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Abstract

On-line quality control during production calls for monitoring pro-
duced items according to some prescribed strategy. It is reasonable to
assume the existence of system internal non-observable variables so that
the carried out monitoring is only partially reliable. In this note, un-
der the setting of a Hidden Markov Model (HMM) and assuming that
the evolution of the internal state changes are governed by a two-state
Markov chain, we derive estimates for false-alarm and non-detection
malfunctioning probabilities. Kernel density methods are used to ap-
proximate the stable regime density and the stationary probabilities.
As a side result, alternative monitoring strategies are proposed.
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1. Introduction

Limited by the cost function a sampling interval m is selected and classical
on-line quality control during production adopts the procedure of monitoring
the sequence of items, independently produced, by examining a single item
at every m produced items. Based on the quality requirements and on the
distribution of the examined variable a control region C is pre-specified. If
the examined item satisfies the control limits, the process is said to be in
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1154 C.C.Y. Dorea, C.R. Gonçalves, P.G. Medeiros and W.B. Santos

control and the production continues; otherwise, the process is declared out
of control and the production is stopped for adjustments. After adjustments
the production is resumed and it is in control again. At each stoppage a new
production cycle is defined (see, for example, [4]). Suppose now the internal
working status of the system is non-observable and may change from a good
working condition (on control) to a deteriorating status (out of control). In
[2] it is proposed a model where these changes are governed by a two-state
Markov chain {θn}n≥0. When θn = 0 the process is said to be in control
at time n; and, if θn = 1 the process is out of control. In their proposal,
an observable random variable Xn, related to characteristics of interest, is
examined at every m produced items. It is assumed that Xn has a Gaussian
distribution, N (μ, σ2), with μ = μθn . And values of m as well as the parameter
d of the control region C = (μ0 − dσ, μ0 + dσ) were determined by considering
a given cost function to be minimized.

Here, in the framework of a Hidden Markov Model (HMM), we compute
and propose estimation techniques for the false-alarm and non-detection prob-
abilities. False-alarm occurs if the observed variable falls outside the control
region but the non-observable internal system state is 0, a good working state.
When the opposite occurs we have a non-detection situation. It is assumed
that all the working (good) states are lumped together as state 0 and the dete-
riorating states are gathered as state 1. A Markov chain {θn}n≥0 describes the
evolution of the state of the production system. Associated with this chain we
observe a sequence of conditionally independent random variables {Xn}n≥1,
with the distribution of each Xn depending on the corresponding state θn.
This process {θn, Xn} is generally referred to as a HMM. More specifically, we
have

P (Xn+1 ∈ A|X1, . . . , Xn, θ0, . . . , θn) = P (Xn+1 ∈ A|θn) (1)

and

P (X1 ∈ A1, . . . , Xn ∈ An|θ1, . . . , θn) =

n∏
j=1

P (Xj ∈ Aj |θj). (2)

In section 2, we treat the special case where the transition matrix of {θn}
as well as the conditional densities of Xn given θn are known, but not neces-
sarily Gaussian densities. For any initial distribution of θ0, Proposition 1 and
Proposition 2 give the false-alarm and the non-detection probabilities. As a
side result, upper bounds for the sampling interval m are proposed.

In section 3, we assume that the transition probabilities of the hidden
chain {θn} are unknown. Based on the observable sample X1, . . . , Xn kernel
density methods are used to approximate the stable regime density. Theorem
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1 shows that the limiting stable density is a mixture of densities, which in
the particular case treated in [2] reduces to NORMIX (mixture of normal
densities). Corollary 1 provide an estimate for the stationary distribution of
{θn} and leads to an alternative monitoring strategy that takes into account
the false-alarm situations. And the estimates for false-alarm and non-detection
probabilities can be found in Corollary 2.

2. False-alarm and Non-detection

For the HMM process {θn, Xn} assume that the chain {θn} has known
transition probabilities given by

P =

(
1 − p p
ε 1 − ε

)

0 < p < 1 , ε > 0 and p + ε < 1. (3)

The conditional distribution of Xn given θn are also known and based on this
distribution a control region C is pre-selected. It is assumed that

P (Xn ∈ A|θn = i) =

∫
A

f(x|i)dx,

0 < q0 =

∫
Cc

f(x|0)dx < 1 and 0 < q1 =

∫
Cc

f(x|1)dx < 1. (4)

If the sampling interval m = 1, the on-line quality monitoring adopts the
following strategy : items X1, X2, . . . are inspected and verified whether X1 ∈
C, X2 ∈ C, . . . ; maintenance is required at time n if X1 ∈ C, . . . , Xn−1 ∈ C
and Xn /∈ C. Thus we can define the alert times by

τX = inf{k : k ≥ 1, Xk /∈ C}.

