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ABSTRACT

This manuscript presents the project of an analog-to-digital converter with a wavelet-based sam-
pling scheme. Instead of sampling a signal with uniformly spaced samples and in a frequency limited
by Nyquist’s criteria, the proposed ADC represents an input signal based on its characteristics—
specifically, the critical points localization and the estimation of the signal’s morphology around
these points. The first part of this work contains the system-level development, where the sam-
pling algorithm is proposed as well as a polynomial reconstruction algorithm. Tests are run for
different resolutions and wavelet bases and scales. The results show that the system successfully
localizes the critical points and estimates the morphology of the signal, with high correlation and
low RMS error values observed between the reconstructed signal and the input. The second part
of this work contains the circuit-level development, where the wavelet transform is implemented
with analog wavelet filters. The transfer functions of these filters are obtained by applying two

different approximation methods. The results across scales show the critical points’ localization.

RESUMO

Nesta dissertagdao, ¢ proposto um conversor analdgico-digital cujo processo de amostragem €
baseado em propriedades da transformada wavelet. Tais propriedades permitem identificar car-
acteristicas de interesse do sinal—especificamente, a localizacdo de seus pontos criticos e a de-
scricdo da morfologia nos trechos entre esses pontos—, e assim representi-lo, em vez de aplicar
a amostragem uniforme e limitada pelo critério de Nyquist. A primeira parte deste trabalho ap-
resenta a implementacdo do conversor em nivel de sistema para diferentes resolucoes e bases e
escalas da transformada wavelet. Para validar o algoritmo de amostragem, é proposto também
um algoritmo de reconstrugdo polinomial do sinal. Os resultados mostram que a identificacao de
pontos criticos e a estimativa da morfologia do sinal sdo realizadas com sucesso, tendo sido pos-
sivel recuperar o sinal de entrada com alta correlacdo e baixo erro RMS entre os sinais original e
reconstruido. A segunda parte deste texto apresenta o desenvolvimento em nivel de circuito. A
transformada wavelet é implementada por filtros wavelet analogicos, que sao testados utilizando-se
duas aproximagoes diferentes para sua resposta em frequéncia. Os resultados de simulacées para

variadas escalas permitem identificar os pontos criticos do sinal.
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Chapter 1

Introduction

In this chapter we present the context and motivation for the design of a wavelet-based
analog-to-digital converter, describing the main characteristics and objectives of the project.
In addition, this manuscripts’ outline is described.

1.1 Context: analog-to-digital conversion

Analog-to-digital conversion is fundamental to modern signal processing, given the need
to represent signals from our analog world in the digital domain. In order to complete this
conversion, the analog signal needs to be sampled. One of the most important theorems that
rule the way in which this sampling is done is the Nyquist-Shannon Sampling Theorem |9,
10]: to assure that a signal can be recovered after sampling, it must be sampled at a rate
equal to at least twice its bandwidth. Many of the converters today, then, sample at or
slightly above Nyquist’s rate (the so-called Nyquist converters), or at a rate way greater
than Nyquist’s (a practice known as oversampling).

Figure 1.1(a) shows a typical analog-to-digital converter block diagram, composed of an
anti-aliasing filter (AAF); a sampler, implemented with a sample-and-hold (S/H) block; a
quantizer; and an encoder. The need for the AAF is one of the consequences of following
Nyquist’s criterion: if the sampling rate is based on the signal’s bandwidth, then the input
signal must be band-limited. Also, a Nyquist converter must have a very well designed
AAF to account for the sharp edge required for sampling at the Nyquist rate, as is shown
in Figure 1.2(a), whereas an oversampled converter can apply an AAF with a smooth edge,
as shown in figure 1.2(b) [1].

The next block is the sampling block. A sampled-and-held signal is illustrated in Fig-
ure 1.1(b): the input signal is continuous in time and amplitude, while the sampled signal is
discrete in time, but still continuous in amplitude. The typical ADC applies uniform sam-
pling techniques, which means that the sampling times are uniformly-distributed according
to the sampling rate.
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The third block, the quantizer, discretizes the amplitude of the signal. Unlike the
sampling process, quantization is irreversible and always results in some permanent loss
of information. Figure 1.3 shows the characteristics of an ideal uniform mid-tread 3-bit
quantizer. The quantizer divides the reference tension, Vzgp, in intervals, and allocates the
samples to the closest quantization levels. A binary N bit code is set to each of the 2V
quantization levels. The quantization error is also shown in Figure 1.3, and is limited to
+0.5 LSB (Least Significant Bit). The quantized signal is then represented as a strand of

bits, in the process named encoding.

The processes described above underly the functioning of almost all ADCs in consumer
appliances known today. However, they do have their flaws. First of all, the design of
ADCs presents trade-offs between conversion speed, conversion resolution, and power con-
sumption, among other features. For example, flash ADCs are known to be high-speed
converters, but with low resolution and also high power consumption, while oversampled
ADCs, such as YA ADCs, have high resolution and low conversion speed. Another possible
trade-off is the one between bandwidth and resolution: in order to keep the same reso-
lution, a Nyquist-rate converter (less bandwidth) must have more amplitude quantization
levels than an oversampled one [11]. Another important point is that the Shannon-Nyquist
theorem only sets a sufficient condition for reconstruction—and not a necessary condition.
The choice of a rate that follows the Nyquist-Shannon criteria comes with disadvantages



other than the need to limit the bandwidth of the signal; for instance, a signal with time
varying frequency has its sampling rate determined based on its highest frequency compo-
nent, which implies that the lower frequency portions of the signal will be unnecessarily
oversampled.

The problem of developing a more efficient sampling techniques arises. Many solutions to
this problem and alternative ways to develop sampling and sensing of signals are investigated
in the field of compressive sensing (CS). In an overly simplified manner, CS applies different
transforms and /or bases in order to reach a sparse representation of a signal of interest. The
use of a basis for which this signal is sparse and densely represented allows a sub-Nyquist
sampling of the signal, along with its compression, since the useful information is comprised
in a small amount of data. Undersampling can be useful when there are project constraints,
such as a limited number of sensors; or when the financial cost of a measurement is very
high, as in imaging processes via neutron scattering; or when the sensing process is slow, as

in MRI scans [12]; or for low-power consumption applications, such as biomedical devices.

CS methods mostly apply computational and mathematical tools to the processing of
discrete signals. The implementation of a CS device in integrated circuits to exceed the
performance of a state-of-the-art ADC for high-bandwidth signals was the object of the
“Analog-to-Information Project” [13]. Their results were two prototypes, called NUS (“Non-
Uniform Sampler”) and RMPI (“Random Modulation Pre-Integrator”): RMPI is a prototype
that digitizes signals at high-bandwidth at a sub-Nyquist rate; while NUS digitizes analog
signals with a sparse representation in the frequency domain at Nyquist rate [12, 14, 15].

Another line of research that investigated novel sampling schemes started with Sayiner |16,

17, 11] and the level-crossing ADC, also referred to as a continuous time ADC (CTADC) [18].
Sayiner proposes a high resolution, high speed ADC architecture which outputs amplitude-
time ordered pairs that represent samples that are non-uniformly spaced in time. Level-
crossing sampling is an intermediate scheme between the Nyquist and the zero-crossing
sampling schemes. Zero-crossing sampling schemes are the ones which represent the signal
by the instants at which the signal equals a determined value. While the zero-crossing
sampling represents a signal with a minimal number of values within a time interval, it
also requires very high time resolution, in order to represent with high precision those zero-
crossing instants [11]. The level-crossing sampling, then, consists of sampling the signal
whenever it crosses a quantization level, also called a threshold level. Figure 1.4 illus-
trates this process. The additional information required to recover the input signal can be
approximated by interpolation methods [3].

Recently, in 2016, Masry and El-Dib [18] proposed an ADC in which a signal is sam-
pled using the level-crossing ADC approach, followed by a wavelet neural network (WNN)
applied as an interpolation method, generating a high-resolution low-power converter. The
main reasons to choose the wavelet networks are the known wavelet transform properties

and applications, especially its strong compression, time-series prediction and data classifi-
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Figure 1.4: Level-crossing ADC (adapted from Tsividis [3]).



cation abilities.

Even though the project presented in this manuscript does not belong to the research
fields of CS and level-crossing ADCs, it shares with them some similarities in their objectives
of undersampling and signal compression (for compressive sensing) and of asynchronous
sampling and low power performance (for CTADCs), as well as the use of the wavelet
transform properties, in the specific case of the clockless asynchronous ADC from Masry
and EI-Dib [18]. This projects’ proposed ADC is the object of the next section.

1.2 Ouwur proposal

This project proposes a novel wavelet-based sampling technique that aims to reduce the
power consumption of an ADC by selecting which points to sample, instead of using the
traditional uniform sampling method.

The traditional sampling block of an ADC has been discussed. Another important aspect
is how to recover a signal from its samples. After a signal is sampled, it is quantized and
converted to digital form, with codes that represent each sample. Even if we consider that
the recovery of all the samples from the digital code is lossless, we need to interpolate this
data in order to reconstruct the input signal from the samples. Usually, we use a constant
function to interpolate these samples. The last step is to smooth this curve, what can be
achieved with a low-pass filter.

During sampling, we not only wish to convert the signal from analog to digital form,
but we also choose how to represent the signal, or how to store the information it carries.
In the traditional method, we choose samples in a uniform and periodic manner, regardless
of the signal’s characteristics or properties. CS changes the way a signal is sampled with
no modifications to the way it is reconstructed, since the signal is represented in another
domain, where less samples are needed to store the same information as in other domains.

This projects’ proposal is:

1. when sampling the signal: to choose only samples that carry relevant and specific
information about the signal;

2. when recovering the signal: to use another interpolation function instead of the con-
stant /step one traditionally applied.

One way to analyze a signal and its behaviour is to localize its critical points. This is
our approach: the special points selected during sampling are the signal’s local maxima,
minima, and inflection points. In this way, the proposed sampling algorithm is event-based.
Fig. 1.5(a) shows an example of the critical points identification in the test signal, where
the ‘x’s correspond to the local maximum and minimum points, and the ‘+’s correspond to
the inflection points. The interpolation function is based on the signal’s morphology, which
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Figure 1.5: Information acquired to represent a signal based on (a) its critical points and (b) its morphology.

can be represented by the Lipschitz exponent extracted at a given point. A function whose
concavity varies according to the Lipschitz exponent is shown in Fig. 1.5(b). This function
is the basis for a polynomial reconstruction algorithm that is also proposed and allows the
validation of this sampling method: the signal is reconstructed piecewise, with polynomials
described by the Lipschitz coefficient and limited by two consecutive critical points. These
polynomials are also indicated in Fig. 1.5(a). Both the critical points localization and the
Lipschitz coefficient estimation, which are the outputs of this ADC, are realized by applying
the wavelet transform (WT) to the input signal.

1.2.1 Objectives

The objective of this project is to evaluate and validate a novel wavelet-based sampling
scheme for ADCs both in system- and circuit-level. Even though no specific application
is taken into account in the scope of this project, we expect that it must be suitable for
low-power applications because of its asynchronous and compressive characteristics.

The algorithm for a wavelet-based analog-to-digital converter was initially proposed in



a previous work [8]. The first specific objective of this work is to give continuity to that
research, by improving possible flaws in the algorithm and expanding its scope to circuit-
level analysis.

1.3 Outline

Chapter 2 contains a review of the wavelet transform theory that was applied in the
development of this project. Chapter 3 shows the system-level implementation of the pro-
posed ADC and the polynomial reconstruction method. Chapter 4 contains the circuit
development and a discussion of the results, and Chapter 5 concludes this manuscript.



Chapter 2
Theoretical Background

This chapter contains an overview of the theory that was necessary to develop the
wavelet-based analog-to-digital converter project. The first section contains the theoretical
framework regarding the wavelet transform and the Lipschitz exponent, and the last section
explains the methods chosen to implement the wavelet transform in circuit level.

2.1 The Wavelet Transform

A transform can be interpreted as an operation which represents a signal from one
domain in another domain. Mathematically, it is the result of the convolution of a basis
with the function that represents the analyzed signal. The convolution integral of a linear,
shift-invariant system (LSIS) with input signal z(¢) and output signal y(t) is:

y(t) = /_OO 2(P)h(t — 7)dr 2.1)

o0
where h(t) is the system’s impulse response.

Then, the Fourier transform of a function f(t) is expressed by the convolution between
the Fourier basis, /', and the function f(¢):

F(w) = /OO f(t)e dt (2.2)

The wavelet transform of an input signal f(¢) is the convolution of this signal with a
wavelet basis 1(t), and is expressed by Equation 2.3, where a > 0. The superscript
indicates complex conjugate, and can be removed from the equation when the wavelet basis

is real.
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Equation 2.3 shows that the wavelet transform has two parameters: the scale s and the
position u. This means that the wavelet transform outputs coefficients that indicate the
correlation between the input signal f(¢) and versions of the wavelet basis () shifted in
time and also compressed or expanded according to the scale. Figure 2.1 [4] illustrates this
interpretation of the wavelet transform.

Wavelat

Signal Constituent wavelets of different scales and positions

Figure 2.1: The WT compares the signal to the left to versions of the wavelet basis in various scales and
positions, shown to the right [4].

A wavelet basis is a “small wave”, a finite and not necessarily symmetrical signal, hence
the name “wavelet” transform. There are some requirements for a function to be a wavelet

basis:

e [t must have finite energy, oscillatory behaviour and zero average, according to Eq. 2.4:

/ B(E)dt =0 (2.4)

e [ts Fourier transform must have a zero-frequency component:

/ %dw =Cy < 0 (2.5)

Eq. 2.5 implies that the wavelets can be interpreted as pass-band filters in the Fourier
domain [5].

Some well-known wavelet bases are the first and second derivatives of the gaussian func-

tion (“gausl” and “gaus2”, respectively), the Morlet wavelet and the Daubechies wavelets
(“db”). Figure 2.2 [5] shows examples of such bases.

10



{a) (b)

{c) (d)

Figure 2.2: Some wavelet bases: (a) gausl (b) gaus2 (c¢) Morlet (d) Daubechies (db6). [5]

While the Fourier transform allows total frequency resolution and no time resolution,
the wavelet transform can have varied degrees of time and frequency resolution according
to the settings of the scale and position parameters. By altering these parameters, one can
evaluate a signal for different time and frequency resolutions and thus describe it [5].

Mallat 6] shows that the time resolution, At, and the frequency resolution, Aw, are
related by Heisenberg’s uncertainty principle, which is expressed by Equations 2.6 to 2.8,
where W(¢) is the wavelet basis’ derivative. In this way, the higher the frequency resolution
is, the smaller the time resolution will be. On the other hand, the wavelet transform allows
the signal to be analyzed under different conditions, by altering the scale. A small scale
corresponds to a compressed wavelet basis, then, the transform will have higher coefficients
in positions corresponding to the details and sharp transitions of the signal, that is, its
higher frequency components. A large scale corresponds to an expanded wavelet base,
which will indicate general characteristics of the signal, slower transitions, the low-frequency
components. Figure 2.3 [4] illustrates this property. This means that one way to analyze
the signal behaviour in one specific point of interest is to compute the WT of this signal and
gradually reduce the scale, focusing more and more on the point of interest. This property
is known as the wavelet zoom property.

