570_001	LRR receptor-like serine/threonine-protein kinase ERL1 ERL1 fragment	-6,62E+00	8,69E-03	2,62E+00	8,96E-01	-2,14E+00	1,00E+00
504	GSMUA_Achr8G17280_001	Fructose-bisphosphate aldolase, chloroplastic Os11g0171300 complete	-2,70E+00	8,85E-03	-8,29E-01	1,00E+00	-7,12E-01	1,00E+00
505	GSMUA_Achr2G20540_001	Hypothetical protein LECCVA2 missing_functional_completeness	-6,43E+00	1,67E-02	1,62E+00	1,00E+00	1,59E-01	1,00E+00
506	GSMUA_Achr10G25530_001	Putative expressed protein Athe_1143 complete	4,25E+00	2,15E-02	-1,69E+00	1,00E+00	-1,62E+00	1,00E+00
507	GSMUA_Achr7G27540_001	Homeobox protein KNOX3 KNOX3 complete	-6,42E+00	2,15E-02	2,53E+00	1,00E+00	3,43E-01	1,00E+00
508	GSMUA_Achr5G24730_001	Probable 1-deoxy-D-xylulose-5-phosphate synthase, chloroplastic CLA1 complete	6,52E+00	2,37E-02	-4,27E+00	9,65E-01	-5,26E-01	1,00E+00
509	GSMUA_Achr9G01270_001	Hypothetical protein unknown_gene missing_functional_completeness	2,64E+00	2,59E-02	1,51E+00	5,69E-01	-1,41E+00	1,00E+00
510	GSMUA_Achr4G28270_001	Homeobox protein knotted-1-like 2 KN1 fragment	-3,85E+00	2,87E-02	1,68E+00	1,00E+00	-4,15E+00	1,00E+00
511	GSMUA_Achr2G22730_001	Ribulose bisphosphate carboxylase small chain, chloroplastic RBCS1 complete	-2,31E+00	3,11E-02	1,37E+00	7,36E-01	2,14E-01	1,00E+00
512	GSMUA_Achr7G02800_001	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit 1, mitochondrial SDH2-1 fragment	6,91E+00	3,32E-02	-3,41E+00	1,00E+00	-8,12E-17	1,00E+00
513	GSMUA_Achr4G31970_001	Pathogenesis-related protein R major form tlp complete	-2,27E+00	4,20E-02	1,03E+00	9,77E-01	-1,72E+00	1,00E+00
514	GSMUA Achr6G01350 001	Wound-induced protein WIN1 WIN1 fragment	-2.32E+00	6.87E-02	-1.28E-01	1.00E+00	-2.55E+00	1.00E+00
515	GSMUA Achr3G31390 001	bZIP transcription factor domain containing protein. expressed RF2a complete	7.27E+00	7.72E-02	-1.61E-01	1.00E+00	-5.03E-01	1.00E+00
516	GSMUA Achr8G12370 001	Peroxidase 5 GSVIVT00037159001 complete	1,90E+00	7,72E-02	-6,96E-01	1,00E+00	1,05E+00	1,00E+00
517	GSMUA_Achr5G29330_001	Putative Protein SRG1 SRG1 complete	-5.93E+00	8.70E-02	4.80E+00	9.65E-01	-7.70E+00	2.82E-01
518	GSMUA_Achr8G20170_001	Putative IQ calmodulin-binding motif family protein, expressed IQD31 complete	3,32E+00	9,16E-02	9,80E-01	1,00E+00	3,45E+00	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN - 10 E	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
519	GSMUA_Achr11G04240_001	Hypothetical protein unknown_gene missing_functional_completeness	4,10E+00	9,40E-02	-4,80E+00	6,41E-01	7,09E-01	1,00E+00
520	GSMUA_Achr7G25990_001	Homeobox-leucine zipper protein HOX14 HOX14 fragment	4,46E-01	1,00E+00	2,87E+00	2,93E-04	-2,47E-01	1,00E+00
521	GSMUA_Achr8G32950_001	Hevamine-A CHIB1 complete	1,50E+00	1,00E+00	1,57E+00	6,46E-02	-2,66E-01	1,00E+00
522	GSMUA_Achr10G24660_001	phosphate-induced protein 1 conserved region domain containing protein, expressed Spt5 complete	1,61E+00	1,00E+00	2,10E+00	5,73E-02	-5,14E-01	1,00E+00
523	GSMUA_Achr11G10520_001	Protein LURP-one-related 8 At2g38640 complete	5,99E-02	1,00E+00	-2,25E+00	2,63E-03	-7,97E-01	1,00E+00
524	GSMUA_Achr7G03220_001	Putative E3 ubiquitin-protein ligase PUB23 PUB23 complete	3,75E-01	1,00E+00	2,93E+00	4,22E-02	4,64E-01	1,00E+00
525	GSMUA_Achr2G04830_001	Peroxidase 60 PER60 complete	1,11E+00	1,00E+00	1,29E+00	7,80E-02	-1,20E+00	1,00E+00
526	GSMUA_Achr6G05710_001	Putative OsWRKY69 - Superfamily of TFs having WRKY and zinc finger domains, expres WRKY41	1,63E-01	1,00E+00	3,76E+00	9,10E-04	5,43E-01	1,00E+00
527	GSMUA_Achr9G22480_001	Putative uncharacterized protein Anae109_3424 fragment	-9,59E-02	1,00E+00	2,11E+00	7,70E-02	-9,10E-02	1,00E+00
528	GSMUA_Achr6G11460_001	Hypothetical protein ANP1 missing_functional_completeness	-9,44E-01	1,00E+00	2,27E+00	6,51E-03	-1,72E-01	1,00E+00
529	GSMUA_Achr4G09290_001	Hypothetical protein rcl missing_functional_completeness	1,28E-01	1,00E+00	2,44E+00	4,72E-02	-1,34E-01	1,00E+00
530	GSMUA_Achr5G07340_001	Protein phosphatase 2c, putative Os03g0292100 complete	1,51E+00	1,00E+00	1,30E+01	3,42E-09	-7,23E-01	1,00E+00
531	GSMUA_Achr1G08170_001	Endoglucanase 1 CEL1 complete	-3,18E-01	1,00E+00	-1,65E+00	8,27E-02	-1,28E+00	1,00E+00
532	GSMUA_Achr6G25110_001	Lipoxygenase A LOX1.1 complete	1,62E+00	1,00E+00	1,69E+00	2,55E-02	5,57E-01	1,00E+00
533	GSMUA_Achr6G10610_001	expressed protein dxs2 modules	1,77E-01	1,00E+00	2,29E+00	4,18E-02	-5,48E-02	1,00E+00
534	GSMUA_Achr9G28820_001	Putative U-box domain-containing protein 17 PUB17 complete	-3,71E-01	1,00E+00	2,77E+00	2,01E-02	-4,80E-01	1,00E+00
535	GSMUA_Achr10G09450_001	Putative U-box domain-containing protein 27 PUB27 complete	-3,60E-01	1,00E+00	1,68E+00	4,55E-02	-1,25E-01	1,00E+00
536	GSMUA_Achr10G15290_001	Putative WRKY transcription factor 6 WRKY6 complete	-1,69E-01	1,00E+00	1,49E+00	8,59E-02	-1,05E-01	1,00E+00
537	GSMUA_Achr6G15840_001	Hypothetical protein ubiE missing_functional_completeness	9,14E-01	1,00E+00	1,91E+00	6,41E-03	-2,26E+00	1,00E+00
538	GSMUA_Achr10G22560_001	avr9/Cf-9 rapidly elicited protein, putative, expressed thiE complete	2,20E-01	1,00E+00	2,50E+00	3,41E-02	5,73E-02	1,00E+00
539	GSMUA_Achr1G25300_001	Putative Tellurite resistance protein tehA homolog tehA modules	-6,33E-02	1,00E+00	-1,80E+00	4,72E-02	-7,73E-01	1,00E+00
540	GSMUA_Achr9G07610_001	Putative Uncharacterized WD repeat-containing protein alr2800 alr2800 fragment	1,02E+00	1,00E+00	2,32E+00	9,78E-04	-2,59E-01	1,00E+00
541	GSMUA_Achr10G06840_001	Putative Stem-specific protein TSJT1 TSJT1 modules	2,30E-01	1,00E+00	1,90E+00	7,83E-02	-8,13E-01	1,00E+00
542	GSMUA_Achr11G11620_001	Probable S-acyltransferase At3g26935 At3g26935 fragment	1,10E+00	1,00E+00	-1,59E+00	6,46E-02	-8,50E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		7 DAI Cav. GN -	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
543	GSMUA_Achr7G24010_001	expressed protein HARBI1 complete	-2,38E-02	1,00E+00	2,53E+00	1,17E-02	3,96E-02	1,00E+00
544	GSMUA_Achr2G17540_001	CBL-interacting protein kinase 7 CIPK7 modules	5,02E-01	1,00E+00	-1,19E+00	9,31E-02	3,26E-01	1,00E+00
545	GSMUA_Achr10G11850_001	Hypothetical protein RPL7A missing_functional_completeness	7,41E-01	1,00E+00	1,28E+00	8,27E-02	3,34E-01	1,00E+00
546	GSMUA_Achr1G08690_001	Truncated NBS-LRR disease resistance protein (Fragment) unknown_gene missing_completeness	-3,46E-01	1,00E+00	3,07E+00	4,22E-02	-3,06E-01	1,00E+00
547	GSMUA_Achr5G05940_001	Nudix hydrolase 17, mitochondrial NUDT17 complete	6,93E-01	1,00E+00	3,41E+00	2,29E-02	-4,56E-01	1,00E+00
548	GSMUA_Achr2G01110_001	Putative uncharacterized protein purA complete	6,96E-01	1,00E+00	2,87E+00	8,59E-02	-4,89E-02	1,00E+00
549	GSMUA_Achr5G28920_001	hs1, putative, expressed kynA complete	-4,30E-01	1,00E+00	3,11E+00	5,12E-05	8,88E-02	1,00E+00
550	GSMUA_Achr5G29160_001	Hypothetical protein F missing_functional_completeness	1,06E+00	1,00E+00	3,30E+00	8,42E-04	-1,11E+00	1,00E+00
551	GSMUA_Achr7G12690_001	Putative phosphate-induced protein 1 conserved region domain containing protein, expressed COL29A1	1,36E+00	1,00E+00	2,25E+00	1,63E-03	-2,59E-01	1,00E+00
552	GSMUA Achr6G29420 001	Putative conserved hypothetical protein 44M2.3 fragment	-1.90E-01	1.00E+00	1.73E+00	2.39E-02	-1.17E-01	1.00E+00
553	GSMUA_Achr3G12060_001	Putative UPF0481 protein At3g47200 At3g47200 complete	8,61E-01	1,00E+00	2,19E+00	4,67E-02	-3,19E-01	1,00E+00
554	GSMUA_Achr10G17750_001	Hypothetical protein Adam22 missing_functional_completeness	-6,22E-01	1,00E+00	2,26E+00	8,92E-05	-4,67E-01	1,00E+00
555	GSMUA_Achr4G15700_001	Hypothetical protein sls missing_functional_completeness	9,51E-01	1,00E+00	2,74E+00	3,10E-03	1,23E-01	1,00E+00
556	GSMUA_Achr9G19870_001	Hypothetical protein unknown_gene missing_functional_completeness	8,06E-01	1,00E+00	3,98E+00	1,63E-02	5,31E-01	1,00E+00
557	GSMUA_Achr4G31480_001	Putative Protein TIFY 5A TIFY5A complete	2,67E+00	1,00E+00	5,80E+00	1,63E-03	5,61E-01	1,00E+00
558	GSMUA_Achr5G28260_001	Putative Zinc finger CCCH domain-containing protein 66 At5g58620 complete	4,67E-02	1,00E+00	2,42E+00	2,41E-02	3,84E-01	1,00E+00
559	GSMUA_Achr10G29370_001	heavy metal-associated domain containing protein, expressed CCS1 modules	-3,09E-02	1,00E+00	-1,36E+00	8,34E-02	-2,94E-01	1,00E+00
560	GSMUA_Achr10G04970_001	Hypothetical protein unknown_gene missing_functional_completeness	1,31E+00	1,00E+00	3,73E+00	3,01E-02	-1,40E-01	1,00E+00
561	GSMUA_Achr8G29470_001	Alcohol dehydrogenase 1 ADH1 complete	1,61E-01	1,00E+00	-1,66E+00	8,71E-02	-1,00E+00	1,00E+00
562	GSMUA_Achr8G19650_001	Putative Interferon-induced GTP-binding protein Mx mx complete	1,85E+00	8,20E-01	-2,86E+00	8,27E-02	1,34E+00	1,00E+00
563	GSMUA_Achr9G21690_001	Putative expressed protein At1g66480 complete	-2,29E-01	1,00E+00	1,87E+00	4,55E-02	-1,22E-01	1,00E+00
564	GSMUA_Achr6G27860_001	Putative Lectin-domain containing receptor kinase A4.2 LECRKA4.2 fragment	-1,13E+00	1,00E+00	2,19E+00	2,09E-02	-6,79E-01	1,00E+00
565	GSMUA_Achr1G10080_001	Putative Probable WRKY transcription factor 40 WRKY40 modules	-6,49E-01	1,00E+00	2,83E+00	4,01E-02	1,16E+00	1,00E+00
566	GSMUA_Achr5G01550_001	Probable indole-3-acetic acid-amido synthetase GH3.8 GH3.8 complete	9,74E-01	1,00E+00	-2,12E+00	9,46E-02	9,51E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
567	GSMUA_Achr3G13030_001	GDSL esterase/lipase At4g26790 At4g26790 complete	-3,25E-01	1,00E+00	1,87E+01	5,51E-04	-2,81E+00	1,00E+00
568	GSMUA_Achr9G24410_001	Putative 2-hydroxymuconic semialdehyde hydrolase xylF modules	-3,26E-01	1,00E+00	1,56E+00	6,89E-02	5,64E-01	1,00E+00
569	GSMUA_Achr10G10400_001	Putative harpin-induced protein 1 domain containing protein, expressed SYP24 complete	-7,44E-01	1,00E+00	2,99E+00	8,92E-05	-1,28E+00	1,00E+00
570	GSMUA_Achr6G32330_001	NAC domain-containing protein 68 NAC68 complete	-9,80E-02	1,00E+00	2,26E+00	6,29E-04	4,95E-01	1,00E+00
571	GSMUA_Achr3G11560_001	Putative Subtilisin-like protease ARA12 modules	2,30E+00	2,63E-01	-1,52E+00	7,59E-02	6,66E-01	1,00E+00
572	GSMUA_Achr5G22180_001	Hypothetical protein HARBI1 missing_functional_completeness	6,03E-01	1,00E+00	3,82E+00	1,06E-02	-1,59E-01	1,00E+00
573	GSMUA_Achr9G07600_001	Putative Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete	-1,22E+00	1,00E+00	3,80E+00	6,12E-03	-1,31E-01	1,00E+00
574	GSMUA_Achr6G03900_001	Putative expressed protein frr complete	-3,12E-01	1,00E+00	2,25E+00	7,71E-04	-7,01E-01	1,00E+00
575	GSMUA_Achr9G14360_001	Putative AP2 domain containing protein ERF017 fragment	6,46E-01	1,00E+00	3,01E+00	1,71E-02	3,78E-01	1,00E+00
576	GSMUA_Achr9G01460_001	drought-induced protein 1, putative, expressed dnaJ complete	-3,52E-01	1,00E+00	1,94E+00	4,44E-02	2,75E-01	1,00E+00
577	GSMUA_Achr7G18930_001	AP2 domain containing protein, expressed RAP2-3 fragment	1,48E+00	1,00E+00	4,37E+00	6,46E-02	8,48E-01	1,00E+00
578	GSMUA_Achr1G25890_001	Hypothetical protein ERF9 missing_functional_completeness	1,10E-02	1,00E+00	3,05E+00	3,21E-03	8,07E-02	1,00E+00
579	GSMUA_Achr6G20900_001	Hypothetical protein TIFY9 missing_functional_completeness	-3,24E-02	1,00E+00	3,34E+00	2,09E-02	3,69E-01	1,00E+00
580	GSMUA_Achr4G29150_001	1-aminocyclopropane-1-carboxylate synthase ACS1 complete	-9,53E-02	1,00E+00	4,21E+00	5,51E-04	-4,10E-01	1,00E+00
581	GSMUA_Achr8G11980_001	Dehydration-responsive element-binding protein 1E DREB1E complete	5,05E-01	1,00E+00	3,37E+00	2,93E-04	7,51E-02	1,00E+00
582	GSMUA_Achr9G02880_001	expressed protein unknown_gene complete	9,49E-01	1,00E+00	1,87E+01	5,51E-04	1,90E-01	1,00E+00
583	GSMUA_Achr10G13530_001	Hypothetical protein ZNF335 missing_functional_completeness	1,47E+00	1,00E+00	5,59E+00	8,92E-05	-2,16E-01	1,00E+00
584	GSMUA_Achr11G24120_001	hs1, putative, expressed kynA complete	-2,11E-01	1,00E+00	1,90E+00	7,78E-03	-1,51E-01	1,00E+00
585	GSMUA_Achr9G27230_001	Nudix hydrolase 21, chloroplastic NUDT21 fragment	-8,13E-01	1,00E+00	9,51E+00	3,42E-09	5,46E-01	1,00E+00
586	GSMUA_Achr8G18910_001	Aquaporin PIP2-3 PIP2-3 fragment	3,53E-01	1,00E+00	-1,27E+00	5,73E-02	7,95E-01	1,00E+00
587	GSMUA_Achr3G04490_001	Putative F-box/LRR-repeat protein 14 FBL14 complete	5,48E-01	1,00E+00	4,08E+00	4,29E-04	-1,70E+00	1,00E+00
588	GSMUA_Achr9G11480_001	Putative Ethylene-responsive transcription factor 4 ERF4 complete	1,82E-01	1,00E+00	2,41E+00	9,13E-02	3,81E-01	1,00E+00
589	GSMUA_Achr11G04930_001	MYB family transcription factor, putative, expressed MYB305 complete	-8,53E-01	1,00E+00	4,22E+00	2,01E-02	8,08E-01	1,00E+00
590	GSMUA_Achr6G20890_001	Putative uncharacterized protein RH46 complete	3,21E+00	1,00E+00	1,39E+01	8,27E-02	6,98E-03	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
591	GSMUA_Achr4G06660_001	AP2/ERF domain-containing transcription factor ERF3 complete	1,51E-01	1,00E+00	2,58E+00	8,84E-02	3,59E-01	1,00E+00
592	GSMUA_Achr11G03210_001	Putative Ethylene-responsive transcription factor ERF024 ERF024 complete	1,38E+00	1,00E+00	4,01E+00	3,32E-02	1,21E-01	1,00E+00
593	GSMUA_Achr7G15590_001	Probable protein phosphatase 2C 32 Os03g0292100 fragment	3,56E-01	1,00E+00	3,68E+00	1,06E-02	5,27E-01	1,00E+00
594	GSMUA_Achr4G19660_001	Dehydration-responsive element-binding protein 1D DREB1D modules	5,78E-01	1,00E+00	3,05E+00	8,25E-02	1,41E-01	1,00E+00
595	GSMUA_Achr5G18900_001	Probable L-ascorbate peroxidase 4 APX4 complete	1,74E+00	1,00E+00	-3,51E+00	4,75E-02	1,26E-01	1,00E+00
596	GSMUA_Achr10G04720_001	NAC-domain protein NAC090 modules	1,55E-01	1,00E+00	3,34E+00	3,09E-02	-1,39E-01	1,00E+00
597	GSMUA_Achr10G15210_001	Putative Aspartic proteinase nepenthesin-2 nep2 modules	1,94E-01	1,00E+00	2,31E+00	3,65E-02	1,70E-01	1,00E+00
598	GSMUA_Achr3G29120_001	Putative Predicted protein At1g66480 fragment	-1,75E-01	1,00E+00	2,02E+00	6,72E-02	-9,26E-03	1,00E+00
599	GSMUA_Achr7G18470_001	Probable galacturonosyltransferase-like 9 GATL9 fragment	1,02E+00	1,00E+00	3,48E+00	1,12E-02	-2,32E-01	1,00E+00
600	GSMUA_Achr10G06050_001	Putative Probable WRKY transcription factor 40 WRKY40 complete	2,66E-01	1,00E+00	2,73E+00	4,93E-02	4,49E-01	1,00E+00
601	GSMUA_Achr9G15480_001	Nitrate reductase [NADH] 1 NIA1 complete	5,78E-01	1,00E+00	-1,82E+00	4,55E-02	-1,04E-02	1,00E+00
602	GSMUA_Achr7G13610_001	Putative Probable F-box protein At4g22030 At4g22030 fragment	-6,89E-01	1,00E+00	2,39E+00	1,16E-04	-7,36E-01	1,00E+00
603	GSMUA_Achr9G07530_001	glycosyl transferase family 17 protein, putative, expressed Mgat3 complete	1,13E-01	1,00E+00	3,88E+00	5,66E-04	2,11E-01	1,00E+00
604	GSMUA_Achr6G31010_001	Putative RING-H2 finger protein ATL3 ATL3 complete	-3,35E-01	1,00E+00	2,61E+00	6,26E-04	1,65E-01	1,00E+00
605	GSMUA_Achr7G03230_001	E3 ubiquitin-protein ligase PUB22 PUB22 fragment	6,76E-01	1,00E+00	4,77E+00	6,88E-04	1,87E-01	1,00E+00
606	GSMUA_Achr9G12070_001	Chitin-inducible gibberellin-responsive protein 1 CIGR1 fragment	2,33E-01	1,00E+00	4,08E+00	8,25E-04	-3,96E-01	1,00E+00
607	GSMUA_Achr3G16870_001	Calmodulin-like protein 5 CML5 fragment	8,55E-01	1,00E+00	3,40E+00	1,81E-03	1,95E-02	1,00E+00
608	GSMUA_Achr10G15510_001	AP2/ERF domain-containing transcription factor DREB1F complete	7,92E-03	1,00E+00	1,37E+01	2,63E-03	6,18E-01	1,00E+00
609	GSMUA_Achr3G26450_001	retrotransposon protein, putative, Ty3-gypsy subclass, expressed LRX4 fragment	6,65E-01	1,00E+00	8,08E+00	3,21E-03	-1,01E-01	1,00E+00
610	GSMUA_Achr7G22130_001	Putative U-box domain-containing protein 16 PUB16 complete	2,27E-01	1,00E+00	3,18E+00	3,49E-03	7,51E-02	1,00E+00
611	GSMUA_Achr9G06920_001	Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic APL2 complete	-1,18E+00	1,00E+00	-2,12E+00	4,23E-03	-6,43E+00	1,00E+00
612	GSMUA_Achr10G24630_001	phosphate-induced protein 1 conserved region domain containing protein, expressed fprA	1,49E+00	1,00E+00	2,37E+00	4,53E-03	-7,36E-01	1,00E+00
613	GSMUA_Achr1G27900_001	Putative Calcium-binding protein CML38 CML38 complete	4,69E-01	1,00E+00	3,94E+00	4,53E-03	-7,13E-02	1,00E+00
614	GSMUA_Achr6G18760_001	Putative Multidrug and toxin extrusion protein 1 slc47a1 fragment	9,49E-01	1,00E+00	2,80E+00	6,31E-03	-3,61E-01	1,00E+00
615	GSMUA_Achr1G20910_001	Putative expressed protein Rph3a complete	1,09E+00	1,00E+00	2,90E+00	6,41E-03	1,61E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN ·	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
616	GSMUA_Achr5G03920_001	Myb-related protein Myb4 MYB4 complete	9,13E-01	1,00E+00	3,85E+00	6,41E-03	8,59E-01	1,00E+00
617	GSMUA_Achr1G27980_001	Putative Probable WRKY transcription factor 41 WRKY41 complete	8,41E-01	1,00E+00	2,84E+00	7,69E-03	-7,33E-01	1,00E+00
618	GSMUA_Achr7G12680_001	phosphate-induced protein 1 conserved region domain containing protein, expressed CCDC45 complete	1,49E-01	1,00E+00	1,83E+00	7,69E-03	-1,62E-01	1,00E+00
619	GSMUA_Achr1G08716_001	NBS-LRR class resistance protein (Fragment) unknown_gene missing_completeness	7,49E-01	1,00E+00	2,71E+00	1,02E-02	8,05E-02	1,00E+00
620	GSMUA_Achr7G15010_001	avr9/Cf-9 rapidly elicited protein, putative, expressed GOLGA2 complete	-4,96E-02	1,00E+00	2,74E+00	1,06E-02	-1,17E+00	1,00E+00
621	GSMUA_Achr6G02470_001	Putative U-box domain-containing protein 21 PUB21 complete	5,80E-01	1,00E+00	4,05E+00	1,71E-02	-6,56E-02	1,00E+00
622	GSMUA_Achr8G06870_001	Putative Ethylene-responsive transcription factor 4 ERF4 complete	5,13E-01	1,00E+00	2,64E+00	1,71E-02	3,55E-01	1,00E+00
623	GSMUA_Achr3G13940_001	Hypothetical protein algG missing_functional_completeness	-6,96E-01	1,00E+00	1,46E+01	2,01E-02	8,52E-01	1,00E+00
624	GSMUA_Achr10G24650_001	phosphate-induced protein 1 conserved region domain containing protein, expressed At1g63940	4,92E-01	1,00E+00	2,14E+00	2,01E-02	-1,78E-01	1,00E+00
625	GSMUA_Achr6G33100_001	Mitogen-activated protein kinase 5 MPK5 complete	2,46E-01	1,00E+00	3,03E+00	2,03E-02	-7,60E-02	1,00E+00
626	GSMUA_Achr9G16020_001	Putative lipoxygenase 5 Os04g0447100 complete	3,93E-02	1,00E+00	2,83E+00	2,03E-02	1,01E-03	1,00E+00
627	GSMUA_Achr11G15850_001	COBRA-like protein 7 COBL7 complete	5,67E-01	1,00E+00	3,10E+00	2,11E-02	-1,57E-01	1,00E+00
628	GSMUA_Achr3G05200_001	Probable xyloglucan endotransglucosylase/hydrolase protein 23 XTH23 fragment	5,75E-01	1,00E+00	3,05E+00	2,50E-02	-4,57E-01	1,00E+00
629	GSMUA_Achr9G25720_001	Putative DUF581 domain containing protein, expressed eno complete	-2,43E-01	1,00E+00	-1,34E+00	2,50E-02	-8,45E-01	1,00E+00
630	GSMUA_Achr6G01580_001	Hypothetical protein tnsE missing_functional_completeness	3,33E-01	1,00E+00	2,34E+00	2,70E-02	9,82E-02	1,00E+00
631	GSMUA_Achr6G07600_001	STE_MEKK_stel1_MAP3K.8 - STE kinases include homologs to sterile 7, 11 and 20 from yeast	4,53E-01	1,00E+00	2,87E+00	3,01E-02	8,97E-01	1,00E+00
632	GSMUA_Achr2G06010_001	Putative Leucine-rich repeat receptor protein kinase EXS EXS complete	2,25E-01	1,00E+00	2,60E+00	3,09E-02	-3,74E-01	1,00E+00
633	GSMUA_Achr1G18570_001	Hypothetical protein ATJ11 missing_functional_completeness	-2,63E-03	1,00E+00	2,39E+00	3,34E-02	-2,06E-02	1,00E+00
634	GSMUA_Achr7G25650_001	Putative calcium-transporting ATPase 13, plasma membrane-type ACA13 complete	1,37E+00	1,00E+00	3,45E+00	3,34E-02	-2,37E-01	1,00E+00
635	GSMUA_Achr4G20150_001	Transcription factor MYB44 MYB44 complete	8,39E-01	1,00E+00	2,67E+00	3,40E-02	2,88E-01	1,00E+00
636	GSMUA_Achr3G31850_001	Hypothetical protein unknown_gene missing_functional_completeness	6,76E-01	1,00E+00	-1,84E+00	3,65E-02	2,37E-01	1,00E+00
637	GSMUA_Achr5G04350_001	L-ascorbate oxidase AAO complete	7,33E-01	1,00E+00	1,77E+00	4,22E-02	-7,47E-01	1,00E+00
638	GSMUA_Achr9G01120_001	Putative Protein TIFY 9 TIFY9 fragment	1,20E-02	1,00E+00	3,52E+00	4,22E-02	2,33E-02	1,00E+00
639	GSMUA_Achr9G18840_001	F-box protein At1g47056 At1g47056 modules	1,37E-01	1,00E+00	2,77E+00	4,22E-02	-5,93E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		Cav. GN ·	• 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
640	GSMUA_Achr6G17230_001	Hypothetical protein ADT5 missing_functional_completeness	1,03E-01	1,00E+00	2,39E+00	4,27E-02	1,64E-01	1,00E+00
641	GSMUA_Achr10G07480_001	Arginine decarboxylase SPE2 complete	-8,02E-02	1,00E+00	2,58E+00	4,49E-02	4,29E-01	1,00E+00
642	GSMUA_Achr7G18920_001	Alpha-amylase isozyme 3D AMY1.3 complete	3,35E-01	1,00E+00	1,55E+00	4,52E-02	-1,14E+00	1,00E+00
643	GSMUA_Achr8G14220_001	Putative Cytokinin-O-glucosyltransferase 2 UGT85A1 complete	2,06E-01	1,00E+00	3,66E+00	4,72E-02	-5,27E-01	1,00E+00
644	GSMUA_Achr8G17320_001	Hypothetical protein unknown_gene missing_completeness	1,03E+00	1,00E+00	-1,76E+00	4,72E-02	1,63E+00	1,00E+00
645	GSMUA_Achr10G15880_001	Putative expressed protein Os10g0513300 complete	1,76E-01	1,00E+00	3,53E+00	4,79E-02	-7,63E-02	1,00E+00
646	GSMUA_Achr5G26850_001	Putative AP2/ERF domain-containing transcription factor ERF4 complete	1,46E+00	1,00E+00	3,35E+00	4,79E-02	3,54E-01	1,00E+00
647	GSMUA_Achr1G27910_001	Putative Probable calcium-binding protein CML31 CML31 complete	1,54E-01	1,00E+00	3,11E+00	4,93E-02	1,35E-01	1,00E+00
648	GSMUA_Achr5G27860_001	Hypothetical protein unknown_gene missing_functional_completeness	-6,20E-01	1,00E+00	1,70E+00	5,70E-02	5,91E-02	1,00E+00
649	GSMUA_Achr5G11980_001	Putative Disease resistance protein RPS2 RPS5 missing_completeness	8,39E-02	1,00E+00	1,57E+00	5,95E-02	-2,33E-02	1,00E+00
650	GSMUA_Achr10G28420_001	3-ketoacyl-CoA synthase 11 KCS11 complete	6,46E-01	1,00E+00	2,21E+00	6,03E-02	-3,14E-01	1,00E+00
651	GSMUA_Achr10G02460_001	plant-specific domain TIGR01615 family protein, expressed rpoC1 complete	2,08E-01	1,00E+00	1,51E+00	6,39E-02	1,71E-01	1,00E+00
652	GSMUA_Achr5G07590_001	NAC domain-containing protein 68 NAC68 complete	-3,46E-02	1,00E+00	2,43E+00	6,39E-02	2,67E-01	1,00E+00
653	GSMUA_Achr8G08460_001	DNA binding protein, putative, expressed stnA complete	7,51E-01	1,00E+00	9,73E+00	6,72E-02	-4,76E-01	1,00E+00
654	GSMUA_Achr11G08650_001	Putative quinone-oxidoreductase homolog, chloroplastic At4g13010 complete	3,11E-01	1,00E+00	4,54E+00	7,01E-02	4,95E+00	1,00E+00
655	GSMUA_Achr8G30420_001	U-box domain-containing protein 29 PUB29 fragment	-5,07E-02	1,00E+00	2,73E+00	7,01E-02	2,13E-01	1,00E+00
656	GSMUA_Achr10G31130_001	exo70 exocyst complex subunit, putative, expressed Exoc7 complete	-6,35E-02	1,00E+00	2,04E+00	7,70E-02	-2,65E-01	1,00E+00
657	GSMUA_Achr10G17810_001	endonuclease/exonuclease/phosphatase family domain containing protein, expressed CVP2	9,99E-01	1,00E+00	-2,36E+00	7,75E-02	-5,83E-01	1,00E+00
658	GSMUA_Achr7G12260_001	Putative expressed protein HPR-A complete	-8,99E-02	1,00E+00	2,61E+00	7,80E-02	-4,27E-01	1,00E+00
659	GSMUA_Achr7G00630_001	Putative Whole genome shotgun sequence of line PN40024, oxaA modules	2,22E-02	1,00E+00	4,54E+00	7,81E-02	8,70E-02	1,00E+00
660	GSMUA_Achr9G10540_001	Putative Vicilin-like antimicrobial peptides 2-1 AMP2-1 fragment	3,08E+00	1,00E+00	4,03E+00	8,04E-02	-9,11E-01	1,00E+00
661	GSMUA_Achr3G15840_001	Putative Whole genome shotgun sequence of line PN40024, WRKY41	1,83E+00	1,00E+00	2,93E+00	8,05E-02	-4,98E-01	1,00E+00
662	GSMUA_Achr3G06960_001	Hypothetical protein ERF109 missing_functional_completeness	-1,72E+00	1,00E+00	3,32E+00	8,15E-02	-1,40E+00	1,00E+00
663	GSMUA_Achr1G08710_001	Putative expressed protein lok complete	8,19E-01	1,00E+00	2,59E+00	8,27E-02	-3,15E-01	1,00E+00

