

Universidade de Brasília Instituto de Ciências Exatas Departamento de Matemática

Dissertação de Mestrado em Matemática

Superfícies Máximas no Espaço de Lorentz-Heisenberg

Dhiego Loiola de Araújo

Brasília 2013 Universidade de Brasília Instituto de Ciências Exatas Departamento de Matemática

Dissertação de Mestrado em Matemática

Superfícies Máximas no Espaço de Lorentz-Heisenberg

Dhiego Loiola de Araújo

Orientadora: Prof.^a Dr.^a Luciana Maria Dias de Ávila Rodrigues

Brasília 2013 Universidade de Brasília Instituto de Ciências Exatas Departamento de Matemática

Superfícies Máximas no Espaço de Lorentz-Heisenberg

Dhiego Loiola de Araújo¹

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática-UnB como requisito parcial para a obtenção do título de Mestre em Matemática.

Brasília, 2013.

Comissão Examinadora:

Prof.^a Dr.^a Luciana Maria Dias de Ávila Rodrigues (Orientadora) - MAT/UNB

Prof. Dr. João Paulo dos Santos - MAT/UNB

Prof. Dr. Marcelo Almeida de Souza - UFG

 $^1{\rm O}$ autor foi bolsista REUNI/CAPES durante a elaboração desta dissertação.

Agradecimentos

Agradeço a Deus pela oportunidade de realizar este trabalho.

Às dificuldades, que ajudaram a me tornar uma pessoa melhor.

À minha mãe, meu avô e meus irmãos pelo suporte.

À minha amada Angélica pela compreensão e apoio.

Ao CNPq/CAPES pelo apoio financeiro.

À professora Luciana pela disposição em ser minha orientadora e por todo profissionalismo durante a realização deste trabalho. Foi muito bom estar sob a orientação de alguém tão competente.

Aos professores João Paulo e Marcelo Almeida por suas sugestões e comentários, contribuíram bastante para deixar o trabalho mais completo e melhorar meu entendimento sobre diversos aspectos relacionados ao tema.

Aos meus amigos Aristóteles, Marina, Mayra, Daniel, Ana Cristina e a todos os outros não citados pelas horas incontáveis de estudos, diversão, alegrias e muito trabalho que passamos juntos.

Resumo

Neste trabalho, estudamos superfícies tipo-espaço imersas no espaço de Lorentz-Heisenberg tridimensional que possuem curvatura média constante nula, denominadas superfícies máximas. Mostramos que a aplicação de Gauss de tais superfícies é uma aplicação harmônica na esfera de Riemann trivial, $\mathbb{C} \cup \{\infty\}$, munida com uma métrica conforme. Resolvemos o problema de Calabi-Bernstein mostrando a não existência de gráficos máximos inteiros no espaço de Lorentz-Heisenberg e perturbando a diferencial de Hopf, obtemos diferenciais quadráticas holomorfas em superfícies máximas neste espaço. Por fim, construímos uma correspondência entre superfícies de curvatura média constante não nula em \mathbb{R}^3 e superfícies máximas no espaço de Lorentz-Heisenberg.

Palavras-chave: Espaço de Lorentz-Heisenberg. Aplicação harmônica. Correspondência entre superfícies. Superfícies máximas.

Abstract

In this paper, we study the spacelike surfaces with zero mean curvature immersed in the Lorentz-Heisenberg space, called maximal surfaces. We prove that de Gauss map of maximal surfaces are harmonic maps into the trivial Riemann sphere, $\mathbb{C} \cup \{\infty\}$, endowed with a conformal metric. We solve the Calabi-Bernstein problem showing the nonexistence of entire maximal graphs in the Lorentz-Heisenberg space, and disturbing the Hopf differential, we obtain holomorphic quadratic differentials on the maximal surfaces. We build a correspondence between non-zero constant mean curvature surfaces in \mathbb{R}^3 and maximal surfaces in the Lorentz-Heisenberg space.

Keywords: Lorentz-Heisenberg space. Harmonic map. Correspondence between surfaces. Maximal surfaces.

Sumário

In	ntrodução	7
1	Preliminares	12
	1.1 Conceitos Básicos de Geometria Riemanniana	12
	1.2 Grupos de Lie	18
	1.3 O Espaço de Lorentz-Heisenberg	23
	1.4 Aplicações Harmônicas entre Superfícies de Riemann	31
2	A Aplicação de Gauss de Superfícies Máximas em $\mathbf{Nil}_1^3(\tau)$	35
3	O Problema de Calabi-Bernstein em $\mathbf{Nil}_1^3(\tau)$	49
4	Diferenciais Quadráticas em Superfícies Máximas em $\mathbf{Nil}_1^3(\tau)$	64
5	A Correspondência entre Gráficos CMC em \mathbb{R}^3 e gráficos máximos $\mathbf{Nil}_1^3(\tau)$	em 68
R	eferências Bibliográficas	80

Introdução

As superfícies mínimas, de um ponto de vista variacional, são os pontos críticos do funcional área em espaços que possuem métrica positiva definida. Esta condição é equivalente ao fato de que sua curvatura média seja nula em todos os pontos da superfície. A nomenclatura "mínima" vem do problema proposto por Lagrange em 1760: dada uma curva Γ simples e fechada em \mathbb{R}^3 , achar uma superfície de área mínima que tem Γ como fronteira, veja [22]. Nos espaços tridimensionais com métrica semi-Riemanniana, as superfícies que são pontos críticos do funcional área e maximizam o volume na métrica do espaço, em que a métrica induzida do espaço ambiente é positiva definida, são denominadas superfícies máximas. Equivalentemente, são superfícies de curvatura média nula que possuem métrica induzida positiva definida.

O estudo da aplicação de Gauss de superfícies mínimas e de curvatura média constante é uma ferramenta importante que nos auxilia a conhecer melhor tais superfícies e nos proporciona resultados interessantes. Por exemplo, a aplicação de Gauss de superfícies de curvatura média constante em \mathbb{R}^3 , (respectivamente superfícies tipo-espaço de curvatura média constante em \mathbb{L}^3) é uma aplicação harmônica em \mathbb{S}^2 (respectivamente, no plano hiperbólico \mathbb{H}^2). Aplicações harmônicas entre superfícies são pontos críticos do funcional energia naturalmente definido. São aplicações cujo campo de tensão, dado pela Definição 1.20, é nulo.

Em [15], I. Fernández e P. Mira provaram a existência de uma aplicação de Gauss harmônica, denominada aplicação de Gauss hiperbólica, de superfícies de curvatura média constante $\frac{1}{2}$ em $\mathbb{H}^2 \times \mathbb{R}$ no plano hiperbólico \mathbb{H}^2 . Em virtude da correspondência isométrica entre as superfícies CMC $\frac{1}{2}$ em $\mathbb{H}^2 \times \mathbb{R}$ e superfícies mínimas no espaço de Heisenberg Nil³, é natural estudar o mesmo problema para superfícies mínimas em Nil³ munido com uma métrica invariante à esquerda, veja [10]. Em [11], B. Daniel mostrou que a aplicação de Gauss destas superfícies é uma aplicação harmônica no plano hiperbólico \mathbb{H}^2 .

Aplicações harmônicas no plano \mathbb{H}^2 também surgem no estudo de superfícies de curvatura média constante no espaço de Lorentz \mathbb{L}^3 . Em [26], T. Milnor demonstrou que a aplicação de Gauss de superfícies tipo-espaço de curvatura média constante em \mathbb{L}^3 é uma aplicação harmônica em \mathbb{H}^2 .

O espaço de Heisenberg surgiu primeiramente nos trabalhos de L. Bianchi em [6], sobre a classificação de métricas Riemannianas $g_{\tau,\kappa}$ que dependem de dois parâmetros em \mathbb{R}^3 . Independentemente, E. Cartan em [8], e G. Vranceanu em [28], publicaram na mesma época artigos relacionados a este tema. A variedade Riemanniana $(M, g_{\tau,\kappa})$ definida como o conjunto

$$M = \left\{ (x, y, z) \in \mathbb{R}^3 | 1 + \frac{\kappa}{4} (x^2 + y^2) > 0 \right\},\$$

munido com a métrica

$$g_{\tau,\kappa} = \frac{dx^2 + dy^2}{(1 + \frac{\kappa}{4}(x^2 + y^2))^2} + \left(dz + \tau \frac{ydx - xdy}{1 + \frac{\kappa}{4}(x^2 + y^2)}\right)^2,$$

é conhecida como espaço de Bianchi-Cartan-Vranceanu, ou espaço BCV. O espaço de Heisenberg, denotado por $\text{Nil}^3(\tau)$, é o espaço Euclidiano \mathbb{R}^3 equipado com a seguinte métrica

$$dx^2 + dy^2 + (\tau(ydx - xdy) + dz)^2.$$

Ou seja, o espaço de Heisenberg é um dos espaços BCV. Nosso espaço ambiente $\operatorname{Nil}_1^3(\tau)$ é o \mathbb{R}^3 equipado com a seguinte métrica de Lorentz

$$dx^2 + dy^2 - (\tau(ydx - xdy) + dz)^2.$$

Este trabalho se baseia em [23] e nosso objeto de estudo são as superfícies tipo-espaço de curvatura média nula no espaço de Lorentz-Heisenberg $\operatorname{Nil}_1^3(\tau)$, com $\tau \neq 0$, denominadas superfícies máximas em $\operatorname{Nil}_1^3(\tau)$. Estudamos a aplicação de Gauss de tais superfícies, obtemos uma diferencial quadrática em superfícies máximas, resolvemos o problema de Calabi-Bernstein em $\operatorname{Nil}_1^3(\tau)$ e mostramos a correspondência entre superfícies máximas e superfícies de curvatura média constante não nula em \mathbb{R}^3 .

No primeiro capítulo, introduzimos alguns conceitos básicos sobre geometria Rieman-

niana e métricas Lorentzianas, definições e propriedades de grupos de Lie, aplicações harmônicas entre superfícies e apresentamos uma maneira de construir o espaço de Lorentz-Heisenberg.

No Capítulo 2, mostramos que a aplicação de Gauss de uma superfície máxima é uma aplicação harmônica em $\mathbb{C} \cup \{\infty\}$. Obtemos uma representação tipo Weierstrass para estas superfícies e, observando a fórmula de representação para superfícies de curvatura média prescrita dada por Kenmotsu em [20], vemos que existe uma dualidade entre as superfícies máximas em Nil₁³(τ) e superfícies de curvatura média constante em \mathbb{R}^3 .

No Capítulo 3, resolvemos o problema de Bernstein no espaço de Lorentz-Heisenberg $\operatorname{Nil}_{1}^{3}(\tau)$ para gráficos tipo-espaço. Em [5], Bernstein mostrou que os únicos gráficos mínimos inteiros em \mathbb{R}^3 são os planos. Em [7], Calabi obteve uma versão correspondente ao Teorema de Bernstein no espaço de Lorentz \mathbb{L}^3 , demonstrando que os planos tipo-espaço são os únicos gráficos máximos inteiros em \mathbb{L}^3 . Em [16], I. Fernández e P. Mira, estudaram o problema de Bernstein no espaço de Heisenberg Riemanniano Nil³ utilizando a diferencial de Abresch-Rosenberg e mostraram que, dada uma diferencial quadrática holomorfa Qdz^2 , existe uma família a 2-parâmetros de gráficos mínimos inteiros em Nil³ tal que a diferencial de Abresch-Rosenberg é Qdz^2 . E também vale a recíproca, qualquer gráfico mínimo inteiro em Nil³ é desta forma. Em [12], B. Daniel e L. Hauswirth, mostraram para o espaço de Heisenberg Nil³, que todo gráfico mínimo completo é inteiro. Para resolver o problema de Calabi-Bernstein em Nil₁³(τ), reescrevemos a fórmula de representação de Kenmotsu para superfícies cmc em \mathbb{R}^3 . Observamos as semelhanças entre as duas representações tipo Weierstrass e comparando a parte horizontal das duas fórmulas, conseguimos mostrar a relação estreita entre a curvatura média constante H e o parâmetro τ . Aplicando esta observação e o Teorema de Chern que nos diz que não existe gráfico inteiro de curvatura média constante $H \neq 0$ em \mathbb{R}^3 , provamos, como resultado principal, que não existe gráfico máximo completo em Nil₁³(τ) com $\tau \neq 0$.

Em seguida, no Capítulo 4, perturbamos a diferencial de Hopf e introduzimos a diferencial de Abresch-Rosenberg. Em [1], U. Abresh e H. Rosenberg introduziram uma diferencial quadrática holomorfa nos espaços produto $\mathbb{S}^2 \times \mathbb{R}$ e $\mathbb{H}^2 \times \mathbb{R}$, e estenderam o resultado de Hopf para esferas de curvatura média constante nestes espaços. Posteriormente, em [2], generalizaram o seu resultado para os espaços produto $M^2(\kappa) \times \mathbb{R}$, onde $M^2(\kappa)$ é um espaço de formas. Em [3], D. Berdinsky e I. Taimanov, mostraram que se diferencial de Abresch-Rosenberg é holomorfa em uma superfície contida no espaço de Heisenberg tridimensional Nil³, então a superfície é de curvatura média constante. Em [14], I. Fernández e P. Mira, obtiveram uma generalização deste resultado para espaços homogêneos tridimensionais, $\mathbb{E}^3(\kappa, \tau)$, com grupo de isometria de dimensão 4 e os parâmetros $\kappa e \tau$ satisfazendo determinadas condições. B. Daniel mostrou em [11] que a diferencial de Abresch-Rosenberg de uma superfície mínima em Nil³ coincide com a diferencial de Hopf de sua aplicação de Gauss g em \mathbb{H}^2 a menos de uma constante. No espaço de Lorentz-Heisenberg, encontramos a mesma situação para uma superfície máxima e mostramos que sua diferencial de Abresch-Rosenberg é holomorfa.

Por fim, construímos uma correspondência entre gráficos de curvatura média constante $-\tau \text{ em } \mathbb{R}^3$ e gráficos máximos em Nil³₁(τ). Utilizamos esta correspondência para construir exemplos de gráficos máximos em Nil³₁(τ) e para cada um, calculamos sua aplicação de Gauss.

Capítulo 1

Preliminares

Neste capítulo, estudamos os conceitos básicos que serão utilizados posteriormente. Estabelecemos as principais definições sobre geometria Riemanniana, a métrica de Lorentz do espaço \mathbb{L}^3 e as definições e resultados relevantes sobre grupos de Lie. Além disso, construímos o espaço de Lorentz-Heisenberg e mostramos a equação satisfeita por uma aplicação harmônica entre superfícies de Riemann.

1.1 Conceitos Básicos de Geometria Riemanniana

Introduzimos os conceitos de geometria Riemanniana usados ao longo do trabalho. Para uma discussão mais aprofundada sobre o assunto, consulte [13].

Definição 1.1 Uma variedade diferenciável de dimensão n é um conjunto M e uma família de aplicações biunívocas $\varphi_{\alpha} : U_{\alpha} \subset \mathbb{R}^n \to M$ de abertos U_{α} em M tais que:

- 1. $\bigcup_{\alpha} \varphi_{\alpha}(U_{\alpha}) = M.$
- 2. Para todo par α, β , com $\varphi_{\alpha}(U_{\alpha}) \cap \varphi_{\beta}(U_{\beta}) = V \neq \emptyset$, os conjuntos $\varphi_{\alpha}^{-1}(V) e \varphi_{\beta}^{-1}(V)$ são abertos de \mathbb{R}^{n} e as aplicações $\varphi_{\beta}^{-1} \circ \varphi_{\alpha}$ são diferenciáveis.

Definição 1.2 Uma superfície de Riemann é um conjunto Σ de dimensão 2 e uma família de homeomorfismos $\sigma_{\alpha}: U_{\alpha} \subset \Sigma \to \mathbb{C}$ de abertos U_{α} no plano complexo tais que:

1. $\bigcup_{\alpha} U_{\alpha} = \Sigma$.

2. Para todo par α, β , com $U_{\alpha} \cap U_{\beta} = V \neq \emptyset$, os conjuntos $\sigma_{\alpha}(V)$ e $\sigma_{\beta}(V)$ são abertos de \mathbb{C} e as aplicações $\sigma_{\beta} \circ \sigma_{\alpha}^{-1}$ são holomorfas, ou seja, $z = \sigma_{\beta} \circ \sigma_{\alpha}^{-1}(w) = f(w)$ é uma função holomorfa de $w \in \sigma_{\alpha}(V)$ em $\sigma_{\beta}(V)$.

Exemplo 1.1 A esfera $\mathbb{S}^2 = \{(a, b, c) \in \mathbb{R}^3 : a^2 + b^2 + c^2 = 1\}$ é uma superfície de Riemann.

Considere o plano T: c = 0. Denote por $V_1 = \mathbb{S}^2 \setminus \{(0, 0, 1)\} \in V_2 = \mathbb{S}^2 \setminus \{(0, 0, -1)\}$. Sejam $z_1 \in z_2$ as projeções estereográficas definidas por:

$$\begin{cases} z_1 = z_1(p) = \frac{a+ib}{1-c}, & \forall p \in V_1; \\ z_1(0,0,1) = \infty; \\ e \\ \begin{cases} z_2 = z_2(q) = \frac{a-ib}{1+c}, & \forall q \in V_2; \\ z_2(0,0,-1) = \infty; \end{cases}$$

A correspondência entre pontos de $V_1 \in V_2$ e o plano complexo T é obtida geometricamente: z_1 é o ponto de interseção entre a reta que liga os pontos $p \in V_1$ e (0, 0, 1) com o plano T, e \bar{z}_2 é ponto de interseção entre a reta que liga $q \in V_2$ e (0, 0, -1) com o plano T. Para todo $p \in V_1 \cap V_2$, temos que z_1 e z_2 estão relacionadas por

$$z_1 z_2 = \frac{a^2 + b^2}{1 - c^2} = 1$$

e como $z_1 \neq 0$ e $z_2 \neq 0$ em $V_1 \cap V_2$, segue que a mudança de coordenada $z_2 = \frac{1}{z_1}$ é holomorfa em $V_1 \cap V_2$. Portanto, a esfera \mathbb{S}^2 é uma superfície de Riemann.

Definição 1.3 Sejam M^m e N^n variedades diferenciáveis. Uma aplicação diferenciável $\varphi: M \to N$ é uma imersão se $d\varphi_p: T_pM \to T_{\varphi(p)}N$ é injetiva para todo $p \in M$.

Definição 1.4 Um campo de vetores X em uma variedade diferenciável M é uma correspondência que a cada ponto $p \in M$ associa um vetor $X_p \in T_pM$.

Também vamos considerar um campo de vetores X como uma aplicação $X : D(M) \rightarrow \mathcal{F}$ em que D(M) é o conjunto das funções diferenciáveis em M e \mathcal{F} o conjunto das funções em M.

Observe que, se $\varphi : M \to M$ é um difeomorfismo, $v \in T_pM$ e f uma função diferenciável em uma vizinhança de $\varphi(p)$, temos

$$(d\varphi(v)f)\varphi(p) = v(f \circ \varphi)(p).$$

De fato, seja $\alpha: (-\delta, \delta) \to M$ uma curva diferenciável com $\alpha(0) = p, \alpha'(0) = v$. Então

$$(d\varphi(v)f)\varphi(p) = v(f \circ \varphi)(p) = \left. \frac{d}{dt}(f \circ \varphi \circ \alpha) \right|_{t=0} = v(f \circ \varphi)(p).$$

Definição 1.5 Sejam X e Y campos diferenciáveis em um aberto $U \subset M$ da variedade diferenciável M. O colchete [X, Y] é o campo diferenciável dado por:

$$[X,Y] = XY - YX,$$

que possui as seguintes propriedades: sejam $a, b \in \mathbb{R}$, Z um campo diferenciável em $U \subset M$ e f, g funções diferenciáveis. Então,

1. [X, Y] = -[Y, X];

2.
$$[aX + bY, Z] = a[X, Z] + b[Y, Z],$$

- 3. [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 (identidade de Jacobi);
- 4. [fX, gY] = fg[X, Y] + fX(g)Y gY(f)X.

Definição 1.6 Uma métrica Riemanniana em uma variedade diferenciável M é uma correspondência que associa a cada ponto $p \in M$ um produto interno $\langle ., . \rangle_p$, ou seja, uma forma bilinear simétrica positiva definida no espaço tangente T_pM de tal modo que para todo par $X, Y \in T_pM$ de campos diferenciáveis em um aberto V de M, a função $\langle X, Y \rangle$ é diferenciável em V.

Uma variedade diferenciável com uma métrica Riemanniana é chamada variedade Riemanniana.

Sejam $\chi(M)$ o conjunto dos campos de vetores diferenciáveis em $M \in D(M)$ o conjunto das funções reais diferenciáveis em M.

Definição 1.7 Uma conexão afim ∇ em uma variedade diferenciável M é uma aplicação

$$\nabla : \chi(M) \times \chi(M) \to \chi(M)$$

que satisfaz as seguintes propriedades:

- 1. $\nabla_{fX+qY}Z = f\nabla_X Z + g\nabla_Y Z$,
- 2. $\nabla_X(Y+Z) = \nabla_X Y + \nabla_X Z$,
- 3. $\nabla_X(fY) = f\nabla_X Y + X(f)Y,$

em que $X, Y, Z \in \chi(M)$ e $f, g \in D(M)$.

A conexão é dita simétrica se

$$\nabla_X Y - \nabla_Y X = [X, Y], \quad \forall X, Y \in \chi(M).$$

Se M é uma variedade Riemanniana, então a conexão é dita compatível com a métrica se

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle, \quad X, Y, Z \in \chi(M).$$

Uma conexão simétrica e compatível com a métrica é chamada de conexão de Levi-Civita ou conexão Riemanniana de M.

