Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/17114
Files in This Item:
File Description SizeFormat 
2014_JoséRobertoSteinerDeMoura.pdf1,11 MBAdobe PDFView/Open
Title: Contribuições à mecânica estatística de sistemas com interação de longo alcance
Authors: Moura, José Roberto Steiner de
Orientador(es):: Rocha Filho, Tarcísio Marciano da
Coorientador(es):: Santana, Ademir Eugênio de
Assunto:: Sistemas com interações de longo alcance
Teoria cinética
Sistemas Autogravitante
Equações
Issue Date: 27-Nov-2014
Citation: MOURA, José Roberto Steiner de. Contribuições à mecânica estatística de sistemas com interação de longo alcance. 2014. 93 f., il. Tese (Doutorado em Física)—Universidade de Brasília, Brasília, 2014.
Abstract: A evolução temporal da função distribuição para a uma partícula em um sistema Hamiltoniano com interação de longo alcance, ou seja, sistemas em que o potencial de interação variam com r-∞ com α < d, onde d é a dimensão do espaço, é regida pela Vlasov no limite em que N → ∞. Exemplos desses sistemas são sistemas autogravitantes, plasmas carregados e uma série de modelos derivados destes. O objetivo dessa tese é apresentar uma derivação dessa equação utilizando a técnica desenvolvida na escola de Bruxelas nos anos 1950 à 1970, fazendo uma discussão da correlação entre as partículas do sistema, o que nos permite uma melhor compreensão de sue papel no estudo dos estados quase-estacionários. A vantagem dessa metodologia é que ela permite estimar explicitamente a ordem de magnitude das correlações entre partículas. Uma vez estabelecida a equação de Vlasov, realizamos uma série de simulações de dinâmica molecular assim como a solução numérica da equação de Vlasov, e mostramos como elas convergem. Para a realização de tais simulações utilizamos três sistemas, modelo Hamiltonean Mean Field, o modelo do anel autogravitante e o modelo de folhas autogravitantes. _______________________________________________________________________________________ ABSTRACT
The temporal evolution of the one-particle distribution function of a Hamiltonian system with long-range interaction , i.e, systems with an interaction potential behaving at long distances as r- ∞ with α < d , where d is the spatial dimension, is governed by Vlasov equation in the limit as N → ∞ . Examples of such systems are self-gravitating systems, non-neutral plasmas and models derived from these. The objective of this thesis is to present a derivation of this equation using a technique developed by the Brussels school in the 1950’s to the 1970’s. We present a discussion of the role of inter-particle correlations and its role on the understanding of quasistationary states. The advantage of this methodology is that it allows an explicit estimate the order of magnitude of the correlations between particles. We also perform a series of molecular dynamics simulations and numerical solution of the Vlasov equation, showing how both converge for three simplified models: Hamiltonean Mean Field model, self-gravitating and the self-gravitating sheet model.
Description: Tese (doutorado)—Universidade de Brasília, Instituto de Física, 2014.
Licença:: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Appears in Collections:IF- Doutorado em Física (Teses)

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/17114/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.