			Cav. GN - 3 DAI		AI Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
664	GSMUA_Achr6G14790_001	Putative Dehydration-responsive element-binding protein 3 DREB3 fragment	4,84E-01	1,00E+00	2,76E+00	8,27E-02	3,43E-01	1,00E+00
665	GSMUA_Achr8G20650_001	Hypothetical protein lipB missing_functional_completeness	3,26E+00	1,00E+00	-6,04E+00	8,27E-02	1,44E+00	1,00E+00
666	GSMUA_Achr6G32320_001	NAC domain-containing protein 29 NAC029 modules	-9,38E-02	1,00E+00	1,25E+00	9,50E-02	-6,45E-01	1,00E+00
667	GSMUA_Achr6G13720_001	aspartic proteinase nepenthesin precursor, putative, expressed nep2 complete	-1,45E-01	1,00E+00	1,65E+00	9,52E-02	-1,91E-01	1,00E+00
668	GSMUA_Achr4G32410_001	Putative expressed protein Os01g0164600 complete	8,94E-02	1,00E+00	-1,75E+00	9,58E-02	2,24E-01	1,00E+00
669	GSMUA_Achr8G12940_001	Thaumatin-like protein 1 TL1 complete	4,86E-01	1,00E+00	2,50E+00	1,00E+00	-1,91E+01	9,28E-03
670	GSMUA_Achr2G21970_001	Expansin-A15 EXPA15 complete	5,48E-01	1,00E+00	-6,49E-01	1,00E+00	-3,77E+00	8,98E-02
671	GSMUA_Achr9G23620_001	Putative Leucoanthocyanidin dioxygenase ANS complete	1,10E+00	1,00E+00	-1,10E-01	1,00E+00	-1,09E+01	4,21E-02
672	GSMUA_Achr10G05070_001	Hypothetical protein NAC098 missing_functional_completeness	-5,55E-01	1,00E+00	-3,02E-01	1,00E+00	-1,84E+01	1,43E-02
673	GSMUA_Achr2G04380_001	Caffeic acid 3-O-methyltransferase COMT1 complete	3,64E-01	1,00E+00	3,54E-02	1,00E+00	-1,95E+01	1,70E-07
674	GSMUA_Achr4G09170_001	calmodulin-binding protein, putative, expressed RAD50 fragment	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	-1,02E+01	4,21E-02
675	GSMUA_AchrUn_randomG16330_001	Caffeic acid 3-O-methyltransferase OMT complete	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	-1,92E+01	1,70E-07
676	GSMUA_Achr3G30250_001	expressed protein rsmA fragment	-1,33E+00	1,00E+00	-2,24E-15	1,00E+00	-1,95E+01	5,23E-07
677	GSMUA_Achr3G30240_001	Putative uncharacterized protein murC fragment	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	-1,99E+01	8,33E-05
678	GSMUA_AchrUn_randomG14900_001	Putative (+)-delta-cadinene synthase isozyme A CAD1-A fragment	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	-5,54E+00	3,73E-03
679	GSMUA_AchrUn_randomG20630_001	metallothionein, putative, expressed MT4A fragment	-7,18E-17	1,00E+00	-2,24E-15	1,00E+00	4,56E+00	9,28E-03
680	GSMUA_Achr9G18820_001	O-methyltransferase, putative, expressed COMT complete	2,99E-01	1,00E+00	-4,98E-01	1,00E+00	-9,45E+00	6,94E-02

ANEXO III

	Tubelu T Genes unere							
			4279-06	- 3 DAI	4279-06 - 7 DAI		4279-06 - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
1	GSMUA_Achr1G05210_001	Putative BBTI8 - Bowman-Birk type bran trypsin inhibitor precursor, expressed BBI complete	-1,64E+00	3,85E-03	-1,21E+00	8,34E-02	4,55E-01	1,00E+00
2	GSMUA_Achr2G14240_001	Hypothetical protein unknown_gene missing_functional_completeness	1,72E+00	4,50E-03	-1,83E+00	1,86E-02	-7,97E-01	1,00E+00
3	GSMUA_Achr7G26420_001	Putative Formin-like protein 5 FH5 fragment	1,69E+00	7,26E-03	-1,24E+00	1,73E-02	5,51E-01	1,00E+00
4	GSMUA_Achr4G30740_001	Putative Subtilisin-like protease ARA12 fragment	6,16E+00	2,89E-22	-2,88E-01	1,00E+00	-2,00E+01	1,19E-03
5	GSMUA_Achr5G29560_001	Predicted protein aim38 complete	-2,27E+00	2,28E-05	1,18E+00	1,00E+00	4,01E+00	7,46E-09
6	GSMUA_Achr5G10900_001	Trypsin inhibitor Odz1 complete	1,45E+00	2,22E-02	3,01E-01	1,00E+00	1,06E-01	1,00E+00
7	GSMUA_Achr8G26470_001	Probable xyloglucan endotransglucosylase/hydrolase protein 7 XTH7 complete	2,17E+00	2,62E-08	9,82E-02	1,00E+00	4,98E-02	1,00E+00
8	GSMUA_Achr2G14960_001	Chlorophyll a-b binding protein 4, chloroplastic LHCA4 complete	3,29E+00	1,82E-05	-4,21E-01	1,00E+00	9,93E-01	1,00E+00
9	GSMUA_Achr1G25040_001	Hypothetical protein TAX10 missing_functional_completeness	2,36E+00	3,76E-04	-1,75E-01	1,00E+00	-4,59E-01	1,00E+00
10	GSMUA_Achr9G30590_001	Hypothetical protein unknown_gene missing_functional_completeness	-1,38E+00	4,58E-03	3,75E-01	1,00E+00	9,22E-01	1,00E+00
11	GSMUA_Achr10G08760_001	Putative Salt stress-induced protein SALT modules	-3,17E+00	2,33E-02	7,36E-01	1,00E+00	1,36E+00	1,00E+00
12	GSMUA_Achr1G20190_001	At3g43660 pcl1 complete	-1,90E+00	6,77E-02	7,09E-01	1,00E+00	-6,27E-01	1,00E+00
13	GSMUA_Achr8G20790_001	Putative Uncharacterized protein C24B11.05 SPAC24B11.05 complete	-1,85E+00	1,84E-06	7,40E-01	1,00E+00	4,01E-01	1,00E+00
14	GSMUA_Achr6G04580_001	Early nodulin-93 infB complete	-2,04E+00	1,93E-06	1,35E-01	1,00E+00	2,33E+00	4,00E-01
15	GSMUA_Achr7G16740_001	High affinity sulfate transporter 2 ST2 complete	-2,30E+00	1,04E-03	7,96E-01	1,00E+00	1,20E+00	1,00E+00
16	GSMUA_Achr10G18040_001	Basic blue protein At2g02850 complete	-1,22E+00	1,24E-02	-5,07E-01	1,00E+00	3,62E-01	1,00E+00
17	GSMUA_Achr4G02600_001	plant-specific domain TIGR01615 family protein, expressed TP_0095 complete	1,49E+00	5,75E-02	2,66E-01	1,00E+00	-3,93E-01	1,00E+00
18	GSMUA_Achr10G00680_001	hs1, putative, expressed kynA complete	1,26E+00	9,47E-02	7,51E-01	7,87E-01	-7,65E-01	1,00E+00
19	GSMUA_Achr7G07040_001	Expansin-B18 EXPB18 complete	1,46E+00	8,55E-03	2,20E-01	1,00E+00	-3,02E+00	1,00E+00
20	GSMUA_Achr8G15130_001	Putative Mannose/glucose-specific lectin (Fragment) NSP4 complete	-2,17E+00	9,19E-10	-4,42E-01	1,00E+00	1,19E+00	1,00E+00
21	GSMUA_Achr1G26880_001	Putative Uncharacterized membrane protein YOL092W YOL092W modules	6,00E+00	1,24E-08	-9,50E-01	1,00E+00	-3,08E+00	1,00E+00
22	GSMUA_Achr1G15040_001	Callose synthase 3 CALS3 fragment	2,34E+00	1,67E-08	4,21E-01	1,00E+00	-3,54E-01	1,00E+00
23	GSMUA_Achr1G19140_001	BIG, putative, expressed Neurl3 fragment	5,74E+00	1,67E-08	-7,58E-01	1,00E+00	-1,19E+00	1,00E+00

Tabela 1 - Genes diferencialmente expressos identificados durante a interação Musa acuminata 4279-06-Meloidogyne incognita aos 3, 7 e 10 DAI

