Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/23886
Files in This Item:
File Description SizeFormat 
ARTIGO_InsightExoproteomeTissueDerived.pdf804,04 kBAdobe PDFView/Open
Title: Insight into the Exoproteome of the tissue derived trypomastigote form of Trypanosoma cruzi
Authors: Queiroz, Rayner Myr Lauterjung
Ricart, Carlos André Ornelas
Machado, Mara Olimpia
Bastos, Izabela Marques Dourado
Santana, Jaime Martins de
Sousa, Marcelo Valle de
Roepstorf, Peter
Charneau, Sébastien
Assunto:: Tripanosoma cruzi
Chagas, Doença de
Mamífero
Proteínas
Issue Date: 7-Nov-2016
Publisher: Frontiers
Citation: QUEIROZ, Rayner Myr Lauterjung et al. Insight into the Exoproteome of the tissue derived trypomastigote form of Trypanosoma cruzi. FrontiersinChemistry, v. 4, Article 42, 7 nov. 2016. Disponível em: <http://journal.frontiersin.org/article/10.3389/fchem.2016.00042/full>. Acesso em: 21 jun. 2017. doi: http://journal.frontiersin.org/article/10.3389/fchem.2016.00042/full.
Abstract: The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cel . The secreted/excreted protein repertoire released by T. cruzi try pomastigotes is crucial in host-pathogen interactions. In this study, mammalian tissue culture derived trypomastigotes (Ystrain) were used to characterize ethe exoproteome of the infective bloodstream life form. Proteins released into the serum free culture medium after 3h of incubation were harvested and digested with trypsin. NanoLC MS/MS analysis resulted in the identification of 540 proteins, the largest set o freleased proteins identified to date in Trypanosoma spp. Bioinformatic analysis predicted most identified proteins as secreted, predominantly by non- classical pathways, and involved in host-cell infection.Some proteins possess predicted GPI-anchor signals, these being mostly trans-sialidases, mucin associated surface proteins and surface glycoproteins. Moreover, we enriched phosphopeptides and glycopeptides from tryptic digests. The majority of identified glycoproteins are trans-sialidases and surface glycoproteins involved in host-parasite interaction. Conversely, most identified phosphoproteins have no Gene Ontology classification. The existence of various proteins related to similar functions in the exoproteome likely reflects this parasite’s enhanced mechanisms for adhesion, invasion, and internalization of different host-cell types, and escape from immune defenses.
Licença:: Copyright © 2016 Queiroz, Ricart, Machado, Bastos, Santana, Sousa, Roepstorffand Charneau.This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI: https://dx.doi.org/10.3389/fchem.2016.00042
Appears in Collections:CEL - Artigos publicados em periódicos

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/23886/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.