Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/32013
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_AlancocdosSantosAlencar.pdf1,64 MBAdobe PDFVisualizar/Abrir
Título: Uma classe de hipersuperfícies em Sn×R e Hn×R
Autor(es): Alencar, Alancoc dos Santos
Orientador(es): Santos, João Paulo dos
Assunto: Hipersuperfícies (Matemática)
Espaço euclidiano
Curvatura média
Geometria euclidiana
Data de publicação: 30-Mai-2018
Referência: ALENCAR, Alancoc dos Santos. Uma classe de hipersuperfícies em Sn×R e Hn×R. 2018. 106 f. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2018.
Resumo: Neste trabalho, apresentamos uma descrição completa das hipersuperfícies dos espaços produto Sn ×R e Hn ×R que possuem brado normal plano quando as consideramos como subvariedades de codimensão 2 do espaço Euclidiano En+2 ⊃Sn×R ou do espaço de LorentzLn+2 ⊃Hn×R. Mostramos que uma hipersuperfície satisfaz tal propriedade se, e somente se, a componente tangente do campo de vetores unitários tangentes ao segundo fator R é uma direção principal. Apresentamos uma caracterização para esta classe de hipersuperfícies em Sn×R (respectivamente, Hn×R) através de uma família de hipersuperfícies paralelas em Sn (respectivamente, Hn) e uma função real diferenciável. Como aplicação, mostramos que as hipersuperfícies dessa classe que possuem curvatura média constante correspondem ao caso em que a família de hipersuperfícies paralelas associada a elas é isoparamétrica em Sn (respectivamente, Hn) e a função diferenciável é determinada em termos da função curvatura média de tal família. Além disso, classi camos as hipersuperfícies em Sn ×R e Hn ×R com a propriedade de que o ângulo entre seu campo de vetores normais unitários e o campo de vetores unitários tangentes ao segundo fator R é constante.
Abstract: In this work, we present a complete description of all hypersurfaces of the product spaces Sn ×R and Hn ×R with at normal bundle when we consider them as submanifolds of codimension 2 in the Euclidean space En+2 ⊃Sn×R or in the Lorentz space Ln+2 ⊃Hn×R. We show that a hypersurface satis es such property if and only if the tangent component of the unit vector eld tangent to the second factor R is a principal direction. We present a characterization of this class of hypersurfaces in Sn ×R (respectively, Hn ×R) by means of a family of parallel hypersurfaces in Sn (respectively, Hn) and a real di erentiable function. As an application, we show that constant mean curvature hypersurfaces in this class correspond to the case in which the family of parallel hypersurfaces associated to them is isoparametric in Sn (respectively, Hn) and the di erentiable function is determined in terms of the mean curvature function of such a family. Moreover, we classify hypersurfaces in Sn ×R and Hn ×R with the property that the angle between its unit normal vector eld and the unit vector eld tangent to the second factor R is constant.
Informações adicionais: Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018.
Licença: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Agência financiadora: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Aparece nas coleções:MAT - Mestrado em Matemática (Dissertações)

Mostrar registro completo do item Recomendar este item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.