REFERÊNCIA

A method to find groups of orthogous genes across multiple genomes

Guilherme P. Telles, Institute of Computing, University of Campinas, Nalvo F. Almeida, School of Computing, Federal University of Mato Grosso do Sul, Paulo, A. Alvarez, Department of Computer Science, University of Brasília, Marcelo M. Brigido, Institute of Biology, University of Brasília, and Maria Emilia M. T. Walter, Department of Computer Science, University of Brasília

A method to find groups of orthogous genes across multiple genomes

Abstract—In this work we propose a simple method to obtain groups of homologous genes across multiple (k) organisms, called kGC. Our method takes as input all-against-all Blastp comparisons and produces groups of homologous sequences. First, homologies among groups of paralogs of all the k compared genomes are found, followed by homologies of groups among $k-1$ genomes and so on, until groups belonging exclusively to only one genome, that is, groups of one genome not presenting strong similarities with any group of any other genome, are identified. We have used our method to determine homologous groups across six Actinobacterial complete genomes. To validate kGC, we first investigate the Pfam classification of the homologous groups, and after compare our results with those produced by OrthoMCL. Although kGC is much simpler than OrthoMCL it presented similar results with respect to Pfam classification.

Index Terms—orthologous genes, multiple genomes, comparative genomics, bioinformatics.

I. INTRODUCTION

The large amount of genomic information being continuously generated by hundreds of sequencing genome projects around the world have been creating new challenges for large-scale bioinformatics analysis.

Comparative genomics allows researchers to infer functions of biological sequences based on similarity to sequences of other genomes whose function have already been discovered. The rationale is that strong similarities among genes of different genomes indicate that they could perform the same activity in their cellular mechanisms. These common features can be used for different applications, such as phylogeny reconstruction or finding genes involved in inherited diseases.

To infer related functions, researchers develop methods to find homologous genes. Some methods identify orthology relationships by building or analyzing phylogenetic trees. These methods require a great volume of computational resources [1–5]. Other ones are based on all-against-all sequence comparisons among two genomes, that are easier to implement and present good results [6–11].

Some methods to identify orthology relationships across multiple genomes are known. OrthoMCL [12] is a broadly used method for constructing groups of orthologous genes across multiple eukaryotic genomes using a Markov cluster algorithm to group orthologs and paralogs. COG [13] is a manually curated database in which groups of orthologs are formed by merging “triangles” from bidirectional best hits, followed by heuristics designed to include more sequences in a group. TribeMCL [14] also uses a Markov clustering algorithm to form groups from a graph defined by pairwise sequence similarity scores. MultiParanoid [15] employs a single linkage clustering on InParanoid [5] results from all comparisons between two species, in order to group proteins across multiple species. It was designed to be used for closely related species, so that out-paralogs are not included in a group of true orthologs. Some methods combine phylogeny and comparative genomics [16]. Recently, new methods based on different techniques were introduced, e.g., based on graphs [17], based on the subtree hidden Markov model [18], or integrating distinct ortholog detection methods [19]. Besides, there are databases including orthologs, like OMA (Orthologous MAtrix) [20] and references to many ortholog databases [21].

Chen and co-authors [22] used the statistical method Latent Class Analysis (LCA) to infer sensitivity and specificity of various methods to identify orthology relationships. They observed a trade-off between sensitivity and specificity in the detection of orthology, with Blast-based methods characterized by high sensitivity, and tree-based methods by high specificity. Among the seven analyzed methods, InParanoid and OrthoMCL have shown the best overall balance for both sensitivity and specificity, more than 80%.

The goal of this work is to present kGC, a method to construct groups of homologous genes among multiple genomes simultaneously. kGC generalizes a previous strategy [23, 24].
Our method takes as input the Blastp all-against-all comparisons for the sequences in \(k \) genomes and produces groups of similar sequences by searching for maximal cliques on a \(k \)-partite graph. Each group may contain sequences from the same genome (potentially paralogs) and sequences from different genomes (potentially orthologs).

A comparison of our method to OrthoMCL on bacterial genomes, based on the hits against Pfam families, has shown that the \(kGC \) approach produces results whose quality is comparable to those found by the OrthoMCL method. The method is simple, with a small number of parameters and has reasonable running time.

