

Lúcia Rolim Santana de Freitas¹, Elisabeth Carmen Duarte¹, Leila Posenato Garcia²

Abstract: Introduction: In Brazil, the spatial distribution of leprosy is heterogeneous. Areas with high transmission of the disease remain in the North, Center-west and Northeast. Areas with high transmission of the disease remain in the Northern, Central-Western and Northeastern regions of the country. Objective: to describe the spatial distribution of leprosy in municipalities with high risk of transmission, in the periods from 2001 – 2003 and 2010 – 2012. Methods: This was an ecological study using data from the Notifiable Diseases Information System (SINAN). They included all municipalities in the states of Mato Grosso, Tocantins, Rondônia, Pará and Maranhão. The following leprosy indicators were calculated per 100,000 inhabitants: incidence rate of leprosy, incidence rate in children aged less than 15 years and rate of new cases with grade 2 disabilities. The spatial scan statistic was used to detect significant clusters (\(p \leq 0.05 \)) in the study area. Results: In the period 2001 – 2003, the scan spatial statistics identified 44 significant clusters for the leprosy incidence rate, and 42 significant clusters in the period 2010 – 2012. In the period 2001 – 2003, it was possible to identify 20 significant clusters to the incidence rate in children aged less than 15, and 14 significant clusters in the period 2010 – 2012. For the rate of new cases with grade 2 disability, the scan statistics identified 19 significant clusters in the period 2001 – 2003, and 14 significant clusters in the period 2010 – 2012. Conclusions: Despite the reduction in the detection of leprosy cases, there is a need intensify disease control actions, especially in the clusters identified. Keywords: Leprosy. Ecological studies. Spatial analysis. Epidemiological surveillance. Cluster analysis. Communicable diseases.
INTRODUCTION

Leprosy is a chronic disease caused by the bacillus *Mycobacterium leprae*, which affects mostly the skin and the peripheral nerves, and represents a public health issue in some parts of the world, including Brazil. According to a report by the World Health Organization (WHO), in 2014, 213,899 new cases of leprosy were notified in the world. In Brazil, in the same year, 31,064 new cases of leprosy were notified. Of these, 2,341 (7.5%) new cases corresponded to people aged less than 15 years, and 2,034 (6.5%) patients presented grade 2 disabilities.

To intensify the strategies of intervention and control of leprosy in specific geographic zones, the spatial analysis has been used by identifying the distribution of the condition in a national, regional and local level.

In Brazil, the spatial distribution of leprosy is heterogeneous: the States that are more socioeconomically developed in the South Region reached the goal of eliminating leprosy as a public health issue — prevalence of less than 1 case per 10,000 inhabitants. However, pockets of high load of the disease remain in the North, Center-West and Northeast regions of Brazil, considered the areas where the disease is mostly transmitted in the country.

A cluster analysis conducted in 2009 by the Ministry of Health showed that the States of Mato Grosso, Tocantins, Rondônia, Pará and Maranhão are still areas with high risk of persistent transmission of leprosy. Recently, systems of geographic information and
spatial analysis became important tools for the epidemiology, helping to understand the dynamics of transmission of several diseases. These results may be used as guides to elaborate programs to control leprosy, aiming at directing the intervention for high-risk areas6,8,11. Therefore, getting to know the spatial and temporal patterns of the disease in the cities of these States is essential to provide subsidies to plan for surveillance actions and to control the disease.

Therefore, the objective of this study was to describe the spatial distribution of leprosy in a group of Brazilian cities with high risk of transmission of this disease.

METHODS

An ecological study, with spatial analysis, was conducted using data from the Notifiable Diseases Information System (SINAN)12, in the years 2001 – 2003 and 2010 – 2012. The units of study analysis were the 692 cities in the States of Mato Grosso, Tocantins, Rondônia, Pará and Maranhão. This group is located in the central area of Brazil (Figure 1). The study area occupies 2,998,569 km2 and, according to the Demographic Census 2010, its total population was 20.1 million inhabitants, which represents 10.6\% of the Brazilian population.