Teorema 1.1 (Levi-Civita) Dada uma variedade Riemanniana $(M, \langle ., . \rangle)$ existe uma única conexão Riemanniana associada a métrica $\langle ., . \rangle$ dada pela fórmula de Koszul:

$$2\langle \nabla_Y X, Z \rangle = X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle - \langle [X, Y], Z \rangle \quad X, Y, Z \in \chi(M).$$

$$(1.1)$$

Demonstração: Seja ∇ uma conexão Riemanniana em $M \in X, Y, Z \in \chi(M)$. Por ser compatível com a métrica, temos as seguintes igualdades:

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle,$$

$$Y\langle Z, X \rangle = \langle \nabla_Y Z, X \rangle + \langle Z, \nabla_Y X \rangle,$$

$$Z\langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle.$$

Somando as duas primeiras e subtraindo a terceira e usando a simetria da conexão temos a fórmula de Koszul. Portanto, se a conexão Riemanniana existe, ela é única.

Defina ∇ pela fórmula de Koszul. Podemos verificar facilmente que esta conexão é simétrica e compatível com a métrica, ou seja, é uma conexão Riemanniana em M. Portanto, a conexão Riemanniana de M existe e é única.

1.1.1 Conceitos Básicos sobre a Métrica de Lorentz em \mathbb{R}^3

Esta seção é baseada em [24] e dedica-se ao estudo dos conceitos introdutórios sobre espaço de Lorentz, também conhecido como espaço de Minkowski, com foco principal na métrica deste espaço. Esta métrica é não positiva definida e é chamada de métrica semi-Riemanniana. Para uma abordagem mais aprofundada sobre geometria semi-Riemanniana, consulte [27].

Definição 1.8 O espaço de Lorentz é o espaço métrico $\mathbb{L}^3 = (\mathbb{R}^3, \langle ., . \rangle)$, em que a métrica $\langle ., . \rangle$ é dada por:

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 - u_3 v_3, \qquad u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) \in \mathbb{R}^3.$$

A métrica $\langle ., . \rangle$ é chamada métrica Lorentziana.

Seja $\{e_1, e_2, e_3\}$ a base canônica de \mathbb{L}^3 . Os coeficientes da métrica de Lorentz são dados por $g_{ij} = \langle e_i, e_j \rangle$ e temos a seguinte representação matricial:

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Definição 1.9 Um vetor $v \in \mathbb{L}^3$ é chamado

- 1. tipo-espaço se $\langle v, v \rangle > 0$ ou v = 0,
- 2. tipo-tempo se $\langle v, v \rangle < 0$ e

3. tipo-luz se $\langle v, v \rangle = 0$ com $v \neq 0$.

Seja $U \subset \mathbb{R}^3$ um subespaço vetorial. Consideraremos em U a métrica induzida $\langle ., . \rangle_U$:

$$\langle u, v \rangle_U = \langle u, v \rangle, \quad u, v \in U.$$

Deixaremos de lado o índice U. O subespaço U é chamado tipo-espaço (resp. tipotempo ou tipo-luz) se a métrica induzida é positiva definida (resp. não degenerada de índice 1 ou degenerada com $\{(0,0,0)\} \not\subseteq U$).

Temos o seguinte resultado

Proposição 1.1 Seja $v \in \mathbb{L}^3$. Denote por $\langle v \rangle$ o subespaço gerado pelo vetor v e por $\langle v \rangle^{\perp}$ seu subespaço ortogonal.

- O vetor v é tipo-tempo se, e somente se, < v >[⊥] é tipo-espaço. De forma similar, v é tipo-espaço se, e somente se, < v >[⊥] é tipo-tempo.
- 2. Seja $U \subset \mathbb{L}^3$ um subespaço. Então U é tipo-espaço se, e somente se U^{\perp} é tipo-tempo.
- 3. Seja U um subespaço. Então U é tipo-luz se, e somente se, U^{\perp} é tipo-luz também.

Demonstração:

- 1. Se v é um vetor tipo-tempo, multiplicando v por um escalar se necessário, completamos uma base ortonormal de L³, B = {e₁, e₂, v}. Daí, < v >[⊥]=< e₁, e₂ > é um subespaço tipo-espaço. Reciprocamente, seja {e₁, e₂} uma base ortonormal de < v >[⊥] em que ⟨.,.⟩_{<v>[⊥]} é uma métrica positiva definida. Então {e₁, e₂, v} é uma base que diagonaliza a métrica de L³. Como g₁₁ = g₂₂ = 1, temos que g₃₃ < 0. Ou seja, v é um vetor tipo-tempo.</p>
- Seja U é um subespaço tipo-tempo e v ∈ U um vetor tipo-tempo.
 Então U[⊥] ⊂< v >[⊥]. Como < v >[⊥] é tipo-espaço, segue que U[⊥] é tipo-espaço. A recíproca é análoga, em que (U[⊥])[⊥] = U.
- É uma consequência dos dois itens anteriores onde usamos a contradição para demonstrá-lo.

Definição 1.10 Dado $u \in \mathbb{L}^3$, definimos a norma de $u \mod \sqrt{|\langle u, u \rangle|} em que |\cdot| : \mathbb{R} \to \mathbb{R}$ denota o módulo de números reais. Um vetor é dito unitário se sua norma é igual a 1.

A definição de produto vetorial em \mathbb{L}^3 é a mesma do espaço Euclidiano.

Definição 1.11 Sejam $u, v \in \mathbb{L}^3$. O produto vetorial Lorentziano de u e v é o vetor $u \times v$ que satisfaz:

$$\langle u \times v, w \rangle = det(u, v, w), \quad w \in \mathbb{L}^3,$$

onde det(u, v, w) é o determinante da matriz formada pelos vetores $u, v \in w$.

Tomando $w = (e_1, e_2, e_3)$ temos que

$$u \times v = \begin{vmatrix} e_1 & e_2 & -e_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

Note que $u \times v$ é a reflexão, com respeito ao plano z = 0, do produto vetorial em \mathbb{R}^3 .

1.2 Grupos de Lie

A teoria dos grupos de Lie é fundamental na construção do espaço Nil₁³(τ), visto que este espaço é um subgrupo do grupo linear das matrizes 3 × 3 inversíveis, denotado por $GL(3,\mathbb{R})$. Nesta seção, definimos os grupos de Lie, estudamos sua álgebra de Lie associada e abordamos conceitos referentes aos campos invariantes à esquerda. Para uma discussão mais aprofundada sobre o tópico, consulte [17].

Definição 1.12 Um grupo de Lie é uma variedade diferenciável munida com uma estrutura de grupo tal que a aplicação

$$\begin{array}{rcccc} G \times G & \longrightarrow & G \\ (x,y) & \longmapsto & xy^{-1} \end{array}$$

é diferenciável para todo $x, y \in G$.

Consequentemente, a aplicação produto f(x,y) = xy e a inversão $g(x) = x^{-1}$ são diferenciáveis.

Exemplo 1.2 O grupo linear $GL(n, \mathbb{R})$ das matrizes reais $n \times n$ inversíveis, munido com a multiplicação de matrizes é um grupo de Lie. Devemos mostrar que as aplicações

$$\begin{array}{rcl} f:GL(n,\mathbb{R})\times GL(n,\mathbb{R}) & \to & GL(n,\mathbb{R}) \\ & (A,B) & \mapsto & f(A,B)=AB; \\ g:GL(n,\mathbb{R}) & \to & GL(n,\mathbb{R}) \\ & A & \mapsto & g(A)=A^{-1} \end{array}$$

são diferenciáveis. A diferenciabilidade de f segue da diferenciabilidade da multiplicação em \mathbb{R} . E a diferenciabilidade de G decorre da regra de Cramer para a inversa de uma matriz.

Segue da definição que, para todo $g \in G$, a translação à esquerda dada por

$$\begin{array}{rccc} L_g:G &\longrightarrow & G\\ &p &\longmapsto & L_g(p) = gp, \end{array}$$

é diferenciável para todo $p \in G$. Mais ainda, como $L_g \circ L_{g^{-1}} = I_G$, em que I_G é a aplicação identidade, temos que L_g é um difeomorfismo.

Denote por $\mathcal{X}(G)$ o conjunto dos campos diferenciáveis em G.

Definição 1.13 Um campo de vetores $X \in \mathcal{X}(G)$ é dito invariante à esquerda se

$$(dL_g)_p(X_p) = X_{gp}, \quad \forall g, p \in G, \tag{1.2}$$

onde $X_p = X(p)$.

Se X é um campo invariante à esquerda, então para determinar o campo X em G basta conhecer o valor de X_e , ou seja, o valor de X na identidade $e \in G$, pois

$$(dL_g)_e(X_e) = X_{ge} = X_g \quad \forall g \in G.$$

Definição 1.14 Uma métrica Riemanniana $\langle ., . \rangle : TG \times TG \to \mathbb{R}$ é dita invariante à esquerda se

$$\langle u, v \rangle_h = \langle (dL_g)_h u, (dL_g)_h v \rangle_{L_q(h)}, \tag{1.3}$$

para todo $g, h \in G \ e \ u, v \in T_hG$.

Definição 1.15 Uma álgebra de Lie sobre um corpo \mathbb{F} é um espaço vetorial sobre \mathbb{F} munido com uma operação [,], chamada colchete de Lie, que é bilinear, anti-simétrica e satisfaz a identidade de Jacobi. Ou seja, um espaço vetorial L com $[,]: L \times L \to L$ bilinear tal que, $\forall x, y, z, \in L$:

- 1. [x, y] = -[y, x],
- 2. [[x,y],z] + [[y,z],x] + [[z,x],y] = 0.

Exemplo 1.3 Considere o espaço vetorial \mathbb{R}^3 e para $u, v \in \mathbb{R}^3$ defina o colchete de Lie como o produto vetorial usual do \mathbb{R}^3 . Das propriedades do produto vetorial segue que \mathbb{R}^3 é uma álgebra de Lie.

Seja G um grupo de Lie e denote por LG o conjunto dos campos invariantes à esquerda em G. Temos que LG é um espaço vetorial. De fato, sejam $X, Y \in LG$ e k um elemento escalar, segue que

$$(X + kY)_{gh} = X_{gh} + kY_{gh}$$
$$= dL_h(X_g) + kdL_hY_g$$
$$= dL_h(X_g + kY_g)$$
$$= dL_h(X + kY)_g.$$

Vamos mostrar que o espaço LG é isomorfo ao espaço tangente T_eG em que e é a identidade do grupo de Lie G e que se $X \in LG$ então X é diferenciável.

Proposição 1.2 Sejam LG o conjunto dos campos invariantes à esquerda em G e T_eG o espaço tangente no ponto $e \in G$. Temos que 1. A aplicação

$$\begin{array}{rcl} \alpha: LG & \to & T_eG \\ & X & \mapsto & \alpha(X) = X_e \end{array}$$

em que e é a identidade do grupo de Lie G, é um isomorfismo entre espaços vetoriais.

2. Se $X \in LG$ então X é diferenciável.

Demonstração: Para o primeiro item, vamos mostrar que α é uma aplicação linear. De fato, se $X, Y \in LG$

$$\alpha(X + kY) = (X + kY)_e = X_e + kY_e = \alpha(X) + k\alpha(Y).$$

Seja $Z \in T_e G$ e defina o campo X em G por $X_g = dL_g(Z)$. Daí,

$$X_{gh} = dL_{gh}(Z) = dL_g(dL_h(Z)) = dL_g(X_h).$$

Logo, $X \in LG$ e

$$\alpha(X) = X_e = dL_e(Z) = Z.$$

E assim, α é sobrejetora. Vamos mostrar que α é injetora: se $\alpha(X) = \alpha(Y)$ então $X_e = Y_e$. Dado $p \in G$,

$$X_p = dL_p(X_e) = dL_p(Y_e) = Y_p.$$

Portanto, α é um isomorfismo entre espaços vetoriais.

Quanto ao segundo item, veja que é suficiente mostrar que a aplicação $X : \mathcal{D}(G) \to \mathcal{D}(G)$ é diferenciável, em que $\mathcal{D}(G)$ é o conjunto das funções diferenciáveis definidas sobre o grupo G.

Seja $Z \in T_e G$ e defina um campo de vetores X em G de modo que $X = dL_p(Z)$ para todo $p \in G$. Seja $U \subset G$ um subconjunto aberto e $f : U \to \mathbb{R}$ uma função diferenciável. Escolha uma curva diferenciável $\gamma : (-\delta, \delta) \to G$ tal que $\gamma(0) = e$ e $\gamma'(0) = Z$. Assim, para todo $p \in U$,

$$(Xf)(p) = X(p)f$$

= $dL_p(Z)f$
= $Z(f \circ L_p)$
= $\gamma'(0)(f \circ L_p)$
= $\frac{d}{dt}(f \circ L_p \circ \gamma)(t)\Big|_{t=0}$.

Portanto, Xf é diferenciável e X é um campo diferenciável.

Vamos mostrar que LG é uma álgebra de Lie. Para isto, precisamos verificar que LG é fechado para o colchete de Lie $[,] : \mathcal{X}(G) \times \mathcal{X}(G) \to \mathcal{X}(G)$. Necessitamos da seguinte definição:

Definição 1.16 Sejam M, N variedades diferenciáveis $e \varphi : M \to N$ uma aplicação de classe \mathcal{C}^{∞} . Dizemos que os campos $X \in \mathcal{X}(M)$ $e Y \in \mathcal{X}(N)$ são φ -relacionados se $d\varphi \circ X = Y \circ \varphi$.

Proposição 1.3 Se $X, Y \in LG$, então $[X, Y] \in LG$. Ou seja, LG é uma álgebra de Lie.

Demonstração: Sejam $X, Y \in LG \in p, g \in G$. Então $X \notin L_p$ -relacionado com si mesmo. De fato,

$$dL_p \circ X(g) = dL_p(X_g) = X_{pg},$$
$$X \circ L_p(g) = X(pg) = X_{pg}, \quad \forall g \in G,$$

ou seja,

$$(dL_p)X = X \circ L_p.$$

Considere $f: G \to \mathbb{R}$ diferenciável. Temos que [X, Y](f) = X(Yf) - Y(Xf) e

$$dL_p([X,Y])_g(f) = [X,Y]_g(f \circ L_p)$$

= $X(Y(f \circ L_p))(g) - Y(X((f \circ L_p))(g))$
= $(X(Yf) - Y(Xf))(pg)$
= $[X,Y]_{pg}(f)$

Portanto, LG é uma álgebra de Lie.

Por último, temos a seguinte definição que nos auxiliará na construção do espaço de Lorentz-Heisenberg.

Definição 1.17 Sejam $G \in H$ grupos de Lie $e \varphi : G \to H$ um homeomorfismo de classe C^{∞} . Então φ é denominada homeomorfismo de Lie. Se φ é um difeomorfismo e um isomorfismo, então φ é denominada isomorfismo de Lie.

1.3 O Espaço de Lorentz-Heisenberg

O espaço de Heisenberg surgiu primeiramente nos trabalhos de L. Bianchi em [6], sobre a classificação de métricas Riemannianas $g_{\tau,\kappa}$ que dependem de dois parâmetros em \mathbb{R}^3 . Independentemente, E. Cartan em [8], e G. Vranceanu em [28], publicaram na mesma época artigos relacionados a este tema. A variedade Riemanniana ($\mathbb{R}^3, g_{\tau,\kappa}$) definida como o conjunto

$$\left\{ (x, y, z) \in \mathbb{R}^3 | 1 + \frac{\kappa}{4} (x^2 + y^2) > 0 \right\},\$$

munido com a métrica

$$g_{\tau,\kappa} = \frac{dx^2 + dy^2}{(1 + \frac{\kappa}{4}(x^2 + y^2))^2} + \left(dz + \tau \frac{ydx - xdy}{1 + \frac{\kappa}{4}(x^2 + y^2)}\right)^2,$$
(1.4)

é conhecida como espaço de Bianchi-Cartan-Vranceanu, ou espaço BCV. Nesta seção, construímos o espaço de Lorentz-Heisenberg através do espaço euclidiano \mathbb{R}^3 munido com uma métrica lorentziana invariante à esquerda baseada em (1.4), com $\tau \neq 0$ e $\kappa = 0$.

Definição 1.18 Seja $GL(3, \mathbb{R})$ o grupo das matrizes 3×3 inversíveis. Definimos o grupo de Heisenberg tridimensional Nil³ $\subset GL(3, \mathbb{R})$ por

$$\operatorname{Nil}^{3} = \left\{ \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) : (a, b, c) \in \mathbb{R}^{3} \right\}$$

munido com a estrutura de grupo de Lie de $GL(3, \mathbb{R})$.

Considere uma curva diferenciável $\alpha : (-\delta, \delta) \to \mathbb{R}^3$ onde $\alpha(t) = (a(t), b(t), c(t))$ com a, b, c funções diferenciáveis. Fazendo a identificação

$$\alpha(t) = \begin{pmatrix} 1 & a(t) & c(t) \\ 0 & 1 & b(t) \\ 0 & 0 & 1 \end{pmatrix}, \quad \forall t \in I,$$

e derivando termo a termo com relação à tobtemos

$$\alpha'(t) = \begin{pmatrix} 0 & a'(t) & c'(t) \\ 0 & 0 & b'(t) \\ 0 & 0 & 0 \end{pmatrix}, \quad \forall t \in I.$$

Logo, a álgebra de Lie h_3 associada a Nil^3 é composta pelos elementos da forma

$$A = \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix}, \quad x, y, z \in \mathbb{R},$$

em que o colchete de Lie $[\ ,\]:h_3\times h_3\to h_3$ é dado pelo comutador de matrizes

$$[A,B] = AB - BA, \quad \forall A, B \in h_3.$$

Vamos construir um isomorfismo de grupos de Lie entre \mathbb{R}^3 e Nil³(τ) com base na aplicação exponencial de matrizes. A princípio, escolhemos $\tau = \frac{1}{2}$ e denotamos o espaço Nil³($\frac{1}{2}$) por Nil³.

É simples ver que h_3 é um grupo 2-nilpotente, isto é, o produto de três elementos em h_3 é nulo.

Considere a aplicação exponencial de matrizes

$$exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}, \quad \forall A \in h_3$$

Daí,

$$exp(A) = I + A + \frac{A^2}{2}.$$

Seja $A = \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} \in h_3$. Utilizaremos a identificação canônica $A \mapsto (x, y, z) \in$

 \mathbb{R}^3 .

A multiplicação de matrizes em Nil³ induz em \mathbb{R}^3 , via exp, a seguinte translação à esquerda:

$$(x, y, z) * (a, b, c) = exp^{-1}(exp(A) \cdot exp(B)) = \left(x + a, y + b, z + c + \frac{1}{2}(xb - ya)\right)$$

em que $A = (x, y, z), B = (a, b, c) \in h_3$. Daí, a aplicação $exp : h_3 (\equiv \mathbb{R}^3) \to \text{Nil}^3$ é um isomorfismo de grupos de Lie, onde \mathbb{R}^3 é munido com o produto

$$(x, y, z) * (a, b, c) = \left(x + a, y + b, z + c + \frac{1}{2}(xb - ya)\right).$$

Assim, através da identificação dada pela aplicação exponencial, se $p = expA \in \text{Nil}^3$, vamos denotá-lo por $p = (x, y, z) \in \text{Nil}^3$. Esta identificação é conhecida como coordenadas exponenciais. Daí, a translação à esquerda pode ser escrita como L_p : Nil³ \rightarrow Nil³, $L_p(q) = p * q$ onde $q \in \text{Nil}^3$. É fácil ver que L_p é diferenciável.

Cada ponto $p \in \text{Nil}^3$ pode ser visto como uma translação à esquerda da identidade $e = (0, 0, 0) \in \text{Nil}^3$

$$L_p(e) = L_{(x,y,z)}(0,0,0) = (x,y,z) * (0,0,0) = (x,y,z).$$

A diferencial da aplicação L_p na identidade $e \in \operatorname{Nil}^3$ é dada por

$$(dL_p)_e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{2}y & \frac{1}{2}x & 1 \end{pmatrix}, \quad \forall p = (x, y, z) \in \mathrm{Nil}^3.$$

Considere a base canônica da álgebra de Lie h_3 dada por

$$e_1 = (1, 0, 0) = \frac{\partial}{\partial x}, \qquad e_2 = (0, 1, 0) = \frac{\partial}{\partial y}, \qquad e_3 = (0, 0, 1) = \frac{\partial}{\partial z}.$$

Usando esta base, que é uma base para T_e Nil³, definimos para cada e_i o campo

$$E_i(p) = (dL_p)_e(e_i), \quad i = 1, 2, 3.$$

Observe que estes campos, por construção, são invariantes à esquerda. Daí,

$$\begin{cases} E_1 = (dL_p)_e(e_1) = \frac{\partial}{\partial x} - \frac{y}{2}\frac{\partial}{\partial z} \\ E_2 = (dL_p)_e(e_2) = \frac{\partial}{\partial y} + \frac{x}{2}\frac{\partial}{\partial z} \\ E_3 = (dL_p)_e(e_3) = \frac{\partial}{\partial z} \end{cases}$$

e também

$$\begin{cases} e_1 = E_1 + \frac{y}{2}E_3\\ e_2 = E_2 - \frac{x}{2}E_3\\ e_3 = E_3 \end{cases}$$

Utilizando o comutador de matrizes em h_3 é fácil ver que

$$[E_1, E_2] = E_3, [E_1, E_3] = 0, [E_2, E_3] = 0. (1.5)$$

Vamos introduzir uma métrica Riemanniana invariante à esquerda em Nil³ de modo que os campos invariantes $\{E_1, E_2, E_3\}$ sejam, em cada $p \in Nil^3$, uma base ortonormal de T_pNil^3 . Sejam $v = v_1E_1 + v_2E_2 + v_3E_3$, $w = w_1E_1 + w_2E_2 + w_3E_3 \in T_pNil^3$. Definimos uma métrica invariante à esquerda ds_+^2 em Nil³ fazendo

$$ds_{+}^{2}(v,w) = \langle (dL_{p^{-1}})_{e}(v), dL_{p^{-1}})_{e}(w) \rangle_{\mathbb{R}^{3}}$$

Portanto,

$$ds_{+}^{2} = dx^{2} + dy^{2} + \left(dz + \frac{1}{2}(ydx - xdy)\right)^{2}.$$
 (1.6)

Como L_p é uma isometria, i.e., $\langle X(p), Y(p) \rangle = \langle (dL_p)_e X(e), (dL_p)_e Y(p) \rangle \forall p \in \text{Nil}^3(\tau)$ e $\{e_1, e_2, e_3\}$ é uma base ortonormal para $T_e \text{Nil}^3$, temos que $\{E_1, E_2, E_3\}$ é uma base de campos de vetores ortonormais invariantes à esquerda.