AtAw > % (2.6)

11
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Figure 2.3: In small scales (left) the base is compressed and the details of the signal can be analyzed. For
larger scales (right), the base is expanded and slow variations of the signal become more evident. [4]

In this way, the wavelet zoom can be a powerful tool in characterizing singularities
in a signal. In signal processing, singularities and discontinuities often carry relevant in-
formation, such as the edges of an image, consonantal sounds in speech, and even sharp
transitions in the financial market system [19], so, it must be useful to be able to watch
these important points closely.

It can be demonstrated that the signal’s regularity is characterized by the reduction of
the wavelet transform coefficients across scales. Therefore, the signal’s singularities can be
determined by the local maxima at different scales. The set of information about these
maxima for different scales determines what is called the maxima line. By definition, a
modulus maximum is a point (%o, o) such that |W f(t, s¢)| has a local maximum at ¢ = ¢,
which implies [6]:

8Wf(t(), So)

=0 (2.9)

The maxima line shows the modulus maxima on the scale-space plane, and this indicates
the wavelet transform modulus behaviour at different instants and for different scales.

Another interesting WT property useful for regularity detection are the the vanishing
moments. A vanishing moment is a zero moment, and can be expressed by Equation 2.10,

for a moment of k" order.

mlk] = /tkw(t)dt =0 (2.10)

12



As long as wavelets are concerned, the number of vanishing moments corresponds to the
number of zeroes at 7 for the wavelet representation in the Z domain. In this case, if a

wavelet has n vanishing moments, it has n zeroes at 7 and can be rewritten as [20]:

) = (- *2’1) Q) (2.11)

Furthermore, Mallat [6] shows that a wavelet with n vanishing moments can be expressed
as the n'* derivative of a function 6(t), and thus its WT functions as an n'* order multiscale
differential operator. This is established in Theorem 1.

Theorem 1 A wavelet ¢ with fast decay has n vanishing moments if, and only if, there is
a function 0 with fast decay such that

wit) = (-1 T (2.12)

Consequently,
W) = 5" 5 (F #6,)(0) (213)
0, = s /20(—t/s) (2.14)

Also, 1 has no more than n vanishing moments if, and only if, ffooo O(t)dt # 0.

Therefore, if the chosen wavelet basis has n = 1 vanishing moment, the WT will function
as a first order differential operator, and its modulus maxima shall identify discontinuities;
also, the points for which the absolut value of the WT coefficients equal zero will correspond
to the signals’” maximum and minimum points. Moreover, if the chosen wavelet basis has
n = 2 vanishing moments, the W'T functions as a second order multiscale differential
operator, and its modulus maxima localize maximum curvature points, while the points
for which |W f(u, s)| = 0 identify the inflection points in f(¢). Figure 2.4 illustrates these
properties [6].

Vanishing moments have more properties that depend on the description of a signal’s
regularity with the Lipschitz coefficient, and thus will be explained in the following subsec-

tion.

13
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Figure 2.4: The convolution smooths the original signal. The first-order transform, W1 f(u, s), is computed
with ¢ = —6’, while the second-order transform, W5 f(u, s), is computed with ¢ = 6”. [6]

2.1.1 Lipschitz coefficient

The Lipschitz coefficient, also known as the Holder coefficient in Mathematics, can
characterize the local signal regularity both for a time interval and for one specific instant.
If a signal contains a singularity in a point v i.e is not differentiable at v, this singularity is
characterized by the Lipschitz coefficient at v.

Definition 1 A function f is Lipschitz o > 0 at v if there exist a constant K > 0 and a
polynomial p, of order m = |« such that, Vt € R,

1f(t) =) < K|t —v|” (2.15)

The function is uniformly Lipschitz o over the interval [a,b] if the Equation 2.15 is
satisfied for all v € [a,b], with K independent of v.
The Lipschitz regularity of f at v or over the interval [a,b] is the supremum of o such

that f is Lipschitz «.

In the above definition, the approximation polynomial is unique for every point v [21].
This polynomial can be the Taylor polynomial. Equation 2.16 shows the expression for the

14



Taylor expansion at v for an m times differentiable polynomial, m = |«].

Py = A (2.16)
k=0
The Taylor polynomial approximation error is expressed as:
ev(t) = f(t) — pu(t) (2.17)
and must satisfy
|t — V’m m
VieR, e ()] < Tsupue[y,hwh]]f (u)] (2.18)

In this way, when ¢ tends towards v, m yields a superior bound to the Taylor polynomial
approximation error with f in the vicinity of v. In fact, when Definition 1 is applied with
p,(t) being Taylor’s polynomial, this superior bound is a function of the Lipschitz coefficient,
«, and depends on the value of the constant K:

e, ()] = [f(t) = pu ()] < K|t —v[* (2.19)

Consider the following example. Let f be a signal such that

f@) =1 - (2.20)

Figure 2.5 shows this signal’s plot for values of o between 0.2 e 2. This signal is regular
with Lipschitz « in the intervals 0 < ¢ < 1 and 1 < ¢t < 2, but it contains a singularity at
t = 1: to the left of this singularity, f increases; to the right of the singularity, it decreases.
Then, if we know the position of a singular point, as well as the Lipschitz coefficient value
and the signal morphology in each interval, we can describe the signal. In other words, the
Lipschitz coefficient comprises the signal’s data around a singular point [5].

The Lipschitz regularity of a signal at v depends on the decay at small scales of the
absolute value of the wavelet transform amplitude in the neighbourhood of v [6]. The decay
of the absolute value of the wavelet transform in the neighbourhood of v is determined by
the decay of the modulus maxima in the cone of influence |u —v| < Cs. f is Lipschitz « if,
and only if, there exists a constant A > 0 such that every modulus maximum in the cone
of influence satisfies Equation 2.21.

15



Figure 2.5: Function from Eq. (2.20) for different values of « [5].

(W f(u,s)| < As*tz (2.21)

Taking the logarithm of both sides of the equation,

1
loga|W f(u, s)| < logsA + (a + 5) logos (2.22)

Equation 2.22 shows that the Lipschitz regularity at v corresponds to the maximum
slope of logs|W f(u, s)| as a function of logys across the maxima lines that converge to v [5].

Also, to estimate the Lipschitz coefficient of a signal, the wavelet basis must have n > «
vanishing moments:

/OO tfypt)ydt =0 . 0<k<n (2.23)

o0

The wavelet transform of the signal’s polynomial approximation, f(t) = p,(t) +€,(t), is:

16



Wf(u,s) = Wp,(t) + We, (t) = Wey (1) (2.24)

which means that the WT estimates « suppressing p,, since the Lipschitz coefficient can
be expressed in terms of the approximation error of the polynomial, as shown previously in
Equation 2.19. This property is known as the polynomial suppression property.

2.2 Analog WT filters

Now that the basics of the wavelet transform theory have been presented, we move on to
the theory of how to implement it, since we want to propose a sampling method that is based
on it. The most common way to implement the wavelet transform is by using its digital
form, applying the discrete wavelet transform. This method requires an analog-to-digital
converter in order to compute the WT, which would be controversial for this project and
also would require high power consumption. Fortunately, it is possible to implement the
WT using analog wavelet filters: this project follows the approach presented by Haddad [5]
and Karel [7]. The analog wavelet filters implemented throughout this project are based on
two approximation methods (L, and Padé) for the wavelet filter transfer function and on
one design for circuit implementation, the transconductance amplifier-capacitance (Gm-C)
method, and these are the objects of this subsection.

When designing an analog wavelet filter, its impulse response must correspond to the
desired wavelet base, whose behavior and mathematical description are known. The approx-
imation methods are used here to obtain a filter transfer function, whose impulse response,
R'(t), is very close to the desired impulse response corresponding to the wavelet basis, h(t).

2.2.1 Padé approximation

The Padé method approximates the Laplace transform of h(t), because it is assured to
represent a transfer function of a possible filter. If the opposite was to be done, that is,
the Padé approximation of h(t) was to be taken before applying the Laplace transform, the
resulting transfer function would not necessarily be suitable for implementation. The Padé
method approximates a function around one of its points and is based on the function’s
Taylor expansion coefficients, as shown in the following mathematical development.

Consider the function F'(s), whose truncated Taylor expansion is expressed in Equa-

tion 2.25, where {cg, 1, ..., ¢} are the Taylor coefficients of F'(s).

F(s)=co+c15+...+cps® +0(s5) (2.25)
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However, to build a filter, we need zeroes and poles, and F(s) has no poles, only zeroes.
The function in Equation 2.25 can be transformed to a rational function by means of the

Padé approximation:

sy = L) _potpist ot pns™
Q(s) g+ a@s+...+ s

(2.26)

In Equation 2.26, F(s) is the approximated F(s) function, for k = m 4 n. This means
that the Taylor coefficients of F(s) are known as {cg, ¢1, ..., Cmin - Also, from Equation 2.26,
F(s)-Q(s) = P(s) and:

co 0 0 do Po
c1 0 Q| |m (2.97)
Ck Ck—1 ... Ck—n An Pk

Equation 2.27 shows that the coeflicients {qo, ¢1, - - -, ¢n} depend on the restrictions im-
posed over the coefficients {po, p1, ..., pr}. These restrictions are:

1. The larger the order of the filter is, the better the approximation result will be.
Therefore, we must maximize k;

2. P(s) is of order m, according to Equation 2.26;

3. m < n for a physically realizable (causal) filter.

From restriction number 2 and Equations 2.26 and 2.27, we can conclude that {p,,41,...,pc} =
0. This leads to the following matricial representation:

Pm+1
L] = [F Q=0 (2.28)
m+1.k
Pk
Therefore,
Cm+1 - Co 0
Cm ...oc ¢
q € Nullspace .+2 . .1 _0 (2.29)
Cmin --- Cm—1 Cpy

In Equation 2.29, g, = 1. The coefficients {po, ..., pm} are defined as:
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Po Co 0 0 qo
S N R (2.30)

Pm Cm Cm—1 ... Cm—n Qn

If the function that results from the approximation has a numerator of order m and a
denumerator of order n, the original function can be approximated up to order k = m + n.
Therefore, the Padé approximation is defined by the values of m and n, and is referred to
as a [m/n] Padé approximation.

Tables 2.1, 2.2, 2.3 and 2.4 show the [6/10] Padé and Taylor approximations coefficients
for the first and second derivatives of the gaussian function, taken from an example in
Haddad [5]. The first derivative of the gaussian function, hereafter referred to as gausl, is
expressed as 1(t) = —2(t — 3)e""3)’; and the second derivative of the gaussian function,
hereafter referred to as gaus2, is expressed as 1)(t) = (=2 + 4(t — 3)2)e~ (=3,

Table 2.1: Taylor coeflicients for expansions in the Laplace domain (k = 16) of gaussian functions (part 1).

‘ Co C1 C2 C3 C4 Cs Cg Ccr Cg

gausl | 0 1.77 -531 841 -93 803 -574 354 -1.92
gaus2 | 0 0 177 -531 841 -93 8.03 -5.74 3.54

Table 2.2: Taylor coefficients for expansions in the Laplace domain (k = 16) of gaussian functions (part 2).

‘ C9 €10 C11 C12 C13 C14 C15 C16

gausl | 0.94 -042 0.17 -0.066 0.023 -0.008 0.002 -0.007
gaus2 | -1.92 094 -042 0.17 -0.066 0.023 -0.008 0.002

Table 2.3: Padé coefficients for Q(s) (n = 10) of gaussian functions.

‘ 4q0 vl q2 4qs3 44 45 46 qr a8 49

q10
gausl | 3.86E4 1.036E5 1.305E5 1.022E5 5.53E4 2.17E4 6.3E3 1.35E3 205.6 20.27 1
gaus2 | 3.78E4 1.007E5 1.264E5 9.86E4 5.33E4 2.09E4 6.1E3 1.3E3 199.7 1991 1

2.2.2 L, approximation

The Ly method’s approach is to minimize an error metric, specifically, the least-mean-
square-error (LMSE) metric. Unlike Padé approximation, it is global, and not based around
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Table 2.4: Padé coefficients for P(s) (m = 6) of gaussian functions.

‘ Po b1 P2 b3 P4 b5 Ps
gausl | -4.77 6.85E4 -22E4 6.1E3 -576.95 44.67  5.81
gaus2 | -4.67 -13.21 1.11E4 -3.7E3 1.08E3 -131.28 13.54

one point of the function. Also, the L, approximation is performed in the time domain,
starting with the impulse response h(t) of a given filter. The next step is to minimize the
LMSE with respect to the poles and zeroes of the filter. The LMSE integral is defined in
Equation 2.31, where f(t) is the original function and f(t) is the approximation.

L, = / T - fOr (2.31)

Since, in this work, we want to approximate a wavelet basis, f(t) is a wavelet, and
its approximation f(t) is the transfer function of the filter in the time domain. Then, we
know that f(t) = 1(t) and f(t) = h(t) have explicit expressions, and the error e, can be

minimized using standard numerical and/or computational methods.

Also, Equation 2.31 indicates that the Ly approximation, which is the minimal value for
€r,, corresponds to the energy of the difference between the function and its approxima-
tions. This means that this method can be applied both in time and frequency domains,
which is another advantage over the Padé approximation method: the Ly approximation
method allows us to focus on specific points in the Laplace domain, for example, and start
the approximation based on them. One disadvantage of this method, however, is that dif-
ferent starting points can yield different results, that is, we cannot assure, in general, the
optimality of any approximation obtained with this method. Therefore, it also requires
more computational effort than the Padé method.

2.2.3 Gm-C filters

Now that we know how to obtain the transfer function for an analog wavelet filter, we
need to define the filter’s topology. A good option for low-power applications is to design a
Gm-C (transconductor-capacitor) filter. This filter implements a transfer function G//sC,
where GG is implemented by a tranconductor, and 1/sC, by a capacitor, hence its name.
This transfer function is characteristic of an integrator. A filter of n'® order is described
by an n'* order differential equation, and can be implemented with n integrators. Indeed,
Figure 2.6 |5] shows a single-ended Gm-C integrator. A Gm-C filter, composed of Gm-C
integrators, can achieve transconductance values in the order of nA/V, what allows the use
of capacitors with not so large capacitances. This relation can be deduced by evaluating
Figure 2.6. From it, we see that the capacitor voltage is expressed as:
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Figure 2.6: Gm-C integrator [5].

1 D
u(t) vt
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Figure 2.7: System block diagram for state-space representation [5].

[cap Gm ! n
V., =P _ 2.32
“ar 5O sC' (2:32)

and the time constant 7, as:

_ ¢
- Gm

T

(2.33)

From control theory, it is known that an n'® order differential equation can be trans-
formed to a set of first order differential equations using a state-space representation. The
typical system of state-space differential equations is expressed in Equation 2.34, where
u(t) is the system’s input; y(t) is the system’s output; and z(t) is the state-space variable.
Figure 2.7 |5] shows the block diagram for the system represented in the state-space form.