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
24	GSMUA_Achr5G29540_001	Putative uncharacterized protein Os03g0816900 fragment	3,20E+00	6,03E-08	2,44E-01	1,00E+00	-5,40E-01	1,00E+00
25	GSMUA_Achr9G07470_001	Whole genome shotgun sequence of line PN40024, Vps13c fragment	2,71E+00	1,27E-07	2,69E-01	1,00E+00	-7,43E-01	1,00E+00
26	GSMUA_Achr5G28200_001	Asparagine synthetase [glutamine-hydrolyzing] AS1 complete	1,82E+00	2,34E-07	2,37E-01	1,00E+00	-6,25E-01	1,00E+00
27	GSMUA_Achr3G00900_001	transmembrane amino acid transporter protein, putative, expressed slc38a6 modules	-3,02E+00	4,65E-07	-3,85E-01	1,00E+00	2,69E-01	1,00E+00
28	GSMUA_Achr6G20120_001	retrotransposon protein, putative, unclassified, expressed unknown_gene complete	2,55E+00	5,88E-07	-4,24E-01	1,00E+00	-1,54E+00	1,00E+00
29	GSMUA_Achr3G20610_001	expressed protein DDB_G0276689 fragment	2,54E+00	1,29E-06	1,90E-01	1,00E+00	-5,30E-01	1,00E+00
30	GSMUA_Achr7G13320_001	Putative expressed protein DDB_G0268328 fragment	3,49E+00	1,29E-06	-6,67E-02	1,00E+00	-4,11E-03	1,00E+00
31	GSMUA_Achr8G13500_001	Callose synthase 3 CALS3 fragment	2,77E+00	1,29E-06	5,50E-01	1,00E+00	-3,33E-01	1,00E+00
32	GSMUA_Achr6G02430_001	Hypothetical protein snf21 missing_functional_completeness	2,55E+00	1,42E-06	-2,40E-01	1,00E+00	-1,33E+00	1,00E+00
33	GSMUA_Achr7G08970_001	Beta-galactosidase Os01g0580200 complete	1,82E+00	1,74E-06	2,94E-01	1,00E+00	-1,52E+00	1,00E+00
34	GSMUA_Achr5G29640_001	Whole genome shotgun sequence of line PN40024, WNK5 complete	-2,72E+00	1,87E-06	-3,86E-01	1,00E+00	1,13E-02	1,00E+00
35	GSMUA_Achr9G07910_001	Hypothetical protein fabH missing_functional_completeness	-1,90E+00	2,04E-06	1,36E+00	1,00E+00	7,89E-01	1,00E+00
36	GSMUA_Achr11G04720_001	Putative Uncharacterized protein At3g06530 At3g06530 fragment	2,53E+00	2,64E-06	2,42E-01	1,00E+00	-7,18E-01	1,00E+00
37	GSMUA_Achr9G07920_001	Putative Ribonuclease 3 RNS3 complete	-2,95E+00	7,93E-06	-3,30E-01	1,00E+00	1,71E+00	1,00E+00
38	GSMUA_Achr8G11560_001	Putative Extracellular matrix protein FRAS1 Fras1 fragment	2,64E+00	1,02E-05	3,83E-01	1,00E+00	-4,28E-01	1,00E+00
39	GSMUA_Achr2G21290_001	Putative expressed protein unknown_gene complete	-2,64E+00	1,10E-05	-1,72E-01	1,00E+00	3,42E-01	1,00E+00
40	GSMUA_Achr6G25140_001	Putative Pheophorbidase PPD fragment	-2,02E+00	1,52E-05	-9,31E-02	1,00E+00	6,99E-01	1,00E+00
41	GSMUA_Achr1G01230_001	Putative Midasin mdn1 fragment	4,41E+00	2,12E-05	4,90E-01	1,00E+00	-1,48E+00	1,00E+00
42	GSMUA_Achr5G21730_001	Putative Transformation/transcription domain-associated protein TRRAP fragment	3,07E+00	3,50E-05	-5,27E-01	1,00E+00	-7,57E-01	1,00E+00
43	GSMUA_Achr8G14910_001	Putative expressed protein atpA fragment	3,39E+00	3,56E-05	2,60E-01	1,00E+00	-5,74E-01	1,00E+00
44	GSMUA_Achr4G25790_001	Prolyl endopeptidase PREP complete	-1,92E+00	4,19E-05	3,64E-01	1,00E+00	3,37E-01	1,00E+00
45	GSMUA_Achr9G14500_001	Nuclear-pore anchor NUA fragment	2,29E+00	4,19E-05	1,57E-01	1,00E+00	-6,25E-01	1,00E+00
46	GSMUA_Achr9G11180_001	Probable xyloglucan endotransglucosylase/hydrolase protein 23 XTH23 complete	1,62E+00	4,85E-05	-1,81E-01	1,00E+00	-6,82E-01	1,00E+00
47	GSMUA_Achr2G04770_001	Callose synthase 10 CALS10 fragment	2,05E+00	5,94E-05	1,95E-01	1,00E+00	-6,05E-01	1,00E+00
48	GSMUA_Achr11G16780_001	Hypothetical protein unknown_gene missing_functional_completeness	2,33E+00	1,14E-04	2,72E-01	1,00E+00	-3,97E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
49	GSMUA_Achr3G15110_001	Type I inositol-1,4,5-trisphosphate 5-phosphatase 11 At1g47510 complete	-2,05E+00	1,18E-04	2,91E-01	1,00E+00	-8,32E-01	1,00E+00
50	GSMUA_Achr9G27860_001	Putative Cytochrome P450 71D7 CYP71D7 complete	1,90E+00	1,34E-04	-4,94E-01	1,00E+00	-9,79E-01	1,00E+00
51	GSMUA_Achr8G22120_001	Hypothetical protein ORG2 missing_functional_completeness	-1,96E+00	1,45E-04	2,30E+00	6,75E-01	-5,83E-01	1,00E+00
52	GSMUA_Achr9G20170_001	expressed protein proA fragment	-4,99E+00	1,75E-04	2,01E+00	1,00E+00	1,61E+00	1,00E+00
53	GSMUA_Achr4G27490_001	Putative Predicted protein ddl complete	-1,60E+00	1,97E-04	7,44E-01	1,00E+00	6,05E-01	1,00E+00
54	GSMUA_Achr8G33240_001	ABC transporter C family member 12 ABCC12 fragment	1,94E+00	1,97E-04	4,59E-01	1,00E+00	-5,17E-01	1,00E+00
55	GSMUA_Achr9G16280_001	Putative E3 ubiquitin-protein ligase KEG KEG complete	1,73E+00	1,97E-04	6,40E-02	1,00E+00	-2,16E-01	1,00E+00
56	GSMUA_Achr7G19280_001	Putative Cytochrome P450 71D8 CYP71D8 complete	1,94E+00	2,22E-04	-5,11E-01	1,00E+00	-1,10E+00	1,00E+00
57	GSMUA_Achr11G04940_001	Putative DUF617 domain containing protein, expressed Ppp4r1 modules	-1,79E+00	2,31E-04	1,02E+00	9,29E-01	-1,29E-02	1,00E+00
58	GSMUA_Achr4G08180_001	Putative O-acyltransferase WSD1 WSD1 complete	-1,67E+00	2,31E-04	1,26E+00	1,00E+00	1,79E-01	1,00E+00
59	GSMUA_Achr4G27910_001	Putative Expansin-A9 EXPA9 complete	2,15E+00	2,57E-04	6,84E-01	1,00E+00	9,64E-01	1,00E+00
60	GSMUA_Achr2G04000_001	Serine carboxypeptidase-like 51 SCPL51 complete	3,22E+00	3,20E-04	1,30E-01	1,00E+00	-4,53E-01	1,00E+00
61	GSMUA_Achr10G04510_001	glycosyl transferase, putative, expressed GYG2 complete	2,09E+00	3,46E-04	4,53E-01	1,00E+00	1,08E+00	1,00E+00
62	GSMUA_Achr10G30260_001	Hypothetical protein APRR3 missing_functional_completeness	-1,99E+00	4,40E-04	1,01E+00	7,52E-01	-4,59E-01	1,00E+00
63	GSMUA_Achr11G00600_001	DUF584 domain containing protein, putative, expressed Sik3 complete	1,81E+00	5,08E-04	2,64E-01	1,00E+00	-1,96E+00	1,00E+00
64	GSMUA_Achr8G14900_001	Whole genome shotgun sequence of line PN40024, vps13A complete	2,08E+00	5,08E-04	1,68E-01	1,00E+00	-5,07E-01	1,00E+00
65	GSMUA_Achr10G13610_001	Cysteine-rich repeat secretory protein 55 CRRSP55 complete	1,56E+00	5,22E-04	4,06E-01	1,00E+00	4,13E-01	1,00E+00
66	GSMUA_Achr8G17980_001	Transcription factor bHLH135 BHLH135 complete	-3,17E+00	5,22E-04	-3,29E-01	1,00E+00	2,57E-16	1,00E+00
67	GSMUA_Achr8G09230_001	Putative Protein RUPTURED POLLEN GRAIN 1 RPG1 modules	-7,27E+00	5,88E-04	-9,03E-17	1,00E+00	4,12E+00	1,00E+00
68	GSMUA_Achr9G02260_001	Putative Extracellular ribonuclease LE RNALX complete	-1,45E+00	5,88E-04	-2,79E-01	1,00E+00	1,17E-01	1,00E+00
69	GSMUA_Achr8G15560_001	Xyloglucan endotransglucosylase/hydrolase protein 22 XTH22 fragment	1,33E+00	5,88E-04	-1,44E-01	1,00E+00	-7,57E-01	1,00E+00
70	GSMUA_Achr5G15410_001	Hypothetical protein Noca_2149 missing_functional_completeness	1,93E+00	6,12E-04	-2,56E-01	1,00E+00	-8,62E-01	1,00E+00
71	GSMUA_Achr7G16990_001	Putative transcription elongation factor SPT5 homolog 1 At4g08350 fragment	2,16E+00	1,00E-03	-2,99E-02	1,00E+00	-8,74E-01	1,00E+00
72	GSMUA_Achr4G15230_001	Conserved conserved hypothetical protein PUB25 fragment	7,42E+00	1,04E-03	3,76E-01	1,00E+00	1,98E+00	1,00E+00
73	GSMUA_Achr8G15700_001	Putative Disease resistance response protein 206 PI206 modules	-2,04E+00	1,13E-03	9,77E-01	9,04E-01	9,08E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
74	GSMUA_Achr11G01930_001	Probable xyloglucan endotransglucosylase/hydrolase protein 32 XTH32 complete	1,88E+00	1,17E-03	5,48E-02	1,00E+00	7,50E-01	1,00E+00
75	GSMUA_Achr5G02250_001	Hypothetical protein tpx2-a missing_functional_completeness	-1,83E+00	1,22E-03	1,17E+00	1,00E+00	2,41E+00	1,00E+00
76	GSMUA_Achr1G26940_001	Cytochrome P450 71D8 CYP71D8 fragment	2,21E+00	1,27E-03	-2,58E-01	1,00E+00	-3,53E-01	1,00E+00
77	GSMUA_Achr9G20520_001	Hypothetical protein KDM5B missing_functional_completeness	2,26E+00	1,27E-03	-1,56E-01	1,00E+00	-1,07E+00	1,00E+00
78	GSMUA_Achr6G12020_001	Putative Phenazine biosynthesis protein phzB phzB fragment	1,44E+00	1,49E-03	1,71E-01	1,00E+00	-2,66E-01	1,00E+00
79	GSMUA_Achr4G15120_001	Putative Interactor of constitutive active ROPs 4 ICR4 complete	2,42E+00	1,51E-03	7,91E-01	1,00E+00	1,27E+00	1,00E+00
80	GSMUA_Achr6G27600_001	Hypothetical protein FIT missing_functional_completeness	-1,46E+00	1,78E-03	1,57E+00	8,16E-01	1,28E+00	1,00E+00
81	GSMUA_Achr8G25980_001	Putative Zinc finger CCCH domain-containing protein 2 Os01g0192000 complete	1,47E+00	1,82E-03	4,09E-01	1,00E+00	-4,41E-02	1,00E+00
82	GSMUA_Achr11G15370_001	Putative Cytoskeleton-associated protein 5 Ckap5 fragment	2,31E+00	1,92E-03	4,75E-01	1,00E+00	-8,26E-01	1,00E+00
83	GSMUA_Achr3G16820_001	Putative Cytochrome b5 Os05g0108800 complete	-1,52E+00	1,97E-03	-1,72E-01	1,00E+00	3,87E-01	1,00E+00
84	GSMUA_Achr6G02440_001	SYD, putative, expressed big1 complete	2,37E+00	1,98E-03	-7,83E-01	1,00E+00	-1,58E+00	1,00E+00
85	GSMUA_Achr6G07810_001	Snakin-1 SN1 fragment	-2,53E+00	2,11E-03	-1,15E-01	1,00E+00	2,08E+00	1,00E+00
86	GSMUA_Achr3G04020_001	Putative Aspartic proteinase nepenthesin-2 nep2 complete	2,07E+00	2,22E-03	1,02E+00	8,48E-01	-2,66E-01	1,00E+00
87	GSMUA_Achr4G08950_001	Putative Intracellular ribonuclease LX RNALX complete	-2,82E+00	2,26E-03	-6,87E-01	1,00E+00	1,35E+00	1,00E+00
88	GSMUA_Achr1G14890_001	DNA-directed RNA polymerase II subunit RPB1 RPB205 fragment	1,90E+00	2,35E-03	-6,59E-01	1,00E+00	-7,62E-01	1,00E+00
89	GSMUA_Achr2G14260_001	Hypothetical protein aroB missing_functional_completeness	2,04E+00	2,52E-03	-1,16E+00	8,15E-01	-1,95E+00	1,00E+00
90	GSMUA_Achr4G12880_001	Putative Chromosome-associated kinesin KIF4 kif4 fragment	2,28E+00	2,52E-03	-3,03E-03	1,00E+00	-2,80E-02	1,00E+00
91	GSMUA_Achr5G01190_001	anthranilate phosphoribosyltransferase, putative, expressed At1g03375 complete	1,53E+00	2,52E-03	-1,85E-02	1,00E+00	-5,36E-01	1,00E+00
92	GSMUA_Achr9G27290_001	integral membrane protein, putative, expressed CCC1 complete	-1,66E+00	2,72E-03	-2,76E-01	1,00E+00	1,40E+00	1,00E+00
93	GSMUA_Achr11G21880_001	Beta-fructofuranosidase 1 MAVIN1 missing_completeness	-2,79E+00	2,89E-03	-1,59E+00	1,00E+00	8,63E-01	1,00E+00
94	GSMUA_Achr7G07560_001	carboxyl-terminal peptidase, putative, expressed panB complete	-2,52E+00	2,99E-03	-2,85E+00	7,99E-01	2,32E+00	1,00E+00
95	GSMUA_Achr5G28240_001	Hypothetical protein unknown_gene missing_functional_completeness	-2,99E+00	3,02E-03	2,56E-01	1,00E+00	1,09E+00	1,00E+00
96	GSMUA_Achr5G12930_001	Peptide transporter PTR3-A PTR3-A complete	2,54E+00	3,02E-03	4,05E-01	1,00E+00	1,43E+00	1,00E+00
97	GSMUA_Achr9G04550_001	protein kinase, putative, expressed HT1 complete	1,50E+00	3,10E-03	-1,79E-01	1,00E+00	-2,20E-01	1,00E+00
98	GSMUA_Achr3G28520_001	carboxyl-terminal peptidase, putative, expressed unknown_gene complete	-1,41E+00	3,13E-03	4,74E-01	1,00E+00	-1,63E+00	1,00E+00
			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN - 10 DAI	
-----	------------------------	--	-----------	----------	-----------	----------	------------------	----------
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
99	GSMUA_Achr6G26330_001	Putative GATA transcription factor 9 GATA9 complete	-2,49E+00	3,13E-03	-4,47E-01	1,00E+00	2,38E-01	1,00E+00
100	GSMUA_Achr8G33800_001	expressed protein Vps13a complete	4,06E+00	3,13E-03	1,27E+00	1,00E+00	-3,04E-01	1,00E+00
101	GSMUA_Achr7G20390_001	Putative Benzoate carboxyl methyltransferase BAMT fragment	2,15E+00	3,19E-03	-3,38E-01	1,00E+00	1,29E+00	1,00E+00
102	GSMUA_Achr8G26350_001	Cytochrome P450 90B1 CYP90B1 complete	-1,24E+00	3,45E-03	-3,81E-01	1,00E+00	5,55E-01	1,00E+00
103	GSMUA_Achr6G22410_001	aberrant pollen transmission 1, putative, expressed KIAA0100 fragment	1,48E+00	3,51E-03	-3,15E-01	1,00E+00	-2,64E-01	1,00E+00
104	GSMUA_Achr4G07680_001	Putative Myrcene synthase, chloroplastic ISPS complete	1,89E+00	3,56E-03	1,27E-02	1,00E+00	3,84E-01	1,00E+00
105	GSMUA_Achr9G30610_001	Putative Cytochrome P450 71D8 CYP71D8 complete	2,07E+00	3,60E-03	-4,82E-01	1,00E+00	-1,35E+00	1,00E+00
106	GSMUA_Achr7G10090_001	Putative EG45-like domain containing protein CjBAp12 complete	2,75E+00	3,87E-03	4,01E-02	1,00E+00	-9,43E-01	1,00E+00
107	GSMUA_Achr5G11670_001	Callose synthase 9 CALS9 fragment	1,96E+00	3,93E-03	-1,77E-03	1,00E+00	-5,41E-01	1,00E+00
108	GSMUA_Achr4G16210_001	Putative uncharacterized protein NUP210L fragment	1,89E+00	3,95E-03	5,84E-01	1,00E+00	-1,39E-01	1,00E+00
109	GSMUA_Achr7G03420_001	ABC transporter C family member 12 ABCC12 fragment	1,76E+00	4,51E-03	3,49E-02	1,00E+00	-4,48E-02	1,00E+00
110	GSMUA_Achr5G24900_001	Putative F-box/kelch-repeat protein At1g80440 At1g80440 complete	1,35E+00	4,53E-03	-2,79E-01	1,00E+00	9,28E-01	1,00E+00
111	GSMUA_Achr8G23060_001	Putative NAD binding domain of 6-phosphogluconate dehydrogenase containing protein	2,37E+00	4,89E-03	3,89E-01	1,00E+00	-1,24E-01	1,00E+00
112	GSMUA_Achr6G34670_001	L-ascorbate oxidase homolog Bp10 complete	1,47E+00	5,29E-03	-2,96E-01	1,00E+00	1,89E-01	1,00E+00
113	GSMUA_Achr4G25160_001	Hypothetical protein tcsA missing_functional_completeness	-1,41E+00	5,99E-03	9,49E-01	1,00E+00	9,57E-01	1,00E+00
114	GSMUA_Achr3G24550_001	expressed protein unknown_gene complete	-3,04E+00	6,10E-03	1,23E+00	1,00E+00	8,22E-01	1,00E+00
115	GSMUA_Achr11G23590_001	Root phototropism protein 2 RPT2 complete	1,66E+00	6,10E-03	5,05E-01	1,00E+00	-4,34E-01	1,00E+00
116	GSMUA_Achr11G10320_001	Heat stress transcription factor B-4b HSFB4B complete	-7,64E+00	6,10E-03	2,68E+00	1,00E+00	2,93E+00	1,00E+00
117	GSMUA_Achr1G07070_001	expressed protein FRYL fragment	1,41E+00	6,10E-03	1,47E-01	1,00E+00	-3,54E-01	1,00E+00
118	GSMUA_Achr2G15330_001	Putative Predicted protein unknown_gene fragment	-2,79E+00	6,10E-03	1,22E+00	1,00E+00	1,28E+00	1,00E+00
119	GSMUA_Achr4G16200_001	Putative Nuclear pore membrane glycoprotein 210-like Nup210l fragment	2,38E+00	6,10E-03	6,60E-01	1,00E+00	-9,59E-01	1,00E+00
120	GSMUA_Achr8G13010_001	E3 ubiquitin-protein ligase UPL3 UPL3 fragment	1,47E+00	6,47E-03	1,59E-01	1,00E+00	-4,04E-01	1,00E+00
121	GSMUA_Achr8G15570_001	Probable isoaspartyl peptidase/L-asparaginase 2 At3g16150 complete	-1,19E+00	7,26E-03	7,16E-01	9,54E-01	5,71E-01	1,00E+00
122	GSMUA_Achr9G01940_001	high affinity nitrate transporter, putative, expressed CDC20 complete	-1,64E+00	7,26E-03	8,37E-01	1,00E+00	5,62E-01	1,00E+00
123	GSMUA_Achr6G08710_001	Peroxidase 4 GSVIVT00023967001 complete	1,42E+00	7,26E-03	6,84E-01	1,00E+00	1,41E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
124	GSMUA_Achr3G20420_001	Putative phosphate-induced protein 1 conserved region domain containing protein	1,30E+00	7,50E-03	3,73E-01	1,00E+00	4,85E-01	1,00E+00
125	GSMUA_Achr10G08750_001	Putative Salt stress-induced protein SALT fragment	-3,29E+00	8,00E-03	2,45E+00	1,00E+00	-5,45E+00	1,00E+00
126	GSMUA_Achr1G12200_001	Delta(7)-sterol-C5(6)-desaturase STE1 complete	-1,48E+00	8,28E-03	-2,36E-01	1,00E+00	7,65E-01	1,00E+00
127	GSMUA_Achr4G08100_001	Putative Myrcene synthase, chloroplastic ISPS complete	1,31E+00	9,25E-03	-5,12E-01	1,00E+00	-1,42E-01	1,00E+00
128	GSMUA_Achr2G15160_001	Putative 21 kDa protein PME1 complete	-3,01E+00	9,29E-03	3,36E+00	1,00E+00	1,35E+00	1,00E+00
129	GSMUA_Achr9G10840_001	Putative Horcolin SALT complete	-1,17E+00	9,33E-03	5,13E-01	1,00E+00	6,39E-01	1,00E+00
130	GSMUA_Achr5G01500_001	Putative tetratricopeptide repeat domain containing protein, expressed stil fragment	1,32E+00	9,38E-03	3,62E-01	1,00E+00	-4,19E-01	1,00E+00
131	GSMUA_Achr4G26820_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-6,81E+00	9,46E-03	-6,14E-01	1,00E+00	2,82E+00	1,00E+00
132	GSMUA_Achr10G14370_001	Putative Predicted protein BHLH30 complete	-1,33E+00	9,91E-03	3,91E-01	1,00E+00	-1,85E-01	1,00E+00
133	GSMUA_Achr7G00800_001	Putative Transcription factor bHLH25 BHLH25 fragment	-1,44E+00	9,91E-03	5,92E-01	1,00E+00	7,14E-02	1,00E+00
134	GSMUA_Achr8G26330_001	Cytochrome P450 90B1 CYP90B1 complete	-1,54E+00	9,97E-03	-1,44E-01	1,00E+00	7,97E-01	1,00E+00
135	GSMUA_Achr11G24620_001	RNA recognition motif containing protein, putative, expressed RBM38 complete	-2,16E+00	1,01E-02	-1,97E-01	1,00E+00	1,24E+00	1,00E+00
136	GSMUA_Achr10G21370_001	Putative uncharacterized protein BCP1 complete	1,89E+00	1,03E-02	-6,07E-01	1,00E+00	-2,28E-01	1,00E+00
137	GSMUA_Achr5G02170_001	Whole genome shotgun sequence of line PN40024, NAC042 complete	-1,40E+00	1,12E-02	1,13E+00	8,02E-01	5,08E-01	1,00E+00
138	GSMUA_Achr5G18380_001	expressed protein unknown_gene complete	-2,11E+00	1,12E-02	6,60E-01	1,00E+00	3,10E-01	1,00E+00
139	GSMUA_Achr7G20440_001	Serineglyoxylate aminotransferase AGT1 complete	1,30E+00	1,15E-02	9,91E-01	9,54E-01	-9,76E-01	1,00E+00
140	GSMUA_Achr1G25060_001	Putative ABC transporter B family member 11 ABCB11 fragment	1,87E+00	1,15E-02	7,36E-01	9,76E-01	1,13E-01	1,00E+00
141	GSMUA_Achr10G27820_001	meiosis 5, putative, expressed Spt5 modules	-4,35E+00	1,15E-02	-3,49E+00	1,00E+00	2,64E+00	1,00E+00
142	GSMUA_Achr3G12180_001	UPF0041 domain containing protein, putative, expressed Brp441 modules	-1,50E+00	1,15E-02	1,14E-01	1,00E+00	1,02E+00	1,00E+00
143	GSMUA_Achr5G10930_001	Trypsin inhibitor ODZ3 complete	-1,88E+00	1,15E-02	-7,59E-01	1,00E+00	9,59E-01	1,00E+00
144	GSMUA_Achr6G03040_001	Putative Whole genome shotgun sequence of line PN40024, UBP13 fragment	1,89E+00	1,17E-02	1,63E-01	1,00E+00	-1,22E-01	1,00E+00
145	GSMUA_Achr5G16080_001	Snakin-1 SN1 fragment	-2,68E+00	1,20E-02	3,29E-01	1,00E+00	8,41E-01	1,00E+00
146	GSMUA_Achr11G05660_001	Hypothetical protein fhkC missing_functional_completeness	1,12E+00	1,20E-02	4,27E-01	1,00E+00	-6,40E-01	1,00E+00
147	GSMUA_Achr6G31840_001	Putative WRKY transcription factor 22 WRKY22 complete	-4,08E+00	1,21E-02	-3,61E-01	1,00E+00	7,91E-01	1,00E+00
148	GSMUA_Achr6G10480_001	acetyl-CoA carboxylase, putative, expressed FAS3 fragment	6,76E+00	1,26E-02	-1,13E-01	1,00E+00	-2,54E+00	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
149	GSMUA_Achr7G06630_001	Putative uncharacterized protein Heatr6 fragment	1,55E+00	1,27E-02	-6,05E-02	1,00E+00	-2,88E-01	1,00E+00
150	GSMUA_Achr11G00270_001	RNA methyltransferase, TrmH family protein, putative, expressed PEX10 fragment	1,86E+00	1,29E-02	-3,26E-01	1,00E+00	-8,21E-01	1,00E+00
151	GSMUA_Achr6G02120_001	Putative phosphate-induced protein 1 conserved region domain containing protein, SEZ6 complete	1,23E+00	1,29E-02	-7,31E-02	1,00E+00	2,15E-01	1,00E+00
152	GSMUA_Achr6G28260_001	Probable pectate lyase 22 At5g63180 complete	2,24E+00	1,33E-02	1,37E+00	1,00E+00	-8,10E-01	1,00E+00
153	GSMUA_Achr8G13250_001	Hypothetical protein vit-6 missing_functional_completeness	2,25E+00	1,36E-02	1,68E-01	1,00E+00	-7,71E-01	1,00E+00
154	GSMUA_Achr9G30350_001	Splicing factor 3B subunit 3 SF3B3 fragment	1,72E+00	1,39E-02	-1,26E-01	1,00E+00	-4,86E-01	1,00E+00
155	GSMUA_Achr1G26070_001	Putative Inosine-5'-monophosphate dehydrogenase guaB fragment	-6,26E+00	1,41E-02	-6,65E-02	1,00E+00	2,90E-01	1,00E+00
156	GSMUA_Achr10G15420_001	Putative BTB/POZ domain-containing protein At1g30440 At1g30440 complete	1,76E+00	1,45E-02	-8,57E-02	1,00E+00	-5,70E-01	1,00E+00
157	GSMUA_Achr1G00790_001	heavy metal-associated domain containing protein, expressed CCS complete	-1,88E+00	1,49E-02	2,43E-01	1,00E+00	1,19E+00	1,00E+00
158	GSMUA_Achr10G26000_001	Hypothetical protein unknown_gene missing_functional_completeness	-6,42E+00	1,49E-02	-1,83E+00	1,00E+00	1,98E+00	1,00E+00
159	GSMUA_Achr4G28010_001	Putative Expansin-A9 EXPA9 complete	1,26E+00	1,49E-02	6,22E-01	1,00E+00	3,61E-02	1,00E+00
160	GSMUA_Achr3G08180_001	Putative AP2 domain containing protein, expressed ERF071 complete	-1,51E+00	1,50E-02	-3,60E-01	1,00E+00	4,79E-01	1,00E+00
161	GSMUA_Achr9G10150_001	MYB family transcription factor, putative, expressed mybL fragment	3,47E+00	1,55E-02	8,34E-01	1,00E+00	-3,69E+00	1,00E+00
162	GSMUA_Achr9G12430_001	Putative Polygalacturonase inhibitor PGIP complete	-1,42E+00	1,59E-02	-6,37E-01	1,00E+00	1,25E+00	1,00E+00
163	GSMUA_Achr9G16810_001	Putative Secologanin synthase CYP72A1 complete	-1,52E+00	1,62E-02	5,66E-01	1,00E+00	1,37E-01	1,00E+00
164	GSMUA_Achr3G05440_001	Putative Cation transport regulator-like protein 2 chac2 complete	-2,28E+00	1,65E-02	5,98E-02	1,00E+00	4,78E-01	1,00E+00
165	GSMUA_Achr6G25660_001	PI-PLC X domain-containing protein At5g67130 At5g67130 fragment	-1,66E+00	1,66E-02	-3,23E-01	1,00E+00	8,87E-02	1,00E+00
166	GSMUA_Achr1G09140_001	Uncharacterized protein unknown_gene fragment	3,31E+00	1,76E-02	-1,00E+00	1,00E+00	1,55E+00	1,00E+00
167	GSMUA_Achr3G01150_001	Jasmonate O-methyltransferase JMT fragment	1,38E+00	1,77E-02	2,23E-02	1,00E+00	3,64E-01	1,00E+00
168	GSMUA_Achr4G27950_001	Expansin-A9 EXPA9 complete	1,73E+00	1,84E-02	1,49E-01	1,00E+00	2,58E-01	1,00E+00
169	GSMUA_Achr9G30640_001	Germin-like protein 12-1 Os12g0154700 complete	-2,24E+00	1,85E-02	6,11E-01	1,00E+00	6,07E-01	1,00E+00
170	GSMUA_Achr6G07290_001	universal stress protein domain containing protein, putative, expressed PUB35 fragment	-1,41E+00	1,98E-02	-6,10E-02	1,00E+00	-1,82E-01	1,00E+00
171	GSMUA_Achr8G25890_001	BAH domain containing protein, putative, expressed TCEA2 fragment	1,71E+00	1,99E-02	3,61E-01	1,00E+00	-1,30E-02	1,00E+00
172	GSMUA_Achr10G11340_001	glucan endo-1,3-beta-glucosidase-related, putative, expressed At1g11820 complete	-2,35E+00	2,03E-02	-2,86E-01	1,00E+00	7,44E-01	1,00E+00
173	GSMUA_Achr6G35190_001	Arogenate dehydrogenase 2, chloroplastic TYRAAT2 modules	-2,16E+00	2,03E-02	3,06E-01	1,00E+00	5,60E-01	1,00E+00

