Lychnophoric acid from *Lychnophora pinaster*: a complete and unequivocal assignment by NMR spectroscopy.

D. Silveira 1*, J. D. de Souza Filho 2, A. B. de Oliveira 3, D. S. Raslan 2

1Faculdade de Ciências da Saúde, UnB Asa Norte, Brasília, DF, Brazil
2Departamento de Química, ICEx, UFMG, Av. Antônio Carlos 6627, CEP 31270-010. Belo Horizonte, MG, Brazil.
3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Av. Olegário Maciel, 2360, CEP 30180-112. Belo Horizonte, MG, Brazil.

*To whom correspondence should be addressed; e-mail: damaris@unb.br

Abstract: The investigation of the hexane extract from aerial parts of *Lychnophora pinaster* provided, besides others substances, the E-isomer of lychnophoric acid, a sesquiterpene derivative previously isolated from *L. affinis*.

Keywords: *Lychnophora pinaster*; Asteraceae; lychnophoric acid.

Introduction

Plant species of the genus *Lychnophora* (*Asteraceae*) are known as “candeia”, “arnica” and “arnica da serra” and are used in folk medicine as anti-flogistic, anti-rheumatic, and analgesic [1]. Typical constituents of *Lychnophora* species are sesquiterpene lactones [2] of which 15-deoxygoyazensolide was shown to be active against *Trypanosoma cruzi*, the etiological agent of Chagas’ disease (American trypanosomiasis) [3]. Prompted by this observation we have carried out a screening of *Asteraceae* plant species in the search of new trypanocidal agents [4] and we have investigated three active *Lychnophora* species, one of them being *L. pinaster* Mart. Bioguided fractionation of the hexane and dichloromethane extracts of the aerial parts of this plant [5] led to the isolation of lychnophoric acid(1), previously isolated from *L. affinis*, that was assayed in vitro against bloodstream forms of *T. cruzi* and presented 50% growth inhibition in the dose of 12,0mg/mL [6].

Experimental

General

Melting point was determined on a Mettler FP5 apparatus; [a]D was measured at 25 °C on a Bellincham & Stanley Ltd P-20 polarimeter. IR spectrum was obtained on a Shimadzu/IR-408 spectrometer. EIMS was obtained on a Kratos MS 80 RFA spectrometer. 1H and 13C NMR spectra and contour plots were acquired on a Bruker *AVANCE* DRX400 instrument operating at 400 MHz for 1H and 100 MHz for 13C. HPLC analysis was performed with a Shimadzu CR-8, UV detector. CG analysis was performed with a HP5890 gas chromatograph, FID detector, and a VDC3390A integrator.

Plant material

The aerial parts of *Lychnophora pinaster* Mart. were collected at Serra da Moeda, State of Minas Gerais, Brazil, in March 1992. A voucher specimen has been deposited in the Herbarium of
Extraction procedures

The dried aerial parts (2.0 Kg) were powdered and successively extracted with n-hexane and dichloromethane. The solvents were removed under vacuum, below 40 °C, to give 114.0 g of n-hexane and 12.0 g of dichloromethane extracts.

The crude extracts were chromatographed first by CC (Silica gel 60, hexane-CH$_2$Cl$_2$-AcOEt-MeOH gradient). The n-hexane extract (114.0 g) furnished a homologue series of saturated hydrocarbons (C$_{22}$ - C$_{32}$) [7], lupeol, a- and b-amyrin, friedelin and fat acid esters detected by GC, in comparison with authentic samples. The CH$_2$Cl$_2$ fr. was chromatographed over florisil column. Fraction 1 (petrol), after washing with Et$_2$O-MeOH (1:1), filtration and solvent evaporation, afforded a yellow gum, which was partitioned between hexane and MeOH-H$_2$O (9:1). The MeOH-H$_2$O fr., after 4 days at 4 oC, afforded I.

CC of the CH$_2$Cl$_2$ extract (12.0 g) afforded a homologue series of saturated hydrocarbons (C$_{25}$ - C$_{32}$) [7] detected by GC, as well quercetin and 15-deoxygoyazensolide, detected by HPLC, using authentic samples as standard.

Results and discussion

The hexane extract from the dried aerial parts of L. pinaster was column chromatographed over silica gel affording mixtures of homologue hydrocarbons [7], triterpenes (lupeol, a- and b-amyrin, friedelin), fat acids (identified by GLC of their methyl esters), and a caryophyllene derivative, lychnophoric acid (I). The dichloromethane extract afforded a mixture of homologue hydrocarbons. Quercetin and 15-deoxygoyazensolide were detected by HPLC in comparison with authentic samples.