= Ax + B
oA (2.34)
y=Cx+ Du

To describe the system in its state-space representation, we need to obtain the elements
of the matrices A, B, C' and D. Knowing that the system’s transfer function expressed in
terms of the state-space matrices is as described in Equation 2.35, where [ is the identity
matrix, and knowing the desired transfer function of the filter, the state-space matrices’
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Figure 2.8: Filter implementation scheme with state-space matrices [5].

elements can be determined. For more information on state-space representations or how
these equations are derived, please refer to a control engineering theory book, such as
Ogata |22].

H(s)=C-(sI—A)™-B+D (2.35)

Once the state-space matrices are obtained, they must be implemented in order to com-
pose the filter, in the manner shown in Figure 2.8 [5]. However, it would be advantageous
if these matrices were in their sparse representations, so that there are more elements that
equal zero, and, consequently, less coefficients to be implemented in the circuit. There
are many ways to obtain an orthogonal representation of the state-space matrix [5], but
the chosen strategy for this project is to transform the matrices to their corresponding or-
thonormal ladder structure. The orthonormal ladder structure is unique for a given transfer
function and its general configuration is:

0 ai o 0 --- 0 0
—a; 0 ax O 0 0
A 0 —Q9 O CL.3 0 0
0 0 0 0 0 Qp—1
| O 0 0 0 —Op—1 Ay |
BT — [0 0 0 0 b,
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Figure 2.9: Gm-C filter implementation of a 6 order filter with orthonormal ladder structure (adapted
from Karel et al. [7].

C=lc; ¢ ¢3 -+ Cnpo1 Cp

Finally, putting together the schematics from Figures 2.6 to 2.8, we can obtain the Gm-C
filter topology, shown in Figure 2.9 for a sixth-order filter, adapted from Karel et al. |7].

2.3 Summary of the Chapter

This chapter presented a review of the theoretical framework that is necessary to the
understanding of the development in the next chapters. First, the continuous wavelet
transform was presented, along with its main properties, followed by the Lipschitz exponent
definition and how it can be estimated with the wavelet transform. The last section shows
one way to design and implement analog wavelet filters, which will be used in this project
to compute the wavelet transform.
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The chapters that follow contain the project’s development per se, starting with the
system-level design in Chapter 3.

24



Chapter 3
System-Level Development

In this chapter, the project is studied at a system-level. The proposed sampling method
is presented, as well as the polynomial reconstruction algorithm that enables its verification.
The theoretical portion is followed by the methodology adopted for the system simulations
and their results.

3.1 Sampling algorithm

The flowchart for the sampling algorithm is shown in Figure 3.1. The input signal is
processed and its critical points must be identified, as well as the Lipschitz exponent at
local maxima and minima. After choosing the WT parameters (bases and scales), the
local maxima and minima are identified by computing the first-order WT of the input
signal. Because of the wavelet zoom property, the coefficients line for the smallest scale is
used for this purpose, and the maxima and minima points are localized by identifying this
coefficients line’s zero-crossings. Similarly, to detect the inflection points, the second-order
WT is computed, but, for this purpose, the coefficients line for a large scale is selected, and
its zero-crossings are detected. At this point, some approximations may be necessary:

e The maxima and minima identification prevails over the inflection points’ localization,
that is, if the algorithm detects a local extremum at the same point as an inflection,
this point is considered to be an extremum;

e This algorithm considers that there is only one inflection point between a local maxi-
mum and a local minimum. If more than one inflection point is detected, its location
is approximated by taking the mean of the positions of all the points detected; if no
inflection is detected, its location is approximated as the midrange of the maximum

and the minimum points’ positions.

The second-order WT is also used to estimate the Lipschitz exponent. This is done by
applying the definition in Equation 2.22, and selecting the instants which correspond to the
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Figure 3.1: Wavelet-based ADC sampling algorithm.

3.2 Reconstruction algorithm

In order to verify that the sampled information allows recovery of the input signal, a
reconstruction algorithm is also proposed, as illustrated in Fig. 3.2.

Since the critical points have been sampled, we choose to reconstruct the signal piecewise,
with each piece determined by one maximum or minimum point and one inflection point.
The morphology of the signal between the critical points is determined by the Lipschitz
exponent, and each piece is expressed as a polynomial. This polynomial is based on the
function in Equation 2.20, modified to allow time and amplitude shifting. The result is:

T—1
W

Pu(t) = Ai + (A, — Ay) (1 - (3.1)

Qm,
) , o<t <ty

where

e A; and A,, are the sampled amplitudes for, respectively, the inflection points and the
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Figure 3.2: Identified critical points of a test signal: ‘x’ represents a local maximum or minimum, and ‘+’

represents an inflection point. ‘P,’ are the polynomials that reconstruct the signal piecewise.

local maxima or minima;

., 18 the estimated Lipschitz exponent at the local maximum or minimum;

to and ¢; are the initial and final points of the polynomial F,, that is, one of them must

be an inflection while the other must be either a local maximum or a local minimum;

 is the time interval for P, i.e. p =ty — to;

7 is the position of the local maximum or minimum.

The variables 7 and p allow shifting in time. The shift in amplitude is achieved by
multiplying the expression by (A,, — A;), and then adding A;. The expression (A4,, — A;)
also indicates the concavity of the signal: if A,, > A;, then (A4,,—A;) > 0 and the extremum
is a local maximum; if A,, < A;, then (A,, — A;) < 0 and the extremum must be a local
minimum. The addition of A; to the expression guarantees the continuity of the signal
when all pieces are put together.

3.3 Methodology

The algorithms were evaluated by simulation in the softwares MATLAB and Simulink.
All the scripts necessary to run the tests are available in Appendix II. The parameters for
the measurements are detailed in the following subsections.

3.3.1 The test signal

A test signal, shown in Figure 3.3 and expressed by Equation 3.2, was chosen to evaluate
these algorithms. This function was chosen as the primary test signal because it is well-
behaved, making it easier to observe the differences between the reconstructed signal and
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the input signal; and also because of its singular point, which should require a high sampling
rate in trivial ADCs to achieve a good representation of the signal.

(t —0.2)2 0.75%6 — |t — 0.7]%¢
t) = — 3.2
/) eXp{ 2.0.12 0.7506 (3:2)
Test signal
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Figure 3.3: Test signal.

3.3.2 WT parameters

The parameters for the wavelet transform are its bases and scales. Since the algorithm
applies first- and second-order wavelet bases, we chose wavelet bases from the same families
in these two versions. The bases available in MATLAB that corresponded to this criterion
are the ones indicated in Table 3.1. The tests were run with two sets of scales: the first one
with the smallest scale being a = 1 and every integer scale until the largest one, a = 64;
the second set consists of four scales: a = 16, a = 32, a = 48 and a = 64.

Table 3.1: Chosen wavelet bases

Family 1st order 2nd order
Gaussian gausl gaus2, mexh
Daubechies dbl db2
Biorthogonal biorl bior2
Reverse biorthogonal rbiol rbio2

The gaussian wavelet bases are the derivatives of p-th order of the gaussian function,
described in Equation 3.3. The gaussian wavelet bases family is normally represented in
literature as gausN, where N is the number of vanishing moments of the base. Therefore,
the wavelet bases gausl and gaus2 are, respectively, the first and second order derivatives of
the gaussian function. The mexican hat basis, mexh, is proportional to gaus2, having two
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vanishing moments as well. Figure 3.4 [8] shows the plots of these three gaussian wavelet
bases.

2

f(x) = Cpe™

2 3.3
o =1 Y

The Daubechies bases were described by Ingrid Daubechies [23]. They are orthonormal
wavelets of compact support, with the generic expression of Equation 3.4 [24|, where v
is the wavelet, ¢ is the scaling function, and h,, is the expression for both the associated
reconstruction and decomposition filters. The Daubechies wavelet bases are referred to as
dbN, where N € Z7 is the number of vanishing moments.

Y(x) =V2) (=1)"h_pi16(2z — n) (34)
¢(x) = V2> hao(2x —n) (3.5)

The biorthogonal bases are biorthogonal splines, characterized by the general expression
of Equation 3.6 |24, 25|. Their associated reconstruction and decomposition filters, h,, and
Jn, are not necessarily identical, and thus confer both the wavelet function v and the scaling
function ¢ one synthesis and one analysis form. In this project, the analysis form of the
wavelet function is applied. The reverse biorthogonal basis is derived from the biorthogonal
by inverting the analysis and synthesis functions. The biorthogonal bases are represented
as bior Nr.Nd, and the reverse biorthogonal bases, as rbioNr.Nd, where Nr and Nd are the
number of vanishing moments of the synthesis and analysis functions, respectively.

V(@) = V2 gnd(2x —n) (3.6)
$(x) = V2 hn(2x —n) (3.7)

Figure 3.5 [8] shows the wavelet bases from the Daubechies and biorthogonal families.
For n = 1, they are all equal to the Haar wavelet, in Figure 3.5(a). The others are the bases
for n = 2 vanishing moments: (b) for db2, (c)for bior2.2, and (d) for rbio2.2.

3.3.3 Error metrics

In order to measure the quality of the signal reconstruction, two metrics are used in this
project: the RMS error metric and the correlation coefficient between the original and the
recovered signals.
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The RMS error is the root-mean-squared error, expressed by Equation 3.8, where [ is
the length of the original signal y and of the recovered signal y. This error is represented
by a scalar value, and allows us to compare the similarity between the two signals globally.

L 2
CRMS = \/Zk—l(ylk - yk) (38)

The Pearson correlation coefficient p between the discrete random variables X and Y is
expressed by Equation 3.9, where: F(X) is the expected value of the variable X; o(X) is
the standard deviation of the variable X; and cov(X,Y) is the covariance of the variables
X and Y. The correlation coefficient is a scalar of absolute value between 0 and 1. The
covariance of X and Y is the first central moment of the variables. If cov(X,Y) = 0,
then X and Y are completely independent and p = 0, which also means that X and Y
are uncorrelated [26]. The correlation coefficient between the original and the recovered
signals, then, will express how much their morphologies are alike, or correlated.

E[XY] - E[X] - E[Y] _ cov(X,Y)

0x 0Oy 0x 0Oy

p:

3.3.4 Quantization

To analyze the effect of quantization of the sampled values (amplitudes and Lipschitz
exponents) in the signal recovery, a uniform quantizer was implemented, with resolutions

of 4, 8 and 12 bits, representing low, medium, and high resolution.

30



gaus1 gaus2

Figure 3.4: Gaussian wavelet bases [8§].

db1, bior1.1,rbio1.1 (haar) db2

0
-1
0 02 04 0.6 0.8 1 0 05 1 15 2 25 3
(@) (b)
bior2.2 rbio2.2
10 , ‘ 2 ‘ ‘

Figure 3.5: (a) Daubechies and biorthogonal bases with n = 1 vanishing moment. Bases with n = 2
vanishing moments: (b) Daubechies (c¢) Biorthogonal (d) Reverse biortogonal [8].
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3.4 System Results

According to the flowchart in Figure 3.1, the first step in the algorithm is to determine
the WT bases and scales, in order to identify the signal’s critical points. Let us evaluate
the algorithm step-by-step with one of the test configurations: the pair of gaussian wavelet
bases, gausl and gaus2, and the second set of scales (from a = 16 to a = 64). With the
first-order WT results, the local maxima and minima points can be detected, as Figure 3.6
shows. Note that the local maxima and minima are correctly identified with the first-order
wavelet transform processing. Figure 3.6(b) shows the coefficients line for a = 16 and the
zero-crossing detection output. The second-order WT is used to detect the inflection points
positions, which is shown in Figure 3.7. Figure 3.7(b) shows the coefficients line for the
largest scale, a = 64, and the zero-crossing detection result. In this case, an approximation
was needed, because the coefficients line crosses zero thrice in the last portion of the signal,
meaning that two inflection points are detected initially. Apart from this approximation,
the inflection points appear to have been detected with accuracy by applying the coefficients
line for the largest scale.

Test signal
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Time (s)
(a) Input signal.
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(b) 1st order WT coefficients line for scale a = 16 (green) and zero-crossing detection output
(dashed, blue).

Figure 3.6: Critical points detection: local maxima and minima.
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(b) 2nd order WT coeflicients line for scale a = 64 (green) and zero-crossing detection output
(dashed, blue).

Figure 3.7: Critical points detection: inflection points.
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The second-order WT results are also used to estimate the Lipschitz exponent at every
point of the signal. The gaus2 coefficients lines for the four scales are shown in Figure 3.8,
and Figure 3.9 displays the result of the Lipschitz exponent estimation. The peaks of the
coefficients line in Figure 3.8 all happen at the same position when evaluating them for
different scales. The Lipschitz exponent is estimated based on the decay of these maxima
across scales at the identified critical points positions. As an exercise, let us estimate the
Lipschitz coefficient, manually, by evaluating the figures and applying the definition, for the
first local maximum point of the input signal. The first maximum occurs at approximately
0.2s, so the first step is to determine the values of the coefficients lines for all scales at that
point of interest:

a=16 — amplitude = 0.1
a=32 — amplitude ~ 0.5
a=48 — amplitude ~ 1.3
a=64 — amplitude ~ 2.2

Then, applying the definition of the Lipschitz coefficient («) estimation, we must calcu-
late the decay across scales. This is achieved by evaluating the decay in amplitude at every
two consecutive scales, and then taking the mean value of those results:

a1+ Qg + Qg

= —————05
“ 3
log|2.2| — log|1.3|
= =1.83
“ log|64| — log|48]|
log|1.3| — log|0.5]
@2 log|48| — log|32|
Dl — 1
g — log|0.5| —log|0.1] 5 39

log|32| — log|16]

S.a=217-0.5=1.67

In Figure 3.9, the Lipschitz coefficient at ¢ = 0.2 s appears to be a &~ 1.7. Actually, its
precise value is 1.7654, which is fairly close to the result obtained analytically, above, with
approximated values from the plots in Figure 3.8.

With the localization of the critical points, the input and Lipschitz signals can be sam-
pled. Figure 3.10(a) shows the amplitude sampling, which happens at all identified critical
points. The Lipschitz coefficient is sampled only at the detected local maxima and minima,
as shown in Figure 3.10(b). Tt is worth noting that the estimated Lipschitz exponent at the
critical points cannot be larger than 2, because this is the number of vanishing moments
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Figure 3.8: Coefficients lines for second order wavelet transform at scales 16, 32, 48 and 64.
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(b) Lipschitz exponent estimated at all points of the input signal.

Figure 3.9: Lipschitz exponent estimation.
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of the wavelet basis that is used to estimate «, in this case, gaus2. Figure 3.11 shows the
amplitude and Lipschitz coefficient sampling signals, but quantized for three different res-
olutions: 4, 8, and 12 bits. Note that there is a considerable difference between the values
for 4 bits resolution and the values for 8 and 12 bits resolutions. Also, the latter ones are
practically indistinguishable.
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(a) Amplitude sampling.
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(b) Lipschitz coefficient sampling.