In Section II, we briefly describe the method that was used to produce the groups of similar sequences inside a genome. After, we devise the \(kGC \) method to identify groups of similar sequences among multiple genomes. In Section III, we describe some details of our implementation and we show a case study of our method on six Actinobacteria. We investigated the Pfam [25] classification of the groups, and also compare our results with OrthoMCL. Finally, in Section IV we conclude and suggest future work.

II. THE METHOD

A. Searching for groups in a genome

We search for groups in a genome using part of EGG method [26]. EGG uses two simple graphs. In graph \(G = (V, E) \), each vertex \(v \) represents a gene \(g_v \), and an edge \((u, v) \in E \) if there is a Blast alignment of \(g_u \) and \(g_v \) whose e-value is less than or equal to some threshold \(I_{ev} \) and covers at least \(I_{cov} \% \) of \(g_u \) and \(g_v \). A graph \(G' = (V, E') \) is defined similarly, having different thresholds \(I'_{ev} \) and \(I'_{cov} \).

The algorithm proceeds in three steps. In the first step, it finds the maximal cliques in \(G \). A maximal clique in \(G \) represents a set of similar sequences. In the second step, the algorithm tries to aggregate other sequences to the cliques in order to avoid loosing strongly connected subgraphs that are not maximal cliques, but still represent groups of highly similar sequences.

Formally, a sequence \(g_v \) will be an aggregate to a clique \(C \) if it does not belong to \(C \) and there exists a vertex \(u \in C \) such that \((v, u) \in E' \). Although the condition to belong to a group is relaxed, the thresholds \(I'_{ev} \) and \(I'_{cov} \) may be even more stringent, allowing to keep the consistency of groups.

In the third step, the method removes the redundancy generated in the second step (one vertex can be in several groups). This is done by choosing, among all groups containing an aggregated vertex \(v \), the one with the highest average Blast score. Then \(v \) is removed from all groups except that one.

The resulting groups are used by \(kGC \), which is detailed in the next section.

B. \(kGC \)

In a previous work [23], a method that relies on maximal cliques was proposed to compare three genomes. \(kGC \) generalizes that method allowing the comparison of any number of genomes, thus making the comparison strategy more useful and comparable to others described in the literature.

Given a collection of \(k \) genomes, each genome itself comprising a set of gene sequences, the input for \(kGC \) is the result of all-against-all Blastp. The output is a collection of groups of similar sequences. We call such groups by families.

In a brief, the algorithm works as follows. The first step of \(kGC \) finds groups of similar sequences in each genome using the method described in Section II-A. The second step builds two \(k \)-partite graphs \(S \) (of sequences) and \(G \) (of groups) and iterates from \(k \) to 2 (see Figure 1 for an intuition where \(k = 3 \)). In the \(i \)-th iteration, the algorithm searches for \(i \)-cliques in \(S \) and then searches for \(i \)-cliques in \(G \) in a proper order. \(i \)-cliques in both graphs are reported by the algorithm as families.

![Fig. 1. Representation of \(kGC \) graphs with \(k = 3 \).](image)

1) (search in graph \(S \)) All cliques of size \(i \) in \(S \) are found and added to a list \(L_i \) initially empty, sorted by non-increasing order of average coverage. \(L_i \) is processed sequentially as follows. For position \(j \) in \(L_i \), let \(C = \{s_1, s_2, \ldots, s_i\} \) be the clique vertices. Each vertex in \(C \) belongs to a group \(g_{s_j} \) (possibly unitary) of similar sequence in a genome. A family \(f \) is built as the union of \(g_{s_1}, g_{s_2}, \ldots, g_{s_i} \) and reported. Any element of \(f \) is not further considered by the algorithm.

2) (search in graph \(G \)) All cliques of size \(i \) in \(G \) are found and added to a list \(L_i \) initially empty, sorted by non-increasing order of average coverage. \(L_i \) is processed sequentially as follows. For position \(j \) in
L_i, let C = \{g_1, g_2, \ldots, g_i\} be the clique vertices. A family f is built as the union of g_1, g_2, \ldots, g_i and reported. Any element of f is not further considered by the algorithm.

III. Results and Discussion

We have implemented the algorithms in Java and performed experiments to assess the behavior of kGC.