The IR spectrum of compound I showed absorption bands due to conjugated carboxylic function group (3600-2400, 1680 cm$^{-1}$), carbon-carbon double bonds (1640, 1470, 890 cm$^{-1}$), and gem-dimethyl groups (1370 cm$^{-1}$). Its 1H NMR spectrum (Table 1) exhibited characteristic signals indicating the presence of a terminal olefinic methylene group (d 4.87 and δ 4.81) and another olefinic hydrogen in an a,b-unsaturated carboxylic group (δ 7.00). Two 3^H singlets at d 0.96 and d 1.00 confirmed a gem-dimethyl group. EIMS indicated a [M$^+$] of m/z 254, which in conjunction with 1H and 13C NMR data allowed the assignment of the molecular formula C$_{15}$H$_{22}$O$_2$ to (I). These data are very similar to those reported for lychnophoric acid (3) [8,9].

E-Lychnophoric acid (I): Bicyclo [7.2.0] undec-4-en-4-carboxylic acid-11,11-dimethyl-8-methylene-[1R-[1R*,4E ,9S*]]. Amorphous solid, mp 118-9 °C (Et$_2$O), $[\alpha]$ D20 = -24° (CHCl$_3$; c = 0.054).

IR n max cm$^{-1}$ 3050-2400, 2900, 1680 (C=CO$_2$H); 1640 (C=CH$_2$), 890. EIMS m/z (rel. int.): 254 [M$^+$] (15) (C$_{15}$H$_{22}$O$_2$), 219 [M-Me] (25), 69 (C$_5$H$_9$) 100. 1H NMR and 13C NMR (see Table 1).
Table 1: NMR* data (δ) from lycnoophoric acid (1), Isocaryophyllen-13-al (2) and lycnoophoric acid (3).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.81 (ddd)</td>
<td>1.70</td>
<td>1.65 (m)</td>
<td>51.90</td>
<td>52.38</td>
<td>52.10</td>
</tr>
<tr>
<td>2</td>
<td>a:1.48 (dddt); b:1.67 (ddt)</td>
<td>1.44; 1.65</td>
<td>1.45 (m)</td>
<td>27.30</td>
<td>27.10</td>
<td>27.40</td>
</tr>
<tr>
<td>3</td>
<td>2.33 (m); 2.43 (m)</td>
<td>2.39; 2.28</td>
<td>2.25 (m)</td>
<td>23.70</td>
<td>21.89</td>
<td>23.70</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>132.00</td>
<td>144.20</td>
<td>132.20</td>
</tr>
<tr>
<td>5</td>
<td>7.00 (t)</td>
<td>6.54</td>
<td>6.22 (m)</td>
<td>144.70</td>
<td>154.46</td>
<td>144.70</td>
</tr>
<tr>
<td>6</td>
<td>2.30 (m); 2.41 (m)</td>
<td>2.65; 2.36</td>
<td>2.25 (m)</td>
<td>33.90</td>
<td>28.81</td>
<td>34.00</td>
</tr>
<tr>
<td>7</td>
<td>2.41 (m); 2.50 (m)</td>
<td>2.50; 2.36</td>
<td>2.33 (m)</td>
<td>28.50</td>
<td>34.19</td>
<td>28.50</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>154.50</td>
<td>153.94</td>
<td>154.40</td>
</tr>
<tr>
<td>9</td>
<td>2.50(q)</td>
<td>2.43</td>
<td>2.65 (m)</td>
<td>40.10</td>
<td>40.97</td>
<td>40.20</td>
</tr>
<tr>
<td>10</td>
<td>a:1.73(ddd); b:1.57(dd)</td>
<td>a: 1.57; b:1.71</td>
<td>1.65 (m)</td>
<td>40.20</td>
<td>40.04</td>
<td>40.30</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33.20</td>
<td>33.48</td>
<td>33.30</td>
</tr>
<tr>
<td>12</td>
<td>a: 4.87(dd); b: 4.81(m)</td>
<td>a:4.86; b:4.82</td>
<td>5.03 (d); 4.88 (d)</td>
<td>111.40</td>
<td>111.64</td>
<td>111.50</td>
</tr>
<tr>
<td>Me</td>
<td>a:1.00(s); b:0.96(s)</td>
<td>a:0.94; b:0.98</td>
<td>1.02 (s); 1.00 (s)</td>
<td>a:29.90; b:22.80</td>
<td>a:30.04; b:22.90</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>173.00</td>
<td>195.48</td>
<td>173.80</td>
</tr>
</tbody>
</table>

