Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/30922
Arquivos associados a este item:
Arquivo TamanhoFormato 
ARTIGO_ClusterizacacaoEspacialNaoEspacial.pdf522,86 kBAdobe PDFVisualizar/Abrir
Título: Clusterização espacial e não espacial : um estudo aplicado à agropecuária brasileira
Autor(es): Pena, Marina Garcia
Moreira, Guilherme Costa Chadud
Guimarães, Luiz Felipe Dantas
Laureto, Camilo Rey.
Albuquerque, Pedro Henrique Melo
Carvalho, Alexandre Xavier Ywata de
Basso, Gustavo Gomes
Assunto: Clusterização espacial
Algoritmos
Agropecuária - Brasil
Data de publicação: Abr-2017
Editora: Sociedade Brasileira de Matemática Aplicada e Computacional
Referência: PENA, M.G. et al. Clusterização espacial e não espacial: um estudo aplicado à agropecuária brasileira. TEMA (São Carlos), São Carlos, v. 18, n. 1, p. 69-84, jan./abr. 2017. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000100069&lng=en&nrm=iso>. Acesso em: 9 jan. 2018. doi: http://dx.doi.org/10.5540/tema.2017.018.01.0069.
Resumo: Este trabalho apresenta uma análise de clusterização de Áreas Mínimas Comparáveis (AMC’s) para traçar um mapa de agrupamentos homogêneos a partir de uma combinação de variáveis climáticas, de características do solo e de produção agropecuária. A metodologia permite a visualização de interações entre as diversas variáveis utilizadas, identificando-se, por exemplo, padrões de coexistência, no nível municipal, de diferentes culturas agrícolas. A discussão apresenta os algoritmos tradicionais sem contiguidade (aglomerativo hierárquico e k-means) e o algoritmo aglomerativo hierárquico com imposição de contiguidade. Busca-se, dessa forma, explorar diferenças entre as tipologias construídas com diferentes abordagens, além de prover configurações alternativas de agrupamentos. Ainda, as metodologias discutidas permitem a incorporação de critérios tradicionais de escolha do número de clusters, tais como estatísticas CCC, pseudo-F e pseudo-t 2.
Abstract: This paper presents a clustering analysis of Minimum Comparable Areas(MCAs) to draw a map of homogeneous grouping from a combination of climatic variables, soil characteristics and agricultural production. The methodology allows the visualization of interactions among the many different variables used, indentifying, for example, coexistence patterns, at the municipal level, of different crops. The discussion presents the traditional algorithms with no contiguity (hierarchical algorithm and k-means) and the agglomerative hierarchical algorithm with contiguity. Therefore, this paper seeks to explore differences among the typologies built with different approaches, as well as, provide alternative configurations of grouping. Also, the methodologies discussed allow the incorporation of traditional criteria for choosing the number of clusters, such as the CCC, pseudo-F and pseudo- t 2 statistics.
Licença: TEMA (São Carlos) - Este é um artigo publicado em acesso aberto sob uma licença Creative Commons (CC BY 4.0). Fonte: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000100069&lng=en&nrm=iso. Acesso em: 9 jan. 2018.
DOI: http://dx.doi.org/10.5540/tema.2017.018.01.0069
Aparece nas coleções:PPGA - Artigos publicados em periódicos

Mostrar registro completo do item Recomendar este item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.