Graphs were implemented using adjacency lists in arrays for both vertex and edge sets. Vertices and edges are removed from the graphs as families are reported. Cliques are found using the Bron-Kerbosch branch-and-bound algorithm [27]. Some small changes were made in order to speed-up the search, such as demanding that a vertex from the smallest genome is always in a clique and bounding the clique size by the number of partitions.

The results are presented in html, through a page that allows selecting the desired genomes presenting homologous families (Figures 2 and 3).

Fig. 2. Reports of the experiments on genomes of Actinobacteria. Genomes presenting homologous families.

Fig. 3. A homologous family among three genomes.

In order to test our method, we have chosen the following six complete genomes of Actinobacteria, as available in January 2011 in GenBank.

- Streptomyces avermitilis MA 4680 (7676 protein genes)
- Streptomyces bingchengensis BCW 1 (10022 protein genes)
- Streptomyces coelicolor A3 2 (8153 protein genes)
- Streptomyces griseus NBRC 13350 (7136 protein genes)
- Streptomyces scabiei 87 22 (8746 protein genes)
- Streptosporangium roseum DSM 43021 (8975 protein genes)

To validate kGC, we first computed the Pfam [25] model for each protein. Pfam is a database of multiple alignments of proteic domains groups. A proteic domain is a region of a protein having a specific biological function. Pfam database was chosen because it classifies a gene according to its biological functions. Among the total of 50,708 protein genes of our dataset, 37,093 (73.15%) had a Pfam model assigned.

Given a family f identified by kGC, let p_f be the most frequent Pfam model present in f (note that not necessarily all proteins in f have a Pfam model). Let n_f be the number of proteins in f with Pfam model p_f and m_f be the number of proteins in f with any Pfam model. To each family found, a score is given by

\[\text{score}(f) = \frac{n_f}{m_f}. \]

Thus, if all proteins (with Pfam) in a family have the same Pfam model (this is the best case), then this family score is equal to 1. The final score for the method is given by the summation of all family scores, considering only families with at least one protein with Pfam model, divided by this number of families.

Table I shows the results of kGC for varying e-values and fixed coverages. The reference values are in column A_e since \(10^{-5}\) and \(10^{-20}\) are suitable ones for comparing closely related genomes. I_e and I_e' have been chosen to avoid the bias that can be caused by homologs inside a genome.

Table II shows the results of kGC for varying coverages and fixed e-values. The same criterion were used to evaluate OrthoMCL, that identified 9,793 families (7,694 with at least one protein with Pfam model, 78.46% of the total). The final score of OrthoMCL was 0.939. The running time for OrthoMCL was slightly less than 2 hours, on the same machine that executed kGC.

We can see from the tables that kGC produced fewer groups than OrthoMCL. As was expected, as the number of edges allowed in the graphs decreases, the cohesion of remaining groups with respect to Pfam families increases and so the score.

IV. Conclusion

In this work, we presented the kGC method to find groups of homologous genes among multiple (k) genomes. Although our method is very simple, it has interesting theoretical features, as strongly connected groups of sequences are likely to be gathered into a family.

A drawback of kGC is the search for maximal cliques. Although the graph is bipartite, the algorithm may not
scale very well. Our experiments on 6 genomes totaling 50,000 sequences run in reasonable time. Real improvements may come from switching from branch-and-bound to heuristics, at the price of sacrificing precision.

We developed experiments with six complete genomes of Actinobacteria, and validate the method using Pfam and comparing it to OrthoMCL. The estimate provided by Pfam is preliminary, in the sense that strongly related genes with no Pfam model may be formed without contributing to the score. Further analysis may reveal other features of the approach.

Acknowledgment
This work is partially supported by CNPq (grants 305503/2010-3 and 306731/2009-6), Finep (grant 01.08.0166.00) and Fundect (grant TO0096/2012).

References
TABLE I

Results of kGC for 6 Actinobacterial genomes for varying e-values.