Considere $\tau \in \mathbb{R}$, $\tau \neq 0$. Com base em [25], podemos alterar a métrica de forma que a álgebra de Lie associada à Nil³(τ) não se altere. Assim, da métrica (1.6), definimos uma nova métrica invariante à esquerda dada por

$$g_{\tau,0} = dx^2 + dy^2 + 4\tau^2 \left(dz + \frac{1}{2} (ydx - xdy) \right)^2.$$

Após a mudança de coordenadas $(x,y,2\tau z)\mapsto (x,y,z),$ podemos escrever esta métrica como

$$g_{\tau,0} = dx^2 + dy^2 + (dz + \tau(ydx - xdy))^2.$$
(1.7)

Introduzindo em $\mathrm{Nil}^3(\tau)$ a seguinte translação à esquerda

$$L_{p}(q) = p * q = (x + a, y + b, z + c + \tau(xb - ya)),$$

com $p = (x, y, z), q = (a, b, c) \in \text{Nil}^3(\tau)$, temos que em um ponto $p \in \text{Nil}^3(\tau)$,

$$g_{\tau,0}(v,w)_p = \langle (dL_{p^{-1}})_e(v), dL_{p^{-1}})_e(w) \rangle_{\mathbb{R}^3}.$$

onde $v = v_1 E_1 + v_2 E_2 + v_3 E_3$, $w = w_1 E_1 + w_2 E_2 + w_3 E_3 \in T_p \operatorname{Nil}^3(\tau)$.

Tomando a base canônica da álgebra de Lie associada $h_3 \equiv T_e \text{Nil}^3(\tau)$, podemos definir, de maneira análoga ao que foi feito para Nil³, os campos $E_i \in T_p \text{Nil}^3(\tau)$ como:

$$E_i = (dL_p)_e(e_i), \quad i = 1, 2, 3.$$

em que

$$(dL_p)_e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\tau y & \tau x & 1 \end{pmatrix}, \quad \forall p = (x, y, z) \in \operatorname{Nil}^3(\tau).$$

Assim,

$$\begin{cases} E_1 = \frac{\partial}{\partial x} - \tau y \frac{\partial}{\partial z} \\ E_2 = \frac{\partial}{\partial y} + \tau x \frac{\partial}{\partial z} \\ E_3 = \frac{\partial}{\partial z} \end{cases} \Rightarrow \begin{cases} e_1 = E_1 + \tau y E_3 \\ e_2 = E_2 - \tau x E_3 \\ e_3 = E_3 \end{cases}$$

Em h_3 , é fácil ver que

$$[E_1, E_2] = 2\tau E_3, \qquad [E_1, E_3] = 0, \qquad [E_2, E_3] = 0. \tag{1.8}$$

Como L_p é uma isometria e $\{e_1, e_2, e_3\}$ é uma base ortonormal para $T_e Nil^3(\tau)$, temos que $\{E_1, E_2, E_3\}$ é uma base de campos de vetores ortonormais invariantes à esquerda.

Vamos agora definir o espaço de Lorentz-Heisenberg:

Definição 1.19 O espaço de Lorentz-Heisenberg $Nil_1^3(\tau)$ é o espaço (\mathbb{R}^3, ds^2) em que a métrica ds^2 é dada por

$$ds^{2} = dx^{2} + dy^{2} - (dz + \tau(ydx - xdy))^{2}.$$

Podemos identificar o vetor (a, b, c) no ponto $p = (x, y, z) \in \text{Nil}_1^3(\tau)$ com suas coordenadas na base ortonormal $\{E_1, E_2, E_3\}$:

$$a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + c\frac{\partial}{\partial z} = aE_1 + bE_2 + (c + \tau(ya - xb))E_3.$$

Encerrando esta seção, vamos definir um produto vetorial em $\operatorname{Nil}_1^3(\tau)$. Sejam $u = u_1E_1 + u_2E_2 + u_3E_3$, $v = v_1E_1 + v_2E_2 + v_3E_3 \in T\operatorname{Nil}_1^3(\tau)$, então

$$u \times v = \begin{vmatrix} E_1 & E_2 & E_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = (u_2v_3 - u_3v_2)E_1 - (u_1v_3 - u_3v_1)E_2 - (u_1v_2 - u_2v_1)E_3.$$

1.3.1 A Conexão de Levi-Civita em $Nil_1^3(\tau)$

Sejam $p \in \operatorname{Nil}_1^3(\tau) \in X, Y, Z \in T\operatorname{Nil}_1^3(\tau)$ campos invariantes à esquerda. Denote por $\langle ., . \rangle : T\operatorname{Nil}_1^3(\tau) \times T\operatorname{Nil}_1^3(\tau) \to \mathbb{R}$ a métrica ds^2 definida anteriormente. Temos que

$$\langle X, Y \rangle_p = \langle (dL_p)_e X(e), (dL_p)_e Y(e) \rangle = \langle X, Y \rangle_e, \quad \forall p \in \operatorname{Nil}_1^3(\tau)$$

Logo, $\langle X,Y\rangle_p$ é constante. Seja $\overline{\nabla}$ a conexão de Levi-Civita em Nil₁³(τ). Então a fórmula de Koszul,

$$2\langle \overline{\nabla}_Y X, Z \rangle = X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle$$
$$- \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle - \langle [X, Y], Z \rangle,$$

é escrita como

$$2\langle \overline{\nabla}_X Y, Z \rangle = \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle - \langle [X, Z], Y \rangle.$$

Portanto, temos o seguinte resultado:

Lema 1.1 Os campos invariantes à esquerda $\{E_1, E_2, E_3\}$ satisfazem

$$\overline{\nabla}_{E_1} E_1 = 0 \qquad \overline{\nabla}_{E_1} E_2 = \tau E_3 \qquad \overline{\nabla}_{E_1} E_3 = \tau E_2$$
$$\overline{\nabla}_{E_2} E_1 = -\tau E_3 \qquad \overline{\nabla}_{E_2} E_2 = 0 \qquad \overline{\nabla}_{E_2} E_3 = -\tau E_1$$
$$\overline{\nabla}_{E_3} E_1 = \tau E_2 \qquad \overline{\nabla}_{E_3} E_2 = -\tau E_1 \qquad \overline{\nabla}_{E_3} E_3 = 0$$

E os símbolos de Christoffel da conexão em $Nil_1^3(\tau)$ definidos por:

$$\overline{\nabla}_{E_i} E_j = \Gamma^1_{ij} E_1 + \Gamma^2_{ij} E_2 + \Gamma^3_{ij} E_3$$

são tais que

$$\Gamma_{12}^3 = -\Gamma_{21}^3 = \tau, \qquad \qquad \Gamma_{31}^2 = \Gamma_{13}^2 = \tau, \qquad \qquad \Gamma_{13}^1 = \Gamma_{32}^1 = -\tau$$

e os demais são nulos.

Demonstração: Substituindo os campos E_1, E_2, E_3 na fórmula de Kozul obtemos

$$2\langle \overline{\nabla}_{E_i} E_i, E_1 \rangle = \langle [E_i, E_i], E_1 \rangle - \langle [E_i, E_1], E_i \rangle - \langle [E_i, E_1], E_i \rangle = 0,$$

$$2\langle \overline{\nabla}_{E_i} E_i, E_2 \rangle = \langle [E_i, E_i], E_2 \rangle - \langle [E_i, E_2], E_i \rangle - \langle [E_i, E_2], E_i \rangle = 0,$$

$$2\langle \overline{\nabla}_{E_i} E_i, E_3 \rangle = \langle [E_i, E_i], E_3 \rangle - \langle [E_i, E_3], E_i \rangle - \langle [E_i, E_3], E_i \rangle = 0.$$

Logo, $\overline{\nabla}_{E_i} E_i = 0$ e $\Gamma_{ii}^k = 0$ para i, k = 1, 2, 3. Vamos mostrar que $\overline{\nabla}_{E_1} E_2 = \tau E_3$:

$$\begin{aligned} 2\langle \overline{\nabla}_{E_1} E_2, E_1 \rangle &= \langle [E_1, E_2], E_1 \rangle - \langle [E_2, E_1], E_1 \rangle - \langle [E_1, E_1], E_2 \rangle = 0, \\ 2\langle \overline{\nabla}_{E_1} E_2, E_2 \rangle &= \langle [E_1, E_2], E_2 \rangle - \langle [E_2, E_2], E_1 \rangle - \langle [E_1, E_2], E_2 \rangle = 0, \\ 2\langle \overline{\nabla}_{E_1} E_2, E_3 \rangle &= \langle [E_1, E_2], E_3 \rangle - \langle [E_2, E_3], E_1 \rangle - \langle [E_1, E_3], E_2 \rangle = \langle 2\tau E_3, E_3 \rangle \end{aligned}$$

Assim, $\overline{\nabla}_{E_1} E_2 = \tau E_3$, $\Gamma_{12}^1 = \Gamma_{12}^2 = 0 \in \Gamma_{12}^3 = \tau$.

Conseguimos obter os outros coeficientes e os símbolos de Christoffel de forma inteiramente análoga.

Observação 1.1 Seja $V = v_1E_1 + v_2E_2 + v_3E_3 \in TNil_1^3(\tau)$. Temos que $\overline{\nabla}_V E_3 = -\tau v_2E_1 = (-\tau)V \times E_3$.

1.4 Aplicações Harmônicas entre Superfícies de Riemann

O objetivo desta seção, que foi baseada em [19], é explicitar a equação que deve ser satisfeita por uma aplicação harmônica entre superfícies de Riemann, levando em consideração suas estruturas conformes.

Sejam Σ e M duas superfícies de Riemann com coordenadas conformes $z = u_1 + iu_2$ e $w = x_1 + ix_2$ respectivamente. Seja $f : \Sigma \to M$ uma aplicação diferenciável de classe C^2 que é localmente representada por:

$$f(u_1, u_2) = x_1(u_1, u_2) + ix_2(u_1, u_2).$$

Denote a métrica induzida em Σ por

$$ds^{2} = \sigma^{2}|dz|^{2} = \sigma^{2}(du_{1}^{2} + du_{2}^{2}),$$

que pode ser representada pela matriz

$$ds^2 = h_{ij} = \left(\begin{array}{cc} \sigma^2 & 0\\ 0 & \sigma^2 \end{array}\right).$$

E, em M, denote a métrica por

$$\lambda^{2}|dw|^{2} = \lambda^{2}(dx_{1}^{2} + dx_{2}^{2})$$

$$= \begin{pmatrix} \lambda^{2} & 0 \\ 0 & \lambda^{2} \end{pmatrix}.$$
(1.9)

Definição 1.20 Seja $f : \Sigma \to M$ uma aplicação de classe C^2 entre as superfícies de Riemann $\Sigma \in M$. O campo de tensão $\tau(f)$ é definido por:

$$\tau(f) = \sum_{k=1}^{2} \left\{ \sum_{i,j=1}^{2} \left\{ \frac{1}{\sqrt{D}} \frac{\partial}{\partial u_{i}} \left(\sqrt{D} h^{ij} \frac{\partial x_{k}}{\partial u_{j}} \right) + h^{ij} \sum_{s,t=1}^{2} \Gamma_{st}^{k} \frac{\partial x_{s}}{\partial u_{i}} \frac{\partial x_{t}}{\partial u_{j}} \right\} \right\} \frac{\partial}{\partial x_{k}},$$

em que (h^{ij}) é a matriz inversa de (h_{ij}) , $D = det(h_{ij})$ e Γ_{st}^k denota o símbolo de Christoffel

de M no ponto f(z).

Note que o primeiro termo na soma acima é justamente o Laplaciano em Σ da função f.

Definição 1.21 Uma aplicação $f : \Sigma \to M$ é dita harmônica se o seu campo de tensão é nulo, ou seja, $\tau(f) \equiv 0$.

Considere os operadores

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial u} - i \frac{\partial}{\partial v} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v} \right),$$

definidos sobre o espaço tangente complexificado $f^{-1}(TM) \otimes \mathbb{C}$. Por termos uma estrutura conforme em Σ , o Laplaciano pode ser escrito como

$$\Delta = \frac{4}{\sigma^2} \frac{\partial^2}{\partial z \partial \bar{z}}.$$

De fato,

$$\Delta = \sum_{i,j=1}^{2} \frac{1}{\sigma^2} \frac{\partial}{\partial u_i} \left(\sigma^2 h^{ij} \frac{\partial}{\partial u_j} \right) = \frac{1}{\sigma^2} \left(\frac{\partial}{\partial u_1} \frac{\partial}{\partial u_1} + \frac{\partial}{\partial u_2} \frac{\partial}{\partial u_2} \right).$$

Por outro lado,

$$\frac{\partial^2}{\partial z \partial \bar{z}} = \frac{\partial}{\partial z} \left[\frac{1}{2} \left(\frac{\partial}{\partial u_1} + i \frac{\partial}{\partial u_2} \right) \right]$$
$$= \frac{1}{4} \left(\frac{\partial}{\partial u_1} \frac{\partial}{\partial u_1} - i \frac{\partial}{\partial u_1} \frac{\partial}{\partial u_2} + i \frac{\partial}{\partial u_2} \frac{\partial}{\partial u_1} + \frac{\partial}{\partial u_2} \frac{\partial}{\partial u_2} \right)$$
$$= \frac{1}{4} \left(\frac{\partial}{\partial u_1} \frac{\partial}{\partial u_1} + \frac{\partial}{\partial u_2} \frac{\partial}{\partial u_2} \right).$$

Portanto,

$$\Delta = \frac{4}{\sigma^2} \frac{\partial^2}{\partial z \partial \bar{z}}$$

Seja $p \in M$ e considere $\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\}$ uma base para o espaço tangente T_pM . Da fórmula de Koszul (1.1), e da expressão matricial da métrica (1.9) em M, podemos escrever os

símbolos de Christoffel por:

$$\Gamma_{ij}^{m} = \frac{1}{2} \sum_{k=1}^{2} \left\{ \frac{\partial}{\partial x_{i}} g_{jk} + \frac{\partial}{\partial x_{j}} g_{ki} - \frac{\partial}{\partial x_{k}} g_{ij} \right\} g^{km}, \quad i, j \in \{1, 2\}.$$
(1.10)

Assim, os símbolos de Christoffel Γ^k_{st} satisfazem

$$\Gamma_{11}^{1} = \Gamma_{12}^{2} = \Gamma_{21}^{2} = -\Gamma_{22}^{1} = \frac{\lambda_{x_{1}}}{\lambda}, \qquad \Gamma_{22}^{2} = \Gamma_{21}^{1} = \Gamma_{12}^{1} = -\Gamma_{11}^{2} = \frac{\lambda_{x_{2}}}{\lambda}.$$
(1.11)

Temos que

$$\sum_{i,j=1}^{2} h^{ij} \sum_{s,t,k=1}^{2} \Gamma^{k}_{st} \frac{\partial x_{s}}{\partial u_{i}} \frac{\partial x_{t}}{\partial u_{j}} = \frac{1}{\sigma^{2}} \sum_{s,t,k=1}^{2} \Gamma^{k}_{st} \left(\frac{\partial x_{s}}{\partial u_{1}} \frac{\partial x_{t}}{\partial u_{1}} + \frac{\partial x_{s}}{\partial u_{2}} \frac{\partial x_{t}}{\partial u_{2}} \right),$$

 \mathbf{e}

$$\sum_{s,t,k=1}^{2} \Gamma_{st}^{k} \frac{\partial x_{s}}{\partial z} \frac{\partial x_{t}}{\partial \bar{z}} = \sum_{s,t,k=1}^{2} \Gamma_{st}^{k} \frac{1}{4} \left(\frac{\partial x_{s}}{\partial u_{1}} - i \frac{\partial x_{s}}{\partial u_{2}} \right) \left(\frac{\partial x_{t}}{\partial u_{1}} + i \frac{\partial x_{t}}{\partial u_{2}} \right)$$
$$= \sum_{s,t,k=1}^{2} \Gamma_{st}^{k} \frac{1}{4} \left(\frac{\partial x_{s}}{\partial u_{1}} \frac{\partial x_{t}}{\partial u_{1}} + \frac{\partial x_{s}}{\partial u_{2}} \frac{\partial x_{t}}{\partial u_{2}} \right)$$
$$+ i \sum_{s,t,k=1}^{2} \Gamma_{st}^{k} \frac{1}{4} \left(\frac{\partial x_{s}}{\partial u_{1}} \frac{\partial x_{t}}{\partial u_{2}} - \frac{\partial x_{s}}{\partial u_{2}} \frac{\partial x_{t}}{\partial u_{1}} \right).$$

A parte imaginária da equação anterior é

$$\begin{split} \frac{\lambda_{x_1}}{\lambda} \left[\frac{\partial x_1}{\partial u_1} \frac{\partial x_1}{\partial u_2} - \frac{\partial x_1}{\partial u_1} \frac{\partial x_1}{\partial u_2} - \frac{\partial x_2}{\partial u_1} \frac{\partial x_2}{\partial u_2} + \frac{\partial x_2}{\partial u_1} \frac{\partial x_2}{\partial u_2} \right. \\ \left. + \frac{\partial x_1}{\partial u_1} \frac{\partial x_2}{\partial u_2} - \frac{\partial x_2}{\partial u_1} \frac{\partial x_1}{\partial u_2} + \frac{\partial x_2}{\partial u_1} \frac{\partial x_1}{\partial u_2} - \frac{\partial x_1}{\partial u_1} \frac{\partial x_2}{\partial u_2} \right] \\ \left. + \frac{\lambda_{x_2}}{\lambda} \left[\frac{\partial x_1}{\partial u_1} \frac{\partial x_1}{\partial u_2} - \frac{\partial x_1}{\partial u_1} \frac{\partial x_1}{\partial u_2} - \frac{\partial x_2}{\partial u_1} \frac{\partial x_2}{\partial u_2} + \frac{\partial x_2}{\partial u_1} \frac{\partial x_2}{\partial u_2} \right. \\ \left. + \frac{\partial x_1}{\partial u_1} \frac{\partial x_2}{\partial u_2} - \frac{\partial x_2}{\partial u_1} \frac{\partial x_2}{\partial u_2} + \frac{\partial x_2}{\partial u_1} \frac{\partial x_1}{\partial u_2} - \frac{\partial x_1}{\partial u_1} \frac{\partial x_2}{\partial u_2} \right] \\ \left. = 0. \end{split}$$

Daí, temos que

$$\sum_{i,j=1}^{2} h^{ij} \sum_{s,t,k=1}^{2} \Gamma^{k}_{st} \frac{\partial x_{s}}{\partial u_{i}} \frac{\partial x_{t}}{\partial u_{j}} = \frac{4}{\sigma^{2}} \sum_{s,t,k=1}^{2} \Gamma^{k}_{st} \frac{\partial x_{s}}{\partial z} \frac{\partial x_{t}}{\partial \overline{z}}.$$

Portanto, f é harmônica se, e somente se

$$\frac{4}{\sigma^2} \sum_{k=1}^2 \left\{ \frac{\partial^2 x_k}{\partial z \partial \bar{z}} + \sum_{s,t,=1}^2 \Gamma_{st}^k \frac{\partial x_s}{\partial z} \frac{\partial x_t}{\partial \bar{z}} \right\} \frac{\partial}{\partial x_k} = 0.$$

Estas são as equações de Euler-Lagrange para a função fe podemos escrevê-las como

$$\frac{\partial^2 x_1}{\partial z \partial \bar{z}} + \Gamma_{11}^1 \left\{ \frac{\partial x_1}{\partial z} \frac{\partial x_1}{\partial \bar{z}} - \frac{\partial x_2}{\partial z} \frac{\partial x_2}{\partial \bar{z}} \right\} + \Gamma_{22}^2 \left\{ \frac{\partial x_1}{\partial z} \frac{\partial x_2}{\partial \bar{z}} + \frac{\partial x_2}{\partial z} \frac{\partial x_1}{\partial \bar{z}} \right\} = 0, \quad (1.12)$$

$$\frac{\partial^2 x_2}{\partial z \partial \bar{z}} - \Gamma_{22}^2 \left\{ \frac{\partial x_1}{\partial z} \frac{\partial x_1}{\partial \bar{z}} - \frac{\partial x_2}{\partial z} \frac{\partial x_2}{\partial \bar{z}} \right\} + \Gamma_{11}^1 \left\{ \frac{\partial x_1}{\partial z} \frac{\partial x_2}{\partial \bar{z}} + \frac{\partial x_2}{\partial z} \frac{\partial x_1}{\partial \bar{z}} \right\} = 0.$$
(1.13)

Somando a primeira equação com a segunda multiplicada por i, obtemos

$$\begin{split} f_{z\bar{z}} &+ (\Gamma_{11}^1 - i\Gamma_{22}^2) \left\{ \left(\frac{\partial x_1}{\partial z} \frac{\partial x_1}{\partial \bar{z}} - \frac{\partial x_2}{\partial z} \frac{\partial x_2}{\partial \bar{z}} \right) + i \left(\frac{\partial x_1}{\partial z} \frac{\partial x_2}{\partial \bar{z}} + \frac{\partial x_2}{\partial z} \frac{\partial x_1}{\partial \bar{z}} \right) \right\} = 0 \\ f_{z\bar{z}} &+ (\Gamma_{11}^1 - i\Gamma_{22}^2) \left(\frac{\partial x_1}{\partial z} + i \frac{\partial x_2}{\partial z} \right) \left(\frac{\partial x_1}{\partial \bar{z}} + i \frac{\partial x_2}{\partial \bar{z}} \right) = 0 \\ f_{z\bar{z}} &+ (\Gamma_{11}^1 - i\Gamma_{22}^2) (f_z f_{\bar{z}}) = 0 \end{split}$$

Por outro lado, de (1.11), segue que

$$\Gamma_{11}^1 - i\Gamma_{22}^2 = \frac{1}{\lambda}(\lambda_{x_1} - i\lambda_{x_2})$$
$$= \frac{2\lambda_w}{\lambda}.$$

Portanto, f é harmônica se, e somente se,

$$f_{z\bar{z}} + \frac{2\lambda_w}{\lambda} f_z f_{\bar{z}} = 0.$$
(1.14)

Capítulo 2

A Aplicação de Gauss de Superfícies Máximas em ${\rm Nil}_1^3(au)$

No ano de 2007, I. Fernández e P. Mira provaram em [15], a existência de uma aplicação de Gauss harmônica, denominada aplicação de Gauss hiperbólica, de superfícies de curvatura média constante $\frac{1}{2}$ em $\mathbb{H}^2 \times \mathbb{R}$ no plano hiperbólico \mathbb{H}^2 . Em virtude da correspondência isométrica entre as superfícies de curvatura média constante $\frac{1}{2}$ em $\mathbb{H}^2 \times \mathbb{R}$ e superfícies mínimas no espaço de Heisenberg Nil³($\frac{1}{2}$) dada em [10], é natural estudar o mesmo problema para superfícies mínimas em Nil³($\frac{1}{2}$). Em [11], B. Daniel mostrou que a aplicação de Gauss destas superfícies é uma aplicação harmônica no plano hiperbólico \mathbb{H}^2 .