Figure 3.10: Sampled signals.

In order to test this algorithm, the signal must be recovered from these outputs. The
polynomial reconstruction algorithm for the ideal case yields the result shown in Figure 3.12.
The signal reconstruction is successful, with a high correlation coefficient between the re-
covered signal and the input signal of p = 0.98853, and an RMS error of egyrg = 0.008547.
Table 3.2 contains the polynomial parameters used to reconstruct the signal piece by piece
for this case, in the manner illustrated earlier by Figure 3.2. Table 3.2 is in terms of the
parameters in Equation 3.1, where A; and A,, are the amplitudes of the critical points, o,
is the Lipschitz exponent, measured at the local maxima and minima, and the others are
time parameters. The Lipschitz exponent indicates the morphology of the signal around
a local maximum or minimum, which is why it is only sampled at these points; also, this
means that its value is used for two polynomials, for example, P, and Ps, that reconstruct
the signal around the first identified maximum, localized at 0.2110 s and with an amplitude
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(b) Lipschitz coefficient sampling.

Figure 3.11: Quantized sampled signals for 4, 8, and 12-bit resolutions.
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of 1.2204 V. P, starts with an inflection point, identified at 0.0830 s and with an amplitude
of 0.6087 V, and P;3 ends with an inflection, which occurs at 0.3090 s with an amplitude of
0.8790 V.
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Figure 3.12: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for gausl and gaus2
wavelet bases, set of scales from 16 to 64, and ideal (not quantized) values.

Table 3.2: Polynomial reconstruction parameters for gausl, gaus2, scales from 16 to 64 (ideal case)

A; A T m as to(s) tr(s)
0.6087 0.1759 0.0010 0.0820 1.2464 0.0010 0.0830
0.6087 1.2204 0.2110 0.1280 1.7654 0.0830 0.2110
0.8790 1.2204 0.2110 0.0980 1.7654 0.2110 0.3090
0.8790 0.5263 0.4460 0.1370 1.9970 0.3090 0.4460
0.7442 0.5263 0.4460 0.1770 1.9970 0.4460 0.6230
0.7442 0.9909 0.7000 0.0770 0.6024 0.6230 0.7000
0.5726  0.9909 0.7000 0.1820 0.6024 0.7000 0.8820
0.5726 0.4229 1.0000 0.1180 1.0232 0.8820 1.0000

00~ O Ut W N |

Figures 3.13(a), (b) and (c) show the results for the three quantization resolutions,
respectively 4, 8 and 12 bits. As noticed before, the quality of the reconstruction with 4-bit
resolution is clearly below the quality of the ones with 8 and 12 bits, which come very close
to the ideal case of Figure 3.12. The correlation coefficients and RMS errors for each of
these cases, as well as the results for other tests, for scales from 16 to 64 are displayed in
Tables 3.3 and 3.4. In these tables, the column labeled ‘Ideal’ contains the metrics for the
case when the signal is recovered with the values before they pass through the quantizer,
and this serves as a comparison parameter for the other results. This is the case illustrated
in Figure 3.12, for the bases gausl and gaus2. The column labeled ‘Amplitude’ contains
the results for when only the amplitudes are quantized, and the Lipschitz coefficient values
are the ideal ones. Similarly, the column labeled ‘o’ evaluates the effects of quantizing only
the Lipschitz exponent in the signal reconstruction. The column labeled ‘Amplitude + «
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shows the results when the amplitudes and the Lipschitz coefficients are quantized at the
same resolution, which are the cases shown in Figure 3.13. Following this same pattern,
the metrics obtained from the tests for the other set of scales, ranging from 1 to 64, are
displayed in Tables 3.5 and Tables 3.6.
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Figure 3.13: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for gausl and gaus2
wavelet bases, set of scales from 16 to 64, and quantized values.

The tables allow us to compare the results according to the chosen bases, the set of
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Table 3.3: Correlation coefficient (%) for scales from 16 to 64

Quantization (bits)
Bases Amplitude Q@ Amplitude + «
Ideal
12 8 4 12 8 4 12 8 4
gausl,
98.9 | 98.9 989 96.0 | 989 989 970|989 989 947
gaus2
gausl,
99.0 1 99.0 99.0 96.5|99.0 99.0 94.2|99.0 98.8 90.0
mexh
dbl,
b2 73.9 | 73.9 747 63.1 | 738 738 753|739 7T4.6 64.2
biorl,
_ 88.4 | 88,5 888 795 |8.4 885 893|885 889 821
bior2
rbiol,
. 96.0 | 96.0 95.7 94.7 | 96.0 96.0 949 | 96.0 95.7 94.7
rbio2
Table 3.4: RMS error (%) for scales from 16 to 64
Quantization (bits)
Bases Amplitude « Amplitude + «
Ideal
12 4 12 8 4 12 8 4
gausl,
0.855 | 0.855 0.877 6.119 | 0.855 0.852 1.379 | 0.855 0.874 6.381
gaus2
gausl,
0.869 | 0.874 1.032 6.291 | 0.870 0.885 2.155 | 0.875 1.052 7.239
mexh
dbl,
b2 4510 | 4498 4.341 6.318 | 4510 4.516 4.487 | 4.450 4.348 6.308
biorl,
bior2 2.935 | 2.925 2.809 5.082 | 2.934 2917 2.634 | 2924 2792 5.173
ior
rbiol,
bio2 2.068 | 2.071 2.194 6.358 | 2.067 2.057 2.186 | 2.070 2.185 6.497
rbio
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Table 3.5: Correlation coefficient (%) for scales from 1 to 64

Quantization (bits)
Bases Amplitude Q@ Amplitude + «
Ideal
12 8 4 12 8 4 12 8 4
gausl,
98.3 | 98.3 984 949|983 983 982|983 984 946
gaus2
gausl,
99.2 199.2 99.1 96.7]99.2 99.1 989|992 99.1 96.3
mexh
dbl,
b2 68.5 | 68.6 694 613|685 684 66.8| 686 69.3 589
biorl,
_ 86.9 | 86.9 873 73.8|86.9 872 909|869 875 786
bior2
rbiol,
. 98.3 | 98.3 983 927|983 983 983|983 983 935
rbio2
Table 3.6: RMS error (%) for scales from 1 to 64
Quantization (bits)
Bases Amplitude « Amplitude + «
Ideal
12 8 4 12 8 4 12 8 4
gausl,
1.064 | 1.057 0.996 5.859 | 1.063 1.057 1.157 | 1.056 0.992 5.773
gaus2
gausl,
0.726 | 0.725 0.783 6.001 | 0.727 0.733 0.909 | 0.726 0.816 6.109
mexh
dbl,
b2 5.147 | 5.134 4.969 5.951 | 5.147 5.154 5.325 | 5.134 4.977 6.121
biorl,
bior2 3.314 | 3.308 3.159 4.702 | 3.312 3.284 2.815 | 3.306 3.129 4.488
ior
rbiol,
bio2 1.075 | 1.071 1.039 5.576 | 1.075 1.062 1.049 | 1.070 1.025 5.560
rbio
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scales, and the quantization resolution. The correlation coefficient indicates how much
of the original signal’s morphology is preserved, which is primarily due to the Lipschitz
coefficient estimation, and the RMS error reflects mostly the accuracy in determining the
critical points’ positions and amplitudes. It is clear from both metrics, though, that the
best results occur for the gaussian pairs of wavelet bases, and the worst results are observed
for the Daubechies pair. This is expected, since the gaussian bases hold a higher correlation
with the test signal than the Daubechies and biorthogonal wavelet bases, and the wavelet
transform is also a measure of correlation between the analyzed signal and the wavelet basis
function. A consequence of this is that the Daubechies and biorthogonal wavelets would
probably yield better results if the input signal had sharp transitions, for example, as an
ECG signal. This is shown in a previous work [8|. It is worth noting that the results
obtained with the reverse biorthogonal bases present higher correlation coefficients and
smaller RMS error than the tests for the Daubechies and biorthogonal bases, which was
not expected.

When comparing the characteristics of the RMS error tables and the correlation coef-
ficient tables, it is noticeable that the difference between results for the error are greater
than for the correlation coefficient. This indicates that there is little change in the Lipschitz
coefficient estimation error for all cases, because it shows that, even if there is error in the
amplitudes of the critical points, the morphology of the signal is well described. This is
evidenced by evaluating the quantized o column in Tables 3.4 and 3.6: for 12- and 8-bit
resolutions, the results are practically the same, or very close. For a resolution of 4 bits, the
error increases, but not so much as it does for the cases when the amplitude is quantized. In
other words, the Lipschitz coefficient can be quantized with only 4 bits and yield medium
to high quality signal recovery.

Regarding the choice of scales, the expected result is that the smaller the scale, the
better the local maxima and minima detection will be, i.e. there should be smaller error
for the set of scales from 1 to 64. Also, in this set, there are more scales than in the other
one (from 16 to 64), what would give more information to estimate the Lipschitz exponent
and result in higher correlation coefficients. However, the results vary for both metrics, and
this difference is not always significant. This is not the expected result, but it can be a sign
that, for this signal and these bases, the critical points localization for scale 64 is already
good enough, with no gain when we try to increase the precision in this process. However,

the increase in the RMS error metric when we zoom in on a smaller scale is not expected.

According to the data in the tables, the worst result occurs when the pair of Daubechies
bases are selected with the second set of scales (from 1 to 64). The reconstruction results
for this configuration are shown in Figures 3.14 and 3.15, respectively for the ideal and
the quantized cases. The analysis of these figures shows that the high RMS error and low
correlation coefficients are due to errors in the first and last portions of the signal. This can
happen because, for these portions, the Lipschitz exponent is estimated with only one half
of the information, since the local minima are the first and last points of the signal. In this
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case, the error in the Lipschitz coefficient estimation resulted in not only a not so precise
approximation for the polynomial, but also in a change of concavity. It is expected that in
a real signal this “edge effect” might show up again, but not affect the following portions of
the signal, as occurs with the middle portions of the signal in Figures 3.14 and 3.15.
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Figure 3.14: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for db1l and db2
wavelet bases, set of scales from 1 to 64, and ideal (not quantized) values.

3.4.1 Comparison with a standard ADC

In order to compare the results with those of a standard ADC, a simple Simulink model
was used. The standard ADC was modeled by passing the input signal through an ideal
quantizer block and altering its parameters (quantization interval and sample time), and
then measuring the RMS error of the output. Figure 3.16 shows the results in a graph that
compares the number of bits, n, the RMS reconstruction error, and the sampling rate (in
samples per second - sps) of the standard ADC and one example of the proposed wavelet-
based ADC (WT ADC) for the test signal. From the previous analysis, the test signal was
sampled at nine identified critical points, and the Lipschitz exponent, at five maxima or
minima, resulting in 14 samples. Since the signal’s duration is of 1 second, this yields 14
sps. For the set that was evaluated first, that is, gaussian bases and scales from 16 to 64,
with both the amplitude and the Lipschitz exponent quantized with 12 bits, the RMS error
is egaprs = 0.00855. If, however, we choose to quantize the Lipschitz exponent with 4 bits
and the amplitude with 8, the RMS error would increase, but the number of bits/sample
would decrease significantly as well.
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Figure 3.15: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for db1l and db2
wavelet bases, set of scales from 1 to 64, and quantized values.
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Figure 3.16: Number of bits x RMS error x sampling rate

3.5 Summary of the chapter

This chapter presented the system-level development of the wavelet-based analog-to-
digital converter. The first section showed the proposed sampling and reconstruction algo-
rithms. Then, the experimental tests and results were presented, which showed that the
input signal could be recovered with little loss of information with only 13 samples of the
input signal. Also, a high resolution can be achieved with not so high resolution quantiza-
tion of the amplitude and Lipschitz exponent parameters. The next step is to implement
this ADC in circuit-level, which is the object of the next chapter.
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Chapter 4
Circuit-Level Development

In this chapter, the project is studied at circuit-level, starting with the proposed circuit
block diagram and the theory of how each block can be implemented. The following sections
describe the tests and their results. The last section contains a discussion of the results
obtained in the project, both at system- and circuit-level.

4.1 Circuit block diagram

Based on the algorithm in Fig. 3.1, a circuit block diagram is proposed, as shown in
Fig. 4.1.

— Delay

sync,sw

aj

coeff, ty .
WT 14[' > "’in
Vin a tamp amp J

E s et DR i e

coeff, :
WT 2 N o ‘
> S/H

abs log -

Figure 4.1: Wavelet-based ADC block diagram.

The WT of first and second orders of the input signal v;, can be implemented by analog
wavelet filters with the method in Chapter 2. To localize the critical points, the coefficients
line coeff; and coeff,, which are the wavelet coefficients line for scales a; and as, go
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through a comparator, implementing the zero-crossing detection. This outputs the signals
tn and t;,¢, which have transitions at the instants when local maxima or minima occur,
and when inflection points are detected. The amplitudes will be sampled at all these
transitions, so the amplitude sampling is represented by a sample-and-hold block controlled
DY tamp = tn B tint-

The Lipschitz coefficient («) estimation is based on Equation 2.22, and is implemented
by the absolute value block (‘abs’) followed by the logarithm block (‘log’), and then the
division block. The output of this chain is the signal 1pz, which contains the Lipschitz
exponent estimated at all points of v;,. Since the Lipschitz exponent is only sampled at
local maxima and minima, « is obtained by the sample-and-hold block controlled by t,. The
mathematical operations of absolute value and division can be implemented with translinear
circuits working in current mode, the logarithm can be obtained by using MOS transistors

operating in weak inversion [5].

This ends the sampling algorithm implementation in circuit-level. Since the next step in
an ADC is quantization, and in this project we would like to minimize power consumption,
we made a choice to propose a circuit block diagram using only one quantizer, represented
by the block Q. In order to do this, the signals for sampled amplitudes (amp) and for
sampled Lipschitz coefficients («) must be comprised together, without loss of information.
One solution for this is to apply a switch controlled by a synchronization signal, sync, sw.
At local maxima and minima points, both the amplitude and the Lipschitz exponent are
sampled. The signal sync,sw contains pulses at these points, when « should be selected
by the switch. After the pulse, the switch goes back to its prior position, selecting amp
and collecting the amplitude at the maximum or minimum point and at the subsequent
inflection point. The synchronization signal sync,sw is generated based on t., and its
delayed version tapp,q:

sync,sw = (tamp P tamp,a) - tamp,a (4.1)

This process outputs a single signal (v, ), which is then quantized (voutq) and must be
encoded. There are many suitable options for encoding, including the use of binary coding,
and these are not thoroughly discussed in this project.