			Cav. GN	- 3 DAI	AI Cav. GN - 7 DAI		Cav. GN - 10 D A	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
174	GSMUA_Achr9G10260_001	Putative uncharacterized protein Sb03g003800 Grip84 fragment	1,67E+00	2,04E-02	3,99E-01	1,00E+00	-4,36E-01	1,00E+00
175	GSMUA_Achr5G25320_001	Hypothetical protein Os01g0915200 missing_functional_completeness	-2,79E+00	2,06E-02	5,33E-01	1,00E+00	-8,32E-01	1,00E+00
176	GSMUA_Achr11G00420_001	Putative Secologanin synthase CYP72A1 complete	-2,79E+00	2,07E-02	1,99E-01	1,00E+00	1,37E+00	1,00E+00
177	GSMUA_Achr10G06600_001	Putative E3 ubiquitin-protein ligase RHA1B RHA1B complete	-2,77E+00	2,07E-02	6,57E-02	1,00E+00	-6,58E-01	1,00E+00
178	GSMUA_Achr6G28280_001	Photosystem II core complex proteins psbY, chloroplastic PSBY complete	2,61E+00	2,07E-02	1,13E+00	1,00E+00	-1,49E+00	1,00E+00
179	GSMUA_Achr5G03940_001	CAMK_CAMK_like.14 - CAMK includes calcium/calmodulin depedent protein kinases, CPK21 modules	-1,58E+00	2,08E-02	8,76E-01	1,00E+00	9,68E-01	1,00E+00
180	GSMUA_Achr6G09310_001	calpain, putative, expressed CAPN3 complete	1,26E+00	2,12E-02	-2,79E-01	1,00E+00	-4,21E-01	1,00E+00
181	GSMUA_Achr4G23040_001	Fe(2+) transport protein 2 IRT2 complete	-1,91E+00	2,12E-02	3,34E-01	1,00E+00	2,10E+00	1,00E+00
182	GSMUA_Achr6G09590_001	Putative expressed protein Zik1 complete	-1,80E+00	2,12E-02	8,36E-01	1,00E+00	6,22E-01	1,00E+00
183	GSMUA_Achr6G06290_001	Photosystem II reaction center X protein psbX modules	1,51E+00	2,12E-02	3,44E-01	1,00E+00	-5,79E-01	1,00E+00
184	GSMUA_Achr10G13090_001	Putative Gibberellin 2-beta-dioxygenase 8 GA2OX7 complete	-1,24E+00	2,12E-02	5,08E-01	1,00E+00	3,39E-01	1,00E+00
185	GSMUA_Achr3G13180_001	Hypothetical protein AP2 missing_functional_completeness	1,21E+00	2,12E-02	1,26E-01	1,00E+00	-5,37E-02	1,00E+00
186	GSMUA_Achr6G30780_001	Putative Cytochrome P450 81D1 CYP81D1 fragment	1,43E+00	2,12E-02	-3,08E-01	1,00E+00	9,07E-02	1,00E+00
187	GSMUA_Achr7G08300_001	Nitrate transporter 1.1 NRT1.1 complete	1,76E+00	2,12E-02	-2,69E-01	1,00E+00	-1,58E+00	1,00E+00
188	GSMUA_Achr8G28010_001	Putative Whole genome shotgun sequence of line PN40024, unknown_gene fragment	1,29E+00	2,13E-02	-9,23E-02	1,00E+00	-5,47E-01	1,00E+00
189	GSMUA_Achr8G28180_001	Activating signal cointegrator 1 complex subunit 3 ASCC3 complete	1,22E+00	2,16E-02	-3,58E-02	1,00E+00	-2,82E-01	1,00E+00
190	GSMUA_Achr11G25340_001	Putative Serine/threonine-protein phosphatase 4 regulatory subunit 3 flfl fragment	1,34E+00	2,19E-02	1,32E-01	1,00E+00	-3,07E-01	1,00E+00
191	GSMUA_Achr6G15440_001	Hypothetical protein mnmA missing_functional_completeness	1,56E+00	2,19E-02	6,91E-02	1,00E+00	-5,78E-01	1,00E+00
192	GSMUA_Achr6G21030_001	Photosystem I reaction center subunit XI, chloroplastic PSAL complete	1,62E+00	2,19E-02	5,00E-01	1,00E+00	-1,25E+00	1,00E+00
193	GSMUA_Achr8G20060_001	Putative Dehydration-responsive element-binding protein 3 DREB3 fragment	1,37E+00	2,19E-02	-1,88E-01	1,00E+00	3,19E-01	1,00E+00
194	GSMUA_Achr1G05560_001	Putative callose synthase 6 CALS6 fragment	1,50E+00	2,28E-02	1,52E-01	1,00E+00	-4,59E-02	1,00E+00
195	GSMUA_Achr4G29370_001	Putative Mannose/glucose-specific lectin (Fragment) At3g16470 fragment	-1,88E+00	2,31E-02	6,91E-01	1,00E+00	6,75E-02	1,00E+00
196	GSMUA_Achr1G11710_001	Hypothetical protein unknown_gene missing_functional_completeness	5,65E+00	2,31E-02	9,66E-01	1,00E+00	-1,11E+00	1,00E+00
197	GSMUA_Achr5G13070_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g08850 At4g08850 complete	-2,94E+00	2,31E-02	6,31E-01	1,00E+00	-4,44E+00	1,00E+00
198	GSMUA_Achr1G17200_001	Metallothionein-like protein 4A MT4A complete	-1,37E+00	2,38E-02	9,34E-01	9,54E-01	2,48E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN	- 7 DAI	Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
199	GSMUA_Achr4G20990_001	Photosystem II reaction center W protein, chloroplastic PSBW complete	1,31E+00	2,38E-02	4,99E-01	1,00E+00	6,17E-01	1,00E+00
200	GSMUA_Achr5G09770_001	Potassium channel KAT3 KAT3 complete	-1,31E+00	2,38E-02	4,85E-01	1,00E+00	3,15E-01	1,00E+00
201	GSMUA_Achr6G14910_001	Putative expressed protein unknown_gene fragment	1,28E+00	2,38E-02	4,15E-02	1,00E+00	-8,47E-01	1,00E+00
202	GSMUA_Achr6G19560_001	Soluble inorganic pyrophosphatase IPP complete	-1,42E+00	2,45E-02	1,42E-01	1,00E+00	-1,16E-01	1,00E+00
203	GSMUA_Achr8G14890_001	Putative Vacuolar protein sorting-associated protein 13A VPS13A fragment	3,19E+00	2,45E-02	1,38E+00	1,00E+00	-2,59E+00	1,00E+00
204	GSMUA_Achr7G08960_001	Beta-galactosidase Os01g0580200 complete	1,58E+00	2,48E-02	-2,41E-01	1,00E+00	-8,00E-01	1,00E+00
205	GSMUA_Achr11G02160_001	Putative Transcriptional regulator SUPERMAN SUP modules	-3,59E+00	2,54E-02	6,22E-01	1,00E+00	5,49E-01	1,00E+00
206	GSMUA_Achr10G25960_001	Actin-3 ACT1 complete	-1,55E+00	2,58E-02	3,46E-01	1,00E+00	-3,66E-01	1,00E+00
207	GSMUA_Achr1G01240_001	midasin-related, putative, expressed mdn1 modules	1,38E+00	2,58E-02	-1,96E-01	1,00E+00	-5,47E-01	1,00E+00
208	GSMUA_Achr3G11380_001	Putative WASH complex subunit 7 KIAA1033 fragment	2,30E+00	2,58E-02	8,05E-01	1,00E+00	6,38E-01	1,00E+00
209	GSMUA_Achr4G27840_001	Peroxidase 7 PER7 complete	-2,56E+00	2,58E-02	-3,96E-01	1,00E+00	1,24E+00	1,00E+00
210	GSMUA_Achr7G13040_001	Hypothetical protein HSFB4C missing_functional_completeness	-1,81E+00	2,58E-02	-7,28E-01	1,00E+00	3,34E+00	1,00E+00
211	GSMUA_Achr8G13800_001	Cell elongation protein DIMINUTO DIM fragment	-1,30E+00	2,58E-02	-4,42E-02	1,00E+00	3,04E-01	1,00E+00
212	GSMUA_Achr8G31930_001	ESP4, putative, expressed sympk fragment	1,40E+00	2,62E-02	1,23E-01	1,00E+00	-4,83E-01	1,00E+00
213	GSMUA_Achr1G20250_001	Putative 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase TAX10 complete	2,43E+00	2,64E-02	-3,80E-01	1,00E+00	-1,47E+00	1,00E+00
214	GSMUA_Achr11G13650_001	Putative expressed protein PF1186 complete	-1,23E+00	2,64E-02	3,81E-01	1,00E+00	7,58E-01	1,00E+00
215	GSMUA_Achr1G09030_001	Putative Predicted protein unc-16 fragment	1,56E+00	2,64E-02	1,92E-01	1,00E+00	3,50E-02	1,00E+00
216	GSMUA_Achr7G04240_001	Snakin-2 SN2 fragment	-2,37E+00	2,64E-02	3,44E-02	1,00E+00	9,37E-01	1,00E+00
217	GSMUA_Achr7G11270_001	Hypothetical protein unknown_gene missing_functional_completeness	-1,68E+00	2,64E-02	-2,14E-01	1,00E+00	-8,57E-01	1,00E+00
218	GSMUA_Achr7G22180_001	Hypothetical protein RAD61 missing_functional_completeness	2,43E+00	2,64E-02	-9,81E-01	1,00E+00	-4,76E-01	1,00E+00
219	GSMUA_Achr8G23530_001	Caffeoyl-CoA O-methyltransferase CCOAOMT complete	-1,33E+00	2,64E-02	1,18E+00	7,24E-01	2,57E-01	1,00E+00
220	GSMUA_Achr1G16390_001	Putative uncharacterized protein (Fragment) CG7185 complete	1,23E+00	2,65E-02	2,23E-02	1,00E+00	-1,52E-01	1,00E+00
221	GSMUA_Achr1G08130_001	Putative Transcription factor MYC4 BHLH4 modules	-1,52E+00	2,68E-02	1,34E-01	1,00E+00	6,62E-01	1,00E+00
222	GSMUA_Achr5G14370_001	Hypothetical protein Os03g0816900 missing_functional_completeness	1,80E+00	2,68E-02	8,92E-02	1,00E+00	-2,03E-01	1,00E+00
223	GSMUA_Achr7G16730_001	Hypothetical protein pnp missing_functional_completeness	2,53E+00	2,68E-02	-5,51E-01	1,00E+00	-1,08E+00	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
224	GSMUA_Achr9G19540_001	Whole genome shotgun sequence of line PN40024, prp40 fragment	2,04E+00	2,69E-02	3,41E-02	1,00E+00	-7,75E-01	1,00E+00
225	GSMUA_Achr5G14520_001	Putative UDP-glucose:glycoprotein glucosyltransferase 1 Uggt1 fragment	1,42E+00	2,69E-02	-6,25E-02	1,00E+00	-6,80E-01	1,00E+00
226	GSMUA_Achr4G19020_001	Putative Probable carotenoid cleavage dioxygenase 4, chloroplastic CCD4 complete	1,21E+00	2,76E-02	-1,20E-01	1,00E+00	-5,07E-01	1,00E+00
227	GSMUA_Achr7G11330_001	Peroxidase 15 pod complete	1,77E+00	3,02E-02	-1,06E-01	1,00E+00	1,34E-01	1,00E+00
228	GSMUA_Achr1G22920_001	Probable cellulose synthase A catalytic subunit 8 [UDP-forming] CESA8 complete	1,07E+00	3,08E-02	-2,14E-01	1,00E+00	1,74E-01	1,00E+00
229	GSMUA_Achr1G26680_001	Whole genome shotgun sequence of line PN40024, unknown_gene fragment	-1,73E+00	3,08E-02	5,30E-01	1,00E+00	3,48E-01	1,00E+00
230	GSMUA_Achr5G03000_001	Heat stress transcription factor A-2b HSFA2B complete	1,74E+00	3,09E-02	-5,68E-01	1,00E+00	-4,17E-01	1,00E+00
231	GSMUA_Achr1G01110_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g08850 At4g08850 complete	3,83E+00	3,14E-02	1,35E-01	1,00E+00	-3,98E+00	1,00E+00
232	GSMUA_Achr9G24060_001	Putative GDSL esterase/lipase At5g55050 At5g55050 complete	-1,13E+00	3,15E-02	2,17E-01	1,00E+00	5,75E-01	1,00E+00
233	GSMUA_Achr7G18070_001	Gibberellin-regulated protein 4 GASA4 complete	-2,86E+00	3,27E-02	-1,98E-01	1,00E+00	2,37E+00	1,00E+00
234	GSMUA_Achr9G21210_001	Putative Uncharacterized transporter YBR287W YBR287W complete	-1,39E+00	3,32E-02	9,28E-01	7,89E-01	4,70E-01	1,00E+00
235	GSMUA_Achr8G15140_001	Mannose-binding lectin (Fragment) unknown_gene fragment	2,67E+00	3,34E-02	1,33E+00	1,00E+00	5,33E+00	1,00E+00
236	GSMUA_Achr11G01900_001	Protochlorophyllide reductase B, chloroplastic PORB complete	1,47E+00	3,42E-02	1,76E-01	1,00E+00	-3,89E-01	1,00E+00
237	GSMUA_Achr6G35570_001	Hypothetical protein unknown_gene missing_functional_completeness	3,12E+00	3,54E-02	4,29E-01	1,00E+00	8,53E-01	1,00E+00
238	GSMUA_Achr6G04760_001	Putative Secologanin synthase CYP72A1 complete	1,88E+00	3,62E-02	1,58E-01	1,00E+00	-1,17E-01	1,00E+00
239	GSMUA_Achr9G30170_001	Peroxidase 39 PER39 complete	-1,85E+00	3,65E-02	1,01E-01	1,00E+00	2,31E+00	1,00E+00
240	GSMUA_Achr10G22810_001	Heat shock cognate 70 kDa protein HSP70 fragment	1,35E+00	3,68E-02	-4,82E-01	1,00E+00	-1,91E-01	1,00E+00
241	GSMUA_Achr7G00860_001	NAC domain-containing protein, putative NAC042 complete	-1,90E+00	3,68E-02	5,24E-01	1,00E+00	2,07E+00	1,00E+00
242	GSMUA_Achr7G02620_001	Hypothetical protein XTHB missing_functional_completeness	-1,81E+00	3,72E-02	4,81E-02	1,00E+00	1,04E+00	1,00E+00
243	GSMUA_Achr3G24660_001	Cation/H(+) antiporter 19 CHX19 fragment	-1,56E+00	3,77E-02	2,60E-01	1,00E+00	6,69E-01	1,00E+00
244	GSMUA_Achr10G06560_001	Protein CCA1 CCA1 fragment	1,37E+00	3,81E-02	-5,27E-02	1,00E+00	-1,81E-01	1,00E+00
245	GSMUA_Achr4G23380_001	Putative Pre-mRNA-splicing factor ATP-dependent RNA helicase-like protein cdc28 cdc28 fragment	1,39E+00	3,86E-02	1,13E-01	1,00E+00	-4,64E-01	1,00E+00
246	GSMUA_Achr10G16840_001	dirigent, putative, expressed PI206 modules	-1,10E+00	3,90E-02	-1,87E-02	1,00E+00	1,15E-03	1,00E+00
247	GSMUA_Achr10G15940_001	Ammonium transporter 3 member 1 AMT3-1 fragment	-2,10E+00	3,90E-02	5,43E-01	1,00E+00	7,67E-02	1,00E+00
248	GSMUA_Achr7G11280_001	Actin-11 ACT11 fragment	-1,66E+00	3,94E-02	7,61E-02	1,00E+00	-6,33E-02	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN - 10 DAI	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
249	GSMUA_Achr5G10950_001	Trypsin inhibitor ODZ3 complete	-1,71E+00	4,16E-02	-8,46E-01	1,00E+00	1,40E+00	1,00E+00
250	GSMUA_Achr4G07660_001	Putative (R)-limonene synthase 1 TPS27 modules	1,72E+00	4,22E-02	-1,01E+00	6,73E-01	-4,03E-01	1,00E+00
251	GSMUA_Achr11G26480_001	Putative Cytochrome P450 71A1 CYP71A1 complete	1,20E+00	4,22E-02	2,75E-02	1,00E+00	-7,68E-01	1,00E+00
252	GSMUA_Achr8G31770_001	Putative Reticulon-like protein B2 RTNLB2 fragment	-2,29E+00	4,22E-02	-7,09E-01	1,00E+00	1,65E+00	1,00E+00
253	GSMUA_Achr9G05990_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At1g05700 At1g05700 fragment	1,52E+00	4,22E-02	6,40E-01	1,00E+00	7,62E-02	1,00E+00
254	GSMUA_Achr9G24840_001	Putative Whole genome shotgun sequence of line PN40024, Prrx2 fragment	1,53E+00	4,22E-02	-1,07E-01	1,00E+00	-4,74E-01	1,00E+00
255	GSMUA_Achr10G12160_001	Pollen-specific protein C13 MGS1 complete	-2,03E+00	4,23E-02	1,68E+00	3,00E-01	1,15E-01	1,00E+00
256	GSMUA_Achr1G09100_001	Putative chromo domain containing protein, expressed PKL fragment	1,73E+00	4,23E-02	-1,07E+00	4,75E-01	-6,44E-01	1,00E+00
257	GSMUA_Achr2G05270_001	Putative Limonoid UDP-glucosyltransferase At1g05670 fragment	-1,28E+00	4,23E-02	3,83E-01	1,00E+00	5,31E-01	1,00E+00
258	GSMUA_Achr6G08050_001	ATP-dependent Clp protease ATP-binding subunit clpA homolog clpC fragment	1,31E+00	4,23E-02	5,13E-01	1,00E+00	-5,48E-01	1,00E+00
259	GSMUA_Achr8G18080_001	Putative Cytokinin-O-glucosyltransferase 2 UGT85A1 fragment	-1,54E+00	4,23E-02	4,45E-01	1,00E+00	1,14E+00	1,00E+00
260	GSMUA_Achr9G05900_001	Putative Phosphoethanolamine/phosphocholine phosphatase Phospho1 complete	-1,33E+00	4,32E-02	6,63E-02	1,00E+00	7,55E-01	1,00E+00
261	GSMUA_Achr8G28290_001	Putative Cytochrome P450 94A1 CYP94A1 complete	1,64E+00	4,37E-02	1,49E-01	1,00E+00	-1,26E-01	1,00E+00
262	GSMUA_Achr5G27720_001	Putative uncharacterized protein Sb03g037890 unknown_gene complete	-2,38E+00	4,43E-02	1,61E+00	1,00E+00	1,90E+00	1,00E+00
263	GSMUA_Achr2G06350_001	Chlorophyll a-b binding protein 6A, chloroplastic CAB6A complete	1,56E+00	4,47E-02	5,79E-01	1,00E+00	1,81E-01	1,00E+00
264	GSMUA_Achr9G10310_001	Photosystem I reaction center subunit psaK, chloroplastic PSAK complete	1,68E+00	4,56E-02	1,27E-01	1,00E+00	2,07E+00	1,00E+00
265	GSMUA_Achr6G26830_001	expressed protein napA complete	-1,51E+00	4,66E-02	5,25E-01	1,00E+00	7,50E-01	1,00E+00
266	GSMUA_Achr3G00640_001	Hypothetical protein AMS missing_functional_completeness	5,55E+00	4,77E-02	1,32E+00	1,00E+00	-3,32E+00	1,00E+00
267	GSMUA_Achr7G12410_001	Probable xyloglucan endotransglucosylase/hydrolase protein 28 XTH28 complete	-3,48E+00	4,80E-02	1,39E+00	1,00E+00	3,51E+00	1,00E+00
268	GSMUA_Achr10G20560_001	Hypothetical protein dnaA missing_functional_completeness	-1,52E+00	4,81E-02	-5,16E-01	1,00E+00	4,15E-01	1,00E+00
269	GSMUA_Achr4G08070_001	Hypothetical protein TGA2 missing_functional_completeness	2,39E+00	4,81E-02	2,14E-01	1,00E+00	-9,22E-01	1,00E+00
270	GSMUA_Achr6G22850_001	guanine nucleotide exchange family protein, putative, expressed MON2 fragment	2,01E+00	4,81E-02	-1,69E-01	1,00E+00	-9,43E-01	1,00E+00
271	GSMUA_Achr11G19560_001	expressed protein unknown_gene complete	-5,99E+00	4,84E-02	3,06E-01	1,00E+00	4,12E+00	1,00E+00
272	GSMUA_Achr4G01980_001	Whole genome shotgun sequence of line PN40024, kif4 complete	1,55E+00	4,84E-02	-2,15E-02	1,00E+00	-1,53E+00	1,00E+00
273	GSMUA_Achr6G33640_001	Hypothetical protein ZCCHC2 missing_functional_completeness	1,38E+00	4,93E-02	2,61E-01	1,00E+00	-3,52E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	AI Cav. GN - 1	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
274	GSMUA_Achr4G18520_001	Hypothetical protein pckG missing_functional_completeness	1,32E+00	4,94E-02	3,70E-01	1,00E+00	-5,88E-01	1,00E+00
275	GSMUA_Achr10G06570_001	Putative zinc finger, C3HC4 type domain containing protein, expressed RHA1B complete	-1,48E+00	4,95E-02	3,60E-01	1,00E+00	4,65E-01	1,00E+00
276	GSMUA_Achr7G16710_001	Putative Polyribonucleotide nucleotidyltransferase pnp fragment	1,63E+00	4,96E-02	2,42E-01	1,00E+00	-1,32E+00	1,00E+00
277	GSMUA_Achr10G29210_001	Putative Myb-related protein 306 MYB306 complete	-1,62E+00	4,97E-02	7,11E-01	1,00E+00	-5,34E-01	1,00E+00
278	GSMUA_Achr6G13940_001	Hypothetical protein unknown_gene missing_functional_completeness	2,04E+00	4,99E-02	-4,08E-01	1,00E+00	8,26E-01	1,00E+00
279	GSMUA_Achr8G09740_001	Putative PHD-finger family protein, expressed E(bx) fragment	1,40E+00	4,99E-02	6,07E-02	1,00E+00	-9,33E-02	1,00E+00
280	GSMUA_Achr2G21010_001	Putative Zinc finger CCCH domain-containing protein ZFN-like At5g18550 fragment	1,17E+00	5,34E-02	1,26E-01	1,00E+00	-1,21E-01	1,00E+00
281	GSMUA_Achr10G30710_001	Putative uncharacterized protein BHLH66 complete	-1,62E+00	5,41E-02	2,87E-01	1,00E+00	-1,48E+00	1,00E+00
282	GSMUA_Achr6G25150_001	Hypothetical protein EBI_21956 missing_functional_completeness	-1,26E+00	5,41E-02	-5,76E-02	1,00E+00	6,93E-01	1,00E+00
283	GSMUA_Achr7G08350_001	Hypothetical protein fosB missing_functional_completeness	-1,35E+00	5,55E-02	-6,28E-01	1,00E+00	-3,32E-01	1,00E+00
284	GSMUA_Achr1G04940_001	6-phosphofructokinase 3 PFK3 complete	-1,12E+00	5,59E-02	6,72E-01	1,00E+00	-7,40E-01	1,00E+00
285	GSMUA_Achr3G20240_001	Actin ACT1 complete	-1,57E+00	5,59E-02	4,55E-01	1,00E+00	5,61E-01	1,00E+00
286	GSMUA_Achr10G11250_001	Putative uncharacterized protein unknown_gene complete	1,35E+00	5,64E-02	5,32E-01	1,00E+00	1,76E-01	1,00E+00
287	GSMUA_Achr10G15430_001	Putative Uridylate kinase pyrH modules	1,26E+00	5,64E-02	-1,16E-01	1,00E+00	1,10E-01	1,00E+00
288	GSMUA_Achr8G03900_001	Hypothetical protein unknown_gene missing_functional_completeness	1,11E+00	5,64E-02	4,37E-01	1,00E+00	-2,14E-01	1,00E+00
289	GSMUA_Achr8G17740_001	zinc finger domain, LSD1 subclass family protein, expressed sno fragment	1,51E+00	5,64E-02	5,31E-01	1,00E+00	-4,48E-01	1,00E+00
290	GSMUA_Achr8G19970_001	Putative GDSL esterase/lipase At5g45910 At5g45910 complete	-6,71E+00	5,66E-02	4,96E+00	9,54E-01	-1,32E-01	1,00E+00
291	GSMUA_Achr7G19950_001	GASA-like protein SN2 complete	-1,73E+00	5,66E-02	-6,05E-01	1,00E+00	6,56E-01	1,00E+00
292	GSMUA_Achr7G07960_001	Putative Uncharacterized amino acid permease yfnA yfnA complete	1,07E+00	5,74E-02	6,49E-01	9,76E-01	8,02E-01	1,00E+00
293	GSMUA_Achr10G04640_001	Nodulin-21 pcl1 modules	-1,09E+00	5,74E-02	8,47E-01	1,00E+00	4,43E-01	1,00E+00
294	GSMUA_Achr10G12790_001	Hypothetical protein mdm34 missing_functional_completeness	1,06E+00	5,74E-02	4,77E-02	1,00E+00	-3,28E-01	1,00E+00
295		Putative HEAT repeat-containing protein 7A homolog heatr7a fragment	1,38E+00	5,74E-02	1,19E-01	1,00E+00	-2,08E-01	1,00E+00
296	GSMUA_Achr6G36260_001	Putative Aspartic proteinase nepenthesin-2 nep2 modules	1,58E+00	5,75E-02	2,27E-01	1,00E+00	2,22E-02	1,00E+00
297	GSMUA Achr3G10620 001	Putative Cytokinin-O-glucosyltransferase 3 UGT73C5 complete	-1,05E+00	5,75E-02	3,34E-01	1,00E+00	4,48E-01	1,00E+00
Num	Gene	Produto	Cav. GN - 3 DAI		Cav. GN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 10 DAI