Nosso objetivo neste capítulo é mostrar que a aplicação de Gauss de superfícies máximas em Nil₁³(τ) é uma aplicação harmônica no plano $\mathbb{C} \cup \{\infty\}$ e construir uma representação tipo Weierstrass para as superfícies máximas.

Primeiramente, vamos definir o que é uma superfície máxima no espaço de Lorentz-Heisenberg.

Definição 2.1 Uma superfície $S \subset \operatorname{Nil}_1^3(\tau)$ é dita uma superfície máxima se é uma superfície tipo-espaço com curvatura média nula em $\operatorname{Nil}_1^3(\tau)$.

Seja $X : \Sigma \to \text{Nil}_1^3(\tau)$ uma imersão máxima conforme tipo-espaço, onde Σ é uma superfície de Riemann orientável. Considere o parâmetro isotérmico z = u + iv em Σ .

Escrevemos a imersão X como

$$X(z) = (x_1(z), x_2(z), x_3(z)) = (x_1 + ix_2, h) = (F, h),$$

onde F é chamada de parte horizontal e h de parte vertical da imersão. Vamos denotar por

$$X_u = \frac{\partial}{\partial u}, \ X_v = \frac{\partial}{\partial v},$$

os campos coordenados referentes ao sistema de coordenadas $(u,v)\in \mathbb{R}^2$ e por

$$N = -\frac{X_u \times X_v}{|X_u \times X_v|},$$

o campo de vetores normal a imersão X onde $| \cdot | : TNil_1^3(\tau) \to \mathbb{R}$ denota a norma do nosso espaço ambiente.

Os coeficientes da primeira forma fundamental no sistema de coordenadas isotérmicas (u, v) satisfazem

$$E = G = \lambda(u, v), \ F = 0,$$

em que $\lambda(u, v) > 0$ para todo $(u, v) \in \mathbb{R}^2$. De maneira natural, podemos definir os seguintes campos no pullback do espaço tangente complexificado $X^*(TNil_1^3(\tau)) \otimes \mathbb{C}$

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial u} - i \frac{\partial}{\partial v} \right), \ \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v} \right),$$

denotando-os por X_z e $X_{\bar{z}}$, respectivamente. Note que o espaço $X^*(TNil_1^3(\tau)) \otimes \mathbb{C}$ é o conjunto de somas formais $X_1 + iX_2$, tal que $X_1, X_2 \in TNil_1^3(\tau)$, munido com as operações usuais de números complexos.

Introduzindo a seção $\phi \in X^*(TNil_1^3(\tau)) \otimes \mathbb{C}$ dada por

$$\phi = 2\frac{\partial X}{\partial z} = \phi_1 E_1 + \phi_2 E_2 + \phi_3 E_3, \qquad (2.1)$$

temos que

$$\langle \phi, \phi \rangle = \langle X_u - iX_v, X_u - iX_v \rangle = |X_u|^2 - |X_v|^2 - 2i\langle X_u, X_v \rangle.$$
Como a imersão X é conforme, segue que

$$0 = \langle \phi, \phi \rangle = \phi_1^2 + \phi_2^2 - \phi_3^2.$$

Por X ser máxima, segue que o vetor curvatura média $\mathbf{H} = H \cdot N$ é nulo. E assim, X_z é holomorfa. De fato, como X(u, v) é uma parametrização isotérmica,

$$\Delta X = 2\lambda \mathbf{H} \Rightarrow \Delta X = 0.$$

Logo, X é harmônica e ϕ satisfaz as equações de Cauchy-Riemann. Portanto, X_z é holomorfa.

Seja ∇ a conexão induzida no pullback $X^*(TNil_1^3(\tau))$. Esta conexão se estende a uma conexão no pullback complexificado e sabemos que existe uma única estrutura holomorfa em $X^*(TNil_1^3(\tau)) \otimes \mathbb{C}$ tal que uma seção W é holomorfa se, e somente se

$$\nabla_{\frac{\partial}{\partial \bar{z}}} W = 0, \tag{2.2}$$

veja [21].

Vamos escrever o campo $4\nabla_{\frac{\partial}{\partial \bar{z}}}\left(\frac{\phi}{2}\right)$ como combinação dos vetores da base $\{E_1, E_2, E_3\}$:

$$4\nabla_{\frac{\partial}{\partial \bar{z}}}\left(\frac{\phi}{2}\right) = \sum_{k=1}^{3} C_k E_k.$$
(2.3)

Como ϕ é uma seção holomorfa, segue de (2.2) e (2.3) que

$$0 = 4\nabla_{\frac{\partial}{\partial \overline{z}}} \left(\frac{\phi}{2}\right) = \sum_{k=1}^{3} C_k E_k$$

= $2\sum_k \left\{ \left(\nabla_{\frac{\partial}{\partial \overline{z}}} \phi_k\right) E_k + \phi_k \overline{\nabla}_{\frac{\partial}{\partial \overline{z}}} E_k \right\}$
= $2\sum_k \left\{ \frac{\partial}{\partial \overline{z}} \phi_k E_k + \phi_k \overline{\nabla}_{\sum_j \overline{\phi_j} E_j} E_k \right\}$
= $\sum_k \left\{ 2\frac{\partial}{\partial \overline{z}} \phi_k + \sum_{i,j} \Gamma_{ij}^k \overline{\phi_i} \phi_j \right\} E_k$

A conformalidade e a maximalidade nos conduzem ao seguinte sistema de equações

diferenciais parciais para a imersão X:

$$0 = \phi_1^2 + \phi_2^2 - \phi_3^2 \tag{2.4}$$

$$0 = 2\frac{\partial\phi_1}{\partial\bar{z}} - \tau\bar{\phi}_2\phi_3 - \tau\phi_2\bar{\phi}_3 \tag{2.5}$$

$$0 = 2\frac{\partial\phi_2}{\partial\bar{z}} + \tau\bar{\phi}_1\phi_3 + \tau\phi_1\bar{\phi}_3 \tag{2.6}$$

$$0 = 2\frac{\partial\phi_3}{\partial\bar{z}} + \tau\bar{\phi}_1\phi_2 - \tau\phi_1\bar{\phi}_2 \tag{2.7}$$

Este sistema nos leva a uma representação tipo Weierstrass em Nil₁³(τ) para a imersão em questão. Para resolvê-lo, usamos a seguinte função auxiliar $\bar{g} = \frac{\phi_3}{\phi_1 + i\phi_2}$, que admite uma interpretação geométrica. Vamos mostrar que o vetor normal N e a solução do sistema acima são completamente descritos em termos dessa função auxiliar.

Definição 2.2 Os dados de Weierstrass (g, η) de X satisfazem:

$$\bar{g} = \frac{\phi_3}{\phi_1 + i\phi_2}, \quad \eta = \phi_3 = -2\langle X_z, E_3 \rangle.$$

A aplicação g é chamada aplicação de Gauss da imersão X.

De posse desta definição e lembrando que podemos escrever a imersão X como X(z) = (F(z), h(z)), vamos escrever o vetor normal N em termos da aplicação g.

Primeiramente, note que a imersão X é tipo-espaço. Assim, o campo de vetores normais unitários é tipo-tempo, deve satisfazer $\langle N, N \rangle = -1$ e sua a imagem está contida no seguinte conjunto:

$$\mathbb{S}_1^2 = \{ aE_1 + bE_2 + cE_3 \in TNil_1^3(\tau) : a^2 + b^2 - c^2 = -1 \}.$$

Da equação (2.4) temos $\phi_1^2 + \phi_2^2 = \phi_3^2$. Como $\phi = 2X_z$, segue que

$$\begin{cases} 2F_z = \phi_1 + i\phi_2\\ 2F_{\bar{z}} = \overline{\phi_1} + i\overline{\phi_2}\\ 2F_z \bar{g} = \phi_3 \end{cases}$$

e assim,

$$2F_z\bar{g}^2 = (\phi_1 + i\phi_2)\frac{\phi_3^2}{(\phi_1 + i\phi_2)^2} = \phi_1 - i\phi_2.$$

Daí,

$$\begin{cases} 2F_z + 2F_z\bar{g}^2 = 2\phi_1\\ 2F_z - 2F_z\bar{g}^2 = 2i\phi_2 \end{cases}$$

Portanto, podemos escrever as componentes da seção ϕ como

$$\begin{cases} \phi_1 = F_z (1 + \bar{g}^2) \\ \phi_2 = -iF_z (1 - \bar{g}^2) \\ \phi_3 = 2F_z \bar{g} \end{cases}$$

Temos que

$$\phi \times \bar{\phi} = 2X_z \times 2X_{\bar{z}} = (X_u - iX_v) \times (X_u + iX_v) = 2iX_u \times X_v$$
$$X_u \times X_v = -\frac{i}{2}\phi \times \bar{\phi}$$

Assim,

$$-\frac{i}{2}\phi \times \overline{\phi} = -\frac{i}{2} \begin{vmatrix} E_1 & E_2 & E_3 \\ \phi_1 & \phi_2 & \phi_3 \\ \overline{\phi_1} & \overline{\phi_2} & \overline{\phi_3} \end{vmatrix} = -\frac{i}{2} \begin{bmatrix} \phi_2\overline{\phi_3} - \phi_3\overline{\phi_2} \\ \phi_3\overline{\phi_1} - \phi_1\overline{\phi_3} \\ \phi_2\overline{\phi_1} - \phi_1\overline{\phi_2} \end{vmatrix}$$

Temos

•
$$\phi_2 \overline{\phi_3} = -2i|F_z|^2(g - \bar{g}|g|^2)$$

• $\phi_3 \overline{\phi_2} = 2i|F_z|^2(\bar{g} - g|g|^2)$
 $\phi_2 \overline{\phi_3} - \phi_3 \overline{\phi_2} = -2i|F_z|^2(g + \bar{g})(1 - |g|^2)$
• $\phi_3 \overline{\phi_1} = 2|F_z|^2(\bar{g} + g|g|^2)$
• $\phi_1 \overline{\phi_3} = 2|F_z|^2(g + \bar{g}|g|^2)$
 $\phi_3 \overline{\phi_1} - \phi_1 \overline{\phi_3} = 2|F_z|^2(\bar{g} - g)(1 - |g|^2)$
• $\phi_2 \overline{\phi_1} = -i|F_z|^2(1 + g^2 - \bar{g}^2 - |g|^4)$
• $\phi_1 \overline{\phi_2} = i|F_z|^2(1 - g^2 + \bar{g}^2 - |g|^4)$
 $\phi_2 \overline{\phi_1} - \phi_1 \overline{\phi_2} = -2i|F_z|^2(1 - |g|^4)$

Daí,

$$X_u \times X_v = -|F_z|^2 (1 - |g|^2) \begin{bmatrix} 2Re\{g\} \\ 2Im\{g\} \\ 1 + |g|^2 \end{bmatrix}$$

е

$$\begin{split} |X_u \times X_v|^2 &= \left| |F_z|^4 (1 - |g|^2)^2 [4(Re\{g\})^2 + 4(Im\{g\})^2 - (1 + |g|^2)^2] \right| \\ &= \left| |F_z|^4 (1 - |g|^2)^2 [4|g|^2 - 1 - 2|g|^2 - |g|^4] \right| \\ &= |F_z|^4 (1 - |g|^2)^4. \end{split}$$

Logo, $|X_u \times X_v| = |F_z|^2 (1 - |g|^2)^2$. Portanto,

$$N = -\frac{X_u \times X_v}{|X_u \times X_v|} = \frac{1}{1 - |g|^2} \begin{bmatrix} 2Re\{g\} \\ 2Im\{g\} \\ 1 + |g|^2 \end{bmatrix}.$$

Agora, vamos dar uma interpretação geométrica da aplicação de Gauss g: Seja $\pi_S : \mathbb{S}_1^2 \to \mathbb{C} \cup \{\infty\}$ a projeção estereográfica com respeito ao polo sul. Temos que

$$\pi_{S}(v) = \frac{a+ib}{1+c}, \ v = aE_{1} + bE_{2} + cE_{3} \in \mathbb{S}_{1}^{2} \setminus \{-E_{3}\};$$
$$\pi_{S}(-E_{3}) = \infty.$$

A aplicação π_S define no plano complexo um sistema de coordenadas $\xi = \xi_1 + i\xi_2$ e tem inversa dada por:

$$\pi_S^{-1}(\xi) = \frac{1}{1 - |\xi|^2} \left(2Re(\xi), 2Im(\xi), 1 + |\xi|^2 \right).$$

Assim, seja $g = Re\{g\} + iIm\{g\} \in \mathbb{C}$. Temos o seguinte resultado:

Lema 2.1 Seja $X : \Sigma \to \operatorname{Nil}_1^3(\tau)$ uma imersão máxima conforme. A aplicação de Gauss $g : \Sigma \to \mathbb{C}$ da imersão X é a projeção estereográfica com respeito ao polo sul do vetor normal unitário N.

Demonstração: O vetor normal unitário pode ser escrito como

$$N = \frac{1}{1 - |g|^2} \begin{bmatrix} 2Re\{g\} \\ 2Im\{g\} \\ 1 + |g|^2 \end{bmatrix}.$$

Assim,

$$\pi_S \circ N = \frac{\frac{2Re\{g\} + i2Im\{g\}}{1-|g|^2}}{1 + \frac{1+|g|^2}{1-|g|^2}} = \frac{\frac{2g}{1-|g|^2}}{\frac{1-|g|^2+1+|g|^2}{1-|g|^2}} = g.$$

Utilizando o sistema de equações dado pelas equações de (2.4) a (2.7), vamos mostrar que se uma superfície tipo-espaço em $\operatorname{Nil}_1^3(\tau)$ admite curvatura média nula em todos os pontos, então a aplicação de Gauss é uma aplicação harmônica em $\mathbb{C} \cup \{\infty\}$. Para isto, necessitamos de alguns lemas. Lembre-se que $F = \pi \circ X$. **Lema 2.2** A parte horizontal da imersão X, $\pi \circ X = F$, satisfaz:

$$F_z = \frac{\eta}{2\bar{g}}, \qquad \overline{F_z} = \overline{F_{\bar{z}}} = \frac{\bar{\eta}}{2g}, \qquad F_{\bar{z}} = \overline{\overline{F_z}} = \frac{g\bar{\eta}}{2}, \qquad g^2 = \frac{F_{\bar{z}}}{\overline{F_{\bar{z}}}}$$

Demonstração: Observe que

$$\left\{ \begin{array}{l} 2F_z=\phi_1+i\phi_2\\ 2\overline{F}_z=\phi_1-i\phi_2 \end{array} \right.$$

Da equação (2.4), temos $F_z \overline{F}_z = \frac{\eta^2}{4}$. E assim,

$$F_z = \frac{\eta}{2\bar{g}}, \qquad \qquad \overline{F_z} = \frac{\bar{\eta}}{2g}, \qquad \qquad F_{\bar{z}} = \frac{g\bar{\eta}}{2}.$$

Daí,

$$\frac{F_{\bar{z}}}{\overline{F}_{\bar{z}}} = \frac{g\bar{\eta}}{2} \cdot \left(\frac{2g}{\bar{\eta}}\right) = g^2.$$

Lema 2.3 Para $F \in \eta$ definidas anteriormente, são válidas as seguintes relações:

$$F_{z\bar{z}} = F_{\bar{z}z} = -\frac{i\tau}{4} |\eta|^2 \frac{1+|g|^2}{|g|^2} g, \qquad \qquad \eta_{\bar{z}} + \bar{\eta}_z = 0.$$

Demonstração: Das equações (2.2) e (2.3), temos que a parte horizontal $C_1 + iC_2$, é nula. Assim,

$$0 = 2\phi_{1\bar{z}} - \tau \overline{\phi_2}\phi_3 - \tau \phi_2 \overline{\phi_3} + i\{2\phi_{2\bar{z}} - \tau \overline{\phi_1}\phi_3 + \tau \phi_1 \overline{\phi_3}\}$$
$$0 = 2(\phi_1 + i\phi_2)_{\bar{z}} + i\tau((\overline{\phi_1} + i\overline{\phi_2})\phi_3 + (\phi_1 + i\phi_2)\overline{\phi_3})$$
$$0 = 4F_{z\bar{z}} + 2(F_{\bar{z}}\eta + F_z\overline{\eta}).$$

Usando o Lema 2.2, segue que

$$F_{z\bar{z}} = -\frac{i\tau}{2} \left(\frac{g\bar{\eta}}{2} \eta + \frac{\eta\bar{\eta}}{2\bar{g}} \right)$$
$$= -\frac{i\tau}{4} |\eta|^2 \left(g + \frac{1}{\bar{g}} \right)$$
$$= -\frac{i\tau}{4} |\eta|^2 \left(\frac{|g|^2 + 1}{\bar{g}} \right) \frac{g}{g}$$
$$= -\frac{i\tau}{4} |\eta|^2 \left(\frac{1 + |g|^2}{|g|^2} \right) g.$$

Para a segunda igualdade, observe que o coeficiente C_3 é nulo. Da equação (2.7) temos

$$0 = 2\frac{\partial\phi_3}{\partial\bar{z}} + \tau\overline{\phi_1}\phi_2 - \tau\phi_1\overline{\phi_2}.$$

Tomando o conjugado em ambos os lados

$$0 = 2\frac{\partial\phi_3}{\partial z} + \tau\phi_1\overline{\phi_2} - \tau\overline{\phi_1}\phi_2$$

e somando as duas equações obtemos

$$0 = 2(\eta_{\bar{z}} + \bar{\eta}_z).$$

Lema 2.4 A derivada da aplicação de Gauss satisfaz

$$g_z = -\frac{i\tau\eta}{4\bar{g}}(1+|g|^2)^2 = -\frac{i\tau}{2}F_z(1+|g|^2)^2.$$

Demonstração: Do lema 2.2 segue que

$$g^2 = \frac{F_{\bar{z}}}{\overline{F}_{\bar{z}}}.$$

Diferenciando com respeito a z obtemos

$$2gg_{z} = \frac{\partial}{\partial z} \left(\frac{F_{\bar{z}}}{\overline{F}_{\bar{z}}}\right)$$
$$= \frac{1}{\overline{F}_{\bar{z}}} \left(F_{\bar{z}z} - \frac{F_{\bar{z}}}{\overline{F}_{\bar{z}}}\overline{F_{z\bar{z}}}\right).$$

Por outro lado, do Lema 2.2, podemos escrever

$$F_{\bar{z}z} - \frac{F_{\bar{z}}}{\overline{F}_{\bar{z}}}\overline{F_{z\bar{z}}} = F_{\bar{z}z} - g^2 \overline{F_{z\bar{z}}}.$$

E do Lema 2.3 segue que

$$\begin{split} F_{\bar{z}z} - g^2 \overline{F_{z\bar{z}}} &= -\frac{i\tau}{4} |\eta|^2 \left(\frac{|g|^2 + 1}{\bar{g}}\right) - g^2 \frac{i\tau}{4} |\eta|^2 \left(\frac{|g|^2 + 1}{g}\right) \\ &= -\frac{i\tau}{4} |\eta|^2 (1 + |g|^2) \left(\frac{1}{\bar{g}} + g\right) \\ &= -\frac{i\tau}{4} |\eta|^2 \frac{(1 + |g|^2)^2}{\bar{g}} \end{split}$$

Combinando os resultados anteriores obtemos:

$$2gg_z = \frac{2g}{\bar{\eta}} \left(-\frac{i\tau}{4} |\eta|^2 \frac{(1+|g|^2)^2}{\bar{g}} \right)$$
$$g_z = -\frac{i\tau}{4} \frac{\eta}{\bar{g}} (1+|g|^2)^2$$
$$= -\frac{i\tau}{2} F_z (1+|g|^2)^2$$

Lema 2.5 A aplicação $\eta = -\langle X_z, E_3 \rangle$ pode ser descrita em termos da aplicação de Gauss por:

$$\eta = \frac{4i}{\tau} \cdot \frac{\bar{g}g_z}{(1+|g|^2)^2},$$

 $com \ \tau \neq 0.$

Demonstração: Segue imediatamente do Lema 2.4.