In the years 2001 – 2003 and 2010 – 2012, the following epidemiological indicators of leprosy were calculated for the cities in the group: incidence rate of leprosy/100,000
inhabitants, incidence rate in people aged less than 15 years/100,000 inhabitants, and rate of new cases with grade 2 disabilities/100,000 inhabitants. The size of the resident population in 2010, used as a denominator, came from Census 2010, and the other years used in this study were obtained from intercensal projections produced by the Brazilian Institute of Geography and Statistics (IBGE)\(^2,12,13\).

The spatial statistics scan was used to detect significant clusters inside the study area in the analyzed period. This technique is defined by a circular geographic window that moves around the area of interest\(^14,15\). The method identifies one region, formed by all areas with the respective centroids inside the circle, and tests the constant risk null hypothesis versus the alternative hypothesis that there is high risk of occurrence of events inside the window, in comparison to the outside. The model with the Poisson distribution was used. This model is based on a number of events (cases of leprosy) distributed according to a known population at risk\(^16,17\). The statistical significance was evaluated considering \(p \leq 0.05 \) (likelihood ratio test). The clusters were identified using a purely spatial analysis\(^14\), with a search radius of up to 100 km\(^7\).

The analyses were conducted with the softwares SatScan 9.3\(^18\) and ArcGis 9.2 (Environmental Systems Research Institute, Redlands, CA, USA)\(^19\).

This study was approved by the Research Ethics Committee in the School of Health Sciences of Universidade de Brasília, CAAE 20249613.9.0000.0030 and Report n. 392.809, issued on September 10, 2013. This study was conducted exclusively with secondary data, of public access, without identification of subjects, and its procedures are in accordance with the principles of ethics in research involving human beings.

RESULTS

From 2001 – 2012, 176,929 cases of leprosy were notified in the group of cities, which is equivalent to 34.6% of all cases in Brazil. In the cluster, from 2001 – 2003, 404 (58.4%) cities were classified as hyperendemic (mean annual incidence rate higher than 40 cases/100,000 inhabitants), with maximum value of 538.5 cases per 100,000 inhabitants. On the other hand, from 2010 – 2012, 402 (58.1%) cities were classified as hyperendemic, with maximum value of 314.5 cases per 100,000 inhabitants.

From 2001 – 2003, the spatial statistics scan identified 44 significant clusters for the incidence rate of leprosy. Of these, 30 are located in the States of Pará (12) and Mato Grosso (18). On the other hand, from 2010 – 2012, 42 significant clusters were identified for the incidence rate of leprosy. Of these, 28 are located in the States of Pará (11) and Mato Grosso (17) (Table 1). Also, 20 significant clusters were identified for the incidence rate of leprosy in adolescents aged less than 15 years, from 2001 – 2003, of which 7 are located in the State of Pará. From 2010 – 2012, the spatial statistics scan identified 14 significant clusters for the incidence rate in adolescents aged less than 15 years.
For the rate of new cases with grade 2 disabilities, the spatial statistics scan identified 19 significant clusters from 2001 – 2003, of which 7 are located in the State of Pará. From 2010 – 2012, the spatial statistics scan identified 14 significant clusters for this rate, with homogeneous concentration among the 5 Brazilian states belonging to the group (Table 1).