4.2 Methodology

The tests for the circuit were implemented in CADENCE VIRTUOSO ADE, with XFAB
XC018 technology. The verification methodology for the proposed circuit was to test each
block individually, starting with ideal blocks. After each block is completed, the results
are collected and are processed offline in MATLAB. These results are then compared to
the system results. In this recursive method, some circuit results evidenced the need for
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modifications to the proposed system algorithm, as will be shown in the following section.
Because of this and of other issues and project constraints, the circuit analysis could not
be completed in due time and some parts are left as future work.

4.3 Results

Analyzing the circuit block diagram in Fig. 4.1, we see that the blocks that implement
the wavelet transform and the ones concerning the estimation of the Lipschitz exponent are
the critical components of the circuit. The first blocks to be implemented are the WT ones.

4.3.1 Analog wavelet filter block

The WT is implemented with an analog filter. In order to do so, we must define the
orthonormal state-space representation of the basis we are interested in, which is obtained
by its transfer function. The 6' order transfer function for the first derivative of the
gaussian function, obtained with L, approximation, is available in the paper from Karel 7],
and is expressed as:

—0.089465° — 0.1683s* — 8.32653 + 6.6425? — 139.65

H
s% 4+ 5.927s% 4 30.52s5* 4 83.11s3 + 163.65% + 176.65 + 93.29

gausl (5) =

(4.2)

One way to obtain the second derivative of a gaussian would be to multiply the transfer
function in Equation 4.2 by s, yielding:

—0.08946s% — 0.1683s° — 8.3265* + 6.6425% — 139.65>

H aus =
g 2(5) s8 4+ 5.927s% + 30.52s5% 4 83.11s3 + 163.652 + 176.6s5 + 93.29

(4.3)

However, since the numerator in Equation 4.2 is of 5** order, the transfer function for the
second derivative of the gaussian function, shown in Equation 4.3, is a transfer function with
the same number of zeroes and poles. Even though this would still be a proper function,
the numerator coefficient of highest order is significantly smaller than the others, and so
the transfer function can be approximated to:

24 () —0.1683s* — 8.32653 + 6.642s? — 139.65s
5) = —
gausl s% +5.927s% 4 30.52s5* + 83.11s% + 163.65% + 176.65 + 93.29

(4.4)

Hence, the transfer function for the second derivative of the gaussian function is ex-
pressed as is in Equation 4.5.

24 —0.1683s° — 8.3265* + 6.642s> — 139.65>

— 4.5
gaus2(9) s% + 5.9275s% 4 30.52s* 4 83.11s% 4 163.65% 4+ 176.65 + 93.29 (4:5)
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The impulse responses for the transfer functions in Equations 4.2 and 4.4 are shown in
figure 4.2. The impulse response is very close to the theoretical response expected for the
first derivative of the gaussian function. The effect of the approximation in the numerator
is observed as a slightly more oscillatory behaviour in the start of the signal in Figure 4.2
(b) when compared to the signal in Figure 4.2(a).
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Figure 4.2: First derivative of a gaussian (gausl) for sixth order Lo approximation for (a) original transfer

function Hgays1(s) (b) approximated transfer function H, ;ausl(s)'

The impulse responses for the second derivative of the gaussian function, the transfer
functions in Equations 4.3 and 4.5, are shown in Figure 4.3. The impulse responses resemble
the original gaus2 function, however, there is an assymetry in the amplitude of both peaks
of the impulse response, in both cases of Figures 4.3(a) and (b). Then, this assymetry is
either a consequence of the Ly approximation or of the procedure of obtaining the second
derivative by multiplying the first derivative transfer function by s. As observed for the
cases of gaus] in Figure 4.2, the approximation in the order of the numerator in the transfer
function adds a small error in the start of the signal and a slightly more oscillatory behaviour

to the transfer function impulse response.

Due to the fact that the differences between the original transfer functions, Hgqus1(s)
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Figure 4.3: Second derivative of a gaussian (gaus2) for sixth order Ly approximation for (a) original transfer

function Hgaus2(s) (b) approximated transfer function H;ausz(s).

and H,,s2(s), and their approximations, H;ausl(s) and H;aus?

to implement the filters with the approximated transfer functions. Having decided which
transfer functions to apply, the next step is to obtain an orthonormal state-space represen-
tation of the transfer functions, and thus obtain the coefficients to implement the Gm-C
filter. The orthonormal state-space representation for H;ausl(s) in Equation 4.4 is obtained

with a MATLAB function (available in the Appendix IT). The resulting matrices are:

(s), are very subtle, we chose

0 118 0 0 0 0 0
~1185 0 1637 0 0 0 0
A_| 0 -1esT 0 2007 0 0 s_| 0
0 0  -2007 0 2431 0 0
0 0 0  -2431 0 4.062 0

0 0 0 0 —4.062 —5.927 1.374]

C =1-0.1948 —2.424 0.2941 —0.5214 —0.03016 —0.06514]

ol




D =10]

The orthonormal state-space representation for the transfer function Hg/}aus2(s>7 in Equa-
tion 4.5, is obtained by the same procedure as:
[0 1.185 0 0 0 0 | [ 0
—1.185 0 1.637 0 0 0 0
—1. 2.
A — A — 0 637 0 007 0 0 Byuwss — B 0
0 0 —2.007 0 2.431 0 0
0 0 0 —2.431 0 4.062 0
|0 0 0 0 —4.062 —5.927] 1.374

Csz = [—4.617 07125 7.609 —0.6636 —1.492 —0.1225]

DgausQ =D = [O}

As expected, matrices A and B in the state-space representation for the second derivative
of the gaussian function are the same as the ones in the representation for the first derivative,
matrix D remains null, and only matrix C has different coefficients.

These matrices coefficients are the values of the transconductances of the Gm-C elements
in the circuit schematic. Both WT-1 and WT-2 filters can be implemented in the same
schematic by placing the matrices Cgaus1 and Cgayso in parallel, as shown in the schematic
in Figure 4.4. The first schematic simulations were run with ideal elements available in the
software library. The ideal transconductor block was implemented using a voltage-controlled
current source (vees block). The order of the transconductances is adjusted according to
the capacitances and the operation frequency. The initial configuration was of C' = 2pF
and transconductances in the order of nA/V.

From this point on, altering the capacitances alters the operation bandwidth, which
corresponds to altering the WT scale. The capacitance values that were chosen for the
simulations were: C' = 2, 8, 16, 32, 64 and 128pF. The testbench schematic for these
simulations is the one shown in Figure 4.5, and consists in cascading the WT analog filters
for each scale.

The system’s impulse response is shown in Figure 4.6(a) (transient simulation result) and
(b) (AC simulation result), for gausl. For gaus2, the transient simulation results are shown
in Figure 4.7(a) and the AC simulation results are shown in Figure 4.7(b). The impulse
responses are obtained when a pulse of high amplitude and short duration is applied as an
input signal. The expected results are versions of the waveforms shown in Figures 4.2(b)
and 4.3(b), expanded (for larger scales) or compressed (for smaller scales). The frequency
responses show how larger scales correspond to lower frequencies, and how smaller scales
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Figure 4.4: Circuit implementation of gaussian wavelet filters.
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Figure 4.5: Testbench schematic for WT-1 and WT-2 gaussian filters.

correspond to higher frequencies. The impulse responses present the expected behaviour,
with the symmetry error in the second derivative of the gaussian function being observed
again.

Changing the input signal from an impulse to the test signal, the testbench outputs are
the first- and second-orders wavelet transform coefficients lines for each scale they represent.
Since there could not be established any direct mathematical relation to identify which
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Figure 4.6: Impulse responses for gausl.

(b) AC simulation results.

frequencies correspond to which values of the scales used during the system simulation, the

scales for the circuit results are identified by the values of the capacitances in pF.

Figure 4.8(a) shows the coefficients line for each scale/capacitance, while Figure 4.8(b)
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Figure 4.7: Impulse responses for gaus2.
shows the frequency response in each case for gausl. It is worth noting that the zero-

crossing of the coefficients line for the smallest scale, a = 2 or C' = 2pF’, identifies the
maxima and minima of the test signal approximately at the instants t = 0.2s, t = 0.5s, and
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t = 0.7s. This is in conformity with the real values obtained from the system simulations,
in Table 3.2: t = 0.211s, t = 0.446s, and t = 0.700s.
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Figure 4.8: First-order wavelet transform of the test signal using analog wavelet filters with gaussian basis.

The coefficients lines for gaus2 are shown in Figure 4.9(a), and the frequency response is
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shown in Figure 4.9(b). Observe how the peaks in the coefficients lines happen at different
instants in time. This delay was not observed in the system simulations and affects the
algorithm for Lipschitz exponent estimation, since the estimated « at a given instant, when
a critical point of interest occurs, will not correspond to its real value. When exporting the
coefficients line in Figure 4.9 to MATLAB and running the system-level tests, the Lipschitz
coefficient at the local maxima and minima (including the first and last points of the signal)
were estimated as: 0.5, 1.07, 1.6, 0.96, and 1.63. The real values obtained at system-level,
according to the data in Table 3.2, are, however: 1.25, 1.77, 1.997, 0.60, and 1.02.

Since there were some flaws in the gaussian function approximation for the sixth order
Ly approximation, the following subsection presents a second attempt to implement the
gaussian wavelets in analog filters, applying a higher order approximation obtained with
the Padé method.
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Figure 4.9: Second-order wavelet transform of the test signal using analog wavelet filters with gaussian

basis.
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4.3.1.1 A higher order approximation

In this subsection, the same tests from the previous subsection were repeated for a 10
order [6/8] Padé approximation, obtained from the book by Haddad and Serdijn [5]. The
transfer function for gausl, in this case, is the one in Equation 4.6:

—4.48205% — 34.4465° + 444.325* — 4708.15% + 169775 — 528295 + 3.6809
—0.771045" — 15.6275” — 158.575% + 1043.7s7 — 4880.8s° — 167875°—
—42703s" — 78851s® — 100660s* — 798805 — 29823

H

gausl (S) -

(4.6)
Multiplying Equation 4.6 by s yields the transfer function for gaus2:

—4.48208" — 34.4465% + 444.325° — 4708.1s* + 16977s> — 5282952 + 3.6809s
—0.771045° — 15.6275% — 158.57s® + 1043.7s7 — 4880.8s% — 16787s°—
—42703s* — 78851s% — 10066052 — 79880s — 29823

Hgaus2 (5> =

(4.7)

The impulse responses to the transfer functions in Equations 4.6 and 4.7 are shown in
Figure 4.10. In this case, there was no need for approximations in the first derivative transfer
function in order to produce the transfer function for the second derivative. Both impulse
responses correspond to the theoretical expected behaviour of the gaussian functions. The
asymmetry observed in the 6" order L, approximation for gaus2 is not observed for this

approximation.

The orthogonal state-space representation for the gausl filter is:

0 1.071 0 0 0 0 0 0 0 0
—1.071 0 1.492 0 0 0 0 0 0 0
0 —1.492 0 1.799 0 0 0 0 0 0
0 0 —1.799 0 2.069 0 0 0 0 0
A 0 0 0 —2.069 0 2.379 0 0 0 0
0 0 0 0 —2.379 0 2.836 0 0 0
0 0 0 0 0 —2.836 0 3.641 0 0
0 0 0 0 0 0 —3.641 0 5.380 0
0 0 0 0 0 0 0 —5.380 0 11.78
| 0 0 0 0 0 0 0 0 —11.78  —20.27]

BT=10 000000 0 2540
Claust = [0.9739 2220 —1.216 0.6866 —0.1700 0.02687 0.009916 0 0 0]
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Figure 4.10: First (top) and second (bottom) derivatives of the gaussian function for 10-th order filter.

D =10]

As expected for the second derivative, matrices A and B are the same as the ones for

the first derivative, with only matrix C being modified:

Coaus2 = [—2.378 2.857 2.077 —1.835 1.357 —0.4326 0.07621 0.0361 O O]

The circuit implementation of these filters follows the same method that was applied
for the sixth-order filter in Figure 4.4. The value of the capacitances determine the W'T
filter bandwidth. Thus, different capacitances correspond to different frequencies, which
correspond to different scales. The chosen values for the capacitances are the same as
before: 2, 8, 16, 32, 64 and 128 pF, and the transconductances are in the order of nA/V.

Figure 4.11 shows the impulse responses for gausl at all tested scales in time and fre-
quency domain obtained with the circuit implementation. Figure 4.12 shows the results of
the same tests for gaus2. The first derivative of the gaussian function is clearly identified
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in the impulse responses in Figure 4.11(a), as well as the second derivative, gaus2, in the

impulse responses in Figure 4.12(a). The frequency responses for each case are shown in
Figure 4.11(b) and Figure 4.12(b).
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Figure 4.11: Impulse response for gausl for 10-th order filter.
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Figure 4.12: Impulse response for gaus2 for 10-th order filter.
The filter response to the test signal for the first-order wavelet transform are displayed in

Figure 4.13. By evaluating the zero-crossing of the coefficients line for a = 2, or C' = 2pF’, in
Figure 4.13(a), we can identify the local maxima/minima of the test signal at the instants:
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t = 0.23s, t = 0.4s, and t = 0.7s. These are closer to the real values in Table 3.2—
t =0.211s, t = 0.446s, and t = 0.700s— than the ones obtained in the previous subsection
for the 6' order Ly approximation.

Figure 4.14 shows the responses to the test signal for the second-order wavelet. Notice
that the delay between the coefficients lines in Figure 4.14(a) is larger than in the results
obtained for the 6" order approximation. Not only can we not measure the Lipschitz
exponent in a given instant, but also it is not possible to estimate a for the final portions of
the signal, since the coefficients line for the largest scale no longer carries this information.
This variation in the pattern of the results for the coefficients lines for the second-order W'T
implemented by analog wavelet filters is an obstacle to implement a computational algorithm
both for estimating the Lipschitz exponent and for the identification of the inflection points.

4.3.2 Lipschitz exponent estimation

With the differences observed, the Lipschitz exponent can no longer be estimated by
sampling the coefficients line at the same point (the point identified as the position of a
local maximum or minimum), as was done in Chapter 3. In an attempt to verify if the
coefficients lines for the second order W'T, obtained in the previous subsection for L, and
Padé approximations, allow the correct estimation of the Lipschitz exponent, we manually
calculate the values of a by evaluating the peaks of the coefficients lines in Figures 4.14(a)
and 4.9.

The extrema of each coefficient line for WT2 can be identified by taking the zero-crossing
of the corresponding coefficients line for WT1. Before, in the system simulations results,
there was no delay and these points of interest were identified at the maxima and minima
points’ positions. Now, because of the delay, these points are localized at such instants only
for the smallest scales. The choice of which extrema to observe begins with identifying which
ones on the coefficients line for scale a = 2 are closer to the zero-crossing positions of the
gausl coefficients line for a = 2. Then, the amplitude of these peaks across the other scales
is measured and the Lipschitz coefficient at each of these points can be estimated by using
the same method applied in Chapter 3. Also, the following results include the estimated
Lipschitz coefficient at all maxima and minima points, except the initial and final points of
the signal. For the test signal, this means that only three points were evaluated, identified
hereafter as points 1, 2 and 3.