Temos também que a diferencial da parte vertical h de X = (F, h) é explicitamente dada em termos de $g \in F$. O vetor $X_z = (x_z + iy_z, h_z) \in T \operatorname{Nil}_1^3(\tau)$ no ponto $p = (x, y, h) \in$ $\operatorname{Nil}_1^3(\tau)$ é escrito em termos da base $\{E_1, E_2, E_3\}$ como

$$X_{z} = x_{z}E_{1} + y_{z}E_{2} + [h_{z} + \tau(yx_{z} - xy_{z})]E_{3}$$

Fazendo o produto interno com E_3 obtemos

$$h_z = -\langle X_z, E_3 \rangle - \tau (yx_z - xy_z)$$
$$= \frac{\eta}{2} - \tau (yx_z - xy_z)$$

Como $\overline{F}F_z - F\overline{F}_z = -2i(yx_z - xy_z)$, segue que

$$h_z = \frac{\eta}{2} - \frac{i\tau}{2} (\overline{F}F_z - F\overline{F}_z)$$

= $\frac{2i}{\tau} \cdot \frac{\overline{g}g_z}{(1+|g|^2)^2} - \frac{i\tau}{2} (\overline{F}F_z - F\overline{F}_z).$

O próximo resultado nos diz que a aplicação de Gauss g de uma superfície máxima em Nil₁³(τ) é uma aplicação harmônica entre superfícies.

Teorema 2.1 Seja $X : \Sigma \to \operatorname{Nil}_1^3(\tau)$ uma imersão máxima conforme. Então a sua aplicação de Gauss $g : \Sigma \to \mathbb{C} \cup \{\infty\}$ é uma aplicação harmônica no plano $\mathbb{C} \cup \{\infty\}$.

Demonstração: Nosso objetivo é mostrar que a aplicação g satisfaz a seguinte equação diferencial parcial:

$$g_{z\bar{z}} - \frac{2\bar{g}}{1+|g|^2} g_z g_{\bar{z}} = 0,$$

que é a equação das aplicações harmônicas no plano $\mathbb{C} \cup \{\infty\}$ munido com a métrica conforme $\left(\frac{2}{1+|z|^2}\right)^2 |dz|^2$.

Do Lema 2.4 segue que

$$-\frac{i\tau}{2}F_{z\bar{z}} = \frac{\partial}{\partial\bar{z}} \left(\frac{g_z}{(1+|g|^2)^2}\right)$$
$$= \frac{g_{z\bar{z}}(1+|g|^2)^2 - 2g_z(1+g\bar{g})(g_{\bar{z}}\bar{g}+g\bar{g}_{\bar{z}})}{(1+|g|^2)^4}$$
$$= \frac{g_{z\bar{z}}}{(1+|g|^2)^2} - \frac{2\bar{g}g_zg_{\bar{z}}}{(1+|g|^2)^3} - \frac{2gg_z\overline{g}_{\bar{z}}}{(1+|g|^2)^3}$$

Daí,

$$-\frac{i\tau}{2}F_{z\bar{z}}(1+|g|^2)^2 + \frac{2gg_z\overline{g_z}}{(1+|g|^2)} = g_{z\bar{z}} - \frac{2\bar{g}g_zg_{\bar{z}}}{(1+|g|^2)}.$$

Então, é suficiente mostrar que a primeira parte a igualdade acima é nula. Pelo Lema 2.3, temos que

$$\frac{1}{(1+|g|^2)} \left\{ -\frac{i\tau}{2} F_{z\bar{z}} (1+|g|^2)^3 + 2gg_z \overline{g_z} \right\} = \frac{1}{(1+|g|^2)} \left\{ \frac{i\tau}{2} \left(\frac{i\tau}{4} |\eta|^2 \left(\frac{1+|g|^2}{|g|^2} \right) g \right) (1+|g|^2)^3 + 2g|g_z|^2 \right\} = \frac{1}{(1+|g|^2)} \left\{ 2g \left(|g_z|^2 - \frac{\tau^2}{16} \frac{|\eta|^2}{|g|^2} (1+|g|^2)^4 \right) \right\}$$

E pelo Lema 2.4, temos

$$\begin{split} |g_z|^2 &= \left(\frac{i\tau\eta}{4\bar{g}}(1+|g|^2)^2\right) \left(\frac{i\tau\eta}{4\bar{g}}(1+|g|^2)^2\right) \\ &= \frac{\tau^2}{16} \frac{|\eta|^2}{|g|^2} (1+|g|^2)^4 \end{split}$$

Portanto,

$$g_{z\bar{z}} - \frac{2\bar{g}}{1+|g|^2}g_zg_{\bar{z}} = 0.$$

Combinando os resultados anteriores, obtemos uma representação para as superfícies máximas em $Nil_1^3(\tau)$:

Proposição 2.1 Considere $\tau \neq 0$. A imersão máxima conforme $X = (F,h) : \Sigma \rightarrow \text{Nil}_1^3(\tau)$ pode ser descrita em termos da aplicação de Gauss g e do parâmetro τ da seguinte forma:

$$\begin{split} F_z &= \frac{2i}{\tau} \cdot \frac{g_z}{(1+|g|^2)^2}, \\ h_z &= \frac{2i}{\tau} \cdot \frac{\bar{g}g_z}{(1+|g|^2)^2} - \frac{i\tau}{2} (\bar{F}F_z - F\bar{F}_z). \end{split} \qquad \qquad F_{\bar{z}} &= -\frac{2i}{\tau} \cdot \frac{g^2 \bar{g}_{\bar{z}}}{(1+|g|^2)^2}, \end{split}$$

Observe que a métrica induzida no plano $\mathbb C$ via X é dada por

$$ds^{2} = \frac{4}{\tau^{2}} \frac{(1 - |g|^{2})^{2}}{(1 + |g|^{2})^{4}} |g_{z}|^{2} |dz|^{2}.$$

De fato, no sistema de coordenadas $(u,v)\in \mathbb{R}^2$ temos

$$ds^2 = Edu^2 + 2Fdudv + Gdv^2.$$

Por X ser conforme, segue que

$$ds^{2} = \lambda du^{2} + \lambda dv^{2} = \lambda (du^{2} + dv^{2})$$
$$= \lambda |dz|^{2}$$

com $\lambda(u, v) > 0$. Por outro lado, temos que

$$\langle X_z, X_{\bar{z}} \rangle = \frac{1}{4} \langle X_u - iX_v, X_u + iX_v \rangle$$

= $\frac{\lambda}{2}$.

Escrevendo os vetores X_z e $X_{\bar{z}}$ na base $\{E_1, E_2, E_3\}$

$$\langle X_z, X_{\bar{z}} \rangle = \frac{1}{4} \langle ((F + \overline{F})_z E_1 + i(\overline{F} - F)_z E_2 + \eta E_3), ((F + \overline{F})_{\bar{z}} E_1 + i(\overline{F} - F)_{\bar{z}} E_2 + \overline{\eta} E_3) \rangle$$

= $\frac{1}{2} |F_z|^2 + \frac{1}{2} |F_{\bar{z}}|^2 - \frac{1}{4} |\eta|^2.$

Daí,

$$\lambda = |F_z|^2 + |F_{\bar{z}}|^2 - \frac{1}{2}|\eta|^2$$

Utilizando os Lemas 2.2 e 2.5, obtemos

$$ds^{2} = \lambda |dz|^{2} = \frac{4}{\tau^{2}} \frac{(1 - |g|^{2})^{2}}{(1 + |g|^{2})^{4}} |g_{z}|^{2} |dz|^{2}.$$

Lema 2.6 Como g é uma aplicação harmônica, a equação

$$g_{z\bar{z}} - \frac{2\bar{g}}{1+|g|^2}g_zg_{\bar{z}} = 0$$

pode ser expressa como a seguinte condição de integrabilidade

$$\frac{\partial}{\partial \bar{z}} \left(\frac{g_z}{(1+|g|^2)^2} \right) = \frac{\partial}{\partial z} \left(\frac{-g^2 \bar{g}_{\bar{z}}}{(1+|g|^2)^2} \right).$$

Demonstração: Basta calcular as derivadas parciais e usar o fato de que g é harmônica.

A condição de integrabilidade nos permite resolver o seguinte problema para a aplicação de Gauss prescrita em $Nil_1^3(\tau)$:

Proposição 2.2 Seja $g : \Sigma \to \mathbb{C} \cup \{\infty\}$ uma aplicação harmônica em que Σ é uma superfície de Riemann simplesmente conexa. Seja $z_0 \in \Sigma$, $F_0 \in \mathbb{C}$ e $h_0 \in \mathbb{R}$.

Se a aplicação g satisfaz $g_z(p) \neq 0, \forall p \in \Sigma$, então existe uma única imersão máxima conforme $X : \Sigma \to \operatorname{Nil}_1^3(\tau)$ tal que g é sua aplicação de Gauss e X satisfaz as condições da fórmula de representação dadas na Proposição 2.1 com $X(z_0) = (F_0, h_0)$.

Demonstração: Veja [11], Teorema 4.1.

Capítulo 3

O Problema de Calabi-Bernstein em $\mathbf{Nil}_1^3(\tau)$

Em [5], Bernstein mostrou que os únicos gráficos mínimos inteiros em \mathbb{R}^3 são os planos. Em [7], Calabi obteve uma versão correspondente ao teorema de Bernstein no espaço de Lorentz \mathbb{L}^3 , demonstrando que os planos tipo-espaço são os únicos gráficos máximos inteiros em \mathbb{L}^3 . Em [16], I. Fernández e P. Mira, estudaram o problema de Bernstein no espaço de Heisenberg Nil³ utilizando a diferencial de Abresch-Rosenberg e mostraram que, dada uma diferencial quadrática holomorfa Qdz^2 , existe uma família a 2-parâmetros de gráficos mínimos inteiros em Nil³ tal que a diferencial de Abresch-Rosenberg é Qdz^2 . E também vale a recíproca, qualquer gráfico mínimo inteiro em Nil³ é desta forma. Em [12], B. Daniel e L. Hauswirth, mostraram para o espaço de Heisenberg Riemanniano Nil³, que todo gráfico mínimo completo é inteiro.

Neste capítulo resolvemos o problema de Bernstein no espaço de Lorentz-Heisenberg Nil₁³(τ). Baseado em [20], construímos uma representação tipo Weierstrass para superfícies de curvatura média constante prescrita em \mathbb{R}^3 e observamos as semelhanças com a representação dada pela Proposição 2.1. Utilizando o teorema de Chern dado em [9], deduzimos a não existência de gráficos máximos inteiros em Nil₁³(τ) com $\tau \neq 0$. Isto implica a não existência de gráficos máximos completos em Nil₁³(τ).

Procedendo de forma similar ao que foi feito no capítulo anterior, vamos encontrar uma fórmula de representação para superfícies com curvatura média prescrita $(H \neq 0)$ em \mathbb{R}^3 . Seja $X : \Sigma \to \mathbb{R}^3$ uma imersão conforme em que Σ é uma superfície de Riemann orientável com parâmetros isotérmicos z = u + iv. Sua primeira forma fundamental é $ds^2 = \lambda^2 |dz|^2$ e definiremos um referencial ortonormal em X(u, v)

$$e_1 = \frac{1}{\lambda} \frac{\partial X}{\partial u},$$
 $e_2 = \frac{1}{\lambda} \frac{\partial X}{\partial v},$ $e_3 = e_1 \times e_2$

Denotaremos a imersão X por

$$X(z) = (x_1, x_2, x_3) = (F, h).$$

Sobre o pullback complexificado $X^*(T\mathbb{R}^3) \otimes \mathbb{C}$, introduzimos a seção ζ :

$$\zeta = 2\frac{\partial}{\partial z}X = \zeta_1 e_1 + \zeta_2 e_2 + \zeta_3 e_3.$$

A conformalidade de X nos garante que

$$0 = \langle 2X_z, 2X_z \rangle_{\mathbb{R}} = \zeta_1^2 + \zeta_2^2 + \zeta_3^2.$$

Lembre-se que $\langle, \rangle_{\mathbb{R}} : T\mathbb{R}^3 \times T\mathbb{R}^3 \to \mathbb{R}$ denota a métrica usual do \mathbb{R}^3 .

Da definição do vetor normal unitário segue que

$$e_{3} = \frac{1}{\lambda^{2}} \left(\frac{\partial x_{2}}{\partial u} \frac{\partial x_{3}}{\partial v} - \frac{\partial x_{3}}{\partial u} \frac{\partial x_{2}}{\partial v}, \frac{\partial x_{3}}{\partial u} \frac{\partial x_{1}}{\partial v} - \frac{\partial x_{1}}{\partial u} \frac{\partial x_{3}}{\partial v}, \frac{\partial x_{1}}{\partial u} \frac{\partial x_{2}}{\partial v} - \frac{\partial x_{2}}{\partial u} \frac{\partial x_{1}}{\partial v} \right).$$
(3.1)

Ainda da conformalidade de X temos

$$\sum_{i} \left(\frac{\partial x_i}{\partial u}\right)^2 = \sum_{i} \left(\frac{\partial x_i}{\partial v}\right)^2 = \lambda^2, \tag{3.2}$$

$$\sum_{i} \frac{\partial x_i}{\partial u} \frac{\partial x_i}{\partial v} = 0. \tag{3.3}$$

Definição 3.1 Os dados de Weierstrass (g, η) de X satisfazem

$$\bar{g} = \frac{\zeta_3}{\zeta_1 + i\zeta_2}, \qquad \eta = \zeta_3 = 2\langle X_z, e_3 \rangle_{\mathbb{R}}.$$

A aplicação g é chamada aplicação de Gauss de X.

Escrevendo a diferencial da aplicação e_3 em sua forma matricial

$$de_3 = \left(\begin{array}{cc} -h_{11} & -h_{12} \\ -h_{21} & -h_{22} \end{array} \right),$$

definimos a função curvatura média H por:

$$H = -\frac{1}{2} \operatorname{traço}\{de_3\} = \frac{1}{2}(h_{11} + h_{22}).$$

Como $|e_3| = 1$, denotando $e_3 = (e_{31}, e_{32}, e_{33})$, temos

$$\frac{\partial e_{3i}}{\partial u} = -h_{11}\frac{\partial x_i}{\partial u} - h_{12}\frac{\partial x_i}{\partial v},\tag{3.4}$$

$$\frac{\partial e_{3i}}{\partial v} = -h_{21}\frac{\partial x_i}{\partial u} - h_{22}\frac{\partial x_i}{\partial v}, \quad i = 1, 2, 3;$$
(3.5)

onde $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ e $h_{12} = h_{21}$.

Seja S^2 a esfera unitária em \mathbb{R}^3 . Considerando S^2 como a esfera de Riemann trivial, vamos cobri-la usando usando a união de dois conjuntos abertos $U_1 = \{S^2 \setminus \{(0,0,1)\}\}$ e $U_2 = \{S^2 \setminus \{(0,0,-1)\}\}$ do mesmo modo como no Exemplo 1.1 do Capítulo 1. Defina as projeções estereográficas

$$\pi_1 = \frac{a+ib}{1-c} \in \mathbb{C}, \text{ se } (a,b,c) \in U_1;$$
(3.6)

$$\pi_2 = \frac{a - ib}{1 + c} \in \mathbb{C}, \text{ se } (a, b, c) \in U_2.$$

$$(3.7)$$

Veja que as duas projeções estão relacionadas da seguinte maneira: $\pi_1(p)\pi_2(p) = 1, \forall p \in U_1 \cap U_2.$

Calculando $|\pi_2|^2$ temos

$$|\pi_2|^2 = \frac{(e_{31} - ie_{32})(e_{31} + ie_{32})}{(1 + e_{33})^2}$$
$$= \frac{e_{31}^2 + e_{32}^2}{(1 + e_{33})^2} = \frac{1 - e_{33}^2}{(1 + e_{33})^2}$$
$$= \frac{1 - e_{33}}{(1 + e_{33})}.$$

Daí,

$$1 + |\pi_2|^2 = 1 + \frac{1 - e_{33}}{(1 + e_{33})} = \frac{1 + e_{33} + 1 - e_{33}}{(1 + e_{33})} = \frac{2}{(1 + e_{33})}$$

E assim, temos a equação

$$(1 + |\pi_2|^2)(1 + e_{33}) = 2. (3.8)$$

Observação 3.1 Pela definição da aplicação de Gauss, estamos revertendo o vetor normal unitário e_3 . Assim, vale a igualdade $\pi_2 = -\bar{g}$.

Reescrevemos de um modo mais adequado aos nossos propósitos a fórmula de representação para superfícies de curvatura média prescrita dada por Kenmotsu em seu artigo publicado em 1979.

Para tanto, necessitaremos dos seguintes lemas:

Lema 3.1 Usando as definições anteriores temos que:

$$\frac{\partial \pi_2}{\partial \bar{z}} = -\frac{H}{2}(1+|\pi_2|^2)^2 \frac{\partial}{\partial \bar{z}}(x_1-ix_2).$$

Demonstração: Sabemos que

$$\pi_2(z) = \frac{e_{31}(z) - ie_{32}(z)}{1 + e_{33}(z)} e \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v} \right).$$

Assim,

$$\begin{split} \frac{\partial \pi_2}{\partial \bar{z}} &= \frac{1}{2(1+e_{33})^2} \left((1+e_{33}) \frac{\partial}{\partial u} (e_{31}-ie_{32}) - (e_{31}-ie_{32}) \frac{\partial}{\partial u} e_{33} \right) \\ &+ \frac{i}{2(1+e_{33})^2} \left((1+e_{33}) \frac{\partial}{\partial v} (e_{31}-ie_{32}) - (e_{31}-ie_{32}) \frac{\partial}{\partial v} e_{33} \right). \end{split}$$

Usando as equações (3.4) e (3.5) temos que

$$\begin{aligned} \frac{\partial \pi_2}{\partial \bar{z}} &= \frac{1}{2(1+e_{33})^2} \left((1+e_{33}) \left(\frac{\partial}{\partial u} (e_{31}-ie_{32}) + i \frac{\partial}{\partial v} (e_{31}-ie_{32}) \right) \right) \\ &- \frac{1}{2(1+e_{33})^2} (e_{31}-ie_{32}) \left(\frac{\partial}{\partial u} e_{33} + i \frac{\partial}{\partial v} e_{33} \right) \\ &= \frac{1}{2(1+e_{33})^2} \left[\left\{ (1+e_{33}) \left(-\frac{\partial x_1}{\partial u} + i \frac{\partial x_2}{\partial u} \right) + (e_{31}-ie_{32}) \frac{\partial x_3}{\partial u} \right\} h_{11} \right. \\ &+ \left\{ (1+e_{33}) \left(-\frac{\partial x_1}{\partial v} + i \frac{\partial x_2}{\partial v} - i \frac{\partial x_1}{\partial u} - \frac{\partial x_2}{\partial u} \right) \right\} h_{12} \\ &+ \left\{ (e_{31}-ie_{32}) \left(\frac{\partial x_3}{\partial v} + i \frac{\partial x_1}{\partial v} \right) \right\} h_{12} \\ &+ \left\{ (1+e_{33}) \left(-\frac{\partial x_2}{\partial v} + i \frac{\partial x_1}{\partial v} \right) + (e_{31}-ie_{32}) \frac{\partial x_3}{\partial v} \right\} h_{22} \right] \end{aligned}$$

$$= \frac{1}{2(1+e_{33})^2} \left[\left\{ -\frac{\partial x_1}{\partial u} - e_{33}\frac{\partial x_1}{\partial u} + e_{31}\frac{\partial x_3}{\partial u} - i\left(-\frac{\partial x_2}{\partial u} - e_{33}\frac{\partial x_2}{\partial u} + e_{32}\frac{\partial x_3}{\partial u}\right) \right\} h_{11} \\ + \left\{ (1+e_{33})\left(-\frac{\partial x_1}{\partial v} - \frac{\partial x_2}{\partial u}\right) + e_{31}\frac{\partial x_3}{\partial v} + e_{32}\frac{\partial x_3}{\partial u} \right\} h_{12} \\ + \left\{ i\left((1+e_{33})\left(\frac{\partial x_2}{\partial v} - \frac{\partial x_1}{\partial u}\right) + e_{31}\frac{\partial x_3}{\partial u} - e_{32}\frac{\partial x_3}{\partial v}\right) \right\} h_{12} \\ + \left\{ -\frac{\partial x_2}{\partial v} - e_{33}\frac{\partial x_2}{\partial v} + e_{32}\frac{\partial x_3}{\partial v} + i\left(-\frac{\partial x_1}{\partial v} - e_{33}\frac{\partial x_1}{\partial v} + e_{31}\frac{\partial x_3}{\partial v}\right) \right\} h_{22} \right]$$

Utilizando a descrição do vetor e_3 , dada pela equação (3.1), e as equações (3.2) e (3.3), vamos calcular o valor dos coeficientes que multiplicam cada um dos h_{ij} .