			logFC	FDR	logFC	FDR	logFC	FDR
298	GSMUA_Achr1G01880_001	Putative uncharacterized protein unknown_gene fragment	2,75E+00	5,84E-02	1,87E-01	1,00E+00	1,19E+00	1,00E+00
299	GSMUA_Achr2G00210_001	Flavonoid 3',5'-hydroxylase CYP75A2 complete	-1,41E+00	5,85E-02	4,19E-01	1,00E+00	7,54E-01	1,00E+00
300	GSMUA_Achr9G07390_001	Hypothetical protein GWD3 missing_functional_completeness	1,47E+00	5,85E-02	-7,49E-02	1,00E+00	-1,86E-01	1,00E+00
301	GSMUA_Achr11G21670_001	Probable methyltransferase PMT15 At4g00750 complete	-1,54E+00	5,92E-02	3,97E-01	1,00E+00	1,21E+00	1,00E+00
302	GSMUA_Achr10G08570_001	Hypothetical protein unknown_gene missing_functional_completeness	4,84E+00	5,94E-02	-1,83E+00	1,00E+00	-9,13E+00	1,00E+00
303	GSMUA_Achr7G09970_001	Putative Protein kinase PVPK-1 OsI_021818 fragment	-2,20E+00	6,20E-02	-2,06E+00	3,61E-01	5,92E-01	1,00E+00
304	GSMUA_Achr3G07300_001	Putative Transcription initiation factor TFIID subunit 2 Taf2 fragment	2,01E+00	6,27E-02	-1,34E-01	1,00E+00	1,46E-01	1,00E+00
305	GSMUA_Achr9G06850_001	expressed protein PRPF39 fragment	1,83E+00	6,42E-02	-6,86E-01	1,00E+00	-6,23E-01	1,00E+00
306	GSMUA_Achr10G25440_001	Putative uncharacterized protein At2g16250 fragment	-1,72E+00	6,49E-02	2,77E-01	1,00E+00	-3,22E-01	1,00E+00
307	GSMUA_Achr3G28670_001	Putative LRR receptor-like serine/threonine-protein kinase GSO2 GSO2 complete	1,89E+00	6,49E-02	5,65E-01	1,00E+00	-5,13E-01	1,00E+00
308	GSMUA_Achr2G11090_001	Putative GDSL esterase/lipase At1g71250 At1g71250 complete	-9,63E-01	6,51E-02	2,89E-01	1,00E+00	4,04E-01	1,00E+00
309	GSMUA_Achr11G04480_001	S-norcoclaurine synthase 1 NCS1 complete	1,67E+00	6,62E-02	-9,91E-02	1,00E+00	-5,16E-01	1,00E+00
310	GSMUA_Achr2G22340_001	Putative Patatin group A-3 pat2-k3 complete	-1,32E+00	6,62E-02	4,93E-01	1,00E+00	-1,21E-01	1,00E+00
311	GSMUA_Achr3G10140_001	Ethylene-responsive transcription factor 1 EREBP1 fragment	1,01E+00	6,62E-02	2,66E-02	1,00E+00	3,36E-01	1,00E+00
312	GSMUA_Achr9G10790_001	Putative Horcolin SALT complete	-1,14E+00	6,78E-02	3,52E-01	1,00E+00	3,52E-01	1,00E+00
313	GSMUA_Achr1G02610_001	E3 ubiquitin-protein ligase UPL3 UPL3 fragment	1,01E+00	6,80E-02	-2,79E-01	1,00E+00	-1,68E-02	1,00E+00
314	GSMUA_Achr1G03980_001	EF hand family protein, putative, expressed CML9 complete	-1,42E+00	6,84E-02	9,05E-02	1,00E+00	1,48E-01	1,00E+00
315	GSMUA_Achr4G09680_001	CAAX amino terminal protease family protein, putative, expressed EMB8 modules	1,20E+00	6,85E-02	-1,86E-01	1,00E+00	-2,49E-01	1,00E+00
316	GSMUA_Achr2G17260_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At2g16250 At2g16250 fragment	1,45E+00	6,93E-02	5,70E-01	1,00E+00	-3,05E-01	1,00E+00
317	GSMUA Achr6G26180 001	Metallothionein-like protein type 3 MT3A complete	-1,11E+00	6,93E-02	-7,89E-02	1,00E+00	1,26E-01	1,00E+00
318	GSMUA Achr8G00520 001	Putative Lysosomal alpha-mannosidase MAN2B1 complete	9.69E-01	6.93E-02	-4.08E-02	1.00E+00	-7.30E-01	1.00E+00
319	GSMUA_Achr10G25510_001	Whole genome shotgun sequence of line PN40024 PLA2-III complete	-1 31E+00	7.01E-02	-3 74E-01	1.00E+00	8 86E-01	1.00E+00
320	GSMUA_Achr2G13520_001	Putative Lamin_like protein At5g15350 modules	-1.09F±00	7 12E-02	-2 36F-01	1.00F±00	3.96F_01	1.00F±00
520	USMUA_ACII/2013520_001		-1,092+00	7,12E-02	-2,30E-01	1,00E+00	3,90E-01	1,002+00
321	GSMUA_Achr8G13290_001	Putative Whole genome shotgun sequence of line PN40024, Kif26a complete	-1,52E+00	7,18E-02	5,16E-01	1,00E+00	-4,44E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		N - 7 DAI Cav. GN - 1	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
322	GSMUA_Achr2G00870_001	eukaryotic aspartyl protease domain containing protein, expressed nep1 complete	-1,44E+00	7,21E-02	-1,47E+00	4,02E-01	1,34E+00	1,00E+00
323	GSMUA_Achr10G31190_001	expressed protein unknown gene fragment	-1,52E+00	7,24E-02	7,88E-01	1,00E+00	7,18E-03	1,00E+00
324	GSMUA_Achr3G28550_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g08850 At4g08850 fragment	4,36E+00	7,24E-02	2,04E+00	1,00E+00	-2,26E+00	1,00E+00
325	GSMUA_Achr11G19050_001	STE_MEKK_stel1_MAP3K.1 - STE kinases include homologs to sterile 7, 11 and 20 from yeast	9,56E-01	7,36E-02	-2,66E-01	1,00E+00	-2,23E-01	1,00E+00
326	GSMUA_Achr1G05770_001	FACT complex subunit SPT16 SPT16 complete	1,06E+00	7,50E-02	4,75E-02	1,00E+00	-3,22E-01	1,00E+00
327	GSMUA_Achr8G01840_001	expressed protein psidin fragment	2,08E+00	7,58E-02	1,49E+00	4,52E-01	3,52E-01	1,00E+00
328	GSMUA_Achr6G36590_001	Phosphate transporter PHO1-2 PHO1-2 complete	-1,37E+00	7,58E-02	1,98E-01	1,00E+00	6,57E-02	1,00E+00
329	GSMUA_Achr8G08730_001	Whole genome shotgun sequence of line PN40024, myo-3 fragment	1,34E+00	7,58E-02	-2,34E-02	1,00E+00	-3,73E-01	1,00E+00
330	GSMUA_Achr2G15990_001	Putative Cytokinin-O-glucosyltransferase 3 UGT73C5 complete	-1,17E+00	7,60E-02	4,27E-01	1,00E+00	2,66E-01	1,00E+00
331	GSMUA_Achr11G15950_001	Hypothetical protein traf3ip1 missing_functional_completeness	1,66E+00	7,61E-02	-1,07E+00	8,03E-01	-4,61E-01	1,00E+00
332	GSMUA_Achr5G11700_001	Putative Lectin LECRKA4.2 modules	-1,35E+00	7,61E-02	7,02E-01	1,00E+00	-6,20E-01	1,00E+00
333	GSMUA_Achr5G25790_001	Putative Cytochrome P450 71D8 CYP71D8 complete	9,16E-01	7,61E-02	6,79E-02	1,00E+00	-1,44E-01	1,00E+00
334	GSMUA_Achr7G13330_001	expressed protein DDB_G0268328 fragment	1,33E+00	7,61E-02	-4,58E-01	1,00E+00	-2,52E-01	1,00E+00
335	GSMUA_Achr7G13710_001	expressed protein rplF fragment	-2,27E+00	7,68E-02	-1,25E-02	1,00E+00	5,75E-01	1,00E+00
336	GSMUA_Achr6G04570_001	Early nodulin-93 unknown_gene complete	-2,43E+00	7,69E-02	2,64E-01	1,00E+00	2,76E+00	5,09E-01
337	GSMUA_Achr4G23940_001	Oxygen-evolving enhancer protein 3-2, chloroplastic PSBQ2 complete	1,06E+00	7,77E-02	2,47E-01	1,00E+00	6,88E-01	1,00E+00
338	GSMUA_Achr8G14920_001	expressed protein vps13a modules	1,05E+00	7,86E-02	-1,09E-01	1,00E+00	-6,13E-01	1,00E+00
339	GSMUA_Achr8G31570_001	Hypothetical protein unknown_gene missing_functional_completeness	1,43E+00	7,89E-02	9,42E-01	9,51E-01	8,74E-01	1,00E+00
340	GSMUA Achr5G18800 001	Putative C-4 methylsterol oxidase DDB G0269788 DDB G0269788 complete	-1,17E+00	7,96E-02	-1,26E-01	1,00E+00	5,78E-01	1,00E+00
341	GSMUA Achr3G25430 001	Chlorophyllase-2, chloroplastic CLH2 modules	1.83E+00	7.98E-02	7.59E-01	9.60E-01	-8.21E-01	1.00E+00
342	GSMUA_Achr10G27850_001	Peroxidase 52 PER52 complete	1.04E+00	7.98E-02	1.47E-01	1.00E+00	1.94E-01	1.00E+00
2.12			0.655	7.0000.02	0.505.01	1.005.00	1.405.00	1.005.00
343	GSMUA_Achr4G22230_001	Hypothetical protein unknown_gene missing_functional_completeness	-2,65E+00	7,98E-02	2,50E-01	1,00E+00	1,40E+00	1,00E+00
344	GSMUA_Achr8G07780_001	UPF0497 membrane protein 5 RCOM_1282030 fragment	-2,10E+00	7,98E-02	2,35E+00	1,00E+00	1,56E+00	1,00E+00
345	GSMUA_Achr4G30340_001	GATA zinc finger domain containing protein, expressed GATA4 fragment	-3,71E+00	8,11E-02	2,95E-01	1,00E+00	-1,35E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN - 7 DAI		AI Cav. GN - 10 D	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
346	GSMUA_Achr3G18930_001	Putative PHD-finger family protein, expressed E(bx) complete	1,11E+00	8,13E-02	7,86E-02	1,00E+00	2,89E-01	1,00E+00
347	GSMUA_Achr11G04270_001	Hypothetical protein unknown_gene missing_functional_completeness	1,59E+00	8,15E-02	-4,56E-01	1,00E+00	2,34E-01	1,00E+00
348	GSMUA_Achr7G27660_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At2g16250 At2g16250 complete	1,43E+00	8,15E-02	4,99E-01	1,00E+00	1,43E+00	1,00E+00
349	GSMUA_Achr3G15490_001	Putative Monothiol glutaredoxin-S5 GRXS5 complete	3,23E+00	8,37E-02	1,72E+00	6,93E-01	-2,08E-01	1,00E+00
350	GSMUA_Achr7G14690_001	Putative Protein RUPTURED POLLEN GRAIN 1 RPG1 complete	-2,35E+00	8,37E-02	6,81E-02	1,00E+00	9,51E-01	1,00E+00
351	GSMUA_Achr9G10820_001	Hypothetical protein VPS27 missing_functional_completeness	-1,05E+00	8,37E-02	1,49E-01	1,00E+00	6,48E-01	1,00E+00
352	GSMUA_Achr4G03700_001	Predicted protein LBD41 modules	1,12E+00	8,39E-02	2,33E-01	1,00E+00	-1,44E-01	1,00E+00
353	GSMUA_Achr6G28010_001	ferric-chelate reductase, putative, expressed noxB complete	1,30E+00	8,39E-02	6,77E-02	1,00E+00	-4,40E-01	1,00E+00
354	GSMUA_Achr7G08850_001	Putative Whole genome shotgun sequence of line PN40024, WRKY72 complete	-1,16E+00	8,39E-02	6,46E-01	1,00E+00	1,95E-01	1,00E+00
355	GSMUA_Achr3G21990_001	Putative Protein PLEKHA9 PLEKHA9 fragment	-1,28E+00	8,41E-02	2,66E-01	1,00E+00	-1,06E+00	1,00E+00
356	GSMUA_Achr5G08040_001	Putative Inactive beta-amylase 9 BAM9 complete	1,03E+00	8,48E-02	3,11E-01	1,00E+00	-1,39E-01	1,00E+00
357	GSMUA_Achr5G21100_001	Nicotianamine synthase CHLN complete	9,80E-01	8,48E-02	2,17E-01	1,00E+00	-7,82E-01	1,00E+00
358	GSMUA_Achr5G08270_001	Hypothetical protein VLN3 missing_functional_completeness	2,36E+00	8,50E-02	5,66E-01	1,00E+00	2,06E-01	1,00E+00
359	GSMUA_Achr6G24280_001	Putative Whole genome shotgun sequence of line PN40024, BHLH112 complete	2,57E+00	8,54E-02	4,67E-01	1,00E+00	1,02E+00	1,00E+00
360	GSMUA_Achr6G10430_001	Putative Intron-binding protein aquarius AQR fragment	1,67E+00	8,61E-02	5,70E-02	1,00E+00	9,65E-02	1,00E+00
361	GSMUA_Achr11G04780_001	serine/threonine-protein kinase Haspin, putative, expressed Gsg2 complete	-5,63E+00	8,85E-02	4,10E+00	9,11E-01	1,98E+00	1,00E+00
362	GSMUA_Achr10G27840_001	Peroxidase P7 PER52 complete	1,39E+00	8,85E-02	6,80E-01	9,54E-01	3,54E-01	1,00E+00
363	GSMUA_Achr6G26980_001	DDT, putative, expressed PF13_0198 modules	9,45E-01	8,85E-02	-3,07E-01	1,00E+00	-1,85E-01	1,00E+00
364	GSMUA_Achr7G08220_001	Hypothetical protein unknown_gene missing_functional_completeness	-1,27E+00	8,85E-02	1,59E-01	1,00E+00	3,83E-01	1,00E+00
365	GSMUA_Achr11G02850_001	Probable polygalacturonase GSVIVT00026920001 fragment	-3,04E+00	8,86E-02	-1,59E+00	1,00E+00	-4,62E-01	1,00E+00
366	GSMUA Achr11G18980 001	Golgin candidate 6 GC6 fragment	1,47E+00	8,86E-02	-1,35E-01	1,00E+00	-1,07E+00	1,00E+00
267			1.245.00	0.005.02	1.655.00	4.755.01	1.475.00	1.000
367	GSMUA_Achr/G09390_001	Peroxidase 52 PER52 complete	-1,24E+00	8,88E-02	1,65E+00	4,/5E-01	1,4/E+00	1,00E+00
368	GSMUA_Achr1G23930_001	Putative Linear gramicidin synthase subunit C lgrC fragment	1,24E+00	8,88E-02	1,35E-01	1,00E+00	-5,95E-01	1,00E+00
369	GSMUA Achr1G10220 001	Putative expressed protein BHLH87 fragment	-1.52E+00	8.89E-02	-8.14E-01	1.00E+00	3.57E-01	1.00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		I Cav. GN - 10 I	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
370	GSMUA_Achr3G06950_001	Galactoside 2-alpha-L-fucosyltransferase FUT1 complete	-2,36E+00	8,91E-02	-3,28E-01	1,00E+00	-1,63E+00	1,00E+00
271	CSMUA Ashr11C10620 001	Dutative Dandom alug gratain 5 gas 5 fromont	1.06E+00	8 02E 02	5 99E 01	1.00E+00	2.52E.01	1.000 + 00
371	GSMUA_ACIII11019620_001		-1,00E+00	8,92E-02	3,88E-01	1,00E+00	5,32E-01	1,00E+00
372	GSMUA_Achr5G25950_001	Metal transporter Nramp6 NRAMP6 tragment	-1,11E+00	8,92E-02	1,53E+00	1,00E+00	-5,22E-01	1,00E+00
373	GSMUA_Achr10G26980_001	Phospholipase D alpha 1 PLD1 fragment	9,80E-01	8,96E-02	1,21E-01	1,00E+00	4,40E-02	1,00E+00
374	GSMUA_Achr6G06060_001	heavy metal-associated domain containing protein, expressed copA complete	-2,00E+00	9,01E-02	-6,85E-01	1,00E+00	-6,89E-01	1,00E+00
375	GSMUA_Achr1G00020_001	Alpha-galactosidase Os10g0493600 complete	9,74E-01	9,05E-02	2,94E-01	1,00E+00	-1,22E+00	1,00E+00
376	GSMUA_Achr8G21190_001	Putative Anaphase-promoting complex subunit 1 APC1 fragment	2,25E+00	9,16E-02	1,91E-01	1,00E+00	-6,40E-02	1,00E+00
377	GSMUA_Achr8G18810_001	Phosphoenolpyruvate carboxykinase [ATP] PCKA complete	8,95E-01	9,16E-02	2,28E-01	1,00E+00	5,81E-02	1,00E+00
378	GSMUA_Achr7G22210_001	Peroxidase 4 GSVIVT00023967001 complete	1,27E+00	9,18E-02	4,14E-03	1,00E+00	-3,62E-01	1,00E+00
379	GSMUA_Achr5G22300_001	Hypothetical protein YTM1 missing_functional_completeness	-2,05E+00	9,19E-02	2,95E+00	9,54E-01	-5,17E+00	1,00E+00
380	GSMUA_Achr3G02950_001	Peroxidase 12 PER12 complete	-1,07E+00	9,19E-02	4,61E-01	1,00E+00	1,09E-01	1,00E+00
381	GSMUA_Achr3G13090_001	Hypothetical protein At1g21580 missing_functional_completeness	1,08E+00	9,19E-02	-2,98E-01	1,00E+00	-4,15E-01	1,00E+00
382	GSMUA_Achr2G10960_001	Defensin-like protein PDF2.3 complete	-1,71E+00	9,25E-02	-6,13E-01	1,00E+00	2,34E+00	5,43E-01
383	GSMUA_Achr6G02280_001	Uncharacterized protein At1g14870 At1g14870 modules	-1,72E+00	9,25E-02	1,44E-01	1,00E+00	1,08E+00	1,00E+00
384	GSMUA_Achr2G14180_001	Triose phosphate/phosphate translocator, non-green plastid, chloroplastic NGTPT complete	-2,08E+00	9,44E-02	8,35E-01	1,00E+00	-6,49E-01	1,00E+00
385	GSMUA_Achr11G17230_001	Ammonium transporter 1 member 1 AMT1-1 complete	-1,19E+00	9,50E-02	8,69E-01	1,00E+00	2,61E-01	1,00E+00
386	GSMUA_Achr9G10830_001	Putative Horcolin SALT modules	-1,01E+00	9,56E-02	3,37E-01	1,00E+00	6,43E-01	1,00E+00
387	GSMUA_Achr3G30040_001	Hypothetical protein zgc:165573 missing_functional_completeness	-9,47E-01	9,57E-02	4,31E-02	1,00E+00	1,26E-01	1,00E+00
388	GSMUA_Achr5G01510_001	Putative FAM10 family protein At4g22670 At4g22670 fragment	1,37E+00	9,72E-02	6,06E-01	1,00E+00	-4,96E-02	1,00E+00
389	GSMUA_Achr9G23940_001	no apical meristem protein, putative NAC74 fragment	5,25E+00	9,78E-02	9,64E-01	1,00E+00	7,43E-01	1,00E+00
390	GSMUA_Achr3G27170_001	Putative uncharacterized protein Sb07g000099 hdgfrp2 fragment	1,46E+00	9,81E-02	-3,95E-01	1,00E+00	-8,87E-02	1,00E+00
391	GSMUA_Achr11G01100_001	rhodanese-like domain containing protein, putative, expressed STR16 fragment	-1,52E+00	9,82E-02	7,05E-01	1,00E+00	1,42E+00	1,00E+00
392	GSMUA_Achr9G26060_001	Probable glutathione S-transferase parA PARA complete	-1,46E+00	9,87E-02	5,82E-01	1,00E+00	3,52E-01	1,00E+00
393	GSMUA_Achr10G17940_001	Putative uncharacterized protein ERD3 fragment	-1,92E+00	9,89E-02	-7,26E-01	1,00E+00	7,40E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	7 DAI Cav. GN - 1	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
394	GSMUA_Achr8G24400_001	Serineglyoxylate aminotransferase AGT1 complete	-2,06E+00	9,89E-02	5,02E-01	1,00E+00	6,60E-01	1,00E+00
395	GSMUA_Achr4G16640_001	Hypothetical protein unknown_gene missing_functional_completeness	-1,82E-01	1,00E+00	-2,76E+00	2,32E-08	1,67E+00	1,00E+00
396	GSMUA_Achr3G15340_001	Hypothetical protein At4g12770 missing_functional_completeness	1,38E-01	1,00E+00	-3,30E+00	4,13E-03	-1,26E+00	1,00E+00
397	GSMUA_Achr4G18830_001	Putative uncharacterized protein unknown_gene modules	-1,21E+00	8,58E-01	1,48E+00	1,41E-02	-1,21E-01	1,00E+00
398	GSMUA_Achr6G32080_001	Putative uncharacterized protein Prx complete	6,54E-01	8,79E-01	1,49E+00	8,30E-02	-5,80E-01	1,00E+00
399	GSMUA_Achr9G29700_001	Probable CCR4-associated factor 1 homolog 11 CAF1-11 complete	5,53E-01	8,81E-01	1,11E+00	1,52E-02	2,16E-01	1,00E+00
400	GSMUA_Achr11G21630_001	Dehydration-responsive element-binding protein 1E DREB1E complete	3,02E-01	1,00E+00	6,86E+00	2,39E-17	-1,45E+00	1,00E+00
401	GSMUA_Achr7G05900_001	Putative Dehydration-responsive element-binding protein 1D DREB1D complete	-6,86E-02	1,00E+00	3,17E+00	2,63E-06	-1,89E-01	1,00E+00
402	GSMUA_Achr6G04860_001	Hypothetical protein HARBI1 missing_functional_completeness	-1,07E+00	1,00E+00	2,88E+00	3,39E-05	-1,21E+00	1,00E+00
403	GSMUA_Achr6G02310_001	Hypothetical protein ERF112 missing_functional_completeness	-1,42E+00	1,00E+00	4,42E+00	8,02E-05	-7,64E-01	1,00E+00
404	GSMUA_Achr4G32720_001	Probable indole-3-acetic acid-amido synthetase GH3.8 GH3.8 complete	-1,37E-01	1,00E+00	-1,28E+00	3,97E-02	3,45E-01	1,00E+00
405	GSMUA_Achr7G06910_001	Hypothetical protein ERF5 missing_functional_completeness	1,03E-01	1,00E+00	1,26E+00	3,97E-02	4,26E-02	1,00E+00
406	GSMUA_Achr7G03640_001	Putative uncharacterized protein ERF4 complete	-9,73E-02	1,00E+00	1,24E+00	6,69E-02	-1,39E+00	1,00E+00
407	GSMUA_Achr7G11650_001	LL-diaminopimelate aminotransferase, chloroplastic DAP complete	-1,64E+00	7,49E-01	3,90E+00	3,97E-02	-1,32E-01	1,00E+00
408	GSMUA_Achr3G15350_001	dnaJ domain containing protein, expressed At4g12780 fragment	-1,53E+00	1,68E-01	-2,98E+00	9,68E-11	-3,96E-01	1,00E+00
409	GSMUA_Achr11G04340_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-3,59E+00	1,75E-01	-6,34E+00	7,75E-02	-5,07E+00	1,00E+00
410	GSMUA_Achr11G20670_001	Putative expressed protein At1g66480 complete	2,29E+00	2,14E-01	2,82E+00	3,38E-05	-6,89E-01	1,00E+00
411	GSMUA_Achr9G30600_001	Hypothetical protein unknown_gene missing_functional_completeness	-2,36E+00	3,80E-01	1,80E+00	7,91E-07	-1,95E+00	1,00E+00
412	GSMUA_Achr3G25780_001	Phytosulfokines 3 PSK3 complete	1,15E+00	4,49E-01	1,63E+00	8,30E-02	2,84E-01	1,00E+00
413	GSMUA_Achr7G20410_001	Putative Benzoate carboxyl methyltransferase BAMT complete	-1,32E+00	5,64E-01	2,73E+00	4,34E-03	-4,95E-01	1,00E+00
414	GSMUA_Achr8G20270_001	Hypothetical protein spaT missing_functional_completeness	-1,23E+00	6,40E-01	-2,45E+00	4,35E-04	-2,19E-01	1,00E+00
415	GSMUA_Achr3G02010_001	3-ketoacyl-CoA synthase 10 FDH complete	-1,16E+00	6,75E-01	-1,70E+00	9,24E-02	2,69E-01	1,00E+00
416	 GSMUA_Achr2G09480_001	dynamin family protein, putative, expressed dlpC complete	1,15E+00	6,86E-01	-3,93E+00	7,75E-02	3,72E+00	1,00E+00
416	GSMUA_Achr2G09480_001 GSMUA Achr1G17220 001	dynamin family protein, putative, expressed dlpC complete Stigma/stylar cysteine-rich adhesin SCA complete	1,15E+00 -1,48E+00	6,86E-01 6,91E-01	-3,93E+00 -5,00E+00	7,75E-02 2,35E-06	3,72E+00 -8,10E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
418	GSMUA_Achr7G26210_001	Putative Cytoplasmic tRNA 2-thiolation protein 2 CTU2 fragment	-1,17E+00	7,31E-01	3,75E+00	8,30E-02	1,33E+00	1,00E+00
419	GSMUA_Achr10G15270_001	Chlorophyll a-b binding protein 40, chloroplastic CAB40 fragment	9,33E-01	7,50E-01	-2,36E+00	1,89E-04	-1,52E+00	1,00E+00
420	GSMUA_Achr1G13920_001	Hypothetical protein At4g12770 missing_functional_completeness	-5,91E-01	7,67E-01	-1,79E+00	9,48E-03	-5,70E-01	1,00E+00
421	GSMUA_Achr8G28810_001	Malate synthase, glyoxysomal LIP complete	-1,03E+00	8,10E-01	1,58E+00	8,14E-02	-1,59E+00	1,00E+00
422	GSMUA_Achr2G14210_001	Hypothetical protein unknown_gene missing_functional_completeness	-4,09E-01	8,37E-01	-1,34E+00	8,30E-02	-8,40E-01	1,00E+00
423	GSMUA_Achr3G23000_001	Putative Caltractin (Fragment) Cetn1 fragment	-6,62E-01	8,83E-01	1,24E+00	5,26E-02	2,50E-02	1,00E+00
424	GSMUA_Achr7G01910_001	Putative serine/threonine-protein kinase receptor SRK6 fragment	-8,33E-01	9,14E-01	2,48E+00	9,48E-02	-7,14E-01	1,00E+00
425	GSMUA_Achr3G30210_001	Probable indole-3-acetic acid-amido synthetase GH3.8 GH3.8 complete	-7,77E-01	9,17E-01	-1,94E+00	9,48E-02	1,52E-01	1,00E+00
426	GSMUA_Achr1G00770_001	Putative Flavanone 3-dioxygenase FHT complete	7,02E-01	9,36E-01	2,48E+00	3,05E-03	9,26E-01	1,00E+00
427	GSMUA_Achr10G17060_001	Lipid binding protein, putative LIM3 complete	4,19E-01	9,78E-01	-1,95E+00	2,26E-05	-7,19E-01	1,00E+00
428	GSMUA_Achr9G16540_001	Pathogenesis-related protein 1 PR1 complete	3,70E-01	9,80E-01	1,06E+00	3,76E-02	8,81E-01	1,00E+00
429	GSMUA_Achr6G27190_001	Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic APL2 complete	9,85E-02	1,00E+00	-3,62E+00	2,99E-05	1,31E+00	1,00E+00
430	GSMUA_Achr2G18070_001	MYB family transcription factor, putative, expressed At1g14600 fragment	9,79E-02	1,00E+00	-2,66E+00	7,63E-05	-5,09E-01	1,00E+00
431	GSMUA_Achr6G19450_001	Probable CCR4-associated factor 1 homolog 11 CAF1-11 complete	-2,58E-01	1,00E+00	1,68E+00	1,89E-04	-6,43E-01	1,00E+00
432	GSMUA_Achr11G23400_001	Putative UDP-N-acetylmuramoylalanineD-glutamate ligase murD fragment	2,32E-01	1,00E+00	-3,15E+00	5,97E-04	-7,16E-01	1,00E+00
433	GSMUA_Achr3G16480_001	Putative Glycerol-3-phosphate acyltransferase 1 GPAT1 complete	-2,58E-01	1,00E+00	-2,65E+00	4,13E-03	1,40E+00	1,00E+00
434	GSMUA_Achr9G19860_001	Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete	-9,45E-02	1,00E+00	1,38E+00	9,48E-03	-8,41E-01	1,00E+00
435	GSMUA_Achr1G00480_001	Putative Ethylene-responsive transcription factor ERF105 ERF105 complete	-4,21E-01	1,00E+00	1,34E+00	9,93E-03	1,38E-01	1,00E+00
436	GSMUA_Achr2G04360_001	Caffeic acid 3-O-methyltransferase OMT complete	-4,13E-01	1,00E+00	1,89E+00	1,05E-02	2,42E-01	1,00E+00
437	GSMUA Achr5G08730 001	Putative uncharacterized protein odd complete	-4.36E-01	1.00E+00	1.28E+00	1.59E-02	3.80E-01	1.00E+00
438		Hypothetical protein SPZ1 missing_functional_completeness	2,89E-01	1,00E+00	-1,87E+00	1,59E-02	-6,27E-01	1,00E+00
439	GSMUA_Achr4G14500_001	Putative Sulfotransferase 17 SOT17 fragment	-2,66E-01	1,00E+00	1,62E+00	1,59E-02	2,20E-01	1,00E+00
440	GSMUA_Achr4G20890_001	Putative Protein TIME FOR COFFEE TIC complete	5,23E-02	1,00E+00	-1,06E+00	2,38E-02	-3,94E-01	1,00E+00
441	GSMUA_Achr8G20750 001	Putative uncharacterized protein RING1 fragment	6,76E-02	1,00E+00	1,29E+00	3,71E-02	3,23E-01	1,00E+00
442	GSMUA_Achr6G01420_001	AP2/ERF and B3 domain-containing transcription factor RAV1 RAV1 complete	8,45E-01	1,00E+00	-2,53E+00	3,97E-02	1,62E-01	1,00E+00