False-alarm occurs at time k if τX = k but the non-observable internal system
state is 0, a good working state. Let τθ be defined as the first time, after time
0, the system reaches state 1,

τθ = inf{k : k ≥ 1, θk = 1}. (5)

Then false-alarm and non-detection correspond, respectively, to the events
(τX < τθ) and (τX > τθ). Let Pν denote the probability when the initial
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distribution of θ0 is ν. Similarly, let P0 and P1 denote the probability when
θ0 = 0 and θ0 = 1 respectively.

Proposition 1. Let ν be the initial distribution of θ0. Then the false-alarm
probability is given by

Pν(τX < τθ) = ν(0)
(1 − p)q0

1 − (1 − p)(1 − q0)
+ ν(1)

εq0

1 − (1 − p)(1 − q0)
(6)

and the non-detection probability is given by

Pν(τX > τθ) = ν(0)
p(1 − q1)

1 − (1 − p)(1 − q0)
+ ν(1)

[q0(1 − ε) + (1 − q0)p](1 − q1)

1 − (1 − p)(1 − q0)
.

(7)

Proof. (i) For θ0 = 0 we have from (3) and (4)

P0(τX = 1, τθ > 1) = P0(θ1 = 0, X1 /∈ C) = (1 − p)q0

and from (1) and (2) we have for k ≥ 2

P0(τX = k, τθ > k) = P0(X1 ∈ C, · · · , Xk−1 ∈ C, Xk /∈ C, θ1 = · · · = θk = 0)

= P0(θ1 = · · · = θk = 0)[

k−1∏
j=1

P (Xj ∈ C|θj = 0)]P (Xk /∈ C|θk = 0)

= (1 − p)[(1 − p)(1 − q0)]
k−1q0.

It follows that

P0(τX < τθ) =
(1 − p)q0

1 − (1 − p)(1 − q0)
.

Similarly, if θ0 = 1 we have

P1(τX = 1, τθ > 1) = P (θ1 = 0|θ0 = 1)P (X1 /∈ C|θ1 = 0) = εq0

and for k ≥ 2

P1(τX = k, τθ > k) = ε[(1 − p)(1 − q0)]
k−1q0.

And (6) follows.

(ii) To prove (7) note that

P0(τX = τθ = 1) = P (θ1 = 1|θ0 = 0)P (X1 /∈ C|θ1 = 1) = pq1

and for k ≥ 2

P0(τX = τθ = k) = [(1 − p)(1 − q0)]
k−1pq1.
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Moreover,

P1(τX = τθ = 1) = (1 − ε)q1

and for k ≥ 2

P1(τX = τθ = k) = ε(1 − q0)[(1 − p)(1 − q0)]
k−2pq1.

It follows that

Pν(τX = τθ) = ν(0)
pq1

1 − (1 − p)(1 − q0)
+ ν(1)

[q0(1 − ε) + (1 − q0)p]q1

1 − (1 − p)(1 − q0)
.

This along with (6) give us (7). �

Now, assume that a single item is inspected at every m items produced.
Then for m ≥ 2 we can define

τ
(m)
X = inf{km : k ≥ 1, Xkm /∈ C}. (8)

Using the same type of arguments as above we get

P0(τ
(m)
X = km, τθ > km) = (1 − p)km(1 − q0)

k−1q0

= (1 − p)m[(1 − p)m(1 − q0)]
k−1q0

and

P1(τ
(m)
X = km, τθ > km) = ε(1 − p)m−1[(1 − p)m(1 − q0)]

k−1q0.

Moreover,

P0(τ
(m)
X = τθ = km) = [(1 − p)m(1 − q0)]

k−1(1 − p)m−1pq1

and

P1(τ
(m)
X = τθ = km) = [(1 − p)m(1 − q0)]

k−1ε(1 − p)m−2pq1.