Table 4.1 contains the amplitude and positions of the coefficients lines’ extrema at all
tested scales for the 6 order L, approximation. The positions at which these amplitudes
were sampled demonstrate the presence of a delay, and allow a comparison between the
position of a peak in the coefficients line for the second-order WT and the position of a
zero-crossing in the coefficients line for the first-order WT. The Lipschitz coefficient values
that were estimated with the data in Table 4.1 are shown in Table 4.2. This table contains
the system results as a reference, which are identified as o,y and ¢,.f; as well as the mean
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Figure 4.13: First-order wavelet transform for the test signal and gausl wavelet basis in selected scales,

using a 10*" order Padé approximation.

value of « for each pair of consecutive scales, @; the maximum value of a for each pair

of consecutive scales, au,q.; and these values subtracted by 0.5. In theory, the estimated
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Figure 4.14: Second-order wavelet transform for the test signal and gausl wavelet basis in selected scales,
using a 10*" order Padé approximation.

Lipschitz exponent should be the one in the column & — 0.5. However, the closest values
to the references are observed in the column a: for points 1 and 3, the results are fairly



close to ay.r; however, this is not true for o in point 2, which is estimated way below its
reference value of 1.997. It is also worth noting that the positions of the extrema in the
coefficients line for points 1 and 3 correspond to the reference ones, which does not happen

for point 2 as well.

Table 4.1: Extrema of the WT2 coefficients lines across scales for the analog filter with sixth order transfer

function approximation.

a ampl (10710 A)  t1 (s) | amp2 (1071 A) 2 (s) | amp3 (10719 A) t3 (s)
128 -14.74 0.4415 6.985 0.6550 -6.235 0.9337
64 -5.421 0.3231 2.605 0.5035 -4.136 0.8168
32 -1.466 0.2611 7.418E-1 0.4327 -2.699 0.7587
16 -3.465E-1 0.2304 2.104E-1 0.4034 -1.764 0.7292

-6.182E-2 0.2184 7.824E-2 0.3861 -1.139 0.7151

2.692E-2 0.2101 3.754E-2 0.3812 -3.993E-1 0.7037

Table 4.2: Lipschitz exponents obtained with manual calculations for the analog filter with sixth order

transfer function approximation.

point t (s) ‘ Qref  tref(s) ‘ a a—0.5 | onar  maz — 0.5
1 0.2101 | 1.7654 0.2110 | 1.699 1.199 | 2.487 1.987
2 0.3812 | 1.997 0.446 | 1.402 0.902 1.818 1.318
3 0.7037 | 0.6024 0.700 | 0.642 0.142 | 0.756 0.256

The results obtained for the 10" order Padé approximation are displayed in Tables 4.3
and 4.4, in the same fashion as the results for the 6'" order approximation. The analysis
of the results for this approximation yields similar conclusions: the best results for the
estimated Lipschitz exponent are obtained by taking the mean of the calculated values for
every pair of scales and not subtracting 0.5 from this result. Also, the values for a for points
1 and 3 are acceptable when compared to a,.¢, while there is significant error for point 2.
This also happens for the positions of the coefficients line extrema (t) when compared to
the reference position values (t,.f). There is no data for the third point at scale a = 128

because of the delay observed.

Comparing the results from Tables 4.1 and 4.3, we notice that the sampled values for
amplitude are similar, indicating again that both transfer function approximations are
good in general, differing in some details. Also, comparing the results from Tables 4.2
and 4.4, we notice that there is a larger difference between the sampling position and the
reference position for point number 3 for the tenth order approximation, as well as the
difference between & and the reference value for point number 1, also for the tenth order

approximation.
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Table 4.3: Extrema of the WT2 coefficients lines across scales for the analog filter with tenth order transfer

function approximation.

a | ampl (10719 A)  ¢1 (s) | amp2 (10710 A) t2(s) | amp3 (10710 A) 13 (s)
128 -11.26 0.5873 5.929 0.8216 — —
64 -5.39 0.3922 2.587 0.5808 -3.14 0.8928
32 -1.639 0.2965 7.982E-1 0.4764 -2.059 0.7976
16 -4.149F-1 0.2477 2.28F-1 0.4284 -1.347 0.7477
-8.639E-2 0.2243 7.636E-2 0.4072 -8.703E-1 0.7240
1.815E-2 0.2108 2.886E-2 0.3897 -3.186E-1 0.7063

Table 4.4: Lipschitz exponents obtained with manual calculations for the analog filter with tenth order

transfer function approximation.

point  t(s) ‘ Qref  tref(s) ‘ Q a—0.5| ez  Qmaz — 0.5
1 0.2108 | 1.7654 0.2110 | 1.630 1.130 2.264 1.764
2 0.3897 | 1.997 0.446 | 1.396  0.896 1.808 1.308
3 0.7603 | 0.6024 0.700 | 0.644 0.144 | 0.725 0.225

These results show that the Lipschitz exponent estimation, performed manually with
the data from the extrema of the coefficients lines for gaus2 across scales, does not behave as
expected from the theory. Also, there were only acceptable values of a for two of the three
points studied in this subsection. This characterizes a new limitation to the system. The
research of why this happens and of other ways to estimate the Lipschitz exponent is left
as future work. Other alternatives to estimate the signal’s morphology can be investigated
in the future, as well; one possibility would be to apply a form of interpolation, e.g. spline
interpolation, to reconstruct the signal using the identified critical points information.

4.4 Discussion

In Chapter 3, the sampling algorithm was introduced. The test results show that the
test signal’s critical points are identified by the algorithm, and that the signal morphology
around the local maxima and minima are well described by the estimated Lipschitz expo-
nents. The tests also show that a signal can be recovered after sampling with the proposed
polynomial reconstruction algorithm, with high correlation coefficients and low RMS error
verified between the original and reconstructed signals. This also characterizes the first
limitation of this method, however: the signal can not be recovered from its samples using
a traditional Digital-to-Analog Converter (DAC). The polynomial reconstruction algorithm
was only implemented in system-level. Nevertheless, the proposed system processes the sig-
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nal with the wavelet transform, yielding as outputs the main characteristics of the signal,
which can be useful for applications that do not need the analog signal to be recovered, but
simply to be analyzed.

The tests to verify the quality of the reconstructed signal and the behaviour of the
sampling scheme were run for the same scheme, but for different wavelet bases, sets of
scales, and quantization resolutions. The results confirm some expectations: first of all,
since the wavelet transform measures the correlation between a function and compressed
or expanded versions of the wavelet basis, depending on the scale parameter, the critical
points identification yields better results for the pairs of bases with a higher correlation
with the input signal. Since the test signal did not present any sharp transitions and is
in part composed of a gaussian function, the best results were verified for the pairs of
gaussian wavelet bases, when compared to the pairs of Daubechies and biorthogonal bases.
Still, the results for these bases was satisfactory in general, apart from the problem in the
Lipschitz exponent estimation in the borders of the signal (first and last points, which were
sampled as local minima), which altered the concavity of the signal in the first and last

reconstruction polynomials.

Other results, even though not expected, led to interesting conclusions: first of all, the
local maxima and minima points identification was expected to be more accurate for the
a smaller scale, but there were no significant differences from the results with a = 1 and
a = 16, what shows that, for this signal, good results can be obtained for a scale as small as
16. Also, the Lipschitz exponent estimation for the set of 64 scales should yield better results
than those obtained with the set of only four uniformly distributed scales. Again, there
were no significant improvements in the results. Since the wavelet transform is implemented
in circuit-level by analog wavelet filters, these results indicate that it could be possible to
design filters that operate in not so high frequencies to localize the maxima and minima,
and that a filter bank of four wavelet filters can be sufficient to estimate the morphology
of the signal, instead of a bank with 64 filters. Regarding the effects of the quantization
resolution on the samples, an interesting result was observed: the system, independently
of the pair of wavelet bases applied, appears to be robust to quantization, since the results
obtained for both the sampled amplitudes and Lipschitz coefficients at medium resolution
(8 bits) are already of high quality, and very close to the results labeled as ideal, which do
not take into account the effect of quantization. For the Lipschitz exponent, we are able to
go even further in this analysis and say that a resolution of 4 bits is enough to describe the
morphology of the signal with little error and high correlation.

These results were achieved with the sampling of the amplitude at nine critical points
and of the estimated Lipschitz exponent at five of them, the local maxima and minima,
a total of 14 samples. Since the signal has a duration of 1s, this yields 14 sps. With
Figure 3.16, we can estimate that the Nyquist rate for this signal is around 40 sps, since
for sampling rates equal to or higher than this, the recovery error is practically zero. This
means that the sampling rate for this signal is approximately 3 times sub-Nyquist.
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In Chapter 4, a circuit block diagram to implement the sampling algorithm was pro-
posed. The first block to be tested was the one that implements the wavelet transforms of
first and second orders, the analog wavelet filters. In order to do so, the transfer functions
for the gaussian wavelet bases, which yielded the best results in the system simulations,
were obtained via a 6™ order L, approximation and a 10" order Padé approximation.
After obtaining the transfer functions, their orthonormal state-space representation matri-
ces were determined, and the matrices coefficients were implemented as the values of the
transconductor elements of a Gm-C filter.

The impulse response for the first order wavelet transform was correct for both approx-
imations, yielding compressed and expanded versions of the gausl wavelet basis. However,
the impulse response of the second order wavelet transform filter for the Ly approximation
was asymmetric, what does not happen in the gaus2 wavelet basis. This was the main rea-
son why a higher order approximation for the transfer function was included and, in fact,
the impulse response for the Padé approximation of the second derivative of the gaussian
function was symmetric. The transfer function for gaus2, in both cases, was obtained by
multiplying the transfer function for the first derivative by s, instead of performing the
approximation algorithms again.

When changing the input signal of the filters from an impulse to our test signal, the filter
outputs must be the coefficients lines for the first and second order wavelet transforms. Since
each filter operates at a different frequency, determined by the value of the capacitances,
a bank of filters with different frequencies yields the coefficients lines at different scales.
The results for the filters designed with both transfer function approximations appeared to
be correct: the zero-crossings of the coefficients line at scale a = 2 for gausl identified the
positions of local maxima and minima, and the zero-crossings of the coefficients line at scale
a = 128 for gaus2 identified the inflection points. However, the coefficients lines present a
delay across scales that was not observed in the system simulation results. This delay affects
the Lipschitz estimation algorithm, since the extrema of each coefficient line can no longer be
identified at the local maxima and minima positions. One way to identify their positions is
to observe the zero-crossings of the first order WT for all scales, and not only at the smallest
scale. However, the observed delay can also omit some of these extrema, as was the case
for the a = 128 coefficients line for the 10" order Padé approximation. This configures
an obstacle in the development of a generic test, since there is no way to assure how this
delay will affect the coefficients line for different input signals, bases, and transfer function
approximations. In order to verify if the Lipschitz exponent could be correctly estimated
by the extrema of the coefficients lines, these calculations were performed manually, and
again yielded some unexpected results, since the values did not always correspond to the
ones obtained in the system simulations and, in the cases when they did, they did not
correspond to the ones obtained following the exact theoretical mathematical expression.

At last, there are some comments to be done regarding the circuit’s total power con-
sumption. Since the circuit implementation has not been completed, we cannot calculate the
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total power consumption for the ADC. However, there are reasons to believe that this ADC
should be suited for low-power applications. When evaluating the circuit block diagram in
Figure 4.1, it is clear that many components are the same as the ones present in traditional
ADC circuits: sample-and-hold blocks, comparators, logic gates. References |5, 27| show
that it is possible to implement analog wavelet filters with low power consumption, with
the same approach that was used in the presented project development. The Lipschitz
exponent estimation is based on its mathematical definition. The operations of absolute
value and division can be implemented with translinear circuits working in current mode,
and the logarithm operation result can be obtained by using MOS transistors operating
in weak inversion. Therefore, the proposed circuit should not dissipate much more static
power than does the circuit of a traditional ADC. Furthermore, the dynamic power should
be smaller than the one for a traditional ADC. The dynamic power is expressed as CfV2,
where C' is the capacitance between the output node and ground, f is the frequency, and
Viq is the supply voltage. The system-level results indicate that the sampling frequency
necessary to represent and recover the signal is of 14 samples per second, roughly three
times the Nyquist sampling rate. This means that the proposed wavelet-based ADC should
dissipate approximately one third of the dynamic power dissipated by a Nyquist ADC for
the same signal.

Moreover, an event-based sampling scheme can be advantageous when the input signal
is sparse: for example, a signal such as an electrocardiogram signal has its information of
interest densely located at its peaks, which are followed by long moments of nearly constant
behaviour. Adaptive sampling allows such a signal to be sampled at a high rate during the
peaks and at a low rate during the constant portions, while uniform sampling would acquire
unnecessary samples of the latter. Another advantage of the proposed ADC is that it does
not only convert the signal, but it also computes the wavelet-based analysis of the signal
without the need of a digital signal processing block, which is necessary when the digital
wavelet, transform is applied.
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Chapter 5

Conclusion

Analog-to-digital converters are fundamental components of the digital signal processing
chains. Most of the ADCs in common appliances today follow the uniform sampling scheme
obeying the Nyquist criterion. This project proposes a novel ADC with a wavelet-based
sampling scheme, making use of the signal compression and regularity detection properties
of the wavelet transform and inspired by the idea of undersampling, asynchronous sampling,
and low power performance, uniting the fields of research of different groups.

The converter’s system-level analysis, in Chapter 3, shows that the sampling algorithm
correctly identifies the information necessary to represent the signal. To verify this, a poly-
nomial reconstruction algorithm was proposed, and the results show low error and high
correlation values between the input signal and the reconstructed signal. Also, the results
allow a comparison between the effects of using different wavelet transform parameters
(bases and scales) and different quantization resolutions to the quality of the signal recon-
struction result. As expected, a basis with higher correlation with the input signal yields
better results, as was the case of the gaussian wavelet bases with relation to the input test
signal, when compared to the other wavelet bases in the tests. Also, the smaller the scale,
the better the identification of maxima and minima points should be, although, for the test
signal, there was not much difference between the two smallest scales of the tested sets, 1
and 16. A good Lipschitz coefficient estimation could be achieved with only four different
scales, with no significant changes when compared to the results obtained with 64 scales.
One unexpected result was that an 8-bit resolution for the amplitude values and a 4-bit
resolution for the Lipschitz exponent are enough to yield a very good to high quality result.

Chapter 4 contains the circuit-level analysis. The wavelet transform is implemented with
analog wavelet filters, which were evaluated for two different approximation methods for the
transfer functions of the gaussian wavelet bases: the L, method and the Padé method. The
orthonormal state-space representation for each of the transfer functions obtained with these
approximations were used to determine the values of the transconductances that compose
the Gm-C filters, which implemented the first- and second- order wavelet transforms. The
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impulse responses of the simulated filters were correct and in accordance to the expected
behaviour, that is, versions of the first- and second-order wavelet bases, compressed for
lower scales and expanded for larger scales. When the input signal of the filter is the test
signal, the filter outputs the coefficients lines for each scale for the first- and second-order
wavelet transforms of the test signal. Regarding the critical points identification, the results
obtained with both approximations were similar and in conformity to the theoretical results.
However, a delay that grows larger with the scales was observed in these results, and not
in the system simulation results. This delay affected the Lipschitz exponent estimation,
which had to have its algorithm adapted in order to be performed. Still, the results did
not always correspond to the theoretical expected value. This problem could not be further
investigated or fixed in due time, and is left as future work.

