Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/17907
Files in This Item:
File Description SizeFormat 
2015_LuryaneFerreiradeSouza.pdf677,65 kBAdobe PDFView/Open
Title: Soluções blow-up para equações elípticas com peso singular ou expoente variável
Authors: Souza, Luryane Ferreira de
Orientador(es):: Zhou, Jiazheng
Assunto:: Princípio da comparação
Assíntotas
Expoente variável
Issue Date: 16-Apr-2015
Citation: SOUZA, Luryane Ferreira de. Soluções blow-up para equações elípticas com peso singular ou expoente variável. 2015. v, 95 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2015.
Abstract: Nesse trabalho consideramos o problema (veja fórmula na dissertação) onde Ω Rn é um domínio limitado ou Ω = Rn, p > 1. Vamos estudar a existência de solução para o problema (1) em dois casos: 1. Ω ≠ Rn, q(x) = q > p - 1 e a(x) é uma função não negativa, que pode ser singular na ᶿ Ω. 2. Ω = Rn, para n ≥ 3, p = 2, a(x) = 1 e q é uma função Holder contínua, q(x) ≥ 1 para ||x|| ≤ R e 0 < q(x) ≤ 1 para ||x|| ≥ R, onde R ≥ 0 é uma constante. Além disso, estudamos a unicidade e comportamento na Ω para a solução do caso 1.
Abstract: In this work we consider the problem (veja fórmula na dissertação) where Ω Rn is a bounded domain or Ω = Rn, p > 1. We will study existence of solution for problem (2) in two cases: 1. Ω ≠ Rn, q(x) = q > p - 1 and a(x) is a nonnegative function, wich can be singular on ᶿΩ. 2. Ω = Rn, n ≥ 3, p = 2, a(x) = 1 and q is Holder continuous function, q(x) ≥ 1 for ||x|| ≤ R and 0 < q(x) ≤ 1 for ||x|| ≥ R, where R ≥ 0 is a constant. Moreover, we study uniqueness and behavior on ᶿΩ for solution of the first case.
Description: Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2015.
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
DOI: http://dx.doi.org/10.26512/2015.02.D.17907
Appears in Collections:MAT - Mestrado em Matemática (Dissertações)

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/17907/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.