Proposition 2. Let ν be the initial distribution of θ0. Assume that the
monitoring strategy has sampling interval m. Then the false-alarm probability
is given by

Pν(τ
(m)
X < τθ) = ν(0)

(1 − p)mq0

1 − (1 − p)m(1 − q0)
+ ν(1)

ε(1 − p)m−1q0

1 − (1 − p)m(1 − q0)
(9)
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and for m ≥ 2 the non-detection probability is given by

Pν(τ
(m)
X > τθ) = ν(0)

1 − (1 − p)m−1 + (1 − p)m−1p(1 − q1)

1 − (1 − p)m(1 − q0)

+ ν(1)
1 − (1 − p)m(1 − q0) − ε(1 − p)m−2[(1 − p)q0 + pq1]

1 − (1 − p)m(1 − q0)
.

(10)

Next, we propose upper bounds for the sampling interval m. We may
assume that the process starts at good working conditions (θ0 = 0, X0 ∈ C).
Our aim is to detect whether the chain {θn} has changed to state 1. A trivial
upper bound is given by the mean changing time from state 0 to state 1. From
(3) and (5) we have

m ≤
∑
k≥1

kP (τθ = k|θ0 = 0) =
∑
k≥1

k(1 − p)k−1p =
1

p
.

Since {θn} is non-observable, the designed monitoring strategy relies on
the observable process {Xn}. Taking this into account one should choose m
smaller so that in average we will detect the first time the process {θn, Xn}
reaches the alert zone. Alert occurs at time k if either Xk ∈ Cc or θk = 1.
And this can be expressed by

τA = inf{k : k ≥ 1, (θk, Xk) ∈ A}.
where A = ({0} × Cc) ∪ ({1} × C) ∪ ({1} × Cc). Since

P ((θk+1, Xk+1) ∈ Ac|(θk, Xk) ∈ Ac) = (1 − p)(1 − q0),

the expected first hitting time in alert zone is given by

m ≤ E(τA|θ0 = 0, X0 ∈ C) =
1

1 − (1 − p)(1 − q0)
.

3. Estimation Results

In this section we assume that the hidden Markov chain {θn} has transition
matrix P of the form (3), but unknown. As for the process {Xn}, we assume
that the conditional densities are known and satisfy condition (4).

Note that since all entries of P are strictly positive, {θn} is an ergodic chain
and the stationary (limiting) distribution exists, πP = π,

π(0) =
ε

p + ε
and π(1) =

p

p + ε
. (11)
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Define the mixture density function

f(x) = π(0)f(x|0) + π(1)f(x|1). (12)

Then, in some sense, f(·) represents the density of {Xn} when the process
reaches some ”stable” regime. Mixture models have been well recognized as
useful in many practical applications. It is a popular model-based approach
to dealing with data in the presence of population heterogeneity, in the sense
that, data consist of unlabelled observations, each of which is thought to belong
to one of the distinct classes. For a comprehensive list of applications and
literature survey in this area see, for example, [3]. Though we are assuming
known conditional densities, the stable regime density (12) may indicate which
type of distribution one should assume for the variables Xn as well as which
control region C one should select.

Results from [1] show that, based on the observable sample X1, . . . , Xn,
kernel density methods can be successfully used to estimate the stable regime
density. For a probability density K on R define

f̂n(x) =
1

nh

n∑
k=1

K(
Xk − x

h
) , h = hn ↓ 0 , nhn → ∞ as n → ∞. (13)

Typically one takes K(·) either a Gaussian density or an uniform density cen-
tered at x. Using these results we have Theorem 1 which allows us to make
inference on P . Its proof will be postponed to the end of this section.

Theorem 1. Assume that the process {θn, Xn} satisfies (3) and (4) and let
ν be any initial distribution of θ0. Then given δ > 0 there exist c1 = c1(δ) > 0
and c2 = c2(δ) > 0 such that

Pν(

∫
|f̂n(y) − f(y)|dy ≥ δ) ≤ c1 exp{−c2n} (14)

and almost surely (a.s.)

lim
n→∞

∫
|f̂n(y) − f(y)|dy = 0 a.s. (15)

Next, we estimate the stationary probabilities (11). Choose x∗ so that
f(x∗|0) 	= f(x∗|1) and define

π̂n(0) =

∣∣∣∣∣
f̂n(x∗) − f(x∗|1)

f(x∗|0) − f(x∗|1)

∣∣∣∣∣ and π̂n(1) = 1 − π̂n(0). (16)
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From (15) it follows that,

Corollary 1. For any initial distribution of θ0 we have with probability 1,

π̂n(0) → π(0) and π̂n(1) → π(1) as n → ∞. (17)

This result suggests an alternative on-line control procedure that will take
into account the false-alarm situations. Let

f̂ (m)
n (x∗) =

1

nh

n∑
k=1

K(
Xkm − x∗

h
).