A parte real do coeficiente de h_{11} é

$$\begin{aligned} &-\frac{\partial x_1}{\partial u} - \frac{1}{\lambda^2} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_2}{\partial u} \frac{\partial x_1}{\partial v} \right) \frac{\partial x_1}{\partial u} + \frac{1}{\lambda^2} \left(\frac{\partial x_2}{\partial u} \frac{\partial x_3}{\partial v} - \frac{\partial x_3}{\partial u} \frac{\partial x_2}{\partial v} \right) \frac{\partial x_3}{\partial u} = \\ &-\frac{\partial x_1}{\partial u} - \frac{1}{\lambda^2} \left[\frac{\partial x_2}{\partial v} \left(\left(\frac{\partial x_1}{\partial u} \right)^2 + \left(\frac{\partial x_3}{\partial u} \right)^2 \right) - \frac{\partial x_2}{\partial u} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_1}{\partial v} + \frac{\partial x_3}{\partial u} \frac{\partial x_3}{\partial v} \right) \right] = \\ &-\frac{\partial x_1}{\partial u} - \frac{1}{\lambda^2} \left[\frac{\partial x_2}{\partial v} \left(\lambda^2 - \left(\frac{\partial x_2}{\partial u} \right)^2 \right) + \frac{\partial x_2}{\partial u} \left(\frac{\partial x_2}{\partial u} \frac{\partial x_2}{\partial v} \right) \right] = \\ &-\frac{\partial x_1}{\partial u} - \frac{\partial x}{\partial v} - \frac{1}{\lambda^2} \left[-\frac{\partial x_2}{\partial v} \left(\frac{\partial x_2}{\partial u} \right)^2 + \left(\frac{\partial x_2}{\partial u} \right)^2 \frac{\partial x_2}{\partial v} \right] = \\ &-\frac{\partial x_1}{\partial u} - \frac{\partial x_2}{\partial v} \end{aligned}$$

e a parte imaginária de h_{11} é dada por

$$\begin{split} & -\frac{\partial x_2}{\partial u} - \frac{1}{\lambda^2} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_2}{\partial u} \frac{\partial x_1}{\partial v} \right) \frac{\partial x_2}{\partial u} + \frac{1}{\lambda^2} \left(\frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial v} - \frac{\partial x_1}{\partial u} \frac{\partial x_3}{\partial v} \right) \frac{\partial x_3}{\partial u} = \\ & -\frac{\partial x_2}{\partial u} - \frac{1}{\lambda^2} \left[-\frac{\partial x_1}{\partial v} \left(\left(\frac{\partial x_2}{\partial u} \right)^2 + \left(\frac{\partial x_3}{\partial u} \right)^2 \right) + \frac{\partial x_1}{\partial u} \left(\frac{\partial x_2}{\partial u} \frac{\partial x_2}{\partial v} + \frac{\partial x_3}{\partial u} \frac{\partial x_3}{\partial v} \right) \right] = \\ & -\frac{\partial x_2}{\partial u} - \frac{1}{\lambda^2} \left[-\frac{\partial x_1}{\partial v} \left(\lambda^2 - \left(\frac{\partial x_1}{\partial u} \right)^2 \right) - \frac{\partial x_1}{\partial u} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_1}{\partial v} \right) \right] = \\ & -\frac{\partial x_2}{\partial u} + \frac{\partial x_1}{\partial v} \end{split}$$

Portanto, o coeficiente de h_{11} é

$$\frac{1}{2(1+e_{33})^2} \left(-\frac{\partial x_1}{\partial u} - \frac{\partial x_2}{\partial v} + i\frac{\partial x_2}{\partial u} - i\frac{\partial x_1}{\partial v} \right) = \\ \frac{1}{2(1+e_{33})^2} \left(-\frac{\partial x_1}{\partial u} - i\frac{\partial x_1}{\partial v} + i\left(\frac{\partial x_2}{\partial u} + i\frac{\partial x_2}{\partial v}\right) \right) = \\ -\frac{1}{(1+e_{33})^2} \left(\frac{\partial x_1}{\partial \bar{z}} - i\frac{\partial x_2}{\partial \bar{z}} \right).$$

A parte real do coeficiente de h_{12} é

$$\begin{split} -\frac{\partial x_1}{\partial v} &- \frac{\partial x_2}{\partial u} - \frac{1}{\lambda^2} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_2}{\partial u} \frac{\partial x_1}{\partial v} \right) \left(\frac{\partial x_1}{\partial v} + \frac{\partial x_2}{\partial u} \right) \\ &+ \frac{1}{\lambda^2} \left(\frac{\partial x_2}{\partial u} \frac{\partial x_3}{\partial v} - \frac{\partial x_3}{\partial u} \frac{\partial x_2}{\partial v} \right) \frac{\partial x_3}{\partial v} + \frac{1}{\lambda^2} \left(\frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial v} - \frac{\partial x_1}{\partial u} \frac{\partial x_3}{\partial v} \right) \frac{\partial x_3}{\partial u} = \\ -\frac{\partial x_1}{\partial v} - \frac{\partial x_2}{\partial u} - \frac{1}{\lambda^2} \left[-\frac{\partial x_2}{\partial u} \left(\left(\frac{\partial x_1}{\partial v} \right)^2 + \left(\frac{\partial x_3}{\partial v} \right)^2 \right) - \frac{\partial x_1}{\partial v} \left(\left(\frac{\partial x_2}{\partial u} \right)^2 + \left(\frac{\partial x_3}{\partial u} \right)^2 \right) \right. \\ &+ \frac{\partial x_2}{\partial v} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_1}{\partial v} + \frac{\partial x_3}{\partial u} \frac{\partial x_3}{\partial v} \right) + \frac{\partial x_1}{\partial u} \left(\frac{\partial x_2}{\partial v} \frac{\partial x_2}{\partial v} + \frac{\partial x_3}{\partial u} \frac{\partial x_3}{\partial v} \right) \right] = \\ -\frac{\partial x_1}{\partial v} - \frac{\partial x_2}{\partial u} - \frac{1}{\lambda^2} \left[-\frac{\partial x_2}{\partial u} \left(\lambda^2 - \left(\frac{\partial x_2}{\partial v} \right)^2 \right) - \frac{\partial x_1}{\partial v} \left(\frac{\partial x_2}{\partial u} \frac{\partial x_2}{\partial v} \right) \right] = \\ -\frac{\partial x_1}{\partial v} - \frac{\partial x_2}{\partial u} + \frac{\partial x_2}{\partial u} + \frac{\partial x_1}{\partial v} = 0. \end{split}$$

Analogamente, a parte imaginária do coeficiente de h_{12} é zero. E procedendo de forma similar ao que foi feito para o coeficiente de h_{11} , temos que o coeficiente de h_{22} é

$$-\frac{1}{(1+e_{33})^2}\left(\frac{\partial x_1}{\partial \bar{z}}-i\frac{\partial x_2}{\partial \bar{z}}\right).$$

Assim,

$$\frac{\partial \pi_2}{\partial \bar{z}} = \frac{-2H}{(1+e_{33})^2} \left(\frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right)$$

E pela equação (3.8), segue o resultado.

Utilizando o mesmo procedimento na demonstração do Lema 3.1, também podemos mostrar que

$$\frac{\partial \pi_1}{\partial \bar{z}} = -\frac{H}{2} (1 + |\pi_1|^2)^2 \frac{\partial}{\partial \bar{z}} (x_1 + ix_2).$$
(3.9)

Lema 3.2 Seja $X : \Sigma \to \mathbb{R}^3$ uma imersão conforme da superfície de Riemann Σ com

coordenadas isotérmicas z = u + iv. Temos a seguinte relação:

$$4 \left| \frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right|^2 = \lambda^2 (1 + e_{33})^2.$$

Demonstração: Temos que

$$4 \left| \frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right|^2 = 4 \left(\frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right) \left(\frac{\partial x_1}{\partial z} + i \frac{\partial x_2}{\partial z} \right)$$
$$= 4 \left[\left| \frac{\partial x_1}{\partial z} \right|^2 + i \left(\frac{\partial x_2}{\partial z} \frac{\partial x_1}{\partial \bar{z}} - \frac{\partial x_1}{\partial z} \frac{\partial x_2}{\partial \bar{z}} \right) + \left| \frac{\partial x_2}{\partial z} \right|^2 \right]$$
$$= \left[\left| \frac{\partial x_1}{\partial u} - i \frac{\partial x_1}{\partial v} \right|^2 + i \left(\frac{\partial x_2}{\partial u} - i \frac{\partial x_2}{\partial v} \right) \left(\frac{\partial x_1}{\partial u} + i \frac{\partial x_1}{\partial v} \right) - i \left(\frac{\partial x_1}{\partial u} - i \frac{\partial x_1}{\partial v} \right) \left(\frac{\partial x_2}{\partial u} + i \frac{\partial x_2}{\partial v} \right) + \left| \frac{\partial x_2}{\partial u} - i \frac{\partial x_2}{\partial v} \right|^2 \right]$$
$$= \left(\frac{\partial x_1}{\partial u} \right)^2 + \left(\frac{\partial x_1}{\partial v} \right)^2 + \left(\frac{\partial x_2}{\partial u} \right)^2 + \left(\frac{\partial x_2}{\partial v} \right)^2 + \left(\frac{\partial x_2}{\partial v} \right)^2 + \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_2}{\partial u} \frac{\partial x_1}{\partial v} \right).$$

Daí,

$$4\left|\frac{\partial x_1}{\partial \bar{z}} - i\frac{\partial x_2}{\partial \bar{z}}\right|^2 = 2\lambda^2(1+e_{33}) - \left|\frac{\partial x_3}{\partial u} - i\frac{\partial x_3}{\partial v}\right|^2.$$

Observe que

$$\begin{split} \lambda^{2}(e_{31}^{2} + e_{32}^{2}) &= \frac{1}{\lambda^{2}} \left[\left(\frac{\partial x_{2}}{\partial u} \frac{\partial x_{3}}{\partial v} - \frac{\partial x_{3}}{\partial u} \frac{\partial x_{2}}{\partial v} \right)^{2} + \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{1}}{\partial v} - \frac{\partial x_{1}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} \right] \\ &= \frac{1}{\lambda^{2}} \left[\left(\frac{\partial x_{2}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} - 2 \left(\frac{\partial x_{2}}{\partial u} \frac{\partial x_{2}}{\partial v} \frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right) + \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{2}}{\partial v} \right)^{2} \right] \\ &+ \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{1}}{\partial v} \right)^{2} - 2 \left(\frac{\partial x_{1}}{\partial u} \frac{\partial x_{1}}{\partial v} \frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right) + \left(\frac{\partial x_{1}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} \right] \\ &= \frac{1}{\lambda^{2}} \left[\left(\frac{\partial x_{3}}{\partial v} \right)^{2} \left(\left(\frac{\partial x_{1}}{\partial u} \right)^{2} + \left(\frac{\partial x_{2}}{\partial u} \right)^{2} \right) + \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} \right] \\ &- 2 \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right) \left(- \frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right) \right] \\ &= \frac{1}{\lambda^{2}} \left[\frac{\partial x_{3}}{\partial v} \left(\lambda^{2} - \left(\frac{\partial x_{3}}{\partial u} \right)^{2} \right) + \frac{\partial x_{3}}{\partial u} \left(\lambda^{2} - \left(\frac{\partial x_{3}}{\partial v} \right)^{2} \right) + 2 \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} \right] \\ &= \frac{1}{\lambda^{2}} \left[\lambda^{2} \left(\left(\frac{\partial x_{3}}{\partial u} \right)^{2} + \left(\frac{\partial x_{3}}{\partial v} \right)^{2} \right) - 2 \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} + 2 \left(\frac{\partial x_{3}}{\partial u} \frac{\partial x_{3}}{\partial v} \right)^{2} \right] \\ &= \left(\frac{\partial x_{3}}{\partial u} \right)^{2} \left(\frac{\partial x_{3}}{\partial v} \right)^{2} = \left| \frac{\partial x_{3}}{\partial u} - i \frac{\partial x_{3}}{\partial v} \right|^{2}. \end{split}$$

Assim,

$$4 \left| \frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right|^2 = 2\lambda^2 (1 + e_{33}) - \lambda^2 (e_{31}^2 + e_{32}^2) = 2\lambda^2 (1 + e_{33}) - \lambda^2 (1 - e_{33}^2)$$
$$= \lambda^2 (1 + e_{33})(2 - 1 + e_{33})$$
$$= \lambda^2 (1 + e_{33})^2.$$

Lema 3.3 Utilizando as definições anteriores, temos a seguinte relação:

$$\frac{\partial x_3}{\partial z} \left(\frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right) = -\lambda^2 \frac{\pi_2}{(1 + |\pi_2|^2)^2}.$$

Demonstração: Da equação (3.8), temos

$$4\left\{\frac{\partial x_3}{\partial z}\left(\frac{\partial x_1}{\partial \bar{z}} - i\frac{\partial x_2}{\partial \bar{z}}\right) + \lambda^2 \frac{\pi_2}{(1+|\pi_2|^2)^2}\right\}$$
$$= \left(\frac{\partial x_3}{\partial u} - i\frac{\partial x_3}{\partial v}\right)\left(\frac{\partial x_1}{\partial u} + i\frac{\partial x_1}{\partial v} - i\frac{\partial x_2}{\partial u} + \frac{\partial x_2}{\partial v}\right) + \lambda^2(1+e_{33})(e_{31} - ie_{32})$$

A parte real da equação acima é

$$\begin{aligned} \frac{\partial x_3}{\partial u} \left(\frac{\partial x_1}{\partial u} + \frac{\partial x_2}{\partial v} \right) + \frac{\partial x_3}{\partial v} \left(\frac{\partial x_1}{\partial v} - \frac{\partial x_2}{\partial u} \right) \\ &+ \left(\frac{\partial x_2}{\partial u} \frac{\partial x_3}{\partial v} - \frac{\partial x_3}{\partial u} \frac{\partial x_2}{\partial v} \right) \left(1 + \frac{1}{\lambda^2} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_2}{\partial u} \frac{\partial x_1}{\partial v} \right) \right) = \\ \frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial u} + \frac{\partial x_3}{\partial v} \frac{\partial x_1}{\partial v} + \frac{1}{\lambda^2} \left(\frac{\partial x_2}{\partial u} \frac{\partial x_3}{\partial v} - \frac{\partial x_3}{\partial u} \frac{\partial x_2}{\partial v} \right) \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_2}{\partial u} \frac{\partial x_1}{\partial v} \right) = \\ \frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial u} + \frac{\partial x_3}{\partial v} \frac{\partial x_1}{\partial v} \\ + \frac{1}{\lambda^2} \left(\frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial u} \frac{\partial x_2}{\partial v} - \frac{\partial x_1}{\partial u} \frac{\partial x_3}{\partial u} \left(\frac{\partial x_2}{\partial v} \right)^2 - \frac{\partial x_1}{\partial v} \frac{\partial x_3}{\partial v} \left(\frac{\partial x_2}{\partial u} \right)^2 + \frac{\partial x_2}{\partial u} \frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial v} \frac{\partial x_2}{\partial v} \\ + \frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial u} \frac{\partial x_2}{\partial v} \frac{\partial x_3}{\partial v} - \frac{\partial x_1}{\partial u} \frac{\partial x_3}{\partial u} \left(\frac{\partial x_2}{\partial v} \right)^2 - \frac{\partial x_1}{\partial v} \frac{\partial x_3}{\partial v} \left(\frac{\partial x_2}{\partial u} \right)^2 + \frac{\partial x_2}{\partial u} \frac{\partial x_3}{\partial u} \frac{\partial x_1}{\partial v} \frac{\partial x_2}{\partial v} \right). \end{aligned}$$

Das equações (3.2) e (3.3), segue que

$$\frac{1}{\lambda^{2}} \left[\frac{\partial x_{3}}{\partial u} \frac{\partial x_{1}}{\partial u} \left(\left(\frac{\partial x_{1}}{\partial v} \right)^{2} + \left(\frac{\partial x_{2}}{\partial v} \right)^{2} \right) + \frac{\partial x_{3}}{\partial v} \frac{\partial x_{1}}{\partial v} \left(\left(\frac{\partial x_{1}}{\partial u} \right)^{2} + \left(\frac{\partial x_{3}}{\partial u} \right)^{2} \right) + \frac{\partial x_{1}}{\partial u} \frac{\partial x_{2}}{\partial u} \frac{\partial x_{2}}{\partial v} \frac{\partial x_{3}}{\partial v} + \frac{\partial x_{2}}{\partial u} \frac{\partial x_{3}}{\partial u} \frac{\partial x_{1}}{\partial v} \frac{\partial x_{2}}{\partial v} \frac{\partial x_{2}}{\partial v} \right] \\ \frac{1}{\lambda^{2}} \left[\frac{\partial x_{1}}{\partial u} \frac{\partial x_{3}}{\partial v} \left(\sum_{i} \frac{\partial x_{i}}{\partial u} \frac{\partial x_{i}}{\partial v} \right) + \frac{\partial x_{3}}{\partial u} \frac{\partial x_{1}}{\partial v} \left(\sum_{i} \frac{\partial x_{i}}{\partial u} \frac{\partial x_{i}}{\partial v} \right) \right] = 0.$$

Analogamente, podemos provar que a parte imaginária também é zero. E assim, segue o resultado.

Lema 3.4 Sejam $U_1, U_2 \subset \mathbb{S}^2$ dados pelas equações (3.6) e (3.7). Então em $U_1 \cap U_2$ vale

$$H\left[\left(\frac{\partial x_1}{\partial \bar{z}} + i\frac{\partial x_2}{\partial \bar{z}}\right) + \overline{\pi_2}^2 \left(\frac{\partial x_1}{\partial \bar{z}} - i\frac{\partial x_2}{\partial \bar{z}}\right)\right] = 0.$$

Demonstração: Como $\pi_1\pi_2 = 1 \text{ em } U_1 \cap U_2$, temos

$$\frac{\partial}{\partial \bar{z}}(\pi_1 \pi_2) = 0 \implies \frac{\partial \pi_1}{\partial \bar{z}} \pi_2 + \frac{\partial \pi_2}{\partial \bar{z}} \pi_1 = 0.$$

Utilizando o Lema 3.1 e a equação (3.9), segue

$$\begin{split} &-\frac{H}{2}(1+|\pi_{1}|^{2})^{2}\pi_{2}\frac{\partial}{\partial\bar{z}}(x_{1}+ix_{2})-\frac{H}{2}(1+|\pi_{2}|^{2})^{2}\pi_{1}\frac{\partial}{\partial\bar{z}}(x_{1}-ix_{2})=0\\ &-\frac{H}{2}(1+\frac{1}{|\pi_{2}|^{2}})^{2}\pi_{2}\frac{\partial}{\partial\bar{z}}(x_{1}+ix_{2})-\frac{H}{2}(1+|\pi_{2}|^{2})^{2}\frac{1}{\pi_{2}}\frac{\partial}{\partial\bar{z}}(x_{1}-ix_{2})=0\\ &-\frac{H}{2}(1+|\pi_{2}|^{2})^{2}\frac{1}{\pi_{2}\overline{\pi_{2}}^{2}}\frac{\partial}{\partial\bar{z}}(x_{1}+ix_{2})-\frac{H}{2}(1+|\pi_{2}|^{2})^{2}\frac{1}{\pi_{2}}\frac{\partial}{\partial\bar{z}}(x_{1}-ix_{2})=0\\ &-\frac{H}{2}(1+|\pi_{2}|^{2})^{2}\left[\left(\frac{1}{\pi_{2}\overline{\pi_{2}}^{2}}+\frac{1}{\pi_{2}}\right)\frac{\partial x_{1}}{\partial\bar{z}}+i\left(\frac{1}{\pi_{2}\overline{\pi_{2}}^{2}}-\frac{1}{\pi_{2}}\right)\frac{\partial x_{2}}{\partial\bar{z}}\right]=0\\ &H\left[(1+\overline{\pi_{2}}^{2})\frac{\partial x_{1}}{\partial\bar{z}}+i(1-\overline{\pi_{2}}^{2})\frac{\partial x_{2}}{\partial\bar{z}}\right]=0\\ &H\left[\left(\frac{\partial x_{1}}{\partial\bar{z}}+i\frac{\partial x_{2}}{\partial\bar{z}}\right)+\overline{\pi_{2}}^{2}\left(\frac{\partial x_{1}}{\partial\bar{z}}-i\frac{\partial x_{2}}{\partial\bar{z}}\right)\right]=0. \end{split}$$

Já possuimos todas as ferramentas necessárias para demonstrar a fórmula de representação dada por Kenmotsu para superfícies de curvatura média prescrita não-nula.

Proposição 3.1 Se a curvatura média H(p) é constante e não-nula para todo $p \in X(\Sigma)$, então a imersão isotérmica $X = (F, h) : \Sigma \to \mathbb{R}^3$ pode ser descrita em termos da aplicação de Gauss g e da curvatura média H por:

$$F_z = \frac{2g_z}{H(1+|g|^2)^2}, \qquad F_{\bar{z}} = -\frac{2g^2\bar{g}_{\bar{z}}}{H(1+|g|^2)^2}, \qquad h_z = \frac{2\bar{g}g_z}{H(1+|g|^2)^2}.$$

Demonstração: Para a primeira equação, segue do Lema 3.1 que

$$\frac{1}{(1+|\pi_2|^2)^2}\frac{\partial \pi_2}{\partial \bar{z}} = -\frac{H}{2}\frac{\partial}{\partial \bar{z}}(x_1 - ix_2)$$

Vamos definir por $F = x_1 + ix_2$ a parte horizontal da imersão X. Assim,

$$\overline{F}_{\overline{z}} = \frac{\partial}{\partial \overline{z}} (x_1 - ix_2) \quad \mathbf{e}$$
$$F_z = \frac{\partial}{\partial z} (x_1 + ix_2).$$

Do desenvolvimento anterior, segue que

$$\frac{-2}{H(1+|\pi_2|^2)^2}\frac{\partial \pi_2}{\partial \bar{z}} = \overline{F}_{\bar{z}}.$$
(3.10)

Como $\pi^2 = -\bar{g}$, temos que

$$\overline{F}_{\bar{z}} = \frac{2\bar{g}_{\bar{z}}}{H(1+|g|^2)^2},$$

e tomando o conjugado em ambos os lados

$$F_z = \frac{2g_z}{H(1+|g|^2)^2}.$$

Do Lema 3.4, segue que

$$H\left(F_{\bar{z}} + \overline{\pi_2}^2 \overline{F}_{\bar{z}}\right) = 0$$
$$F_{\bar{z}} = -\overline{\pi_2}^2 \overline{F}_{\bar{z}}.$$

E pelo resultado anterior

$$F_{\bar{z}} = -\frac{2g^2 \bar{g}_{\bar{z}}}{H(1+|g|^2)^2}.$$

Nos resta a última equação. Combinando os Lemas 3.3 e 3.2, temos

$$\begin{aligned} \frac{\partial x_3}{\partial z} \left(\frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right) &= -\lambda^2 \frac{\pi_2}{(1+|\pi_2|^2)^2} \\ &= \frac{-\lambda^2}{\overline{F}_{\bar{z}}} \frac{\pi_2}{(1+|\pi_2|^2)^2} \\ &= -4 \left| \frac{\partial x_1}{\partial \bar{z}} - i \frac{\partial x_2}{\partial \bar{z}} \right|^2 \frac{1}{\overline{F}_{\bar{z}} (1+e_{33})^2} \frac{\pi_2}{(1+|\pi_2|^2)^2} \\ &= -\left(\frac{\partial x_1}{\partial z} + i \frac{\partial x_2}{\partial z} \right) \pi_2. \end{aligned}$$

Da equação (3.10),

$$F_z = -\frac{2}{H(1+|\pi_2|^2)^2} \frac{\partial \overline{\pi_2}}{\partial z},$$

segue que

$$\begin{split} h_z &= -F_z \pi_2 \\ &= \frac{2\pi_2}{H(1+|\pi_2|^2)^2} \frac{\partial \overline{\pi_2}}{\partial z}. \end{split}$$

Portanto,

$$h_z = \frac{2\bar{g}g_z}{H(1+|g|^2)^2}.$$

Podemos observar as semelhanças entre a representação dada pela Proposição 3.1 e a
representação tipo Weierstrass para superfícies máximas em $Nil_1^3(\tau)$ dadas pela Proposição
2.1 do capítulo anterior. Mais detalhadamente:

Observação 3.2 Sejam $X : \Sigma \to \operatorname{Nil}_1^3(\tau)$ e $Y : \Sigma \to \mathbb{R}^3$ imersões conformes dadas pelas Proposições 2.1 e 3.1, respectivamente. Quando Y tem curvatura média constante igual $a \ \tau \neq 0$, as projeções horizontais de X e Y diferem apenas por uma rotação no plano complexo. De fato, seja $g: \Sigma \to \mathbb{C} \cup \{\infty\}$ a aplicação de Gauss da imersão X. Das Proposições 2.1 e 3.1, temos que as projeções horizontais de X e Y satisfazem:

$$\begin{split} X(\Sigma) \subset \operatorname{Nil}_{1}^{3}(\tau) & \Rightarrow & F_{z} = \frac{2i}{\tau} \cdot \frac{g_{z}}{(1+|g|^{2})^{2}}, \qquad F_{\bar{z}} = -\frac{2i}{\tau} \cdot \frac{g^{2}\bar{g}_{\bar{z}}}{(1+|g|^{2})^{2}} \\ Y(\Sigma) \subset \mathbb{R}^{3} & \Rightarrow & F_{z} = \frac{2g_{z}}{\tau(1+|g|^{2})^{2}}, \qquad F_{\bar{z}} = -\frac{2g^{2}\bar{g}_{\bar{z}}}{\tau(1+|g|^{2})^{2}}. \end{split}$$

Definição 3.2 Seja $X : \Omega \to \operatorname{Nil}_1^3(\tau)$ uma imersão tipo-espaço. Quando a projeção horizontal definida por $(x_1, x_2, x_3) \mapsto x_1 + ix_2 \in \mathbb{C}$ é sobrejetora, dizemos que X é inteira.