Table 1. Clusters most significant statistically* defined by using the spatial scan statistic, according to indicators and periods.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster – Central municipality (FU)</td>
<td>N. of municipalities</td>
<td>Annual rate</td>
</tr>
<tr>
<td>Taxa de incidência</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Canaã dos Carajás (PA)</td>
<td>8</td>
<td>292.5</td>
</tr>
<tr>
<td>2. Açailândia (MA)</td>
<td>15</td>
<td>201.6</td>
</tr>
<tr>
<td>3. Jacundá (PA)</td>
<td>9</td>
<td>267.2</td>
</tr>
<tr>
<td>4. Brejo de Areia (MA)</td>
<td>29</td>
<td>230.1</td>
</tr>
<tr>
<td>5. Conceição do Araguaia (PA)</td>
<td>14</td>
<td>156.5</td>
</tr>
<tr>
<td>Taxa de incidência em < 15 anos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Canaã dos Carajás (PA)</td>
<td>8</td>
<td>104.4</td>
</tr>
<tr>
<td>2. Açailândia (MA)</td>
<td>15</td>
<td>65.6</td>
</tr>
<tr>
<td>3. Jacundá (PA)</td>
<td>9</td>
<td>76.9</td>
</tr>
<tr>
<td>4. Brejo de Areia (MA)</td>
<td>29</td>
<td>49.4</td>
</tr>
<tr>
<td>5. Concepção do Araguaia (PA)</td>
<td>14</td>
<td>76.3</td>
</tr>
<tr>
<td>Taxa de casos novos com grau 2 de incapacidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Monte Negro (RO)</td>
<td>5</td>
<td>20.1</td>
</tr>
<tr>
<td>2. Marituba (PA)</td>
<td>1</td>
<td>21.8</td>
</tr>
<tr>
<td>3. Açailândia (MA)</td>
<td>15</td>
<td>8.8</td>
</tr>
<tr>
<td>4. São Luís Gonzaga do Maranhão (MA)</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>5. São João dos Patos (MA)</td>
<td>1</td>
<td>34.2</td>
</tr>
</tbody>
</table>

*Significant clusters with p < 0.05, FU: Federation Unit; PA: Pará; MA: Maranhão; RO: Rondônia; MT: Mato Grosso.
Figure 2 shows the 15 most significant clusters for the incidence rate of leprosy, from 2001 – 2003 and 2010 – 2012. Of these, the overlapping of three clusters with the same main municipality stands out (Marituba, Altamira and Paragominas), located in the State of Pará, and the city of Araguaiana, in Mato Grosso, which are among the 15 most significant clusters. From 2001 – 2003, the most significant cluster included eight municipalities in Pará. On the other hand, from 2010 – 2012, the most significant cluster included only the city of Maratuba, located in the Metropolitan region of Belém.

Figure 3 shows the 15 most significant clusters for the incidence rate of leprosy in adolescents aged less than 15 years from 2001 – 2003 and 2010 – 2012. Of these, the overlapping of three clusters with the same main city stands out (Itaituba, Marituba and São João do Araguaia), located in the State of Pará, and the city of Ariquemes, in Rondônia. From 2001 – 2003, the most significant cluster included eight cities in Pará. On the other hand, from 2010 – 2012, the most significant cluster included five cities, also located in Pará.

Figure 4 shows the 14 most significant clusters for the rate of new cases with grade 2 disabilities, between 2001 – 2003 and 2010 – 2012. Of these, the overlapping of only one cluster with the same main municipality stands out, located in the city of Marituba (Pará). From 2001 – 2003, the most significant cluster included five cities of Rondônia. On the other hand, from 2010 – 2012, the most significant cluster included only the city of Marituba (Pará).
Figure 3. Most significant clusters for the incidence rate in adolescents aged less than 15 years (per 100,000 inhabitants), defined by using the spatial scan statistics, according to periods 2001 – 2003 and 2010 – 2012. Brazil, 2001 – 2012.

Figure 4. Most significant clusters for the rate of new cases with grade 2 disabilities (per 100,000 inhabitants), defined by using the spatial scan statistics, according to periods 2001 – 2003 and 2010 – 2012. Brazil, 2001 – 2012.
There was an overlap of 17 clusters with the same main municipality for the 3 indicators in the period of 2010 – 2012. The States of Mato Grosso, Maranhão and Pará stand out, which, together, concentrated 13 of these clusters. On the other hand, among the indicators incidence rate and rate of new cases with grade 2 disabilities, there was an overlap of 11 clusters with the same main municipality in the period of 2010 – 2012.