			Cav. GN	- 3 DAI	Cav. GN	- 7 DAI	DAI Cav. GN - 10	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
443	GSMUA_Achr3G22720_001	CEN-like protein 2 CET2 complete	2,86E-01	1,00E+00	4,46E+00	4,78E-02	2,64E+00	1,00E+00
444	GSMUA_Achr2G02210_001	Hypothetical protein ceh-14 missing_functional_completeness	1,55E-01	1,00E+00	1,47E+00	6,03E-02	1,51E+00	1,00E+00
445	GSMUA_Achr10G05990_001	Peroxidase 4 GSVIVT00023967001 complete	-6,77E-01	1,00E+00	1,18E+00	7,75E-02	5,83E-01	1,00E+00
446	GSMUA_Achr5G14770_001	Putative Protein TIME FOR COFFEE TIC complete	-2,11E-04	1,00E+00	-9,46E-01	7,75E-02	-3,32E-01	1,00E+00
447	GSMUA_Achr9G29520_001	protein kinase domain containing protein, expressed At1g06840 complete	-2,97E-01	1,00E+00	-1,58E+00	8,30E-02	2,42E-01	1,00E+00
448	GSMUA_Achr11G10660_001	NFD4, putative, expressed MCH1 complete	-1,26E+00	1,00E+00	-3,75E+00	8,34E-02	-5,22E-01	1,00E+00
449	GSMUA_Achr1G10090_001	expressed protein waaU complete	-1,98E-01	1,00E+00	-2,23E+00	9,31E-02	-1,46E+00	1,00E+00
450	GSMUA_Achr10G25090_001	Putative Blue copper protein At5g15350 fragment	-1,97E-03	1,00E+00	1,03E+00	9,48E-02	4,25E-01	1,00E+00
451	GSMUA_Achr2G11930_001	Expansin-B15 EXPB15 fragment	1,81E+00	4,93E-01	-9,87E-02	1,00E+00	3,72E+00	1,02E-02
452	GSMUA_Achr5G09690_001	Putative 1-aminocyclopropane-1-carboxylate oxidase ACO complete	-5,90E-01	6,72E-01	-1,16E+00	4,52E-01	3,21E+00	6,04E-05
453	GSMUA_Achr7G03060_001	Acyl-[acyl-carrier-protein] desaturase, chloroplastic ACPD complete	-8,16E-01	4,98E-01	3,33E-01	1,00E+00	3,05E+00	5,31E-03
454	GSMUA_Achr1G20260_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-1,86E+00	5,69E-01	-2,06E+00	1,00E+00	4,97E+00	9,21E-04
455	GSMUA_Achr2G00420_001	Nicotianamine synthase 3 NAS3 complete	-7,18E-01	5,98E-01	2,38E+00	2,11E-01	4,97E+00	2,60E-02
456	GSMUA_Achr9G26700_001	B12D protein, putative, expressed galM complete	-4,50E+00	6,04E-01	5,65E-01	1,00E+00	2,46E+00	2,79E-02
457	GSMUA_Achr4G23150_001	Putative expressed protein Int complete	-1,28E+00	6,30E-01	-1,43E+00	1,00E+00	3,49E+00	3,19E-02
458	GSMUA_Achr9G30120_001	wound induced protein, putative, expressed unknown_gene complete	-1,33E+00	6,47E-01	-2,36E-02	1,00E+00	2,16E+00	5,40E-02
459	GSMUA_Achr6G29920_001	Putative 2-aminoethanethiol dioxygenase Ado complete	-3,57E+00	7,57E-01	-1,59E+00	1,00E+00	5,02E+00	4,40E-05
460	GSMUA_Achr5G07750_001	Putative Chaperone protein dnaJ 20, chloroplastic ATJ20 fragment	3,38E+00	7,57E-01	3,36E+00	1,00E+00	8,49E+00	1,19E-03
461	GSMUA_Achr3G09170_001	Early nodulin-93 unknown_gene complete	-7,20E-01	7,57E-01	3,50E-01	1,00E+00	3,08E+00	1,02E-02
462	GSMUA_Achr5G16900_001	Cytochrome c CC-1 complete	-1,50E+00	9,39E-01	-7,82E-01	1,00E+00	3,37E+00	7,17E-04
463	GSMUA_Achr5G06650_001	Putative Uncharacterized acetyltransferase At3g50280 At3g50280 complete	-7,24E-01	9,54E-01	2,23E-01	1,00E+00	4,90E+00	1,19E-03
464	GSMUA_Achr8G19270_001	Hypothetical protein PKNOX1 missing_functional_completeness	-1,29E+00	9,80E-01	-2,14E+00	1,00E+00	2,69E+00	4,88E-02
-			,	,	,	,	,	, • -
465	GSMUA_Achr6G04470_001	oxidoreductase, putative, expressed P4ha1 complete	-3,65E-01	1,00E+00	1,48E+00	1,00E+00	4,36E+00	5,38E-09
466	GSMUA Achr8G19260 001	expressed protein L fragment	3,95E-01	1,00E+00	5,81E-01	1,00E+00	3,00E+00	1,19E-03

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
467	GSMUA_Achr11G08710_001	Kelch repeat-containing protein At3g27220 At3g27220 complete	-1,45E-01	1,00E+00	-4,56E-01	1,00E+00	3,81E+00	7,83E-03
468	GSMUA_Achr3G14310_001	cystathionin beta synthase protein, putative, expressed edd complete	6,27E-01	1,00E+00	9,76E-01	1,00E+00	3,27E+00	9,68E-03
469	GSMUA_Achr4G25050_001	flavin monooxygenase, putative, expressed FMO6P complete	-5,60E-01	1,00E+00	3,44E-01	1,00E+00	2,91E+00	2,13E-02
470	GSMUA_Achr11G15810_001	Ethylene-responsive transcription factor ERF071 ERF071 complete	-5,37E-01	1,00E+00	6,63E-01	1,00E+00	2,42E+00	3,19E-02
471	GSMUA_Achr6G19150_001	Putative hypothetical protein unknown_gene complete	1,26E-01	1,00E+00	2,30E-01	1,00E+00	2,57E+00	4,43E-02
472	GSMUA_Achr4G11770_001	Putative Ser/Thr-rich protein T10 in DGCR region T10 complete	1,71E-01	1,00E+00	5,38E-01	1,00E+00	2,36E+00	4,53E-02
473	GSMUA_Achr2G02480_001	Coproporphyrinogen-III oxidase, chloroplastic CPX fragment	-4,25E-01	1,00E+00	-4,75E-01	1,00E+00	5,05E+00	5,02E-02
474	GSMUA_Achr4G15110_001	Gibberellin 2-beta-dioxygenase 1 GA2OX1 complete	-8,35E-01	1,00E+00	1,80E+00	1,00E+00	4,03E+00	5,63E-02
475	GSMUA_Achr3G10820_001	Putative Probable LRR receptor-like serine/threonine-protein kinase At4g26540 At4g26540 complete	3,02E-01	1,00E+00	-7,62E-02	1,00E+00	4,33E-01	1,00E+00
476	GSMUA_Achr7G17110_001	Putative uncharacterized protein mib1 fragment	-1,28E+00	4,29E-01	1,10E+00	1,00E+00	1,77E+00	1,00E+00
477	GSMUA_Achr11G22160_001	secretory protein, putative, expressed narX complete	8,08E-01	4,34E-01	-9,83E-02	1,00E+00	7,41E-01	1,00E+00
478	GSMUA_Achr4G24640_001	14 kDa proline-rich protein DC2.15 TPRP-F1 complete	-1,52E+00	5,62E-01	-4,20E-01	1,00E+00	1,22E+00	1,00E+00
479	GSMUA_Achr7G20420_001	Putative Benzoate carboxyl methyltransferase BAMT complete	1,02E+00	5,74E-01	-2,35E+00	4,53E-01	-8,96E+00	1,00E+00
480	GSMUA_Achr6G02710_001	Gibberellin-regulated protein 4 GASA4 complete	-1,68E+00	5,81E-01	1,56E+00	1,00E+00	7,88E-01	1,00E+00
481	GSMUA_Achr6G31280_001	Putative Protein phosphatase 1 regulatory subunit 7 Ppp1r7 modules	1,14E+00	6,75E-01	-2,36E-01	1,00E+00	2,19E+00	1,00E+00
482	GSMUA_Achr6G31940_001	Chlorophyll a-b binding protein 6A, chloroplastic CAB6A complete	1,69E+00	6,78E-01	-1,11E+00	1,00E+00	1,75E-01	1,00E+00
483	GSMUA_Achr9G01260_001	heavy metal-associated domain containing protein, expressed copA complete	-8,25E-01	7,36E-01	-1,80E+00	1,91E-01	4,92E-01	1,00E+00
484	GSMUA_Achr6G10730_001	Expansin-A15 EXPA15 complete	8,59E-01	7,48E-01	-2,52E-02	1,00E+00	8,56E-01	1,00E+00
485	GSMUA_Achr6G05340_001	Putative Subtilisin-like protease ARA12 fragment	-7,37E-01	7,57E-01	8,65E-01	1,00E+00	2,08E+00	1,00E+00
486	GSMUA_Achr8G32980_001	Putative Class III acidic chitinase XIPI fragment	-3,72E+00	7,57E-01	-3,66E+00	1,00E+00	2,57E-16	1,00E+00
487	GSMUA_Achr3G07910_001	Hypothetical protein xylA missing_functional_completeness	7,35E-01	7,57E-01	2,67E-01	1,00E+00	8,46E-01	1,00E+00
488	GSMUA_Achr9G12540_001	expressed protein addB complete	-9,13E-01	7,89E-01	7,17E-01	1,00E+00	-8,88E-02	1,00E+00
489	GSMUA_Achr7G09230_001	Putative Protein ALWAYS EARLY 3 ALY3 fragment	9,36E-01	7,98E-01	5,01E-01	1,00E+00	-1,28E+00	1,00E+00
490	GSMUA Achr2G08650 001	FAD-binding and arabino-lactone oxidase domains containing protein, putative, alo-1 fragment	1,10E+00	8,29E-01	6,55E-01	1,00E+00	-2,55E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN	- 7 DAI	Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
491	GSMUA_Achr8G29720_001	retrotransposon protein, putative, unclassified, expressed At2g42960 fragment	6,54E-01	8,65E-01	3,08E-01	1,00E+00	9,70E-01	1,00E+00
492	GSMUA_Achr4G04510_001	Putative Whole genome shotgun sequence of line PN40024,At1g14600 complete	2,11E+00	8,79E-01	-1,34E+00	1,00E+00	2,57E-16	1,00E+00
493	GSMUA_Achr10G23030_001	rhodanese-like family protein, putative, expressed mocs3 complete	7,03E-01	8,89E-01	1,17E+00	5,55E-01	-1,05E+00	1,00E+00
494	GSMUA_Achr6G26920_001	retrotransposon protein, putative, unclassified unknown_gene fragment	-7,69E-01	9,03E-01	2,80E+00	1,00E+00	1,73E+00	1,00E+00
495	GSMUA_Achr6G18400_001	Fructokinase-2 FRK2 complete	7,43E-01	9,39E-01	-8,72E-01	1,00E+00	-2,43E-01	1,00E+00
496	GSMUA_Achr4G24630_001	Cyclin-U2-1 CYCU2-1 complete	-4,89E-01	9,66E-01	8,87E-01	1,00E+00	1,90E+00	1,00E+00
497	GSMUA_Achr6G21980_001	Peroxidase 1 PRX74 complete	-5,33E-01	9,80E-01	-1,09E-01	1,00E+00	8,71E-01	1,00E+00
498	GSMUA_Achr7G17150_001	Putative uncharacterized protein unknown_gene complete	6,04E-01	1,00E+00	-2,96E+00	1,11E-01	2,57E-16	1,00E+00
499	GSMUA_Achr1G08190_001	Granule-bound starch synthase 1, chloroplastic/amyloplastic WAXY complete	4,77E-01	1,00E+00	-1,66E+00	1,00E+00	3,61E-03	1,00E+00
500	GSMUA_Achr8G15110_001	Hypothetical protein TAS2R16 missing_functional_completeness	-7,71E-01	1,00E+00	-6,65E-01	1,00E+00	4,12E+00	1,00E+00
501	GSMUA_Achr4G33530_001	Glucose-6-phosphate/phosphate translocator 2, chloroplastic GPT2 complete	4,05E-01	1,00E+00	-6,76E-01	1,00E+00	-2,55E-01	1,00E+00
502	GSMUA_Achr2G16780_001	Beta-galactosidase Os01g0580200 complete	4,61E-01	1,00E+00	4,39E-01	1,00E+00	1,86E+00	1,00E+00
503	GSMUA_Achr4G19570_001	LRR receptor-like serine/threonine-protein kinase ERL1 ERL1 fragment	-3,33E+00	1,00E+00	-2,75E+00	1,00E+00	2,64E+00	1,00E+00
504	GSMUA_Achr8G17280_001	Fructose-bisphosphate aldolase, chloroplastic Os11g0171300 complete	5,84E-02	1,00E+00	-8,30E-01	1,00E+00	-1,65E-01	1,00E+00
505	GSMUA_Achr2G20540_001	Hypothetical protein LECCVA2 missing_functional_completeness	-3,33E+00	1,00E+00	-3,49E+00	1,00E+00	2,57E-16	1,00E+00
506	GSMUA_Achr10G25530_001	Putative expressed protein Athe_1143 complete	2,01E-01	1,00E+00	-8,22E-01	1,00E+00	6,18E-01	1,00E+00
507	GSMUA_Achr7G27540_001	Homeobox protein KNOX3 KNOX3 complete	1,05E+00	1,00E+00	-4,93E+00	1,00E+00	2,57E-16	1,00E+00
508	GSMUA_Achr5G24730_001	Probable 1-deoxy-D-xylulose-5-phosphate synthase, chloroplastic CLA1 complete	1,40E+00	1,00E+00	-2,14E+00	1,00E+00	-5,30E-02	1,00E+00
509	GSMUA_Achr9G01270_001	Hypothetical protein unknown_gene missing_functional_completeness	6,42E-02	1,00E+00	-5,60E-01	1,00E+00	1,09E+00	1,00E+00
510	GSMUA_Achr4G28270_001	Homeobox protein knotted-1-like 2 KN1 fragment	3,71E-01	1,00E+00	-5,03E-01	1,00E+00	-7,20E+00	1,00E+00
511	GSMUA_Achr2G22730_001	Ribulose bisphosphate carboxylase small chain, chloroplastic RBCS1 complete	3,93E-02	1,00E+00	-6,53E-01	1,00E+00	-9,54E-01	1,00E+00
512	GSMUA_Achr7G02800_001	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit 1, mitochondrial SDH2-1 fragment	-1,04E+00	1,00E+00	1,64E+00	1,00E+00	5,64E-01	1,00E+00
513	GSMUA_Achr4G31970_001	Pathogenesis-related protein R major form tlp complete	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	-5,07E+00	1,00E+00
514	GSMUA_Achr6G01350_001	Wound-induced protein WIN1 WIN1 fragment	-3,14E-03	1,00E+00	-9,90E-01	1,00E+00	2,14E+00	1,00E+00
Num	Gene	Produto	Cav. GN	- 3 DAI	Cav. GN	Cav. GN - 7 DAI Cav. C		- 10 DAI