Then, from (15) we have

lim
n→∞

|f̂ (m)
n (x∗) − f(x∗)| a.s.

Thus, with f̂
(m)
n (x∗) in place of f̂n(x∗) in (16) we get (17). It follows that the

posterior distribution P (θnm = 0|Xm, . . . , Xnm) can be approximated by

P̂ (θnm = 0|Xm, . . . , Xnm) =

∣∣∣∣∣
f̂

(m)
n (x∗) − f(x∗|1)

f(x∗|0) − f(x∗|1)

∣∣∣∣∣
f(x∗|0)

f̂
(m)
n (x∗)

.

Monitoring Strategy. Assume that the conditional densities f(·|0) and
f(·|1) are both known. Suppose that the control region C and the sampling

interval m have been pre-selected. Let τ
(m)
X be defined by (8) and let 0 < η < 1

be a given significance level. Then intervention is carried out at time nm if
τ

(m)
X = nm and

P̂ (θnm = 0|Xm, . . . , Xnm) < η.

From (16) we can also estimate false-alarm and non-detection probabilities.
Observe that, in long-run, the false-alarm can be computed as

P (θkm = 0|Xkm /∈ C) =
P (Xkm /∈ C|θkm = 0)P (θkm = 0)

P (Xkm /∈ C)
.

But P (Xkm /∈ C|θkm = 0) = q0 and by (11) we have lim
n→∞

P (θkm = 0) = π(0).

From Theorem 1 with f(·) given by (12) we have

lim
n→∞

P (Xkm /∈ C) =

∫
Cc

f(x)dx.

Similarly, we have for non-detection

P (θkm = 1|Xkm ∈ C) =
P (Xkm ∈ C|θkm = 1)P (θkm = 1)

P (Xkm ∈ C)
.
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These results can be summarized by:

Corollary 2. For any initial distribution of θ0 we have with probability 1,

q0π̂n(0)∫
Cc f̂n(x)dx

→ P (false-alarm) and
(1 − q1)π̂n(1)∫

C
f̂n(x)dx

→ P (non-detection). (18)

Proof of Theorem 1. Enough to verify that the hypotheses of Theorem 2
and Corollary 1 from [1] are satisfied. First, we shown that {θn} is is uniformly
ergodic, that is, there exists 0 < ρ < 1 such that

|P n
ij − π(j)| ≤ ρn i, j = 0, 1. (19)

From (3) we have,

P n =

⎛
⎜⎝

ε

p + ε
+ p

(1 − p − ε)n

p + ε

p

p + ε
− p

(1 − p − ε)n

p + ε
ε

p + ε
− ε

(1 − p − ε)n

p + ε

p

p + ε
+ ε

(1 − p − ε)n

p + ε

⎞
⎟⎠

and from (11) we get (19) by taking ρ = 1 − p − ε.

Next, we show that {θn} satisfies the φ-mixing condition : ∀A ∈ Fk and
∀B ∈ F∞

k+n

|Pπ(A ∩ B) − Pπ(A)Pπ(B)| ≤ φ(n)Pπ(A) (20)

with
∑
n≥1

φ(n) < ∞ and σ-algebras defined by

Fn = σ(θ0, . . . , θn) and F∞
n = σ(θn, θn+1, . . . ).

Note that for A = (θ0 = a0, . . . , θk = ak), B = (θk+n = bk+n, . . . ) and Pπ(A) >
0 we have

Pπ(B|A) = Pπ(B|θk = ak) = P n
akbk+n

Pπ(θk+n+1 = bk+n+1, . . . |θk+n = bk+n)

and

Pπ(B) = π(bk+n)Pπ(θk+n+1 = bk+n+1, . . . |θk+n = bk+n).

It follows that

|Pπ(B|A) − Pπ(B)| ≤ |P n
akbk+n

− π(bk+n)| ≤ ρn = φ(n)

and (20) is satisfied. �
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