This project also resulted in a published conference paper at ISCAS, the IEEE Interna-
tional Symposium on Circuits and Systems, available in the IEEEXplore database [28].

5.1 Future works

The complete circuit analysis is left as future work. The investigation of the unexpected
behaviour of the coefficients lines for the second order WT in the circuit simulation is
included in the complete circuit analysis, as well as the study of possible alternatives not
only to the circuit that was implemented, but also to the algorithm that requires the
Lipschitz exponent estimation to implement the signal reconstruction. The complete circuit
analysis will also allow a good estimation of the total power consumption, to determine
if the proposed ADC is suitable for low-power applications, or if there are other better
applications for it. Another future work includes the circuit-level implementation of the
polynomial reconstruction algorithm, since it has only been implemented in system-level
and the proposed ADC’s outputs do not allow signal reconstruction with conventional
DACs.

Regarding the system-level implementation, a possibility of future work is the investi-
gation of a method to identify the inflection points which does not need approximations.
Also, the tests run in this project only considered the effect of linear uniform quantization;
future works can include the system simulations with other quantizer topologies.
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I. RESUMO ESTENDIDO EM PORTUGUES

Introducao

Os conversores analogico-digitais sao trasidicionalmente compostos por quatro blocos:
um filtro anti-aliasing; um amostrador; um quantizador; e um codificador. Normalmente,
o sinal é amostrado a uma taxa constante e uniforme, obedecendo ao Critério de Nyquist-
Shannon. Apesar de ser este o processo que guia o funcionamento de conversores A/D em
diversas aplicacoes comerciais na atualidade, ele estabelece apenas uma condicao suficiente,
e nao necessaria, para que um sinal seja amostrado de forma que possa ser recuperado sem
perdas posteriormente. Vale lembrar, ainda, que o processo de quantizacao, que faz parte
do processo de conversao analdgico-digital, ¢ um processo que acarreta, necessariamente,

perda de informacao.

Outras formas de realizar a amostragem de um sinal sao estudadas em outros campos
de pesquisa, entre eles, podemos destacar o compressive sensing (CS) e o estudo de conver-
sores assincronos, como os conversores que operam por level-crossing. Este projeto propoe
um conversor A /D com amostragem assincrona baseada em propriedades da transformada
wavelet (WT), com vistas a reduzir o consumo de poténcia do circuito. Esse processo
de amostragem ¢ realizado identificando-se os pontos criticos do sinal por meio do pro-
cessamento com a transformada wavelet. Essa informacao, juntamente com a descricao
da morfologia do sinal nos trechos entre esses pontos, permite representar o sinal de uma
forma que leve em consideragao suas propriedades e peculiaridades. A morfologia do sinal
é descrita pelo coeficiente de Lipschitz, que também pode ser estimado com auxilio da WT.
A Figura I.1(a) ilustra o processo de identificacdo de maximos e minimos locais e pontos de
inflexdo para um sinal de teste, e a Figura I.1(b) mostra uma fung¢ao cujo comportamenteo
varia de acordo com o coeficiente de Lipschitz. A expressao dessa fungao é o ponto de par-
tida para o desenvolvimento de um algoritmo de reconstrucao polinomial, também proposto
neste projeto, que permite avaliar o algoritmo de amostragem sugerido. A Figura I.1(a)
também ilustra como esse algoritmo funcionaria, reconstruindo o sinal por partes com os

polindmios.
Referencial teodrico

A transformada wavelet tem dois parametros: escala a e posicao u, como expresso pela
Equagao 1.1.

W f(u, a) = %/: F(#) 0 (i“) dt. (1)

A propriedade da WT que permite que ela seja usada para a identificacao de pontos

criticos é a de que ela funciona como um operador diferencial de n-ésima ordem. Assim,
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Figura I.1: Informacao amostrada do sinal de entrada pelo ADC proposto.
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determinando os coeficientes que sao iguais a zero para uma transformada realizada com
uma base com um wvanishing moment (n = 1), os pontos méaximos e minimos do sinal sao
localizados. Analogamente, para um abase com n = 2, identificam-se os pontos de inflexao
do sinal.

A escolha das escalas permite ajustar a resolucao tempo-frequéncia da transformada.
Para escalas pequenas, a base é comprimida e sao identificados os detalhes do sinal, ou
seus componentes de mais altas frequéncias; para escalas menores, a base é expandida e sao
identificados os componentes de baixa frequéncia. Assim, na identificacdo de méaximos e

minimos, é escolhida a menor escala; para os pontos de inflexao, é escolhida a maior escala.

O coeficiente de Lipschitz a pode ser estimado por um aexpressao derivada de sua
definicao, onde A > 0 é uma constante:

1
logo|W f(u,a)| < logsA+ (a + 5) logaa (I.2)

A funcao da Figura I.1(b) tem sua expressao definida pela Equacao 1.3, para valores de
« entre 0.2 e 2.

f@) =1 =1 (I.3)

Desenvolvimento

O fluxograma do processo de amostragem é mostrado na Figura 1.2. Depois de serem
escolhidas as bases e escalas da transformada wavelet, as transformadas de primeira e
segunda ordem sao computadas para a identificacao dos pontos criticos e para o calculo do
coeficiente de Lipschitz. Algumas aproximagoes sao necessarias na identificacdo dos pontos
de inflexao: a deteccao de maximos e minimos tem preferéncia sobre a detecgao de pontos de
inflexao; ainda, o algoritmo assume que hi apenas um ponto de inflexao entre um méximo
e um minimo consecutivos. Assim, se for identificado mais de um ponto de inflexao em um
trecho, a posicao da inflexao é aproximada para a posicao média dos pontos detectados; se
nao for identificado nenhm ponto de inflexao no trecho, a posicao da inflexao é aproximada
para o ponto médio do trecho. As saidas do sistema de amostragem sao a amplitude nos
pontos criticos e o coeficiente de Lipschitz apenas nos maximos e minimos. Apods o processo
de amostragem, essas saidas devem ser quantizadas e codificadas.

A Figura 1.3 mostra o diagrama de blocos do circuito proposto para implementar o
ADC, que segue os mesmos passos do fluxograma da Figura 1.2. A transformada wavelet de
primeira e segunda ordens para o sinal de entrada vy, é calculada, e as linhas de coeficientes
das escalas a; e ag, respectivamente, coeff; e coeff,, passam por um comparador, que
implementa a deteccao de zero-crossing. Isso gera os sinais t; e tins, que identificam os
méaximos e minimos locais, e os pontos de inflexdo. As amplitudes sao amostradas em todos

os pontos criticos, o que é representado pelo bloco de sample-and-hold controlado por tapp.
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Figura 1.2: Algoritmo de amostragem.

O coeficiente de Lipschitz é estimado em todos os pontos do sinal pela implementacao de
sua definicao matematica com os blocos ‘abs’, ‘log’, e divisor, resultando no sinal 1pz, que
é amostrado apenas nos maximos e minimos com o bloco de sample-and-hold controlado
por t,. A logica de chaveamento, controlada por sync,sw, é incluida com a intencao de se
usar apenas um quantizador para as informacgoes de amostragem de amplitude (amp) e do
coeficiente de Lipschitz («), a fim de se reduzir o consumo de poténcia do circuito. Assim,
um tnico sinal, voy, ¢ quantizado (vontq) € codificado.

A transformada wavelet é implementada com filtros analogicos. As funcdes de transfe-
réncia sao aproximadas usando dois métodos diferentes: o método Ls, com uma aproximacao
de sexta ordem, e o método de Padé, com uma aproximacao de décima ordem. Apods se
obter a aproximagcao da funcgao de transferéncia para os filtros de primeira e segunda ordem,
a sua representacao ortonormal no espaco de estados é calculada, permitindo que o filtro
seja implementado utilizando-se a topologia Gm-C (transcondutancia-capacitancia).

Para verificar que a informacao extraida do sinal é suficiente para que ele seja recuperado,
é desenvolvido também um algoritmo de reconstrugao polinomial, expresso pela Equagao 1.4,

na qual:
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Figura 1.3: Diagrama de blocos do circuito proposto para o conversor A /D.

A; e A, sao as amplitudes amostradas nos pontos de inflexao, e nos pontos de méaximos

e minimos locais;

a,, € o valor do coeficiente de Lipschitz estimado nos maximos e minimos locais;

to e ty sao so instantes inicial e final do trecho que o polinémio P, reconstroi;
e 1 & o suporte no tempo de P, i.e. p =1ty — to;

e 7 é a posicao do maximo ou minimo local.

T—1
7

P(t) = Ai + (A — Ay) (1 - a,,,) .t <t <ty (1.4)

Adicionar 7 e p & expressao da Equacao 1.4 permite o deslocamento no tempo, enquanto
o deslocamento em amplitude é garantido pela multiplicagdo por (A,, — 4;), seguida da
soma de A;. (A, — A;) também indica a concavidade do trecho.

Resultados

A Figura [.4 mostra o resultado da reconstrucao do sinal com as bases gaussianas, menor
escala 16, maior escala 64, para o sinal de teste, para quantizacao de 8 bits. Neste caso, o
coeficiente de correlacao entre os sinais original e reconstruido é de 0.989, e o erro RMS de
reconstrucao é de 0.00874.

Conclusao

Este projeto apresenta um conversor analogico-digital baseado em transformada wavelet.
Esse conversor é avaliado a nivel de sistema e a nivel de circuito. Para que o método

de amostragem proposto possa ser verificado, é desenvolvido também um algoritmo de
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Figura I.4: Sinal de entrada (vermelho) e sua reconstrucéo (amarelo, linha tracejada).

reconstrucao polinomial. Os resultados da implementacao a nivel de sistema mostram que
é possivel recuperar o sinal de entrada com alta qualidade, atingindo-se alta correlagao e

baixo erro de reconstrucao.
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II.

II. MATLAB SCRIPTS

This Appendix contains the MATLAB scripts used in the project, with due credit.

1 Sampling algorithm
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close all;
clear;

clc;

o\

% 1. Generate the test signal.

format long;

t = linspace(0,1,1000);

sig = gaussmf (t,[0.1 0.2])+fz_p_sandro(t,1,0.75,0.7,0.6);

%% 2. Select WT parameters.

> Uncomment the desired set of scales:

% escalas = [16:16:64];
escalas = [1:1:64];

o

Uncomment the first and second order bases:

% basel = 'gausl';

% basel = 'dbl';

% basel = 'biorl.l';
basel = 'rbiol.1l';

% base2 = 'gaus2';

% base2 = 'mexh';

% base2 = 'db2';

% base2 = 'bior2.2';
base2 = 'rbio2.2"';

<)
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% Compute the continuous wavelet transform with MATLABR function 'cwt':
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coefic = cwt(sig,escalas,basel);

coefic2 = cwt(sig,escalas,base2);

%% 3. Pick the coefficients line for critical points detection.
% 1lst order WT: choose line at smaller scale:

linha_coef = coefic (1, :);

% 2nd order WT: choose line at larger scale:
s2 = size(coefic2);

linha_coef2 = coefic2(s2(1),:);
%% 4. Zero—crossing detection.

sing = +(linha_coef >= 0); % zero—crossing for local maxima and minima
inflexao = +(linha_coef2 >= 0); % zero—crossing for inflection points

% '"+()' casts the variables from binary to double
% Identify transitions...

idx = 1:1:1length(siqg);

tran = idx.xsing;

tran2 = idx.*inflexao;

x = diff (tran);
up = find(x>1);
down = find(x<0);

bordas = sort ([up down]);

x2 = diff (tran2);

up2 = find(x2>1);

down2 = find(x2<0);

bordas2 = sort ([up2 down2]);

% This includes the first and last points of the signal as local maxima and/or
% minima:
if bordas(l)~=1
bordas = [1 bordas];
end
if bordas (end) ~=length(sig)
bordas = [bordas length(sig)];
end

o)

Ilmaxmin = bordas; % lmaxmin: identified local maxima/minima positions

%% 5. Approximations:

o

5.1: If any inflection point coincides with a local maxima/minima, remove it.

x = intersect (bordas,bordas?);
if ~isempty (x)

for k = 1l:length(x)
id = find(bordas2==k);
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bordas2 (id) = [];
end

end

% 5.2: Only one inflection between consecutive maximum and minimum:

inflection = [];

for k = 2:numel (bordas)
int_i = bordas (k—1); % begginning of portion
int_f = bordas (k); % end of portion

test_i = find(bordas2 >= int_1i);

test_f = find(bordas2 < int_f);

inf = intersect (test_i,test_£f);

if numel (inf) ==
inflection(k—1) = round((int_i+int_£f)/2);

elseif numel (inf)==1
inflection (k—1)

bordas2 (inf) ;
else
inflection(k—1) = round (sum(bordas2 (inf)) /numel (inf));

end

%% 6. Calculate the Lipschitz coefficient for every point in the signal.

% applies custom function 'fz_lpz_calc_modif'

lpz = abs(fz_lpz_calc_modif (coefic2,escalas) — 0.5);

%% 7. Sampling at critical points.

sampling_clk = sort ([lmaxmin inflection]);

% Amplitude sampling...
amp = sig(sampling_clk);
amp_graph = [];

for k = l:length(sampling_clk)—1
amp_graph (sampling_clk (k) :sampling_clk (k+1)—=1) = amp (k);
end

amp_graph = [amp_graph amp (end)];

o

% Lipschitz coefficient sampling...

lip = lpz(lmaxmin) ;

lip_graph = [];
for k = l:length(lmaxmin)—1
lip_graph (lmaxmin (k) : lmaxmin (k+1)—-1) = lip(k);

end
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lip_graph = [lip_graph lip(end)];

o

% 8. Quantization (applies custom function 'quant').
% Amplitudes quantization...
n = max (amp_graph) ;

amp_n = amp_graph/n;

amp_quant4 = nxquant (amp_n, 4);

amp_quant8 = nxquant (amp_n, 8) ;

amp_quantl2 = nxquant (amp_n,12);

% 4 bits

ampg4 = amp_quant4 (lmaxmin) ; % amplitude @ local maxima/minima
infg4 = amp_quant4 (inflection); % amplitude @ inflection

% 8 bits

ampg8 = amp_quant8 (lmaxmin) ;

infg8 = amp_quant8 (inflection);

% 12 bits

ampgl2 = amp_quantl2 (lmaxmin) ;
infgl2 = amp_qgquantl2 (inflection);

% Lipschitz coefficient quantization...
n = max (lip_graph);

lip_n = lip_graph/n;

lip_gquant4 = nxquant (lip_n,4);
lip_gquant8 = nxquant (lip_n,8);
lip_guantl2 = nxgquant (lip_n,12);

lipg4 = lip_quant4 (lmaxmin) ; % 4 bits
lipg8 = lip_quant8 (lmaxmin) ; % 8 bits
lipgl2 = lip_quantl2 (lmaxmin); % 12 bits

I1.1.1 Quantization function

This function was developed by José E. G. de Medeiros.

