Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/51811
Arquivos associados a este item:
Arquivo TamanhoFormato 
EstevaoSergioZeco_DISSERT.pdf837,01 kBAdobe PDFVisualizar/Abrir
Título: Regressão quantílica multitarefa via redes neurais profundas
Autor(es): Zeco, Estevão Sérgio
Orientador(es): Rodrigues, Thais Carvalho Valadares
Assunto: Calibração
Multitarefas
Redes neurais
Regressão gaussiana
Regressão quantílica
Perda quantílica
Data de publicação: 12-Mar-2025
Referência: ZECO, Estevão Sérgio. Regressão Quantílica Multitarefa via Redes Neurais Profundas. 2024. 72 f. Dissertação (Mestrado em Estatística) — Universidade de Brasília, Brasília, 2024.
Resumo: A regressão quantílica via redes neurais tem se consolidado como uma abordagem poderosa para modelar relações não lineares entre variáveis, permitindo a estimação individual de quantis condicionais. No entanto, essa técnica enfrenta desafios quando é necessário estimar múltiplos quantis simultaneamente. Neste trabalho, propomos uma nova arquitetura para Regressão Quantílica Multitarefa via Redes Neurais Profundas, visando aprimorar tanto a precisão quanto a eficiência computacional na estimação de quantis. Baseada na arquitetura de Kuleshov e Deshpande (2022), essa nova arquitetura, denominada RQRN1E, inova ao unificar dois estágios da arquitetura original em um único estágio e ao introduzir o logito do τ diretamente na penúltima camada intermediária da rede. Nos três conjuntos de dados avaliados, os resultados evidenciaram que o modelo RQRN1E superou os modelos concorrentes, apresentando consistentemente a menor perda quantílica e a melhor cobertura para os quantis, o que reflete uma melhor precisão e calibração na estimativa dos quantis. Além disso, o RQRN1E destacou-se pela eficiência computacional, com menor tempo de processamento e rápida convergência, sem comprometer a qualidade das previsões.
Abstract: Quantile regression via neural networks has emerged as a powerful approach for modeling nonlinear relationships between variables, allowing for the individual estimation of conditional quantiles. However, this technique faces challenges when estimating multiple quantiles simultaneously. In this work, we propose a new architecture for Multitask Quantile Regression via Deep Neural Networks, aiming to improve both accuracy and computational efficiency in quantile estimation. Based on the architecture of Kuleshov e Deshpande (2022), this new architecture, called RQRN1E, introduces innovations by unifying the two stages of the original architecture into a single stage and incorporating the logit of τ directly into the penultimate intermediate layer of the network. In the three datasets evaluated, the results showed that the RQRN1E model outperformed competing models, consistently achieving the lowest quantile loss and the best coverage for the quantiles, reflecting better accuracy and calibration in quantile estimation. Furthermore, RQRN1E excelled in computational efficiency, with reduced processing time and faster convergence, without compromising prediction quality.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Estatística (IE EST)
Programa de pós-graduação: Programa de Pós-Graduação em Estatística
Licença: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.