<table>
<thead>
<tr>
<th>I_{ev}</th>
<th>I_{cov}</th>
<th>I_{ev}</th>
<th>I_{cov}</th>
<th>A_{ev}</th>
<th>A_{cov}</th>
<th>families</th>
<th>families</th>
<th>% of families</th>
<th>final score</th>
<th>time min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ev-5</td>
<td>10^{-15}</td>
<td>0.60</td>
<td>10^{-15}</td>
<td>0.80</td>
<td>10^{-15}</td>
<td>0.60</td>
<td>6,908</td>
<td>5,011</td>
<td>72.54</td>
<td>0.910</td>
</tr>
<tr>
<td>ev-6</td>
<td>10^{-16}</td>
<td>0.60</td>
<td>10^{-16}</td>
<td>0.80</td>
<td>10^{-16}</td>
<td>0.60</td>
<td>6,941</td>
<td>5,044</td>
<td>72.67</td>
<td>0.912</td>
</tr>
<tr>
<td>ev-7</td>
<td>10^{-17}</td>
<td>0.60</td>
<td>10^{-17}</td>
<td>0.80</td>
<td>10^{-17}</td>
<td>0.60</td>
<td>6,945</td>
<td>5,063</td>
<td>72.90</td>
<td>0.913</td>
</tr>
<tr>
<td>ev-8</td>
<td>10^{-18}</td>
<td>0.60</td>
<td>10^{-18}</td>
<td>0.80</td>
<td>10^{-18}</td>
<td>0.60</td>
<td>7,025</td>
<td>5,142</td>
<td>73.20</td>
<td>0.914</td>
</tr>
<tr>
<td>ev-9</td>
<td>10^{-19}</td>
<td>0.60</td>
<td>10^{-19}</td>
<td>0.80</td>
<td>10^{-19}</td>
<td>0.60</td>
<td>7,058</td>
<td>5,190</td>
<td>73.53</td>
<td>0.916</td>
</tr>
<tr>
<td>ev-10</td>
<td>10^{-20}</td>
<td>0.60</td>
<td>10^{-20}</td>
<td>0.80</td>
<td>10^{-20}</td>
<td>0.60</td>
<td>7,073</td>
<td>5,215</td>
<td>73.73</td>
<td>0.918</td>
</tr>
<tr>
<td>ev-11</td>
<td>10^{-21}</td>
<td>0.60</td>
<td>10^{-21}</td>
<td>0.80</td>
<td>10^{-21}</td>
<td>0.60</td>
<td>7,102</td>
<td>5,266</td>
<td>74.15</td>
<td>0.920</td>
</tr>
<tr>
<td>ev-12</td>
<td>10^{-22}</td>
<td>0.60</td>
<td>10^{-22}</td>
<td>0.80</td>
<td>10^{-22}</td>
<td>0.60</td>
<td>7,122</td>
<td>5,307</td>
<td>74.52</td>
<td>0.921</td>
</tr>
<tr>
<td>ev-13</td>
<td>10^{-23}</td>
<td>0.60</td>
<td>10^{-23}</td>
<td>0.80</td>
<td>10^{-23}</td>
<td>0.60</td>
<td>7,141</td>
<td>5,321</td>
<td>74.54</td>
<td>0.924</td>
</tr>
<tr>
<td>ev-14</td>
<td>10^{-24}</td>
<td>0.60</td>
<td>10^{-24}</td>
<td>0.80</td>
<td>10^{-24}</td>
<td>0.60</td>
<td>7,160</td>
<td>5,369</td>
<td>74.99</td>
<td>0.925</td>
</tr>
<tr>
<td>ev-15</td>
<td>10^{-25}</td>
<td>0.60</td>
<td>10^{-25}</td>
<td>0.80</td>
<td>10^{-25}</td>
<td>0.60</td>
<td>7,216</td>
<td>5,438</td>
<td>75.42</td>
<td>0.927</td>
</tr>
<tr>
<td>ev-16</td>
<td>10^{-26}</td>
<td>0.60</td>
<td>10^{-26}</td>
<td>0.80</td>
<td>10^{-26}</td>
<td>0.60</td>
<td>7,218</td>
<td>5,468</td>
<td>75.76</td>
<td>0.927</td>
</tr>
<tr>
<td>ev-17</td>
<td>10^{-27}</td>
<td>0.60</td>
<td>10^{-27}</td>
<td>0.80</td>
<td>10^{-27}</td>
<td>0.60</td>
<td>7,242</td>
<td>5,504</td>
<td>76.00</td>
<td>0.928</td>
</tr>
<tr>
<td>ev-18</td>
<td>10^{-28}</td>
<td>0.60</td>
<td>10^{-28}</td>
<td>0.80</td>
<td>10^{-28}</td>
<td>0.60</td>
<td>7,271</td>
<td>5,551</td>
<td>76.44</td>
<td>0.930</td>
</tr>
<tr>
<td>ev-19</td>
<td>10^{-29}</td>
<td>0.60</td>
<td>10^{-29}</td>
<td>0.80</td>
<td>10^{-29}</td>
<td>0.60</td>
<td>7,260</td>
<td>5,575</td>
<td>76.79</td>
<td>0.931</td>
</tr>
<tr>
<td>ev-20</td>
<td>10^{-30}</td>
<td>0.60</td>
<td>10^{-30}</td>
<td>0.80</td>
<td>10^{-30}</td>
<td>0.60</td>
<td>7,275</td>
<td>5,605</td>
<td>77.04</td>
<td>0.933</td>
</tr>
</tbody>
</table>