DISCUSSION

This study analyzed the group of Brazilian municipalities that concentrates 34.6% of all cases of leprosy notified in the country, from 2001 – 2012. In this group, 58% of the cities were classified as hyperendemic, in both analyzed periods. The spatial analysis allowed to identify the statistically significant clusters for the three indicators analyzed. In this analysis, the States of Pará and Mato Grosso stood out, which, together, presented the highest number of clusters for the incidence rate of leprosy, in both periods. Besides, some clusters were identified (n = 17) in which there were overlaps of high rates for the three indicators analyzed.

Studies have been showing the tendency of temporal reduction of different indicators of leprosy in Brazil. The prevalence rate in Brazil fell from 4.52 to 1.42 per 10,000 inhabitants between 2003 and 2013\(^2\). Besides, Freitas et al.\(^9\), studying the same group of municipalities in this study, described a temporal trend of reduction in the incidence rate of leprosy, from 89.10 to 56.98 per 100,000 inhabitants, between 2001 and 2012\(^9\). The temporal reduction of some leprosy indicators is not coherent with the fact that the disease persists with high magnitude, and as a relevant public health issue in Brazil. In fact, the pace of reduction of leprosy indicators in Brazil, although relevant, seems to not be sufficient to reach the goal of eliminating the disease as a public health issue (prevalence < 1 case per 10,000 inhabitants), as proposed by the WHO\(^20,21\). Besides, leprosy presents geographic distribution that is also persistent in some geographic areas of the Centerwest, North and Northeast regions of the country\(^9,20\). In fact, this study showed the overlapping of the clusters in both periods temporally separated in ten years, which reinforces the idea of temporal and geographic persistence of the indicators of the analyzed condition. Other authors have shown the persistence of the geographic distribution of leprosy and its spatial concentration\(^7,8,10,16,22-24\). For example, the clusters identified for the incidence rate of leprosy and for the incidence rate in adolescents aged less than 15 years are in areas similar to those mentioned in previous studies\(^7,10,22\). Alencar et al.\(^7\), by using the same methodology of analysis and the same indicators of this study — however, in different geographic area and period (2001 – 2009) — identified 23 significant clusters for the incidence rate of the disease. In the common geographic area between the present study and that by Alencar et al.\(^7\), concerning the incidence rate (with the same main municipality), it was observed that, in the period of 2001 – 2003, nine clusters were coincident, whereas three clusters were coincident in the period of 2010 – 2012. Besides, it
is worth to mention the overlapping of clusters with high rates for the three indicators analyzed in this study, showing high risk of incidence of leprosy, active transmission of the disease and late diagnosis.

Several explanations can be given for these findings. Among them, some stand out:
1. the ones connected with the social vulnerabilities of the geographic areas;
2. those related with quality of health care;
3. the ones related with the quality of information in health as an element of distortion of the results analyzed.

As to the social vulnerabilities of the population, several studies have been pointing out to its association with the risk of leprosy. In particular, Freitas et al., in a recent national study, mention some ecological aspects significantly associated with higher incidence rates of leprosy among the cities in Brazil. In this matter, the authors highlight higher rate ratios between cities with high levels of illiteracy, larger population, higher proportion of households with inadequate sanitation, higher levels of urbanization, higher mean number of people per rooms in the households, and more income inequality, measured by the Gini Index. Besides, Silva et al., in an ecological study carried out in the Brazilian Amazon, describe there is evidence of association between intensive deforestation and high incidence rates of leprosy, also highlighting the precarious social conditions of the cities analyzed. Therefore, according to this reference, the explanations for the persistence of leprosy in statistically significant clusters for decades, described in this study and by other authors, may be a consequence of the persistence of poverty pockets and precarious life conditions of these populations. Therefore, the initiatives to face that should include actions of income distribution, social inclusion and improvement of life conditions in general.