Antes de demonstrar que não existem gráficos máximos completos em Nil³₁(τ), enunciaremos aqui um resultado que é demonstrado em [29].

Proposição 3.2 Seja Ω um domínio em \mathbb{C} e seja $X : \Omega \to \operatorname{Nil}_1^3(\tau)$ uma imersão tipoespaço. Suponha que X é completa com respeito a métrica Riemanniana induzida. Então, X é um gráfico inteiro e Ω é um domínio simplesmente conexo.

Demonstração: Veja [29].

Vamos agora demonstrar o teorema mais importante deste capítulo em que o aspecto principal é justamente a semelhança descrita na Observação 3.2.

Teorema 3.1 Não existem gráficos máximos completos em Nil₁³(τ) com $\tau \neq 0$.

Demonstração: Assuma, por contradição, que exista uma imersão máxima completa $X : \Omega \to \operatorname{Nil}_1^3(\tau)$, onde Ω é um domínio em \mathbb{C} . Como a métrica $ds^2 = dx^2 + dy^2 - [\tau(ydx - xdy) + dz]^2$ do nosso espaço ambiente $\operatorname{Nil}_1^3(\tau)$ satisfaz a estimativa $dx^2 + dy^2 \ge ds^2$, a projeção horizontal $(x, y, z) \mapsto (x, y, 0)$ aumenta o comprimento de arco de curvas. E pela Proposição 3.2, concluímos que $\Sigma = X(\Omega)$ é um gráfico inteiro sobre todo o plano $\mathbb{R}^2 \times \{0\}$ e o domínio Ω é simplesmente conexo.

Após uma mudança de orientação, podemos assumir também que a aplicação de Gauss gde Σ satisfaz |g| < 1. Como Ω é um domínio simplesmente conexo e g é uma aplicação harmônica em $\mathbb{C} \cup \{\infty\}$, o Teorema de Kenmotsu, Teorema 4 dado em [20], nos permite construir uma imersão $X^* : \Omega \to \mathbb{R}^3$ com curvatura média constate $\tau \neq 0$ tal que sua aplicação de Gauss também é a aplicação harmônica g. Como |g| < 1, temos que $\Sigma^* = X^*(\Omega)$ também é um gráfico em \mathbb{R}^3 . Além disso, de acordo com a Observação 3.2, após uma rotação, podemos assumir que Σ e Σ^* possuem a mesma projeção horizontal. Desse modo, Σ^* é um gráfico inteiro sobre todo o plano $\mathbb{R}^2 \times \{0\}$. O que é uma contradição devido ao Teorema de Chern dado em [9], que afirma que não existe gráfico inteiro de curvatura média constante diferente de zero em \mathbb{R}^3 .

Capítulo 4

Diferenciais Quadráticas em Superfícies Máximas em $Nil_1^3(\tau)$

Em [18], Hopf descobriu que a parte (2,0) da segunda forma fundamental complexificada de uma superfície de curvatura média constante H imersa no espaço Euclidiano \mathbb{R}^3 é uma diferencial quadrática holomorfa. Em [1], U. Abresh e H. Rosenberg introduziram uma diferencial quadrática holomorfa nos espaços produto $\mathbb{S}^2 \times \mathbb{R}$ e $\mathbb{H}^2 \times \mathbb{R}$, e estenderam o resultado de Hopf para esferas de curvatura média constante nestes espaços. Posteriormente, em [2], generalizaram o seu resultado para os espaços produto $M^2(\kappa) \times \mathbb{R}$, onde $M^2(\kappa)$ é um espaço de formas. Em [3], D. Berdinsky e I. Taimanov, mostraram que se diferencial de Abresch-Rosenberg é holomorfa em uma superfície contida no espaço de Heisenberg tridimensional Nil³, então a superfície é de curvatura média constante. Em [14], I. Fernández e P. Mira, obtiveram uma generalização deste resultado para espaços homogêneos tridimensionais, $\mathbb{E}^3(\kappa, \tau)$, com grupo de isometria de dimensão 4 e os parâmetros $\kappa e \tau$ satisfazendo determinadas condições. B. Daniel mostrou em [11] que a diferencial de Abresch-Rosenberg de uma superfície mínima em Nil³ coincide com a diferencial de Hopf de sua aplicação de Gauss g em \mathbb{H}^2 a menos de uma constante. Encontramos a mesma situação para as superfícies máximas no espaço de Lorentz-Heisenberg Nil³₁(τ).

Neste capítulo, mostramos que a diferencial de Abresch-Rosenberg de superfícies máximas em Nil₁³(τ) é holomorfa.

Seja $X = (F, h) : \Sigma \to \operatorname{Nil}_1^3(\tau)$ uma imersão máxima conforme tipo-espaço, em que Σ é uma superfícies de Riemann com parâmetro isotérmico z = u + iv e dados de Weierstrass

 (g,η) . Em geral, a parte (2,0) da segunda forma fundamental complexificada

$$\Phi dz^2 = \frac{1}{2}(e - g - 2if)dz^2$$

não é holomorfa em superfícies máximas contidas em Nil₁³(τ). Perturbamos a diferencial de Hopf em Σ usando a diferencial da função altura $\eta = -2\langle X_z, E_3 \rangle$.

Definição 4.1 Definimos a diferencial de Hopf da imersão X por:

$$P = pdz^2 = \frac{1}{2} \langle N, \nabla_{X_u} X_u - \nabla_{X_v} X_v - i(\nabla_{X_u} X_v + \nabla_{X_v} X_u) \rangle dz^2$$

onde o vetor normal tipo-tempo N satisfaz a equação

$$N = \frac{2Re(g)}{1 - |g|^2} E_1 + \frac{2Im(g)}{1 - |g|^2} E_2 + \frac{1 + |g|^2}{1 - |g|^2} E_3.$$

Introduzimos a diferencial de Abresch-Rosenberg

$$\tilde{P} = \tilde{p}dz^2 = (p - i\tau\eta^2)dz^2.$$

De agora em diante, assumiremos que Σ tem curvatura média nula.

Definição 4.2 A diferencial de Hopf da aplicação de Gauss g é dada por

$$Q = qdz^2 = \frac{4g_z \bar{g}_z}{(1+|g|^2)^2} dz^2.$$

O teorema 2.1 nos diz que a aplicação de Gauss $g: \Sigma \to \mathbb{C} \cup \{\infty\}$ satisfaz a equação das aplicações harmônicas em $\mathbb{C} \cup \{\infty\}$ equipado com a métrica $\left(\frac{2}{1+|z|^2}\right)^2 |dz|^2$. Segue que sua diferencial Q é holomorfa.

Teorema 4.1 Quando a imersão tipo-espaço $X : \Sigma \to \operatorname{Nil}_1^3(\tau)$ possui curvatura média nula, sua diferencial de Abresch-Rosenberg \tilde{P} é holomorfa na superfície Σ .

Demonstração: Mostraremos que a diferencial de Abresch-Rosenberg \tilde{P} coincide com a diferencial de Hopf Q da aplicação de Gauss g a menos de uma constante.

Da equação (2.1), temos que

$$4\nabla_{\frac{\partial X}{\partial z}}\left(\frac{\phi}{2}\right) = \nabla_{\{X_u - iX_v\}}\{X_u - iX_v\}$$
$$= \nabla_{X_u}X_u - \nabla_{X_v}X_v - i(\nabla_{X_u}X_v + \nabla_{X_v}X_u)$$
$$= c_1E_1 + c_2E_2 + c_3E_3,$$

onde os coeficientes c_1,c_2,c_3 são dados por

$$c_{1} = 2\frac{\partial\phi_{1}}{\partial z} - 2\tau\phi_{2}\phi_{3},$$

$$c_{2} = 2\frac{\partial\phi_{2}}{\partial z} + 2\tau\phi_{1}\phi_{3},$$

$$c_{3} = 2\frac{\partial\phi_{3}}{\partial z}.$$
(4.1)

Também segue da equação (2.1) que podemos escrever

$$\begin{cases} 2F_z = \phi_1 + i\phi_2\\ \eta = \phi_3 \end{cases}$$

Usando o sistema de equações (4.1) e a definição da diferencial de Hopf $P = pdz^2$, dada pela Definição 4.1, temos que

$$p = \frac{1}{1 - |g|^2} \left[\left(\frac{\partial \phi_1}{\partial z} - \tau \phi_2 \phi_3 \right) 2Re(g) + \left(\frac{\partial \phi_2}{\partial z} + \tau \phi_1 \phi_3 \right) 2Im(g) - \eta_z (1 + |g|^2) \right]$$

= $\frac{1}{1 - |g|^2} \left[\frac{\partial \phi_1}{\partial z} (g + \bar{g}) + i \frac{\partial \phi_2}{\partial z} (\bar{g} - g) + i \tau \eta [\phi_1 (\bar{g} - g) + i \phi_2 (g + \bar{g})] - \eta_z (1 + |g|^2) \right]$
= $\frac{1}{1 - |g|^2} \left[2(F_{zz}\bar{g} + \bar{F}_{zz}g) + 2i \tau \eta (F_z\bar{g} - \bar{F}_zg) - \eta_z (1 + |g|^2) \right].$

Como $(F_z, \overline{F}_z) = (\frac{\eta}{2\overline{g}}, \frac{\overline{g}\eta}{2})$, segue que

$$F_{zz}\overline{g} + \overline{F}_{zz}g = \left(\frac{\eta}{2\overline{g}}\right)_{z}\overline{g} + \left(\frac{\overline{g}\eta}{2}\right)_{z}g$$
$$= \frac{1}{2}\left[\eta_{z} - \frac{\eta\overline{g}_{z}}{\overline{g}} + g\overline{g}_{z}\eta + |g|^{2}\eta_{z}\right]$$
$$= \frac{1}{2}\left[(1 + |g|^{2})\eta_{z} + \frac{\eta\overline{g}_{z}}{\overline{g}}(|g|^{2} - 1)\right],$$

 \mathbf{e}

$$F_z\bar{g} - \overline{F}_zg = \frac{\eta}{2}(1 - |g|^2).$$

Combinando os resultados acima com o Lema 2.5, obtemos

$$\tilde{p} = p - i\tau\eta^2 = -\frac{\bar{g}_z}{\bar{g}}\eta = -\frac{\bar{g}_z}{\bar{g}}\frac{4i}{\tau}\frac{\bar{g}g_z}{(1+|g|^2)^2} = \frac{i}{-\tau}q.$$

Portanto, a diferencial quadrática $\tilde{P} = \frac{i}{-\tau}Q$ é holomorfa em Σ .

Capítulo 5

A Correspondência entre Gráficos CMC em \mathbb{R}^3 e gráficos máximos em Nil $_1^3(\tau)$

Neste capítulo, analisamos os gráficos máximos em $\operatorname{Nil}_1^3(\tau)$ e através da equação da curvatura média, construímos uma correspondência entre os gráficos máximos no espaço de Lorentz-Heisenberg $\operatorname{Nil}_1^3(\tau)$ e os gráficos de curvatura média constante em \mathbb{R}^3 .

Considere a seguinte imersão tipo-espaço

$$\Phi(x,y) = (x, y, q(x,y)) \in \operatorname{Nil}_1^3(\tau)$$

Note que

$$\begin{cases} \Phi_x = (1, 0, q_x) \\ \Phi_y = (0, 1, q_y). \end{cases}$$

Escrevendo na base $\{E_1, E_2, E_3\}$ de $TNil_1^3(\tau)$

$$\begin{cases} \Phi_x = E_1 + (q_x + \tau y)E_3 \\ \Phi_y = E_2 + (q_y - \tau x)E_3 \end{cases}$$

Para a imersão Φ , um vetor normal tipo-tempo é dado por

$$n = \Phi_x \times \Phi_y = -aE_1 - bE_2 - E_3$$

onde

$$\begin{cases} a = q_x + \tau y \\ b = q_y - \tau x \\ \langle n, n \rangle = a^2 + b^2 - 1 < 0. \end{cases}$$

Assim, obtemos o vetor normal unitário tipo-tempo

$$N_{\Phi} = \frac{1}{\sqrt{1 - a^2 - b^2}} (-aE_1 - bE_2 - E_3)$$

com $\langle N_\Phi, N_\Phi \rangle = -1$ e os vetores
 Φ_x e Φ_y podem ser escritos como

$$\Phi_x = E_1 + aE_3 \tag{5.1}$$

$$\Phi_y = E_2 + bE_3$$

Calculando os coeficientes da primeira forma fundamental I temos

$$E = \langle \Phi_x, \Phi_x \rangle = 1 - a^2$$
 $F = \langle \Phi_x, \Phi_y \rangle = -ab$ $G = \langle \Phi_y, \Phi_y \rangle = 1 - b^2.$

Observação 5.1 Por Φ ser uma imersão tipo-espaço, a métrica induzida do espaço ambiente Nil₁³(τ) é Riemanniana. Assim, det $I = 1 - a^2 - b^2 > 0$.

Defina

$$U := \sqrt{1 - a^2 - b^2} = \sqrt{1 - (q_x + \tau y)^2 - (q_y - \tau x)^2}.$$

As segundas derivadas da imersão Φ , de acordo com as equações (5.1), são dadas por

$$\nabla_{\Phi_x} \Phi_x = \nabla_{E_1 + (\tau y + q_x)E_3} (E_1 + (\tau y + q_x)E_3)$$
$$= E_1(a)E_3 + a\nabla_{E_1}E_3 + a\nabla_{E_3}E_1$$
$$= 2a\tau E_2 + \frac{\partial a}{\partial x}E_3,$$

$$\nabla_{\Phi_y} \Phi_x = \nabla_{E_2 + bE_3} (E_1 + aE_3)$$

= $\nabla_{E_2} E_1 + E_2(a)E_3 + a\nabla_{E_2} E_3 + b\nabla_{E_3} E_2$
= $-a\tau E_1 + b\tau E_2 + \left(\frac{\partial a}{\partial y} - \tau\right) E_3,$

$$\nabla_{\Phi_x} \Phi_y = \nabla_{E_1 + aE_3} (E_2 + bE_3)$$

= $\nabla_{E_1} E_2 + E_1(b) E_3 + b \nabla_{E_1} E_3 + a \nabla_{E_3} E_2$
= $-a\tau E_1 + b\tau E_2 + \left(\frac{\partial b}{\partial x} + \tau\right) E_3,$
 $\nabla_{\Phi_x} \Phi_y = \nabla_{\Phi_x} \exp\left(E_2 + bE_2\right)$

$$\nabla \Phi_y \Psi_y = \nabla E_{2+b}E_3(E_2 + bE_3)$$
$$= E_2(b)E_3 + b\nabla E_2E_3 + b\nabla E_3E_2$$
$$= -2b\tau E_1 + \frac{\partial b}{\partial y}E_3$$

Os coeficientes das segundas derivadas satisfazem as seguintes relações:

$$\frac{\partial a}{\partial x} = q_{xx},$$
 $\frac{\partial a}{\partial y} - \tau = q_{xy} = \frac{\partial b}{\partial x} + \tau,$ $\frac{\partial b}{\partial y} = q_{yy}.$

Os coeficientes da segunda forma fundamental induzida por N_{Φ} são

$$e = \langle N_{\Phi}, \nabla_{\Phi_x} \Phi_x \rangle = -\frac{1}{U} (2ab\tau - q_{xx}),$$

$$f = \langle N_{\Phi}, \nabla_{\Phi_y} \Phi_x \rangle = -\frac{1}{U} (\tau (b^2 - a^2) - q_{xy}),$$

$$g = \langle N_{\Phi}, \nabla_{\Phi_y} \Phi_y \rangle = -\frac{1}{U} (-2ab\tau - q_{yy}).$$

(5.2)

Lema 5.1 Se o gráfico z = q(x, y) tipo-espaço em Nil $_1^3(\tau)$ possui curvatura média nula,

então a equação da curvatura média se torna

$$0 = (1 - b^2)q_{xx} + 2abq_{xy} + (1 - a^2)q_{yy},$$
(5.3)

onde $(a,b) = (q_x + \tau y, q_y - \tau x)$. Ou equivalentemente,

$$0 = \frac{\partial}{\partial x} \left(\frac{a}{\sqrt{1 - a^2 - b^2}} \right) + \frac{\partial}{\partial y} \left(\frac{b}{\sqrt{1 - a^2 - b^2}} \right).$$
(5.4)

Demonstração: Temos que a equação da curvatura média em termos da primeira e da segunda forma fundamental é dada por

$$H = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}.$$

Logo, para uma superfície tipo-espaço de curvatura média nula, a equação se reduz à

$$0 = eG - 2fF + gE.$$

Substituindo os valores encontrados anteriormente em (5.2) para os coeficientes $e, f \in g$ temos

$$0 = -\frac{1}{U} \left\{ (2ab\tau - q_{xx})(1 - b^2) + 2(\tau(b^2 - a^2) - q_{xy})ab + (-2ab\tau - q_{yy})(1 - a^2) \right\}$$

= $(1 - b^2)q_{xx} + 2abq_{xy} + (1 - a^2)q_{yy}.$

O que demonstra a equação (5.3).

E desenvolvendo o segundo membro da equação (5.4) obtemos

$$\begin{split} \frac{\partial}{\partial x} \left(\frac{a}{\sqrt{1-a^2-b^2}} \right) &+ \frac{\partial}{\partial y} \left(\frac{b}{\sqrt{1-a^2-b^2}} \right) \\ &= \frac{1}{1-a^2-b^2} \left\{ \frac{\partial a}{\partial x} \sqrt{1-a^2-b^2} + \frac{a}{\sqrt{1-a^2-b^2}} \left(a \frac{\partial a}{\partial x} + b \frac{\partial b}{\partial x} \right) \right\} \\ &+ \frac{1}{1-a^2-b^2} \left\{ \frac{\partial b}{\partial y} \sqrt{1-a^2-b^2} + \frac{b}{\sqrt{1-a^2-b^2}} \left(a \frac{\partial a}{\partial y} + b \frac{\partial b}{\partial y} \right) \right\} \\ &= \frac{1}{(1-a^2-b^2)^{3/2}} \left\{ \frac{\partial a}{\partial x} (1-a^2-b^2) + a^2 \frac{\partial a}{\partial x} + ab \frac{\partial b}{\partial x} \right\} \\ &= \frac{1}{(1-a^2-b^2)^{3/2}} \left\{ \frac{\partial b}{\partial y} (1-a^2-b^2) + b^2 \frac{\partial a}{\partial y} + ab \frac{\partial b}{\partial y} \right\} \\ &= \frac{1}{(1-a^2-b^2)^{3/2}} \left\{ (1-b^2)q_{xx} + abq_{xy} - \tau ab + (1-a^2)q_{yy} + abq_{xy} + \tau ab \right\} \\ &= \frac{1}{(1-a^2-b^2)^{3/2}} \left\{ (1-b^2)q_{xx} + 2abq_{xy} + (1-a^2)q_{yy} \right\}. \end{split}$$

Como a superfície é de curvatura média nula, vale a equação (5.3). Logo,

$$\frac{\partial}{\partial x} \left(\frac{a}{\sqrt{1 - a^2 - b^2}} \right) + \frac{\partial}{\partial y} \left(\frac{b}{\sqrt{1 - a^2 - b^2}} \right) = 0.$$

E assim, segue a equivalência entre as equações (5.4) e (5.3).

Observação 5.2 A função afim $q(x, y) = \alpha x + \beta y$ satisfaz a equação das superfícies de curvatura média nula em Nil₁³(τ). Entretanto, quando $\tau \neq 0$, a limitação dada pela condição de ser uma superfície tipo-espaço impede soluções inteiras. De fato,

$$0 < 1 - (q_x + \tau y)^2 - (q_y - \tau x)^2 = 1 - (\alpha + \tau y)^2 - (\beta - \tau x)^2.$$

Vamos construir agora uma correspondência entre gráficos CMC em \mathbb{R}^3 e gráficos máximos no espaço de Lorentz-Heisenberg de tal forma que, para cada gráfico CMC $H \neq 0$ em \mathbb{R}^3 obtemos um gráfico máximo em Nil₁³(-H) e vice-versa.