TABLE II

Results of kGC for 6 Actinobacterial genomes for varying coverages.

<table>
<thead>
<tr>
<th>I_{ev}</th>
<th>I_{cov}</th>
<th>I_{ev}</th>
<th>I_{cov}</th>
<th>A_{ev}</th>
<th>A_{cov}</th>
<th>families</th>
<th>families</th>
<th>% of families</th>
<th>final score</th>
<th>time min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cov-50</td>
<td>10^{-9}</td>
<td>0.50</td>
<td>10^{-9}</td>
<td>0.70</td>
<td>10^{-9}</td>
<td>0.50</td>
<td>6,734</td>
<td>4,884</td>
<td>72.08</td>
<td>0.900</td>
</tr>
<tr>
<td>cov-55</td>
<td>10^{-9}</td>
<td>0.55</td>
<td>10^{-9}</td>
<td>0.75</td>
<td>10^{-9}</td>
<td>0.55</td>
<td>6,815</td>
<td>4,938</td>
<td>72.46</td>
<td>0.907</td>
</tr>
<tr>
<td>cov-60</td>
<td>10^{-9}</td>
<td>0.60</td>
<td>10^{-9}</td>
<td>0.80</td>
<td>10^{-9}</td>
<td>0.60</td>
<td>6,945</td>
<td>5,063</td>
<td>72.90</td>
<td>0.913</td>
</tr>
<tr>
<td>cov-65</td>
<td>10^{-9}</td>
<td>0.65</td>
<td>10^{-9}</td>
<td>0.85</td>
<td>10^{-9}</td>
<td>0.65</td>
<td>7,124</td>
<td>5,241</td>
<td>73.57</td>
<td>0.922</td>
</tr>
<tr>
<td>cov-70</td>
<td>10^{-9}</td>
<td>0.70</td>
<td>10^{-9}</td>
<td>0.90</td>
<td>10^{-9}</td>
<td>0.70</td>
<td>7,324</td>
<td>5,432</td>
<td>74.44</td>
<td>0.927</td>
</tr>
</tbody>
</table>
Guilherme P. Telles Guilherme P. Telles received his Doctoral degree in Computer Science in 2002 and currently is an assistant professor at the Institute of Computing of the University of Campinas.

Nalvo F. Almeida (corresponding author) Nalvo F. Almeida received his Ph.D. in Computer Science at Institute of Computing, State University of Campinas, in 2002 and currently is Associate Professor at School of Computing, Federal University of Mato Grosso do Sul.

Paulo A. Alvarez Paulo A. Alvarez received his Ms.C. in Informatics at the Department of Computer Science, University of Brasilia, in 2013 and currently is analyst at a private company.

Marcelo Macedo Brigido Marcelo M Brigido received his Ph.D. in Biochemistry at Institute of Chemistry, University of São Paulo, in 1992 and currently is Full Professor at Biological Science Institute, University of Brasilia.

Maria Emilia M. T. Walter Maria Emilia M. T. Walter received his Ph.D. in Computer Science at the Institute of Computing, State University of Campinas, in 1999, and currently is Adjoint Professor at the Department of Computer Science, University of Brasilia.