			logFC	FDR	logFC	FDR	logFC	FDR
515	GSMUA_Achr3G31390_001	bZIP transcription factor domain containing protein, expressed RF2a complete	4,14E-01	1,00E+00	-9,03E-17	1,00E+00	2,57E-16	1,00E+00
516	GSMUA_Achr8G12370_001	Peroxidase 5 GSVIVT00037159001 complete	-6,16E-01	1,00E+00	5,71E-01	1,00E+00	1,43E+00	1,00E+00
517	GSMUA_Achr5G29330_001	Putative Protein SRG1 SRG1 complete	-1,01E+00	1,00E+00	-3,37E-01	1,00E+00	7,88E-01	1,00E+00
518	GSMUA_Achr8G20170_001	Putative IQ calmodulin-binding motif family protein, expressed IQD31 complete	1,14E-01	1,00E+00	1,27E+00	1,00E+00	1,33E+00	1,00E+00
519	GSMUA_Achr11G04240_001	Hypothetical protein unknown_gene missing_functional_completeness	6,52E-01	1,00E+00	-2,14E+00	1,00E+00	2,69E+00	1,00E+00
520	GSMUA_Achr7G25990_001	Homeobox-leucine zipper protein HOX14 HOX14 fragment	-1,29E+00	1,07E-01	1,33E-02	1,00E+00	4,25E-01	1,00E+00
521	GSMUA_Achr8G32950_001	Hevamine-A CHIB1 complete	-1,28E+00	1,12E-01	-3,65E-01	1,00E+00	9,16E-01	1,00E+00
522	GSMUA_Achr10G24660_001	phosphate-induced protein 1 conserved region domain containing protein, expressed Spt5 complete	-1,46E+00	1,23E-01	9,98E-01	7,07E-01	1,04E+00	1,00E+00
523	GSMUA_Achr11G10520_001	Protein LURP-one-related 8 At2g38640 complete	-1,94E+00	1,34E-01	-2,28E+00	8,57E-01	1,35E+00	1,00E+00
524	GSMUA_Achr7G03220_001	Putative E3 ubiquitin-protein ligase PUB23 PUB23 complete	-1,30E+00	2,26E-01	1,26E+00	8,74E-01	2,48E-01	1,00E+00
525	GSMUA_Achr2G04830_001	Peroxidase 60 PER60 complete	-8,94E-01	2,43E-01	-1,02E-01	1,00E+00	5,17E-01	1,00E+00
526	GSMUA_Achr6G05710_001	Putative OsWRKY69 - Superfamily of TFs having WRKY and zinc finger domains, express WRKY41	1,80E+00	3,40E-01	5,09E-01	1,00E+00	-4,84E-01	1,00E+00
527	GSMUA_Achr9G22480_001	Putative uncharacterized protein Anae109_3424 fragment	-8,57E-01	3,74E-01	6,89E-01	8,02E-01	-3,35E-01	1,00E+00
528	GSMUA_Achr6G11460_001	Hypothetical protein ANP1 missing_functional_completeness	-1,49E+00	3,74E-01	7,53E-01	1,00E+00	-1,06E-01	1,00E+00
529	GSMUA_Achr4G09290_001	Hypothetical protein rcl missing_functional_completeness	1,43E+00	3,76E-01	-6,00E-02	1,00E+00	-4,26E-02	1,00E+00
530	GSMUA_Achr5G07340_001	Protein phosphatase 2c, putative Os03g0292100 complete	2,39E+00	4,16E-01	1,68E+00	5,35E-01	-7,19E-01	1,00E+00
531	GSMUA_Achr1G08170_001	Endoglucanase 1 CEL1 complete	7,42E-01	4,36E-01	-7,42E-01	7,91E-01	-3,53E+00	1,00E+00
532	GSMUA_Achr6G25110_001	Lipoxygenase A LOX1.1 complete	-1,09E+00	4,38E-01	6,22E-02	1,00E+00	4,04E-01	1,00E+00
533	GSMUA_Achr6G10610_001	expressed protein dxs2 modules	-1,17E+00	4,42E-01	8,03E-01	8,28E-01	-1,68E-01	1,00E+00
534	GSMUA_Achr9G28820_001	Putative U-box domain-containing protein 17 PUB17 complete	9,41E-01	4,70E-01	3,53E-01	1,00E+00	4,47E-01	1,00E+00
535	GSMUA Achr10G09450 001	Putative U-box domain-containing protein 27 PUB27 complete	8,29E-01	4,98E-01	1,44E-01	1,00E+00	-2,10E-01	1,00E+00
536	GSMUA Achr10G15290 001	Putative WRKY transcription factor 6 WRKY6 complete	-7,56E-01	5,43E-01	3,08E-01	1,00E+00	8,43E-02	1,00E+00
537	GSMUA Achr6G15840 001	Hypothetical protein ubiE missing functional completeness	-1,49E+00	6,03E-01	3,31E-01	1,00E+00	-9,17E-02	1,00E+00
538	GSMUA Achr10G22560 001	avr9/Cf-9 rapidly elicited protein, putative, expressed thiE complete	-1,00E+00	6,03E-01	5,60E-01	1,00E+00	1,37E-01	1,00E+00
539	GSMUA Achr1G25300 001	Putative Tellurite resistance protein tehA homolog tehA modules	-1.09E+00	6.14E-01	1.40E+00	4.23E-01	2.53E-01	1.00E+00
540	GSMUA_Achr9G07610 001	Putative Uncharacterized WD repeat-containing protein alr2800 alr2800 fragment	1,10E+00	6,30E-01	-8,76E-02	1,00E+00	-3,12E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		DAI Cav. GN - 1	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
541	GSMUA_Achr10G06840_001	Putative Stem-specific protein TSJT1 TSJT1 modules	5,86E-01	6,59E-01	1,79E-01	1,00E+00	-7,94E-01	1,00E+00
542	GSMUA_Achr11G11620_001	Probable S-acyltransferase At3g26935 At3g26935 fragment	-1,03E+00	6,62E-01	-5,31E-02	1,00E+00	-1,11E+00	1,00E+00
543	GSMUA_Achr7G24010_001	expressed protein HARBI1 complete	6,60E-01	6,66E-01	2,60E-01	1,00E+00	-2,43E-01	1,00E+00
544	GSMUA_Achr2G17540_001	CBL-interacting protein kinase 7 CIPK7 modules	-8,87E-01	7,01E-01	-1,60E-01	1,00E+00	9,99E-01	1,00E+00
545	GSMUA_Achr10G11850_001	Hypothetical protein RPL7A missing_functional_completeness	1,23E+00	7,13E-01	-4,41E-01	1,00E+00	-1,08E+00	1,00E+00
546	GSMUA_Achr1G08690_001	Truncated NBS-LRR disease resistance protein (Fragment) unknown_gene missing_completeness	1,90E+00	7,57E-01	1,36E+00	6,91E-01	-3,00E-01	1,00E+00
547	GSMUA_Achr5G05940_001	Nudix hydrolase 17, mitochondrial NUDT17 complete	-1,04E+00	7,57E-01	1,32E+00	7,22E-01	-2,50E-01	1,00E+00
548	GSMUA_Achr2G01110_001	Putative uncharacterized protein purA complete	-8,41E-01	7,57E-01	1,02E+00	9,51E-01	-1,49E+00	1,00E+00
549	GSMUA_Achr5G28920_001	hs1, putative, expressed kynA complete	5,90E-01	7,57E-01	8,70E-01	1,00E+00	-7,34E-01	1,00E+00
550	GSMUA_Achr5G29160_001	Hypothetical protein F missing_functional_completeness	1,80E+00	7,57E-01	-7,92E-02	1,00E+00	-2,35E+00	1,00E+00
551	GSMUA_Achr7G12690_001	Putative phosphate-induced protein 1 conserved region domain containing protein, expressed COL29A1	-5,27E-01	7,57E-01	3,52E-01	1,00E+00	5,77E-01	1,00E+00
552	GSMUA_Achr6G29420_001	Putative conserved hypothetical protein 44M2.3 fragment	-6,10E-01	7,57E-01	5,60E-01	1,00E+00	-2,20E-01	1,00E+00
553	GSMUA_Achr3G12060_001	Putative UPF0481 protein At3g47200 At3g47200 complete	7,09E-01	7,57E-01	-1,50E-01	1,00E+00	-2,31E-02	1,00E+00
554	GSMUA_Achr10G17750_001	Hypothetical protein Adam22 missing_functional_completeness	-6,53E-01	7,62E-01	9,15E-01	7,82E-01	-8,86E-01	1,00E+00
555	GSMUA_Achr4G15700_001	Hypothetical protein sls missing_functional_completeness	8,57E-01	7,62E-01	3,83E-01	1,00E+00	-7,11E-01	1,00E+00
556	GSMUA_Achr9G19870_001	Hypothetical protein unknown_gene missing_functional_completeness	-3,44E+00	7,89E-01	2,48E+00	5,20E-01	-1,24E+00	1,00E+00
557	GSMUA_Achr4G31480_001	Putative Protein TIFY 5A TIFY5A complete	-2,02E+00	7,89E-01	9,65E-01	1,00E+00	3,33E-02	1,00E+00
558	GSMUA_Achr5G28260_001	Putative Zinc finger CCCH domain-containing protein 66 At5g58620 complete	4,44E-01	7,89E-01	5,76E-01	1,00E+00	-2,76E-01	1,00E+00
559	GSMUA_Achr10G29370_001	heavy metal-associated domain containing protein, expressed CCS1 modules	-5,63E-01	7,89E-01	-1,01E-01	1,00E+00	-2,37E-01	1,00E+00
560	GSMUA_Achr10G04970_001	Hypothetical protein unknown_gene missing_functional_completeness	-2,18E+00	7,89E-01	3,76E-01	1,00E+00	5,87E-01	1,00E+00
561	GSMUA_Achr8G29470_001	Alcohol dehydrogenase 1 ADH1 complete	-6,94E-01	8,15E-01	-3,20E-02	1,00E+00	1,22E+00	1,00E+00
562	GSMUA_Achr8G19650_001	Putative Interferon-induced GTP-binding protein Mx mx complete	-1,94E+00	8,48E-01	8,80E-01	1,00E+00	7,78E-01	1,00E+00
563	GSMUA_Achr9G21690_001	Putative expressed protein At1g66480 complete	6,12E-01	8,57E-01	7,08E-01	6,91E-01	-7,59E-02	1,00E+00
564	GSMUA_Achr6G27860_001	Putative Lectin-domain containing receptor kinase A4.2 LECRKA4.2 fragment	6,00E-01	8,79E-01	1,53E-01	1,00E+00	1,89E-01	1,00E+00
565	GSMUA_Achr1G10080_001	Putative Probable WRKY transcription factor 40 WRKY40 modules	-1,45E+00	8,82E-01	8,84E-01	1,00E+00	7,19E-03	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		SN - 7 DAI Cav. GN - 10	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
566	GSMUA_Achr5G01550_001	Probable indole-3-acetic acid-amido synthetase GH3.8 GH3.8 complete	7,24E-01	9,39E-01	-1,28E+00	1,00E+00	-1,05E+00	1,00E+00
567	GSMUA_Achr3G13030_001	GDSL esterase/lipase At4g26790 At4g26790 complete	-1,17E+00	9,47E-01	1,81E+00	1,00E+00	-1,86E+00	1,00E+00
568	GSMUA_Achr9G24410_001	Putative 2-hydroxymuconic semialdehyde hydrolase xylF modules	4,64E-01	9,52E-01	-2,59E-01	1,00E+00	-1,78E-02	1,00E+00
569	GSMUA_Achr10G10400_001	Putative harpin-induced protein 1 domain containing protein, expressed SYP24 complete	-6,07E-01	9,52E-01	2,23E-01	1,00E+00	-3,78E-01	1,00E+00
570	GSMUA_Achr6G32330_001	NAC domain-containing protein 68 NAC68 complete	-4,87E-01	9,58E-01	7,65E-02	1,00E+00	2,11E-01	1,00E+00
571	GSMUA_Achr3G11560_001	Putative Subtilisin-like protease ARA12 modules	4,18E-01	9,61E-01	5,42E-01	1,00E+00	4,13E-01	1,00E+00
572	GSMUA_Achr5G22180_001	Hypothetical protein HARBI1 missing_functional_completeness	-3,67E-01	1,00E+00	1,75E+00	1,06E-01	-9,39E-01	1,00E+00
573	GSMUA_Achr9G07600_001	Putative Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete	-2,14E-01	1,00E+00	2,20E+00	1,37E-01	-1,38E-01	1,00E+00
574	GSMUA_Achr6G03900_001	Putative expressed protein frr complete	3,21E-01	1,00E+00	1,38E+00	1,86E-01	-1,06E+00	1,00E+00
575	GSMUA_Achr9G14360_001	Putative AP2 domain containing protein ERF017 fragment	1,40E+00	1,00E+00	2,82E+00	2,70E-01	-7,37E-01	1,00E+00
576	GSMUA_Achr9G01460_001	drought-induced protein 1, putative, expressed dnaJ complete	-2,24E-01	1,00E+00	1,18E+00	2,99E-01	-7,88E-02	1,00E+00
577	GSMUA_Achr7G18930_001	AP2 domain containing protein, expressed RAP2-3 fragment	-8,05E-02	1,00E+00	2,45E+00	2,99E-01	-9,57E-01	1,00E+00
578	GSMUA_Achr1G25890_001	Hypothetical protein ERF9 missing_functional_completeness	5,99E-01	1,00E+00	2,21E+00	3,81E-01	3,13E-01	1,00E+00
579	GSMUA_Achr6G20900_001	Hypothetical protein TIFY9 missing_functional_completeness	-3,23E-01	1,00E+00	1,46E+00	4,00E-01	-4,88E-01	1,00E+00
580	GSMUA_Achr4G29150_001	1-aminocyclopropane-1-carboxylate synthase ACS1 complete	3,95E-03	1,00E+00	1,39E+00	4,26E-01	5,50E-01	1,00E+00
581	GSMUA_Achr8G11980_001	Dehydration-responsive element-binding protein 1E DREB1E complete	5,92E-01	1,00E+00	1,60E+00	4,83E-01	1,37E-01	1,00E+00
582	GSMUA_Achr9G02880_001	expressed protein unknown_gene complete	-5,05E-01	1,00E+00	1,68E+00	6,53E-01	3,97E-01	1,00E+00
583	GSMUA_Achr10G13530_001	Hypothetical protein ZNF335 missing_functional_completeness	-4,25E-01	1,00E+00	1,58E+00	6,55E-01	-8,03E-01	1,00E+00
584	GSMUA_Achr11G24120_001	hs1, putative, expressed kynA complete	1,16E-01	1,00E+00	7,10E-01	6,88E-01	-5,28E-01	1,00E+00
585	GSMUA_Achr9G27230_001	Nudix hydrolase 21, chloroplastic NUDT21 fragment	-7,42E-01	1,00E+00	1,37E+00	6,91E-01	-4,47E-01	1,00E+00
586	GSMUA_Achr8G18910_001	Aquaporin PIP2-3 PIP2-3 fragment	-1,17E-01	1,00E+00	-6,71E-01	6,91E-01	-9,76E-03	1,00E+00
587	GSMUA_Achr3G04490_001	Putative F-box/LRR-repeat protein 14 FBL14 complete	9,97E-02	1,00E+00	1,80E+00	7,19E-01	1,15E-01	1,00E+00
588	GSMUA_Achr9G11480_001	Putative Ethylene-responsive transcription factor 4 ERF4 complete	1,38E-01	1,00E+00	1,03E+00	7,23E-01	-4,85E-02	1,00E+00
589	GSMUA_Achr11G04930_001	MYB family transcription factor, putative, expressed MYB305 complete	-1,54E+00	1,00E+00	1,30E+00	7,67E-01	-4,72E-01	1,00E+00
590	GSMUA_Achr6G20890_001	Putative uncharacterized protein RH46 complete	-1,22E+00	1,00E+00	4,74E+00	7,82E-01	2,45E+00	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		(Cav. GN - 10 J	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
591	GSMUA_Achr4G06660_001	AP2/ERF domain-containing transcription factor ERF3 complete	1,55E-01	1,00E+00	1,27E+00	8,02E-01	6,30E-02	1,00E+00
592	GSMUA_Achr11G03210_001	Putative Ethylene-responsive transcription factor ERF024 ERF024 complete	-8,19E-01	1,00E+00	1,41E+00	8,16E-01	1,35E-01	1,00E+00
593	GSMUA_Achr7G15590_001	Probable protein phosphatase 2C 32 Os03g0292100 fragment	-2,00E-01	1,00E+00	1,35E+00	8,49E-01	-1,20E+00	1,00E+00
594	GSMUA_Achr4G19660_001	Dehydration-responsive element-binding protein 1D DREB1D modules	-2,35E-01	1,00E+00	1,06E+00	8,57E-01	-4,24E-01	1,00E+00
595	GSMUA_Achr5G18900_001	Probable L-ascorbate peroxidase 4 APX4 complete	-4,35E-01	1,00E+00	2,91E+00	9,04E-01	4,96E-01	1,00E+00
596	GSMUA_Achr10G04720_001	NAC-domain protein NAC090 modules	1,04E+00	1,00E+00	1,39E+00	9,37E-01	-5,03E-01	1,00E+00
597	GSMUA_Achr10G15210_001	Putative Aspartic proteinase nepenthesin-2 nep2 modules	1,84E-01	1,00E+00	8,05E-01	9,54E-01	-5,04E-01	1,00E+00
598	GSMUA_Achr3G29120_001	Putative Predicted protein At1g66480 fragment	1,51E-01	1,00E+00	6,80E-01	9,54E-01	-4,53E-01	1,00E+00
599	GSMUA_Achr7G18470_001	Probable galacturonosyltransferase-like 9 GATL9 fragment	2,84E-01	1,00E+00	9,02E-01	9,76E-01	-5,60E-01	1,00E+00
600	GSMUA_Achr10G06050_001	Putative Probable WRKY transcription factor 40 WRKY40 complete	-3,37E-01	1,00E+00	1,10E+00	9,86E-01	-3,08E-01	1,00E+00
601	GSMUA_Achr9G15480_001	Nitrate reductase [NADH] 1 NIA1 complete	-5,64E-01	1,00E+00	-1,22E-01	1,00E+00	1,70E+00	8,23E-01
602	GSMUA_Achr7G13610_001	Putative Probable F-box protein At4g22030 At4g22030 fragment	1,51E-01	1,00E+00	-1,87E-01	1,00E+00	-1,08E+00	1,00E+00
603	GSMUA_Achr9G07530_001	glycosyl transferase family 17 protein, putative, expressed Mgat3 complete	1,78E-02	1,00E+00	6,73E-01	1,00E+00	-8,81E-01	1,00E+00
604	GSMUA_Achr6G31010_001	Putative RING-H2 finger protein ATL3 ATL3 complete	4,03E-01	1,00E+00	4,66E-01	1,00E+00	-4,88E-01	1,00E+00
605	GSMUA_Achr7G03230_001	E3 ubiquitin-protein ligase PUB22 PUB22 fragment	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	4,12E+00	1,00E+00
606	GSMUA_Achr9G12070_001	Chitin-inducible gibberellin-responsive protein 1 CIGR1 fragment	1,08E-01	1,00E+00	4,48E-01	1,00E+00	-8,23E-01	1,00E+00
607	GSMUA_Achr3G16870_001	Calmodulin-like protein 5 CML5 fragment	2,21E-01	1,00E+00	3,29E-01	1,00E+00	-3,13E-01	1,00E+00
608	GSMUA_Achr10G15510_001	AP2/ERF domain-containing transcription factor DREB1F complete	2,02E-01	1,00E+00	-6,59E-02	1,00E+00	1,01E-01	1,00E+00
609	GSMUA_Achr3G26450_001	retrotransposon protein, putative, Ty3-gypsy subclass, expressed LRX4 fragment	5,26E-01	1,00E+00	-1,13E+00	1,00E+00	-7,07E-01	1,00E+00
610	GSMUA Achr7G22130 001	Putative U-box domain-containing protein 16 PUB16 complete	3,25E-01	1,00E+00	5,43E-01	1,00E+00	-2,60E-01	1,00E+00
611	GSMUA Achr9G06920 001	Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic APL2 complete	-2,68E-01	1,00E+00	1,69E-01	1,00E+00	5,45E-01	1,00E+00
612	GSMUA_Achr10G24630_001	phosphate-induced protein 1 conserved region domain containing protein, expressed fprA complete	9,19E-03	1,00E+00	2,08E-01	1,00E+00	3,58E-01	1,00E+00
613	 GSMUA_Achr1G27900_001	Putative Calcium-binding protein CML38 CML38 complete	-3,10E-01	1,00E+00	7,18E-01	1,00E+00	-1,61E-01	1,00E+00
614	GSMUA_Achr6G18760_001	Putative Multidrug and toxin extrusion protein 1 slc47a1 fragment	6,26E-02	1,00E+00	-4,01E-01	1,00E+00	-4,98E-02	1,00E+00
615	GSMUA_Achr1G20910_001	Putative expressed protein Rph3a complete	2,89E-01	1,00E+00	6,37E-01	1,00E+00	-1,75E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN	- 7 DAI	AI Cav. GN - 10	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
616	GSMUA_Achr5G03920_001	Myb-related protein Myb4 MYB4 complete	-5,21E-01	1,00E+00	7,66E-01	1,00E+00	-5,64E-01	1,00E+00
617	GSMUA_Achr1G27980_001	Putative Probable WRKY transcription factor 41 WRKY41 complete	-5,80E-01	1,00E+00	9,72E-01	1,00E+00	-1,07E+00	1,00E+00
618	GSMUA_Achr7G12680_001	phosphate-induced protein 1 conserved region domain containing protein, expressed CCDC45 complete	2,04E-01	1,00E+00	-4,24E-02	1,00E+00	-7,69E-02	1,00E+00
619	GSMUA_Achr1G08716_001	NBS-LRR class resistance protein (Fragment) unknown_gene missing_completeness	-4,27E-01	1,00E+00	7,81E-01	1,00E+00	-6,36E-01	1,00E+00
620	GSMUA_Achr7G15010_001	avr9/Cf-9 rapidly elicited protein, putative, expressed GOLGA2 complete	5,36E-01	1,00E+00	6,86E-01	1,00E+00	3,99E-01	1,00E+00
621	GSMUA_Achr6G02470_001	Putative U-box domain-containing protein 21 PUB21 complete	1,36E+00	1,00E+00	6,86E-01	1,00E+00	-1,69E+00	1,00E+00
622	GSMUA_Achr8G06870_001	Putative Ethylene-responsive transcription factor 4 ERF4 complete	-3,42E-03	1,00E+00	7,76E-01	1,00E+00	4,67E-01	1,00E+00
623	GSMUA_Achr3G13940_001	Hypothetical protein algG missing_functional_completeness	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	2,57E-16	1,00E+00
624	GSMUA_Achr10G24650_001	phosphate-induced protein 1 conserved region domain containing protein, expressed At1g63940	-6,05E-02	1,00E+00	2,06E-01	1,00E+00	3,59E-02	1,00E+00
625	GSMUA_Achr6G33100_001	Mitogen-activated protein kinase 5 MPK5 complete	2,64E-01	1,00E+00	1,52E-01	1,00E+00	-1,09E-01	1,00E+00
626	GSMUA_Achr9G16020_001	Putative lipoxygenase 5 Os04g0447100 complete	-3,90E-01	1,00E+00	7,45E-01	1,00E+00	-6,83E-01	1,00E+00
627	GSMUA_Achr11G15850_001	COBRA-like protein 7 COBL7 complete	-3,18E-01	1,00E+00	-2,79E-03	1,00E+00	1,17E-01	1,00E+00
628	GSMUA_Achr3G05200_001	Probable xyloglucan endotransglucosylase/hydrolase protein 23 XTH23 fragment	3,38E-01	1,00E+00	2,39E-01	1,00E+00	-6,28E-02	1,00E+00
629	GSMUA_Achr9G25720_001	Putative DUF581 domain containing protein, expressed eno complete	3,60E-02	1,00E+00	8,30E-02	1,00E+00	-6,83E-01	1,00E+00
630	GSMUA_Achr6G01580_001	Hypothetical protein tnsE missing_functional_completeness	-3,96E-02	1,00E+00	2,16E-01	1,00E+00	-1,13E-01	1,00E+00
631	GSMUA_Achr6G07600_001	STE_MEKK_stel1_MAP3K.8 - STE kinases include homologs to sterile 7, 11 and 20 from yeast	-4,89E-01	1,00E+00	6,43E-01	1,00E+00	8,28E-02	1,00E+00
632	GSMUA_Achr2G06010_001	Putative Leucine-rich repeat receptor protein kinase EXS EXS complete	3,47E-01	1,00E+00	1,75E-01	1,00E+00	-4,18E-01	1,00E+00
633	GSMUA_Achr1G18570_001	Hypothetical protein ATJ11 missing_functional_completeness	1,49E-02	1,00E+00	6,72E-01	1,00E+00	-4,63E-02	1,00E+00
634	GSMUA_Achr7G25650_001	Putative calcium-transporting ATPase 13, plasma membrane-type ACA13 complete	1,31E-01	1,00E+00	9,49E-01	1,00E+00	-5,06E-01	1,00E+00
635	GSMUA_Achr4G20150_001	Transcription factor MYB44 MYB44 complete	-2,09E-01	1,00E+00	6,78E-01	1,00E+00	1,87E-01	1,00E+00
636	GSMUA_Achr3G31850_001	Hypothetical protein unknown_gene missing_functional_completeness	-4,19E-01	1,00E+00	-3,86E-03	1,00E+00	-4,71E-01	1,00E+00
637	GSMUA_Achr5G04350_001	L-ascorbate oxidase AAO complete	5,19E-02	1,00E+00	3,06E-01	1,00E+00	-7,94E-01	1,00E+00
638	GSMUA_Achr9G01120_001	Putative Protein TIFY 9 TIFY9 fragment	-7,44E-01	1,00E+00	1,52E+00	1,00E+00	7,81E-03	1,00E+00
639	GSMUA_Achr9G18840_001	F-box protein At1g47056 At1g47056 modules	5,62E-01	1,00E+00	9,27E-02	1,00E+00	-8,79E-01	1,00E+00
640	GSMUA_Achr6G17230_001	Hypothetical protein ADT5 missing_functional_completeness	-4,97E-02	1,00E+00	8,04E-01	1,00E+00	1,26E-01	1,00E+00

			Cav. GN - 3 DAI		Cav. GN - 7 DAI		Cav. GN	- 10 DAI
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
641	GSMUA_Achr10G07480_001	Arginine decarboxylase SPE2 complete	2,60E-01	1,00E+00	4,03E-01	1,00E+00	-6,55E-01	1,00E+00
642	GSMUA_Achr7G18920_001	Alpha-amylase isozyme 3D AMY1.3 complete	3,98E-01	1,00E+00	5,79E-01	1,00E+00	-9,26E-01	1,00E+00
643	GSMUA_Achr8G14220_001	Putative Cytokinin-O-glucosyltransferase 2 UGT85A1 complete	-8,48E-01	1,00E+00	8,47E-01	1,00E+00	-3,23E-01	1,00E+00
644	GSMUA_Achr8G17320_001	Hypothetical protein unknown_gene missing_completeness	-4,81E-02	1,00E+00	1,68E-01	1,00E+00	-4,46E-01	1,00E+00
645	GSMUA_Achr10G15880_001	Putative expressed protein Os10g0513300 complete	-3,94E-01	1,00E+00	-2,25E-01	1,00E+00	-6,23E-01	1,00E+00
646	GSMUA_Achr5G26850_001	Putative AP2/ERF domain-containing transcription factor ERF4 complete	1,53E-15	1,00E+00	1,35E+00	1,00E+00	-1,55E+00	1,00E+00
647	GSMUA_Achr1G27910_001	Putative Probable calcium-binding protein CML31 CML31 complete	1,40E-01	1,00E+00	7,16E-01	1,00E+00	-1,90E-01	1,00E+00
648	GSMUA_Achr5G27860_001	Hypothetical protein unknown_gene missing_functional_completeness	-3,07E-01	1,00E+00	1,42E-01	1,00E+00	-1,29E-01	1,00E+00
649	GSMUA_Achr5G11980_001	Putative Disease resistance protein RPS2 RPS5 missing_completeness	2,91E-01	1,00E+00	3,04E-01	1,00E+00	8,47E-02	1,00E+00
650	GSMUA_Achr10G28420_001	3-ketoacyl-CoA synthase 11 KCS11 complete	-2,94E-01	1,00E+00	-1,43E-01	1,00E+00	4,76E-01	1,00E+00
651	GSMUA_Achr10G02460_001	plant-specific domain TIGR01615 family protein, expressed rpoC1 complete	-8,05E-02	1,00E+00	4,82E-01	1,00E+00	-2,73E-02	1,00E+00
652	GSMUA_Achr5G07590_001	NAC domain-containing protein 68 NAC68 complete	-2,13E-02	1,00E+00	4,57E-01	1,00E+00	-1,77E-01	1,00E+00
653	GSMUA_Achr8G08460_001	DNA binding protein, putative, expressed stnA complete	3,65E-01	1,00E+00	1,58E+00	1,00E+00	9,61E-01	1,00E+00
654	GSMUA_Achr11G08650_001	Putative quinone-oxidoreductase homolog, chloroplastic At4g13010 complete	1,83E-02	1,00E+00	-8,45E-01	1,00E+00	2,05E-01	1,00E+00
655	GSMUA_Achr8G30420_001	U-box domain-containing protein 29 PUB29 fragment	-1,72E-01	1,00E+00	4,92E-01	1,00E+00	1,21E-01	1,00E+00
656	GSMUA_Achr10G31130_001	exo70 exocyst complex subunit, putative, expressed Exoc7 complete	-2,65E-01	1,00E+00	4,94E-01	1,00E+00	-1,08E-01	1,00E+00
657	GSMUA_Achr10G17810_001	endonuclease/exonuclease/phosphatase family domain containing protein, expressed CVP2	-2,63E-01	1,00E+00	4,13E-01	1,00E+00	1,03E+00	1,00E+00
658	GSMUA_Achr7G12260_001	Putative expressed protein HPR-A complete	5,91E-02	1,00E+00	6,68E-01	1,00E+00	-8,23E-01	1,00E+00
659	GSMUA_Achr7G00630_001	Putative Whole genome shotgun sequence of line PN40024, oxaA modules	-9,55E-01	1,00E+00	1,54E+00	1,00E+00	-1,18E+00	1,00E+00
660	GSMUA Achr9G10540 001	Putative Vicilin-like antimicrobial peptides 2-1 AMP2-1 fragment	-8,35E-01	1,00E+00	-3.81E-01	1,00E+00	8,26E-01	1,00E+00
661	 GSMUA_Achr3G15840_001	Putative Whole genome shotgun sequence of line PN40024, WRKY41	1,26E-01	1,00E+00	4,47E-01	1,00E+00	-1,08E+00	1,00E+00
662	GSMUA_Achr3G06960_001	Hypothetical protein ERF109 missing_functional_completeness	-1,22E+00	1,00E+00	6,93E-01	1,00E+00	-1,78E+00	1,00E+00
663	GSMUA_Achr1G08710_001	Putative expressed protein lok complete	9,05E-02	1,00E+00	5,13E-01	1,00E+00	2,55E-01	1,00E+00
664	GSMUA_Achr6G14790_001	Putative Dehydration-responsive element-binding protein 3 DREB3 fragment	-5,90E-01	1,00E+00	1,00E+00	1,00E+00	-5,24E-02	1,00E+00
665	GSMUA_Achr8G20650_001	Hypothetical protein lipB missing_functional_completeness	1,53E-15	1,00E+00	1,52E+00	1,00E+00	4,12E+00	1,00E+00