10

function [ output_code ] = quant (input, N)

$ADC_ELETRONICA2 Converte um valor analdgico em inteiro

% input = input value
% N = resolution
% output_code = output value

LSB = 1/(2"N);

code = zeros(l,length (input));

o o

% % Adjust RNG to generate always the same sequence based on the seed number
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11 % s = RandStream('mt19937ar', 'Seed',K seed);
12 % RandStream.setGlobalStream(s);

13 %

14 % error_vector = randi(ZAN -1, 1, 5);
15 % erro = zeros (1, N) ;

16 % erro(error_vector(l)) = 0.1xLSB;
17 % erro(error_vector(2)) = —0.3%xLSB;
18 % erro(error_vector(3)) = —0.5%LSB;
19 % erro(error_vector(4)) = 0.5%xLSB;
20 % erro(error_vector(5)) = 0.3+xLSB;
21

22 % Quantizer process

23 for j = l:length(input)

24 for k = 1:(2”"N)—1

25 if (input (j) > kxLSB)

26 code (j) = k*LSB;

27 else

28 break;

29 end

30 end

31 end

32

33 % Output vector

34 % output_code = (code) * 2°N;

35 output_code = (code);

36 end

I1.1.2 Lipschitz exponent estimation function
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The fz_lpz_calc_modif function estimates the Lipschitz exponent

~
o

at all points in a signal.

9 % Inputs:

10 % coef ... e WT coefficients matrix

11 % SCAleS vt ii ittt iite WT scales vector

12 %

13 % Output

14 % 1PZ oo e e vector containing the Lipschitz coefficients
6 00000000006060000000000000600000000000060600000000000000000000000000000

15 6070000000000 000 000000000000 00000000000 000 000 000000000000 00000000000

16

17 function [lpz] = fz_lpz_calc_modif (coef,scales)

18

19 dim = size (coef);

20
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21

22

23

24

25

26

27

28

29

30

31

coef = abs(coef);

a

= log2 (coef);

for n=1:dim(2)

alpha(:,n) = diff(a(:,n)")./diff(log2(scales));

end

lpz = sum(alpha)/ (dim(1)—1);

end

I1.1.3 Function to generate test signal

This function was developed by José Alberto [29].

10

function [f] = fz_p_sandro(t,A,v,tal,lipsc)

= 1/(v)"*lipsc;
= Axk* (v"lipsc—abs (t—tal) ."lipsc);

for n=l:1length(t)

if (£ (n)<0)
f(n)=0;

end

end

II.

2 Reconstruction algorithm
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by Isadora Freire Martins

This function implements the piecewise polynomial reconstruction

algorithm proposed in the manuscript.

Inputs

num_pol ........... .. number of polynomials

Al e amplitudes sampled at inflection points
= T amplitudes sampled at local maxima/minima
Aam_1PZ i sampled Lipschitz coefficients

tempos ..., critical points positions

delta ..., increment in time

L= local maxima and minima positions
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17

18 % Outputs

19 % result .............. reconstructed signal

20 3355555555555 5555555555555 5555555555555 55%%5%555555%5%%%
21

22 function [result] = reconstruct (num_pol,A_i,A_s,am_lpz,tempos,delta,tau)
23

24 tempo = [];

25 pol = [];

26 result = [];

27

28 for k = l:num_pol

29 tempo = tempos (k) :delta:tempos (k+1);

30

31 nu = tempos (k+1l) — tempos (k); % time support

32

33 seli = ceil(k/2); % select inflection

34 sels = floor(k/2 + 1); % select maxima/minima

35

36 pol = A_i(seli) + (A_s(sels)—A_i(seli))*...

37 (1—(abs ((tau(sels) — tempo)./nu) . am_lpz (sels)));
38

39 % Assembling the signal...

40 if k==

41 result = pol;

42 else

43 result = [result pol];

44 result = result(l,l:length(result)—1);

45 end

46 end

I1.3 Reconstruction tests

I 5555505555555 5555555555555 55%55555%5%555%5%55%5%5%%5%5%%%%5%%%%%
2 % A Novel Wavelet—Based Analog—to—Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This MATLAB script tests the reconstruction algorithm, implemented
7 % in the custom function 'reconstruct', for different output

8 % resolutions (ideal, 4, 8 and 12 bits). For each case, the input

9 % and reconstructed signals are plotted and the RMS error and the

10 % correlation coefficient between them are displayed on the command
11 % window

0000000000000000000000000000000000000000000000000000000000000000000
12 355555555555 55%5%5%55555555%5%555555 555555555555 %%5%555555%%%5%5%55555%5%%%%%%
13

14 %% "Ideal" case (outputs before quantizations)

15
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)

% Polynomial parameters

num_pol = numel (lmaxmin)+numel (inflection)—1;
A_i1 = sig(inflection);

A_s = sig(lmaxmin);

am_lpz = lpz(lmaxmin);

tempos = sampling_clk/numel (t);

delta = (t(end) — t(1))/(numel(t));

tau = lmaxmin/numel (t);

% Reconstruction...

result = reconstruct (num_pol,A_i,A_s,am_lpz,tempos,delta,tau);

rms = RMSError (sig, result);
erro_rel = RELError (sig, result);

rho = correlation(sig, result);

figure

plot (t,sig, '"b—',t, result, 'r—"', 'LineWidth', 2)
title ('Reconstructed signal', 'FontSize',18)
xlabel ('t (s) ', 'FontSize', 18)

set (gca, 'FontSize',16)

grid on

disp('Ideal case:")

x = ['Correlation coefficient: ',num2str (rho)];
disp (x)

x = ['RMS error: ',num2str (rms)];

disp (x)

%% 4 bits resolution
% Polynomial parameters:
num_pol = numel (lmaxmin)+numel (inflection)—1;

% A_1 = infg4;

% A_s = ampg4;
A_i1 = sig(inflection);
A_s = sig(lmaxmin);

am_lpz = lipqg4;

% am_lpz = lpz(lmaxmin);

tempos = sampling_clk/numel (t);
delta = (t(end) — t(1))/(numel(t));
tau = lmaxmin/numel (t);

% Reconstruction...

result = reconstruct (num_pol,A_i,A_s,am_lpz,tempos,delta,tau);
rms = RMSError (sig, result);

erro_rel = RELError (sig, result);

rho = correlation(sig, result);

90




68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106
107

108

110

111

112

113

114

115

116

117

118

119

figure

plot (t,sig, '"b—',t, result, 'r—', 'LineWidth', 2)
title ('Reconstructed signal', 'FontSize',18)
xlabel ('t (s)', 'FontSize',18)

set (gca, 'FontSize',16)

grid on

disp('Quant 4 bits'")

x = ['Correlation coefficient: ',num2str (rho)];
disp (x)

x = ['RMS error: ',num2str (rms)];

disp (x)

%% 8 bits resolution

% Polynomial parameters:
num_pol = numel (lmaxmin)+numel (inflection)—1;

% A_i1 = infg8;

o\

A_s = ampg8;

A_i = sig(inflection);

A_s = sig(lmaxmin);

am_lpz = 1lipg8;

% am_lpz = lpz(lmaxmin);

tempos = sampling_clk/numel (t);
delta = (t(end) — t(1))/(numel(t));

tau = lmaxmin/numel (t);

% Reconstruction...

result = reconstruct (num_pol,A_1i,A_s,am_lpz,tempos,delta,tau);

rms = RMSError (sig,result);
erro_rel = RELError (sig, result);

rho = correlation(sig, result);

figure

plot (t,sig, '"b—',t, result, 'r—"', 'LineWidth', 2)
title ('Reconstructed signal', 'FontSize',18)
xlabel ('t (s)', 'FontSize',18)

set (gca, 'FontSize',16)

grid on

disp ('Quant 8 bits')

x = ['Correlation coefficient: ',num2str (rho)];
disp (x)

x = ['RMS error: ',num2str (rms)];

disp (x)

%% 12 bits quantization
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% Polynomial parameters:

num_pol = numel (lmaxmin)+numel (inflection)—1;

$ A_i = infqgl2;

o

A_s = ampqgl2;

A_1 = sig(inflection);

A_s = sig(lmaxmin);

am_lpz = lipqgl2;

% am_lpz = lpz(lmaxmin) ;

tempos = sampling_clk/numel (t);
delta = (t(end) — t(l))/ (numel(t));
tau = lmaxmin/numel (t);

% Reconstruction...

result = reconstruct (num_pol,A_i,A_s,am_lpz,tempos,delta,tau);

rms = RMSError (sig, result);
erro_rel = RELError (sig, result);

rho = correlation(sig, result);

figure

plot (t,sig, '"b—',t, result, 'r—', 'LineWidth', 2)
title ('Reconstructed signal', 'FontSize',18)
xlabel ('t (s)', 'FontSize',18)

set (gca, 'FontSize',16)

grid on

disp('Quant 12 bits')

x = ['Correlation coefficient: ',num2str (rho)];
disp (x)

x = ['RMS error: ',num2str (rms)];

disp (x)

I1.3.1 Error metrics
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% This function outputs the root eman square error 'rms' between the

function rms = RMSError (x,y)

if numel (x) ~=numel (y)
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else

14

numel (x) ;

n =

15

r

sgrt (sum( (x—y) ."2) /n)

rms

16

17

end

18

19

end

20
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oe

o\

o\

between the

'erro_rel'

This function outputs the relative error

I3
°

6

and 'y'.

input vectors 'x'

o
)

7

RELError (x,Vy)

function erro_rel

10

11

erro absoluto

o
)

= abs (x—y);

erro_abs

12

do erro absoluto

% valor maximo

)

_ _ = max (erro_abs

erro_abs_max

o
)

13

14

erro relativo percentual

o
°

’

= 100%erro_abs./x

erro_rel

15

(%)

do erro relativo

% valor maximo

)

erro_rel

= max (

%$erro_rel_max

16

17

end

18
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oe
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between

This function outputs the correlation coefficient 'rho'

o
°

6

and 'y'.

input vectors 'x'

o
S

7

function rho = correlation(x,y)

10

11

corrcoef (x,V); % Correlation matrix

Rxy =

12

13

Ex2 = Rxy(1,1);

14

Ey2 = Rxy(2,2);

Ex

15

sqrt (Ex2 — var(x));

16

E[XY]

Exy = Rxy(1,2);

18

19

Correlation coefficient

o
°

r

(Exy — Ex*Ey)/ (std(x)*std(y))

rho =

20
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I1.4 Gaussian filters
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o

This MATLAB script shows how to calculate the transfer function

-
o

of the gaussian function and its orthonormal representation.

10 % Transfer functions for 1lst derivative 6th order filter:

11 num = [—0.09846 —0.1683 —8.326 6.642 139.6 0];

12 num2 = [—0.09846 —0.1683 —8.326 6.642 139.6 0 0];

13 denum = [1 5.927 30.52 83.11 163.6 176.6 93.29];

14 % gausl

15 Hdl_comp = tf (num,denum);

16 % gaus 2

17 Hd2_nc = tf (num2, denum) ;

18

19 % Transfer functions for approximated lst derivative 5th order filter:
20 % gausl

21 Hdl = tf([-0.1683 —8.326 6.642 139.6 0],denum);

22 % gaus 2

23 Hd2 = tf([-0.1683 —8.326 6.642 139.6 0 0], denum);

24

25 % Orthonormal representation for gaus2 (applies custom function orthonormal?2)
26 h = orthonormal2([—0.1683 —8.326 6.642 139.6 0 0],denum)

27

28 %% 10th order 1lst derivative filter

20 num=[—.44820e31 —.34446e32 +.44432e33 —.47081e34 .16977e35 —.52829e35 +.36809e31];

30 num2 = [num O0];

31 denum=[—.77104e30 —.15627e32 —.15857e33 —.10437e34 —.48808e34 —.16787e35
32 —.42703e35 —.78851e35 —.10066e36 —.79880e35 —.29823e35];

33

34 Hgausl_10 = tf (num,denum); % gausl

35 Hgaus2_10 = tf (num2,denum) ; % gaus?2

36

37 %Orthonormal representations
38 hgausl = orthonormal?2 (num,denum) ;

39 hgaus2 = orthonormal2 (num2,denum) ;

The following function was developed by Sandro A. P. Haddad.

1 %calcula a representacao orthonormal do sistema a partir da funcao de
2 Stransferencia

3 %ultima atualizacédo: 24/02/2012

5 function H = orthonormal2 (num, den)
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%% encontra a ordem do sistema

N=(length (den));

%% verifica necessidade de divisao do num pelo den

q = 0;

if (length (num)==N)
[q, r]=deconv (num,den); S%$realiza divisao para reduzir o grau do numerador
num = r(2:end);

end

%% deixa numerador com tamanho N—1

if (length (num) < (N—1))
num = [zeros(l, (N—1)—length (num)) num];
end

%% separa coeficientes de posicoes pares e impares do den

if (mod(N,2)==0) %den par
for i=l:ceil (N/2)
Dpar (i) =den (2%1) ;
Dimpar (i)=den(2+xi-1);
end
else %den impar
Dimpar (1l)=den(1l);
for i=1:(ceil (N/2)-—1)
Dpar (i)=den(2+1i);
Dimpar (i+1)=den (2*i+1);
end
end
%$Dpar
$Dimpar

%% decomposicao em fracao continuada

for i=1:N-1
%$Dimpar
%Dpar
X (N—i)=Dimpar (1) /Dpar(1l);
Dimpar=Dimpar (2:end)—x (N—i) « [Dpar (2:end), . ..
zeros (1, (length (Dimpar (2:end))—length (Dpar(2:end)))) ];
temp=Dimpar;

Dimpar=Dpar;

Dpar=temp;
$x (N—1i)
end
EP

o

% matriz A orthonormal

for i=1:N-2
A(i,i+1)=1/sqgrt (x (i) *x(i+1));
A(i+l,i) = —A(i,1i+1);

end

A(N—1,N—1)=—1/x (N—1);
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% matriz B orthonormal

= zeros (N—1,1);

B
B (N—1)=sqrt (abs (A (N—1,N-1)) /pi);

o\®
w

o

% matriz F auxiliar

F(1,N—1)=sqgrt (x(1)/pi)+den (N);

F(2,N—2)=F (1,N—1)/A(1,2);

for i=3:N-1
F(i,:)=([F(i—1,2:end),0]+A(1i—2,i—1)*xF(i—2,:))/A(i—1,1);

end

o\
=

o\

% matriz C orthonormal

C=linsolve (F', (circshift (num', length (num))))"';

%% matriz D orthonormal

D = qj
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