Teorema 5.1 Seja $H \in \mathbb{R}$ uma constante não-nula. Temos uma correspondência entre os gráficos z = h(x, y), definidos em um domínio simplesmente conexo Ω , de curvatura
média constante $H \ em \mathbb{R}^3$, i.e., gráficos que satisfazem a equação

$$2H = \frac{\partial}{\partial x} \left(\frac{h_x}{\sqrt{1 + h_x^2 + h_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{h_y}{\sqrt{1 + h_x^2 + h_y^2}} \right)$$

e os gráficos máximos z = q(x, y) sobre Ω em Nil₁³(-H), i.e.,

$$0 = \frac{\partial}{\partial x} \left(\frac{a}{\sqrt{1 - a^2 - b^2}} \right) + \frac{\partial}{\partial y} \left(\frac{b}{\sqrt{1 - a^2 - b^2}} \right), \qquad (a, b) = (q_x - Hy, q_y + Hx)$$

onde valem as seguintes relações

$$(q_x - Hy, q_y + Hx) = \left(\frac{-h_y}{\sqrt{1 + h_x^2 + h_y^2}}, \frac{h_x}{\sqrt{1 + h_x^2 + h_y^2}}\right)$$

ou

$$(h_x, h_y) = \left(\frac{b}{\sqrt{1 - a^2 - b^2}}, \frac{-a}{\sqrt{1 - a^2 - b^2}}\right), \qquad a^2 + b^2 < 1.$$

Demonstração: Seja z = h(x, y) um gráfico com curvatura média constante H em \mathbb{R}^3 . Seja $\alpha = h_x$, $\beta = h_y$ e $\omega = \sqrt{1 + h_x^2 + h_y^2}$. Reescrevemos a equação da curvatura média para o gráfico h(x, y) na forma do divergente nulo

$$0 = \frac{\partial}{\partial x} \left(\frac{\alpha}{\omega} - Hx \right) + \frac{\partial}{\partial y} \left(\frac{\beta}{\omega} - Hy \right).$$
(5.5)

Portanto, a 1-forma induzida

$$J = -\left(\frac{\beta}{\omega} - Hy\right)dx + \left(\frac{\alpha}{\omega} - Hx\right)dy$$

é fechada. O Lema de Poincaré nos garante que toda 1-forma fechada é exata em um domínio simplesmente conexo. Assim, existe uma função $q: \Omega \to \mathbb{R}$ tal que Dq = J. Ou seja,

$$\begin{cases} q_x = -\frac{\beta}{\omega} + Hy\\ q_y = \frac{\alpha}{\omega} - Hx \end{cases}$$

ou

$$(q_x - Hy, q_y + Hx) = \left(-\frac{\beta}{\omega}, \frac{\alpha}{\omega}\right).$$
(5.6)

Vamos mostrar que o gráfico z = q(x, y) é uma superfície máxima em Nil₁³(-H). Da equação (5.6), temos que

$$\begin{cases}
 a = -\frac{\beta}{\omega} \\
 b = \frac{\alpha}{\omega}
\end{cases}$$
(5.7)

Pelo Lema 5.1, q(x, y) deve satisfazer a equação (5.4). De (5.7) segue que

$$\frac{1}{\sqrt{1-a^2-b^2}} = \frac{1}{\sqrt{1-\frac{\beta^2}{\omega^2}-\frac{\alpha^2}{\omega^2}}}$$
$$= \left(\frac{\omega^2-\beta^2-\alpha^2}{\omega^2}\right)^{-1/2}$$
$$= \omega.$$

Assim,

$$\begin{split} &\frac{\partial}{\partial x} \left(\frac{a}{\sqrt{1 - a^2 - b^2}} \right) + \frac{\partial}{\partial y} \left(\frac{b}{\sqrt{1 - a^2 - b^2}} \right) \\ &= \frac{\partial}{\partial x} (a\omega) + \frac{\partial}{\partial y} (b\omega) \\ &= \frac{\partial}{\partial x} (-\beta) + \frac{\partial}{\partial y} (\alpha). \end{split}$$

Com
o $\alpha=h_x,\ \beta=h_y$ eh(x,y)é diferenciável
 $(C^\infty),$ segue que

$$\frac{\partial}{\partial x} \left(\frac{a}{\sqrt{1 - a^2 - b^2}} \right) + \frac{\partial}{\partial y} \left(\frac{b}{\sqrt{1 - a^2 - b^2}} \right)$$
$$= -\frac{\partial}{\partial x} (h_y) + \frac{\partial}{\partial y} (h_x)$$
$$= 0.$$

Logo, a equação (5.4) é satisfeita. Portanto, q(x, y) é um gráfico máximo em Nil³₁(-H).

Observação 5.3 Temos duas correspondências entre gráficos de curvatura média constante em \mathbb{R}^3 e superfícies máximas no espaço de Lorentz-Heisenberg: uma via a aplicação de Gauss harmônica, dada pela Observação 3.2 e o Teorema 3.1, outra pelo Teorema 5.1. Na equivalência dada pelo Teorema 5.1, a aplicação de Gauss g do gráfico z = h(x, y) corresponde à aplicação de Gauss ig do gráfico z = q(x, y). Assim, as duas correspondências são as mesmas.

Usaremos agora o Teorema 5.1 para construir alguns exemplos de superfícies máximas em $Nil_1^3(\tau)$.

Exemplo 5.1 Considere o hemisfério $z = h(x, y) = -\sqrt{\rho^2 - x^2 - y^2}$ definido sobre o domínio $x^2 + y^2 < \rho^2$ em que $\rho > 0$. Seu gráfico correspondente de curvatura média nula em Nil $_1^3(-\frac{1}{\rho})$ é o plano z = q(x, y) = c sobre o disco $x^2 + y^2 < \rho^2$, onde $c \in \mathbb{R}$ é uma constante arbitrária.

De fato, escolha $\rho=2.~$ Assim
, $H=\frac{1}{2}$ e pelo Teorema 5.1, o gráfico máximo em
Nil_1^3(-\frac{1}{2}) satisfaz

$$q_x - \frac{1}{2}y = \frac{\frac{-y}{\sqrt{4-x^2-y^2}}}{\sqrt{1 + \frac{x^2}{4-x^2-y^2} + \frac{y^2}{4+x^2+y^2}}}$$
$$q_x - \frac{1}{2}y = -\frac{y}{2}$$
$$q_x = 0.$$

Analogamente, temos que $q_y = 0$.

Portanto, a superfície máxima em Nil³₁ $(-\frac{1}{2})$ é qualquer gráfico do tipo q(x, y) = c, com $c \in \mathbb{R}$.

Vamos calcular a aplicação de Gauss do plano z = 0:

Tomando o vetor normal à superfície como

$$N = -\frac{\Phi_x \times \Phi_y}{|\Phi_x \times \Phi_y|} = \frac{1}{\sqrt{1 - a^2 - b^2}} (aE_1 + bE_2 + E_3),$$

temos que a aplicação de Gauss é dada por:

$$g = \pi_S \circ N = \frac{a+ib}{\sqrt{1-a^2-b^2}+1}.$$
(5.8)

Em termos de q(x, y):

$$g = \frac{q_x + iq_y - \frac{1}{2}(y - ix)}{\sqrt{1 - (q_x - \frac{1}{2}y)^2 - (q_y + \frac{1}{2}x)^2} + 1}.$$
(5.9)

Como q(x,y) = 0, temos que $\begin{cases} a = -\frac{1}{2}y \\ b = \frac{1}{2}x \end{cases}$. Assim, a equação (5.8) se torna

$$g = \frac{-\frac{1}{2}y + \frac{i}{2}x}{\sqrt{1 - \frac{y^2}{4} - \frac{x^2}{4}} + 1} = \frac{-y + ix}{2 + \sqrt{4 - x^2 - y^2}}.$$
(5.10)

Vamos utilizar a parametrização do plano dada por:

$$X = \left(\frac{4u}{1+u^2+v^2}, \frac{4v}{1+u^2+v^2}, 0\right), \quad z = u + iv, \quad |z| < 1,$$

que é conforme, pois a métrica induzida é dada por

$$ds^{2} = \frac{16(1-u^{2}-v^{2})^{2}}{(1+u^{2}+v^{2})^{4}}(du^{2}+dv^{2}),$$

Para X, temos que a aplicação de Gauss g dada por (5.10) pode ser escrita como:

$$g(z) = \frac{\frac{-4v + i4u}{(1+u^2+v^2)}}{2 + \sqrt{4 - \frac{16u^2 + 16v^2}{(1+u^2+v^2)^2}}} = \frac{-4v + i4u}{2(1+u^2+v^2) + 2(1-u^2-v^2)}$$
$$= -v + iu = iz.$$

Além disso, a diferencial de Hopf Q da aplicação de Gauss g é identicamente nula.

Exemplo 5.2 Seja $\theta \in \mathbb{R}$. Considere a parte negativa do cilindro em \mathbb{R}^3

$$1 = (x\sin(\theta) - y\cos(\theta))^2 + z^2.$$

O gráfico correspondente à superfície

$$z = h(x, y) = -\sqrt{1 - (x\sin(\theta) - y\cos(\theta))^2}$$

é a superfície máxima em ${\rm Nil}_1^3(-\frac{1}{2})$ dada por

$$z = q(x, y) = \frac{\sin(2\theta)}{4}(x^2 - y^2) - \frac{\cos(2\theta)}{2}xy.$$

sobre o domínio $|x\sin(\theta) - y\cos(\theta)| < 1.$

Observe que

$$h_x = \frac{(x\sin\theta - y\cos\theta)\sin\theta}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}},$$
$$h_y = -\frac{(x\sin\theta - y\cos\theta)\cos\theta}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}}.$$

E assim,

$$\sqrt{1 + h_x^2 + h_y^2} = \frac{1}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}}.$$

Pelo Teorema 5.1,

$$q_x + \frac{1}{2}y = \frac{\frac{(x\sin\theta - y\cos\theta)\cos\theta}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}}}{\frac{1}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}}}$$
$$q_x = (x\sin\theta - y\cos\theta)\cos\theta - \frac{1}{2}y,$$
$$q_y - \frac{1}{2}x = \frac{\frac{(x\sin\theta - y\cos\theta)\sin\theta}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}}}{\frac{1}{\sqrt{1 - (x\sin\theta - y\cos\theta)^2}}}$$
$$q_y = (x\sin\theta - y\cos\theta)\sin\theta + \frac{1}{2}x.$$

Então,

$$\begin{cases} q(x,y) = \frac{x^2}{2}\sin\theta\cos\theta - xy\cos^2\theta - \frac{1}{2}xy + n(y)\\ q(x,y) = -\frac{y^2}{2}\sin\theta\cos\theta + xy\sin^2\theta + \frac{1}{2}xy + m(x) \end{cases}$$

onde n(y) e m(x)são funções diferenciáveis.

Resolvendo o sistema acima obtemos

$$q(x,y) = \frac{\sin\theta\cos\theta}{2}(x^2 - y^2) - \frac{\cos^2\theta - \sin^2\theta}{2}xy$$
$$= \frac{\sin 2\theta}{4}(x^2 - y^2) - \frac{\cos 2\theta}{2}xy.$$

Introduzimos uma parametrização conforme

$$X = \left(u\cos\theta - \sin v\sin\theta, u\sin\theta + \sin v\cos\theta, -\frac{1}{2}u\sin v\right), \quad z = u + iv,$$

onde a métrica é dada por $ds^2 = \cos^2 v (du^2 + dv^2)$. Vamos calcular a aplicação de Gauss para esta parametrização:

Seja ${\cal N}$ o vetor normal dado por

$$N = -\frac{X_u \times X_v}{|X_u \times X_v|} = \frac{1}{\cos v} \left\{ -\sin v \cos \theta E_1 - \sin v \sin \theta E_2 + 1E_3 \right\}.$$

Projetando-o via projeção estereográfica pelo polo sul, obtemos a aplicação de Gauss

$$g(z) = \pi_S \circ N = \frac{\frac{-\sin v(\cos \theta + i\sin \theta)}{\cos v}}{1 + \frac{1}{\cos v}} = -\frac{e^{i\theta} \sin v}{1 + \cos v}.$$

A diferencial de Hopf é dada por

$$Q = \frac{4g_z \bar{g}_z}{(1+|g|^2)^2} dz^2 = 4\frac{i}{2} \left(\frac{e^{i\theta}}{1+\cos v}\right) \frac{i}{2} \left(\frac{\overline{e^{i\theta}}}{1+\cos v}\right) \frac{(1+\cos v)^2}{4} dz^2$$
$$= -\frac{1}{4} dz^2.$$

Exemplo 5.3 Considere o cilindro

$$1 = y^2 + (z\cos\theta + x\sin\theta)^2, \qquad \qquad \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}).$$

Aplicando a correspondência ao gráfico

$$z = h(x, y) = -\frac{\sqrt{1-y^2}}{\cos \theta} - \frac{\sin \theta}{\cos \theta} x$$

obtemos a superfície máxima em $\mathrm{Nil}_1^3(-\frac{1}{2})$

$$z = q(x, y) = -\frac{1}{2}xy - \frac{1}{2}\sin\theta(\arcsin y + y\sqrt{1 - y^2}), \qquad |y| < 1.$$

De fato,

$$h_y = \frac{y}{\cos\theta\sqrt{1-y^2}}$$
$$h_x = -\frac{\sin\theta}{\cos\theta}$$

е

$$\sqrt{1 + h_x^2 + h_y^2} = \frac{1}{\cos\theta\sqrt{1 - y^2}}$$

Segue que

$$q_{x} + \frac{1}{2}y = \frac{\frac{-y}{\cos\theta\sqrt{1-y^{2}}}}{(\cos\theta\sqrt{1-y^{2}})^{-1}} = -y$$

$$q_{x} = -\frac{3}{2}y,$$

$$q_{y} - \frac{1}{2}x = -\frac{\frac{\sin\theta}{\cos\theta}}{(\cos\theta\sqrt{1-y^{2}})^{-1}} = -\sin\theta\sqrt{1-y^{2}}$$

$$q_{y} = -\sin\theta\sqrt{1-y^{2}} + \frac{1}{2}x.$$

Integrando as equações acima obtemos

$$\begin{cases} q(x,y) = -\frac{3}{2}xy + n(y) \\ q(x,y) = -\frac{\sin\theta}{2}(\arcsin y + y\sqrt{1-y^2}) + \frac{1}{2}xy + m(x), \quad |y| < 1. \end{cases}$$

Assim, resolvendo este sistema

$$q(x,y) = -\frac{1}{2}xy - \frac{1}{2}\sin\theta(\arcsin y + y\sqrt{1-y^2}), \ |y| < 1.$$

Segue de [4] que esta superfície é invariante sobre a seguinte família de translações à

esquerda

$$L_{\lambda}(x, y, z) = L_{(\lambda, 0, 0)}(x, y, z) = \left(x + \lambda, y, z - \frac{\lambda}{2}y\right)$$

onde $\lambda \in \mathbb{R}$.

Vamos introduzir a seguinte parametrização isotérmica:

$$X = \left(u \cos \theta - \cos v \cos \theta, \sin v, -u \sin v \frac{\cos \theta}{2} - v \frac{\sin \theta}{2} \right),$$

que induz no plano a métrica conforme $ds^2 = \cos^2 v \cos^2 \theta (du^2 + dv^2)$. Utilizando a parametrização X vamos calcular a aplicação de Gauss g:

Considere o vetor normal

$$N = -\frac{X_u \times X_v}{|X_u \times X_v|} = \left\{ -\frac{\sin v}{\cos v \cos \theta} E_1 - \frac{\sin \theta}{\cos \theta} E_2 + \frac{1}{\cos v \cos \theta} E_3 \right\}.$$

Através da projeção estereográfica via polo sul obtemos a expressão para a aplicação de Gauss:

$$g(z) = -\frac{\sin v + i\cos v\sin\theta}{\cos v\cos\theta + 1}.$$

Diferenciando com respeito a z obtemos

$$g_z = \frac{i}{2} \frac{\cos v + \cos \theta}{(\cos v \cos \theta + 1)^2} + \frac{1}{2} \frac{\sin v \sin \theta}{(\cos v \cos \theta + 1)^2}$$
$$\bar{g}_z = \frac{i}{2} \frac{\cos v + \cos \theta}{(\cos v \cos \theta + 1)^2} - \frac{1}{2} \frac{\sin v \sin \theta}{(\cos v \cos \theta + 1)^2}.$$

E assim, sua diferencial de Hopf é

$$Q = -\frac{1}{4}dz^2.$$

Referências Bibliográficas

- ABRESCH, U.; ROSENBERG, H. A Hopf Differential for Constant Mean Curvature Surfaces in S² × ℝ and H² × ℝ. Acta Mathematica, v. 193, n. 2, p. 141-174, 2004.
- [2] ABRESCH, U.; ROSENBERG, H. Generalized Hopf differentials. Mat. Contemp, v. 28, n. 1, p. 1-28, 2005.
- BERDINSKY, D. A.; TAIMANOV, I. A. Surfaces in Three-Dimensional Lie Groups. Siberian Mathematical Journal, v. 46, n. 6, p. 1005-1019, 2005.
- BEKKAR, M. Minimal Surfaces of the 3-Dimensional Lorentz-Heisenberg Space. Int. Journal of Math. Analysis, v. 3, n. 10, p. 473-482, 2009.
- [5] BERNSTEIN, S. Sur un Théorème de Géométrie et ses Applications aux Équations aux Dérivées Partielles du Type Elliptique. Comm. de la Soc. Math. de Kharkov, v.15, p. 38-45, 1915.
- [6] BIANCHI, L. Lezioni di Geometrie Differenziale. Pisa: Spoerri Libero-Editore, 1894.
- [7] CALABI, E. Examples of Bernstein Problems for some Non-linear Equations. Proc. Symp. Pure Math., v. 105, p. 223-230, 1970.
- [8] CARTAN, E. Leçons sur la Géométrie des Espaces de Riemann. Paris: Gauthier Villars, 1894.
- [9] CHERN, S. S. On the Curvature of a Piece of Hypersurface in Euclidean Space. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Springer Berlin/Heidelberg, v. 29, n. 1, p. 77-91, 1965.

- [10] DANIEL, B. Isometric Immersions into 3-Dimensional Homogeneous Manifolds.
 Commentarii Mathematici Helvetici, v. 82, n. 1, p. 87-131, 2007.
- [11] DANIEL, B. The Gauss Map of Minimal Surfaces in the Heisenberg Group. International Mathematics Research Notices, v. 2011, n. 3, p. 674-695, 2011.
- [12] DANIEL, B.; HAUSWIRTH, L. Half-Space Theorem, Embedded Minimal Annuli and Minimal Graphs in the Heisenberg Group. Proceedings of the London Mathematical Society, v. 98, n. 2, p. 445-470, 2009.
- [13] do CARMO, M. P. Geometria Riemanniana. 4.ed. Rio de Janeiro: IMPA, 2008.
- [14] FERNÁNDEZ, I.; MIRA, P. A Characterization of Constant Mean Curvature Surfaces in Homogeneous 3-Manifolds. Differential Geometry and its Applications, v. 25, n. 3, p. 281-289, 2007.
- [15] FERNÁNDEZ, I.; MIRA, P. Harmonic Maps and Constant Mean Curvature Surfaces in H² × ℝ. American Journal of Mathematics, v. 129, n. 4, p. 1145-1181, 2007.
- [16] FERNÁNDEZ, I.; MIRA, P. Holomorphic Quadratic Differentials and the Bernstein Problem in Heisenberg Space. Transactions of the American Mathematical Society, v. 361, n. 11, p. 5737-5752, 2009.
- [17] Hall, B. C. Lie Groups, Lie Algebras, and Representations: an Elementary Introduction. Springer-Verlag, 2003.
- [18] HOPF, H. Differential Geometry in the Large. Lecture Notes in Mathematics, v. 1000, 1989.
- [19] JOST, J. Harmonic Maps Between Surfaces. Springer-Verlag, 1984.
- [20] KENMOTSU, K. Weierstrass Formula for Surfaces of Prescribed Mean Curvature. Mathematische Annalen, v. 245, n. 2, p. 89-99, 1979.
- [21] KOSZUL, J. L.; MALGRANGE, B. Sur Certaines Fibrées Complexes. Arch. Math., n. 9, p. 102-109, 1958.

- [22] LAGRANGE, J. L. Essai D'une Nouvelle Méthodo pour Determiner les Maxima et les Minima des Formules Intégrales Indéfinies. Miscellanea Taurinensia, v. 2, p. 172-195, 1760.
- [23] LEE, H. Maximal Surfaces in Lorentzian Heisenberg Space. Differential Geometry and its Applications, v. 29, n. 1, p. 73-84, 2011.
- [24] LOPEZ, R. Differential Geometry of Curves and Surfaces in the Lorentz-Minkowski Space. arXiv:0810.3351v1[math.DG], 2008.
- [25] MILNOR, J. Curvatures of Left Invariant Metrics on Lie Groups. Advances in Mathematics, v.21, n. 3, p. 293-329, 1976.
- [26] MILNOR, T. K. Harmonic Maps and Classical Surface Theory in Minkowski 3-Space.
 Transactions of the American Mathematical Society, v. 280, n. 1, p. 161-185, 1983.
- [27] O'NEILL, B. Semi-Riemannian Geometry with Applications to Relativity. Academic Press, 1983.
- [28] VRANCEANU, G. Leçons de Géométrie Différentielle. Acad. Rep. Pop. Roum, 1947.
- [29] WAN, T. Y. H. Constant Mean Curvature Surface, Harmonic Maps, and Universal Teichmüller Space. Journal of Differential Geometry, v. 35, n. 3, p. 643-657, 1992.