As to the explanations related with the quality of health care, it is important to consider that, even though there is not an effective vaccine, leprosy is treatable, and the treatment is free in the entire country. When associated with other control measurements, it strongly limits the transmission potential of the disease. Therefore, it is plausible to assume that qualified health care, guided by equity, has the potential to increase the healing chances and to minimize the exposure of the population to the sickness. The early diagnosis of the condition, adherence to treatment (followed by non-abandonment) and the strengthening of prevention actions and disease control are certainly relevant elements that can contribute with the control of leprosy in the more vulnerable Brazilian populations. The lack of these elements may, in a way, explain the persistence of leprosy for at least ten years in some clusters identified in this study and by other authors.

The explanations related with the quality of information in health as an element of distortion of the results analyzed, as well as other limitations related with the use of secondary surveillance data, are worth of consideration. The under-notification of cases may be associated with the existence of asymptomatic or oligosymptomatic cases, with the precariousness in surveillance services to identify and notify the cases, and with the areas that are
geographically difficult to access, therefore making it difficult to reach the health services. Freitas et al. observed a gradient increment in the incidence rates of leprosy (attenuated) in the Brazilian cities when the proportion of coverage of the Family Health Program (PSF) units increased, and when the percentage of examined contacts increased. This fact may point to the existence of under-notification of cases, which, gradually, may be overcome when the basic care services improve their ability and quality. Even though this study adopted the term “incidence rate” for the new notified cases, these findings reinforce the idea that this measure reflects both the incidence of the disease and the ability of detecting new cases. The motivation was used to give relevance to these outcomes, such as population morbidity load, ad not only statistics of notified cases. On the other hand, it is important to notice that the “incidence rate” of leprosy estimated here is an underestimation of the real incidence rate, since it is based only on the notified cases. Besides, Richardus and Habbema warn us that the trends in the detection rates of new cases of the disease only reflect the trend in the incidence rates, unless there is not any major change in the probability of detecting cases throughout the studied years.

Other limitations may be related with the methodological options of this study, which used the municipality as the smallest unit of analysis. It is worth to remember that, even inside the Brazilian municipalities, important variations of the leprosy indicators can be found and require an analysis. In fact, a study conducted in the municipality of Castanhal (Pará) identified an intra-municipal heterogeneity in the distribution of leprosy, with significant clusters of high and low rates of disease detection. Therefore, an intra-municipal description of the clusters identified as significant in this study should be approached in further analyses. Besides, the interpretation of the “persistence” of a specific cluster should be seen considering that clusters are defined based on a main municipality. Another limitation, related with the scan spatial statistics, is that clusters are always defined as circles or ellipses. In this sense, an area with low frequency of cases surrounded by areas with a higher number of cases can be included in a cluster, even though their characteristics may be different. Besides, the scan spatial statistics uses the geographic coordinates of the municipality as a geographic reference, which may not reflect the real distribution of cases inside the cities.

Some of the limitations can be minimized by the conduction of more detailed analysis in the cities involved in the identified clusters, therefore allowing identifying the profile of the disease and defining more specific control strategies.

CONCLUSION

The geographic and temporal persistence of leprosy described in this study points to the need to search for new control strategies in these areas, where there is a risk of overlapping. In this study, as well as in others with intra-municipal approaches, it is possible to guide the detection of priority areas, with higher vulnerability for the diseases, recommending more effective interventions. The dissociation between the three indicators analyzed
allows reflecting about the quality of information and surveillance systems, and points to new strategies of investigation in this theme.

ACKNOWLEDGMENTS

The authors would like to thank the Health Surveillance Secretariat (SVS) in the Brazilian Ministry of Health, for providing the data.

REFERENCES

5. Fischer EAJ, Pahan D, Chowdhury SK, Richards JH. The spatial distribution of leprosy cases during 15 years of a leprosy control program in Bangladesh: an observational study. BMC Infect Dis 2008; 8: 126. DOI: 10.1186/1471-2334-8-126

712

REV BRAS EPIDEMIOL OUT-DEZ 2017; 20(4): 702-713