1: 400MHz (1H); 100MHz(13C); 2: 500MHz (1H); 125MHz(13C); 3: 200MHz (1H); 50MHz (13C);* TMS as internal standard; ¥ apparent triplet; ‡ apparent quartet;

Coupling Constants (Hz): In parentheses are the analogous values for 2 and 3, respectively. \(J_{1,2a} = 12.0; J_{1,2b} = 3.8; J_{1,9} = 9.2; J_{1,10a} = 0.7; J_{2a,2b} = 13.9; J_{2a,3a} = 7.6; J_{2a,3b} = 12.0; J_{2b,3a} = 9.1; J_{2b,3b} = 3.8; J_{5,6a} = 7.8; J_{5,6b} = 9.3; J_{9,10a} = 9.4; J_{9,10b} = 9.4; J_{10a,10b} = 10.9; J_{12a,7a} and J_{12a,7b} = 1.6 or 0.8. \)
However, divergences between I and 3 were observed for the 1H NMR data: the signal of H-5 is shifted to a higher value of d 7.00 in the former, in comparison to that one originally described for lychnophoric acid (δ 6.22) [8]. This fact can be explained by the change in the configuration of the double bond from Z-configuration in 3 to E-configuration in I, where the closer carbonyl group can contribute with its stereoelectronic deshielding effect. Besides the difference in chemical shifts, a difference in the multiplicity of the H-5 signal in the two compounds is also observed. In the Z-isomer (3), this signal is described as a multiplet due to coupling with the two adjacent H-6 and to a long-range coupling with two allylic H-3 [8]. The E-isomer (I) 1H NMR spectrum shows an apparent triplet (δ 7.00, J=7.8 Hz and J=9.3 Hz) for H-5 due to imperfect superposition of the two inner signals of the theoretical double doublet, and the long-range coupling with the two H-3 is not observed.

Despite the use of the Gaussian multiplication with Traficante function altogether in the normal fid, we could not achieve enough improvement of resolution to picture the H-5 theoretical double doublet. Likewise for the compound 2, the signal of H-9 appears as a quartet. All chemical shifts were supported by one and two-dimensional NMR techniques like NOEDIFF, COSY and NOESY. In particular the HMQC experiment was very important to the assignments of the chemical shifts inside the complex envelopes. For example, a strong nOe were observed for the protons H-12a (δ 4.87) with H-10b (δ 1.57), H-10a (δ 1.73), H-9 (δ 2.50) and Me-b group (δ 1.00) and between the protons H-9 (δ 2.50) and Me-a (δ 0.96) as well for the H-12b (δ 4.81) with H-7a,b spin system. The nOe were also observed for H-5 (δ 7.00) and H-6a,b system. The nOe results are summarized in the figure 1.

![Figure 1. nOe assignments for lychnophoic acid (I) by NOESY experiment (ns 16, ds 4, d8 0.5 sec, TD 2K)](image)

Conclusions

The 13C NMR data for compound I are very close to those reported for compound 3 [9] (TABLE 1). The authors [9] did not report the 1H NMR data.

These data led us to consider (I), is in fact the E-isomer of lychnophoric acid, originally described as the Z-isomer (3) in reference 8. Based on the reported 13C NMR data (Table 1) the compound reported also represents the E-isomer (I) instead of the Z-isomer (3), as previously proposed [9].

The spectral data and nOe results of I are in good accord with data reported for aldehyde 2 [10].

Acknowledgements

The authors are grateful to Prof. E. Chiari, Departamento de Parasitologia, Instituto de Ciênci-
D. Silveira, J. D. de Souza Filho, A. B. de Oliveira, D. S. Raslan. Atribuição completa e inequívoca dos sinais de deslocamento químico dos átomos de carbono e hidrogênio do ácido licnofórico extraído de *Lychnophora pinaster*.

Resumo: O estudo químico das partes aéreas do extrato hexânico de *Lychnophora pinaster* forneceu, além de outras substâncias, o isômero E do ácido licnofórico, um sesquiterpeno anteriormente isolado de *L. affinis*.

Palavras-chave: *Lychnophora pinaster*; Asteraceae; ácido licnofórico.

References