			Cav. GN - 3 DA		Cav. GN - 7 DAI		7 DAI Cav. GN	
Num	Gene	Produto	logFC	FDR	logFC	FDR	logFC	FDR
666	GSMUA_Achr6G32320_001	NAC domain-containing protein 29 NAC029 modules	-7,35E-02	1,00E+00	4,03E-01	1,00E+00	-2,05E-01	1,00E+00
667	GSMUA_Achr6G13720_001	aspartic proteinase nepenthesin precursor, putative, expressed nep2 complete	3,56E-01	1,00E+00	3,73E-01	1,00E+00	1,04E-01	1,00E+00
668	GSMUA_Achr4G32410_001	Putative expressed protein Os01g0164600 complete	-9,08E-02	1,00E+00	-2,01E-01	1,00E+00	2,80E-01	1,00E+00
669	GSMUA_Achr8G12940_001	Thaumatin-like protein 1 TL1 complete	1,00E+00	5,85E-01	1,49E-01	1,00E+00	8,90E-01	1,00E+00
670	GSMUA_Achr2G21970_001	Expansin-A15 EXPA15 complete	-1,73E+00	6,80E-01	3,36E+00	1,00E+00	2,48E+00	3,50E-01
671	GSMUA_Achr9G23620_001	Putative Leucoanthocyanidin dioxygenase ANS complete	-3,71E+00	7,57E-01	4,21E-02	1,00E+00	-5,21E-02	1,00E+00
672	GSMUA_Achr10G05070_001	Hypothetical protein NAC098 missing_functional_completeness	-1,20E+00	8,40E-01	3,70E-01	1,00E+00	-6,51E-01	1,00E+00
673	GSMUA_Achr2G04380_001	Caffeic acid 3-O-methyltransferase COMT1 complete	-4,18E-01	9,69E-01	1,30E+00	6,91E-01	3,26E-01	1,00E+00
674	GSMUA_Achr4G09170_001	calmodulin-binding protein, putative, expressed RAD50 fragment	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	-1,41E+01	9,58E-01
675	GSMUA_AchrUn_randomG16330_001	Caffeic acid 3-O-methyltransferase OMT complete	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	2,57E-16	1,00E+00
676	GSMUA Achr3G30250 001	expressed protein rsmA fragment	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	2,57E-16	1,00E+00
677	GSMUA Achr3G30240 001	Putative uncharacterized protein murC fragment	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	2,57E-16	1,00E+00
678	GSMUA_AchrUn_randomG14900_001	Putative (+)-delta-cadinene synthase isozyme A CAD1-A fragment	1,53E-15	1,00E+00	-9,03E-17	1,00E+00	2,57E-16	1,00E+00
679	GSMUA AchrUn randomG20630 001	metallothionein. putative. expressed MT4A fragment	1.53E-15	1.00E+00	-9.03E-17	1.00E+00	2.57E-16	1.00E+00
680	GSMUA_Achr9G18820_001	O-methyltransferase, putative, expressed COMT complete	-3,71E-01	1,00E+00	3,29E-01	1,00E+00	3,90E-02	1,00E+00

ANEXO IV

Tabela 1 - Resultado da anotação funcional dos genes diferencialmente expressos relacionados a vias de resposta ao estresse, nos 3 dia de avaliação para o genótipo CAV
(continua)

	CAV GN - 3 DAI												
Gene	logFC	logCPM	LR	Valor P	FDR	Método	Nota						
GSMUA_Achr10G08760_001	3,047392094	2,044413257	19,74897247	8,83E-06	0,016676216	BH	Putative Salt stress-induced protein SALT modules						
GSMUA_Achr10G08750_001	2,863256917	2,131526854	13,85848431	0,000197105	0,113523769	BH	Putative Salt stress-induced protein SALT fragment						
GSMUA_Achr3G25610_001	- 1,837731512	5,104466397	8,194185762	0,004202485	0,580993564	BH	universal stress protein domain containing protein, putative, expressed At3g01520 complete						
GSMUA_Achr10G28690_001	1,628960646	3,520111716	7,189907558	0,007331476	0,739122828	BH	stress-induced protein, putative, expressed TIF32 complete						
GSMUA_Achr7G25030_001	2,446485559	2,599485424	6,02748282	0,014084805	0,958988868	BH	stress-induced protein, putative, expressed proB complete						
GSMUA_Achr6G32300_001	- 1,069644944	6,620301357	5,319055457	0,021093442	1	BH	stress responsive protein, putative, expressed fimD complete						
GSMUA_Achr11G10320_001	5,345134655	- 1,807455089	5,186378567	0,022764606	1	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr3G20980_001	1,349258842	1,593537902	4,184021123	0,040806772	1	BH	Putative 66 kDa stress protein wdpA complete						
GSMUA_Achr4G10060_001	1,727027884	- 0,080229677	4,090756763	0,043118332	1	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr1G24830_001	1,519343471	0,445482514	4,065224873	0,043774856	1	BH	Putative Universal stress protein A-like protein At3g01520 fragment						
					CAV (GN - 7 DA	I						
Gene	logFC	logCPM	LR	Valor P	FDR	Método	Nota						
GSMUA_Achr9G07600_001	3,796458948	1,345454603	20,23875144	6,84E-06	0,006119978	BH	Putative Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete						
GSMUA_Achr3G11070_001	1,819579052	7,952639189	12,27019866	0,000460249	0,101211776	вн	Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete						
GSMUA_Achr10G25230_001	1,86145321	1,583849755	9,81641296	0,001729613	0,217717683	BH	Heat stress transcription factor B-4 HSFB4 fragment						
GSMUA_Achr9G19860_001	2,093122234	6,712356196	9,673757921	0,001869186	0,225284833	BH	Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete						
GSMUA_Achr3G22730_001	1,730236913	6,385518583	9,475971004	0,002081807	0,239401401	BH	Zinc finger A20 and AN1 domain-containing stress-associated protein 4 SAP4 complete						
GSMUA_Achr3G10340_001	1,320510824	5,043023056	9,263875774	0,002337179	0,260021534	BH	Zinc finger AN1 domain-containing stress-associated protein 12 SAP12 fragment						
GSMUA_Achr6G09040_001	4,389853422	- 1,505608618	4,484347675	0,034206598	0,897630792	BH	universal stress protein domain containing protein, putative, expressed At3g01520 complete						
GSMUA_Achr10G08760_001	4,980504302	- 1,125901986	4,255895777	0,039114314	0,944488153	BH	Putative Salt stress-induced protein SALT modules						
GSMUA_Achr5G03000_001	-0,81390796	3,986169504	4,040335712	0,044424983	0,965435207	BH	Heat stress transcription factor A-2b HSFA2B complete						

Tabela 1 - Resultado da anotação funcional dos genes diferencialmente expressos relacionados as vias de resposta ao estresse, nos 3 dia de avaliação para o genótipo CAV (conclusão)

CAV GN-10 DAI													
Gene	logFC												
GSMUA_Achr10G08800_001	1,987479787	4,058648352	6,332880037	0,01185197	1	BH	Putative Salt stress-induced protein SALT complete						
GSMUA_Achr10G25230_001	-5,282055187	0,552893973	5,998777074	0,014315798	1	BH	Heat stress transcription factor B-4 HSFB4 fragment						
GSMUA_Achr5G07840_001	-3,060909586	-1,351622089	4,534360062	0,033220876	1	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr2G08790_001	-4,644265617	-0,760321327	4,143919684	0,04178431	1	BH	Putative Universal stress protein A-like protein At3g01520 complete						

Tabela 2. - Resultado da anotação funcional dos genes diferencialmente expressos relacionados as vias de resposta ao estresse, nos 3 dia de avaliação para o genótipo 4279-06m (continua)

	4279-06 – 3 DAI												
Gene	Gene logFC logCPM LR Valor P FDR metodo		Nota										
GSMUA_Achr11G10320_001	-7,635496424	- 0,423254079	18,45291706	1,74E-05	0,00609765	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr10G08750_001	-3,286325642	4,217842348	17,75745136	2,51E-05	0,007996673	BH	Putative Salt stress-induced protein SALT fragment						
GSMUA_Achr6G07290_001	-1,405992623	5,329217462	15,39838693	8,71E-05	0,019841826	BH	universal stress protein domain containing protein, putative, expressed PUB35 fragment						
GSMUA_Achr10G08760_001	-3,173230992	5,099324443	14,79023651	0,000120156	0,023290444	BH	Putative Salt stress-induced protein SALT modules						
GSMUA_Achr5G03000_001	1,73526157	3,447287773	13,96353874	0,00018639	0,030876774	BH	Heat stress transcription factor A-2b HSFA2B complete						
GSMUA_Achr5G07840_001	-3,762762985	- 0,157604819	10,66315362	0,001092909	0,101969547	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr4G23550_001	-2,45416365	0,486158026	8,799681776	0,003012831	0,183919633	BH	universal stress protein domain containing protein, putative, expressed SPAC167.05 complete						
GSMUA_Achr4G10060_001	-2,16063633	0,248296933	6,307584877	0,01202225	0,372453265	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr10G08800_001	-1,451417284	7,446819547	6,153399679	0,013115974	0,382324447	BH	Putative Salt stress-induced protein SALT complete						
GSMUA_Achr3G07020_001	-1,241138602	1,97153513	6,111252778	0,013432389	0,38676228	BH	Putative Heat stress transcription factor B-4 HSFB4 complete						
GSMUA_Achr8G30340_001	1,302372618	3,73942231	5,735248371	0,016627716	0,425893255	BH	abscisic stress-ripening, putative, expressed ASR1 missing_completeness						
GSMUA_Achr3G23800_001	-1,308780981	1,096832692	4,399560369	0,035948196	0,578193735	BH	stress regulated protein, putative, expressed purL complete						
GSMUA_Achr4G19760_001	0,621280193	7,356491225	4,144977924	0,0417582	0,603723879	BH	Putative Heat stress transcription factor B-2b HSFB2B complete						
GSMUA_Achr1G16240_001	0,633471246	5,846711919	3,902565622	0,048212428	0,632095952	BH	Putative Heat stress transcription factor B-2b HSFB2B complete						

4279-06 – 7 DAI													
Gene	logFC	logCPM	LR	Valor P	Metodo	Nota							
GSMUA_Achr9G19860_001	1,375709491	6,622919995	20,6472674	5,52E-06	0,009478019	BH	Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete						
GSMUA_Achr9G07600_001	2,198883325	1,997404733	13,22265972	0,000276585	0,136918026	BH	Putative Zinc finger A20 and AN1 domain-containing stress-associated protein 1 SAP1 complete						
GSMUA_Achr6G24430_001	-0,77713373	4,615206972	8,139414811	0,004331326	0,59193607	BH	Heat stress transcription factor A-2c HSFA2C complete						
GSMUA_Achr3G22730_001	0,872210898	5,729843423	7,494159628	0,006189941	0,655086028	BH	Zinc finger A20 and AN1 domain-containing stress-associated protein 4 SAP4 complete						
GSMUA_Achr6G26420_001	1,45275861	0,209574427	4,487298916	0,034147591	1	BH	stress-induced protein, putative, expressed purL complete						
GSMUA_Achr5G03000_001	-0,568156022	4,287943783	4,314736066	0,037783632	1	BH	Heat stress transcription factor A-2b HSFA2B complete						
GSMUA_Achr6G00960_001	-0,577187356	5,364168813	4,060044234	0,043909349	1	BH	Putative Heat stress transcription factor A-2 HSFA2 complete						
					4270-0	6 10 DAI							
~													
Gene	logFC	logCPM	LR	Valor P	FDR	Metodo	Nota						
GSMUA_Achr6G23610_001	2,741711753	0,484153662	7,605958231	0,005817574	1	BH	Putative Universal stress protein A-like protein At3g01520 fragment						
GSMUA_Achr4G10060_001	-9,126797793	-1,01886574	4,730323066	0,029635318	1	BH	Heat stress transcription factor B-4b HSFB4B complete						
GSMUA_Achr4G23550_001	2,286848769	0,246565939	4,606962595	0,031842386	1	BH	universal stress protein domain containing protein, putative, expressed SPAC167.05 complete						
GSMUA_Achr1G24830_001	1,621184968	1,308660955	4,108916382	0,042657686	1	BH	Putative Universal stress protein A-like protein At3g01520 fragment						

Tabela 2. - Resultado da anotação funcional dos genes diferencialmente expressos relacionados as vias de resposta ao estresse, nos 3 dia de avaliação para o genótipo 4279-06 (conclusão)

ANEXO V

CAV GN-3 DAI													
Gene	logFC	logCPM	LR	Valor P	FDR	Metodo	Nota						
GSMUA_Achr9G02735_001	2,569739346	0,028975359	8,892811022	0,002862956	0,467997373	BH	NB-ARC/LRR disease resistance protein, putative, expressed unknown_gene missing_completeness						
GSMUA_Achr3G10930_001	1,945215406	1,134918061	8,882957654	0,002878449	0,467997373	BH	NB-ARC/LRR disease resistance protein, putative, expressed RGA2 missing_completenes						
GSMUA_Achr8G30710_001	1,604635706	2,692045728	8,77071245	0,003061059	0,483647255	BH	Putative Disease resistance protein RPM1 RPM1 missing_completeness						
GSMUA_Achr1G08700_001	1,94682179	0,259709971	6,78887901	0,009172749	0,837213726	BH	NB-ARC/LRR disease resistance protein, putative, expressed At4g27190 missing_complet						
GSMUA_Achr10G07100_001	1,558516481	1,706219221	6,00695719	0,014249579	0,962264895	BH	NBS-LRR disease resistance protein, putative RGA1 missing_completeness						
GSMUA_Achr11G18580_001	1,04777201	5,085886194	4,886707316	0,027064255	1	BH	Putative disease resistance RPP13-like protein 1 RGA1 missing_completeness						
GSMUA_Achr3G01060_001	1,187296239	2,166469087	4,710487345	0,029979152	1	BH	Pleiotropic drug resistance protein 3 PDR3 complete						
GSMUA_Achr9G17310_001	1,205296402	1,94630148	4,670096809	0,030692197	1	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness						
CAV GN -7 DAI													
Gene	logFC	logCPM	LR	Valor P	FDR	Metodo	Nota						
GSMUA_Achr1G08716_001	2,712674141	4,013828573	18,81973322	1,44E-05	0,01019373	BH	NBS-LRR class resistance protein (Fragment) unknown_gene missing_completeness						
GSMUA_Achr1G08690_001	3,065880928	1,376713855	14,89914796	0,000113414	0,042219093	BH	Truncated NBS-LRR disease resistance protein (Fragment) unknown_gene missing_complet						
GSMUA_Achr1G25300_001	-1,795197432	2,467993262	14,454591	0,000143579	0,047181271	BH	Putative Tellurite resistance protein tehA homolog tehA modules						
GSMUA_Achr5G11980_001	1,566776466	5,868086649	13,85184218	0,000197803	0,059505391	вн	Putative Disease resistance protein RPS2 RPS5 missing_completeness						
GSMUA_Achr9G12130_001	2,313223759	2,887803477	11,34391605	0,000756955	0,131780324	вн	disease resistance protein, putative, expressed RPP13L4 complete						
GSMUA_Achr6G19710_001	-1,340716278	2,962769114	10,79878213	0,001015669	0,159804242	BH	Putative disease resistance RPP13-like protein 1 RGA2 missing_completeness						
GSMUA_Achr6G11450_001	4,54900858	-0,559652852	8,119269622	0,00437972	0,371771991	BH	Putative Disease resistance protein RPS5 RPS5 missing_completeness						
GSMUA_Achr4G28700_001	1,405298553	2,170483675	7,326370984	0,006795011	0,46824018	вн	Putative Disease resistance protein RPS5 RPS5 missing_completeness						
GSMUA_Achr11G18580_001	-0,898212785	4,793843708	6,899517331	0,008621902	0,517705114	ВН	Putative disease resistance RPP13-like protein 1 RGA1 missing_completeness						
GSMUA_Achr8G03665_001	2,711027098	-0,120766651	5,484723919	0,019183349	0,719213026	вн	NBS-LRR class resistance protein (Fragment) unknown_gene missing_completeness						
GSMUA_Achr10G07050 001	-0,872571353	4,147697234	5,360407902	0,020598955	0,735806131	BH	NBS-LRR disease resistance protein, putative RGA1 missing_completeness						

Tabela 1. - Resultado da anotação funcional dos genes diferencialmente expressos relacionados a vias de resistência, nos 3 dia de avaliação para o genótipo CAV (continua)

GSMUA_Achr10G07060_001	-2,954052857	-0,829047188	5,254921168	0,021884793	0,737415542	BH	Putative disease resistance protein RGA4 RGA1 missing_completeness
GSMUA_Achr3G12910_001	-4,243199856	-1,144539192	4,090639888	0,043121314	0,965435207	BH	Putative multidrug resistance protein Os02g0190300 fragment
GSMUA_Achr6G32040_001	-1,057772111	1,590504922	3,942261831	0,047087426	0,986346353	BH	Putative disease resistance RPP13-like protein 1 RGA1 missing_completeness

Tabela 1. - Resultado da anotação funcional dos genes diferencialmente expressos relacionados a vias de resistência, nos 3 dia de avaliação para o genótipo CAV (conclusão)

	CAV 10 DAI												
Gene	logFC	logCPM	LR	Valor P	FDR	Metodo	Nota						
GSMUA_Achr9G21990_001	-6,680773797	-0,765434557	11,65649862	0,000639786	0,572822123	BH	Putative Tellurite resistance protein tehA tehA complete						
GSMUA_Achr9G19660_001	-5,155600123	-1,0935981	7,239173408	0,007132981	1	BH	Putative Probable disease resistance RPP8-like protein 4 RPP8L1 missing_completeness						
GSMUA_Achr1G02720_001	-5,734300352	-0,674482399	6,577622676	0,010326873	1	BH	Putative Disease resistance response protein 206 PI206 modules						
GSMUA_Achr6G11450_001	-2,671735514	1,100622987	6,032594762	0,014044074	1	BH	Putative Disease resistance protein RPS5 RPS5 missing_completeness						
GSMUA_Achr11G12630_001	3,260032477	-0,366098479	5,830326382	0,015752201	1	BH	Putative Disease resistance response protein 206 PI206 complete						
GSMUA_Achr8G15700_001	-2,491165809	4,772964566	5,308896014	0,021216797	1	BH	Putative Disease resistance response protein 206 PI206 modules						
GSMUA_AchrUn_randomG23620_001	2,623406529	-0,227066752	4,857225762	0,027530571	1	BH	Putative disease resistance protein At3g14460 At3g14460 fragment						
GSMUA_Achr3G27830_001	-2,2565737	0,52242188	4,119796914	0,042384166	1	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness						
GSMUA_AchrUn_randomG24150_001	4,281282831	-1,226417066	3,926743167	0,047523897	1	BH	Putative multidrug resistance protein Os02g0190300 fragment						

Tabela 2. - Resultado da anotação funcional dos genes diferencialmente expressos relacionados a vias de resistência, nos 3 dia de avaliação para o genótipo 4279-06 (continua)

	4279-06 – 3 DAI												
Gene	logFC	logCPM	LR	Valor P	FDR	Método	Nota						
GSMUA_Achr8G15700_001	-2,044985303	3,378016451	22,7310199	1,86E-06	0,001130155	BH	Putative Disease resistance response protein 206 PI206 modules						
GSMUA_Achr3G12900_001	4,251781615	-0,86300016	8,15859834	0,004285748	0,214442756	BH	Putative multidrug resistance protein Os02g0190300 fragment						
GSMUA_Achr3G22250_001	0,955504181	3,742674854	7,607815194	0,005811586	0,2543082	BH	Putative Disease resistance protein RGA2 RGA2 missing_completeness						
GSMUA_Achr3G01060_001	-1,232743273	2,781043073	7,03385651	0,007998293	0,300758001	BH	Pleiotropic drug resistance protein 3 PDR3 complete						
GSMUA_Achr6G19890_001	-4,996204254	-0,862244214	6,46827629	0,010981699	0,353255626	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness						
GSMUA_Achr3G22290_001	0,820391257	4,02382997	5,996173829	0,014336938	0,40024219	BH	Putative disease resistance RPP13-like protein 1 RGA1 missing_completeness						
GSMUA_Achr9G01490_001	-1,474198717	1,286357635	5,963191288	0,014607577	0,403602749	BH	Pleiotropic drug resistance protein 4 PDR4 complete						

GSMUA_Achr9G24910_001	1,248355064	2,526301224	5,729746338	0,016679892	0,426107779	BH	Putative Disease resistance RPP13-like protein 4 RPP13L4 missing_completeness
GSMUA_Achr8G25780_001	-1,181285194	2,164907933	5,489842003	0,019127271	0,45886794	BH	Putative Disease resistance protein RPM1 At1g59620 missing_completeness
GSMUA_Achr3G22320_001	0,703186504	4,952552053	5,427397922	0,019823195	0,464042659	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness
GSMUA_Achr3G27820_001	0,841871914	3,685255692	5,08638897	0,024114353	0,498447311	BH	NBS-LRR class resistance protein (Fragment) RGA2 missing_completeness
GSMUA_Achr10G07080_001	0,788493514	3,411832873	4,832430076	0,027929238	0,524847452	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness
GSMUA_Achr9G02765_001	0,78178023	3,273037732	4,613310498	0,031724732	0,549933397	BH	NBS-LRR disease resistance protein, putative unknown_gene missing_completeness
GSMUA_Achr9G02520_001	3,855933633	-1,193059739	4,535419066	0,033200327	0,562371664	BH	Putative Disease resistance protein RPS2 At1g61190 missing_completeness
GSMUA_Achr10G07100_001	0,954518437	2,350991829	4,456422319	0,034770249	0,570039116	BH	NBS-LRR disease resistance protein, putative RGA1 missing_completeness
GSMUA_Achr11G12360_001	0,618275495	5,38060744	4,354238362	0,036916963	0,581668028	BH	Pleiotropic drug resistance protein 12 PDR12 complete
GSMUA_Achr4G30570_001	-1,185249272	1,34968944	4,353524639	0,036932436	0,581668028	BH	disease resistance-responsive family protein, putative PI206 modules
GSMUA_Achr9G11660_001	0,78813127	2,941316212	4,158920752	0,041415785	0,603723879	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness
GSMUA_Achr1G25300_001	-1,089872314	1,61234736	4,072011332	0,04359933	0,613585113	BH	Putative Tellurite resistance protein tehA homolog tehA modules
GSMUA_Achr7G23430_001	0,791577233	5,867744465	3,973216412	0,046229388	0,628719679	BH	Putative Disease resistance response protein 206 PI206 complete
GSMUA_Achr10G07150_001	0,704821922	3,632570957	3,862494062	0,049376878	0,63982361	BH	Putative disease resistance protein RGA3 RGA1 missing_completeness

Tabela 2. - Resultado da anotação funcional dos genes diferencialmente expressos relacionados a vias de resistência, nos 3 dia de avaliação para o genótipo 4279-06 (conclusão)

	4279-06 - 7 DAI												
gene	logFC	logCPM	LR	Valor P	FDR	Método	Nota						
GSMUA_Achr7G23430_001	1,022717127	4,713296875	9,933529533	0,00162295	0,383832858	BH	Putative Disease resistance response protein 206 PI206 complete						
GSMUA_Achr1G25300_001	1,400950464	1,91633502	9,53910122	0,002011402	0,422551768	BH	Putative Tellurite resistance protein tehA homolog tehA modules						
GSMUA_Achr1G08690_001	1,361692352	1,862241325	7,260610184	0,007048334	0,690840623	BH	Truncated NBS-LRR disease resistance protein (Fragment) unknown_gene missing_completeness						
GSMUA_Achr11G12630_001	3,212184651	-0,640259264	7,125042103	0,007601463	0,692516189	BH	Putative Disease resistance response protein 206 PI206 complete						
GSMUA_Achr9G11260_001	1,119566629	2,676624061	6,358020334	0,011685185	0,787113061	BH	Putative Disease resistance response protein 206 PI206 modules						
GSMUA_Achr9G24910_001	1,26941652	1,39855413	6,23046717	0,01255706	0,80305391	BH	Putative Disease resistance RPP13-like protein 4 RPP13L4 missing_completeness						
GSMUA_Achr8G15700_001	0,976933538	2,849556938	5,704264796	0,016923742	0,903774498	BH	Putative Disease resistance response protein 206 PI206 modules						
GSMUA_Achr9G11240_001	1,000483964	7,158895697	5,620483485	0,017751751	0,903774498	BH	Putative Disease resistance response protein 206 PI206 complete						
GSMUA_Achr9G12130_001	0,696636033	3,569807641	4,910974168	0,026686586	0,97611966	BH	disease resistance protein, putative, expressed RPP13L4 complete						
GSMUA_Achr9G11250_001	1,081770036	2,642206046	4,476357531	0,034366891	1	BH	Putative Disease resistance response protein 206 PI206 complete						
GSMUA_Achr8G15710_001	1,463746302	0,077739215	3,939810149	0,047156099	1	BH	Putative Disease resistance response protein 206 PI206 complete						
GSMUA_Achr1G08716_001	0,781476926	4,09158321	3,870794354	0,049133262	1	BH	NBS-LRR class resistance protein (Fragment) unknown_gene missing_completeness						

	4279-06 – 10 DAI												
Gene	logFC	logCPM	LR	Valor P	FDR	Método	Nota						
							NB-ARC/LRR disease resistance protein, putative, expressed RGA2						
GSMUA_Achr9G19800_001	6,07878313	0,490437141	11,57440154	0,00066866	0,474420243	BH	missing_completeness						
GSMUA_Achr11G24170_001	-8,076981397	-0,435004627	6,524177261	0,010641776	1	BH	Pleiotropic drug resistance protein 13 PDR13 complete						
GSMUA_Achr6G19890_001	-9,126797793	-1,01886574	4,730323066	0,029635318	1	BH	Putative disease resistance protein RGA1 RGA1 missing_completeness						
GSMUA_Achr9G02460_001	-9,126797793	-1,01886574	4,730323066	0,029635318	1	BH	Putative disease resistance protein RGA4 RGA2 missing_completeness						
GSMUA_Achr7G23430_001	1,295329336	4,138695955	4,293880965	0,03824976	1	BH	Putative Disease resistance response protein 206 PI206 complete						