Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/22943
Files in This Item:
File Description SizeFormat 
ARTIGO_OptimizationHeterologousPRoteinProduction.pdf1,47 MBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGulis, Galina-
dc.contributor.authorSimi, Kelly Cristina Rodrigues-
dc.contributor.authorToledo, Renata Rodrigues de-
dc.contributor.authorMaranhão, Andrea Queiroz-
dc.contributor.authorBrígido, Marcelo de Macedo-
dc.date.accessioned2017-03-17T13:07:54Z-
dc.date.available2017-03-17T13:07:54Z-
dc.date.issued2014-
dc.identifier.citationGULIS, Galina et al. Optimization of heterologous protein production in Chinese hamster ovary cells under overexpression of spliced form of human X-box binding protein. BMC Biotechnology (Online), v. 14, p. 26, 2014. Disponível em: <http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-14-26>. Acesso em: 14 dez. 2016. DOI: 10.1186/1472-6750-14-26en
dc.identifier.urihttp://repositorio.unb.br/handle/10482/22943-
dc.language.isoInglêsen
dc.publisherBMC Biotechnologyen
dc.rightsAcesso Abertoen
dc.titleOptimization of heterologous protein production in Chinese hamster ovary cells under overexpression of spliced form of human X-box binding proteinen
dc.typeArtigoen
dc.subject.keywordProteínasen
dc.rights.license© 2014 Gulis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Fonte: http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-14-26. Acesso em: 14 dez. 2016.en
dc.identifier.doihttps://dx.doi.org/10.1186/1472-6750-14-26en
dc.description.abstract1Background: The optimization of protein production is a complex and challenging problem in biotechnology. Different techniques for transcription, translation engineering and the optimization of cell culture conditions have been used to improve protein secretion, but there remain many open problems involving post-translational modifications of the secreted protein and cell line stability. Results: In this work, we focus on the regulation of secreted protein specific productivity (using a recombinant human immunoglobulin G (IgG)) by controlling the expression of the spliced form of human X-box binding protein (XBP-(s)) in Chinese hamster ovary cells (CHO-K1) under doxycycline (DOX) induction at different temperatures. We observed a four-fold increase in specific IgG productivity by CHO cells under elevated concentrations of DOX at 30°C compared to 37°C, without detectable differences in binding activity in vitro or changes in the structural integrity of IgG. In addition, we found a correlation between the overexpression of human XBP-1(s) (and, as a consequence, endoplasmic reticulum (ER) size expansion) and the specific IgG productivity under DOX induction. Conclusions: Our data suggest the T-REx system overexpressing human XBP-1(s) can be successfully used in CHO-K1 cells for human immunoglobulin production.en
Appears in Collections:CEL - Artigos publicados em periódicos

Show simple item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/22943/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.